
z/OS

Distributed File Service zFS
Administration
Version 2 Release 2

SC23-6887-01

���

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2001, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
How this document is organized xi
Conventions used in this document xi
z/OS information xii
References to DFS information xii

How to send your comments to IBM xiii
If you have a technical problem xiii

Summary of changes xv
Summary of changes for z/OS Version 2 Release 2
(V2R2) xv
Summary of changes for z/OS Version 2 Release 1 xviii

Part 1. zFS administration guide . . . 1

Chapter 1. z/OS File System overview . . 3
Features 4
Terminology and concepts 4
What's new or changed for zFS in z/OS V2R2 . . . 8
What's new or changed for zFS in z/OS V2R1 . . . 9

Chapter 2. Installing and configuring
zFS 13
zFS installation and configuration steps 13
Applying required APARs for z/OS V2R2 16
Specifying zFS file systems as sysplex-aware . . . 16

Using zFS read/write sysplex-aware file systems 17
Changing the sysplex-awareness of a mounted
zFS read/write file system 18

zFS running in the z/OS UNIX address space . . . 19

Chapter 3. Managing zFS processes . . 21
Starting zFS 21
Stopping zFS 21

Determining zFS status 22

Chapter 4. Creating and managing zFS
file systems using compatibility mode
aggregates 23
Creating a compatibility mode aggregate 23
Using version 1.5 aggregates and extended (v5)
directories 26

Creating a version 1.5 aggregate 26
Converting an existing aggregate to version 1.5 27
Converting an existing v4 directory to an
extended (v5) directory 28
Guidelines for v4 to v5 conversion 29

Growing a compatibility mode aggregate 30
Dynamically growing a compatibility mode
aggregate 30
Creating a multi-volume compatibility mode
aggregate 31
Adding volumes to a compatibility mode aggregate 33
Increasing the size of a compatibility mode
aggregate 33

Copying each file and directory of the aggregate
to a larger data set 33
Copying the physical blocks of the aggregate to a
larger data set 35

Decreasing the size of a compatibility mode
aggregate 38
Renaming or deleting a compatibility mode
aggregate 39
Changing zFS attributes on a mounted zFS
compatibility mode file system 40
Unmounting zFS file systems before copying or
moving 41
Understanding zFS disk space allocation 42

How data is stored on systems before z/OS
V1R13 44
Support for type 30 SMF record 45

Sharing zFS data in a non-shared file system sysplex 46
Minimum and maximum file system sizes 46

Version 1.5 aggregates 47
Version 1.4 aggregates 47
v4 directory considerations 47

Chapter 5. Using zFS in a shared file
system environment 51
Overview of the shared file system environment . . 51
Read-only mounted file systems 51
zFS support for read/write file systems with
different levels of sysplex-awareness 52
zFS-enhanced sysplex-aware support 53
zFS ownership versus z/OS UNIX ownership of file
systems. 54

Determining the file system owner 54
When is the z/OS UNIX owner important?. . . . 56
Dynamic movement of the zFS owner 57
Considerations when using zFS in a shared file
system environment 58

Chapter 6. Copying or performing a
backup of a zFS. 61
Backing up a zFS aggregate 62

Restoring an aggregate with DFSMSdss logical
restore 62

Chapter 7. Migrating data from HFS or
zFS to zFS 65
Using the z/OS HFS to zFS migration tool 65

© Copyright IBM Corp. 2001, 2015 iii

||

||

||

||

Using the z/OS UNIX pax command 65
Using an intermediate archive file 66
Without using an intermediate archive file . . . 66

Chapter 8. Performance and debugging 67
Performance tuning. 67

Total cache size 67
Metadata cache 68
Vnode cache 69
User file cache 69
Log files 70
Log file cache. 70
Fixed storage 70
I/O balancing 70

Monitoring zFS performance 71
Resetting performance monitoring data 72
Sample zFS QUERY reports 72

Debugging aids for zFS 93
Overview of trace options for zFS 93
Understanding the salvager utility. 94
Understanding zFS dumps 96
Determining the XCF protocol interface level . . 97
Saving initialization messages in a data set . . . 97
Determining service levels 97
Understanding namespace validation and
correction 98
Understanding delays and hangs in zFS using
the zFS hang detector 99
Identifying storage shortages in zFS 104

Diagnosing disabled aggregates 105
Handling disabled aggregates 106

Chapter 9. Overview of the zFS audit
identifier 109
Enabling the zFS auditid 110

Part 2. zFS administration
reference. 113

Chapter 10. z/OS system commands 115
MODIFY ZFS PROCESS 116
SETOMVS RESET 123

Chapter 11. zFS commands 125
ioeagfmt 126
ioeagslv 130
ioefsutl 136
ioefsutl converttov4 137
ioefsutl converttov5 139
ioefsutl format 141
ioefsutl salvage 145
MOUNT 150
zfsadm 153
zfsadm aggrinfo 158
zfsadm apropos 161
zfsadm attach 162
zfsadm config 165
zfsadm configquery 169
zfsadm convert 173

zfsadm define 176
zfsadm delete 178
zfsadm detach 180
zfsadm fileinfo 182
zfsadm format 188
zfsadm fsinfo 191
zfsadm grow 200
zfsadm help 202
zfsadm lsaggr 204
zfsadm lsfs 206
zfsadm lssys. 208
zfsadm query 209
zfsadm quiesce 212
zfsadm setauditfid. 214
zfsadm unquiesce 216

Chapter 12. The zFS configuration
options file (IOEPRMxx or IOEFSPRM) 219
IOEFSPRM 220

Chapter 13. zFS application
programming interface information . . 233
pfsctl (BPX1PCT) 234
Attach Aggregate 238
Define Aggregate 242
Detach Aggregate 246
Format Aggregate 249
Grow Aggregate 253
List Aggregate Status (Version 1) 256
List Aggregate Status (Version 2) 260
List Attached Aggregate Names (Version 1) . . . 268
List Attached Aggregate Names (Version 2) . . . 272
List Detailed File System Information 276
List File Information 293
List File System Names (Version 1) 302
List File System Names (Version 2) 306
List File System Status 311
List Systems 322
Query Config Option 326
Quiesce Aggregate. 331
Reset Backup Flag 334
Set Auditfid 337
Set Config Option 340
Statistics Directory Cache Information 343
Statistics iobyaggr Information 347
Statistics iobydasd Information 355
Statistics iocounts Information 363
Statistics Kernel Information 370
Statistics Locking Information 378
Statistics Log Cache Information 387
Statistics Metadata Cache Information 398
Statistics Server Token Management Information 405
Statistics Storage Information 411
Statistics Sysplex Client Operations Information 423
Statistics Sysplex Owner Operations Information 430
Statistics Transaction Cache Information 438
Statistics User Cache Information. 442
Statistics Vnode Cache Information 454
Unquiesce Aggregate 462

iv z/OS V2R2 Distributed File Service zFS Administration

|

||

||

||
||
||
||

Part 3. Appendixes 465

Appendix A. Running the zFS pfsctl
APIs in 64-bit mode. 467
Statistics iocounts information (64-bit mode) . . . 467

Appendix B. Accessibility 471
Accessibility features 471
Consult assistive technologies 471
Keyboard navigation of the user interface 471
Dotted decimal syntax diagrams 471

Notices 475
Policy for unsupported hardware. 476
Minimum supported hardware 477
Programming Interface Information 477
Trademarks 477

Glossary 479

Index 481

Contents v

vi z/OS V2R2 Distributed File Service zFS Administration

Figures

1. z/OS UNIX and zFS file system ownership 6
2. Example job to create a compatibility mode file

system 24
3. Example job to create a compatibility mode file

system using IOEFSUTL 24
4. Example job to create a multi-volume

compatibility mode aggregate 32
5. Example job to create a multi-volume

compatibility mode aggregate, using a
secondary allocation size 32

6. Example job to add volumes to a zFS
aggregate 33

7. Sample job to copy each file and directory of
an aggregate to a larger data set 34

8. Sample job to copy the physical blocks of an
aggregate to a larger data set. 36

9. Copying blocks from a full zFS data set into a
larger data set. 37

10. Sample job to decrease the size of an aggregate 38
11. Example job to reconcile the file system and

aggregate name 39
12. Example job to delete a compatibility mode

aggregate 39
13. Disk space allocation example 1. 44
14. Disk space allocation example 2. 45
15. Example of a secondary zfsadm define

command 46
16. Sysplex-aware file system (read-only) 52
17. zFS read/write file systems sysplex-aware and

non-sysplex aware on a file system basis. FS2
is being directly accessed from all z/OS V1R13
or later systems. 53

18. zFS sysplex-aware with new owner 54
19. zfsadm lsaggr and df -v output after mount 55
20. D OMVS,F output after mount 55
21. zfsadm lsaggr and df -v output after

movement 55
22. D OMVS,F output after movement 56

23. File system ownership when mount fails 57
24. Steps for quiesce and unquiesce. 62
25. Job to back up a zFS aggregate 62
26. Job to restore a zFS aggregate 63
27. Job to restore a zFS aggregate with replace 63
28. Sample CTKC report 73
29. Sample DATASET report 73
30. Sample FILE report 74
31. Sample IOBYDASD report 75
32. Example of a LOCK report 82
33. Sample LOG report 83
34. Sample STKM report 84
35. Sample STOR report (part 1 of 2) 86
36. Sample STOR report (part 2 of 2) 87
37. Sample SVI report 89
38. Sample VM report 90
39. Example of how to check whether user tasks

are hung 102
40. zFS auditid examples 109
41. Sample job to create a compatibility mode

aggregate and file system 129
42. Job to verify a zFS aggregate using debug

parameters specified in IOEFSPRM 135
43. Job to verify a zFS aggregate using debug

parameters specified in parmlib member
IOEPRM03 135

44. Job to convert a version 1.5 aggregate to a
version 1.4 aggregate 138

45. Job to convert a version 1.4 aggregate to a
version 1.5 aggregate 140

46. Sample job to create and format a version 1.4
aggregate 144

47. Job to verify a zFS aggregate using debug
parameters specified in IOEZPRM 148

48. Sample of zfsadm aggrinfo -long command 159
49. Job to attach an aggregate 164
50. How to specify 32 members. 222

© Copyright IBM Corp. 2001, 2015 vii

|
|
|
|

||
||
||
||
||
||

|
||

viii z/OS V2R2 Distributed File Service zFS Administration

Tables

1. Determining sysplex-awareness for zFS
read/write file systems. 52

2. DATASET report fields 74
3. FILE report fields 74
4. IOBYDASD report fields 75
5. LFS report sections 79
6. STKM report fields 84
7. STOR report fields 88
8. User File (VM) Caching System Statistics

report fields 91
9. zFS man command examples 125

10. Return codes for -verifyonly that are returned
by the salvager 131

11. Return codes for -recoveronly that are
returned by the salvager 131

12. Criteria for selecting aggregates 193
13. Definitions of abbreviated values when the

-basic or -owner options are specified . . . 194
14. Statistics displayed when the -owner option is

specified 194
15. Sorting options when the -sort option is

specified 196
16. Local statistics displayed when the full option

is specified 196
17. Summary of APIs for zFS pfsctl 235
18. Summary of zFS w_pioctl calls. 237

© Copyright IBM Corp. 2001, 2015 ix

|
|

|
|

x z/OS V2R2 Distributed File Service zFS Administration

About this document

The purpose of this document is to provide complete and detailed guidance and
reference information. This information is used by system administrators that work
with the z/OS File System (zFS) component of the IBM® z/OS® Distributed File
Service base element.

How this document is organized
This document is divided into parts, each part divided into chapters:
v Part 1, “zFS administration guide,” on page 1 provides guidance information for

the z/OS File System (zFS).
v Part 2, “zFS administration reference,” on page 113 provides reference

information about z/OS File System (zFS), which includes z/OS system
commands, zFS commands, and zFS data sets.

Conventions used in this document
This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must enter
into the system literally, such as commands.

Italic Italicized words or characters represent values for variables that you must
supply.

Example Font
Examples and information displayed by the system are printed using an
example font that is a constant width typeface.

[] Optional items found in format and syntax descriptions are enclosed in
brackets.

{ } A list from which you choose an item found in format and syntax
descriptions are enclosed by braces.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on a keyboard.

... Horizontal ellipsis points indicated that you can repeat the preceding item
one or more times.

\ A backslash is used as a continuation character when entering commands
from the shell that exceed one line (255 characters). If the command
exceeds one line, use the backslash character \ as the last nonblank
character on the line to be continued, and continue the command on the
next line.

Note: When you enter a command from this document that uses the
backslash character (\), make sure you immediately press the Enter key
and then continue with the rest of the command. In most cases, the
backslash has been positioned for ease of readability.

A pound sign is used to indicate a command is entered from the shell,
specifically where root authority is needed (root refers to a user with a
UID = 0).

© Copyright IBM Corp. 2001, 2015 xi

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

References to DFS information
Information about installing Distributed File Service components is found in z/OS
Program Directory.

Information about z/OS File System messages and codes is found in z/OS
Distributed File Service Messages and Codes.

xii z/OS V2R2 Distributed File Service zFS Administration

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R2 Distributed File Service zFS Administration
SC23-6887-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS Support Portal (http://www-947.ibm.com/

systems/support/z/zos/).

© Copyright IBM Corp. 2001, 2015 xiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/

xiv z/OS V2R2 Distributed File Service zFS Administration

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 2 (V2R2)
The following changes are made in z/OS Version 2 Release 2 (V2R2).

New
v “What's new or changed for zFS in z/OS V2R2” on page 8 was added.
v zFS can be run in the OMVS address space, which is used by z/OS UNIX. See

“zFS running in the z/OS UNIX address space” on page 19.
v You can display detailed information about the zFS file system. See “Usage notes

for displaying file system information” on page 121 and “Examples of
displaying file system information” on page 122.

v MODIFY ZFS PROCESS has a new parameter, fsinfo, which displays detailed
information about zFS file systems. Usage notes and examples for displaying file
system information were also added. See “MODIFY ZFS PROCESS” on page
116.

v The zfsadm config and zfsadm configquery commands have a new option,
-modify_cmd_threads. It specifies the current number of threads that are defined
to handle zFS modify commands. See “zfsadm config” on page 165 and“zfsadm
configquery” on page 169.

v The zfsadm fsinfo command displays detailed information about zFS file
systems. See “zfsadm fsinfo” on page 191.

v New reports are available that can be printed with the zfsadm query command
using the keywords -stkm, -ctkc, and -svi. This information is also available in
new application programming interfaces for Client Token Caching Component,
Server Token Manager, and Statistics from the Server Vnode Interface. For more
information about the keywords, see “zfsadm query” on page 209.

v The IOEFSPRM configuration options file has new options.
– The modify_cmd_threads option controls the number of modify commands

that are running simultaneously.
– The user_running_hangdump option specifies whether a hang dump should be

taken for a user task that has been hanging for approximately 5 minutes.
– The quiesceinfo_message_delay option specifies the minimum number of

seconds to delay issuing the IOEZ00830E message. See “Processing options
for IOEFSPRM and IOEPRMxx” on page 222.

v The pfsctl (BPX1PCT) application programming interface was updated to include
a new command, ZFSCALL_FSINFO. Two subcommands (query
modify_cmd_threads and set modify_cmd_threads) were added to
ZFSCALL_CONFIG. See Table 17 on page 235.

v These application programming interfaces (APIs) were added:
– “List Detailed File System Information” on page 276. It lists detailed file or

directory information.
– “Statistics Server Token Management Information” on page 405. It returns

statistics for the server token manager.

© Copyright IBM Corp. 2001, 2015 xv

– “Statistics Sysplex Client Operations Information” on page 423. It returns
information about the number of local operations that required the sending of
a message to another system.

– “Statistics Sysplex Owner Operations Information” on page 430. It returns
information about the number of calls that are processed on the local system
as a result of a message that was sent from another system.

Changed
v Information about updating required APARs was updated for V2R2. See

“Applying required APARs for z/OS V2R2” on page 16.
v zFS caches can now be obtained in virtual storage above the 2 GB bar (64-bit

storage). As a result, much larger caches can be used to increase zFS
performance. zFS performance can further be increased because it can be run in
the OMVS address space, which is used by z/OS UNIX. See “zFS running in the
z/OS UNIX address space” on page 19.

v Clarification was added about the statistics that zFS supplies for SMF type 30
records. See “Support for type 30 SMF record” on page 45.

v “Performing a backup of zFS ” was renamed to “Copying or performing a
backup of a zFS” and a warning was added. See Chapter 6, “Copying or
performing a backup of a zFS,” on page 61.

v To handle the case of the source file system having symbolic links (or names)
longer than 100 characters, the pax examples in “Using an intermediate archive
file” on page 66 and “Without using an intermediate archive file” on page 66
were updated to include the -o saveext option.

v Chapter 8, “Performance and debugging,” on page 67 was updated.
v The QUERY,KN report was updated because the statistics report now allows for

larger counter values to be displayed. These displays will use a suffix indicating
the multiplier that is to be used for the displayed counter value. See “KN” on
page 76.

v The LFS report was updated because large fast lookup statistics is no longer
supported. See “LFS” on page 78.

v Information about thrashing was added to the STKM report. See “STKM” on
page 83.

v The STOR report was updated. See “STOR” on page 85.
v The VM report was updated because client caching is no longer supported. See

“VM” on page 89.
v Release updates were made to “Determining service levels” on page 97.
v Starting in V2R2, zFS uses the enhanced log and enhanced status APIs XCF

communication protocol. Previously, it used the extended directory XCF
communications protocol. For more information, see “Determining the XCF
protocol interface level” on page 97.

v The -client_cache_size and -tran_cache_size keywords for the zfsadm config
and zfsadm configquery commands are no longer supported. If they are
specified, they are accepted but not used.

v Various updates were made to the IOEFSPRM configuration options file.
– The client_cache_size option is now ignored because V1R12 can no longer

exist in the sysplex.
– The tran_cache_size option is now ignored because there is no longer a

separate transaction cache.

xvi z/OS V2R2 Distributed File Service zFS Administration

– The expected default value for the meta_cache_size and
metaback_cache_size options were changed because the entire calculated
default for the size of the metadata cache is now assigned to
meta_cache_size.

– The upper end of the expected value for token_cache_size was changed from
2621440 to 20 million.

– The upper end of the expected value for meta_cache_size was changed from
1024 M to 64 G.

– The upper end of the expected value for trace_table_size and
xcf_trace_table_size were changed from 2048 M to 65535 M.

– The upper end of the expected value for vnode_cache_size was changed from
500000 to 10 million.

See “IOEFSPRM” on page 220.
v The APIs in Chapter 13, “zFS application programming interface information,”

on page 233 were reformatted. One of the changes was that long was changed to
int because the length of a long can be 4 bytes or 8 bytes, depending on
compiler options.

v The pfsctl (BPX1PCT) application programming interface was updated to include
a new command, ZFSCALL_FSINFO. See “pfsctl (BPX1PCT)” on page 234.

v The Statistics Log Cache Information format was changed because a new log
cache facility is used in V2R2. New statistics are returned pertaining to this new
logging method. See “Statistics Log Cache Information” on page 387.

v Statistics Storage Information returns information for storage above the 2 G
addressing bar. See “Statistics Storage Information” on page 411

v The Statistics Transaction Cache Information is no longer used, but
documentation about it was kept. See “Statistics Transaction Cache Information”
on page 438.

Deleted
v The section "Transaction cache" in Chapter 8, “Performance and debugging,” on

page 67 was deleted because a separate transaction cache no longer exists.
v The flc IOEPRMxx configuration option was deleted because it is no longer

supported.
v The Delete File System API was deleted because it is no longer supported.
v The sections “zFS support for read/write non-sysplex aware mounted file

system” and “zFS support for read/write sysplex aware mounted file system”
were deleted because they described how zFS in V1R11 or V1R12 systems
handled read/write file systems. These systems can no longer exist in the
sysplex with V2R2.

v The section “Disabled aggregates when there are no z/OS V1R13 or later
systems” was deleted because all systems must now be at z/OS V1R13 or later.

v The description of the IOEFSPRM configuration file option client_cache_size
was deleted because V1R12 can no longer exist in the sysplex.

v The description of the IOEFSPRM configuration file option tran_cache_size was
deleted because the new zFS aggregate metadata logging method does not
require a transaction cache.

v Information about large fast lookup statistics was deleted because it is no longer
supported.

v Information about large FLC processing was deleted because it is no longer
supported.

Summary of changes xvii

Summary of changes for z/OS Version 2 Release 1
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

xviii z/OS V2R2 Distributed File Service zFS Administration

Part 1. zFS administration guide

This part of the document discusses guidance information for the z/OS File
System (zFS).
v Chapter 1, “z/OS File System overview,” on page 3
v Chapter 2, “Installing and configuring zFS,” on page 13
v Chapter 3, “Managing zFS processes,” on page 21
v Chapter 4, “Creating and managing zFS file systems using compatibility mode

aggregates,” on page 23
v Chapter 5, “Using zFS in a shared file system environment,” on page 51
v Chapter 6, “Copying or performing a backup of a zFS,” on page 61
v Chapter 7, “Migrating data from HFS or zFS to zFS,” on page 65
v Chapter 8, “Performance and debugging,” on page 67
v Chapter 9, “Overview of the zFS audit identifier,” on page 109

© Copyright IBM Corp. 2001, 2015 1

2 z/OS V2R2 Distributed File Service zFS Administration

Chapter 1. z/OS File System overview

The z/OS Distributed File Service z/OS File System (zFS) is a z/OS UNIX System
Services (z/OS UNIX) file system that can be used in addition to the hierarchical
file system (HFS). zFS file systems contain files and directories that can be accessed
with z/OS UNIX application programming interfaces (APIs). These file systems
can support access control lists (ACLs). zFS file systems can be mounted into the
z/OS UNIX hierarchy along with other local (or remote) file system types (for
example, HFS, TFS, AUTOMNT, and NFS). For more information about ACLs, see
z/OS UNIX System Services Planning.

zFS can be used for all levels of the z/OS UNIX System Services hierarchy
(including the root file system). Because zFS has higher performance characteristics
than HFS and is the strategic file system, HFS might not be supported in any
future releases, which will cause you to migrate the remaining HFS file systems to
zFS.

zFS can run sysplex-aware for read/write mounted file systems and for read-only
mounted file systems. For more information, see “Specifying zFS file systems as
sysplex-aware” on page 16, “Terminology and concepts” on page 4, and Chapter 5,
“Using zFS in a shared file system environment,” on page 51.

Beginning with z/OS V1R13, zFS has enhanced its sysplex-aware support. For
many file operations, zFS can now directly access zFS read/write mounted file
systems in a shared file system environment from zFS client systems. In z/OS
V1R13 and later releases, when zFS runs in a shared file system environment, zFS
always runs sysplex-aware on a file system basis (sysplex=filesys). See
“zFS-enhanced sysplex-aware support” on page 53 for more information.

zFS and HFS can both participate in a shared sysplex. However, only zFS supports
security labels. Therefore, in a multilevel-secure environment, you must use zFS
file systems instead of HFS file systems. See z/OS Planning for Multilevel Security
and the Common Criteria for more information about multilevel security and
migrating your HFS version root to a zFS version root with security labels.

Note:

1. Beginning with z/OS V2R1, zFS no longer supports multi-file system
aggregates. If you have data that is stored in zFS multi-file system aggregates,
copy that data from the zFS multi-file system aggregate file systems into zFS
compatibility mode aggregates. Because zFS multi-file system aggregates cannot
be mounted in z/OS V2R1, you must copy the data from any file systems that
are contained in multi-file system aggregates into zFS compatibility mode file
systems using a non-shared file system environment on a system that is
running a release prior to z/OS V2R1.

2. Beginning with z/OS V2R1, zFS no longer supports clones. If you have
read-only clone (.bak) file systems, you should delete them using the zfsadm
delete command on a system that is running a release prior to z/OS V2R2.

3. Beginning with z/OS V2R2, zFS will only allow aggregates that contain exactly
one file system in it to be attached.

© Copyright IBM Corp. 2001, 2015 3

|

|
|

Features
zFS provides many features and benefits, which are described in the following
sections:

Performance
zFS provides significant performance gains in many customer
environments. zFS provides additional performance improvements when
running sysplex-aware in a shared file system environment.

Restart
zFS reduces the exposure to loss of updates. zFS writes data blocks
asynchronously and does not wait for a sync interval. zFS is a logging file
system. It logs metadata updates. If a system failure occurs, zFS replays the
log when it comes back up to ensure that the file system is consistent.

Aggregate movement
As a part of supporting read/write mounted file systems that are accessed
as sysplex-aware, zFS automatically moves zFS ownership of a zFS file
system to the system that has the most read/write activity. “Terminology
and concepts” has an explanation of z/OS UNIX file system ownership
and zFS file system ownership. Chapter 5, “Using zFS in a shared file
system environment,” on page 51 contains details.

Terminology and concepts
To present all the benefits and details of zFS administration, the following concepts
and terminology are introduced:

Attach When a zFS file system is mounted, the data set is also attached. Attach
means that zFS allocates and opens the data set. This attach occurs the first
time a file system contained in the data set is mounted.

A zFS data set can also be attached (by issuing the zfsadm attach
command) without mounting it. Beginning in z/OS V2R2, only zFS data
sets that contain exactly one file system are allowed to be attached.
However, there are many restrictions in this case. For example, the zFS
data set would not be available to z/OS UNIX applications because it was
not mounted. In a shared file system environment, the zFS data set would
be detached, not moved, if the system went down or zFS internally
restarted. You might attach a zFS data set to explicitly grow it (zfsadm
grow) or to determine the free space available (zfsadm aggrinfo). You must
detach the zFS data set (zfsadm detach) before mounting it.

Catch-up mount
When a file system mount is successful on a system in a shared file system
environment, z/OS UNIX automatically issues a corresponding local
mount, which is called a catch-up mount, to every other system's PFS for a
zFS read/write mounted file system that is mounted RWSHARE or for a
read-only mounted file system.

If the corresponding local mount is successful, z/OS UNIX does not
function ship from that system to the z/OS UNIX owning system when
that file system is accessed. Rather, the file request is sent directly to the
local PFS. This is sometimes referred to as Client=N, as indicated by the
output of the D OMVS,F operator command, or df -v shell command. If
the corresponding local mount is unsuccessful (for instance, DASD is not
accessible from that system), z/OS UNIX function ships requests to the
z/OS UNIX owning system when that file system is accessed (message

4 z/OS V2R2 Distributed File Service zFS Administration

|
|

BPXF221I might be issued). This is sometimes referred to as Client=Y, as
indicated by the output of the D OMVS,F or df -v commands. For
examples of the command output, see “Determining the file system owner”
on page 54.

File system ownership
IBM defines a file system owner as the system that coordinates sysplex
activity for a particular file system. In a shared file system environment,
there is also the concept of file system ownership. The owner of a file system
is the first system that processes the mount. This system always accesses
the file system locally; that is, the system does not access the file system
through a remote system. Other non-owning systems in the sysplex access
the file system either locally or through the remote owning system,
depending on the PFS and the mount mode.

The file system owner is the system to which file requests are forwarded
when the file system is mounted non-sysplex aware. Having the
appropriate owner is important for performance when the file system is
mounted read/write and non-sysplex aware. The term z/OS UNIX file
system owner refers to the owner of the zFS file system as z/OS UNIX
recognizes it. This is typically the system where the file system is first
mounted, but it can differ from the zFS file system owner (see zFS file
system owner).

zFS file system owner
zFS has its own concept of file system ownership, called the zFS
file system owner. This is also typically the system where the file
system is first mounted in a sysplex-aware environment. File
requests to sysplex-aware file systems are sent directly to the local
zFS PFS, rather than being forwarded to the z/OS UNIX file
system owner. This concept is shown in Figure 1 on page 6. The
local zFS PFS forwards the request to the zFS file system owner, if
necessary. The z/OS UNIX file system owner can be different from
the zFS file system owner. (In reality, zFS owns aggregates.
Generally, we simplify this to say zFS file system owner because
zFS compatibility mode aggregates only have a single file system.)

z/OS UNIX file system owner
The term z/OS UNIX file system owner refers to the owner of the
zFS file system as z/OS UNIX knows it. This is typically the
system where the file system is first mounted.

For details about sysplex considerations and the shared file system
environment, see “Determining the file system owner” on page 54 and
Chapter 5, “Using zFS in a shared file system environment,” on page 51.

Chapter 1. z/OS File System overview 5

When a file system is not sysplex-aware (that is, mounted as
NORWSHARE), file requests are function-shipped by z/OS UNIX to the
z/OS UNIX file system owner, and then to the PFS. When a file system is
sysplex-aware (that is, mounted as RWSHARE), file requests are sent
directly to the local zFS PFS and then function-shipped by zFS to the zFS
file system owner, if necessary.

Function shipping
Function shipping means that a request is forwarded to the owning system
and the response is returned to the requestor through XCF
communications.

Local mount
A local mount means that z/OS UNIX issues a successful mount to the
local PFS, which in this case is zFS. z/OS UNIX does this when either the
file system is mounted sysplex-aware for that mode (read/write or
read-only) or the system is the z/OS UNIX owner. When a file system is
locally mounted on the system, z/OS UNIX does not function ship
requests to the z/OS UNIX owning system. To determine if a system has a
local mount, see “Determining the file system owner” on page 54.

Non-sysplex aware (sysplex-unaware)
A file system is non-sysplex aware (or sysplex-unaware) if the PFS (Physical
File System) supporting that file system requires it to be accessed through
the remote owning system from all other systems in a sysplex (allowing
only one connection for update at a time) for a particular mode (read-only
or read/write). The system that connects to the file system is called the file
system owner. Other system's access is provided through XCF
communication with the file system owner. For a non-sysplex aware zFS
file system, file requests for read/write mounted file systems are
function-shipped to the owning system by z/OS UNIX. The owning
system is the only system where the file system is locally mounted and the
only system that does I/O to the file system. See zFS file system owner
and z/OS UNIX file system owner.

OMVS address space
The address space used by z/OS UNIX, it runs a program that initializes
the kernel. Starting in V2R2, zFS can be run in the OMVS address space.

z/OS UNIX

zFS

z/OS UNIX

zFS

z/OS UNIX

zFS

z/OS UNIX

zFSzFS

z/OS UNIX

zFSzFS

cache

z/OS UNIX

zFSzFS

cache

zFS read/write file system mounted with NORWSHARE zFS read/write file system mounted with RWSHARE

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

Figure 1. z/OS UNIX and zFS file system ownership

6 z/OS V2R2 Distributed File Service zFS Administration

|

|
|
|

Read-only file system
A file system that is mounted for read-only access is a read-only file system.

read/write file system
A file system that is mounted for read and write access is a read/write file
system.

Shared file system environment
The shared file system environment refers to a sysplex that has a BPXPRMxx
specification of SYSPLEX(YES).

Sysplex
The term sysplex as it applies to zFS, means a sysplex that supports the
z/OS UNIX shared file system environment. That is, a sysplex that has a
BPXPRMxx specification of SYSPLEX(YES).

Sysplex-aware
Pertains to a physical file system that handles file requests for mounted file
systems locally instead of shipping function requests through z/OS UNIX.

Sysplex-aware PFS
A physical file system (PFS), for example zFS, is sysplex-aware or
non-sysplex aware for a particular mount mode (read-only or
read/write) in a shared file system environment. When it is
sysplex-aware, the PFS is capable of handling a local mount on the
system that is not the z/OS UNIX owning system. The PFS that is
sysplex-aware can avoid z/OS UNIX function shipping for that
mode. Both HFS and zFS file systems are always sysplex-aware for
read-only mounts. HFS is always non-sysplex aware for read/write
mounts and always results in z/OS UNIX function shipping from
systems that are not the z/OS UNIX owning system. As of z/OS
V1R13, zFS always runs sysplex-aware (SYSPLEX=FILESYS) in a
shared file system environment. Individual file systems can be
non-sysplex aware or sysplex-aware, with the default being
non-sysplex aware.

Sysplex-aware file system
A file system can be mounted sysplex-aware or non-sysplex aware.
When a file system is mounted sysplex-aware, it means that the file
system is locally mounted on every system (when the PFS is
capable of handling a local mount on every system - that is, the
PFS is running sysplex-aware) and therefore, file requests are
handled by the local PFS. All read-only mounted file systems are
always mounted sysplex-aware (see Figure 16 on page 52). HFS
read/write mounted file systems are always mounted non-sysplex
aware. This means that file requests from non z/OS UNIX owning
systems are always function-shipped by z/OS UNIX to the z/OS
UNIX owning system where the file system is locally mounted and
the I/O is actually done.

Beginning with z/OS V1R11, zFS read/write mounted file systems
can be mounted sysplex-aware or or non-sysplex aware.

zFS address space
Because zFS can run in its own colony address space or inside the OMVS
address space, which is the address space used by z/OS UNIX, any
reference to the zFS address space will mean the address space in which
zFS is running.

Chapter 1. z/OS File System overview 7

|
|

|
|
|
|
|

zFS aggregate
The data set that contains a zFS file system is called a zFS aggregate. A zFS
aggregate is a Virtual Storage Access Method (VSAM) linear data set. After
the zFS aggregate is defined and formatted, a zFS file system is created in
the aggregate. In addition to the file system, a zFS aggregate contains a log
file and a bitmap describing the free space. A zFS aggregate has a single
read/write zFS file system and is sometimes called a compatibility mode
aggregate. Compatibility mode aggregates are similar to HFS.

Restriction: zFS does not support the use of a striped VSAM linear data
set as a zFS aggregate. If you attempt to mount a compatibility mode file
system that had previously been formatted and is a striped VSAM linear
data set, it will only mount as read-only. zFS does not support a zFS
aggregate that has guaranteed space.

zFS file system
Refers to a hierarchical organization of files and directories that has a root
directory and can be mounted into the z/OS UNIX hierarchy. zFS file
systems are located on DASD.

zFS Physical File System (PFS)
Refers to the code that runs in the zFS address space. The zFS PFS can
handle many users accessing many zFS file systems at the same time.

ZFS PROC
The PROC that is used to start ZFS. It is typically called ZFS. If ZFS is
running in the OMVS address space, then this refers to the OMVS PROC.

What's new or changed for zFS in z/OS V2R2
In z/OS V2R2, zFS caches were moved above the 2 G addressing bar to allow for
the use of very large zFS caches. These IOEFSPRM configuration variables were
changed to support the following ranges of values:

Variable Range of values
vnode_cache_size 1000 to 10000000
meta_cache_size 1 M to 64 G
token_cache_size 20480 to 20000000
trace_table_size 1 M to 65535 M
xcf_trace_table_size 1 M to 65535 M

With the zFS caches above the 2-G addressing bar, zFS can now be run inside the
OMVS address space. This change yields improved performance for each file or
directory operation.

The metaback cache is no longer a separate cache in a data space. It is combined
with meta_cache_size into one single metadata cache. For simplicity and to avoid
future confusion, update the IOEFSPRM configuration file to combine these two
options and remove the metaback_cache_size setting from the file.

zFS performance counters were changed from 4 bytes to 8 bytes. This change
allows for monitoring of zFS performance over longer periods of time before the
counters wrap. The counters are made available via the zFS Statistics Application
Programming Interfaces. This information is available in the zFS modify and
zfsadm query command reports.
v New reports are available that can be printed with the zfsadm query command

using the keywords -stkm, -ctkc, and -svi. This information is also available in

8 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

|

|
|
|

|||
||
||
||
||
||
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

new Application Programming Interfaces for Client Token Caching Component,
Server Token Manager, and Statistics from the Server Vnode Interface. For more
information about the keywords, see “zfsadm query” on page 209.

The zfsadm -storage report now contains information about storage usage above
the 2 G bar.

The new zfsadm fsinfo command displays detailed information for one or more
file systems. File systems can be specified with a specific name, or in a group by
using a common prefix or common suffix. They can also be selected by specifying
common attributes. Another way to obtain the detailed information is by using the
new File System Information Application Programming Interface or the modify
zfs,fsinfo command.

zFS is using a better performing method for handling the writing of records to the
zFS aggregate log. The new logging method displays different statistics in the
zfsadm query -logcache command and in the MODIFY ZFS,QUERY,LOG
performance report. The Statistics Log Cache Information Application
Programming Interface will also return new statistics pertaining to this new
logging method.

Health checks ZOSMIGV1R13_ZFS_FILESYS and ZOSMIGREC_ZFS_RM_MULTIFS
were removed, and CACHE_REMOVALS was added. For more information, see
z/OS Migration.

For information about interface updates in V2R2, see “Summary of changes for
z/OS Version 2 Release 2 (V2R2)” on page xv.

What's new or changed for zFS in z/OS V2R1
Beginning with z/OS V2R1, zFS no longer supports multi-file system aggregates
and clones. As a result, the following zfsadm commands are no longer supported:
v zfsadm clone
v zfsadm clonesys
v zfsadm create
v zfsadm lsquota
v zfsadm rename
v zfsadm setquota

The following options are no longer supported on zfsadm config:
v -fsgrow
v -user_cache_readahead

The following options are no longer supported on zfsadm configquery:
v -auto_attach
v -fsgrow
v -user_cache_readahead

The following pfsctl subcommands are no longer supported:
v On the Aggregate command:

– Create File System
v On the File System command:

– Clone File System
– Rename File System
– Set File System Quota

v On the Config command:
– Query auto_attach setting

Chapter 1. z/OS File System overview 9

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

– Query fsgrow setting
– Set fsgrow
– Set user_cache_readahead

If you are using multi-file system aggregates or clones, you must stop using them.
Be sure that you complete the migration actions described in z/OS Migration.

The zFS salvager program (ioeagslv) has been improved in z/OS V2R1:
v It can process larger zFS file systems by using storage above the 2 GB bar.
v It can complete its repair processing without needing to be run multiple times.
v All messages that it issues have message numbers.
v The verify option (-verifyonly) replays the log when necessary. This replay

avoids reports of inconsistencies that occur when the log has not been replayed.

Quiesce processing for zFS file systems has been modified in z/OS V2R1. The zFS
commands and zFS APIs used to quiesce and unquiesce zFS file systems are
unchanged, but the way quiesce works internally and the way the quiesce status is
displayed are modified.

In z/OS V2R1, the name “zSeries File System” was changed to “z/OS File
System”. The document z/OS Distributed File Service zSeries File System
Administration was retitled to z/OS Distributed File Service zFS Administration.

Beginning with z/OS V2R1, zFS provides an optional, new format zFS aggregate,
the version 1.5 aggregate. The current zFS aggregates are version 1.4 aggregates.
The main purpose of the version 1.5 aggregate is to support a new directory
format (extended (v5) directory) that will scale better when the directory contains
many names (over 10,000). Since the format of a new directory is different in a
version 1.5 aggregate, zFS provides toleration APAR OA39466 to cause a mount of
a version 1.5 aggregate in an earlier release to fail. Earlier releases cannot access
extended (v5) directories or version 1.5 aggregates. In order to control the
transition to the new format directories, extended (v5) directories can only be
created in version 1.5 aggregates. To create or change to a version 1.5 aggregate,
you must explicitly request it. By default, aggregates created in z/OS V2R1 are
version 1.4 aggregates. You should only create or change to a version 1.5
aggregate if you are sure you will not run releases prior to z/OS V2R1. Over time
(possibly several releases), most zFS aggregates will be version 1.5 aggregates. IBM
is likely to then change the default to version 1.5.

zFS toleration APAR OA39466 applies to z/OS V1R12 and V1R13.

zFS recommends that you should begin using the new zFS batch utility program
IOEFSUTL. It contains all the function of the zFS format utility (IOEAGFMT) and
the zFS salvage utility (IOEAGSLV). IOEFSUTL supports both version 1.5
aggregates and version 1.4 aggregates.

Beginning with z/OS V2R1, the batch utility ioeagfmt requires that the ZFS PFS be
active.

New IOEPRMxx configuration options control what version an aggregate is
formatted as by default (format_aggrversion), whether a version 1.4 aggregate is
changed to a version 1.5 aggregate on mount (change_aggrversion_on_mount) and
whether directories are converted to extended (v5) directories as they are accessed
(converttov5).

10 z/OS V2R2 Distributed File Service zFS Administration

A new MOUNT PARM controls whether a particular zFS aggregate's directories are
converted to extended (v5) directories as they are accessed (CONVERTTOV5).

zFS has enhanced its support for the backup change activity flag in the VTOC
(D1DSCHA in the Format 1/8). This flag indicates whether a backup of the file
system is needed (that is, data has been modified in the file system since the last
backup).

Beginning with z/OS V2R1, the default value for IOEPRMxx configuration options
user_cache_size, meta_cache_size, and metaback_cache_size are now calculated
based on the amount of real storage in the system.

Beginning with z/OS V2R1, the default will be to create zFS auditfids during
aggregate formatting.

A new configuration variable was added to IOEFSPRM: user_running_hangdump.

To help alleviate the version 4 large directory performance problem before
migrating to version 1.5 aggregates, zFS will allow the creation of new Large Fast
Lookup Cache buffers above the bar (64 bit storage) that will be used to fully cache
large directories. This is done with a new IOEPRMxx configuration option flc.
This option will only be valid in releases z/OS V1R13 and V2R1. It is available on
z/OS V1R13 in APAR OA40530.

Chapter 1. z/OS File System overview 11

12 z/OS V2R2 Distributed File Service zFS Administration

Chapter 2. Installing and configuring zFS

zFS is part of the Distributed File Service base element of z/OS. Before using the
zFS support, you must install the z/OS release, the Distributed File Service, and
the other base elements of z/OS using the appropriate release documentation.

Note: If you are only using the zFS support of the Distributed File Service (and
not the SMB server support of the Distributed File Service), SMB does not need to
be configured. See z/OS Distributed File Service SMB Administration for more
information about SMB.

To use the zFS support, you must configure the support on the system.
Configuration includes the following administrative tasks:
v Decide if you want to run zFS in its own colony address space or in the OMVS

address space. For more information that you can use to help make this
decision, see “zFS running in the z/OS UNIX address space” on page 19.

v Define the zFS physical file system to z/OS UNIX
v Create or update the zFS parameter data set (IOEFSPRM); see “IOEFSPRM” on

page 220.
v Define zFS aggregates and file systems
v Create mount points and mount zFS file systems
v Change owner/group and set permissions on the file system root
v Optionally, add MOUNT statements in your BPXPRMxx member to cause zFS

file systems to be mounted at IPL.

zFS installation and configuration steps
To install, configure, and access zFS, you must perform the following
administrative steps:
1. Install and perform postinstallation of the Distributed File Service by following

the applicable instructions in z/OS Program Directory or in ServerPac: Installing
Your Order. The following is a summary of the information that is contained in
those documents:
a. Ensure that the target and distribution libraries for the Distributed File

Service are available.
b. Run the prefix.SIOESAMP(IOEISMKD) job from UID 0 to create the symbolic

links that are used by the Distributed File Service. This job reads the
member prefix.SIOESAMP(IOEMKDIR) to delete and create the symbolic links.

c. Ensure that the DDDEFS for the Distributed File Service are defined by
running the prefix.SIOESAMP(IOEISDDD) job.

d. Install the Load Library for the Distributed File Service. The Load Library
(hlq.SIEALNKE) must be APF-authorized and must be in link list.

e. Install the samples (hlq.SIOESAMP).
f. Install the sample PROC for ZFS (hlq.SIOEPROC).
g. One method of providing an IOEFSPRM configuration file is to define it as

a data set with an IOEZPRM DD card. If zFS is to run in the OMVS address
space, the IOEZPRM DD card should be placed in the OMVS PROC. If zFS

© Copyright IBM Corp. 2001, 2015 13

|
|
|

|
|
|

is to run in its own colony address space, create a JCL PROC for the zFS
started task in SYS1.PROCLIB by copying the sample PROC from the
previous step.
The DDNAME IOEZPRM identifies the optional zFS configuration file.
Although this DD statement is optional, it is recommended that it be
included to identify the parameter data set to be used for zFS. For now, it is
suggested that this DD refer to a PDS with a member called IOEFSPRM that
has a single line that begins with an asterisk (*) in column 1. Subsequent
modifications can be made to the IOEFSPRM member, see “IOEFSPRM” on
page 220.
As the preferred alternative to the IOEZPRM DDNAME specification, delete
the IOEZPRM DDNAME and use the IOEPRMxx parmlib member. In this
case, the member has the name IOEPRMxx, where you specify xx in the
parmlib member list. See “IOEFSPRM” on page 220 for more information.
To run zFS so that it is not under control of JES, see step 2. You might want
to do this so that zFS does not interfere with shutting down JES.

h. Add the following RACF® commands:
ADDGROUP DFSGRP SUPGROUP(SYS1) OMVS(GID(2))
ADDUSER DFS OMVS(HOME('/opt/dfslocal/home/dfscntl') UID(0))
DFLTGRP(DFSGRP) AUTHORITY(USE)UACC(NONE)
RDEFINE STARTED DFS.** STDATA(USER(DFS))
RDEFINE STARTED ZFS.** STDATA(USER(DFS))
SETROPTS RACLIST(STARTED)
SETROPTS RACLIST(STARTED) REFRESH

The DFS user ID must have at least ALTER authority to all VSAM linear
data set that contain zFS aggregates. A user ID other than DFS can be used
to run the zFS started task if it is defined with the same RACF
characteristics as shown for the DFS user ID. If zFS is to run in the OMVS
address space, it will run under the OMVS user ID. For this reason, the
OMVS user ID should be given the same RACF characteristics as the DFS
user ID.
As an alternative to PERMIT ALTER authority to all VSAM linear data set
that contain zFS aggregates, you can assign the zFS started task the
TRUSTED attribute or you can assign the user ID of the zFS started task the
OPERATIONS attribute.

2. Create a BPXPRMxx entry for zFS.
Add a FILESYSTYPE statement to your BPXPRMxx parmlib member:
FILESYSTYPE TYPE(ZFS)ENTRYPOINT(IOEFSCM) ASNAME(ZFS)

Specifying the ASNAME(ZFS) keyword causes zFS to run in its own colony
address space. To have zFS run in the OMVS address space, omit the ASNAME
keyword.
FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)

Recommendation: You should also specify KERNELSTACKS(ABOVE) when
zFS is running in the OMVS address space. See the BPXPRMxx topic in z/OS
MVS Initialization and Tuning Reference for more information about the
KERNELSTACKS parameter.
Update your IEASYSxx parmlib member to contain the OMVS=(xx,yy) parameter
for future IPLs.
If necessary, you can specify that zFS should not run under control of JES by
including SUB=MSTR as in the following example:
FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM) ASNAME(ZFS,’SUB=MSTR’)

14 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

|
|
|
|

|
|
|
|

To use the IOEPRMxx parmlib members (mentioned in step 1g on page 13),
specify the xx values in the FILESYSTYPE statement for zFS as in the following
example:
FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM) ASNAME(ZFS,’SUB=MSTR’) PARM(’PRM=(01,02,03)’)

In this case, you must not have an IOEZPRM DD statement in your ZFS PROC.
Step 4 contains an explanation as to why you should not have an IOEZPRM
DD. For more information about using IOEPRMxx, see “IOEFSPRM” on page
220. S

3. Run the dfs_cpfiles program.
Running this program as described in z/OS Program Directory is recommended
even if you plan to only use zFS support. The only zFS configuration file is the
zFS configuration file, which is not created by the dfs_cpfiles program. But, to
complete the installation of the Distributed File Service, run the dfs_cpfiles
program to create other files that are needed by the SMB server. This avoids
problems if SMB is later activated.
To run the dfs_cpfiles program:
v Logon as root (UID 0) on the local z/OS system.
v From the z/OS UNIX shell, enter /usr/lpp/dfs/global/scripts/dfs_cpfiles.

4. (Optional) Create or update the zFS configuration options file (IOEPRMxx, also
known as IOEFSPRM).
The zFS configuration options file is optional. There are two methods to specify
the zFS configuration options file: use IOEPRMxx in the parmlib or use an
IOEZPRM DD statement in the PROC that is used to start the address space
where zFS is running.
v As the preferred alternative to the IOEZPRM DD statement, the IOEFSPRM

member can be specified as a true parmlib member. In this case, the member
has the name IOEPRMxx, where xx is specified in the parmlib member list.
You must omit the IOEZPRM DD statement in the PROC that is used to start
the address space in which zFS will run. The IOEPRMxx configuration
options file can be specified with no options contained in it. Options are only
required if you want to override the default zFS options. As mentioned in
step 1g on page 13, it is recommended that you create an empty IOEPRMxx
parmlib member. The IOEPRMxx member should only contain one line that
is a comment (an asterisk (*) in column 1). See “IOEFSPRM” on page 220 for
more information.

v If you use the IOEZPRM DD statement, the PDS (organization PO) to which
it points should have a record format of FB with a record length of 80. The
block size can be any multiple of 80 that is appropriate for the device. A
sample IOEFSPRM is provided in hlq.SIOESAMP(IOEFSPRM). IOEFSPRM is
also known as IOEZS001. See “IOEFSPRM” on page 220 for a description of
the IOEFSPRM options. Update the IOEZPRM DD statement in the OMVS or
ZFS PROC to contain the name of the IOEFSPRM member, as shown in the
following example:
IOEZPRM DD DSN=SYS4.PVT.PARMLIB(IOEFSPRM),DISP=SHR

If you are running a sysplex, you must have different zFS configuration files
for different systems. Chapter 5, “Using zFS in a shared file system
environment,” on page 51 explains why different zFS configuration files are
required. In this case, you should also specify a system qualifier in the data
set name in the IOEZPRM DD, as shown in the following example:
IOEZPRM DD DSN=SYS4.&SYSNAME..PARMLIB(IOEFSPRM),DISP=SHR

5. (Optional) Preallocate data sets for debugging.

Chapter 2. Installing and configuring zFS 15

|
|

|
|
|

|
|

|
|

This step is optional because trace information is always available in the dump
data set, and can be requested only by IBM Service. If needed, allocate the zFS
trace output data set as a PDSE with RECFM=VB, LRECL=133 with a primary
allocation of at least 50 cylinders and a secondary allocation of 30 cylinders.
The name of this trace output data set should be specified in the trace_dsn
option in the IOEFSPRM file. Next, allocate a debug settings data set as a PDS
member with an LRECL=80. Add one comment line in the member (use a /*
followed by */). Specify the name of this debug settings data set member in the
debug_settings_dsn option of the IOEFSPRM file. Perform this process for each
member of the sysplex.

6. Create a zFS (compatibility mode) file system.
A zFS file system resides in a zFS aggregate. A zFS aggregate is a VSAM linear
data set. See Chapter 4, “Creating and managing zFS file systems using
compatibility mode aggregates,” on page 23 for details on creating zFS file
systems.
Beginning in z/OS V2R1, ioeagfmt fails if the zFS PFS is not active on the
system.

7. Create a directory and mount the zFS file system on it.
You can create a directory with the z/OS UNIX mkdir command or you can use
an existing directory. The TSO/E MOUNT command or the /usr/sbin/mount
REXX exec can be used to mount the zFS file system on the directory. See
Chapter 4, “Creating and managing zFS file systems using compatibility mode
aggregates,” on page 23 for details on mounting zFS file systems.

Note: Steps 6 and 7 can be repeated as many times as necessary for each
permanently mounted zFS file system. Only step 6 is needed for zFS
automounted file systems (assuming that the automount file system has been
set up.)

8. Add mount statements to BPXPRMxx members to mount the zFS file systems
on the next IPL.
For example:
MOUNT FILESYSTEM(’OMVS.PRV.COMPAT.AGGR001’) TYPE(ZFS) MOUNTPOINT(’/etc/mountpt’)

Applying required APARs for z/OS V2R2
In z/OS V2R2, in addition to the “zFS installation and configuration steps” on
page 13, you must apply zFS coexistence function, using the following APAR
procedure:
1. Install APAR OA46026 on all z/OSV1R13 and z/OS V2R1 systems. This APAR

is a conditioning function for zFS on z/OS V1R13 and V2R1. Make APAR
OA46026 active on all systems through a rolling IPL.

Specifying zFS file systems as sysplex-aware
This section helps you determine whether to make a zFS read/write file system be
sysplex-aware.

If you are running your sysplex in a shared file system environment, where
BPXPRMxx specifies SYSPLEX(YES), zFS is always enabled to allow zFS
read/write sysplex-aware file systems (zFS runs sysplex=filesys). You can
individually choose which file systems are sysplex-aware for read/write and which
ones are not. The default is that zFS read/write file systems will not be
sysplex-aware. A newly mounted zFS read/write file system will be sysplex-aware

16 z/OS V2R2 Distributed File Service zFS Administration

|

|
|
|

|
|
|

if you specify the RWSHARE MOUNT PARM, as shown:

As an alternative, you can specify sysplex_filesys_sharemode=rwshare in your
IOEFSPRM. The default is changed so that each zFS read/write file system is
mounted sysplex-aware unless you explicitly specify the NORWSHARE MOUNT
PARM.

Typically, if you make a zFS read/write file system sysplex-aware, you see a
performance improvement in most shared file system environments when
accessing the data from a system that is not the zFS owner. However, some servers
cannot fully support zFS read/write file systems that are sysplex-aware.
v The z/OS Distributed File Service SMB server cannot export any zFS read/write

file systems that are sysplex-aware.
v The Fast Response Cache Accelerator support of the IBM HTTP Server for z/OS

V5.3 uses an API called register file interest (BPX1IOC using the Iocc#RegFileInt
subcommand). This API cannot support zFS sysplex-aware read/write file
systems, so therefore the Cache Accelerator support is not able to cache static
Web pages contained in files in a zFS read/write sysplex-aware file system.
Other servers that use this API can also be impacted. Generally, these are servers
that cache files and must be aware of file updates from other sysplex members
without having the server read the file or the file modification timestamp.

v The Policy Agent (Pagent) server, which is part of the z/OS Communications
Server, cannot export any zFS read/write file systems that are sysplex-aware.

If you are using any of these servers, ensure that any zFS read/write file systems
that are accessed by these servers are non-sysplex aware.

Note that there are some modifications to the way file system ownership works for
zFS read/write sysplex-aware file systems. These modifications can cause some
operational differences. For information about file system ownership, see
Chapter 5, “Using zFS in a shared file system environment,” on page 51.

Using zFS read/write sysplex-aware file systems
When you run zFS in a shared file system environment, the zFS PFS runs as
sysplex-aware. However, by default, each zFS file system is mounted as
non-sysplex aware. zFS does allow zFS read/write file systems to run as
sysplex-aware. But, this must be explicitly requested on a file system basis, using
either the RWSHARE MOUNT PARM or the sysplex_filesys_sharemode=rwshare
configuration option.

Consider which zFS read/write file systems you might want to be sysplex-aware.
Good candidates are zFS read/write file systems that are accessed from multiple
systems or are mounted with AUTOMOVE and might be moved by z/OS UNIX
(as a result of a shutdown or IPL) to systems that do not necessarily do the most
accesses. Be aware that RWSHARE file systems use more virtual storage in the zFS
address space than NORWSHARE file systems. Beginning in z/OS V2R2, this
storage will be 64 bit storage (above the 2 G line). You must be careful that you do
not use more real or auxiliary storage in the system than is needed. See the sample
zFS query report “STOR” on page 85 for information about monitoring storage
usage in the zFS address space. Generally, the system-specific file system (and

MOUNT FILESYSTEM('OMVS.PRV.COMPAT.AGGR001') TYPE(ZFS) MOUNTPOINT('/etc/mountpt') PARM('RWSHARE')

Chapter 2. Installing and configuring zFS 17

|
|
|

/dev, /etc, /tmp, /var) should be mounted as NORWSHARE and UNMOUNT
because they typically are accessed only from the owning system.

zFS read-only mounted file systems are not affected by this support. However, if
you remount a read-only file system to read/write (using the chmount command or
the TSO/E UNMOUNT REMOUNT command), this is treated like a primary
mount on the current z/OS UNIX owning system. In this case, MOUNT
parameters (such as RWSHARE or NORWSHARE) or MOUNT defaults (such as
the current sysplex_filesys_sharemode setting on that system) take affect when it
is mounted read/write. When you remount back to read-only, those mount options
are irrelevant again.

Note: These MOUNT parameters and MOUNT defaults do not take effect when a
remount to the same mode is run.

The sysplex_filesys_sharemode option on a system specifies if a zFS read/write
file system will be mounted as sysplex-aware when a MOUNT is issued on that
system without specifying either NORWSHARE or RWSHARE in the MOUNT
PARM. The default value for sysplex_filesys_sharemode is norwshare. This means
that a MOUNT for a zFS read/write file system that does not have NORWSHARE
or RWSHARE specified in the MOUNT PARM will result in the file system being
non-sysplex aware. If you want zFS read/write mounts to be sysplex-aware, then
specify sysplex_filesys_sharemode=rwshare. This option can be specified in the
IOEFSPRM configuration options file and takes effect on the next IPL (or restart of
zFS). It can also be specified dynamically with the zfsadm config
-sysplex_filesys_sharemode command. Typically, you should specify the same
sysplex_filesys_sharemode value on all your systems. Otherwise, z/OS UNIX file
system ownership movement might change the sysplex-awareness of a file system
that does not have NORWSHARE or RWSHARE specified in the MOUNT PARM.

Note: If any zFS read/write file systems were previously mounted as
NORWSHARE, they will usually remain non-sysplex aware until they are
un-mounted and then mounted back on the RWSHARE system. However, there are
situations when the sysplex awareness might change. See “Changing zFS attributes
on a mounted zFS compatibility mode file system” on page 40 for more
information.

Your sysplex root file system should be read-only. However, if your sysplex root
file system is normally read/write, you should make it sysplex-aware. You cannot
unmount the sysplex root file system so you need an alternative method. One
method is to remount your sysplex root to read-only, move z/OS UNIX ownership
of the file system, if necessary, to a system that has
sysplex_filesys_sharemode=rwshare, and then remount the sysplex root back to
read/write. You might want to update your ROOT statement in BPXPRMxx to add
PARM('RWSHARE') to ensure that you do not lose the sysplex-aware attribute if
the ROOT is mounted again. Note that, in this case, you might see a
USS_PARMLIB health check message indicating that your BPXPRMxx ROOT
PARM does not match your current sysplex root PARM. This is expected and is
normal.

Changing the sysplex-awareness of a mounted zFS read/write
file system

In a shared file system environment, after a zFS read/write file system is mounted
it is either sysplex-aware or non-sysplex aware. You can determine the

18 z/OS V2R2 Distributed File Service zFS Administration

sysplex-awareness of a mounted zFS read/write file system by using the zfsadm
aggrinfo -long command. If it displays sysplex-aware, then it is sysplex-aware. If
it is blank, then it is non-sysplex aware.

Alternatively, you can also issue the f zfs,query,file console command. As
Figure 30 on page 74 shows, an “S” indicates that the zFS read/write file system is
mounted sysplex aware. Because you do not have to be running in the shell, this
command can be useful if a file system is under recovery or having other
problems.

To change the sysplex-awareness of a mounted zFS read/write file system, you
need to perform the following steps:
v Unmount the file system
v Specify the MOUNT PARM (RWSHARE to make it sysplex-aware;

NORWSHARE to make it non-sysplex aware)
v Mount the file system again.

If you want to change the sysplex-awareness and you have not specified either the
RWSHARE or NORWSHARE MOUNT PARM, you can change the
sysplex-awareness with remount. To do so:
v Remount the file system to read-only
v Move z/OS UNIX ownership of the file system (if necessary) to a system that

has sysplex_filesys_sharemode specified to the sharemode that you want
(rwshare or norwshare)

v Remount the file system back to read/write.

zFS running in the z/OS UNIX address space
In releases before z/OS V2R2, the amount of 31-bit virtual storage that was needed
by both z/OS UNIX and zFS combined would have exceeded the size of a 2 GB
address space. Due to that size limitation, zFS and z/OS UNIX could not coexist in
the same address space.

In z/OS V2R2, zFS caches are moved above the 2 GB bar into 64-bit storage. You
can now choose to have zFS run in its own colony address space or in the address
space that is used by z/OS UNIX, which is OMVS.

When running zFS in the OMVS address space, each file system vnode operation
(such as creating a directory entry, removing a directory entry, or reading from a
file) will have better overall performance. Each operation will take the same
amount of time while inside zFS itself. The performance benefit occurs because
z/OS UNIX can call zFS for each operation in a more efficient manner.

Some inherent differences exist when zFS is run in the OMVS address space.
1. MODIFY commands must be passed to zFS through z/OS UNIX. Use the form

MODIFY OMVS,pfs=zfs,cmd. For more information, see the section on passing a
MODIFY command string to a physical file system (PFS) through a logical file
system (LFS) in z/OS MVS System Commands. This form of the MODIFY
command can be used whether zFS is in its own address space or in the OMVS
address space.

Note: When zFS is running in the OMVS address space, any zFS MODIFY
commands that are issued through an automated process or system automation
must be changed to accommodate the new command format.

Chapter 2. Installing and configuring zFS 19

|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

2. The CANCEL ZFS command is not available.
3. When the IOEFSPRM configuration file location is defined by the IOEZPRM

DD card, it will need to be placed in the OMVS PROC. For more information,
see Chapter 12, “The zFS configuration options file (IOEPRMxx or
IOEFSPRM),” on page 219.

4. zFS will run under the OMVS user ID instead of the zFS user ID (DFS).
5. You can determine if zFS is in its own address space by issuing D OMVS,PFS.

If the output shows an ASNAME value, zFS is running as a colony address
space. Otherwise, the lack of an ASNAME value means that zFS is running in
the OMVS address space.

20 z/OS V2R2 Distributed File Service zFS Administration

|

|
|
|
|

|

|
|
|
|

Chapter 3. Managing zFS processes

Managing zFS processes includes starting and stopping zFS, as well as determining
zFS status.

Starting zFS
zFS is started by z/OS UNIX, based on the FILESYSTYPE statement for zFS in the
BPXPRMxx parmlib member. Beginning in z/OS V2R2, if there is no ASNAME
keyword on the FILESYSTYPE statement, zFS is started inside the OMVS address
space (the address space used by z/OS UNIX). If there is an ASNAME keyword,
zFS is started in its own colony address space.

Requirement: Before zFS can start in its own colony address space, a ZFS PROC
must be available.

zFS can be started at IPL if the BPXPRMxx parmlib member is in the IEASYSxx
parmlib member's OMVS=(xx,yy) list. To start it later, use the SETOMVS
RESET=(xx) operator command.

Stopping zFS
In general, do not stop zFS. Stopping zFS is disruptive to applications that are
using zFS file systems. zFS stops automatically when you shut down z/OS UNIX.
To shut down an LPAR or to re-IPL an LPAR, use the MODIFY
OMVS,SHUTDOWN operator command to shut down z/OS UNIX. This action
synchronizes data to the file systems and unmounts or moves ownership in a
shared file system environment. A planned system shutdown must include the
unmount or move of all owned file systems and the shut down of zFS. The
MODIFY OMVS,SHUTDOWN command unmounts and moves the owned file
systems and shuts down zFS. For shutdown procedures using F
OMVS,SHUTDOWN, see the topic on Planned shutdowns using F
OMVS,SHUTDOWN in z/OS UNIX System Services Planning.

zFS can be stopped using the MODIFY OMVS,STOPPFS=ZFS operator command.
Automatic ownership movement can occur for both the z/OS UNIX owner and the
zFS owner. See z/OS UNIX System Services Planning for information about the
various automove settings for z/OS UNIX file system ownership. When z/OS
UNIX notifies zFS that a shutdown is going to occur, zFS aggregate ownership
moves to other zFS systems in the shared file system environment. z/OS UNIX
then processes its file system ownership changes, or unmounts, as appropriate.

When zFS is stopped, you receive the following message (after replying Y to
message BPXI078D):

When an LPAR is shut down without the orderly shutdown of zFS, it is likely that
recovery actions (automatic recovery on the next mount; if the mount fails, it might
be necessary to manually run salvager) will be necessary to bring zFS aggregates
back to a consistent state. In addition, some file activity can be lost.

nn BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY 'R' WHEN READY TO RESTART. REPLY 'I' TO IGNORE.

© Copyright IBM Corp. 2001, 2015 21

|
|

|
|
|
|
|

|
|

|
|
|
|

To restart zFS, reply r to message nn. (For example, r 1,r). If you want zFS to
remain stopped, you can reply i to remove the prompt. In this case, zFS can be
redefined later using the SETOMVS RESET=(xx)operator command. However, this
can result in zFS file systems becoming NOT ACTIVE. An unmount and remount
is required to activate a file system that is NOT ACTIVE. If you plan to restart zFS,
you should reply r to the message.

Note: Stopping zFS can have shared file system (sysplex) implications. See
Chapter 5, “Using zFS in a shared file system environment,” on page 51 for
information about shared file systems.

If zFS has an internal failure, it typically does not terminate. It might disable an
aggregate (see “Diagnosing disabled aggregates” on page 105). If it is a case where
it does terminate, normally zFS will restart automatically. Otherwise, message
BPXF032D (the same message you receive when the MODIFY
OMVS,STOPPFS=ZFS operator command is used) is issued and a reply is
requested.

On z/OS V1R13 and later systems, if an internal problem occurs, zFS attempts an
internal restart. It internally remounts any zFS file systems that were locally
mounted, without requiring any support from z/OS UNIX. The zFS ownership for
aggregates that are owned on the system that is internally restarted might be
moved (by zFS for sysplex-aware file systems) to another system. For more
information, refer to Step 10 on page 104.

Determining zFS status
To determine if zFS is currently active, issue the D OMVS,PFS command. The
column titled ST (for STatus) will contain an A if zFS is active. It will contain an S
(Stopped) if it is not.

To display zFS internal restart information, issue the MODIFY ZFS,QUERY,STATUS
operator command.

Beginning in z/OS V1R11, you can issue D OMVS,P to display the state of the PFS,
including the start or exit timestamp. Message BPXO068I returns the PFS in one of
the following possible states:

A Active; the timestamp is the start time of the PFS.

I Inactive. When the PFS is inactive with no timestamp, the PFS address
space has not yet started. When the PFS is inactive with timestamp, the
PFS has stop at that time.

S Stopped; it is waiting for a reply of R to restart or I to terminate the PFS.

U Unavailable.

For more information, see z/OS MVS System Messages, Vol 3 (ASB-BPX).

22 z/OS V2R2 Distributed File Service zFS Administration

|

|

|
|
|

Chapter 4. Creating and managing zFS file systems using
compatibility mode aggregates

This section discusses creating compatibility mode aggregates and file systems.

Creating a compatibility mode aggregate
A zFS file system is created in a zFS aggregate (which is a VSAM linear data set).
If compatibility mode aggregates are used, the aggregate and the file system are
created at the same time. For simplicity, we refer to a file system in a compatibility
mode aggregate as a compatibility mode file system. A compatibility mode file
system is created using the ioeagfmt utility (which is described in “ioeagfmt” on
page 126).

Creating a compatibility mode aggregate is a two-step process.
1. First, use IDCAMS to create a VSAM linear data set.

Note: Carefully consider defining the aggregate as extended format, extended
addressability, and with a secondary allocation size. If you do not use these
attributes in the beginning, to add them, you will need to define and format a
new zFS aggregate, migrate the data from the original file system into the new
one, unmount the original, and then mount the new one. You might want to
extend beyond the 4 G aggregate size because version 1.5 aggregates can be
much larger than version 1.4 aggregates, or because secondary extents are
required to dynamically grow the aggregate, and dynamic grow (aggrgrow) is
the default. See “Dynamically growing a compatibility mode aggregate” on
page 30 for more information.

2. Then format the VSAM linear data set as a compatibility mode aggregate and
create a file system in the aggregate using ioeagfmt (see “ioeagfmt” on page
126). When using ioeagfmt, the user must meet one of the following
authorization requirements:
v Have ALTER authority to the VSAM linear data set.
v Be UID 0.
v Have read authority to the SUPERUSER.FILESYS.PFSCTL resource in the

RACF UNIXPRIV class.

Beginning in z/OS V2R1, ioeagfmt fails if the zFS PFS is not active on the system.
In addition, if the zFS started task does not have the TRUSTED attribute or the
OPERATIONS attribute, the DFS user ID must have at least ALTER authority to all
VSAM linear data sets that contain zFS aggregates. For details, see z/OS Security
Server RACF Security Administrator's Guide.

You can also create a compatibility mode aggregate using the ISHELL, or the
automount facility, or the zfsadm define and zfsadm format commands. For more
information about ISHELL, see z/OS V2R2.0 UNIX System Services User's Guide. For
more information about automount, see z/OS UNIX System Services Planning. For
more information about the zfsadm define command, see “zfsadm define” on page
176. For more information about the zfsadm format command, see “zfsadm
format” on page 188.

© Copyright IBM Corp. 2001, 2015 23

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

The VSAM linear data set, the aggregate, and the file system all have the same
name and that name is equal to the VSAM linear data set cluster name. The zFS
file system is then mounted into the z/OS UNIX hierarchy.

Rule: The Control Interval (CI) size of a VSAM linear data set that is formatted as
a zFS aggregate must be 4 K. This is the default for IDCAMS. As such, it is not
specified in Figure 2, which shows an example of a job that creates a compatibility
mode file system.

The -compat parameter in the CREATE step tells ioeagfmt to create a compatibility
mode file system. As of z/OS V2R1, the -compat parameter is optional, and zFS
always formats a compatibility mode file system. The result of this job is a VSAM
linear data set that is formatted as a zFS aggregate and contains one zFS file
system. The zFS file system has the same name as the zFS aggregate (and the
VSAM linear data set). The size of the zFS file system (that is, its available free
space) is based on the size of the aggregate.

The ioefsutl format utility can also be used to format a compatibility mode file
system and has options similar to ioeagfmt. The -compat option is not needed or

//USERIDA JOB ,’Compatibility Mode’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -
VOLUMES(PRV000) -
LINEAR CYL(25 0) SHAREOPTIONS(3))

/*
//CREATE EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=(’-aggregate OMVS.PRV.COMPAT.AGGR001 -compat’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 2. Example job to create a compatibility mode file system

//USERIDA JOB ,’Compatibility Mode’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -
VOLUMES(PRV000) -
LINEAR CYL(25 10) SHAREOPTIONS(3))

/*
//CREATE EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=(’format -aggregate OMVS.PRV.COMPAT.AGGR001’)
//SYSPRINT DD SYSOUT=H
//*

Figure 3. Example job to create a compatibility mode file system using IOEFSUTL

24 z/OS V2R2 Distributed File Service zFS Administration

allowed. The ioefsutl format utility only formats compatibility mode aggregates.
You are encouraged to use the ioefsutl format utility rather than the ioeagfmt
utility.

The default for the size of the aggregate is the number of 8 KB blocks that fits in
the primary allocation. You can specify a -size option giving the number of 8 KB
blocks for the aggregate.
v If you specify a number that is less than (or equal to) the number of blocks that

fits into the primary allocation, the primary allocation size is used.
v If you specify a number that is larger than the number of 8 KB blocks that fits

into the primary allocation, the VSAM linear data set is extended to the size
specified if the total size will fit in the primary allocation and a single extension.

A secondary extension cannot be used; instead, see “Growing a compatibility mode
aggregate” on page 30. The single extension must be no larger than a single
volume. This occurs during its initial formatting. Sufficient space must be available
on the volume. Multiple volumes can be specified on the DEFINE of the VSAM
linear data set. The multiple volumes are used during extension of the data set at a
later time. If you want to create a multi-volume data set initially that is larger than
two volumes, see “Creating a multi-volume compatibility mode aggregate” on
page 31. DFSMS decides when to allocate on these volumes during extension. Any
VSAM linear data set greater than 4 GB can be specified by using the extended
format and extended addressability capability in the data class of the data set. See
z/OS DFSMS Using Data Sets for information about VSAM data sets greater than 4
GB in size.

Restriction: zFS does not support the use of a striped VSAM linear data set as a
zFS aggregate. If you attempt to mount a compatibility mode file system that was
previously formatted and is a striped VSAM linear data set, it is mounted as
read-only.

There are several other options to use when creating a compatibility mode file
system that set the owner, group, and the permissions of the root directory.
v The -owner option specifies the owner of the root directory.
v The -group option specifies the group of the root directory.
v The -perms option specifies the permissions on the root directory.

Now, you can mount the zFS file system into the z/OS UNIX hierarchy with the
TSO/E MOUNT command. For example, the following command mounts the
compatibility mode file system that was created.

Alternatively, as the following example shows, you can use the z/OS UNIX mount
shell command to mount the compatibility mode file system that was created.

These examples assume that the directory /usr/mountpt1 exists and is available to
become a mount point. For more information about mount points, see z/OS UNIX
System Services Planning.

MOUNT FILESYSTEM('OMVS.PRV.COMPAT.AGGR001') TYPE(ZFS) MODE(RDWR) MOUNTPOINT('/usr/mountpt1')

/usr/sbin/mount -t ZFS -f OMVS.PRV.COMPAT.AGGR001 /usr/mountpt1

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 25

When a zFS compatibility mode aggregate that was created before z/OS V1R7 is
first mounted read/write on a later release, the on-disk format is modified from a
version 1.3 aggregate to a version 1.4 aggregate. This action allows the
performance of mount to improve (especially for zFS file systems with many files
and directories). During the automatic conversion, you see messages such as:

IOEZ00500I Converting PLEX.JMS.AGGR007.LDS0007 for fast mount processing
IOEZ00518I Converting filesystem PLEX.JMS.AGGR007.LDS0007 to allow for fast mount

Using version 1.5 aggregates and extended (v5) directories

CAUTION:
Do not use zFS version 1.5 aggregates until you have finished migrating all of
your systems to z/OS V2R1 or later. Version 1.5 aggregates are not supported on
releases prior to z/OS V2R1. All systems in a sypslex must be a V2R1 level or
later before any version 1.5 aggregates on any system in the sysplex are
implemented.

Beginning in z/OS V2R1, zFS supports a new version aggregate, the version 1.5
aggregate. The current aggregates are version 1.4 aggregates. Version 1.5 aggregates
support extended (v5) directories. Extended (v5) directories provide the following
benefits:
v They can support larger directories with performance.
v They store names more efficiently than v4 directories.
v When names are removed from extended (v5) directories, the space is reclaimed,

when possible, unlike v4 directories where space is not reclaimed until the
directory is removed.

Version 1.5 aggregates have a larger architected maximum size than version 1.4
aggregates (approximately 16 TB versus approximately 4 TB). Also, extended (v5)
directories can support more subdirectories than v4 directories (4G-1 versus 64K-1).

Because version 1.5 aggregates will benefit all environments that consist of systems
that are all at release z/OS V2R1 or later, you are encouraged to use this function
after all or your systems have been migrated to z/OS V2R1 or later. Version 1.5
aggregates can contain both extended (v5) directories and v4 directories and either
can be a subdirectory of the other, while version 1.4 aggregates cannot contain
extended (v5) directories. Version 1.5 aggregates can be mounted on directories
that are contained in version 1.4 aggregates, and the reverse is also allowed.

Creating a version 1.5 aggregate
A version 1.5 aggregate can be created using one of the following methods:
v By formatting a VSAM linear data set as a version 5 using the zFS ioefsutl

format batch utility
v Using the zFS ioeagfmt batch utility
v Via the Format Aggregate API
v Using the zfsadm format command

Version 1.5 aggregates are not formatted by default. They must be explicitly
requested with the -version5 option.

26 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|

|
|
|

You can change the default version that is formatted by setting the IOEFSPRM
variable format_aggrversion configuration option to 5. The format_aggrversion value
from the zFS PFS is used when any formatting method is used without the
-version4 or -version5 parameters.

The zFS format utilities ioeagfmt and ioefsutl format both request the value of
the format_aggrversion configuration option from the zFS kernel when
determining the default aggregate version for the format. If the zFS PFS is down,
both utilities will simply fail. Formatting of a version 5 aggregate is not allowed
when a z/OS V1R13 system is in a shared file system environment when using the
batch utility ioeagfmt, the zfsadm format command or the Format Aggregate API.

Following is an example of a job to create and format a version 1.5 aggregate:

The zfsadm format command can also be used to format a version 1.5 aggregate.
For example:

Converting an existing aggregate to version 1.5
An existing version 1.4 aggregate can be changed to a version 1.5 aggregate and,
optionally, existing directories contained in the aggregate can be converted to
extended (v5) directories. Use any one of the following methods to change an
aggregate to version 1.5.
v Explicitly, for a mounted aggregate using the zfsadm convert -aggrversion

command, or
v Automatically, on mount when the change_aggrversion_on_mount configuration

option is on (set in IOEPRMxx or using the zfsadm config command), or
v Automatically, on mount when the converttov5 configuration option is on (set

in IOEPRMxx or using the zfsadm config command), or

//USERIDA JOB ,’Compatibility Mode’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -
VOLUMES(PRV000) -
LINEAR CYL(25 10) SHAREOPTIONS(3))

/*
//CREATE EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=(’format -aggregate OMVS.PRV.COMPAT.AGGR001 -version5’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

zfsadm define -aggr OMVS.PRV.ZFS.AGGR005.LDS0005 -volumes PRV000 -cyl 10 5
IOEZ00248I VSAM linear dataset OMVS.PRV.ZFS.AGGR005.LDS0005 successfully created.
zfsadm format -aggr OMVS.PRV.ZFS.AGGR005.LDS0005 -version5
IOEZ00077I HFS-compatibility aggregate OMVS.PRV.ZFS.AGGR005.LDS0005 has
been successfully created

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 27

v Automatically, on mount when the CONVERTTOV5 MOUNT PARM is specified,
or

v Offline, using the IOEFSUTL converttov5 batch utility with the
-aggrversion_only option.

Note: The CONVERTTOV5 option and MOUNT PARM will also cause accessed
directories to be converted to extended (v5) directories after the aggregate is
converted to version 1.5.

An aggregate is not automatically changed if the NOCONVERTTOV5 MOUNT
PARM is specified. An aggregate is not explicitly or automatically changed if there
are earlier release systems (prior to z/OS V2R1) in the shared file system
environment.

Following is an example of the zfsadm convert command to change a version 1.4
aggregate to a version 1.5 aggregate without converting any directories to extended
(v5) directories:

Converting an existing v4 directory to an extended (v5)
directory

Once an aggregate is a version 1.5 aggregate, new directories that are created in it
will be extended (v5) directories. Existing directories can be converted to extended
(v5) directories:
v Explicitly, one at a time, for a mounted aggregate using the zfsadm convert

-path command, or
v Automatically, as they are accessed, for a mounted aggregate when the

aggregate has the converttov5 attribute, or
v Offline, converting all directories using the ioefsutl converttov5 batch utility.

Existing directories in a version 1.5 aggregate are not automatically converted if the
NOCONVERTTOV5 MOUNT PARM is specified. Explicit and offline directory
conversion will change the aggregate from version 1.4 to 1.5, if necessary.

Following is an example of the zfsadm convert command to convert a v4 directory
to an extended (v5) directory:

Converting a directory from version4 to an extended (v5) directory requires both
versions of the directory to exist on disk at the same time, temporarily. If the
aggregate becomes full during the allocation of the new directory a dynamic grow
will be attempted. See “Dynamically growing a compatibility mode aggregate” on
page 30 for information about controlling dynamic growth of an aggregate. If there
is not enough space to complete the conversion, the new directory will be deleted
and the conversion operation will fail.

zfsadm convert -aggrversion OMVS.PRV.ZFS.AGGR005.LDS0005
IOEZ00810I Successfully changed aggregate OMVS.PRV.ZFS.AGGR005.LDS0005 to version 1.5

zfsadm convert -path /home/suimgkp/zfsmnt5
IOEZ00791I Successfully converted directory /home/suimgkp/zfsmnt5 to version 5 format.

28 z/OS V2R2 Distributed File Service zFS Administration

When the conversion is completed, the old directory is deleted. The size of the
resulting new directory will vary based on the actual directory contents. In some
cases it may require more space than the original directory. In other cases it may
require less space.

If a system outage occurs during a directory conversion, the directory will be made
consistent during log recovery processing. That is, either the old directory will exist
or the new directory will exist, but both will not exist.

Guidelines for v4 to v5 conversion
Extended (v5) directories have better performance than v4 directories of the same
size. For optimal performance after all systems at your site have been migrated to
z/OS V2R1 or later, all of the directories should be converted from v4 to v5 even
though support will continue to be provided for v4 directories. To convert selected
file systems or directories, you can use automatic methods (such as specifying the
MOUNT parameters or by using the offline conversion utility). You can also
convert them explicitly with the zfsadm convert command.

If your installation exports zFS file systems to NFS or SMB, it is recommended that
the zfsadm convert command not be used for conversions for directories that are
exported by these servers. In rare cases, remote applications can get unexpected
errors if a directory being manually converted is simultaneously being accessed by
NFS or SMB users. Use one of the other methods for the conversion, such as
offline conversion or the CONVERTTOV5 MOUNT parameter, for these file
systems. These methods will ensure that each individual directory is completely
converted before it can be exported.

If you are not planning to convert all file systems to v5, then it is best to at least
do the most active file systems or the file systems with large directories. A
directory will get a nontrivial benefit by conversion to v5 if it has 10000 entries or
more (a length of approximately 800 K or more). You can determine the most
active file systems by issuing MODIFY ZFS,QUERY,FILESETS or by using the
wjsfsmon tool. The number of entries in a directory can be determined by issuing
the command df -t. The approximate rate of conversion for the directories is
between 3500 (for a z9® machine) and 10000 (for a zEC12 machine) directory
entries per second, depending on your processor.

After you decide that a file system is going to be converted to v5, you need to
decide what conversion method to use. If the file system can be unmounted, the
ioefsutl converttov5 batch utility or MOUNT parameters can be used. If it
cannot be unmounted and it is not exported by NFS or SMB servers, use the
zfsadm convert command. If it is exported by NFS or SMB servers, add the
converttov5 attribute to the mounted aggregate. See “Changing zFS attributes on a
mounted zFS compatibility mode file system” on page 40 for instructions about
how to add the converttov5 attribute to the mounted file system.

Migrating data to version 1.5 aggregates

Data can be migrated from HFS file systems into a version 1.5 aggregate in much
the same manner as it would be migrated into a version 1.4 aggregate. You can
also copy data from a version 1.4 aggregate to a version 1.5 aggregate with the
z/OS UNIX shell command pax. For more information, see Chapter 7, “Migrating
data from HFS or zFS to zFS,” on page 65.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 29

|

Growing a compatibility mode aggregate
If a compatibility mode aggregate becomes full, the administrator can grow the
aggregate (that is, cause an additional allocation to occur and format it to be part
of the aggregate). This is accomplished with the zfsadm grow command. There
must be space available on the volume to extend the aggregate’s VSAM linear data
set. The size that is specified on the zfsadm grow command must be larger than the
current size of the aggregate.

For example, suppose a two cylinder (primary allocation, 3390) aggregate has a
total of 180 8-KB blocks and a (potential) secondary allocation of one cylinder. 180
8-KB blocks is 1440 KB. A zfsadm aggrinfo command for this aggregate might
show 1440 KB. When you issue the zfsadm grow command with a larger size, the
file system becomes larger because DFSMS is called to allocate the additional
DASD space.

In the next example, notice that the zfsadm grow command indicates success, but
the aggregate was not made any larger because the size specified on the command
was the same as the existing size.

The aggregate now has a total size of 2160 KB. You can specify 0 for the size to get
a secondary allocation size extension. The file system free space has also been
increased based on the new aggregate size. Aggregates cannot be made smaller
without copying the data to a new, smaller aggregate.

Dynamically growing a compatibility mode aggregate
An aggregate can be dynamically grown if it becomes full. The aggregate (that is,
the VSAM linear data set) must have secondary allocation that is specified when it
is defined and space must be available on the volume. The number of extensions
that are allowed is based on DFSMS VSAM rules (see z/OS DFSMS Using Data
Sets). The aggregate is extended when an operation cannot complete because the
aggregate is full. If the extension is successful, the operation is again transparently
driven to the application.

An administrator can restrict aggregates from growing dynamically, either on an
individual aggregate basis or globally. To restrict dynamic growing of a specific
aggregate, use the NOAGGRGROW parameter on the MOUNT command (see

zfsadm aggrinfo omvs.prv.aggr003.lds0003

OMVS.PRV.AGGR003.LDS0003 (R/W COMP): 1279 K free out of total 1440

zfsadm grow omvs.orv.aggr003.lds0003 -size 1440

IOEZ00173I Aggregate OMVS.PRV.AGGR003.LDS0003 successfully grown
OMVS.PRV.AGGR003.LDS0003 (R/W COMP): 1279 K free out of total 1440

zfsadm grow omvs.prv.aggr003.lds0003 -size 1441

IOEZ00173I Aggregate OMVS.PRV.AGGR003.LDS0003 successfully grown
OMVS.PRV.AGGR003.LDS0003 (R/W COMP): 1999 K free out of total 2160

30 z/OS V2R2 Distributed File Service zFS Administration

“MOUNT” on page 150). To globally restrict dynamic growing of all aggregates,
specify the aggrgrow=off option of the IOEFSPRM configurations option file (see
“IOEFSPRM” on page 220).

During the extension, a portion of the extension is formatted. Applications that
cause new blocks to be allocated or that are reading a file that is being extended
will wait. Other applications will not wait. Applications that must wait, will wait
for the extension and the (portion) format. Look for HI-A-RBA, the size of the data
set in bytes, and HI-U-RBA, how much of it is formatted in bytes. If the aggregate
has previously been extended but not fully formatted (that is, the HI-U-RBA (or
hi-used-RBA) is less than the HI-A-RBA (or hi-allocated-RBA)), zFS will format
another portion of the existing extension to make more space available. You can
determine the HI-U-RBA and HI-A-RBA by using the IDCAMS LISTCAT ALL
utility against the zFS aggregate and looking for HI-U-RBA and HI-A-RBA in the
job output. Dividing HI-A-RBA or HI-U-RBA by 8192 will convert them to the
number of 8K blocks.

Each time zFS formats a portion of the extension or each time zFS dynamically
grows the aggregate and formats a portion of the extension, zFS issues message
IOEZ00312I, and then issues one of the following messages:
v IOEZ00309I, when successful
v IOEZ00308E, when unsuccessful

When a dynamic extension fails (for example, because of insufficient space), zFS
sets an internal indicator to avoid attempting another dynamic extension. This
indicator can be reset by a successful explicit grow (for example, by using the
zfsadm grow command) or by an unmount and mount of the file system.

Creating a multi-volume compatibility mode aggregate
Before you can create a large zFS aggregate (for example, ten full volumes), you
must have the following prerequisites:
v Ten empty volumes
v A DFSMS DATACLASS that provides extended addressability (because the total

size is greater than 4 GB)
v A JOB that defines and formats the aggregate.

Assuming that:
v Each volume is a 3390 with 3338 cylinders, and 3336 of those cylinders are free,
v There are 15 tracks per cylinder,
v And that you can get six 8-KB blocks per track (15 x 6 = 90 8 KB blocks per

cylinder),

you should get 90 x 3336 = 300,240 8-KB blocks per volume and 10 x 300,240 =
3,002,400 8-KB blocks in the aggregate. Figure 4 on page 32 is an example job that
defines the VSAM linear data set in the first step and formats it as a zFS aggregate
in the second step. The FORMAT step formats the primary allocation (3336
cylinders) and then extends the data set by the -grow amount (300,240 8-KB blocks)
ten times (one extend for each full volume) until it reaches the total -size amount
(3,002,400 8 KB blocks).

The example in Figure 4 on page 32 causes the 10 full volumes to be allocated and
formatted by using the -size and the -grow options on the IOEAGFMT step so
that the result is a 10-volume (empty) file system. The -grow option is needed in
order to allow the specification of a grow increment size that is less than the size

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 31

of a volume.

As another example, you could define a VSAM linear data set as before with 10
volumes but with a secondary allocation size of 3336 cylinders, as shown in
Figure 5. Then you could format only the first volume by leaving out the -size
and the -grow and let zFS dynamic secondary allocation allocate and format the
additional volumes (up to 9 more) as needed. The IOEPRMxx aggrgrow
configuration option must be on.

//USERIDA JOB ,'Multi-Volume',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.VOL10.COMPAT.AGGR001) -
VOLUMES(PRV000 PRV001 PRV002 PRV003 PRV004 -

PRV005 PRV006 PRV007 PRV008 PRV009) -
DATACLASS(EXTATTR) -
LINEAR CYL(3336) SHAREOPTIONS(3))

/*
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=('-aggregate OMVS.VOL10.COMPAT.AGGR001 -compat -size 3002400 -gX
// row 300240')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 4. Example job to create a multi-volume compatibility mode aggregate

//USERIDA JOB ,’Multi-Volume’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.VOL10.COMPAT.AGGR001) -
VOLUMES(PRV000 PRV001 PRV002 PRV003 PRV004 -

PRV005 PRV006 PRV007 PRV008 PRV009) -
DATACLASS(EXTATTR) -
LINEAR CYL(3336 3336) SHAREOPTIONS(3))

/*
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=(’-aggregate OMVS.VOL10.COMPAT.AGGR001 -compat’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 5. Example job to create a multi-volume compatibility mode aggregate, using a
secondary allocation size

32 z/OS V2R2 Distributed File Service zFS Administration

Adding volumes to a compatibility mode aggregate
To add a candidate volume to a zFS aggregate, use the IDCAMS utility ALTER
command with the ADDVOLUMES parameter. Figure 6 shows an example job that
adds two volumes to the (SMS-managed) OMVS.ZFS.AGGR1 zFS aggregate.

In this case, DFSMS is choosing the particular candidate volumes. If you want to
specify the volumes, use their volume serials in place of the asterisks. See z/OS
DFSMS Access Method Services Commands for more information about IDCAMS
ALTER ADDVOLUMES. DFSMS states, if an ALTER ADDVOLUMES is done to a
data set already opened and allocated, the data set must be closed, unallocated,
reallocated, and reopened before VSAM can extend onto the newly added
candidate volume.

For zFS, this means that if the zFS aggregate is already attached when the ALTER
ADDVOLUMES is done, it must be detached and attached again before zFS can
extend to the newly added candidate volume. Compatibility mode aggregates must
be unmounted and mounted again (because that is when they are detached and
attached). You can use the remount capability of z/OS UNIX. For details, see the
topic on Remounting a mounted file system in z/OS UNIX System Services Planning.

Increasing the size of a compatibility mode aggregate
If your zFS file system runs out of space, you have several options to increase its
size.
v You can grow the aggregate. For more information, see “Growing a

compatibility mode aggregate” on page 30.
v If you cannot grow the aggregate (because, for example, there is no more room

on the volume), you can add a volume to the aggregate. For more information,
see “Adding volumes to a compatibility mode aggregate.”

v If you cannot grow the aggregate and you cannot add a volume (because, for
example, you do not have any more volumes available), you can copy the
aggregate into a larger VSAM linear data set. There are two ways to copy the
data:
– You can copy each file and directory of the zFS aggregate to a larger data set.
– You can copy the physical blocks of the zFS aggregate to a larger data set.

Copying each file and directory of the aggregate to a larger
data set

One method to increase the size of a zFS aggregate is to copy each file and
directory of the aggregate to a larger data set. Figure 7 on page 34 shows an

//SUIMGVMA JOB (ACCTNO),’SYSPROG’,CLASS=A,
// MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

ALTER OMVS.ZFS.AGGR1.DATA -
ADDVOLUMES(* *)

/*

Figure 6. Example job to add volumes to a zFS aggregate

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 33

example of this approach.

This approach uses the pax command to copy the individual files and directories
into an already formatted and empty zFS file system. Both file systems must be
mounted. pax uses the z/OS UNIX file and directory APIs to read and write each
individual file and directory of the hierarchy of the file system. (It does not copy
lower mounted file systems because of the -X and -M options.) You can use the

//SUIMGVMB JOB ,’EXPAND AGGR WITH PAX’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//* Make sure you have no line numbers in this JCL
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

DEFINE CLUSTER (NAME(PLEX.NEW.AGGR002.LDS0002) -
LINEAR CYL(100 5) SHAREOPTIONS(3) -
VOLUMES(CFC000 CFC001))

/*
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,
//* On the next line, aggregate and compat must be lower case
// PARM=(’-aggregate PLEX.NEW.AGGR002.LDS0002 -compat’)
//SYSPRINT DD SYSOUT=H
//***
//** **
//** note - use a + sign at the end of each line to indicate there**
//** is another line to be processed. **
//** use a ; at the end of each COMMAND **
//** **
//** a single command can span multiple lines if each line **
//** ends in a +. when you have reached the end of the **
//** command, terminate the command with a ; **
//** **
//***
//PAX1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSEXEC DD DSN=SYS1.SBPXEXEC,DISP=SHR
//SYSTSIN DD *
OSHELL /usr/sbin/mount -t ZFS -f PLEX.OLD.AGGR002.LDS0002 +
/service2 ; +
/usr/sbin/mount -t ZFS -f PLEX.NEW.AGGR002.LDS0002 /service3 ; +
cd /service2 ; +
pax -rwvCMX -p eW . /service3 ;

/*
//* The result of these next two steps should show that
//* More free space is available in the new file system
//AGGRINF1 EXEC PGM=IOEZADM,REGION=0M,
// PARM=(’aggrinfo PLEX.OLD.AGGR002.LDS0002 -long’)
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
/*
//AGGRINF2 EXEC PGM=IOEZADM,REGION=0M,
// PARM=(’aggrinfo PLEX.NEW.AGGR002.LDS0002 -long’)
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
/*

Figure 7. Sample job to copy each file and directory of an aggregate to a larger data set

34 z/OS V2R2 Distributed File Service zFS Administration

ISHELL command or the automount command with the allocany or allocuser
keyword to create the new larger aggregate to copy into with pax, because they
format the aggregate.

If you are running this job on a system that is running z/OS V1R13 or later, and
the file system was written to using a prior release of z/OS, zFS might use more
DASD space for the same data than it did on the prior release. The increase in
DASD space can occur for small files (1 KB in size or less) because beginning with
z/OS VR13 zFS does not store data in 1-KB fragments; instead, it stores data in
8-KB blocks. For example, if the file system contained 1000 files that are 1 KB in
size, zFS on z/OS V1R13 or later could use a maximum of 10 cylinders more than
on previous releases. You can determine how many files are in the file system that
are 1 KB or less by using the following z/OS UNIX command:
find mountpoint -size -3 -type f -xdev | wc -l

After you successfully copy the data, when you are comfortable with the new,
larger aggregate, you can delete the old aggregate.

Copying the physical blocks of the aggregate to a larger data
set

Another method to increase the size of a zFS aggregate is to copy the physical
blocks of the aggregate to a larger data set using the DFSMS REPRO command.
This approach is normally faster than using the pax command. However, do not
format the target zFS data set before using the REPRO command. Figure 8 on page
36 shows an example of this approach.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 35

|

Figure 9 on page 37 shows a zFS file system (PLEX.OLD.AGGR002.LDS0002) that
is full and a newly-defined zFS data set (PLEX.NEW.AGGR002.LDS0002 before the
REPRO) that is larger. PLEX.NEW.AGGR002.LDS0002 has a larger HI-A-RBA than
PLEX.OLD.AGGR002.LDS0002. When the blocks from
PLEX.OLD.AGGR002.LDS0002 are copied into PLEX.NEW.AGGR002.LDS0002
using REPRO, the result is PLEX.NEW.AGGR002.LDS0002 after REPRO. There is
now room to add data to PLEX.NEW.AGGR002.LDS0002.

//SUIMGVMB JOB ,’EXPAND AGGR WITH REPRO’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

DEFINE CLUSTER (NAME(PLEX.NEW.AGGR002.LDS0002) -
LINEAR CYL(100 5) SHAREOPTIONS(3) -
VOLUMES(CFC000 CFC001))

/*
//LCAT1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//* This step should show a HI-U-RBA of 0
//* for PLEX.NEW.AGGR002.LDS002
//SYSIN DD *

LISTCAT ENTRIES(PLEX.OLD.AGGR002.LDS0002) -
ALL

LISTCAT ENTRIES(PLEX.NEW.AGGR002.LDS0002) -
ALL

/*
//REPRO1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//* The next line guarantees that the file system is not mounted
//IN1 DD DSN=PLEX.OLD.AGGR002.LDS0002,DISP=OLD
//SYSIN DD *

REPRO -
INFILE(IN1) -
OUTDATASET(PLEX.NEW.AGGR002.LDS0002)

/*
//LCAT2 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//* This step should show the HI-U-RBA of
//* PLEX.NEW.AGGR002.LDS002 equal to the HI-U-RBA
//* of PLEX.OLD.AGGR002.LDS002
//SYSIN DD *

LISTCAT ENTRIES(PLEX.OLD.AGGR002.LDS0002) -
ALL

LISTCAT ENTRIES(PLEX.NEW.AGGR002.LDS0002) -
ALL

/*

Figure 8. Sample job to copy the physical blocks of an aggregate to a larger data set

36 z/OS V2R2 Distributed File Service zFS Administration

With this approach, the new VSAM linear data set must not be formatted as an
empty zFS file system before the REPRO command is used. (If the new data set
was formatted, the REPRO would copy blocks to the end of the primary allocation,
not the beginning. The data blocks being copied contain all the file system data
and the file system information, so formatting is not necessary.) Neither file system
needs to be mounted. REPRO uses native VSAM calls to read and write the blocks.

Follow these guidelines:
v When using the REPRO command, do not use the z/OS UNIX ishell command

or the z/OS UNIX automount command with the allocany or allocuser keyword,
because those commands will automatically format the aggregate.

v Do not use this approach to copy an HFS file system to a zFS file system
because you will be copying the physical blocks of the file system (not the
individual files) and the internal format of HFS file systems is different than the
internal format of zFS file systems.

Notice that the ZFS attribute is not set in the LISTCAT output for the target data
set (PLEX.NEW.AGGR002.LDS0002). It is set the first time the zFS file system is
mounted read-write.

Now the new aggregate can grow into the available space in the allocated portion
of the data set or even extend to additional extents if there is space on the volume.

After you successfully copy the data, when you are comfortable with the new,
larger aggregate, you can delete the old aggregate.

HI-U-RBA = HI-A-RBA

PLEX.OLD.AGGR002.LDS0002

PLEX.NEW.AGGR002.LDS0002 before REPRO

PLEX.NEW.AGGR002.LDS0002 after REPRO

HI-A-RBA

HI-A-RBA

HI-A-RBA

HI-A-RBAHI-A-RBA

HI-U-RBA

HI-U-RBA – The high-used relative byte address indicates how many bytes were written by zFS.

HI-A-RBA – The high-allocated relative byte address indicates how many bytes could be written by zFS
into the current allocation.

HI-U-RBA = 0

HI-U-RBA < HI-A-RBA

HI-U-RBAHI-U-RBA

HI-U-RBA

Figure 9. Copying blocks from a full zFS data set into a larger data set

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 37

Decreasing the size of a compatibility mode aggregate
You can decrease the size of a zFS aggregate using the pax command. Figure 10
shows a sample job.

This approach uses the pax command to copy the individual files and directories
into an already formatted and empty zFS file system. Both file systems must be
mounted. pax uses the z/OS UNIX file and directory APIs to read and write each
individual file and directory of the hierarchy of the file system. (It does not copy
lower mounted file systems because of the -X and -M options.)

//SUIMGVMB JOB ,’SHRINK AGGR WITH PAX’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//* Make sure you have no line numbers in this JCL
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

DEFINE CLUSTER (NAME(PLEX.NEW.AGGR002.LDS0002) -
LINEAR CYL(25 5) SHAREOPTIONS(3) -
VOLUMES(CFC000 CFC001))

/*
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,
//* On the next line, aggregate and compat must be lower case
// PARM=(’-aggregate PLEX.NEW.AGGR002.LDS0002 -compat’)
//SYSPRINT DD SYSOUT=H
//***
//** **
//** note - use a + sign at the end of each line to indicate there**
//** is another line to be processed. **
//** use a ; at the end of each COMMAND **
//** **
//** a single command can span multiple lines if each line **
//** ends in a +. when you have reached the end of the **
//** command, terminate the command with a ; **
//** **
//***
//PAX1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSEXEC DD DSN=SYS1.SBPXEXEC,DISP=SHR
//SYSTSIN DD *
OSHELL /usr/sbin/mount -t ZFS -f PLEX.OLD.AGGR002.LDS0002 +
/service2 ; +
/usr/sbin/mount -t ZFS -f PLEX.NEW.AGGR002.LDS0002 /service3 ; +
cd /service2 ; +
pax -rwvCMX -p eW . /service3 ;

//* The result of these next two steps should show that
//* the new file system is smaller
//AGGRINF1 EXEC PGM=IOEZADM,REGION=0M,
// PARM=(’aggrinfo PLEX.OLD.AGGR002.LDS0002 -long’)
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
/*
//AGGRINF2 EXEC PGM=IOEZADM,REGION=0M,
// PARM=(’aggrinfo PLEX.NEW.AGGR002.LDS0002 -long’)
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
/*

Figure 10. Sample job to decrease the size of an aggregate

38 z/OS V2R2 Distributed File Service zFS Administration

After you successfully copy the data, when you are comfortable with the new,
smaller aggregate, you can delete the old aggregate.

Renaming or deleting a compatibility mode aggregate
To rename a compatibility mode aggregate, use the IDCAMS ALTER command
with the NEWNAME parameter. You cannot rename an aggregate if it is mounted.

After the rename is done, the name of the file system stored in the zFS aggregate
will not match the aggregate name. This is a requirement for compatibility mode
zFS aggregates. To reconcile the file system and aggregate name, the zFS file
system must be mounted initially as read/write after the IDCAMS RENAME is
complete. This allows zFS to reconcile the file system name with the new aggregate
name. After the name is reconciled, the aggregate can then be mounted read-only.

The example in Figure 11 assumes that:
v The data component name is the same as the cluster name with DATA appended
v You want to rename both the cluster name and the data component name.

To delete a compatibility mode aggregate, use the IDCAMS utility DELETE
command. You cannot delete an aggregate if it is mounted. Figure 12 shows a
sample job that deletes both the cluster name and the data component.

See z/OS DFSMS Access Method Services Commands for information and restrictions
on IDCAMS ALTER NEWNAME and DELETE.

//SUIMGVMS JOB (ACCTNO),’SYSPROG’,CLASS=A,
// MSGCLASS=X,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

ALTER PLEX.JMS.AGGR006.LDS0006 -
NEWNAME(PLEX.JMS.AGGR008.LDS0008)

ALTER PLEX.JMS.AGGR006.LDS0006.* -
NEWNAME(PLEX.JMS.AGGR008.LDS0008.*)

/*

Figure 11. Example job to reconcile the file system and aggregate name

//SUIMGVMD JOB (ACCTNO),’SYSPROG’,CLASS=A,
// MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE PLEX.JMS.AGGR006.LDS0006
/*

Figure 12. Example job to delete a compatibility mode aggregate

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 39

Changing zFS attributes on a mounted zFS compatibility mode file
system

zFS attributes are assigned to a zFS compatibility mode file system when it is
mounted. The attributes can be set by specifying a zFS MOUNT PARM or they can
be set from the zFS default values of the system where the primary mount occurs.
These attributes, which are generally only meaningful for read/write mounted file
systems, include the following:
v AGGRFULL
v AGGRGROW
v CONVERTTOV5
v FSFULL

When one of these attributes is assigned to the file system when it is mounted, it
typically remains with that file system until it is explicitly unmounted. However, if
the file system's attributes were assigned from a zFS default set on the system,
they may be changed in the following situations:
v The file system is NORWSHARE and z/OS UNIX ownership moves to another

system with a different zFS default
v The file system is remounted samemode and the z/OS UNIX owning system has

a different default
v The file system is remounted from read-only to read/write and the z/OS UNIX

owning system has a different default
v The file system is NOAUTOMOVE and the system is coming up with a different

default.

The RWSHARE and NORWSHARE attributes of a compatibility mode file system
may also be changed if they were assigned from a zFS default of the system on
which they were mounted.

For example, there are several cases when the RWSHARE attribute of a file system
may be changed to NORWSHARE:
v The file system is remounted from read-only to read/write and the z/OS UNIX

owning system has a NORWSHARE default
v The file system is NOAUTOMOVE and the system is coming up with a

NORWSHARE default.

Similarly, if the NORWSHARE attribute was assigned from a zFS default, it may be
changed to RWSHARE under the following situations:
v The file system has z/OS UNIX ownership moved to another system that has

specified RWSHARE as the default
v The file system is remounted from read-only to read/write and the z/OS UNIX

owning system has an RWSHARE default
v The file system is NOAUTOMOVE and the system is coming up with an

RWSHARE default.

You can query the current default value of a zFS attribute by issuing the zfsadm
configquery command. For example, to query the default value of the following
attributes, you can issue the following commands:

40 z/OS V2R2 Distributed File Service zFS Administration

zfsadm configquery -aggrfull
zfsadm configquery -converttov5
zfsadm configquery -fsfull
zfsadm configquery -aggrgrow
zfsadm configquery -sysplex_filesys_sharemode

You can change a zFS attribute on a mounted file system. To do so, take an
appropriate action, as previously described for the attribute that you want to
change. For example, to change the NORWSHARE attribute of a compatibility
mode file system to RWSHARE, you can move the z/OS UNIX ownership of that
file system to a different system that specifies RWSHARE as the zFS default.

Also, as the following examples show, you can change the zFS default values by
issuing the zfsadm config command:
zfsadm config -aggrfull 95,5
zfsadm config -converttov5 on
zfsadm config -fsfull 90,10
zfsadm config -aggrgrow on
zfsadm config -sysplex_filesys_sharemode rwshare

Note: Generally, to avoid getting unexpected attribute changes, it is best to have
the zFS default values be the same on all members of the sysplex. However, if you
want to change an attribute of a mounted file system, you can temporarily change
a zFS default and then cause one of the situations previously described. For
example, move the z/OS UNIX ownership of the file system to a different system
where the zFS default has been temporarily changed, then change the default back
to the original value. You can only change a zFS attribute of a mounted file system
if you did not specify the attribute in a MOUNT PARM.

Unmounting zFS file systems before copying or moving
When a user mounts (attaches) an aggregate to a particular system, zFS records the
name of the system, the sysplex name (when it is a sysplex), and a time stamp in
the zFS aggregate (in block zero of the aggregate). In addition, while the aggregate
is mounted, zFS updates the time stamp every 30 seconds. If another system (that
is not in the same sysplex) sharing the DASD attempts to mount the same
aggregate, zFS on that system recognizes that the system name in the aggregate is
not blank and does not match this system. In this case, zFS waits 65 seconds to see
if the time stamp is updated (by the original system). If the time stamp is updated
in that 65-second period, zFS refuses to mount the aggregate and returns ENXIO
(X'8A') with reason code EF096058. As a result, zFS prevents a system from writing
to a zFS aggregate that is mounted read/write on another system. If the time
stamp is not updated, the mount succeeds after waiting for 65 seconds. A similar
situation might occur when a copy was made of a zFS aggregate, or an entire
DASD volume, while the zFS aggregates were mounted. In this case, when a
mount is attempted of these copies, a 65-second block zero wait might be seen for
each mount. This will be accompanied by an IOEZ00807I message that is issued by
zFS.

When a zFS aggregate is unmounted (detached), the system name and the time
stamp are cleared. In this case, the next mount does not wait because zFS knows
that the aggregate is not currently mounted. If the aggregate is being mounted on
a different member in the same sysplex after a failure, zFS does not wait because it
recognizes that this is a different system that is in the same sysplex.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 41

As a result, you can cause zFS to wait during mount unnecessarily and you can
experience z/OS UNIX latch contention if you fail to unmount (detach) a zFS
aggregate before copying it or moving it to another system.

Understanding zFS disk space allocation
Unlike releases prior to z/OS V1R13, data is not stored in 1 K fragments. Instead,
the data is stored in 8 K blocks. Releases z/OS V1R13 and later can read data that
is stored in fragments; however, when the data is updated, it is moved into 8 K
blocks. Note that because previous releases of zFS can read an 8 K block that is not
full, no toleration support is required on those systems. Also, in previous releases,
when zFS stored data in fragments, data from multiple files typically resided in
separate 8 K blocks.

However, there are certain cases when z/OS V1R13 and later will require more
DASD space than zFS in previous releases. For example, if every file in the file
system were 1 K or less, zFS on z/OS V1R13 or later releases could require up to
twice as much DASD storage as previous releases. As a second example, because
HFS uses 4 K blocks to store data and zFS uses 8 K blocks, if every file in the file
system were 4K or less, zFS R13 could require up to twice as much DASD space to
store these files. As another example, if the file system contained 1000 files that are
1 K in size, zFS in z/OS V1R13 and later releases could take a maximum of 10
cylinders more than zFS in previous releases. Typically, however, any increase in
the DASD storage used by zFS V1R13 and later releases will be negligible. For
example, the R13 version root file system that is copied using zFS R13 takes
approximately 2% more space than the same file system copied using zFS R11.
Note that zFS releases z/OS V1R13 and later packs multiple ACLs and symbolic
links into an 8 K block, which previous releases did not do.

To determine if an existing file system needs more DASD storage, you can use the
“scan for small files” utility, zfsspace. For a mounted zFS file system, the utility
shows the number of small files (1 K or less), if a secondary allocation is specified,
and if aggrgrow=on is specified. The zfsspace utility, along with other helpful tools,
is available from the z/OS UNIX System Services Tools and Toys web page
(http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html). For more
information about migration steps that might be needed, refer to z/OS Migration.

Another result of moving fragments into 8-KB blocks is that the following situation
can occur:
v A zFS file system is full, and
v It is zFS-owned on a V1R13 or later system, and
v It has no secondary allocation specified, or cannot extend because there is no

space on the volume, and
v You try to remove some files in order to free up some space, but the remove

fails due to return code ENOSPC (133)

This failure can occur because you are trying to remove an entry from a directory
that was created before z/OS V1R13 and is smaller than 7 KB, so it is stored in
fragments. But the file system is zFS-owned on a z/OS V1R13 or later system and
needs a free 8-KB block to do the remove. To resolve this problem, you must
explicitly grow the file system in order to make free 8-KB blocks available. You can
do this even if the zFS file system data set does not have a secondary allocation
size specified. Free space on the volume is required. For example:
rm /service6/testdir2/filea
rm: FSUM9195 cannot unlink entry "/service6/testdir2/filea":
EDC5133I No space left on device.

42 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

|

|

|

http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html

zfsadm aggrinfo PLEX.JMS.AGGR006.LDS0006
PLEX.JMS.AGGR006.LDS0006 (R/W COMP): 21 K free out of total 7200
zfsadm grow PLEX.JMS.AGGR006.LDS0006 7920
IOEZ00173I Aggregate PLEX.JMS.AGGR006.LDS0006 successfully grown
PLEX.JMS.AGGR006.LDS0006 (R/W COMP):741 K free out of total 7920
rm /service6/testdir2/filea
#

If you need to add a volume, you can add one using the IDCAMS ALTER
command with the ADDVOLUMES option. For more information, see “Adding
volumes to a compatibility mode aggregate” on page 33.

A zFS aggregate is an array of 8-KB blocks. Three special objects are present in all
zFS aggregates. These objects take up space in an aggregate, which means that
space cannot be used for user files:

Log file
Records metadata changes. By default, its size is 1% of the disk size.
However, it will never be smaller than 14 blocks and it will never be larger
than 16,384 blocks (128 MB).

Bitmap
Lists the blocks that are free on disk. The file size depends on the size of
the aggregate.

Aggregate File System List
Describes the file systems that are contained in the aggregate. For
compatibility mode aggregates it is usually only one 8-KB block.

The zfsadm aggrinfo command shows aggregate disk space usage. This is based
on the number of 8-KB blocks. It subtracts the space reserved for the above three
objects in its calculations (and tells you this in the output). The zfsadm aggrinfo
command shows output in units of 1-KB blocks. If you use the -long option of the
zfsadm aggrinfo command, it shows the number of free 8-K blocks, the number of
free 1 K fragments and the size (in K) taken up by the log file, the file system table
and the bitmap.

The zFS threshold monitoring function aggrfull reports space usage based on total
aggregate disk size. It incorporates the space for the above three special objects
when showing total disk space and amount used on disk in its messages. The
aggrfull message shows units in 8 K blocks.

The zfsadm aggrinfo command shows the free space and the total aggregate size
in 1-KB units.

The df command shows the file system free space, but because the df command
shows things in 512-byte units, usually the df output for zFS is exactly twice the
numbers shown for zfsadm aggrinfo.

zFS stores files on disk in one of three ways:

inline If the file is 52 bytes or less, it is stored in the same data structure on disk
that holds the file status (such as owner, size, and permissions). A file 52
bytes or less takes no extra disk space.

fragmented
On systems before z/OS V1R13, if the file is 7 KB or less and has never
been larger than 7 KB, zFS stores it in 1-KB fragments; as such, it is stored
in part of an 8-KB block. Multiple small files can share the same 8-KB

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 43

block on disk. On z/OS releases z/OS V1R13 and laterYeah systems, zFS
no longer stores files in 1-KB fragments.

blocked
On systems before z/OS V1R13, if the file is over 7 KB, it is stored in one
or more 8-KB blocks. On Releases z/OS V1R13 and later systems, if a file
is over 52 bytes, it is stored in one or more 8-KB blocks.

How data is stored on systems before z/OS V1R13
On systems before z/OS V1R13, zFS can store data in fragmented blocks to
conserve disk space. On these systems, each small file does not need to use a full
8-KB block of disk space. However, as a result of this method of storing data, a
problem can occur when data is stored using zFS. That is, the amount of free space
that is displayed by the z/OS UNIX df command might not give the entire picture
of free space. The df -k command displays free space in a file system in 1-KB
units. In zFS, this space is a combination of full 8-KB blocks plus the free 1-KB
fragments in fragmented blocks. For example, as Figure 13 shows, if there were
two 8-KB blocks and twenty 1-KB blocks that are left, df -k reports 36 KB
available.

Because this is a combination of 8-KB blocks and 1-KB blocks, it is possible that
many 1-KB blocks are available but no 8-KB blocks remain. As shown in Figure 14
on page 45 for example, if there were 0 8-KB blocks left and 20 1-KB blocks
available, df -k reports 20 KB available. If you try to create a 10-KB file, you might
think that there is plenty of space. However, a 10-KB file is larger than 7 KB, and
therefore uses full 8 KB blocks. Because there are no 8-KB blocks available, there is
no room for a 10 KB file, even though there is 20-KB free space.

Figure 13. Disk space allocation example 1

44 z/OS V2R2 Distributed File Service zFS Administration

Other rules can further restrict how free space is used. A file that is 7 KB must be
stored in 7 contiguous fragments. Therefore, even if there is 20 KB available in the
file system, if there is no fragmented block with 7 contiguous 1-KB blocks
available, the file system will report that there is no space for the file. Also, a file
that is stored as fragments cannot share the same 8-KB block as a directory stored
as fragments.

Fragments save disk space, but make space allocation more complicated. To
provide the maximum options for space allocation, you need to have free 8-KB
blocks. The aggrfull option of MOUNT and IOEFSPRM indicates the number of
free 8-KB blocks. If you are out of 8-KB blocks, you will be limited in how much
additional file space that can be allocated in the file system. You should grow the
aggregate or allow it to be dynamically extended.

When a zFS compatibility mode aggregate becomes full, you can make more space
available. This happens automatically if you have specified aggrgrow for the
aggregate and you specified a secondary allocation size when you defined the
aggregate (that is, the VSAM linear data set). You can increase the size of the
aggregate with the zfsadm grow command. Of course, in each of these cases, you
must have space available on the volume to extend into. Or, you might be able to
erase some files from the file system to free up some space.

Note that because of the difference between how HFS and zFS manage disk space
and block sizes, certain z/OS UNIX commands, such as df and du might display
information differently.

Support for type 30 SMF record
The type 30 SMF record provides accounting information. z/OS UNIX contributes
to them, in part, by providing a count of the number of blocks that are read from
file system disk blocks, or written to file system disk blocks, during each operation
performed in a UNIX file system by a user or an application. The SMF30OFR and
SMF30OFW fields of the SMF record contain these counts. The zFS PFS provides
the count of blocks that are involved in these I/O operations to z/OS UNIX in the
OSI control block fields readibc and writeibc.

Due to the aggressive caching that zFS does with the contents of the disk blocks, it
is not possible for zFS to provide an exact count of actual I/O operations that are

Figure 14. Disk space allocation example 2

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 45

|

|
|
|
|
|
|
|

|
|

done by each user or application. Instead, zFS provides a weighted cost estimation
of the number of disk blocks an operation could read or write. This method of
counting the blocks is not the same as that used by HFS, so comparisons of HFS
versus zFS file systems will not be accurate. This method of counting the blocks
should be consistent enough to allow the comparison of two users or applications
accessing the same zFS file system. This will be true even if the file system is
mounted RWSHARE and accessed from two different systems that are sharing it.

Sharing zFS data in a non-shared file system sysplex
For information about sharing zFS data in a shared file system in a multisystem
sysplex environment, see Chapter 5, “Using zFS in a shared file system
environment,” on page 51 and review “Unmounting zFS file systems before
copying or moving” on page 41.

The only fully supported way to share zFS data between systems in a non-shared
file system sysplex environment is read-only sharing, where a zFS file system is
mounted read-only to each system. Results are undefined when a zFS file system is
mounted read/write to one system and mounted read-only on another.

Minimum and maximum file system sizes
The minimum zFS compatibility mode aggregate size is six 3390 tracks, which hold
thirty-six 8 KB blocks (six 8 KB blocks per track × 6 tracks). In the example in
Figure 15, DFSMS allocates 7 tracks. Six 8-KB blocks per track x 7 tracks is 42 8-KB
blocks or 336 KB. This only leaves 184 KB of free space available for files and
directories. Small file systems tend to fill up quickly because of block and fragment
allocation and can appear to have free space when they really do not. (For more
information, see “Understanding zFS disk space allocation” on page 42). Using
such small file systems is not a good idea. You can permit the file system to grow
automatically (you must have aggrgrow=on in the IOEFSPRM file, which is the
default, or in the MOUNT PARM. You must also have a secondary allocation
specified on the zfsadm define command, which is specified as 5 in Figure 15).
However, your log file size is very small and might cause contention. The log file
size cannot be increased after the aggregate is formatted.

zfsadm define -aggr PLEX.JMS.AGGR006.LDS0006 -volumes CFC000 -tracks 6 6

IOEZ00248I VSAM linear dataset PLEX.JMS.AGGR006.LDS0006 successfully created.

zfsadm format PLEX.JMS.AGGR006.LDS0006

IOEZ00077I HFS-compatibility aggregate PLEX.JMS.AGGR006.LDS0006 has been successfully created
/usr/sbin/mount -t ZFS -f PLEX.JMS.AGGR006.LDS0006 -o ’RWSHARE’ /service6
zfsadm aggrinfo PLEX.JMS.AGGR006.LDS0006 -long
PLEX.JMS.AGGR006.LDS0006 (R/W COMP): 184 K free out of total 336
version 1.4
auditfid C3C6C3F0 F0F200CC 0000
sysplex-aware

23 free 8k blocks; 0 free 1K fragments
112 K log file; 8 K filesystem table
8 K bitmap file

Figure 15. Example of a secondary zfsadm define command

46 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|

Version 1.5 aggregates
For a version 1.5 aggregate, the architected maximum size for compatibility mode
aggregates is approximately 16 TB (4 KB x 4 GB). If you use 3390 DASD that has
262,668 cylinders per volume, you can create a compatibility mode aggregate of
about 11,425,931,919,360 bytes.
262668 cylinders per volume
x 90 blocks per cylinder
x 8KB per block
x 59 volumes

10641 GB or 10.39 TB

Version 1.5 aggregates have a larger architected maximum size than version 1.4
aggregates (approximately 16 TB versus approximately 4 TB). Also, extended (v5)
directories can support more subdirectories than v4 directories (4G-1 versus 64K-1).

Version 1.4 aggregates
For a version 1.4 aggregate, the architected maximum size for compatibility mode
aggregates is approximately 4 TB (1 KB x 4 GB). If you use 3390 DASD that has
65,520 cylinders per volume, you can create a compatibility mode aggregate of
about 2,850,088,550,400 bytes.
65520 cylinders per volume
x 90 blocks per cylinder
x 8KB per block
x 59 volumes

2654 GB or 2.59 TB

Restriction: A zFS version 1.4 compatibility mode aggregate is limited to 4 TB
even on extended address volume (EAV) devices. A zFS version 1.5 compatibility
mode aggregate is limited to 16 TB even on extended address volume (EAV)
devices.

The maximum number of objects (files, directories, and ACLs) in a zFS file system
is 4 G. The maximum size of a file is approximately 4 TB. The maximum size of a
directory is 4 GB. There is a limit of 65,533 (64K -1) subdirectories in a directory for
a v4 directory. There is a limit of 4,294,967,293 (4G-1) subdirectories in a directory
for an extended (v5) directory. The maximum number of names in a directory is
dependent on the length of the names. However, there is a known performance
problem when you have a large number of names (hundreds of thousands or
millions) in a single zFS v4 directory. For best performance, use an extended (v5)
directory in a version 1.5 aggregate. See “Using version 1.5 aggregates and
extended (v5) directories” on page 26 for information about extended (v5)
directories. If you must use a version 1.4 aggregate because you are still running
releases prior to z/OS V2R1, try to spread names among many directories.

CAUTION:
Do not use version 1.5 aggregates until you are sure you will not run any
releases before z/OS V2R1.

v4 directory considerations
For v4 directions only, if you have long response times, you can get a first
indication whether you might have a directory size problem by examining the
output of the MODIFY ZFS,QUERY,KN operator command or the z/OS UNIX
zfsadm query -knpfs command. Look at the Avg Time field on the lines for
operations that require zFS to search through names of a directory (for example,

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 47

zfs_lookup, zfs_create, or zfs_remove). Typically, the average times should be on
the order of a few milliseconds. If they are relatively large (perhaps ten to a
hundred times larger than that), it is possible that you have a directory that is too
large and is causing performance problems. You can use the largedir.pl command
to help determine which directories are large. It reports any zFS directories that
have a large size. The largedir.pl command is available on the z/OS UNIX
System Services Tools and Toys web page (http://www.ibm.com/systems/z/os/
zos/features/unix/bpxa1ty2.html).

To determine how large a particular directory is (how many bytes the directory
contains), use the ls -ld command against the directory to display its size in
bytes. For example, if you suspect /zfsmnt5/testdir is too large, issue a command
similar to the following one:

The output shows /zfsmnt5/testdir is over 1 MB in size and contains many
names (or at one time contained many names).

Space is not reclaimed when names are removed from a v4 directory. Therefore,
you must look at the size of the directory rather than the number of names it
currently contains. To reclaim the space, you can remove the directory rather than
erasing names within it, or you can convert it to an extended (v5) directory. So if
the directory currently has few names, but is large, try using either one of the
following sets of commands to make a new directory:

If the large directory had mount points contained in it, you must unmount those
file systems and mount them onto the mount points in the new directory before
removing the large directory.

If the large directory is the root directory of a file system, you cannot remove it.
You have two options:
v Copy the file system to another (new) file system and delete the original file

system, or
v Convert the file system to a version 1.5 file system

ls -ld /zfsmnt5/testdir
drwxr-xr-x 2 G0DOUG AUDIT 1638400 Jan 18 2007 /zfsmnt5/testdir

mkdir /zfsmnt5/testdir2
cp /zfsmnt5/testdir/* /zfsmnt5/testdir2
rm -r /zfsmnt5/testdir
mv /zfsmnt5/testdir2 /zfsmnt5/testdir

- or -

mkdir /zfsmnt5/testdir2
/samples/copytree /zfsmnt5/testdir /zfsmnt5/testdir2 (if testdir has subdirectories)
rm -r /zfsmnt5/testdir
mv /zfsmnt5/testdir2 /zfsmnt5/testdir

- or -

zfsadm convert -path /zfsmnt5/testdir

48 z/OS V2R2 Distributed File Service zFS Administration

http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html

See Chapter 7, “Migrating data from HFS or zFS to zFS,” on page 65 for
information about copying one file system to another. For information about
converting an existing file system to version 1.5, see “Using version 1.5 aggregates
and extended (v5) directories” on page 26.

When you must have many file names in a single directory, it is best to use a
version 1.5 directory for that application.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 49

50 z/OS V2R2 Distributed File Service zFS Administration

Chapter 5. Using zFS in a shared file system environment

zFS supports a shared file system capability in a multisystem sysplex environment.
The term shared file system environment refers to a sysplex that has a specification of
SYSPLEX(YES) in the BPXPRMxx parmlib member. That is, users in a sysplex can
access zFS data that is owned by another system in the sysplex. For full sysplex
support, zFS must be running on all systems in the sysplex in a shared file system
environment.

To better understand the terminology and concepts in this section, review
“Terminology and concepts” on page 4.

Overview of the shared file system environment
In a shared file system environment, file systems that are mounted read-only are
always sysplex-aware.

Beginning with z/OS V1R13, zFS runs sysplex-aware on a file system basis
(sysplex=filesys). That is, a system running zFS V1R13 or later in a shared file
system environment is always capable of mounting zFS read/write file systems as
sysplex-aware. The default is to mount all zFS read/write file systems as
non-sysplex aware. However, you can specify that you want any individual zFS
read/write file system to be sysplex-aware in one of two ways:
v You can specify the RWSHARE MOUNT PARM.
v You can specify the sysplex_filesys_sharemode=rwshare zFS configuration

option in your IOEFSPRM file. This option sets the default to be that all zFS
read/write file systems are sysplex-aware, unless you specify a MOUNT PARM
of NORWSHARE to make a specific file system non-sysplex aware.

Beginning with z/OS V1R13, if you specify sysplex=on in your IOEFSPRM file, zFS
runs with sysplex=filesys; however, it internally sets the
sysplex_filesys_sharemode value to rwshare (if you did not explicitly specify a
different sysplex_filesys_sharemode value in your IOEFSPRM file). This behavior
makes zFS read/write mounted file systems sysplex-aware by default. You should
change your sysplex specification to sysplex=filesys, and you should also specify
sysplex_filesys_sharemode=rwshare if you want zFS read/write file systems to be
sysplex-aware by default.

The following sections describe how the shared file system environment works
using various configurations and the commands for determining the file system
owner.

Read-only mounted file systems
When a file system is mounted read-only (such as on SY2), the mount request is
sent to the local physical file system (in this case, zFS) and zFS opens the file
system data set (for read). If the mount is successful on that system, z/OS UNIX
records the mount and sends a signal to the other sysplex member systems to issue
a “catch-up” mount on each system. Each z/OS UNIX on each other system then
reads the couple data set (CDS) and determines that it needs to send a mount
request to the local zFS for that file system. Each “local mount” causes zFS to open
the data set (for read). In this way, the mount on SY2 causes the file system to be

© Copyright IBM Corp. 2001, 2015 51

|
|

|
|
|
|

mounted on every member of the sysplex.

For read-only mounted file systems, file requests are sent directly to the local
physical file system, which directly reads the file system data on DASD (see
Figure 16). That means each zFS on each system has the zFS file system opened
(for read) and directly accesses the data. Read-only mounted file systems are
referred to as being sysplex-aware.

zFS support for read/write file systems with different levels of
sysplex-awareness

zFS allows individual zFS read/write file systems to be mounted sysplex-aware or
non-sysplex aware. During mount processing, the sysplex-awareness of an
individual zFS read/write file system can be controlled by the value that is
specified on the mount PARM for that file system or by the
sysplex_filesys_sharemode option that is specified in IOEFSPRM. Table 1
summarizes how the sysplex awareness is determined.

Table 1. Determining sysplex-awareness for zFS read/write file systems

MOUNT PARM Resulting awareness of the zFS read/write file system

RWSHARE Sysplex-aware

NORWSHARE Non-sysplex aware

None specified Determined by the value, if any, specified on the
sysplex_filesys_sharemode option.
rwshare

File system is sysplex-aware
norwshare

File system is non-sysplex aware
not specified

File system defaults to be non-sysplex aware

Figure 17 on page 53 shows one file system that is mounted NORWSHARE and
the other mounted RWSHARE. They are both owned by z/OS UNIX on SY2. The
NORWSHARE file system is a non-sysplex aware file system; it is only locally
mounted on the z/OS UNIX owner and requests from z/OS UNIX clients are
function shipped to the z/OS UNIX owner by z/OS UNIX.

Read-only

z/OS UNIX

zFS

z/OS UNIX

Application

SY1

z/OS UNIX

owner

zFS

SY2

zFS

z/OS UNIX

SY3

z/OS UNIX

Application

z/OS UNIX

Application

Local mount
or request

Function ship

LEGEND

zFS sysplex-aware
for read-write

Figure 16. Sysplex-aware file system (read-only)

52 z/OS V2R2 Distributed File Service zFS Administration

|
|

v A df –v command for the NORWSHARE file system (FS1) from SY1 would
display Client=Y, or a D OMVS,F command would display CLIENT=YES. The
other file system is mounted RWSHARE. It is a sysplex-aware file system; it is
locally mounted on all systems and z/OS UNIX does not normally function ship
requests to the z/OS UNIX owner.

v A df –v command for the RWSHARE file system (FS2) from SY1 would display
Client=N, or a D OMVS,F command would display CLIENT=N.

The following example shows the mount of a zFS read/write- file system with a
mount PARM of RWSHARE:

zFS-enhanced sysplex-aware support
Beginning in z/OS V1R13, zFS provides enhanced sysplex-aware support. When a
zFS read/write file system is mounted sysplex-aware in a shared file system
environment where all systems are running z/OS V1R13 or later, zFS can directly
read and write zFS data from all of the V1R13 or later systems. If both the owning
system and the requesting system are running z/OS V1R13 or later (and the file
system is sysplex-aware), zFS directly accesses the file system. While zFS data is
directly read and written, zFS metadata is normally read and written through the
zFS owning system (SY2 in Figure 17). In some cases, zFS metadata can be directly
read.

There are some cases when an application running on a system (SY1) that is doing
direct I/O can be affected by problems on the zFS owning system (SY2) such as a
failing system or having I/O failures on the owning system during metadata
updates. The application can also be affected if it needs to traverse a higher level
directory contained in a file system that is owned by the failing system.

MOUNT FILESYSTEM(’OMVS.PRV.COMPAT.AGGR001’) TYPE(ZFS) MODE(RDWR)
MOUNTPOINT(’/usr/mountpt1’) PARM(’RWSHARE’)

z/OS UNIX

zFS

z/OS UNIX

zFS

SY1

zFS
owner

SY2

zFS

z/OS UNIX

zFS

SY3

Local mount
or request

LEGEND

Direct I/O for
sysplex-aware

z/OS UNIX
owner

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

Non-sysplex
aware

owner(fs1) owner(fs2)

owner(fs2)

FS1 FS2

Read-write
RWSHARE
Read-write
RWSHARE

Read-write
NORWSHARE

Read-write
NORWSHARE

Figure 17. zFS read/write file systems sysplex-aware and non-sysplex aware on a file system
basis. FS2 is being directly accessed from all z/OS V1R13 or later systems.

Chapter 5. Using zFS in a shared file system environment 53

|
|

|
|
|
|
|

|
|

zFS ownership versus z/OS UNIX ownership of file systems
For zFS read/write sysplex-aware file systems, zFS takes responsibility for
determining how to access the data. This means that zFS must have the concept of
a file system owner to coordinate file requests. That system is the zFS owner. z/OS
UNIX has its indication of owner, which is called the z/OS UNIX owner. The zFS
owner is independent of the z/OS UNIX owner. The zFS owner is the system that
coordinates file access. The z/OS UNIX owner generally does not have any
performance implications when zFS runs sysplex-aware because file requests are
sent to the local zFS rather than being function shipped to the z/OS UNIX owner.
There are some cases when the z/OS UNIX owner is relevant (see “When is the
z/OS UNIX owner important?” on page 56).

In Figure 18, SY2 is the z/OS UNIX owner and the zFS owner. This is typically the
case for the system where the mount was issued. If SY2 goes down, a new zFS
owner is chosen randomly (such as SY3) and a new z/OS UNIX owner is chosen
randomly (such as SY1) assuming it was mounted with AUTOMOVE. Figure 18
shows the situation after SY2 has come back up. (zFS on SY1 communicates
directly with zFS on SY3.) The fact that SY1 is the z/OS UNIX owner is not
important for performance in this case.

Note: For zFS non-sysplex aware file systems, the z/OS UNIX owner and the zFS
owner are always the same system.

Determining the file system owner
To determine the zFS owner of a zFS file system, use the zfsadm lsaggr command.
To determine the z/OS UNIX owner, use the following commands:
v df -v shell command
v D OMVS,F operator command
v F BPXOINIT,FILESYS=D,ALL operator command

Figure 19 on page 55 shows the output of the zfsadm lsaggr command and the df
-v command after the file system was mounted.

Figure 18. zFS sysplex-aware with new owner

54 z/OS V2R2 Distributed File Service zFS Administration

Figure 20 shows the output of the D OMVS,F command after the file system was
mounted.

Figure 21 shows the output of the zfsadm lsaggr command and the df -v
command after the file system was moved (as shown in Figure 18 on page 54) by
both z/OS UNIX and zFS and SY2 has come back up. The zfsadm lsaggr and df
-v commands are issued from SY2:

Figure 22 on page 56 shows the output of the D OMVS,F operator command after
the file system was moved. Notice two important points:
v The zFS owner (SY3) and the z/OS UNIX owner (SY1) are different.
v The last df -v command reports that SY2 is not a client, even though SY2 is not

the z/OS UNIX owner.

zfsadm lsaggr
IOEZ00106I A total of 1 aggregates are attached
PLEX.JMS.AGGR008.LARGE08 SY2 R/W

df -v
Mounted on Filesystem Avail/Total Files Status
/zfsmnt5 (PLEX.JMS.AGGR008.LARGE08) 2853944/3745440 4294917290 Available
ZFS, Read/Write, Device:26, ACLS=Y
File System Owner : SY2 Automove=Y Client=N
Filetag : T=off codeset=0
Aggregate Name : PLEX.JMS.AGGR008.LARGE08

Figure 19. zfsadm lsaggr and df -v output after mount

D OMVS,F
BPXO045I 14.38.11 DISPLAY OMVS
OMVS 000E ACTIVE OMVS=(P0,VM)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
ZFS 26 ACTIVE RDWR 02/02/2011 L=55
NAME=PLEX.JMS.AGGR008.LARGE08 14.37.44 Q=0
PATH=/zfsmnt5
OWNER=SY2 AUTOMOVE=Y CLIENT=N

Figure 20. D OMVS,F output after mount

zfsadm lsaggr
IOEZ00106I A total of 1 aggregates are attached
PLEX.JMS.AGGR008.LARGE08 SY3 R/W

df -v
Mounted on Filesystem Avail/Total Files Status
/zfsmnt5 (PLEX.JMS.AGGR008.LARGE08) 2853944/3745440 4294917290 Available
ZFS, Read/Write, Device:26, ACLS=Y
File System Owner : SY1 Automove=Y Client=N
Filetag : T=off codeset=0
Aggregate Name : PLEX.JMS.AGGR008.LARGE08

Figure 21. zfsadm lsaggr and df -v output after movement

Chapter 5. Using zFS in a shared file system environment 55

This situation occurs because the zFS file system is sysplex-aware and file requests
are not function shipped by z/OS UNIX. Rather, the file requests are handled by
zFS and metadata updates are sent to the zFS owner. Each local catch-up mount
causes zFS to open the file system data set for read/write, and each system is
prepared to read and write the file system. Because the file system is opened on
each system, each system prepares to take ownership of the file system if that
becomes necessary.

Tip: You can use the DISPLAY GRS system command to determine the zFS owner
of a zFS file system. Use the RNAME for either the read-only or read/write file
system. For example, issue the following command to display the system name of
the zFS owner as the exclusive owner of the resource name.

For more information, see the serialization summary and list of ENQs in z/OS MVS
Diagnosis: Reference.

When is the z/OS UNIX owner important?
The z/OS UNIX owner is important when a zFS read/write file system is
non-sysplex aware. In this case, all file requests are handled through z/OS UNIX
function shipping to the z/OS UNIX owning system. The z/OS UNIX owner and
the zFS owner are always the same system.

When a zFS sysplex-aware file system is mounted, z/OS UNIX causes the file
system to be locally mounted on each system (where zFS is running
sysplex-aware). These are called catch-up mounts. If a local catch-up mount fails (for
example, because the DASD is not accessible from that system), then z/OS UNIX
treats that system (such as SY1) as a client and function ships requests to the z/OS
UNIX owner (SY2). The system (SY1) might issue message BPXF221I. In this case, a
df -v command issued from SY1 indicates Client=Y for that file system. In turn,
zFS directly accesses the file system and function ships metadata updates to the
zFS owner, if the zFS owner is a different system than the z/OS UNIX owner—in
this case, it is not different (for example, see Figure 23 on page 57).

The zFS owner can be different than the z/OS UNIX owner. In this case, the
request is function shipped by z/OS UNIX (from SY1) to the z/OS UNIX owner
(SY2) and then is handled by direct access to the file system. Metadata updates
will be function shipped by zFS to the zFS owner.

Similarly, if a local mount fails in the read-only mount case, z/OS UNIX treats that
system as a client and function ships (the read) requests to the z/OS UNIX owning
system. zFS does not typically function ship in the read-only case regardless of

D OMVS,F
BPXO045I 14.38.11 DISPLAY OMVS
OMVS 000E ACTIVE OMVS=(P0,VM)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
ZFS 26 ACTIVE RDWR 02/02/2011 L=55
NAME=PLEX.JMS.AGGR008.LARGE08 14.37.44 Q=0
PATH=/zfsmnt5
OWNER=SY1 AUTOMOVE=Y CLIENT=N

Figure 22. D OMVS,F output after movement

D GRS,RES=(SYSZIOEZ,IOEZLT.file_system_name)

56 z/OS V2R2 Distributed File Service zFS Administration

which system is the zFS owner.

Dynamic movement of the zFS owner
For zFS read/write sysplex-aware file systems, an important aspect of performance
is which system is the zFS owner. The zFS owner is the system that does metadata
updates to the file system. zFS automatically moves the zFS owner among zFS
systems, based on the amount of activity at the zFS owner from each system. The
frequency of the dynamic ownership movement can vary, depending on the level
of zFS. On z/OS V1R13 and later systems, ownership moves less often than on
systems that are running previous levels of z/OS.

File requests do not fail as a result of dynamic aggregate movement. New requests
are suspended until the aggregate is moved and then requests are allowed to
complete. The system produces the following messages, for example:

In message IOEZ00548I, local requests is the number of requests on the source
system during the measurement period. New owner requests is the number of
requests from the target system during the measurement period. Total requests is
the total number of requests from all systems during the measurement period.
(Total requests can be greater than the sum of the local requests and the new
owner requests). This information is provided to aid in problem determination.

For zFS sysplex-aware file systems, zFS aggregate movement is essentially
independent of z/OS UNIX ownership movement (except for the cases discussed
later in this section). When z/OS UNIX ownership movement occurs because of
the MOUNT AUTOMOVE specification (for example, AUTOMOVE or
AUTOMOVE(INCLUDE,SY1,SY2) or AUTOMOVE(EXCLUDE,SY1,SY2)), the z/OS
UNIX ownership movement is as expected. Because z/OS UNIX sends requests
directly to the local zFS, the z/OS UNIX ownership movement does not change the

Read-write

z/OS UNIX

zFS

z/OS UNIX

cache

SY1

zFS
owner

SY2

z/OS UNIX

zFS

z/OS UNIX

cache

SY3

z/OS UNIX
owner

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

Local mount
or request

Function ship

LEGEND

zFS sysplex-aware
for read-write

Figure 23. File system ownership when mount fails

Source system
22.19.12 DCEIMGVN IOEZ00548I Requesting that DCEIMGVM takeover aggregate PLEX.JMS.AGGR006.LDS0006 LDS0006
(requests: local 2, new owner 1202 total 1204

Target system
22.19.12 DCEIMGVM IOEZ00388I Aggregate takeover being attempted for aggregate PLEX.JMS.AGGR006.LDS0006
22.19.12 DCEIMGVM IOEZ00044I Aggregate PLEX.JMS.AGGR006.LDS0006 attached successfully.

Chapter 5. Using zFS in a shared file system environment 57

way that the zFS aggregate is accessed. z/OS UNIX ownership movement between
zFS sysplex-aware file systems that have local mounts does not change how the
file system is accessed.

There are several cases where the AUTOMOVE option of z/OS UNIX does change
file system access:

NOAUTOMOVE
When this option is used, z/OS UNIX makes the file system unavailable
(unowned). This causes any file access to be denied by z/OS UNIX.

UNMOUNT
When this option is used, z/OS UNIX unmounts the file system (across the
sysplex). This causes the file system to be unmounted and any access
occurs on the underlying file system.

Tip: Mount system-specific zFS file systems with UNMOUNT instead of
NOAUTOMOVE.

One way to think of the relationship between z/OS UNIX ownership movement
and zFS aggregate ownership movement is:
v z/OS UNIX controls whether there is any access at all
v zFS ownership controls which system updates the metadata.

If a zFS read/write file system is non-sysplex aware, then z/OS UNIX controls
movement of zFS read/write mounted file systems as in prior releases for a shared
file system environment and the z/OS UNIX owner and the zFS owner are always
the same.

Considerations when using zFS in a shared file system environment
The following considerations apply when using zFS in a sysplex in shared file
system mode:
v The file system hierarchy appears different when viewed from systems with zFS

mounted file systems than it does from those systems not running zFS. The path
name traversal through zFS mount points have different results in such cases
because the zFS file system is not mounted on those systems not running zFS.

v zFS file systems that are owned by another system are accessible from a member
of the sysplex that is running zFS.

v zFS compatibility mode file systems can be automoved and automounted. A zFS
compatibility mode file system can only be automoved to a system where zFS is
running.

v To share IOEFSPRM across a sysplex, configuration options that specify data set
names should use system symbols in the names. This needs to be done for data
sets that zFS writes into, such as the data sets specified by configuration options
trace_dsn or msg_output_dsn. It is also allowed, but not necessary, to use system
symbols in the names of data sets that zFS reads data from, such as the data set
specified by the configuration option debug_settings_dsn. For more information,
see Chapter 12, “The zFS configuration options file (IOEPRMxx or IOEFSPRM),”
on page 219.
In this case, you should use the &SYSNAME system variable in the IOEZPRM
DD of the ZFS PROC to specify a different IOEFSPRM for different systems.
If you are not specifying a msg_output_dsn or a trace_dsn (or you can use
system symbols), and you use the same options for all ZFS PFSs on all systems,
you can share the same IOEFSPRM across systems.

58 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|

If you want to share IOEFSPRM and you want to specify data set names in
IOEFSPRM, you might be able to use system symbols. For example, if you have
sysplex member systems SY1 and SY2, and you have allocated trace data sets
named USERA.SY1.ZFS.TRACE and USERA.SY2.ZFS.TRACE, you can specify
trace_dsn=USERA.&SYSNAME..ZFS.TRACE in your shared IOEFSPRM.
As a preferred alternative to the IOEZPRM DDNAME specification, the
IOEFSPRM member can be specified as a true PARMLIB member. In this case,
the member has the name IOEPRMxx, where xx is specified in the parmlib
member list. It is possible to have multiple IOEPRMxx members and it is also
possible to have an IOEPRMxx member that are shared among all members of
the sysplex and another IOEPRMxx member that contains options that are
specific to a particular sysplex member. See “IOEFSPRM” on page 220 for more
information about IOEPRMxx.

The following information describes z/OS UNIX considerations when some or all
systems are running zFS:
v All systems running zFS see zFS compatibility mode file systems. The file

system hierarchy appears differently when viewed from systems with zFS
mounted compatibility mode file systems than it does from those systems that
are not running zFS. The path name traversal through zFS mount points have
different results in such cases because the zFS compatibility mode file system is
not mounted on those systems that are not running zFS.

v If a system running zFS is brought down:
– zFS compatibility mode file systems owned by the system that can be

automoved are automoved to another system running zFS. If this function
fails to find another owner, the file system becomes unowned. IBM
recommends mounting zFS file systems with UNMOUNT instead of
NOAUTOMOVE.

– zFS compatibility mode file systems that are NOAUTOMOVE, become
unowned.

– zFS compatibility mode file systems that are unowned are not visible in the
file system hierarchy, but can be seen from a D OMVS,F command. To recover
a zFS compatibility mode file system that is mounted and unowned, the zFS
compatibility mode file system must be unmounted.

– The unowned zFS compatibility mode file systems can be recovered if the
original owning system is brought back into the sysplex.

v If zFS is brought down on one system in the sysplex:
– zFS compatibility mode file systems owned by the system that can be

automoved are automoved to another system running zFS. If this function
does not find another z/OS UNIX owner, the zFS compatibility mode file
system, and all file systems mounted under it, are unmounted in the sysplex.

– zFS compatibility mode file systems that are NOAUTOMOVE and, all file
systems mounted under them, are unmounted in the sysplex.

– When zFS is down on one system (SY1) in the sysplex, z/OS UNIX does not
function ship any zFS compatibility mode file system that is subsequently
mounted on another system. That file system is not visible from SY1. zFS can
be brought up again on that system by responding R to the BPXF032D
prompt. When this occurs, mounted file system visibility is established by one
of the following methods:
- If the zFS file system is non-sysplex aware, z/OS UNIX function shipping

is established
- If zFS file system is sysplex-aware, the zFS file system is locally mounted

Chapter 5. Using zFS in a shared file system environment 59

– When a zFS is brought down after a compatibility mode file system is
mounted, the file system either continues to be function shipped or becomes
function shipped. When zFS is brought back up on that system, the file
system either:
- Continues to be function shipped, when the zFS file system is non-sysplex

aware
- Is locally mounted, when the zFS file system is sysplex-aware

zfsadm commands work across the shared file system environment. You can
display and modify zFS compatibility mode aggregates and file systems using
zfsadm from any member of the sysplex, regardless of which member owns the
aggregate.

60 z/OS V2R2 Distributed File Service zFS Administration

Chapter 6. Copying or performing a backup of a zFS

CAUTION:
Do not perform any type of COPY or DUMP operation of DASD that contains a
mounted zFS file system that is not quiesced, or that is mounted on a system
that is not a member of the same GRS configuration as the system from which
the COPY or DUMP operation is being done. Doing so might result in the copy
being a corrupted (or unusable) zFS file system. For additional information
about DFSMSdss logical DUMP and COPY utilities, see the section on zFS data
sets in z/OS DFSMSdss Storage Administration.

You can back up a zFS aggregate using a DFSMSdss logical dump. DFSMSdss
automatically performs a quiesce of the mounted zFS aggregate before dumping
the data set and an unquiesce when the dump ends. Before performing a backup,
review the information in “Unmounting zFS file systems before copying or
moving” on page 41 and the following guidelines.

Review the following guidelines before performing a backup of zFS:
1. Do not specify TOL(ENQF) when backing up zFS aggregates because it can

cause corruption of the file system.
2. Full volume dumps of volumes that contain mounted zFS file systems will not

quiesce the file systems. As a result, all file systems that reside on the volume
must be unmounted before performing a full volume dump. For information
about logical and full volume dumps, see z/OS DFSMSdfp Storage
Administration.

3. The term sysplex as it applies to zFS means a sysplex that supports the z/OS
UNIX shared file system environment. That is, a sysplex that has a BPXPRMxx
specification of SYSPLEX(YES).

4. If a quiesce is not done before the backup of a mounted file system, corruption
of the file system can result. If you are using a different program or different
commands than shown in “Backing up a zFS aggregate” on page 62, verify that
a quiesce is done (automatically by the backup program) while the back up is
occurring. If it is not, then you need to unmount the file system before backing
it up or supply a before and after job step to quiesce and then unquiesce the
aggregate before and after the backup. The steps are similar to Figure 24 on
page 62.

© Copyright IBM Corp. 2001, 2015 61

Backing up a zFS aggregate
Figure 25 shows an example of a job for backing up a zFS aggregate (and all the
file systems). Ensure that the size of the target sequential data set has sufficient
space. For additional information about the DUMP command and its keywords,
see z/OS DFSMSdfp Storage Administration.

Important: Do not specify TOL(ENQF) when backing up zFS aggregates.

Restoring an aggregate with DFSMSdss logical restore
Use DFSMSdss logical restore to restore a zFS aggregate. If the original aggregate
(in the example, hlq.ZFS.AGGR004) still exists, the aggregate is restored into a new

//*---
//* THIS STEP QUIESCES THE AGGREGATE.
//*---
//QUIESCE EXEC PGM=IOEZADM,REGION=0M,
// PARM=('quiesce -aggregate hlq.ZFS.AGGR004')
//*
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*
//*---
//* THIS STEP UNQUIESCES THE AGGREGATE.
//*---
//UQUIESCE EXEC PGM=IOEZADM,REGION=0M,
// PARM=('unquiesce -aggregate hlq.ZFS.AGGR004')
//*
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 24. Steps for quiesce and unquiesce

//ZFSBKUP1 JOB (OS390),’PROGRAMMER’,CLASS=A,
// MSGCLASS=X,MSGLEVEL=(1,1)
//*---
//* THIS JOB QUIESCES A ZFS AGGREGATE, DUMPS IT, THEN UNQUIESCES IT.
//*---
//DUMP EXEC PGM=ADRDSSU,REGION=4096K
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//OUT DD DSN=hlq.AGGR004.BACKUP,
// DISP=(NEW,CATLG,DELETE),SPACE=(CYL,(5,1),RLSE)
//SYSIN DD *
DUMP DATASET(INCLUDE(hlq.ZFS.AGGR004)) -
RESET -
OUTDD(OUT)
/*
//

Leading blanks are required before the control statements (DUMP, RESET, OUTDD).

Figure 25. Job to back up a zFS aggregate

62 z/OS V2R2 Distributed File Service zFS Administration

aggregate (in the example, OMVS.PRV.AGGR005.LDS0005). Figure 26 is an example of
a job to restore a zFS aggregate.

For a compatibility mode aggregate, perform the following steps after the
aggregate is restored:
1. Unmount the original aggregate (in this case, hlq.ZFS.AGGR004) if it still exists

(this also detaches it).
2. Mount the file system in the restored aggregate (in this case,

OMVS.PRV.AGGR005.LDS0005).

Figure 27 is an example of a job to perform a logical restore of a zFS aggregate
using DFSMSdss by replacing the existing aggregate. The backup is restored into
the original aggregate (in this case, hlq.ZFS.AGGR004). The aggregate cannot be
mounted (or attached) during the restore operation.

//ZFSREST1 JOB (OS390),’PROGRAMMER’,CLASS=A,
// MSGCLASS=X,MSGLEVEL=(1,1)
//*---
//* THIS JOB RESTORES A ZFS AGGREGATE.
//*---
//ZFSREST EXEC PGM=ADRDSSU,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//INDS DD DISP=SHR,DSN=hlq.AGGR004.BACKUP
//SYSIN DD *
RESTORE DATASET(INCLUDE(**)) -
CATALOG -
RENAMEU(-
hlq.ZFS.AGGR004, -
OMVS.PRV.AGGR005.LDS0005) -
) -
WRITECHECK -
INDD(INDS)
/*
//

Leading blanks are required before the control statements (RESTORE, CATALOG, RENAMU).

Figure 26. Job to restore a zFS aggregate

//ZFSREST2 JOB (OS390),’PROGRAMMER’,CLASS=A,
// MSGCLASS=X,MSGLEVEL=(1,1)
//*---
//* THIS JOB RESTORES A ZFS AGGREGATE.
//*---
//ZFSREST EXEC PGM=ADRDSSU,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//INDS DD DISP=SHR,DSN=hlq.AGGR004.BACKUP
//SYSIN DD *
RESTORE DATASET(INCLUDE(hlq.ZFS.AGGR004)) -
CATALOG -
REPLACE -
WRITECHECK -
INDD(INDS)
/*
//

Figure 27. Job to restore a zFS aggregate with replace

Chapter 6. Copying or performing a backup of a zFS 63

Leading blanks are required before the control statements (RESTORE, CATALOG,
RENAMU).

For more information about DFSMSdss logical restore, see z/OS DFSMSdss Storage
Administration.

Beginning in z/OS V2R1, zFS enhanced its support for the backup change activity
flag in the VTOC (D1DSCHA in the Format 1/8). This flag indicates to a program
(like DFSMShsm) whether the backup of a file system is needed (that is, data in
the file system has been modified since the last backup).

In releases before z/OS V2R1, zFS would set the change activity flag when a file
system was mounted. This is no longer done. Essentially, zFS will cause the setting
of the change activity bit in the following cases:
1. During the first write after a MOUNT
2. During the first write after a successful backup (that is, after a successful reset

of the change activity flag)
3. During log recovery (that is, during the replay of an aggregate log during the

next mount after a system failure)
4. During salvager operation if the log is replayed or a repair is made

The formatting of a new zFS aggregate will not cause the setting of the change
activity flag. If an existing zFS aggregate is formatted using the -overwrite option,
then the change activity flag will be set.

Beginning in z/OS V2R1, zFS supplies an application programming interface that
can be used to reset the change activity flag for a file system. This interface is
intended to be used by DFSMSdss when doing a backup of a mounted zFS file
system. For more information, see “Reset Backup Flag” on page 334.

64 z/OS V2R2 Distributed File Service zFS Administration

Chapter 7. Migrating data from HFS or zFS to zFS

You can migrate data from HFS to zFS, or you might need to copy data efficiently
from an existing zFS file system to a larger one, or to one that is created with
different attributes (for example, if you want to have a secondary allocation to
enable it to be dynamically grown). In all cases, the target file system can be
version 1.4 as well as version 1.5. If all of the systems at your site are running at
least version z/OS V2R1, then it is recommended that you use version 1.5
aggregates for your new file systems.

Guideline: Do not use the HFS to zFS migration tool if you are migrating your
sysplex root. To migrate the sysplex root, consider using the MODIFY
OMVS,NEWROOT operator command. For details, see the topic Steps for
dynamically replacing the sysplex root file system in z/OS UNIX System Services
Planning.

Using the z/OS HFS to zFS migration tool
Use the ISPF-based BPXWH2Z tool to migrate HFS file systems to zFS file systems.
It has a panel interface that enables you to alter the space allocation, placement,
SMS classes, and data set names. With this tool, you can:
v Migrate HFS file systems (both mounted and unmounted) to zFS file systems. If

the HFS being migrated is mounted, the tool automatically unmounts it and
then mounts the new zFS file system on its current mount point.

v Define zFS aggregates, using the default settings, to be approximately the same
size as the HFS. The new allocation size can also be increased or decreased.

v Have the migration run in TSO foreground or z/OS UNIX background.

The number of storage blocks that are needed to store a zFS file system might not
be exactly the same as the amount needed for HFS. For example, starting with
z/OS V1R13, zFS uses 8 K blocks to contain small files; however, HFS uses 4K
blocks. In this case, some HFS file systems might need additional storage (possibly
twice as much) when they are migrated to zFS. For more information about
migrating data from HFS to zFS, see z/OS Migration.

Tip: When BPXWH2Z creates new zFS aggregates, you can control whether it
creates version 1.4 aggregates or version 1.5 aggregates. The default is to create
version 1.4 aggregates. You can change this default by specifying
format_aggrversion=5 in your IOEPRMxx configuration options file before IPL or
by dynamically changing the option by using the zfsadm config
-format_aggrversion 5 command.

Using the z/OS UNIX pax command
You can copy data from a z/OS UNIX file system (either HFS or zFS) to a zFS file
system by using the z/OS UNIX pax command with or without using an
intermediate archive file. See z/OS UNIX System Services Command Reference for
more information about the pax command. When the data is being copied, the file
system being accessed must be mounted.

Note: If you are migrating a file system that contains additional file systems
mounted below it, the default settings on the pax command also copies the files

© Copyright IBM Corp. 2001, 2015 65

|
|
|
|

|
|
|

and directories that are contained in those file systems. To avoid this, you can
either specify the pax -X option, or unmount the lower file systems before issuing
the pax command.

Using an intermediate archive file
Use the pax command to copy the source (HFS) file system into an intermediate
archive file and then use the pax command to copy from the archive file into the
target (zFS) file system. This archive file can be a z/OS UNIX file or it can be an
MVS™ data set.

Suppose you have an HFS file system mounted at /etc/dfs. You want to copy this
into an empty zFS file system mounted at /etc/dir1/testzfs1. You issue the
following commands from z/OS UNIX:
1. Move to the source (HFS) file system mounted at /etc/dfs

cd /etc/dfs

2. Create a z/OS UNIX archive file called /tmp/zfs1.pax that contains the HFS
file system mounted at /etc/dfs
pax -wvf -o saveext /tmp/zfs1.pax .

3. Move to the target (zFS) file system mounted at /etc/dir1/testzfs1
cd /etc/dir1/testzfs1

4. Read the archive file into the zFS file system mounted at /etc/dir1/testzfs1
pax -rv -p e -f /tmp/zfs1.pax

Without using an intermediate archive file
Use the pax command to copy the source (HFS) file system to the target (zFS) file
system, without an intermediate archive file.

Suppose you have an HFS file system mounted at /etc/dfs. You want to copy this
into an empty zFS file system mounted at /etc/dir1/testzfs1. You issue the
following commands from OMVS:
1. Move to the source (HFS) file system mounted at /etc/dfs

cd /etc/dfs

2. Copy the (HFS) file system mounted at /etc/dfs to the (zFS) file system
mounted at /etc/dir1/testzfs1
pax -rwvCMX -p -o saveext eW . /etc/dir1/testzfs1

66 z/OS V2R2 Distributed File Service zFS Administration

|

|

Chapter 8. Performance and debugging

This section discusses performance tuning techniques and what should be done if
a problem occurs that requires IBM service assistance. The examples are for
illustrative purposes only.

In releases prior to z/OS V2R2, it was typical for the 4-byte counters used in the
reports to wrap. In z/OS V2R2, 8-byte counters are used, which allows for
monitoring of much longer time periods. The numbers being output into the report
fields still use the same field width sizes, with the addition of a letter to indicate
the units of the number if it is too large to fit into the field.

Letter Unit of number
b The number should be multiplied by 1,000,000,000.
G The number should be multiplied by 1,073,741,824.
t The number should be multiplied by 1000.
T The number should be multiplied by 1,099,511,627,776.
tr The number should be multiplied by 1,000,000,000,000.
m The number should be multiplied by 1,000,000.
K The number should be multiplied by 1024.
M The number should be multiplied by 1,048,576.

Performance tuning
zFS performance depends on many factors. zFS provides performance information
to help the administrator determine bottlenecks. The IOEFSPRM file contains many
tuning options that can be adjusted. The output of the system modify zfs,query
commands provide feedback about the operation of zFS. This section describes
those IOEFSPRM options and the operator commands that relate to performance.

It is always better for performance in a shared file system environment if you can
mount a file system read-only rather than read/write. For example, the sysplex
root file system and the version file systems perform better if they are mounted
read-only. For more information about sharing file systems in a sysplex, see z/OS
UNIX System Services Planning.

In addition, if a file system is mounted read/write, but accessed mainly from one
system (for instance, SY1), it is better for performance if that file system is z/OS
UNIX owned on that system (SY1). To keep z/OS UNIX ownership on SY1, you
might want to mount it with the UNMOUNT option or the NOAUTOMOVE
option. If you must use the AUTOMOVE option because you want the file system
to remain available even when SY1 is down, move z/OS UNIX ownership of that
file system back to SY1 when SY1 becomes available. This is not necessary for zFS
read/write file systems that are sysplex-aware.

zFS performance can be optimized by tailoring the size of its caches to reduce I/O
rates and pathlength. It is also important to monitor DASD performance to ensure
that there are no volumes or channels that are pushed beyond their capacity. The
following sections describe areas to consider when tuning zFS performance.

Total cache size
In releases prior to z/OS V2R2, the total storage size available for all the caches in
the zFS address space had to be less than 2 GB. If the cache sizes specified in the

© Copyright IBM Corp. 2001, 2015 67

|
|
|
|
|

||
||
||
||
||
||
||
||
||

|
|

IOEFSPRM file were too large, zFS would terminate. In addition to the zFS address
space caches, storage is necessary for processing file requests and for the products
zFS might use. As a result, the total address space cache storage was restricted to
approximately 1.5 GB. Use modify zfs,query,storage to determine the total
allocated zFS storage. See “STOR” on page 85 for more information about
determining how much of the available zFS address space storage is being used by
the zFS caches.

In z/OS V2R2, zFS uses 64-bit storage above the 2 GB line. Therefore, zFS cache
sizes are no longer restricted by the 2 GB storage size. Caches start at the
minimum size during zFS initialization, and are allowed to grow as needed to the
size specified in the IOEFSPRM file. Carefully consider how large you want your
zFS caches to be, taking into account such things as the amount of real and
auxiliary storage in your system.

You might see messages IOEZ00188A, IOEZ00662I, or IOEZ00663I, which indicate
that the zFS address space is low on storage. If it continues to be a problem,
consider using zfsadm config to dynamically decrease the size of caches that do
not reside in data spaces, such as the metadata or vnode caches.

The modify zfs,query,all command also shows the total zFS storage that is
allocated, but includes the storage that is allocated for all the caches and
everything else zFS might need. The zFS address space caches include the
following caches:
v “Metadata cache”
v “Vnode cache” on page 69
v “Log file cache” on page 70

The data in the user file cache is stored in data spaces, not zFS address space
storage.

Metadata cache
The metadata cache is used to contain all file system metadata; this metadata
includes all directory contents, file status information (such as, atime, mtime, size,
and permission bits), and file system structures. Additionally, it also caches data
for files smaller than 7 K. Essentially, zFS stores a file by using one of the
following three methods. For more information about how zFS shows free blocks,
see “Understanding zFS disk space allocation” on page 42.

inline If the file is 52 bytes or less, its data is stored in the structure that contains
the status information for the file.

fragmented
New zFS user data is not stored in fragments. Files that are 53 bytes or
more are stored as blocked. The first time a fragmented file is updated, it
is converted to blocked. On prior releases, if the file is less than 7 K, it is
stored in blocks on disk that can be shared with other files; multiple files
are then stored in the same physical disk block. Physical disk blocks are
always 8 K in size.

blocked
New zFS user data is not stored in 1 K fragments. Files that are 53 bytes or
more are stored as blocked. The first time a fragmented file is updated, it
is converted to blocked. On prior releases, files larger than 7 K are stored
in multiple blocks, blocked files are only stored in the user file cache, and
all I/O is performed directly to or from user file cache buffers.

68 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|

|
|
|
|
|
|

|
|

|

|
|

Because inline files are stored in the status block, files that are stored on disk by
using the inline method are stored in the metadata and hence are cached in the
metadata cache (and also in the user file cache). Because the metadata cache is the
only component that knows about multiple files sharing disk blocks, small
fragmented files are stored in the metadata cache (and also in the user file cache)
and I/O is performed directly to or from the metadata cache for these small user
files.

Generally, metadata is referred to and updated frequently for most zFS file
operations; hence, achieving a good hit ratio is often essential to good performance
for most workloads. A good hit ratio might be considered to be 90% or more,
depending on your workload.

The metadata cache is stored in the primary address space. Because the metadata
cache contains only metadata and small files, it typically does not need to be
nearly as large as the user file cache. The operator modify zfs,query,all command
output shows statistics for the metadata cache including the cache hit ratio.

Vnode cache
Every object in the zFS file system is represented by a data structure called a
vnode in memory. zFS keeps a cache of these vnodes and recycles them in a least
recently used (LRU) manner. Every operation in zFS requires a vnode and z/OS
UNIX keeps pointers to zFS vnodes. Because z/OS UNIX keeps references to zFS
vnodes, zFS might be forced to dynamically increase the size of this cache to meet
the demands of z/OS UNIX. To create a zFS vnode for a newly referenced file or a
newly created file for a user requires the pathlength to initialize the structure and
obtain its status information from the metadata cache. If the status of the file is not
in the metadata cache, then a disk I/O might also be required.

The vnode cache is stored in the zFS primary address space and the default
number of vnodes is 32,768. As with any cache, a good hit ratio is desirable and
the operator MODIFY ZFS,QUERY,ALL command shows the vnode cache hit ratio.
Because the vnode cache is backed by the metadata cache, if the vnode hit ratio is
low but the metadata cache hit ratio is high your performance might not suffer too
much because a vnode cache miss requires only some pathlength to initialize the
vnode structures.

User file cache
The user file cache is used to cache all “regular” files. It caches any file, no matter
what its size, and performs write-behind and asynchronous read-ahead for files. It
performs I/O for all files that are 7 KB or larger. For files smaller than 7 KB, I/O is
typically performed through the metadata cache.

The user file cache is allocated in data spaces. The default size of user_cache_size
is calculated. For more information, see “IOEFSPRM” on page 220. However, you
can tailor this size to meet your performance needs, based on your overall system
memory. The maximum size for user_cache_size is 65,536 MB (64 GB). The
general rule for any cache is to ensure a good hit ratio. Additionally, it is good to
have a user file cache that is large enough for write-behind activity to occur. If the
cache is too small, you need to recycle buffers more frequently and that might
degrade write-behind performance. The MODIFY ZFS,QUERY,ALL command
output shows the cache hit ratio, which is actually the “fault ratio”. To get the hit
ratio, subtract the fault ratio from 100%.

Chapter 8. Performance and debugging 69

|

|
|
|

In general, you should have a hit ratio of at least 80% or more. A hit ratio over
90% will typically give good performance. However, the hit ratio is very much
workload-dependent. For example, a zFS file system that is exported exclusively to
SMB clients by using the SMB server will likely have a low hit ratio. The low hit
ratio occurs because the SMB client and the SMB server cache data, which reduces
the zFS cache hit ratio. This reduction is expected and is not considered a problem.

Log files
Every zFS aggregate contains a log file that is used to record transactions that
describe changes to the file system structure. This log file is, by default, 1% of the
aggregate size; but, you can tailor it on the ioeagfmt command. Typically, 1% is
sufficient for most aggregates. However, larger aggregates might need less than
1%, while very small aggregates might need more than 1% if a high degree of
parallel update activity occurs for the aggregate.

Log file cache
The log file cache is a pool of 4 KB buffers used to contain log file updates. You
must not modify the log file cache size unless under the direction of IBM service.
Log file buffers are always written asynchronously to disk and typically need to be
waited upon only when the log is becoming full, or if a file is in file
synchronization (fsync).

The log file cache is stored in the primary address space and its default size is 16
MB. The log file cache is grown dynamically by adding two 4 KB buffers for each
attached aggregate. This growth ensures that each aggregate always has one one
log cache buffer to use to record its most recent changes to file system metadata.
Because log files are written asynchronously, the cache essentially allows
write-behind of log files and because the cache is shared among all aggregates.
Aggregates that have a higher write rate use more buffers in the cache using a
least-recently-used (LRU) algorithm.

Fixed storage
By default, zFS does not fix pages in any of the caches except when an I/O is
pending to or from the cache buffers. The administrator can permanently page fix
the user file cache, the metadata cache, and the log file cache by choosing the
fixed option for the cache. This option ensures that the cache experiences no
paging and avoids page fixing for each I/O. This option does come at the expense
of using real storage for the cache, which means the real storage is not available
for other applications.

If your file system performance is critical and you have enough real memory to
support it, the fixed option can be useful. Otherwise, do not set it.

I/O balancing
The performance of any file system is heavily dependent on DASD I/O
performance. If any channels or DASD volumes are overloaded, then it is possible
for excessive I/O waits to occur on that DASD. Performance products such as
RMF™ show DASD performance.

zFS MODIFY ZFS,QUERY,ALL operator commands also provide reports that show
I/O rates per aggregate, and file system request rates per aggregate and per file
system. This information, along with DASD performance information from RMF or
performance products similar to RMF can be used to balance I/O among your

70 z/OS V2R2 Distributed File Service zFS Administration

|
|

|

|
|
|
|

DASD. For example, you can use the query command output to show the file
systems that can be moved to different DASD to achieve a better balance among
disks.

Monitoring zFS performance
You can monitor zFS performance using the MODIFY command. The output from
the MODIFY ZFS,QUERY command is written to the system log. The syntax of this
command and an explanation of the report and their option values, if any, are
shown as follows.

Note: If zFS is running in the OMVS address space, the syntax of the modify
command is as follows:
modify omvs,pfs=zfs,query,<report>,<option>

ALL Shows all of the reports. However, for the STOR report, the DETAILS
option is off and the FILE report indicates only active file systems.

CTKC Displays the client token manager statistics. CTKC is only present when
the system is a sysplex client of another system and the zFS CTKC
component on this system sent a message to another system. See “CTKC”
on page 72 for details of the report.

DATASET
Displays zFS statistics about file systems.

FILE Provides a detailed breakdown of requests per zFS file system and
aggregate. By default, this report lists only file systems and aggregates that
had active requests since the last statistics reset. If you use the ALL option,
you get all file system and aggregates regardless of whether they were
active or not. See “FILE” on page 74 for details of the report.

IOBYDASD
Displays the I/O statistics by currently attached DASD volumes including
the total number of waits for I/O and the average wait time per I/O. See
“IOBYDASD” on page 75 for details of the report.

KN Provides counts of calls that are made to zFS from z/OS UNIX and the
average response time of each call. This information is the basic measure of
zFS performance. See “KN” on page 76 for details of the report.

LFS Provides detailed file system statistics including the performance of the zFS
metadata cache, the vnode cache, and the aggregate I/O statistics. See
“LFS” on page 78 for details of the report.

LOCK Provides a measure of lock contention and how often z/OS UNIX threads
wait for certain events such as user file cache reclaim. See “LOCK” on
page 81 for details of the report.

LOG Provides performance information for the log file cache. See “LOG” on
page 82 for details of the report.

STKM
Displays the current server token manager (STKM) statistics. See “STKM”
on page 83 for details of the report.

STOR Provides a detailed breakdown of zFS allocated storage by component. By
default, this report lists only storage usage by zFS component. If you use

modify zfs,query,<report>,<option>

Chapter 8. Performance and debugging 71

|
|

|

|

the DETAILS option, you get more detailed information for each zFS
component. See “STOR” on page 85 for details of the report.

SVI Displays the calls from other systems to this server through the server
vnode interface (SVI) component. Output is only displayed when the zFS
SVI component on the local system has received a message from a client
system.

VM Provides performance information for the user file cache including cache
hit ratios, I/O rates, and storage usage. See “VM” on page 89 for details of
the report.

Resetting performance monitoring data
You can reset the performance monitoring statistics for any given zFS report or
reset all of the internal zFS statistics. The syntax of this command is as follows,
where report is KN, VM, LFS, LOG, LOCK, STOR, FILE, STKM, CTKC, IOBYDASD,
DATASET, SVI, or ALL.

Note: If zFS is running in the OMVS address space, the syntax of the modify
command is:
modify omvs,pfs=zfs,reset,<report>

Resetting the statistics is useful if you want to view zFS performance for a given
time of day, such as during peak usage. For example, if you want performance of
zFS between 1 PM and 3 PM, you enter MODIFY ZFS,RESET,ALL at 1 PM and
enter MODIFY ZFS,QUERY,ALL at 3 PM.

To start the monitoring period at 1 PM, enter MODIFY ZFS,RESET,ALL.
To end the monitoring period at 3 PM, enter MODIFY ZFS,QUERY,ALL.

Sample zFS QUERY reports
The following sections show sample output from zFS QUERY reports and describe
the relevant fields of each report. Some fields are used mainly by IBM service, but
are included here for completeness.
v “CTKC”
v “DATASET” on page 73
v “FILE” on page 74
v “IOBYDASD” on page 75
v “KN” on page 76
v “LFS” on page 78
v “LOCK” on page 81
v “STKM” on page 83
v “STOR” on page 85
v “SVI” on page 88
v “VM” on page 89

CTKC
Displays the statistics relating to calls made to other systems caused by operations
on the local system (called client operations). The output is displayed only when
the system is a sysplex client of another system and the zFS CTKC component on
this system has sent a message to another system. Figure 28 on page 73 shows an
example of the total number of call counts and the average response time in
milliseconds of the call to the system indicated (in this case NP1).

modify zfs,reset,<report>

72 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|

|
|

|

|
|
|
|

Note: Output is only displayed when the zFS CTKC component on this system has
sent a message to another system.

DATASET
The DATASET report, shown in Figure 29, lists zFS data set statistics. Table 2 on
page 74 describes the contents of the report.

SVI Calls to System NP1

SVI Call Count Avg. Time
-------------------- ---------- ----------
GetToken 211324 15.996
GetMultTokens 0 0.000
ReturnTokens 31 0.621
ReturnFileTokens 0 0.000
FetchData 0 0.000
StoreData 27005 3.354
Setattr 184762 4.486
FetchDir 25 20.464
Lookup 30 4.772
GetTokensDirSearch 0 0.000
Create 3 17.921
Remove 0 0.000
Rename 0 0.000
Link 0 0.000
ReadLink 0 0.000
SetACL 0 0.000
Statfs 42 2.006
TSR 0 0.000
FilesysSyncTable 0 0.000
FileSyncMeta 0 0.000
BitmapReserve 0 0.000
BitmapUnreserve 0 0.000
BitmapReclaim 0 0.000
FileUpdateIB 0 0.000
FileCreateIB 0 0.000
FwdReaddir 0 0.000
LkupInvalidate 0 0.000
FileDebug 0 0.000
FetchPage 0 0.000
ServerIO 0 0.000
BulkFetchStatus 0 0.000
Convert 0 0.000
ConvertFID 0 0.000

-------------------- ---------- ----------
TOTALS 423222 10.162

Figure 28. Sample CTKC report

Printing Dataset Allocation Stats
Allocates 2
Allocates failed 0
Unallocates 2
Unallocates failed 0
Opens 2
Open failures 0
Closes 2

Figure 29. Sample DATASET report

Chapter 8. Performance and debugging 73

Table 2. DATASET report fields

Field name Contents

Allocates Number of allocations issued by zFS for zFS data sets.

Allocates failed Number of allocations issued by zFS for zFS data sets that were
unsuccessful.

Unallocates Number of unallocations issued by zFS for zFS data sets.

Unallocates failed Number of unallocations issued by zFS for zFS data sets that were
unsuccessful.

Opens Number of opens issued by zFS for zFS data sets.

Opens failed Number of opens issued by zFS for zFS data sets that were
unsuccessful.

Closes Number of closes issued by zFS for zFS data sets.

FILE
The FILE report, which is shown in Figure 30, lists every file system that was
active since the last reset by default. If you use the ALL option, it lists all file
systems. The file systems are listed in the report with the most active file systems
listed first. Table 3 describes the contents of the report.

Table 3. FILE report fields

Field name Contents

Aggr # The aggregate ID that can be seen in the zfsadm lsfs -long command.

FILE:
File System Name Aggr # Flg Operations
--- ------ --- ----------

OMVS.ZFS.DFBLD.DFSSRC 8 AM 274472

OMVS.ZFS.LOCAL 9 AM 111722

OMVS.ZFS.DCEDFBLD.DCES390.ETC.DCE 10 AMQ 81632

OMVS.ZFS.DCEDFBLD.DFSLOCAL 12 AM 52154

OMVS.ZFS.DCEDFBLD.OS390R10.ETC 4 AMC 44108

OMVS.ZFS.GPLTOOLS 6 AM 8458

OMVS.ZFS.BLDTOOLS 7 AM 8120

OMVS.ZFS.DCEDFBLD.VAR 5 AM 314

OMVS.ZFS.USR.LOCAL 11 AM 54

Figure 30. Sample FILE report

74 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 3. FILE report fields (continued)

Field name Contents

Flg Indicates the aggregate status, as follows:
A Attached
G Growing
L Locally owned
M Mounted
O Offline (disabled)
Q Quiesced
S Sysplex-aware (if the aggregate is sysplex-aware for read/write)
This command only reports on locally mounted (attached) aggregates. You
can use the operator ROUTE command to issue this command to all
systems in your sysplex (for example, ROUTE *ALL,F
ZFS,QUERY,FILE,ALL). Note that the zFS owning system can flag an
aggregate as growing (G) while the other (zFS client) systems can flag it as
quiesced (Q). That flagging occurs because an aggregate that is growing is
quiesced on all other systems.

Operations Indicates the count of z/OS UNIX vnode calls to that particular file
system; it is not an I/O rate. You can use the RMF DASD reports, the LFS
Aggregate I/O report, and the FILE report to balance your file systems
among disks to provide a more even I/O spread.

IOBYDASD
As Figure 31 shows, the IOBYDASD report lists the currently attached DASD by
volume. This report is important for viewing the average wait time per I/O (in
milliseconds).

Table 4 describes the contents of the report.

Table 4. IOBYDASD report fields

Field name Contents

DASD VOLSER The DASD volumes that contain the zFS aggregates.

PAV IOs The maximum number of concurrent I/O requests to volume.

Reads The number of read I/O requests.

K bytes The number of bytes read or written in K units.

Writes The number of write I/O requests.

IOEZ00438I Starting Query Command IOBYDASD.
zFS I/O by Currently Attached DASD/VOLs

DASD PAV
VOLSER IOs Reads bytes Writes bytes Waits Average Wait
------ ----- ----- ----- ----- ----- ----- ------------
CFC002 1 5m 40M 2m 52M 5m 5.964
SMBD80 1 5136 21784 197t 1M 138t 3.377
ZFSD50 1 3m 27M 1m 32M 4m 7.629
ZFSD32 1 5097 21620 57227 1M 13173 4.372
ZFSD33 1 4m 33M 2m 37M 5m 8.316
ZFS183 1 663t 4M 262t 4M 669t 8.506

Total number of waits for I/O: 16111355
Average wait time per I/O: 7.228

Figure 31. Sample IOBYDASD report

Chapter 8. Performance and debugging 75

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Table 4. IOBYDASD report fields (continued)

Field name Contents

Waits The number of waits for I/O completion.

Average Wait The average wait time for I/O requests in milliseconds.

Total number of waits
for I/O

Total of Waits column

Average wait time per
I/O

The average of the Average Wait times, in milliseconds.

KN
The QUERY,KN report shows basic zFS performance for both the PFS file system
owner and the PFS client. It shows all calls made to zFS by z/OS UNIX since the
last statistics reset or since zFS was first initialized if no explicit reset has been
done, and the average response time in milliseconds for each request. These
requests are the official interface between z/OS UNIX and zFS; this is the most
fundamental measure of zFS performance because it includes any CPU, I/O wait
time, or lock wait time.

The times here represent only the zFS portion of the overall command response
time. For example, entering a mkdir command from z/OS UNIX will actually result
in many zFS calls, and the zfs_mkdir time is only the portion of time it took zFS to
perform the actual mkdir. Hence, application time and time spent processing in
z/OS UNIX is not included here.

If you see abnormally long times that are listed for zfs_lookup, zfs_creates, or
zfs_removes and you are using v4 directories, you might have a zFS large directory
problem. For information about the zFS large directory performance problem, see
“Minimum and maximum file system sizes” on page 46.

In the following sample KN report, the Operation column is the z/OS UNIX
operation being performed, the Count column is the number of operations, the
XCF Reqn column is the number of XCF messages that were sent during the
processing of the operation and Avg Time is the average response time for the
operations. The server could send XCF messages to revoke tokens and the client
might send XCF messages to obtain needed tokens and security information from a
server or to write metadata changes to the server. If XCF messages need to be sent,
then you should expect average response times to be longer than if messages were
not sent.
F ZFS,QUERY,KNPFS
IOEZ00438I Starting Query Command KN. 525

PFS Calls on Owner

Operation Count XCF req. Avg Time
--------- ---------- ---------- ----------
zfs_opens 9456 0 1.778
zfs_closes 9444 2 0.788
zfs_reads 123636 0 0.145
zfs_writes 109510 0 2.475
zfs_ioctls 66 0 0.685
zfs_fileinfos 0 0 0.000
zfs_converts 0 0 0.000
zfs_getattrs 17561 1 0.033
zfs_setattrs 699 0 0.377
zfs_accesses 709 0 0.099
zfs_lookups 52931 959 0.396
zfs_creates 3158 780 4.659

76 z/OS V2R2 Distributed File Service zFS Administration

|
|

zfs_removes 633 0 4.164
zfs_links 16 0 0.978
zfs_renames 640 0 2.108
zfs_mkdirs 780 164 4.346
zfs_rmdirs 378 0 4.731
zfs_readdirs 440 23 5.871
zfs_symlinks 59 19 4.393
zfs_readlinks 132 0 0.076
zfs_fsyncs 188 0 9.310
zfs inactives 2347 5 0.013
zfs_setacls 0 0 0.000
zfs_getacls 0 0 0.000
zfs_truncs 553 0 3.278
zfs_recoveries 0 0 0.000
zfs_audits 357 0 0.051
zfs_pfsctls 85 13 6.528
zfs_statfss 245 0 0.278
zfs_vgets 0 0 0.000
zfs_mounts 22 0 435.707
zfs_unmounts 0 0 0.000
zfs_vinacts 0 0 0.000
zfs_sync 0 0 0.000
--------- ---------- ---------- ----------
TOTALS 334045 1966 1.125
IOEZ00438I Starting Query Command KN. 526

PFS Calls on Client

Operation Count XCF req. Avg Time
--------- ---------- ---------- ----------
zfs_opens 6373 121 2.665
zfs_closes 6365 2675 2.243
zfs_reads 17402 2013 0.636
zfs_writes 12043 8904 10.122
zfs_ioctls 15 0 0.096
zfs_fileinfos 0 0 0.000
zfs_converts 0 0 0.000
zfs_getattrs 14560 3972 1.170
zfs_setattrs 1183 17 0.102
zfs_accesses 194 0 0.331
zfs_lookups 47122 1606 0.340
zfs_creates 2492 2491 8.749
zfs_removes 485 485 6.049
zfs_links 15 15 4.582
zfs_renames 1151 1151 5.673
zfs_mkdirs 603 603 6.548
zfs_rmdirs 582 582 5.834
zfs_readdirs 317 27 3.625
zfs_symlinks 55 55 8.031
zfs_readlinks 115 72 1.854
zfs_fsyncs 0 0 0.000
zfs_inactives 2077 0 0.016
zfs_setacls 0 0 0.000
zfs_getacls 0 0 0.000
zfs_truncs 0 0 0.000
zfs_recoveries 0 0 0.000
zfs_audits 92 0 0.021
zfs_pfsctls 0 0 0.000
zfs_statfss 50 50 4.741
zfs_vgets 0 0 0.000
zfs_mounts 7 0 313.115
zfs_unmounts 0 0 0.000
zfs_vinacts 0 0 0.000
zfs_sync 0 0 0.000
--------- ---------- ---------- ----------
TOTALS 113298 24839 2.122

Chapter 8. Performance and debugging 77

|
|
|

|

|
|

|
|
|

|

IOEZ00025I zFS kernel: MODIFY command - QUERY,KNPFS completed successfully.

LFS
The LFS report provides detailed file system statistics; the following sample shows
an example of the content. Each part of the report is described.

F ZFS,QUERY,LFS
IOEZ00438I Starting Query Command LFS. 421

zFS Vnode Op Counts

Vnode Op Count Vnode Op Count
----------------- ---------- ----------------- ----------
efs_hold 0 efs_readdir 67997
efs_rele 0 efs_create 1569039
efs_inactive 0 efs_remove 1945874
efsvn_getattr 9856523 efs_rename 235320
efs_setattr 40 efs_mkdir 237359
efs_access 1656502 efs_rmdir 238004
efs_lookup 21545682 efs_link 237318
efs_getvolume 0 efs_symlink 237318
efs_getlength 0 efs_readlink 0
efs_afsfid 0 efs_rdwr 0
efs_fid 0 efs_fsync 0
efs_vmread 0 efs_waitIO 9
efs_vmwrite 0 efs_cancelIO 0
efs_clrsetid 0 efs_audit 5425
efs_getanode 16640 efs_vmblkinfo 0
efs_readdir_raw 0 efs_convert 0

Average number of names per convert 0
Number of version5 directory splits 126
Number of version5 directory merges 63

Total zFS Vnode Ops 37849050

zFS Vnode Cache Statistics

Vnodes Requests Hits Ratio Allocates Deletes
---------- ---------- ---------- ----- ---------- ----------

200000 25908218 22431383 86.580% 0 1

zFS Vnode structure size: 224 bytes
zFS extended vnodes: 200000, extension size 816 bytes (minimum)
Held zFS vnodes: 2914 (high 29002)
Open zFS vnodes: 0 (high 10)
Reusable: 197085

Total osi_getvnode Calls: 3886774 (high resp 0) Avg. Call
Time: 0.069 (msecs)
Total SAF Calls: 11050540 (high resp 1) Avg. Call
Time: 0.008 (msecs)

Remote Vnode Extension Cleans 0
zFS Fast Lookup Statistics

Buffers Lookups Hits Ratio Neg. Hits Updates
---------- ---------- ---------- ----- ---------- ----------

1000 0 0 0.0% 0 0

Metadata Caching Statistics

Buffers (K bytes) Requests Hits Ratio Updates PartialWrt
--------- --------- ---------- ---------- ------ ---------- ----------

32768 262144 77813570 77529130 99.6% 27943073 423524

78 z/OS V2R2 Distributed File Service zFS Administration

|

|

I/O Summary By Type

Count Waits Cancels Merges Type
---------- ---------- ---------- ---------- ----------

33006 7701 0 0 File System Metadata
680516 1020 0 56366 Log File

11 1 0 0 User File Data

I/O Summary By Circumstance

Count Waits Cancels Merges Circumstance
---------- ---------- ---------- ---------- ------------

7213 6553 0 0 Metadata cache read
1 1 0 0 User file cache direct read
4 4 0 0 Log file read
0 0 0 0 Metadata cache async delete write
0 0 0 0 Metadata cache async write
0 0 0 0 Metadata cache lazy write
0 0 0 0 Metadata cache sync delete write
0 0 0 0 Metadata cache sync write
10 0 0 0 User File cache direct write
1 1 0 0 Metadata cache file sync write

16981 861 0 0 Metadata cache sync daemon write
0 0 0 0 Metadata cache aggregate detach write
0 0 0 0 Metadata cache buffer block reclaim write
0 0 0 0 Metadata cache buffer allocation write
0 0 0 0 Metadata cache file system quiesce write

8811 286 0 0 Metadata cache log file full write
680512 1016 0 56366 Log file write

0 0 0 0 Metadata cache shutdown write
0 0 0 0 Format, grow write

zFS I/O by Currently Attached Aggregate

DASD PAV
VOLSER IOs Mode Reads K bytes Writes K bytes
Dataset Name
------ --- ---- ---------- ---------- ---------- ----------
ZFSAGGR.BIGZFS.DHH.FS14.EXTATTR
ZFSD18 1 R/W 44 344 1831 17224
ZFSAGGR.BIGZFS.DHH.FS1.EXTATTR
ZFS121 1 R/W 6509 52056 648750 10276788

------ ---------- ---------- ---------- ----------
TOTALS

2 6553 52400 650581 10294012

Total number of waits for I/O: 8722
Average I/O wait time: 115.334 (msecs)
IOEZ00025I zFS kernel: MODIFY command - QUERY,LFS completed successfully

Table 5. LFS report sections

Field name Contents

zFS Vnode Op
Counts:

Shows the number of calls to the lower layer zFS components. One request from z/OS
UNIX typically requires more than one lower-layer call. Note that the output of this report
wraps.

Chapter 8. Performance and debugging 79

Table 5. LFS report sections (continued)

Field name Contents

zFS Vnode Cache
Statistics:

Shows the zFS vnode cache statistics. It shows the number of currently allocated vnodes
and the vnode hit ratio. Allocates and "Deletes" show requests to create new vnodes (for
operations such as create or mkdir) and delete vnodes (for operations such as remove or
failed creates or mkdirs). The size of this cache is controlled by the vnode_cache_size
parameter and the demand for zFS vnodes placed by z/OS UNIX. In general, zFS tries to
honor the setting of the vnode_cache_size parameter and recycle vnode structures to
represent different files.

However, if z/OS UNIX requests more vnodes than zFS has allocated then zFS must
allocate vnodes to avoid applications failing. Held zFS vnodes is the number of vnodes that
z/OS UNIX has required of zFS to currently access. high is the largest number of vnodes
that z/OS UNIX required of zFS to access at one time (during a peak time). z/OS UNIX
also determines when files are to be opened and closed. Open zFS vnodes is the number of
vnodes that represent currently open files. high is the largest number of files open at the
same time. Generally, a good hit ratio for this cache is preferable because a miss means
initializing the data structures and initialization requires a read of the object's status from
disk. Often this is in the metadata cache, but it is not guaranteed. Consequently a vnode
cache lookup miss might require an I/O wait.

The vnode structure size is shown; however, additional data structures anchored from the
vnode also take space. Everything added together yields over 1 K of storage per vnode.
Consider this when planning the size of this cache. Also note that initializing a vnode will
not require an I/O if the object's status information is in the metadata cache, thus a good
size metadata cache can be as useful—often more useful than an extremely large vnode
cache.

Total osi_getvnode Calls is the number of times zFS called the osi_getvnode interface of
z/OS UNIX to get a z/OS UNIX vnode to correspond to a new zFS vnode. Its high resp is
the number of calls that took longer than a second to complete. Avg. Call Time is the
average number of milliseconds each call took to complete.

Total SAF Calls is the number of calls zFS made to the security product via the SAF
interface. high resp is the number of these security calls that took longer than a second to
complete. Avg. Call Time is the average number of milliseconds each call took to complete.

zFS Fast Lookup
Statistics:

Shows the basic performance characteristics of the zFS fast lookup cache. The fast lookup
cache is used on the owning system for a zFS sysplex-aware file system to improve the
performance of the lookup operation. There are no externals for this cache (other than this
display). The statistics show the total number of buffers (each are 8K in size), the total
number of lookups, the cache hits for lookups and the hit ratio. The higher the hit ratio, the
better the performance.

Metadata Caching
Statistics:

Shows the basic performance characteristics of the metadata cache. The metadata cache
contains a cache of all disk blocks that contain metadata and any file data for files less than
7 K in size. For files smaller than 7 K, zFS places multiple files in one disk block (for zFS a
disk block is 8 K bytes). Only the lower metadata management layers have the block
fragmentation information, so the user file I/O for small files is performed directly through
this cache rather than the user file cache.

The statistics show the total number of buffers (each are 8 K in size), the total bytes, the
request rates, hit ratio of the cache, Updates (the number of times an update was made to a
metadata block), and Partial writes (the number of times that only half of an 8-K metadata
block needed to be written). The higher the hit ratio the better the performance. Metadata is
accessed frequently in zFS and all metadata is contained only (for the most part) in the
metadata cache therefore, a hit ratio of 80% or more is typically sufficient.

80 z/OS V2R2 Distributed File Service zFS Administration

Table 5. LFS report sections (continued)

Field name Contents

zFS I/O by Currently
Attached Aggregate:

The zFS I/O driver is essentially an I/O queue manager (one I/O queue per DASD). It uses
Media Manager to issue I/O to VSAM data sets. It generally sends no more than one I/O
per DASD volume to disk at one time. The exception is parallel access volume (PAV) DASD.
These DASD often have multiple paths and can perform multiple I/O in parallel. In this
case, zFS will divide the number of access paths by two and round any fraction up. (For
example, for a PAV DASD with five paths, zFS will issue, at the most, three I/Os at one
time to Media Manager).

zFS limits the I/O because it uses a dynamic reordering and prioritization scheme to
improve performance by reordering the I/O queue on demand. Thus, high priority I/Os
(I/Os that are currently being waited on, for example) are placed up front. An I/O can be
made high priority at any time during its life. This reordering has been proven to provide
the best performance, and for PAV DASD, performance tests have shown that not sending
quite as many I/Os as available paths allows zFS to reorder I/Os and leave paths available
for I/Os that become high priority.

Another feature of the zFS I/O driver is that by queueing I/Os, it allows I/Os to be
canceled. For example, this is done in cases where a file was written, and then immediately
deleted. Finally, the zFS I/O driver merges adjacent I/Os into one larger I/O to reduce I/O
scheduling resource, this is often done with log file I/Os because often times multiple log
file I/Os are in the queue at one time and the log file blocks are contiguous on disk. This
allows log file pages to be written aggressively (making it less likely that users lose data in
a failure) and yet batched together for performance if the disk has a high load.

This section contains the following information:

v PAV IO, which shows how many I/Os are sent in parallel to Media Manager by zFS, non
PAV DASD always shows the value 1.

v DASD VOLSER for the primary extent of each aggregate and the total number of I/Os
and bytes read/written.

v Number of times a thread processing a request must wait on I/O and the average wait
time in milliseconds is shown.

v For each zFS aggregate, the name of the aggregate is listed, followed by a line of its
statistics.

By using this information with the KN report, you can break down zFS response time into
what percentage of the response time is for I/O wait. To reduce I/O waits, you can run
with larger cache sizes. Small log files (small aggregates) that are heavily updated might
result in I/Os to sync metadata to reclaim log file pages resulting in additional I/O waits.
Note that this number is not DASD response time. It is affected by it, but it is not the same.
If a thread does not have to wait for an I/O then it has no I/O wait; if a thread has to wait
for an I/O but there are other I/Os being processed, it might actually wait for more than
one I/O (the time in queue plus the time for the I/O).

This report, along with RMF DASD reports and the zFS FILE report, can be also used to
balance zFS aggregates among DASD volumes to ensure an even I/O spread.

LOCK
The LOCK report is mainly for IBM service to use when diagnosing performance
problems relating to lock contention. This report shows a detailed breakdown of
how often zFS waits for locks. It also shows which locks cause the most
contention. Additionally, the report monitors how often a thread sleeps while
waiting for an event. Figure 32 on page 82 shows an example of a report.

Chapter 8. Performance and debugging 81

|
|

|
|
|
|
|

LOG
Figure 33 on page 83 shows performance statistics for the Log File Cache. The Log
File Cache is a write-only cache that is stored in the primary address space and is
shared among all attached R/W aggregates that are zFS-owned on a system.
Because zFS will ensure that there is at least one Log File Buffer for each aggregate
it represents, modifying IOEFSPRM configuration option log_cache_size to change
the size of the cache should not be necessary.

An example of a query of log cache statistics report is provided. Each field in the
report is self-explanatory. This information is useful only to IBM service personnel,
but is shown here for completeness.

LOCK:
Locking Statistics

Untimed sleeps: 22 Timed Sleeps: 0 Wakeups: 21

Total waits for locks: 3698
Average lock wait time: 8.261 (msecs)

Total monitored sleeps: 22
Average monitored sleep time: 0.792 (msecs)

Total starved waiters: 0
Total task priority boosts: 0

Top 15 Most Highly Contended Locks
Thread Async Spin

Wait Disp. Resol. Pct. Description
---------- ---------- ---------- ----- --------------

877 0 899 35.763% Log system map lock
1464 0 40 30.285% Anode bitmap allocation handle
481 0 28 10.249% Anode fileset quota lock
291 0 42 6.705% Transaction lock
205 0 62 5.376% Metadata-cache buffer lock
210 0 4 4.309% Anode fileset handle lock
84 68 7 3.201% User file cache main segment lo
0 55 0 1.107% Volser I/O queue lock
38 0 0 0.765% Vnode-cache access lock
2 23 11 0.724% Transaction-cache main lock
19 0 3 0.443% Transaction-cache equivalence c
21 0 0 0.422% Async IO event lock
0 14 0 0.281% Cache Services association main
6 0 0 0.120% Cache Services hashtable resize
0 0 5 0.100% Transaction-cache complete list

Total lock contention of all kinds: 4966
Top 15 Most Common Thread Sleeps

Thread Wait Pct. Description
----------- ------- -----------

22 100.000% Transaction allocation wait
0 0.000% OSI cache item cleanup wait
0 0.000% Directory Cache Buffer Wait
0 0.000% User file cache Page Wait
0 0.000% User file cache File Wait

Figure 32. Example of a LOCK report

82 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|

STKM
The STKM report, as shown in Figure 34 on page 84, lists the server token manager
statistics. LOCALUSR is the local system (the server). ZEROLINK is a “special
client” used to handle zero link count files and vnode inactivations. Table 6 on
page 84 describes the contents of the report.

Log File Caching Statistics

Logs

7 : Log files cached
0 : Log file recoveries performed

1494 : Log file syncs (filesys quiesce)

Policies

16 : Reclaim pct. (amount reclaimed at log-full time)
16 : Maximum log pages per IO
50 : Inactive buffer schedule pct. (of log size)

Storage

4116 : Log Cache Size (in 4K pages, fixed=NO)
0 : Pct. of cache in-use
0 : Free page obtain waits
0 : Allocations to avoid deadlock

Transactions

148034756 : Transactions started
42074853 : Transactions merged

98.1 : Average number of transactions batched together
324426 : Sync calls to an active transaction
1059260 : Sync calls to a completed transaction

IOs and Blocks

0 : Log IOs in progress
10403 : Dirty metadata blocks
893555 : Metadata block kill calls
1507583 : Log File writes initiated

5.2 : Average number of pages per log write
719 : Avoided IOs for metadata block due to deallocation

234215 : Scheduled not-recently-updated (NRU) metadata blocks
16.4 : Average number of blocks per NRU IO

848508 : Metadata buffers forced to disk
0.9 : Avg where metadata write forced write of log
99.8 : Pct. of metadata buffer forces waited on log IO
3250 : Log-full processing calls
262.4 : Avg number of metadata blocks written per log-full

Update Records

330.2 : Avg number of update records per log IO.
13709331 : Number of NBS records written

1514937445 : Number of metadata buffer updates
3814761 : Number of updates requiring old-byte copying

796990391 : Avoided buffer update records due to overlap
2854045 : Avoided merge update records due to overlap

Figure 33. Sample LOG report

Chapter 8. Performance and debugging 83

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Table 6. STKM report fields

Field Contents

Maximum tokens: Lists the token limit at the server which is defined by the IOEFSPRM configuration option
token_cache_size. The server runs garbage collection to ensure that token maximum is not
exceeded. In some cases, the system workload might cause the token maximum to be
exceeded, such as when there are many open files.

Allocated tokens: Number of tokens allocated in server memory. Tokens are allocated as needed, up to
maximum tokens.

File structures: Number of file structures.

Tokens In Use: Number of tokens currently held by all clients and the local system. If this number
approaches maximum tokens, then consider increasing the token_cache_size setting.

Token obtains: Total number of token obtains by all clients and local system.

Token revokes: Total number of token revokes by all clients and local system.

Token returns: Total number of token returns by all clients and local system.

Async grants: Number of asynchronously granted tokens to all clients and local system. Asynchronous
grant is used during file deletion processing when the file is still opened by some process
in the sysplex, and in support of NFS V4 share modes.

Garbage collects: Number of garbage collections of tokens. Garbage collection is used to keep the total
number of client/local system tokens below the maximum whenever possible. If this
number gets high, consider increasing the token_cache_size setting.

Thrashing files: Number of files or directories that are thrashing.

Thrashing resolutions: Number of trashing situations resolved.

Server Token Manager (STKM) Statistics

Maximum tokens: 30724 Allocated tokens: 30720
Tokens In Use: 27687 File structures: 27696
Token obtains: 3542592 Token returns: 3485439
Token revokes: 1309562 Async Grants: 0
Garbage Collects: 666 Thrash Resolutions: 0
Thrashing Files: 8

Usage Per System:
System Tokens Obtains Returns Revokes Async Grt
-------- ---------- ---------- ---------- ---------- ----------

NP1 3781 897812 894887 502842 0
NP2 15147 1233561 1188354 415917 0
NP3 3 912 909 0 0
NP4 8756 1410737 1402062 504757 0

ZEROLINK 0 0 0 0 0
LOCALUSR 0 0 0 0 0

Thrashing Objects:
Inode Uniquifier File system
---------- ---------- --------------------

19305 181700 PLEX.ZFS.SMALL2
1 1 ZFSAGGR.BIGZFS.DHH.FS4.EXTATTR

711 184733 PLEX.ZFS.SMALL2
1 1 ZFSAGGR.BIGZFS.DHH.FS14.EXTATTR
1 1 ZFSAGGR.BIGZFS.DHH.FS1.EXTATTR
13 1 ZFSAGGR.BIGZFS.DHH.FS4.EXTATTR
11 1 ZFSAGGR.BIGZFS.DHH.FS14.EXTATTR

21761 8528 ZFSAGGR.BIGZFS.DHH.FS6.EXTATTR

Figure 34. Sample STKM report

84 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

The report indicates how many tokens each system currently has, how many token
obtains and token returns each system has done, and how many times each system
has had some tokens revoked.

The report also contains a list of objects that are undergoing thrashing. Thrashing
means that the system that owns the file system containing the object needed to
keep revoking tokens for the object because multiple systems were repeatedly
writing to it. The list contains the inode and uniquifier of the object and the file
system that contains it.

STOR
The STOR report shows the storage that zFS has allocated below the 2 G
addressing line, and the storage that is allocated above the 2 G address line. The
STOR report also provides a breakdown of zFS storage usage. This report can be
used to determine how much storage zFS uses, based on a configuration change
(such as increasing or decreasing a zFS cache through the zfsadm config
command). Figure 35 on page 86 shows a sample report and Table 7 on page 88
explains the contents of each field. (Not shown here is the output of
QUERY,STOR,DETAILS, which breaks down each component and shows how
much storage is used for each data structure class; this report is intended primarily
for IBM service.)

You can check zFS storage usage by issuing the operator command MODIFY
ZFS,QUERY,STORAGE. If you compare the third line of data (USS/External
Storage Access Limit) to the fourth line (Total Storage Below 2G Bar Allocated),
you can determine how close zFS is to using its maximum storage below the 2 G
addressing line. The vast majority of the storage used by zFS should be above the
2 G addressing line. The storage allocated below the 2 G Bar should be far less
than the USS/External Storage Access Limit. For example, in figure, the storage
allocated below the 2 G bar (approximately 231 M) is much less than the
USS/External storage access limit (1793 M).

If the Total Storage Below 2G Bar Allocated becomes greater than or equal to the
USS/External Storage Access Limit, zFS issues message IOEZ00662I. If the Total
Storage Below 2G Bar Allocated approaches the value of the USS/External Storage
Access Limit, you can attempt to dynamically decrease the caches using the zfsadm
config command. (Also make the corresponding changes in your IOEFSPRM file
for the next zFS restart.) Alternatively, you can stop and restart zFS after making
cache size changes to your IOEFSPRM file.

If zFS failed to initialize and is not active, decrease some of your zFS IOEFSPRM
settings, especially if they are significantly larger than the default values, and
restart zFS. The settings to review include:
v meta_cache_size
v recovery_max_storage
v token_cache_size
v vnode_cache_size

If zFS is active but message IOEZ00662I was issued, you can issue the zfsadm
config command to attempt to decrease the cache sizes dynamically. Also make
the corresponding changes in your IOEFSPRM file for the next zFS restart.
Alternatively, you can stop and restart zFS after making cache size changes to your
IOEFSPRM file.

You can also use the MODIFY ZFS,QUERY,STORAGE command to see Total
Storage Above 2G Bar Allocated.. If the amount of storage allocated becomes more

Chapter 8. Performance and debugging 85

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

than desired, overall system performance can be impacted. If this occurs, you can
attempt to use the zfsadm config command to decrease the size of a zFS cache that
is using too much storage dynamically.

In the report, Discarded (or unbacked) storage is storage that is allocated to zFS,
but is currently not in use. So, it is not occupying real storage frames, which
reduces the need for paging by the system. If the storage is needed later, then it
will again be used.

IOEZ00438I Starting Query Command STORAGE.
zFS Primary Address Space <2G Stge Usage
--

Total Storage Below 2G Bar Available: 1943011328
Non-critical Storage Limit: 1922039808
USS/External Storage Access Limit: 1880096768
Total Storage Below 2G Bar Allocated: 242671616

IOEFSCM Heap Bytes Allocated: 26560184
IOEFSCM Heap Pieces Allocated: 1671
IOEFSCM Heap Allocation Requests: 1680
IOEFSCM Heap Free Requests: 9

IOEFSKN Heap Bytes Allocated: 3610517
IOEFSKN Heap Pieces Allocated: 54383
IOEFSKN Heap Allocation Requests: 242678
IOEFSKN Heap Free Requests: 188295

Storage Usage By Sub-component
Bytes No. of No. of
Allocated Pieces Allocs Frees Component
---------- ------ ------ ------ ---------

2375 7 7 0 Interface
14544 2 2 0 Media Manager I/O driver
1888 5 5 0 Trace Facility

434088 7 7 0 Message Service
546428 164 164 0 Miscellaneous
33168 1 1 0 Aggregate Management
200384 2 2 0 Filesystem Management
32160 27 36 9 Administration Command Handling
1264 5 130652 130647 Vnode Management
50632 14 57614 57600 Anode Management

0 0 0 0 Directory Management
1904 2 2 0 Log File Management
272 1 1 0 Metadata Cache

0 0 0 0 Transaction Management
2192 1 1 0 Asynchronous I/O Component

119436 1909 1909 0 Lock Facility
10440 348 348 0 Threading Services

1768592 51561 51597 36 Cache Services
49366 8 9 1 Config. parameters processing
8496 4 4 0 User File Cache

Figure 35. Sample STOR report (part 1 of 2)

86 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

313784 182 182 0 Storage Management
12456 126 128 2 XCF Services

0 0 0 0 Cross system attach validation
5464 4 4 0 Server Token Manager (STKM)
224 1 1 0 Server Token Cache (STKC)
936 1 1 0 Client Token Cache (CTKC)

0 0 0 0 Server Vnode Interface (SVI)
0 0 0 0 Name Space (NS)
24 1 1 0 Directory storage
0 0 0 0 Salvage storage

IOEZ00438I Starting Query Command STORAGE.
zFS Primary Address Space >2G Stge Usage
--

Total Storage Above 2G Bar Available: 4294963200M
Total Storage Above 2G Bar Allocated: 1766850560

Total Bytes Allocated by IOEFSCM (Stack+Heap): 22020096
IOEFSCM Heap Bytes Allocated: 22020096
IOEFSCM Heap Pieces Allocated: 462
IOEFSCM Heap Allocation Requests: 462
IOEFSCM Heap Free Requests: 0

Total Bytes Allocated by IOEFSKN (Stack+Heap): 648019968
Total Bytes Discarded (unbacked) by IOEFSKN: 55504896
IOEFSKN Heap Bytes Allocated: 546676397
IOEFSKN Heap Pieces Allocated: 1122125
IOEFSKN Heap Allocation Requests: 6739163
IOEFSKN Heap Free Requests: 5617038

Storage Usage by Sub-component
Bytes No. of No. of

Allocated Pieces Allocs Frees Component
---------- ------ ------ ------ ---------

459628 16 16 0 Interface
675080 193 213 20 Media Manager I/O driver

73400320 2 2 0 Trace Facility
0 0 0 0 Message Service

8399061 284 315 31 Miscellaneous
77216 117 126 9 Aggregate Management
21376 14 14 0 Filesystem Management
1464 10 20 10 Administration Command Handling

15026992 56535 453053 396518 Vnode Management
43586724 329845 387711 57866 Anode Management

0 0 0 0 Directory Management
45070848 44098 267949 223851 Log File Management
164305040 38354 38366 12 Metadata Cache

0 0 0 0 Transaction Management
5874464 68159 69176 1017 Asynchronous I/O Component
1048576 1 3 2 Lock Facility
1048576 1 1 0 Threading Services
87901088 490273 1214627 724354 Cache Services

0 0 0 0 Config. parameters processing
4696016 16004 16022 18 User File Cache
6047280 4322 4607 285 Storage Management
65608048 1678 1678 0 XCF Services

17680 13 22 9 Cross system attach validation
1167992 6050 4117454 4111404 Server Token Manager (STKM)
263528 3058 3058 0 Server Token Cache (STKC)

20930824 63097 63097 0 Client Token Cache (CTKC)
0 0 101623 101623 Server Vnode Interface (SVI)
0 0 9 9 Name Space (NS)

1048576 1 1 0 Directory storage
0 0 0 0 Salvage storage

Figure 36. Sample STOR report (part 2 of 2)
Chapter 8. Performance and debugging 87

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Table 7. STOR report fields

Field name Contents

Total storage below 2G bar available
Total storage above 2G bar available

Total virtual storage in the zFS address space that is available for usage
(such as caches, control blocks, and stacks).

Non-critical Storage Limit The value that, when exceeded, will cause zFS to issue message
IOEZ00663I ZFS is critically low on storage.

USS/External Storage Access Limit The value that, when exceeded, will cause zFS to issue message
IOEZ00662I ZFS is low on storage.

Total storage below 2G bar allocated
Total storage above 2G bar allocated

The current usage of virtual storage in the zFS address space (requested
by zFS and other components running in the zFS address space).

IOEFSCM Heap Bytes Allocated
IOEFSKN Heap Bytes Allocated

The current amount of storage that is allocated to the zFS heaps.

IOEFSCM Heap Pieces Allocated
IOEFSKN Heap Pieces Allocated

The current number of storage pieces that are in the IOEFSCM and
IOEFSKN heaps.

Total Bytes Allocated by IOEFSCM (Stack
+ Heap)
Total Bytes Allocated by IOEFSKN (Stack
+ Heap)

The total bytes of storage allocated by the zFS IOEFSCM and IOEFSKN
components.

IOEFSCM Heap Allocation Requests
IOEFSKN Heap Allocation Requests

Number of requests that zFS made to obtain heap storage since the last
zFS storage statistics reset.

IOEFSCM Heap Free Allocated
IOEFSKN Heap Free Allocated

Number of requests that zFS made to free heap storage since the last zFS
storage statistics reset.

Storage Usage by Sub-component Storage usage for each zFS component.

Total Bytes Discarded (unbacked) by
IOEFSKN

Total number of bytes that IOEFSKN has discarded (made unbacked)
from allocated storage.

SVI
The server vnode interface component handles this call. The example report that is
shown in Figure 37 on page 89 displays the total number of calls the server
received from the specific client and the average server response time in
milliseconds, including the XCF transmit and CPU time of the reply. XCF Req is the
count of XCF messages that had to be sent to other systems (most likely for token
revokes) to process the client request. Qwait counts the number of times a wait was
done for an available zFS thread to process the client request.

Note: The output is displayed only when the zFS svi component on this system
has received a message from another system.

88 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

||

|
|
|
|

VM
The VM report shows the statistics relating to the performance of the zFS user file
caching system. The size of this cache is controlled by the IOEFSPRM
user_cache_size configuration option or the zfsadm config command.

The zFS user file is stored in a collection of dataspaces. zFS prefers to use multiple
dataspaces rather than one large dataspace when it can to reduce lock contention
(as shown in this example). zFS has a structure for each file that is cached. The
user cache breaks the cached file into 64 K segments. Each segment is broken into
4 K pages. A segment is assigned to a dataspace, hence the pages for any given
segment belong only to one dataspace. A file's pages can be scattered throughout
multiple segments.

At any given time, a file need not (and for large files often might not) have all of
its segments in the cache. Furthermore, any segment need not (and often might
not) have all of its pages in the cache. Reuse of pages and segments is done in a
least-recently used (LRU) fashion.

SVI Calls from System NP1

SVI Call Count Qwait XCF Req. Avg. Time
-------------------- ---------- -------- -------- ----------
GetToken 663624 2 180593 4.246
GetMultTokens 0 0 0 0.000
ReturnTokens 814 0 0 8.139
ReturnFileTokens 0 0 0 0.000
FetchData 132962 0 13222 1.016
StoreData 1401717 9 0 0.229
Setattr 228600 0 0 0.527
FetchDir 5 0 0 0.188
Lookup 93113 1 1934 2.875
GetTokensDirSearch 0 0 0 0.000
Create 1 0 1 5.056
Remove 1 0 1 9.040
Rename 0 0 0 0.000
Link 0 0 0 0.000
ReadLink 0 0 0 0.000
SetACL 0 0 0 0.000
Statfs 14 0 0 0.448
TSR 0 0 0 0.000
FilesysSyncTable 0 0 0 0.000
FileSyncMeta 3 0 0 0.097
BitmapReserve 0 0 0 0.000
BitmapUnreserve 0 0 0 0.000
BitmapReclaim 0 0 0 0.000
FileUpdateIB 0 0 0 0.000
FileCreateIB 0 0 0 0.000
FwdReaddir 0 0 0 0.000
LkupInvalidate 0 0 0 0.000
FileDebug 0 0 0 0.000
FetchPage 0 0 0 0.000
ServerIO 0 0 0 0.000
BulkFetchStatus 5563 0 0 4.404
Convert 0 0 0 0.000
ConvertFID 0 0 0 0.000
------------ ---------- -------- -------- ----------
TOTALS 2520851 12 195751 1.557

Figure 37. Sample SVI report

Chapter 8. Performance and debugging 89

|
|
|

|

|
|

The cache provides asynchronous read-ahead and write-behind of large files when
access is considered sequential. Read-ahead and write-behind for a file is
performed by reading/writing segments (up to 64 K).

Following is a sample VM report.

Table 8 on page 91 describes the fields of the User File (VM) Caching System
Statistics report.

IOEZ00438I Starting Query Command VM.
User File (VM) Caching System Statistics
--

External Requests:

Reads 5107802 Fsyncs 1990 Schedules 366517
Writes 5503223 Setattrs 7091 Unmaps 349352
Asy Reads 3809619 Getattrs 1219759 Flushes 0

File System Reads:

Reads Faulted 164132 (Fault Ratio 3.213%)
Writes Faulted 167756 (Fault Ratio 3.048%
Read Waits 0 (Wait Ratio 0.000%)
Total Reads 357542

File System Writes:

Scheduled Writes 119608 Sync Waits 22706
Error Writes 0 Error Waits 0
Scheduled deletes 0
Page Reclaim Writes 37315 Reclaim Waits 19392
Write Waits 5454 (Wait Ratio 0.099%)

Page Management (Segment Size = 64K)) (Page Size = 4K)
--
Total Pages 12800 Free 12800
Segments 2373
Steal Invocations 24146 Waits for Reclaim 62038

Number of dataspaces used: 1 Pages per dataspace: 12800

Dataspace Allocated Free
Name Segments Pages
-------- ---------- ----------
ZFSUCD00 0 12800

Figure 38. Sample VM report

90 z/OS V2R2 Distributed File Service zFS Administration

Table 8. User File (VM) Caching System Statistics report fields

Field name Contents

External Requests: Describes the requests that are made to the user file cache to perform operations as
requested by applications.

Reads, Writes
How often the cache was called to read or write files.

Asy Reads
How often read-ahead is performed.

Fsync How often applications requested that zFS sync a file's data to disk.

Unmaps
The count of file deletions.

File System Reads: Shows how often the cache reads data from disk for a file. Cache misses and read I/Os
degrade application response time and the goal is for these numbers to be as low as
possible. Increasing the cache size is the typical method for lowering these numbers.

Reads Faulted
Count of read requests that needed to perform at least one I/O to read the
requested portion of the file from disk.

Writes Faulted
Count of how often a write to a file needed to perform a read from disk. If a write
only updates a portion of a page of a file on disk and that page is not in memory,
then the page must be read in (the zFS I/O driver can only perform I/O in whole
pages) before the new data is written to the in-memory page.

Read Waits
How often a read had to wait for a pending I/O. For example, how often a read
of a file found that the range of the file is pending read (probably because of
asynchronous read ahead).

Total Reads
Total number of file system reads made for any reason.

Chapter 8. Performance and debugging 91

Table 8. User File (VM) Caching System Statistics report fields (continued)

Field name Contents

File System Writes: Shows how often the cache wrote the data to disk. In general, it is desirable to minimize
the Page Reclaim Writes and Reclaim Waits. If these occur often, relative to the external zFS
request rate (shown in the KN report), then the cache might be too small.

Scheduled Writes
Count of how often the cache wrote out dirty segments for a file. Segments are
written as soon as every page becomes dirty (segments are said to be dirty if they
contain live blocks). When a file is closed all of its dirty segments are scheduled
asynchronously and segments are also written asynchronously during file system
syncs through the zFS sync daemon (which by default runs every 30 seconds).

Sync Waits
Count of how often a fsync request that is needed to wait on pending I/O for
dirty segments.

Error Writes and Error Waits
Count of the error handling paths and should almost always be 0 unless a disk
hardware error occurs. Whenever an unexpected error occurs for a file, all of its
dirty segments are written and synced to disk. (A file system that is running out
of space is not an error condition that causes the cache to sync a file, the cache
reserves storage for files as they are written which ensures no unexpected out of
space conditions arise).

Scheduled Deletes
Count of times a pending I/O was canceled because a file was being deleted. In
this case, the data is not appropriate to be on disk (because the file is 0 link
count). Therefore, canceling the I/O is done to avoid an I/O wait. This is a
performance optimization for file remove.

Page Reclaim Writes
Count of times that a segment had to be written to DASD to reclaim space in the
cache.

Page Reclaim Waits
Count of times that the reclaim function waited on pending I/O to reclaim
segment pages.

Write Waits
Count of times a write occurred to a page that was already pending I/O. In this
case, the I/O must be waited upon before the page is updated with the new data.

92 z/OS V2R2 Distributed File Service zFS Administration

Table 8. User File (VM) Caching System Statistics report fields (continued)

Field name Contents

Page Management: Shows how storage in the user file cache is used. It is generally desirable to minimize the
number of steal invocations (reclaims). To minimize the number of steal invocations,
increase the size of the cache. Performance is increased as more data spaces are used.

Total pages
The number of 4 K pages in the cache. That is, (user_cache_size / 4K).

Free The number of available 4 K pages in the cache.

Segments
The number of 64 K sections that was referenced in a file. The number of
segments starts out as half of vnode_cache_size and is allocated as needed, similar
to vnodes.

Steal Invocations
The number of times 4 K pages were reclaimed from the cache.

Waits for Reclaim
The number of times a task waited for space to be reclaimed from the cache.

Number of data spaces
The number of data spaces that are used to hold the 4 K pages in the cache. The
pages are spread evenly across the data spaces to allow for better performance of
the cache. The number of data spaces that are used is approximately one per 16384
4 K pages, up to a maximum of 32.

Pages per dataspace
The number of 4 K pages that is assigned to each data space.

Debugging aids for zFS
If a problem occurs in zFS that requires the attention of IBM support, it is
important to obtain the appropriate problem determination information to help
resolve the problem quickly. This section covers topics to help you gather this
information.

Overview of trace options for zFS
One of the most important aspects of zFS problem determination is its tracing
capability. zFS has an internal (wrap around) trace table that is always tracing
certain events. The size of this trace table is controlled by the IOEFSPRM
trace_table_size option.

Steps for tracing on zFS
If you are re-creating a problem and need to collect a zFS trace, use the following
steps:
1. Allocate the trace output data set as a PDSE, RECFM=VB, LRECL=133 with a

primary allocation of at least 50 cylinders and a secondary allocation of 30
cylinders.

2. Define the zFS trace output data set to zFS by either using the IOEFSPRM
trace_dsn option, or dynamically by using the zfsadm config -trace_dsn
command.
If you use the IOEFSPRM option, zFS must be stopped and then restarted to
pick up the change, unless you also dynamically activate the trace output data
set with the zfsadm config -trace_dsn command.

3. When you are ready to re-create the problem, reset the zFS trace table using the
MODIFY ZFS,TRACE,RESET command.

Chapter 8. Performance and debugging 93

|

|

4. Re-create the problem.
5. Enter the MODIFY ZFS,TRACE,PRINT command. This formats and prints the

trace table to the PDSE defined on the trace_dsn option.
6. Capture the ZFSKNTnn member from the trace output data set, (for example,

copy it to a sequential data set) so that it can be sent to IBM service.

A separate trace output data set is required for each member of a sysplex.
1. Ensure that you set up the trace data sets so that each system in the sysplex

can write to its own trace output data set concurrently. This requires separate
IOEFSPRM files or the use of system symbols in the trace_dsn name or the use
of an IOEPRMxx parmlib member. For more information, see Chapter 5, “Using
zFS in a shared file system environment,” on page 51.

2. Allocate the data set as a PDSE, RECFM=VB, LRECL=133 with a primary
allocation of at least 50 cylinders and a secondary allocation of 30 cylinders.
Each trace output is created as a new member with a name of ZFSKNTnn,
where nn starts at 01 and increments for each trace output until zFS is
restarted. After restart, when the next trace output is sent to the trace output
data set, ZFSKNT01 is overlaid. You should not be accessing the trace output
data set while a trace is being sent to the trace output data set. The space that
is used by a particular trace depends on how large the trace_table_size is and
how recently the trace was reset. For example, a 32-MB trace_table_size can
generate a trace output member of 100 cylinders of 3390. It is important that
the trace output data set be large enough to hold the trace output. If it runs out
of room while sending the trace to the trace output data set, the complete trace
will not be captured.

Note: You can have a trace_table_size up to 65535 MB, but to print the trace
to a PDSE you must limit its size to 750 MB.

IBM service might require you to trace more events. Additional trace information
can be obtained using the following methods:
v Add events to trace by specifying the ioedebug statements in a data set that is

read when zFS is started (or restarted). The data set name is specified in the
IOEFSPRM debug_settings_dsn option. It is a PDS member with an LRECL of at
least 80. IBM specifies the exact statements needed in the data set.

v Dynamically add the events to trace by entering the MODIFY ZFS,IOEDEBUG
command. IBM specifies the exact statements needed.

v If you were not able to capture the trace, but you have a zFS dump, IBM service
can obtain the trace from the dump. To obtain a dump, you can issue a MODIFY
ZFS command. See “Understanding zFS dumps” on page 96 for additional
information.

The zFS trace table is above the 2-GB bar to avoid consuming space in the zFS
address space, which is below the bar.

Understanding the salvager utility
The salvager (ioeagslv or ioefsutl salvage) utility is a zFS-supplied program that
runs as a batch job. It examines a zFS aggregate to determine if there are any
inconsistencies in the structure of the aggregate. In many cases, it can also fix a
corrupted aggregate. Before running the salvager utility against an aggregate, the
aggregate must be unmounted (detached). When a zFS aggregate is not cleanly
unmounted (for example, system is re-IPLed without a shutdown, system goes
down, zFS abends and goes down, zFS is canceled, and so on), the next time the
aggregate is mounted, zFS will play the aggregate log to bring the aggregate back

94 z/OS V2R2 Distributed File Service zFS Administration

|

to a consistent state. Message IOEZ00397I (among others) is issued to indicate zFS
is playing the log. Usually, running the log is successful and does not require any
other action. However, even though the aggregate is consistent, you can still have
some data loss if information was being written shortly before or at the time the
failure occurred.

There are times, listed in the following list, when it might be appropriate to run
the salvager utility against a zFS aggregate. Depending on how the file system is
used at your installation, you might want to run the salvager to ensure that there
is no corruption or to attempt to correct a corruption. For example, if the file
system has not yet been mounted or you can take it offline without impacting
many users or applications, you might want to run the salvager soon after the
problem occurs. Conversely, if the file system is used extensively, you might decide
not to run the salvager or wait for a more convenient time to do so.
v An internal error has occurred during zFS processing for the aggregate.

In this situation, zFS issues abend 2C3 and message IOEZ00422E. zFS detected a
problem and disabled the aggregate so that no reads or writes can occur for this
aggregate until it is remounted. This action attempts to avoid writing incorrect
data that might corrupt the aggregate. If you want to run the salvage utility, you
must first unmount the aggregate.

v An I/O error has occurred while accessing the aggregate. zFS detected a
physical I/O error on the device.
In this case, zFS issues messages IOEZ00001E or IOEZ00550E and the message
IOEZ00422E. zFS detected the I/O error and disabled the aggregate. This is most
likely a hardware problem. Follow your local procedures for analyzing I/O
problems to determine if you want to run the salvage utility. If you run the
utility, you must first unmount the aggregate.

v A zFS problem occurs during a mount of a zFS aggregate.
zFS detected a problem while mounting a zFS aggregate. The mount might
receive a return code of EMVSERR (decimal 157). zFS might issue a
non-terminating abend during the mount. In this case, you might choose to run
the salvager because the aggregate was not yet mounted.

If an aggregate cannot be repaired successfully, the salvager marks it as damaged.
If it is then mounted, an IOEZ00783E message is issued indicating that a damaged
aggregate was mounted.

If you decide to run the salvager utility, specify the -verifyonly option to examine
the aggregate structures. If there are no error messages, the aggregate is not
corrupted. If you run the salvager utility with no options, it attempts to fix any
corruptions that it finds.

In the following situations, the salvager utility might not always be able to fix a
corrupted aggregate:
v If a fundamental aggregate structure is corrupted, the salvager will not be able

to recover the aggregate.
v If the aggregate is large or has many objects, the salvager might not be able to

complete successfully. Even when the salvager is successful, an aggregate with
many objects will take a long time to examine and attempt to repair. It might
take less time to restore a backup copy of the aggregate than to salvage it.

The salvager is designed to make all repairs in one pass, but due to the nature of
the program's inputs (a corrupted, possibly vastly corrupted file system) IBM
recommends a second running of the salvage program to verify that the aggregate

Chapter 8. Performance and debugging 95

is truly repaired. If verifying the aggregate shows that it is not repaired, then you
should try running the salvager again to repair the aggregate. If this does not
repair the aggregate, you can create a copy of the aggregate and run the salvager
more times to try and repair it. If the salvager cannot repair the aggregate after
several repair attempts, the copy of the aggregate and salvager job logs will allow
IBM service to determine why.

It is important to maintain backups of zFS aggregates to restore in case of a
corrupted aggregate. It is also very important to maintain a regular backup
regimen (for example, daily, weekly, monthly) so that if a recent backup is
corrupted, you can use an older backup. However, if a quiesce is not done before
backup, corruption of the file system can result. See Chapter 6, “Copying or
performing a backup of a zFS,” on page 61 for recommendations for backing up
zFS aggregates.

Understanding zFS dumps
Another important source of information is a zFS dump. Any time a zFS failure
occurs, you should check the system log to see if zFS has performed a dump. In a
sysplex, zFS typically requests a dump on the other sysplex members; check to see
if other members have zFS dumps. Typically, these will have the following
message:
IOEZ00337E zFS kernel: non-terminating exception 2C3 occurred, reason EA2F0385

The abend reason of EAxx0385 indicates that the dump was requested by zFS from
another sysplex member. If zFS does not automatically request a dump from the
other sysplex members, you should enter the MODIFY ZFS,DUMP command on
these other systems.

zFS also sends the trace to the trace output data set when a zFS dump occurs.
When a zFS abend occurs, other application failures might occur. For problem
determination, these failures are not as important as the original zFS failure and
dump.

Typically, zFS does not stop as a result of a zFS failure. An aggregate might
become disabled (see “Diagnosing disabled aggregates” on page 105). If zFS does
stop, zFS attempts to perform an internal restart after the terminating exception
occurs. If the internal restart is unsuccessful, zFS attempts a stop and restart
sequence. If the restart is successful, you might need to remount any zFS file
systems. You might need to remount zFS file systems. The SETOMVS command
can be used to remount file systems that were mounted from a BPXPRMxx parmlib
member statement.

If a failure of a zFS operation occurs (other than a user error), but zFS does not
dump, you should get a trace of the failure, if possible. Perform the steps outlined
in “Steps for tracing on zFS” on page 93.

You can also obtain a dump of the zFS address space by entering the MODIFY
ZFS,DUMP command. The dump should contain the zFS trace table. You must
ensure that the dump is complete. Partial dumps are of little use.

Alternatively, you can enter the MODIFY ZFS,ABORT command to cause zFS to
send the trace to the trace output data set and to perform a dump. This also causes
zFS to attempt an internal restart.

96 z/OS V2R2 Distributed File Service zFS Administration

Determining the XCF protocol interface level
Beginning with z/OS V2R2, zFS uses the enhanced log and enhanced status APIs
XCF communication protocols and runs with sysplex=filesys. This change
requires toleration support on V1R13 and V2R1. For more information, see z/OS
Migration.

Message IOEZ00617I is issued during zFS initialization to indicate whether zFS is
running sysplex-aware on a file system basis (referred to as sysplex filesys),
sysplex-aware for all read/write file systems (referred to as sysplex file-support), or
neither (referred to as sysplex admin-only). It also indicates the zFS interface level
that is being used:

4 One of the following:
v The z/OS V2R2 level (with XCF protocol enhance log and enhanced

status APIs).
v The z/OS V2R1 level (with XCF protocol extended directory).
v The z/OS V1R13 level (with XCF enhanced connect protocol).

3 The z/OS V1R12 level.

2 The V1R12-compatible level that is used by z/OS V1R9 and z/OS V1R10.

Saving initialization messages in a data set
The IOEFSPRM msg_output_dsn option specifies the name of a data set that
contains output messages that come from the zFS PFS during zFS initialization.
This option might be helpful for debugging because the data set can be sent to
IBM service if needed. The msg_output_dsn option is optional. If it is not specified,
zFS PFS messages go only to the system log. If it is specified, the data set should
be preallocated as a sequential data set with a RECFM=VB and LRECL=248 and
should be large enough to contain all zFS PFS initialization messages between
restarts. The space used depends on how many zFS initialization messages are
issued. A suggested primary allocation is two cylinders with a secondary allocation
of two cylinders. If the data set fills up, no more messages are written to the data
set. (They still go to the system log.) After zFS restarts, the message output data set
is overwritten.

Determining service levels
You can determine the service level of the zFS physical file system by examining
the messages that occur on the operator's console when zFS initializes.
IOEZ00559I zFS kernel: Initializing z/OS zFS
Version 02.02.00 Service Level 0000000 - HZFS420.
Created on Fri Mar 20 09:26:25 EDT 2015.
Address space asid x44

Alternatively, you can issue the MODIFY ZFS,QUERY,LEVEL operator command
and look for the following message:
IOEZ00639I zFS kernel: z/OS zFS
Version 02.02.00 Service Level 0000000 - HZFS420.
Created on Fri Mar 20 09:26:25 EDT 2015.
sysplex(filesys,rwshare) interface(4)

In a z/OS V1R13 or later shared file system environment, the sysplex level is
(filesys,norwshare) or (filesys,rwshare), depending on the
sysplex_filesys_sharemode. The interface is (4).

Chapter 8. Performance and debugging 97

|
|
|

|
|

|
|
|
|

|
|
|
|

In addition, you can determine the service level of the zfsadm command by issuing
the -level option of the zfsadm command. For example:
IOEZ00020I zfsadm: z/OS zFS
Version 02.02.00 Service Level 0000000 - HZFS420.
Created on Fri Mar 20 09:26:25 EDT 2015.

Understanding namespace validation and correction
zFS provides namespace validation and correction in a shared file system
environment. First, it is important to understand the concept of a namespace. zFS
communicates between sysplex members using XCF protocols. The zFS XCF
protocol exchanges information among members about zFS ownership and other
attributes of zFS mounted file systems. This information, which is kept in the
memory of each zFS member, is called the zFS namespace. If zFS members do not
agree on the zFS owner of each file system, there might be problems that require a
zFS restart or an IPL to recover.

zFS namespace validation is invoked in one of four ways:
v When an administration command experiences an XCF message timeout
v Automatically at zFS initialization
v Automatically when zFS detects a problem that might be because of a

namespace inconsistency
v Explicitly using the MODIFY ZFS,NSVALIDATE operator command.

zFS namespace validation compares the information that is stored in each zFS
member. If zFS validation detects an inconsistency, one or more messages can
occur (for example, IOEZ00612I) and zFS attempts to correct the inconsistency,
using one of the following actions:
v Updating the inconsistent information
v Automatically remounting a file system
v Internally restarting zFS on one or more members.

The corrective action is disruptive and might cause one or more applications to
receive I/O errors and display messages IOEZ00618E through IOEZ00637E. In
addition, zFS might take SVC dumps when it detects a name inconsistency;
therefore, do not issue the MODIFY ZFS,DUMP,ALL command.

Each zFS only keeps track of file systems that are locally mounted. z/OS UNIX
locally mounts file systems on systems where the mount was issued (or directed to
through the SYSNAME parameter), and for sysplex-aware file systems, on other
systems. z/OS UNIX keeps mount information that is hardened in the couple data
set. In addition, zFS keeps track of zFS ownership by using cross system ENQ. The
zFS owner of an aggregate always has an exclusive ENQ with a qname of
SYSZIOEZ and an rname of IOEZLT.aggregatename. In this way, zFS hardens zFS
ownership information in an independent repository. When an inconsistency is
detected in the zFS namespace information between zFS members, this hardened
information can be queried to determine how to automatically correct the
inconsistency.

Tip: Use the DISPLAY GRS,RES=(SYSZIOEZ,*) operator command to display zFS
ENQs. For RNAME explanations and use, see the topic on Serialization summary
in z/OS MVS Diagnosis: Reference.

98 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

Understanding delays and hangs in zFS using the zFS hang
detector

The zFS hang detector automatically monitors the current location of the various
tasks processing in zFS. At a set interval, the hang detector thread wakes up and
scans the current user requests that have been called into zFS. The hang detector
processes this list of tasks and notes various pieces of information to determine the
location of the task. When the hang detector determines that a task has remained
in the same location for a predefined period of time, it attempts to determine why
it is not making progress. This might cause zFS messages or dumps. Certain zFS
messages can remain on the screen while the delay continues. If subsequently, the
hang detector recognizes that this task has finally progressed, it removes zFS
message from the console. If the zFS message is removed, it means that the delay
has cleared and was just a slowdown because of a stressful workload or some
other issue. In this case, you can discard any zFS dumps that occur because of this
delay.

Several zFS messages warn of potential problems in the zFS address space that
have to do with delays. If zFS determines there is a true deadlock, zFS initiates
dumps of all systems. The system that detected the deadlock stops and restarts zFS
to clear the deadlock. Some delays involve only a single system; other delays in a
shared file system environment can involve other systems and XCF
communications.

IOEZ00xxxI zFS messages are issued by the zFS hang detector and generally
remain on the console until the situation is resolved. Resolution occurs when:
v The delayed task completes without any external correction. This is a slowdown

and not a hang, Discard any zFS system dumps.
v The delayed task is cancelled or the request is timed out. In these cases, you

should supply any system dump taken by zFS to IBM service for diagnosis.

For delays, zFS issues several messages to attempt to diagnose what might be
involved in the delay. A delay might occur when:
v zFS invokes another component (such as allocation, open/close, or global

resource serialization). In this case, zFS issues message IOEZ00604I or
IOEZ00660I to recommend that you use the other component's diagnosis
material to determine the cause of the delay. zFS does not produce a dump.

v There is heavy system activity with higher priority tasks delaying lower priority
tasks or a delay in another system service that is not covered by message
IOEZ00604I. In this case, zFS issues message IOEZ00605I, but does not produce
a dump.

Hangs and delays in shared file system environment
When there is an XCF communication delay, the zFS hang detector sends you a
message. For example:
v If the other system never received the XCF message, zFS issues message

IOEZ00591I.
v If the other system received the XCF message, but it is not making any progress

on the other system or zFS cannot determine its status, zFS issues message
IOEZ00547I.

v If the other system received the XCF message but the progress is very slow or
long running, zFS issues message IOEZ00661I.

v If the other system processed the XCF message and sent a response back, but
zFS did not receive the response, zFS issues message IOEZ00592I.

Chapter 8. Performance and debugging 99

In these cases, zFS does not issue a system dump. Use the message information
that refers to the systems that are not responding and determine the status of those
systems. There might also be messages on the other systems that indicate the real
problem. (Typically, each system issues its own messages when there is a problem.)
There are timeouts on each XCF message. Wait to see whether a request timing out
resolves the hang. If a request times out, the request will fail.

zFS also determines how long remote requests can take by supplying a timeout
value to XCF (approximately 10 to 15 minutes). XCF monitors the request and if it
takes longer than the timeout value, XCF indicates to zFS that the request timed
out. In this case, zFS issues message IOEZ00658E or IOEZ00659E and fails the
request. The message indicates an aggregate name if the timeout can be associated
with an aggregate. The administrator should use the information in the message
that refers to the system that is not responding and determine the status of that
system. You might see zFS hang detector messages and the operation might not
have run on the target system.

Steps for diagnosing and resolving a zFS hang
About this task

Perform the following steps when a hang condition is suspected.

Procedure
1. Continually monitor for the following messages:

IOEZ00524I
zFS has a potentially hanging thread that is caused by: UserList, where:
UserList is a list of address space IDs and TCB addresses causing the
hang.

IOEZ00547I
zFS has a potentially hanging XCF request on systems: Systemnames,
where: Systemnames is the list of system names.

To start investigating, if in a sysplex file sharing environment check for
message IOEZ00547I (hanging XCF request), which can indicate an XCF issue.
If you see this message:
a. Check the status of XCF on each system in the sysplex.
b. Check for any outstanding message that might need a response to

determine whether a system is leaving the sysplex or not (for example,
IXC402D). The wait for a response to the message might appear to be a
zFS hang.

If there is no apparent problem with XCF, continue diagnosis and resolution
of the hang by looking for the following messages in syslog or on the operator
console. Check each system in the sysplex if applicable.

IOEZ00604I or IOEZ00660I
The delay is outside of zFS. zFS called the identified system service and is
waiting for a response. Investigate the identified system service. The
problem is likely not with zFS.

IOEZ00605I
The delay is either in zFS or in a system service that zFS did not
specifically identify in message IOEZ00604I. zFS cannot determine
whether there is a hang, a slowdown, or some other system problem. To
take action, look for other symptoms. For example, if you see messages

100 z/OS V2R2 Distributed File Service zFS Administration

about components that are using a significant amount of auxiliary storage,
resolve the auxiliary storage shortage. If the message persists, continue to
the next step.

2. Enter the MODIFY ZFS,QUERY,THREADS command to determine whether
any zFS threads are hanging and why.
The type and amount of information that is displayed as a result of this
command is for internal use and can vary between releases or service levels.
For an example, see Figure 39 on page 102.

3. Enter the DISPLAY A,ZFS command to determine the zFS ASID.
4. Enter MODIFY ZFS,QUERY,THREADS at one to two-minute intervals for six

minutes.
5. Check the output for any user tasks (tasks that do not show the zFS ASID)

that are repeatedly in the same state during the time you requested MODIFY
ZFS,QUERY,THREADS. If there is a hang, the task that is hanging persists
unchanged over the course of this time span. If the information is different
each time, there is no hang.

6. If message IOEZ00581E is highlighted in white on the console, there are or
recently were quiesced zFS aggregates. Verify that no zFS aggregates are in the
QUIESCED state by checking their status using the zfsadm lsaggr, zfsadm
aggrinfo -long, or zfsadm fsinfo command. For example, quiesced
aggregates are displayed as follows:

DCESVPI:/home/susvpi/> zfsadm lsaggr
IOEZ00106I A total of 1 aggregates are attached
SUSVPI.HIGHRISK.TEST DCESVPI R/W QUIESCE
DCESVPI:/home/susvpi/> zfsadm aggrinfo
IOEZ00370I A total of 1 aggregates are attached.
SUSVPI.HIGHRISK.TEST (R/W COMP QUIESCED): 35582 K free out of total 36000
DCESVPI:/home/susvpi/>

or

DCESVPI:/home/susvpi/> zfsadm aggrinfo susvpi.highrisk.test1.zfs -long
SUSVPI.HIGHRISK.TEST1.ZFS (R/W COMP QUIESCED): 50333 K free out of total 72000
version 1.4
auditfid 00000000 00000000 0000
6289 free 8k blocks; 21 free 1K fragments
720 K log file; 40 K filesystem table
16 K bitmap file
Quiesced by job SUSVPI5 on system DCESVPI on Tue Jan 3 13:36:37 2013

This example shows how to determine which aggregates are quiesced with the
owner information.

> ./zfsadm fsinfo -select Q
PLEX.DCEIMGNJ.FS4 DCEIMGNJ RW,RS,Q
PLEX.DCEIMGNK.FS6 DCEIMGNK RW,RS,Q

Legend: RW=Read-write,Q=Quiesced,RS=Mounted RWSHARE

If the hang condition prevents you from issuing shell commands, you can also
issue the MODIFY ZFS,QUERY,FILE,ALL command to determine whether any
file systems are quiesced. As Figure 30 on page 74 shows, a quiesced file
system is identified by a “Q” in the flg column.
Resolve the QUIESCED state before continuing to the next step. The hang
condition message can remain on the console for up to a minute after the
aggregate is unquiesced.

Chapter 8. Performance and debugging 101

|

|
|

|
|
|
|
|

Message IOEZ00581E appears on the zFS owning systems that contain at least
one zFS aggregate that is quiesced. There is a delay between the time that the
aggregate is quiesced and the time that the message appears. Typically, this
time delay is about 30 seconds. You can control this time delay by using the
IOEFSPRM QUIESCE_MESSAGE_DELAY option. This option allows you to
specify that the delay should be longer than 30 seconds before the
IOEZ00581E message is first displayed. When there are no quiesced zFS
aggregates on the system, this message is removed from the console.
There is also a delay between the time that the last aggregate is unquiesced
and the time that the message is removed from the console. This message is
handled by a thread that wakes up every 30 seconds and checks for any
quiesced aggregates that are owned by this system. It is possible for an
aggregate to be quiesced and unquiesced in the 30-second sleep window of
the thread and not produce a quiesce message. This message remains if one
aggregate is unquiesced and another is quiesced within the 30-second sleep
window.

7. Check whether any user tasks are hung, focusing on the tasks that are
identified by message IOEZ00524I or message IOEZ00660I. User tasks do not
have the same address space identifier (ASID) as the zFS address space. One
or more threads consistently at the same location might indicate a hang (for
example, Recov, TCB, ASID Stack, Routine, State). The threads in the zFS
address space with the zFS ASID (for example, xcf_server) are typically
waiting for work. It is typical for the routine these threads are waiting in to
have the same name as the entry routine. For an example, see Figure 39.
If successive iterations of the MODIFY ZFS,QUERY,THREADS command show
that the STK/Recov, TCB, ASID, Routine, and State for a thread are constant,
it is probable that this thread is hung.

zFS and z/OS UNIX Tasks

STK/Recov TCB ASID Stack Routine State
---------- -------- ---- ---------- -------- --------
48338F0000 005CABE8 005A 48338F0700 ZFSRDWR OSIWAIT
48000AF8F0

since Oct 14 04:15:57 2014 Current DSA: 48338F2D38
wait code location offset=0ACA rtn=allocate_pages

wait for resource=7BCC6330 0
resource description=VNOPS user file cache page reclaim wait

ReadLock held for 4823FDBF50 state=2 0
lock description=Vnode-cache access lock

Operation counted for OEVFS=7E7EC190 VOLP=4826660200
fs=PLEX.ZFS.SMALL1

48338E8000 005CA1D0 00B8 48338E8810 ZFSCREAT WAITLOCK
48000B0640

since Oct 14 04:15:57 2014 Current DSA: 48338EB5C8
wait code location offset=3D74 rtn=epit4_Allocate

lock=48203E30F0 state=80000048000D6AA1 owner=(48000D6AA0 00B85CA830)
lock description=ANODETB status area lock

ReadLock held for 4833F0DE50 state=A 0
lock description=Vnode-cache access lock

ReadLock held for 4833F0DEC0 state=8 0
lock description=Vnode lock

ReadLock held for 482060CC20 state=7 7A94FEF0
lock description=Vnode lock

ReadLock held for 482606BA00 state=4 0
lock description=Anode fileset handle lock

ReadLock held for 48203E30E0 state=4 0

Figure 39. Example of how to check whether user tasks are hung

102 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

lock description=ANODETB main update lock
Resource 4833F0DE40 1A held

resource description=STKC held token by local user task
Resource 4826661800 17 held

resource description=ANODE maximum transactions started for a
Resource 4830D68580 2F held

resource description=Transaction in progress
Operation counted for OEVFS=7AB8DA20 VOLP=4826661A00

fs=ZFSAGGR.BIGZFS.DHH.FS1.EXTATTR

48338E0000 005C12F8 0084 48338E0700 ZFSRDWR WAITLOCK
48000B1390

since Oct 14 04:15:57 2014 Current DSA: 48338E23C8
wait code location offset=4940 rtn=stkc_getTokenLocked

lock=4823F8CFD0 state=5 owner=(2 read holders)
lock description=Vnode-cache access lock

Operation counted for OEVFS=7AB8D1E0 VOLP=4826663200
fs=ZFSAGGR.BIGZFS.DHH.FS6.EXTATTR

48338D8000 005CAD80 0079 48338D8700 ZFSRDWR OSIWAIT
48000B20E0

since Oct 14 04:15:57 2014 Current DSA: 48338DAE38
wait code location offset=0ACA rtn=allocate_pages

wait for resource=7BCC6330 0
resource description=VNOPS user file cache page reclaim wait

ReadLock held for 4823F49F10 state=A 0
lock description=Vnode-cache access lock

Operation counted for OEVFS=7AB8D1E0 VOLP=4826663200
fs=ZFSAGGR.BIGZFS.DHH.FS6.EXTATTR

48338D0000 005CAA50 00B7 48338D0810 ZFSCREAT RUNNING
48000B2E30

since Oct 14 04:15:57 2014
ReadLock held for 7E5C2670 state=2 0

lock description=Cache Services hashtable resize lock
Resource 4823FF4820 1A held

resource description=STKC held token by local user task
Resource 4826661E00 17 held

resource description=ANODE maximum transactions started for a
Resource 4831569A80 2F held

resource description=Transaction in progress
Operation counted for OEVFS=7AB8D810 VOLP=4826662000

fs=ZFSAGGR.BIGZFS.DHH.FS2.EXTATTR

48338C8000 005CABE8 00A6 48338C8700 ZFSRDWR OSIWAIT
48000B3B80

since Oct 14 04:15:57 2014 Current DSA: 48338CAD38
wait code location offset=0ACA rtn=allocate_pages

wait for resource=7BCC6330 0
resource description=VNOPS user file cache page reclaim wait

ReadLock held for 4835B3ABD0 state=6 0
lock description=Vnode-cache access lock

Operation counted for OEVFS=7E7EC190 VOLP=4826660200
fs=PLEX.ZFS.SMALL1

7F37B000 005D5528 0044 7F37C000 openclose_task RUNNING
since Oct 14 03:43:35 2014

7F3B4000 005F81D0 0044 7F3B5000 CNMAIN WAITING
since Oct 14 02:58:01 2014

7BC45000 005C19C0 0044 7BC46000 comm_daemon RUNNING
4800004290

since Oct 14 04:15:57 2014

8. IBM Support must have dumps of zFS, OMVS and the OMVS data spaces and
also possibly the user address space identified on any preceding IOEZ00605

Chapter 8. Performance and debugging 103

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

for problem resolution. Obtain and save SYSLOG and dumps of zFS, OMVS
and the OMVS data spaces , and the user ASID using
JOBNAME=(OMVS,ZFS,user_jobname),DSPNAME=(’OMVS’.*) in your reply to the
DUMP command. If you are running in a sysplex and zFS is running on other
systems in the sysplex, dump all the systems in the sysplex where zFS is
running, dumping zFS, OMVS and OMVS data spaces. The following is an
example of the DUMP command:
DUMP COMM=(zfs hang)
R x,JOBNAME=(OMVS,ZFS),SDATA=(RGN,LPA,SQA,LSQA,PSA,CSA,GRSQ,TRT,SUM,COUPLE),
JOBNAME=(OMVS,ZFS,user_jobname)
DSPNAME=(’OMVS’.*),END

Do not specify the job name ZFS if zFS is running inside the OMVS address
space.
You must capture dumps for IBM Support before taking any recovery actions
(HANGBREAK, CANCEL, ABORT).

9. If you know which user task is hung (for example, returned in IOEZ00524I or
determined to be hung after review of the output from repeated MODIFY
ZFS,QUERY,THREADS,OLDEST commands), consider entering the CANCEL
or STOP command to clear that task from the system.

10. Finally, if the previous steps do not clear the hang, issue the MODIFY
ZFS,ABORT command to initiate a zFS internal restart.
An internal restart causes the zFS kernel (IOEFSKN) to end and then restart,
under control of the zFS controller task (IOEFSCM). The zFS address space
does not end and the z/OS UNIX mount tree is preserved. During the internal
restart, requests that are already in the zFS address space fail and new
requests are suspended. File systems owned by zFS on the system that is
doing the internal restart become temporarily unowned. These file systems are
taken over by other zFS systems (or by the zFS system doing the internal
restart when it completes the internal restart). When the internal restart is
complete, the suspended new requests resume.
If you question the hang condition or if the MODIFY ZFS,ABORT command
does not resolve the situation, contact IBM Support and provide all the dumps
and SYSLOG information.

Identifying storage shortages in zFS
When zFS can no longer obtain sufficient storage to complete a request, it issues
message IOEZ00188A, possibly creates a dump, and restarts. If you see message
IOEZ00188A before zFS initialization is complete (before message IOEZ00055I),
either increase the REGION size in the ZFS PROC or decrease some cache sizes in
the IOEFSPRM configuration file.

In addition, the zFS hang detector periodically checks a warning limit and a critical
limit. When it reaches the warning limit, message IOEZ00662I displays and
remains on the console until the situation is resolved, or until the critical limit is
reached. If the critical limit is reached, message IOEZ00663I displays and remains
on the console until storage usage goes below the critical limit to the warning
limit, and then message IOEZ00662I displays again. See “STOR” on page 85 for
more information about how to determine the amount of storage being used in the
zFS address space.

A zFS storage shortage can be caused by the number of active vnodes in use in
zFS. You can query the number of held vnodes using either the MODIFY
ZFS,QUERY,LFS system command, or the zfsadm query -vnodecache command.
You can also query the current sizes of the zFS caches in the zFS address space

104 z/OS V2R2 Distributed File Service zFS Administration

|
|

using the zfsadm configquery command with its cache size parameters, such as
-meta_cache_size or -vnode_cache_size. For example, zfsadm configquery
-meta_cache_size returns the metadata cache size. When zFS is running in a
shared file system environment, you can query the client reply storage using
zfsadm configquery -client_reply_storage. You can also determine cache sizes by
using the MODIFY ZFS,QUERY,STORAGE command. Decreasing one or more
cache sizes might relieve the zFS storage shortage.

Tips:

v Changing the size of a cache can cause delays. Try to change the size during low
activity periods.

v In general, if you see a return code of 132 (ENOMEM), zFS is short on storage;
take steps to reduce zFS storage usage. When storage shortages become critical,
you can also see 157 (EMVSERR) and mounts might begin to fail.

v Started subtasks, such as the zFS colony address space, fall under SUBSYS STC.
These address spaces might be subject to IEFUSI limitations if IEFUSI exits are
allowed for SUBSYS STC. IBM strongly recommends that you always set
REGION=0M and MEMLIMIT=NOLIMIT for the zFS colony address space.

Diagnosing disabled aggregates
If zFS detects a problem on an aggregate that is mounted read/write, zFS attempts
to isolate the failure. As a result, zFS might mark an aggregate unavailable and
issue message IOEZ00422E, as shown in the following example.
IOEZ00422E Aggregate PLEX.JMS.AGGR001.LDS0001 disabled

In addition, a dump and possibly zFS trace information might be generated. You
can contact IBM service and provide the dump and the trace and any other
information that is useful for diagnosing the problem (for example, what was
running on the system when the problem occurred).

When an aggregate is disabled, applications cannot read from, or write to, the
aggregate. Other aggregates that are not involved in the failure remain available.
However, the disabled aggregate is unavailable for reading and writing until it is
unmounted and mounted. Beginning with z/OS V1R13, if the disabled aggregate is
zFS owned on a zFS V1R13 or later system, zFS attempts to automatically re-enable
the disabled aggregate and make it available again for use.
v zFS attempts an internal remount samemode on the zFS-owning z/OS V1R13 or

later system in the following situations:
– It is in a non-shared file system environment
– The file system is non-sysplex aware
– The file system is sysplex-aware, but no other z/OS V1R13 or later system in

the shared file system environment can take it over
v Alternatively, in a shared file system environment where the file system is

sysplex-aware, the zFS owning system requests that another system that is
running z/OS V1R11 or later take over the aggregate.

The preceding re-enablement actions (aggregate movement or internal remount
samemode) are taken only if the file system became disabled due to an internal
zFS error or a corruption.

Chapter 8. Performance and debugging 105

|

|
|
|
|

Even though the aggregate is disabled, z/OS UNIX System Services continues to
display the aggregate mounted as R/W. To determine whether the aggregate has
been marked as disabled, use the zfsadm lsaggr command or the zfsadm aggrinfo
command.

An aggregate that was disabled might be corrupted, even if it was disabled and
remounted. To be sure that the aggregate is internally consistent, run the ioefsutl
salvage batch utility against the aggregate that was disabled, to repair any
corruption, and prevent loss of data. See “ioefsutl” on page 136 for more
information.

Handling disabled aggregates
An aggregate can become disabled for many reasons, such as:
v An I/O error or failure of a DASD device
v Loss of connectivity to a DASD device
v An internal zFS error
v Permanent corruption of the aggregate

Disabled aggregates when some systems are on z/OS V1R13 or
later
The following information applies when some systems are on z/OS V1R13 or later.
If a compatibility mode aggregate becomes disabled, zFS attempts to automatically
re-enable the disabled aggregate. It either requests that another system in the
shared file system environment take over the aggregate (if it is sysplex-aware) or it
attempts an internal remount samemode. This action should recover the aggregate
and it will no longer be disabled.

Generally, an aggregate that has become disabled (unless it was due to a planned
activity, such as an vary offline of a device) should be salvaged by using the
ioefsutl salvage utility at your earliest convenience. Because zFS has detected a
problem, there is a chance that the file system is corrupted, even if it has been
successfully re-enabled. If the file system can be taken offline (unmounted)
immediately or at a regularly-scheduled time, you should do so and run salvager.
However, if the file system is a critical production file system that cannot be easily
unmounted, you will have to use judgment considering the inconvenience of
unmounting the file system against the risk of continuing to use a file system that
may possibly be corrupted. When the file system is backed up according to your
installation's regular schedule, you might be backing up a corrupted file system; if
this continues, you might lose any previous backed-up versions of the file system
that were not corrupted. In this case, you may want to arrange to salvage the first
backup copy of the file system after it was disabled and re-enabled.

To run the ioefsutl salvage utility, you must first unmount the aggregate. The
z/OS UNIX shell unmount command (/usr/sbin/unmount) may query the status of
the file system before unmounting it. Because the file system is disabled, this query
will fail which, in turn, may cause the entire unmount to fail. Therefore, you might
need to use the TSO/E UNMOUNT command or the operator MODIFY
BPXOINIT,FILESYS=UNMOUNT,FILESYSTEM=filesysname command to unmount
the disabled file system. If you do not unmount before running ioefsutl salvage
the system issues messages, such as the following one:
IKJ56225I DATA SET PLEX.JMS.AGGR001.LDS0001 ALREADY IN USE, TRY LATER+
IKJ56225I DATA SET IS ALLOCATED TO ANOTHER JOB OR USER
IOEZ00003E While opening minor device 1, could not open dataset
PLEX.JMS.AGGR001.LDS0001.

106 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

After you run the ioefsutl salvage utility and are satisfied that the aggregate is in
a consistent state, mount the aggregate again.

Chapter 8. Performance and debugging 107

108 z/OS V2R2 Distributed File Service zFS Administration

Chapter 9. Overview of the zFS audit identifier

An auditid is a 16-byte value that is associated with each z/OS UNIX file or
directory. The auditid identifies a z/OS UNIX file or directory in an SMF audit
record or in certain authorization failure messages (for example, RACF message
ICH408I). An auditid appears in Type 80 SMF records and in the output of certain
z/OS UNIX APIs (for example, stat). zFS allows the administrator to specify
whether zFS uses a more unique auditid for a zFS file or directory, or uses the
non-unique, standard auditid.

Tip: The auditid tool can display a file path name if you know the auditid. The
tool works only for a unique auditid; it does not work for a standard auditid. It is
not supported and is available on the z/OS UNIX System Services Tools and Toys
web page (http://www.ibm.com/systems/z/os/zos/features/unix/
bpxa1ty2.html).

Figure 40 shows the format of the unique zFS auditid, the standard zFS auditid,
and the HFS auditid.

Together, the i-node and unique identifier identify the file or directory within a file
system. The remainder of the auditid identifies the file system. The i-node is a slot
number that identifies an existing file or directory, but it is reused when a file or
directory is deleted. When that same i-node slot is used for a different file or
directory, the uniquifier is incremented so that the combination of the i-node and
uniquifier is unique. When the uniquifier is two bytes, they are the low order bytes
(the bytes that change most often) of the four-byte uniquifier. In the unique zFS
auditid, the file system part of the auditid is known as the auditfid. The VOLSER
is the volume serial of the volume that contains the first extent of the zFS
aggregate data set. The CCHH is the CCHH of the first extent of the zFS aggregate
data set.

The auditfid in the zFS aggregate controls the type of auditid zFS uses: unique
auditid or less unique auditid (auditfid of binary zeros). Typically, a zFS aggregate
contains a zero auditfid, but you can take steps to store a unique zFS auditfid,
which subsequently causes zFS to generate a unique format auditid for each file or
directory in the aggregate.

}
zFS auditid
(standard)

zFS auditid
(unique)

HFS auditid

auditfid

i-node uniq

CCHH i-node uniqvolser

01 volser TTR i-node uniq

0 0

Figure 40. zFS auditid examples

© Copyright IBM Corp. 2001, 2015 109

http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html

There are three ways to control the zFS auditfid that is stored in the aggregate,
which thereby controls the format of the zFS auditid for files and directories that
are contained in the aggregate:
v When formatting an aggregate, you get a unique auditfid by default (that is, if

you do not specify -nonewauditfid). This is true for the IOEAGFMT batch utility
and the zfsadm format command. If you specify -nonewauditfid, the aggregate
has the standard auditfid (binary zeros). The IOEFSUTL format always provides
a unique auditfid.

v You can optionally specify a zFS configuration option (convert_auditfid=on) in
the IOEFSPRM file to control whether the aggregate's auditfid is converted from
a standard format auditfid to a unique auditfid when a zFS file system is
mounted. If you specify on, zFS converts the standard auditfid to the unique
auditfid on the read/write mount (attach) of the aggregate. You can also specify
the convert_auditfid configuration option using the zfsadm config
-convert_auditfid option and query using the zfsadm configquery
-convert_auditfid option. The default for convert_auditfid is ON.

v You can explicitly set an aggregate's auditfid to a unique auditfid using the
zfsadm setauditfid command.

Enabling the zFS auditid
To enable the unique auditid, start by following scenario 2 with some new
aggregates to verify that it does not cause problems for your installation. Then, use
scenario 3 to convert the rest of the aggregates. The next time the aggregates are
mounted, they have a unique auditfid.

Scenarios:

1. You want all your aggregates to have the unique auditfid (and therefore, all
auditids) use the new method:
a. Do nothing. The default is convert_auditfid=on in your IOEPRMxx

configuration file and new aggregates get unique auditfids by default.

Result: Any existing aggregates are converted to the unique auditfid the next
time they are mounted (attached). Newly formatted aggregates using
IOEAGFMT, or zfsadm format get unique auditfids by default. IOEFSUTL
format always creates unique auditfids.

2. You want your new aggregates to have the unique auditfid and your existing
aggregates to remain with the standard auditfid:
a. Specify convert_auditfid=off in your IOEPRMxx configuration file.
b. Specify (or default to) -newauditfid when you format new aggregates using

IOEAGFMT or zfsadm format. Use IOEFSUTL to format new aggregates.

Result: Old aggregates are not converted to unique auditfids when you mount
(attach), but new aggregates have the unique auditfids.

3. You want all your aggregates to remain with the standard auditfid (and
therefore all auditids have the standard format):
a. Specify convert_auditfid=off in your IOEPRMxx configuration file and

specify -nonewauditfid when you use IOEAGFMT or zfsadm format to
format new aggregates. Do not use IOEFSUTL format to format new
aggregates.

110 z/OS V2R2 Distributed File Service zFS Administration

Result: Any existing aggregates are converted to the unique auditfid the next
time they are mounted (attached). When you format new aggregates and
specify the –newauditfid option, the aggregates have the unique auditfid.

Tip: New aggregates formatted with ISHELL, automount allocany, allocuser, or the
BPXWH2Z utility will not have unique auditfids after they are formatted.
However, they will be converted to unique auditfids by default the first time they
are mounted unless you specify convert_auditfid=off in your IOEPRMxx
configuration file or specify zfsadm config -convert_auditfid off.

If a zFS aggregate is moved to another DASD location, the auditfid remains the
same, unless you change it using the zfsadm setauditfid -force command. This is
a trade-off between changing the auditfid, which causes auditids for the same file
to be generated differently, versus not changing the auditfid, which causes auditids
to remain the same but with the possibility that another zFS aggregate might get
allocated with the first extent exactly in the place (and on the same volume) as the
moved aggregate was located. This means that two different zFS files/directories
might have the same auditid.

Even though the zFS auditid format is described, the internal contents of an
auditid might not match exactly as stated. The VOLSER might not match the
VOLSER of the volume containing the first extent because of moving the
aggregate. The main use should be as an opaque number (that is, you should only
use it to compare for equality of the whole auditid against another auditid).

Use the following algorithm to help distinguish between the unique auditfid, the
standard zFS auditfid, and HFS auditid (which does not depend on the internal
contents of the new zFS auditid):

If the last eight bytes of the auditid are binary zero, the auditid is zFS standard format
Else, if the first byte of the auditid is X’01’, the auditid is an HFS format
Else, the auditid is the unique zFS format

Chapter 9. Overview of the zFS audit identifier 111

112 z/OS V2R2 Distributed File Service zFS Administration

Part 2. zFS administration reference

This part of the document contains reference information for zFS, and includes the
following topics:
v Chapter 10, “z/OS system commands,” on page 115
v Chapter 11, “zFS commands,” on page 125
v Chapter 12, “The zFS configuration options file (IOEPRMxx or IOEFSPRM),” on

page 219
v Chapter 13, “zFS application programming interface information,” on page 233.

© Copyright IBM Corp. 2001, 2015 113

114 z/OS V2R2 Distributed File Service zFS Administration

Chapter 10. z/OS system commands

Several z/OS system commands are available.
v MODIFY ZFS PROCESS queries internal counters and values. Use it to initiate or

gather debugging information.
v SETOMVS RESET starts the zFS Physical File System (PFS) if it has not been

started at IPL, or if the PFS was stopped and the BPXF032D message was
responded to with a reply of i.

Run these commands from the console or from System Display and Search Facility
(SDSF).

© Copyright IBM Corp. 2001, 2015 115

MODIFY ZFS PROCESS
Purpose

The MODIFY ZFS PROCESS command enables you to query internal zFS counters
and values. They are displayed on the system log. It also allows you to initiate or
gather debugging information. To use this command, the zFS PFS must be running.

Prior to z/OS V2R2, zFS always ran as a colony address space. The syntax of that
command was modify zfs,<cmd>.

Beginning in z/OS V2R2, zFS can be run as a colony address space or in the
OMVS address space. In both cases, the syntax of the modify command can be
modify omvs,pfs=zfs,<cmd>. This form of the modify command should also be
used if you have any zFS modify commands issued through an automated process
or system automation.

When zFS modify commands in this documentation are mentioned, they are
shown in the historical modify zfs,<cmd> form, as they always have been, rather
than always mentioning both forms.

Format

You can use any of the following formats for this command.

Parameters

procname
The name of the zFS PFS PROC. The default procname is ZFS.

If zFS is running in the OMVS address space (the address space that is
used by z/OS UNIX), procname must direct the command to zFS through
OMVS. For example:
modify omvs,pfs=zfs,command

command
The action that is performed on the zFS PFS. This parameter can have one
of the following values:

abort Causes zFS to dump and then perform an internal restart. The
internal trace table is also printed to the data set specified in the
IOEFSPRM file trace_dsn entry.

modify procname,query,{level | settings | threads[,{allwait | oldest}] | status|
[{kn | vm | lfs | lock | storage | file | stkm | ctkc | svi | iobydasd | dataset | all}]

modifyprocname,reset,{kn | vm | lfs | lock | storage | file | stkm | ctkc | svi | iobydasd |
dataset | all}

modify procname,trace,{reset | print}

modify procname,abort

modify procname,dump

modify procname,hangbreak

modify procname,unquiesce,aggregate_name

modify procname,nsvalidate[,print]

modify procname,fsinfo[,{aggrname | all} [,{full | basic | owner | reset}
[,{select=criteria | exceptions}] [,sort=sort_name]]]

MODIFY ZFS PROCESS

116 z/OS V2R2 Distributed File Service zFS Administration

|
|

|
|

|
|
|
|
|

|
|
|

dump Causes the zFS PFS to dump and to print the internal trace table to
the data set specified in the IOEFSPRM file trace_dsn entry.

fsinfo Displays detailed information about a zFS file system, which is
also known as a zFS aggregate.

aggrname
Specifies the name of the aggregate that the detailed zFS
information is for. The aggregate name is not case-sensitive
and is translated to uppercase. To specify multiple
aggregates with similar names, use an asterisk (*) at the
beginning, at the end, or both at the beginning and the end
of aggrname as a wildcard. If aggrname is specified with
wildcards, the default display is basic. Otherwise, the
default display is owner. For more information, see “Usage
notes for displaying file system information” on page 121
and “Examples of displaying file system information” on
page 122.

all Displays information for all aggregates in the sysplex. It is
the default when aggrname is not specified. The default
information display will be as if basic were specified.

basic Displays a line of basic file system information for each
specified file system. This option is the default in the
following situations:
v The all option is specified but full, owner, and reset are

not specified.
v If aggrname and all are not specified.
v aggrname is specified with wildcards.

For more information about what is displayed when the
basic option is used, see Table 13 on page 194.

exceptions
Displays information about any specified aggregate that is
quiesced, disabled, had grow failures, is low on space,
failed to convert a directory to version5, or is damaged.
Any specified aggregate is also displayed if it has had XCF
communication failures or an error because it ran out of
space or when doing I/O. This option cannot be specified
with reset, select, and aggrname with no wildcard.

full Displays information that is maintained by the system
owning each specified file system. It also displays
information that is locally maintained by each system in
the sysplex that has each specified file system locally
mounted.

Tip: If a large number of file systems are to be displayed, a
large amount of output will be displayed. For that case,
consider using either the basic output option or the zfsadm
fsinfo command so that the output can be redirected to a
file.

owner Displays only information that is maintained by the system
owning each file system specified. This option is the
default when aggrname with no wildcards is specified. For

MODIFY ZFS PROCESS

Chapter 10. z/OS system commands 117

||
|

|
|
|
|
|
|
|
|
|
|
|
|

||
|
|

||
|
|

|
|

|

|

|
|

|
|
|
|
|
|
|
|

||
|
|
|
|

|
|
|
|
|

||
|
|

more information about what is displayed when the owner
option is used, see Table 13 on page 194 and Table 14 on
page 194.

Tip: If a large number of file systems are to be displayed, a
large amount of output will be displayed. For that case,
consider using either the basic output option or the zfsadm
fsinfo command so that the output can be redirected to a
file.

reset Resets zFS statistics that relate to each specified file system.
reset cannot be specified with basic, full, owner,
exceptions, select, or sort.

select=criteria
Displays each specified file system that matches the
criteria.

This option cannot be specified with exceptions, reset, and
aggrname with no wildcard.

To use this option, specify a selection criteria from Table 12
on page 193. Multiple criteria are separated by spaces.

sort=sort_option
Sorts the displayed information using the value of
sort_option. The default is to sort by Name. This option
cannot be specified with reset. For a list of the sorting
options, see Table 15 on page 196.

hangbreak
Causes a zFS internal restart; this produces the same result as
issuing a modify zfs,abort command.

nsvalidate
Initiates the zFS namespace validation on the system where the
command is entered. The modify nsvalidate command should
only be used in a shared file system environment; typically, it is
only used as a part of a recovery procedure when a problem with
zFS is suspected. If the command finds an inconsistency, it might
cause zFS to abort and internally restart the zFS address space on
one or more systems to correct the zFS namespace inconsistency.
The modify nsvalidate command consists of the following option:

print The optional print parameter displays additional name
space information that is obtained after validation.

query Displays zFS counters or values.

level Displays the zFS level for the zFS physical file system
kernel. When running in a shared file system environment,
level also displays the zFS sysplex level and the zFS XCF
communication interface level (1, 2, 3 or 4). The zFS
sysplex level is controlled by the IOEFSPRM sysplex
configuration option. When the sysplex level is filesys, the
default mount PARM (NORWSHARE or RWSHARE) is
also displayed. (As of z/OS V1R13, zFS always runs with
sysplex=filesys.) For an example and more information,
see “Determining service levels” on page 97.

MODIFY ZFS PROCESS

118 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

|
|
|
|
|

||
|
|

|
|
|

|
|

|
|

|
|
|
|
|

settings
Displays the zFS configuration settings, which are based on
the IOEFSPRM file and defaults.

status Displays zFS internal restart information.

threads[,{allwait | oldest }]
Displays the threads that are monitored by the zFS hang
detector. To display all zFS threads, use the modify
zfs,query,threads,allwait command. The time of day
values are shown in Greenwich mean time (GMT). To
display the oldest thread of each system, use the modify
zfs,query,threads,oldest command.

<report>
One of the following report options. These parameters all
produce reports; for details about these reports, see
“Monitoring zFS performance” on page 71.

all Displays all the zFS counters.

ctkc Displays the client calls to other systems. Output is
only displayed when the zFS ctkc component on
this system has sent a message to another system.

dataset
Displays zFS statistics about file systems.

file Displays the requests per zFS file system and
aggregate.

iobydasd
Displays the DASD that is attached by volume.

kn Displays the calls that were made to zFS from
z/OS UNIX.

lfs Displays the file system statistics, including the
performance of the zFS metadata caches, the vnode
cache, and the aggregate I/O statistics.

lock Displays the lock contention values.

log Displays the log statistics.

stkm Displays the current server token manager (STKM)
statistics.

storage
Displays the zFS storage values.

svi Displays the calls from other systems to this server
through the server vnode interface (SVI)
component. Output is only displayed when the zFS
svi component on this system has received a
message from another system.

vm Displays the user file cache, including cache hit
ratios, I/O rates, and storage usage.

reset Resets zFS counters and consists of the following options:

all Resets all the zFS counters to zero.

ctkc Resets the client call statistics.

MODIFY ZFS PROCESS

Chapter 10. z/OS system commands 119

|
|

dataset
Reset the zFS statistics about file systems.

file Resets the requests for zFS file system and
aggregate.

iobydasd
Resets the count of the DASD that is attached by
volume.

kn Resets the calls that were made to zFS from z/OS
UNIX.

lfs Resets the file system statistics, including the
performance of the zFS metadata caches, the vnode
cache, and the aggregate I/O statistics.

lock Resets the lock contention values.

log Resets the log statistics.

stkm Resets the server token manager (STKM) statistics.

storage
Resets the zFS storage counters.

svi Resets the received calls from other systems
statistics.

vm Resets the user file cache, including cache hit
ratios, I/O rates, and storage usage.

No other options are allowed after reset.

trace Resets or prints the internal zFS trace table.

print Formats and sends the current trace table to the data set
specified in the IOEFSPRM file trace_dsn entry. This data
set must be preallocated as a PDSE with RECFM VB and
LRECL 133. It must be large enough to hold the formatted
trace table. See Chapter 8, “Performance and debugging,”
on page 67 for more information about the trace output
data set.

reset Resets the internal (wrap around) trace table to empty.

unquiesce
Causes a quiesced aggregate to become unquiesced. Only locally
attached aggregates can be unquiesced using the modify unquiesce
command. You must issue this command on the system that is the
zFS owner of the aggregate. Use the z/OS UNIX zfsadm lsaggr
command to determine which system is the zFS owner of the
aggregate.

Usage notes for MODIFY ZFS PROCESS

The modify zfs command is used to display zFS counters or values and to initiate
or gather debugging information. You cannot issue modify zfs commands during a
zFS internal restart.

MODIFY ZFS PROCESS

120 z/OS V2R2 Distributed File Service zFS Administration

|

Usage notes for displaying file system information

Use the MODIFY FSINFO command to display detailed information about zFS file
systems, which are also known as zFS aggregates. Normally, file systems must be
attached before this command can be used to display their information. However,
when specifying a specific aggregate name (with no wildcards), the file system
does not need to be attached. You can use several methods to specify aggregates,
based on their names, as follows:
v aggrname with an exact aggregate name. The aggregate can either be mounted or

not mounted.
v aggrname using a wildcard (*) at the beginning of the name value to select

aggregates with a common suffix.
v aggrname using a wildcard (*) at the end of the name value to select aggregates

with a common prefix.
v aggrname using a wildcard (*) at the beginning and the end of the name value to

select aggregates with both a common prefix and a common suffix.
v all can be specified or defaulted to mean all file systems that are currently

mounted in the sysplex.

The MODIFY FSINFO command options are positional. Each option must be
separated by a comma. Only the options at the end of the line can be omitted. If
options are omitted, the default values are used instead. Examples of supported
syntax are as follows:
F ZFS,FSINFO
F ZFS,FSINFO,ALL
F ZFS,FSINFO,ALL,BASIC,SELECT=RW Q
F ZFS,FSINFO,ALL,BASIC,SELECT=RW Q,SORT=REQUESTS

The owner option displays all available information for each specified file system
from the zFS-owning system. The information is obtained via XCF communication
with the owning system if the owning system is not the local system. It also
displays the statistics that are shown in Table 14 on page 194.

The full option displays statistics for each specified file system from the zFS
owning system and from each system in the sysplex that has it locally
mounted. This will be obtained via XCF communication with each system in the
sysplex. The statistics are described in Table 16 on page 196.

Aggregates can also be selected using the exceptions option. This option can be
useful for identifying file systems which have encountered unexpected conditions,
and might need attention. Unexpected conditions include I/O errors, XCF
communication failures or being low on space. An aggregate can also be damaged,
quiesced, or disabled.

Aggregates can also be selected by use of the select option. To use this option,
specify a criteria from the list in Table 12 on page 193. You can specify more than
one criteria by using a space to separate them.

The displayed information has the file system status as part of the output. The
status field contains abbreviated values. For quick reference, these values are
defined in a Legend string at the end of the output. The full definitions of these
abbreviations are listed in Table 13 on page 194.

All times are in milliseconds. To display large numbers, use the following suffixes:

Letter Unit of number

MODIFY ZFS PROCESS

Chapter 10. z/OS system commands 121

|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

||

b The number should be multiplied by 1,000,000,000.
G The number should be multiplied by 1,073,741,824.
t The number should be multiplied by 1000.
T The number should be multiplied by 1,099,511,627,776.
tr The number should be multiplied by 1,000,000,000,000.
m The number should be multiplied by 1,000,000.
K The number should be multiplied by 1024.
M The number should be multiplied by 1,048,576.

Privilege required

This command is a z/OS system command.

Examples for MODIFY ZFS PROCESS

The following example queries all the zFS counters:
modify zfs,query,all

The following example resets the zFS storage counters:
modify zfs,reset,storage

The following example formats and sends the trace table to the data set specified
in the IOEFSPRM file trace_dsn entry:

The following example causes the zFS PFS to execute an internal restart:
modify zfs,abort

The following example queries all the zFS counters when zFS is running inside the
OMVS address space:
modify omvs,pfs=zfs,query,all

Examples of displaying file system information
1. To display basic file system information for zFS aggregate

PLEX.DCEIMGNK.FSINFO:
modify zfs,fsinfo,aggr,PLEX.DCEIMGNK.FSINFO,basic

2. To display file system owner status using a wildcard:
modify zfs,fsinfo,aggr,PLEX.DCEIMGNK.*,owner

3. To display full file system status for all zFS aggregates that are quiesced,
damaged or disabled:
modify zfs,fsinfo,all,full,select=Q DA DI

4. To display basic file system status for all zFS aggregates that are quiesced,
damaged, or disabled and also to sort aggregate names by response time:
modify zfs,fsinfo,all,basic,select=Q DA DI,sort=response

Related information

Files:

v IOEFSPRM
v zfsadm fsinfo

For details about stopping zFS, see the topic on Recycling z/OS UNIX System
Services in z/OS MVS System Commands.

MODIFY ZFS PROCESS

122 z/OS V2R2 Distributed File Service zFS Administration

||
||
||
||
||
||
||
||

|
|

|

|

|
|

|

|

|

|
|

|

|
|

|

SETOMVS RESET
Purpose

Can be used to start the zFS PFS if it has not been started at IPL. It can also be
used to redefine it if it has been terminated by replying i to the BPXF032D
operator message (after stopping the zFS PFS).

Format

Parameters

xx The suffix of a BPXPRMxx member of PARMLIB that contains the
FILESYSTYPE statement for the zFS PFS.

Usage

The SETOMVS RESET command can be used to start the zFS PFS.

Privilege required

This command is a z/OS system command.

Examples

The following command starts the zFS Physical File System if the BPXPRMSS
member of the PARMLIB contains the zFS FILESYSTYPE statement:
setomvs reset=(ss)

Related information

File: IOEFSPRM

In z/OS V1R7 and later, the SETOMVS command also processes zFS FILESYSTYPE
statements. For more information, see SETOMVS command in z/OS MVS System
Commands.

setomvs reset=(xx)

SETOMVS RESET

Chapter 10. z/OS system commands 123

SETOMVS RESET

124 z/OS V2R2 Distributed File Service zFS Administration

Chapter 11. zFS commands

This section provides a description of zFS commands and batch utilities. In the
options section for each command, options are described in alphabetic order to
make them easier to locate; this does not reflect the format of the command. The
formats are presented the same as on your system.

In addition to displaying z/OS UNIX reason codes, the z/OS UNIX shell
command, bpxmtext, also displays the text and action of zFS reason codes
(EFxxnnnn) returned from the kernel. zFS does not use the xx part of the reason
code to display a module name. It always displays zFS. If you only know the nnnn
part of the zFS reason code, you can use EF00nnnn as the reason code. The date
and time returned with the zFS reason code matches the date and time returned
from the zFS kernel (displayed with operator command MODIFY
ZFS,QUERY,LEVEL).

Restriction: The bpxmtext command is not valid for zFS abend reason codes
(EAxxnnnn).

You can use the man command to view the descriptions of zFS command manual
pages. To use man pages, enter man followed by the command information you
want to display. You must enter the zfsadm command suite entries as one word.
Table 9 shows examples of the zFS man commands.

Table 9. zFS man command examples

zFS command man command

ioefsutl salvage man ioefsutlsalvage

ioeagfmt man ioeagfmt

mount man zfsmount

zfsadm aggrinfo man zfsadmaggrinfo

zfsadm query man zfsadmquery

For more information about the man command, see
v man — Display sections of the online reference manual in z/OS UNIX System

Services Command Reference.
v Enabling the man pages in z/OS UNIX System Services Planning.

© Copyright IBM Corp. 2001, 2015 125

ioeagfmt
Purpose

ioeagfmt is a batch utility that formats a VSAM linear data set to become a version
4 or version 5 zFS compatibility mode aggregate.

Format

Options

-aggregate name
Specifies the name of the data set to format. This is also the aggregate
name. The aggregate name is always translated to uppercase and cannot be
longer than 44 characters. The following characters can be included in the
name of an aggregate:
v All uppercase and lowercase alphabetic characters (a to z, A to Z)
v All numerals (0 to 9)
v The . (period)
v The - (dash)
v The @ (at sign)
v The # (number sign)
v The $ (dollar).

-compat
Indicates that a compatibility mode aggregate should be created. This
means that in addition to formatting the VSAM linear data set as a zFS
aggregate, a zFS file system is created with the same name as the aggregate
and its free space is set to the size of the available blocks on the aggregate.
Beginning with z/OS V2R1, only HFS compatibility mode aggregates can
be created. This option is being allowed for compatibility with earlier
versions and is not needed.

-group gid | name
Specifies the group owner for the root directory of the file system. It can be
specified as a z/OS group name or as a GID. The default is the GID of the
issuer of ioeagfmt. If only -owner name is specified, the group is that
owner's default group. If only -owner uid is specified, the group is the
issuer's group.

-grow blocks
Specifies the number of 8-KB blocks that zFS will use as the increment for
extension when the -size option specifies a size greater than the primary
allocation.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-initialempty blocks
This option is being allowed for compatibility with earlier versions and is
ignored. One 8-KB block at the beginning of the aggregate is reserved for
IBM use.

ioeagfmt -aggregate name [-initialempty blocks] [-size blocks] [-logsize blocks]
[-overwrite] [-compat] [-owner {uid|name}][-group {gid|name}] [-perms {number}]
[-grow blocks] [{-newauditfid|-nonewauditfid}][{-version4|-version5}] [-level] [-help]

ioeagfmt

126 z/OS V2R2 Distributed File Service zFS Administration

|
|

-level Prints the level of the ioeagfmt command. This is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-logsize blocks
Specifies the size in 8-KB blocks of the log. The valid range is from 13 to
16384 blocks (128 megabytes). The default is 1% of the aggregate size. This
default logsize will never be smaller than 14 blocks and it will never be
larger than 4096 blocks (32 megabytes). This size is normally sufficient.
However, a small aggregate that is grown to be very large will still have a
small log. You might want to specify a larger log if you expect the
aggregate to grow very large.

-newauditfid
Specifies that the aggregate should be formatted with the zFS auditfid and
stored in the aggregate. Beginning with z/OS V2R1, -newauditfid is the
default.

-nonewauditfid
Specifies that the aggregate should not be formatted with a zFS auditfid
stored in it. Before z/OS V2R1, this was the default.

-overwrite
Required if you are reformatting an existing aggregate. Use this option
with caution; it destroys any existing data. This option is not usually
specified.

-owner uid | userid
Specifies the owner for the root directory of the file system. It can be
specified as a z/OS user ID or as a UID. The default is the UID of the
issuer of ioeagfmt.

-perms number
Specifies the permissions for the root directory of the file system. The
number can be specified as octal (for example, o755), as hexadecimal (for
example, x1ED), or as decimal (for example, 493). The default is o755
(owner read/write-execute, group read-execute, other read-execute).

-size blocks
Specifies the number of 8-KB blocks that should be formatted to form the
zFS aggregate. The default is the number of blocks that will fit in the
primary allocation of the VSAM linear data set. If a number less than the
default is specified, it is rounded up to the default. If a number greater
than the default is specified, a single extend of the VSAM linear data set is
attempted after the primary allocation is formatted unless the -grow option
is specified. In that case, multiple extensions of the amount that is specified
in the -grow option will be attempted until the -size is satisfied. The size
can be rounded up to a control area (CA) boundary by DFSMS. It is not
necessary to specify a secondary allocation size on the DEFINE of the
VSAM linear data set for this extension to occur. Space must be available
on the volume.

-version4
Specifies that the aggregate should be a version 1.4 aggregate. See the
Usage section for the default value that is used.

-version5
Specifies that the aggregate should be a version 1.5 aggregate. See the
Usage section for the default value that is used.

ioeagfmt

Chapter 11. zFS commands 127

Usage notes for ioegfmt

Beginning in z/OS V2R1, ioeagfmt fails if the zFS PFS is not active on the system.

The ioeagfmt utility formats an existing VSAM linear data set as a zFS aggregate.
All zFS aggregates must be formatted before use.

The aggregate version will be as specified if the -version4 or -version5 option is
used. If neither is used, then the default aggregate version will be obtained from
the zFS PFS format_aggrversion setting. See “IOEFSPRM” on page 220 for a
description of the format_aggrversion variable.

The size of the aggregate is as many 8-KB blocks as fits in the primary allocation
of the VSAM linear data set or as specified in the -size option. The -size option
can cause one additional extension to occur during formatting. To extend it further,
use the zfsadm grow command. If -overwrite is specified, all existing primary and
secondary allocations are formatted and the size includes all of that space. If the
VSAM linear data set has a SHAREOPTIONS value of other than 3, ioeagfmt
changes it to SHAREOPTIONS 3 during format. -overwrite will also cause the
backup change activity flag to be set.

For a batch job, the ioeagfmt options are specified in the EXEC PARM as a single
subparameter (a single character string enclosed in apostrophes with no commas
separating the options). You cannot put the ending apostrophe in column 72. If it
needs to go to the next line, use a continuation character in column 72 (continuing
in column 16 with the ending apostrophe on the second line). Remember that a
JCL EXEC PARM is limited to 100 characters. See the topic on the EXEC PARM in
z/OS MVS JCL Reference.

Privilege required

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ
authority to the data set that contains the IOEFSPRM file. If you are using parmlib
(IOEPRMxx), the issuer does not need special authorization.

The user must meet one of the following authorization requirements:
v Have ALTER authority to the VSAM linear data set.
v Be UID 0.
v Have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS

UNIXPRIV class.

UPDATE authority to the VSAM linear data set is sufficient for format, but zFS
will not be able to set the zFS bit in the catalog unless the issuer has ALTER
authority.

If you are changing the owner or group to something other than the issuer or you
are changing the permissions to other than the default, you need UID 0 or READ
authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV
class.

Examples

Figure 41 on page 129 shows an example of a job that creates a compatibility mode
aggregate and file system.

ioeagfmt

128 z/OS V2R2 Distributed File Service zFS Administration

Requirement: In the PARM=(’-aggregate OMVS.PRV.COMPAT.AGGR001’) statement,
the -aggregate option must be in lowercase.

//USERIDA JOB ,'Compatibility Mode',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -
VOLUMES(PRV000) -
LINEAR CYL(25 0) SHAREOPTIONS(3))

/*
//CREATE EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=('-aggregate OMVS.PRV.COMPAT.AGGR001')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 41. Sample job to create a compatibility mode aggregate and file system

ioeagfmt

Chapter 11. zFS commands 129

ioeagslv
Purpose

ioeagslv is a batch utility that scans an aggregate and reports inconsistencies.
Aggregates can be verified, recovered (that is, the log is replayed), or salvaged
(that is, the aggregate is repaired). This utility is known as the salvager.

This utility is not normally needed. If a system failure occurs, the aggregate log is
replayed automatically, the next time the aggregate is attached or mounted. This
action typically brings the aggregate back to a consistent state. The aggregate must
not be mounted (or attached) when ioeagslv is run.

Format

Options

-aggregate name
Specifies the name of the aggregate to be verified, recovered, or salvaged.
The aggregate name is not case-sensitive. It is translated to uppercase.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the ioeagslv command. This option is useful when you
are diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-recoveronly
Directs the salvager to recover the specified aggregate. The salvager
replays the log of metadata changes that resides on the aggregate. See
“Usage notes for ioeagslv” on page 131 for information about using and
combining the command's options.

-salvageonly
Directs the salvager to salvage the specified aggregate. The salvager
attempts to repair any inconsistencies it finds on the aggregate. See “Usage
notes for ioeagslv” on page 131 for information about using and combining
the command's options.

-verbose
This option is ignored.

-verifyonly
Directs the salvager to verify the specified aggregate. The salvager
examines the structure of the aggregate to determine if it contains any
inconsistencies, reporting any that it finds. See “Usage notes for ioeagslv”
on page 131 for information about using and combining the command's
options.

ioeagslv -aggregate name [{-recoveronly | -verifyonly | -salvageonly}]
[-verbose] [-level] [-help]

ioeagslv

130 z/OS V2R2 Distributed File Service zFS Administration

Results

The salvager returns the following return codes for -verifyonly:

Table 10. Return codes for -verifyonly that are returned by the salvager

Code Description

00 Success. The aggregate is correct and no repair is needed.

04 The aggregate has some inconsistencies that need repair.

08 An error occurred during verification; the report might be incomplete.

12 A severe error occurred during verification. Verify that processing was
halted. The aggregate is not repairable.

16 Terminating error.

EIO The salvager could not read or write the DASD.

EBUSY The aggregate was mounted or attached.

EMVSERR The salvager had an internal error. This return code is preceded by a
dump for an abend 2C3 and reason code EA660701.

ENOMEM The salvager ran out of storage.

EINVAL The salvager arguments were incorrect.

ENOSPC Dynamic grow failed because the salvager ran out of disk space.

For no options specified (or the -recoveronly and -salvageonly options specified)
the salvager returns the following return codes:

Table 11. Return codes for -recoveronly that are returned by the salvager

Code Description

00 Success. The aggregate is correct and no repair is needed.

04 The aggregate had some inconsistencies that were repaired.

08 An error occurred during verification; the report might be incomplete;
the aggregate could not be repaired.

12 A severe error occurred during verification and the aggregate could not
be repaired. Verification processing was stopped..

16 Terminating error.

EIO The salvager could not read or write the DASD.

EBUSY The aggregate was mounted or attached.

EMVSERR The salvager had an internal error. This return code is preceded by a
dump for an abend 2C3 and reason code EA660701.

ENOMEM The salvager ran out of storage.

EINVAL The salvager arguments were incorrect.

Usage notes for ioeagslv

You can run ioeagslv even if the zFS PFS is not active on the system. The
ioeagslv utility invokes the salvager on the zFS aggregate that is specified with the
-aggregate option. After a system restart, the salvager employs the zFS file system
log mechanism to return consistency to a file system by running recovery on the
aggregate on which the file system resides. Recovery is the replaying of the log on
the aggregate; the log records all changes that are made to metadata as a result of
operations such as file creation and deletion. If problems are detected in the basic

ioeagslv

Chapter 11. zFS commands 131

structure of the aggregate, if the log mechanism is damaged, or if the storage
medium of the aggregate is suspect, the ioeagslv utility must be used to verify or
repair the structure of the aggregate.

Use the utility's -recoveronly, -verifyonly, and -salvageonly options to indicate
the operations the salvager is to perform on the specified aggregate, as follows:
v Specify the -recoveryonly option

To run recovery on the aggregate without attempting to find or repair any
inconsistencies found on it. Recovery is the replaying of the log on the
aggregate. Use this option to quickly return consistency to an aggregate that
does not need to be salvaged; this represents the normal production use of the
salvager. Unless the contents of the log or the physical structure of the aggregate
is damaged, replaying the log is an effective guarantee of a file system's
integrity.

v Specify the -verifyonly option
To determine whether the structure of the aggregate contains any
inconsistencies. Use this option to assess the extent of the damage to an
aggregate. The salvager runs log recovery and then determines whether there
are any inconsistencies. No repair is attempted other than running log recovery.

v Specify the -salvageonly option
To attempt to repair any inconsistencies that are found in the structure of the
aggregate without first running recovery on it. Use this option if you believe the
log is damaged or replaying the log does not return consistency to the aggregate
and might in fact further damage it. In most cases, you do not salvage an
aggregate without first recovering it.

v Omit the -recoveronly, -verifyonly, and -salvageonly options
To run recovery on the aggregate and then attempt to repair any inconsistencies
that are found in the structure of the aggregate. Because recovery eliminates
inconsistencies in an undamaged file system, an aggregate is typically recovered
before it is salvaged. In general, it is good first to recover and then to salvage an
aggregate if a system goes down or experiences a hardware failure.
Omit these three options if you believe the log should be replayed before
attempts are made to repair any inconsistencies that are found on the aggregate.
(Omitting the three options is equivalent to specifying the -recoveronly and
-salvageonly options.)

The salvager utility can set or clear the aggregate damaged bit:
v The -verifyonly option can set the bit if a true corruption is found or clear it if

no corruption is found.
v Repair (with no option) can clear the bit if a successful repair is done.

The following rule summarizes the interaction of the -recoveronly, -verifyonly,
and -salvageonly options: The salvage command runs recovery on an aggregate
and attempts to repair it unless one of the three salvage options is specified; after
one of these options is specified, you must explicitly request any operation that
you want the salvager to perform on the aggregate.

The basic function of the salvager is similar to that of the fsck program in many
UNIX systems. The salvager recovers a zFS aggregate and repairs problems it
detects in the structure of the aggregate. It does not verify or repair the format of
user data that is contained in files on the aggregate.

ioeagslv

132 z/OS V2R2 Distributed File Service zFS Administration

The salvager verifies the structure of an aggregate by examining all of the anodes,
directories, and other metadata in each file system on the aggregate. An anode is an
area on the disk that provides information that is used to locate data such as files,
directories, ACLs, and other types of file system objects. Each file system contains
an arbitrary number of anodes, all of which must reside on the same aggregate. By
following the links between the various types of anodes, the salvager can
determine whether the organization of an aggregate and the file system it contains
is correct and make repairs if necessary.

The salvager is designed to make all repairs in one pass, but due to the nature of
the program's inputs (a corrupted, possibly vastly corrupted file system) IBM
recommends a second running of the salvage program to verify that the aggregate
is truly repaired. If verifying the aggregate shows that it is not repaired, then you
should try running the salvager again to repair the aggregate. If this does not
repair the aggregate, you can create a copy of the aggregate and run the salvager
more times to try to repair it. If the salvager cannot repair the aggregate after
several repair attempts, the copy of the aggregate and salvager job logs will allow
IBM service to determine why.

Not all aggregates can be salvaged. In cases of extensive damage to the structure of
the metadata on an aggregate or damage to the physical disk that houses an
aggregate, the salvager cannot repair inconsistencies. Also, the salvager cannot
verify or repair damage to user data on an aggregate. The salvager cannot detect
problems that modified the contents of a file but did not damage the structure of
an aggregate or change the metadata of the aggregate.

Like the fsck command, the salvager analyzes the consistency of an aggregate by
making successive passes through the aggregate. With each successive pass, the
salvager examines and extracts a different type of information from the blocks and
anodes on the aggregate. Later passes of the salvager use information that is found
in earlier passes to help in the analysis.

It is possible for the salvager to attempt a dynamic grow of an aggregate. One
possible reason for this is if an extended (v5) directory is found to be inconsistent
(or broken). The salvager will try to repair it by converting it to a new extended
(v5) directory. To do this might require more disk space. If the disk space is not
available, the directory is marked read-only. The rest of the file system has already
been made consistent, so you should still be able to mount the file system and read
from the directory.

In general, if the salvager is invoked for a VSAM linear data set that it is sure is
not a zFS aggregate, it exits with an error code of at least 16 without analyzing the
VSAM linear data set. It exits with an error code of EBUSY (114) if a file system on
the aggregate to be recovered or salvaged is mounted or attached. (If necessary,
you can use the UNMOUNT command to unmount the aggregate.)

Beginning in z/OS V2R1, the salvager no longer supports salvaging aggregates
that contain more than one file system or clones (.bak file systems). For additional
details about running the salvage utility, see “Understanding the salvager utility”
on page 94.

As the salvager runs, it maintains a list of sorted error records that need repair.
Each record includes details for the salvager to quickly repair the aggregate. The
salvager displays corruption messages if verification found any inconsistency. It
also displays progress messages (IOEZ00782I) during verification to indicate how

ioeagslv

Chapter 11. zFS commands 133

many objects have been processed. Depending on the aggregate size and system
usage, the salvager batch job might take hours or even longer to complete.

For a batch job, the ioeagslv options are specified in the EXEC PARM as a single
subparameter (a single character string enclosed in apostrophes with no commas
separating the options). You cannot put the ending apostrophe in column 72. If it
needs go to the next line, use a continuation character in column 72 (continuing in
column 16 with the ending apostrophe on the second line). Remember that a JCL
EXEC PARM is limited to 100 characters. See the topic on the EXEC PARM in z/OS
MVS JCL Reference. For an example of the EXEC PARM for ioeagslv, see Figure 42
on page 135.

The zFS configuration file can include debugging parameters for the salvager
utility. The debugging parameters are described in “IOEFSPRM” on page 220.
There are two ways that you can implement the configuration file:
v As a single file that is defined by a IOEZPRM DD card
v As one or more parameter file members, named IOEPRMxx

You can provide an optional IOEZPRM DD statement in the JCL for the batch job
to specify the location of the IOEFSPRM file. Or, you can omit the IOEZPRM DD
statement and specify the -PRM option on the EXEC PARM to use IOEPRMxx
parameter file members. If you do not specify the IOEZPRM DD statement, the
utility searches the logical parmlib concatenation to find the IOEPRMxx members
that contain the debugging parameters, in the same way that the zFS PFS does if
you do not specify the IOEZPRM DD statement in the ZFS PROC. For more
information about specifying the configuration file, see “IOEFSPRM” on page 220.

ioeagslv causes the backup change activity flag to be set if the log is replayed or a
repair is done.

ioeagslv can be used to salvage aggregate versions 1.4 and 1.5.

Privilege required

The user must meet one of the authorization requirements:
v Have UPDATE authority for the specified VSAM linear data set.
v Be UID 0.
v Have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS

UNIXPRIV class.

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ
authority to the data set that contains the IOEFSPRM file. If you are using parmlib
(IOEPRMxx), the issuer does not need special authorization.

Examples

Figure 42 on page 135 shows an example of a job that invokes the ioeagslv utility.

ioeagslv

134 z/OS V2R2 Distributed File Service zFS Administration

//USERIDA JOB ,’Salvage’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//SALVAGE EXEC PGM=IOEAGSLV,REGION=0M,
// PARM=('-aggregate OMVS.PRV.COMPAT.AGGR001 -verifyonly')
//IOEZPRM DD DSN=SYS4.PVT.SY1.PARMLIB(IOEFSPRM),DISP=SHR
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 42. Job to verify a zFS aggregate using debug parameters specified in IOEFSPRM

//USERIDA JOB ,’Salvage’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//SALVAGE EXEC PGM=IOEAGSLV,REGION=0M,
// PARM=('-aggregate OMVS.PRV.COMPAT.AGGR001 -verifyonly -PRM=(03)’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 43. Job to verify a zFS aggregate using debug parameters specified in parmlib
member IOEPRM03

ioeagslv

Chapter 11. zFS commands 135

ioefsutl
Purpose

This section introduces the ioefsutl batch utility suite. It is run as a batch job. A
zFS aggregate must be unmounted (and not attached) before ioefsutl can process
it.

ioefsutl is a batch utility that supports the following functions:
v format of a new aggregate in the specified version.
v salvage to verify and repair a damaged aggregate.
v converttov5 to change a version 1.4 aggregate to a version 1.5 aggregate and

convert all the existing directories to extended (v5) directories.
v converttov4 to convert all extended (v5) directories to v4 directories and then

change the version 1.5 aggregate to a version 1.4 aggregate.

If you are using the IOEFSPRM file, you can provide an optional IOEZPRM DD
statement in the JCL for a batch job to specify the location of the IOEFSPRM file. If
you are using the IOEPRMxx parmlib member, omit the IOEZPRM DD statement
and specify the -PRM option on the EXEC PARM; for example -PRM=(03) if your
configuration file is in the parmlib member IOEPRM03. If you do not specify the
IOEZPRM DD statement, the utility searches the logical parmlib concatenation to
find the IOEPRMxx members that contain the debugging parameters, in the same
way that the zFS PFS does if you do not specify the IOEZPRM DD statement in
the ZFS PROC. For more information about specifying the configuration file, see
“IOEFSPRM” on page 220.

ioefsutl

136 z/OS V2R2 Distributed File Service zFS Administration

ioefsutl converttov4
Purpose

ioefsutl converttov4 is a batch utility that converts a version 1.5 aggregate to a
version 1.4 aggregate.

Format

Options

-aggregate name
Specifies the name of the aggregate to be converted. The aggregate name is
not case-sensitive. It is translated to uppercase.

-help Prints the online help for this command. All other valid options specified
with this option are ignored.

-level Prints the level of the ioefsutl command. This information is useful when
you are diagnosing a problem. Except for -help, all other valid options that
are specified with -level are ignored.

-verbose
Displays starting and ending messages of each directory being converted.

Usage

The ioefsutl converttov4 command is used when you need to convert a zFS
version 1.5 aggregate to a version 1.4 aggregate. All extended (v5) directories are
converted to v4 directories. You might use this if you need to run z/OS releases
prior to z/OS V2R1.

ioefsutl converttov4 cannot convert the version 1.5 aggregate if it has grown
larger than approximately 4 TB. In this case, you must copy subsets of the data one
at a time into other version 1.4 aggregates using the z/OS UNIX shell command
pax. Each subset must be copied into a separate version 1.4 aggregate that is less
than 4 TB.

ioefsutl converttov4 cannot convert a directory that contains more than 64K-1
subdirectories. In this case, you must copy subsets of the directory into separate
directories contained in a version 1.4 aggregate.

Converting a directory from an extended (v5) directory to a version 4 directory
requires both versions of the directory to be on the disk at the same time,
temporarily. If the aggregate becomes full during the allocation of the new
directory, a dynamic grow is attempted. See “Dynamically growing a compatibility
mode aggregate” on page 30 for information about controlling the dynamic growth
of an aggregate. If there is not enough space to complete the conversion, the new
directory is deleted and the conversion operation fails.

The old directory is deleted when the conversion is completed. The resulting new
directory can possibly require more space than the old directory, and could also
possibly require less space than the old directory. Results will vary based on the
actual directory contents.

ioefsutl converttov4 -aggregate name [-verbose][-level][-help]

ioefsutl converttov4

Chapter 11. zFS commands 137

If a system outage occurs during a directory conversion, the directory is made
consistent during log recovery processing. That is, either the old directory will exist
or the new directory will exist, but both will not exist.

The conversion will cause the backup change activity flag to be set.

If the aggregate damaged bit is set, conversion does not start and an error is
issued.

If the aggregate damaged bit is set, you can still mount the aggregate. The
IOEZ00783E console message is displayed:
IOEZ00783E Aggregate aggregate_name is damaged

Privilege required

The user must meet one of the authorization requirements:
v Have UPDATE authority for the specified VSAM linear data set
v Be UID 0
v Have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS

UNIXPRIV class

If you are using an IOEFSPRM file in your JCL, the issuer must have READ
authority to the data set that contains the IOEFSPRM file. If you are using parmlib
(IOEPRMxx), the issuer does not need special authorization.

Examples

Figure 44 shows an example of a job that invokes the ioefsutl utility to convert a
version 1.5 aggregate to a version 1.4 aggregate.

In the PARM=(’converttov4 -aggregate OMVS.PRV.COMPAT.AGGR001’) statement,
the converttov4 and option -aggregate must be in lowercase.

//USERIDA JOB ,’Convert to version 4’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//CONVERT EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=(’converttov4 -aggregate OMVS.PRV.COMPAT.AGGR001’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 44. Job to convert a version 1.5 aggregate to a version 1.4 aggregate

ioefsutl converttov4

138 z/OS V2R2 Distributed File Service zFS Administration

ioefsutl converttov5
Purpose

ioefsutl converttov5 is a batch utility that converts a version 1.4 aggregate to a
version 1.5 aggregate.

Format

Options

-aggregate name
Specifies the name of the aggregate to be converted. The aggregate name is
not case-sensitive. It is translated to uppercase.

-aggrversion_only
Only the aggregate version is converted from 1.4 to 1.5. No directories are
converted.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the ioefsutl command. This information is useful when
you are diagnosing a problem. Except for -help, all other valid options that
are specified with -level are ignored.

-verbose
Displays starting and ending messages of each directory being converted.

Usage

The ioefsutl converttov5 command is used when you need to convert a zFS
version 1.4 aggregate to a version 1.5 aggregate. All v4 directories are converted to
extended (v5) directories. You might use this command if you have migrated all
your systems to z/OS V2R1 or later and you want to exploit extended (v5)
directories.

Converting a directory from version 4 to an extended (v5) directory requires both
versions of the directory to exist on disk at the same time, temporarily. If the
aggregate becomes full during the allocation of the new directory a dynamic grow
will be attempted. See “Dynamically growing a compatibility mode aggregate” on
page 30 for information about controlling dynamic growth of an aggregate. If there
is not enough space to complete the conversion, the new directory is deleted and
the conversion operation fails.

When the conversion is completed, the old directory is deleted. The resulting new
directory can possibly require more space than the old directory, and could also
possibly require less space than the old directory. Results will vary based on the
actual directory contents.

If a system outage occurs during a directory conversion, the directory will be made
consistent during log recovery processing. That is, either the old directory will exist
or the new directory will exist, but both will not exist.

The conversion causes the backup change activity flag to be set.

ioefsutl converttov5 -aggregate name -aggrversion_only [-verbose][-level][-help]

ioefsutl converttov5

Chapter 11. zFS commands 139

|

If the aggregate damaged bit is set, conversion does not start and an error is
issued.

If the aggregate damaged bit is set, you can still mount the aggregate. The
IOEZ00783E console message is displayed:
IOEZ00783E Aggregate aggregate_name is damaged

Privilege required

The user must meet one of the authorization requirements:
v Have UPDATE authority for the specified VSAM linear data set.
v Be UID 0.
v Have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS

UNIXPRIV class.

If you are using an IOEFSPRM file in your JCL, the issuer must have READ
authority to the data set that contains the IOEFSPRM file. If you are using parmlib
(IOEPRMxx), the issuer does not need special authorization.

Examples

Figure 45 shows an example of a job that invokes the ioefsutl utility to convert a
version 1.4 aggregate to a version 1.5 aggregate.

In the PARM=('converttov5 -aggregate OMVS.PRV.COMPAT.AGGR001') statement, the
converttov5 and option -aggregate must be in lowercase.

//USERIDA JOB ,’Convert to version 5’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//CONVERT EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=(’converttov5 -aggregate OMVS.PRV.COMPAT.AGGR001’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 45. Job to convert a version 1.4 aggregate to a version 1.5 aggregate

ioefsutl converttov5

140 z/OS V2R2 Distributed File Service zFS Administration

ioefsutl format
Purpose

ioefsutl format is a batch utility that formats a VSAM linear data set to become a
version 4 or version 5 zFS compatibility mode aggregate.

Format

Options

-aggregate name
Specifies the name of the data set to format. This is also the aggregate
name. The aggregate name is always translated to uppercase and cannot be
longer than 44 characters. The following characters can be included in the
name of an aggregate:
v All uppercase and lowercase alphabetic characters (a to z, A to Z)
v All numerals (0 to 9)
v The . (period)
v The - (dash)
v The _ (underscore)
v The @ (at sign)
v The # (number sign)
v The $ (dollar).

-group gid | name
Specifies the group owner for the root directory of the file system. It can be
specified as a z/OS group name or as a GID. The default is the GID of the
issuer of ioefsutl format. If only -owner name is specified, the group is
that owner's default group. If only -owner uid is specified, the group is the
issuer's group.

-grow blocks
Specifies the number of 8-KB blocks that zFS uses as the increment for
extension when the -size option specifies a size greater than the primary
allocation.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-logsize blocks
Specifies the size in 8-KB blocks of the log. The valid range is from 13 to
16384 blocks (128 megabytes). The default is 1% of the aggregate size. This
default logsize will never be smaller than 14 blocks and it will never be
larger than 4096 blocks (32 megabytes). This size is normally sufficient.
However, a small aggregate that is grown to be very large will still have a
small log. You might want to specify a larger log if you expect the
aggregate to grow very large.

-level Prints the level of the ioefsutl command. This information is useful when
you are diagnosing a problem. Except for -help, all other valid options that
are specified with -level are ignored.

ioefsutl format -aggregate name [-size blocks] [-logsize blocks] [-owner uid|name]
[-group gid|name] [-perms number] [-grow blocks][-overwrite][{-version4 | -version5}]
[-level][-help]

ioefsutl format

Chapter 11. zFS commands 141

|
|

-overwrite
Required if you are reformatting an existing aggregate. Use this option
with caution because it destroys any existing data. This option is not
usually specified.

-owner uid | name
Specifies the owner for the root directory of the file system. It can be
specified as a z/OS user ID or as a UID. The default is the UID of the
issuer of ioefsutl format.

-perms number
Specifies the permissions for the root directory of the file system. The
number can be specified as octal (for example, o755), as hexadecimal (for
example, x1ED), or as decimal (for example, 493). The default is o755
(owner read/write-execute, group read-execute, other read-execute).

-size blocks
Specifies the number of 8-KB blocks that should be formatted to form the
zFS aggregate. The default is the number of blocks that will fit in the
primary allocation of the VSAM linear data set. If a number less than the
default is specified, it is rounded up to the default. If a number greater
than the default is specified, a single extend of the VSAM linear data set is
attempted after the primary allocation is formatted unless the -grow option
is specified. In that case, multiple extensions of the amount that is specified
in the -grow option will be attempted until the -size is satisfied. The size
can be rounded up to a control area (CA) boundary by DFSMS. It is not
necessary to specify a secondary allocation size on the DEFINE of the
VSAM linear data set for this extension to occur. Space must be available
on the volume.

-version4
Specifies that the aggregate is to be formatted as a version 1.4 aggregate.
See the “Usage notes for ioefsutl format” for information about how the
default aggregate version is determined.

-version5
Specifies that the aggregate is to be formatted as a version 1.5 aggregate.
See “Usage notes for ioefsutl format” for information about how the
default aggregate version is determined. IBM recommends that you do not
use -version5 until all your systems are at z/OS V2R1 or later.

Usage notes for ioefsutl format

The ioefsutl format utility formats an existing VSAM linear data set as a zFS
aggregate. All zFS aggregates must be formatted before use.

The aggregate name is not case-sensitive. It is translated to uppercase. If -version4
or -version5 is specified, you can run ioefsutl format even if the zFS PFS is not
active on the system. If neither is specified, the aggregate version default is
determined by a call to the zFS PFS to obtain the value of the format_aggrversion
variable from the IOEFSPRM file. If the zFS PFS is not active, then the format will
fail.

The size of the aggregate is as many 8 K blocks as fits in the primary allocation of
the VSAM linear data set or as specified in the -size option. The -size option can
cause one additional extension to occur during formatting. To extend it further, use
the zfsadm grow command. If -overwrite is specified, all existing primary and
secondary allocations are formatted and the size includes all of that space. If

ioefsutl format

142 z/OS V2R2 Distributed File Service zFS Administration

|

|
|

-overwrite is specified, the backup change activity flag is set. If the VSAM linear
data set has a SHAREOPTIONS value of other than 3, ioefsutl format changes it
to SHAREOPTIONS 3 during format.

For a batch job, the ioefsutl format options are specified in the EXEC PARM as a
single subparameter (a single character string enclosed in apostrophes with no
commas separating the options). You cannot put the ending apostrophe in column
72. If it needs go to the next line, use a continuation character in column 72
(continuing in column 16 with the ending apostrophe on the second line).
Remember that a JCL EXEC PARM is limited to 100 characters. See the topic on
EXEC PARM in z/OS MVS JCL Reference.

ioefsutl format always formats with a unique auditfid.

Privilege required

The user must meet one of the following authorization requirements:
v Have ALTER authority to the VSAM linear data set.
v Be UID 0.
v Have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS

UNIXPRIV class.

UPDATE authority to the VSAM linear data set is sufficient for format, but zFS
will not be able to set the zFS bit in the catalog unless the issuer has ALTER
authority.

If you are changing the owner or group to something other than the issuer or you
are changing the permissions to other than the default, you need UID 0 or READ
authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV
class.

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ
authority to the data set that contains the IOEFSPRM file. If you are using parmlib
(IOEPRMxx), the issuer does not need special authorization.

Restrictions

The zFS aggregate cannot be mounted (or attached). The batch job must be issued
from a V2R1 or later system and the VSAM linear data set must exist. If neither
-version4 nor -version5 are specified, the value of the format_aggrversion
parameter on the server is used. In this case, if the value of the
FORMAT_AGGRVERSION parameter cannot be determined, the format will fail.

Examples

Figure 46 on page 144 shows an example of a job that creates and formats a
version 1.4 aggregate.

ioefsutl format

Chapter 11. zFS commands 143

|

Note: In the PARM=(’format -aggregate OMVS.PRV.COMPAT.AGGR001 -version4’)
statement, the format, and options -aggregate and -version4 must be in
lowercase.

//USERIDA JOB ,’Compatibility Mode’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -
VOLUMES(PRV000) -
LINEAR CYL(25 0) SHAREOPTIONS(3))

/*
//CREATE EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=(’format -aggregate OMVS.PRV.COMPAT.AGGR001 -version4’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 46. Sample job to create and format a version 1.4 aggregate

ioefsutl format

144 z/OS V2R2 Distributed File Service zFS Administration

ioefsutl salvage
Purpose

ioefsutl salvage is a batch utility that scans an aggregate and reports
inconsistencies. Aggregates can be verified, recovered (that is, the log is replayed),
or salvaged (that is, the aggregate is repaired). This utility is known as the
salvager.

This utility is not normally needed. If a system failure occurs, the aggregate log is
replayed automatically the next time the aggregate is attached or mounted. This
action typically brings the aggregate back to a consistent state. The aggregate must
not be mounted (or attached) when ioefsutl salvage is run.

Format

Options

-aggregate name
Specifies the name of the aggregate to be verified or salvaged. The
aggregate name is not case-sensitive. It is translated to uppercase.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the ioefsutl command. This information is useful when
you are diagnosing a problem. Except for -help, all other valid options that
are specified with -level are ignored.

-verifyonly
Specifies that the salvager is to verify the specified aggregate. It should not
attempt to repair any damage found. The log is replayed before the
verification unless an error occurs during the replay. If this option is
omitted, the salvager will replay the log, verify the specified aggregate,
and then attempt to repair any damage that was found.

Results

For -verifyonly, the salvager returns the following return codes:

00 Success. The aggregate is correct and no repair is needed.

04 The aggregate has some inconsistencies that need repair.

08 An error occurred during verification; the report might be incomplete.

12 A severe error occurred during verification. Verify that processing was
halted. The aggregate is not repairable.

16 Terminating error.

EIO The salvager could not read or write the DASD.

EBUSY
The aggregate was mounted or attached.

EMVSERR
The salvager had an internal error. This return code is preceded by a dump
for an abend 2C3 and reason code EA660701.

ioefsutl salvage -aggregate name [-verifyonly][-level][-help]

ioefsutl salvage

Chapter 11. zFS commands 145

ENOMEM
The salvager ran out of storage.

EINVAL
The salvager arguments were incorrect.

For no options specified, the salvager returns the following return codes:

00 Success. The aggregate is correct and no repair is needed.

04 The aggregate had some inconsistencies that were repaired.

08 An error occurred during verification; the report might be incomplete; the
aggregate could not be repaired.

12 A severe error occurred during verification; verify processing halted; the
aggregate could not be repaired.

16 Terminating error.

EIO The salvager could not read or write the DASD.

EBUSY
The aggregate was mounted or attached.

EMVSERR
The salvager had an internal error. This return code is preceded by a dump
for an abend 2C3 and reason code EA660701.

ENOMEM
The salvager ran out of storage.

EINVAL
The salvager arguments were incorrect.

Usage

You can run ioefsutl salvage even if the zFS PFS is not active on the system. The
ioefsutl salvage utility invokes the salvager on the zFS aggregate that is specified
with the -aggregate option.

The salvager cannot process an aggregate that contains multiple file systems or a
clone.

The processing of the aggregate is controlled by the specification or the omission of
the -verifyonly option.
v Specify the -verifyonly option

To determine whether the structure of the aggregate contains any
inconsistencies. Use this option to assess the extent of the damage to an
aggregate. The salvager runs log recovery and then determines whether there
are any inconsistencies. No repair is attempted other than running log recovery.

v Omit the -verifyonly option
To run log recovery on the aggregate, verify the aggregate and then attempt to
repair any inconsistencies that are found in the structure of the aggregate.
Because log recovery eliminates inconsistencies in an undamaged file system, an
aggregate is typically recovered before it is salvaged. In general, it is good
practice to first recover and then to salvage an aggregate if a system goes down
or experiences a hardware failure.

ioefsutl salvage

146 z/OS V2R2 Distributed File Service zFS Administration

The salvager sets the backup change activity flag if log recovery is run or a repair
is done.

The basic function of the salvager is similar to that of the fsck program in many
UNIX systems. The salvager recovers a zFS aggregate and repairs problems it
detects in the structure of the aggregate. It does not verify or repair the format of
user data that is contained in files on the aggregate.

The salvager verifies the structure of an aggregate by examining all of the anodes,
directories, and other metadata in each file system on the aggregate. An anode is an
area on the disk that provides information that is used to locate data such as files,
directories, ACLs, and other types of file system objects. Each file system contains
an arbitrary number of anodes, all of which must reside on the same aggregate. By
following the links between the various types of anodes, the salvager can
determine whether the organization of an aggregate and the file system that it
contains is correct and make repairs if necessary.

Not all aggregates can be salvaged. In cases of extensive damage to the structure of
the metadata on an aggregate or damage to the physical disk that houses an
aggregate, the salvager cannot repair inconsistencies. Also, the salvager cannot
verify or repair damage to user data on an aggregate. The salvager cannot detect
problems that modified the contents of a file but did not damage the structure of
an aggregate or change the metadata of the aggregate.

The salvager is designed to make all repairs in one pass, but due to the nature of
the program's inputs (a corrupted, possibly vastly corrupted file system) IBM
recommends a second running of the salvage program to verify that the aggregate
is truly repaired. If verifying the aggregate shows that it is not repaired, then you
should try running the salvager again to repair the aggregate. If this does not
repair the aggregate, you can create a copy of the aggregate and run the salvager
more times to try to repair it. If the salvager cannot repair the aggregate after
several repair attempts, the copy of the aggregate and salvager job logs will allow
IBM service to determine why.

Like the fsck command, the salvager analyzes the consistency of an aggregate by
making successive passes through the aggregate. With each successive pass, the
salvager examines and extracts a different type of information from the blocks and
anodes on the aggregate. Later passes of the salvager use information that was
found in earlier passes to help in the analysis.

It is possible for the salvager to attempt a dynamic grow of an aggregate. One
possible reason for this is if an extended (v5) directory is found to be inconsistent
(or broken). The salvager will try to repair it by converting it to a new extended
(v5) directory. To do this might require more disk space. If the disk space is not
available the directory is marked read-only. The rest of the file system has already
been made consistent, so you should still be able to mount the file system and read
from the directory.

In general, if the salvager is invoked for a VSAM linear data set that it is sure is
not a zFS aggregate, it exits with an error code of at least 16 without analyzing the
VSAM linear data set. It exits with an error code of EBUSY (114) if a file system on
the aggregate to be recovered or salvaged is mounted or attached. (If necessary,
you can use the unmount command to unmount the aggregate.)

As the salvager runs, it maintains a list of sorted error records that need repair.
Each record includes details for the salvager to quickly repair the aggregate. The

ioefsutl salvage

Chapter 11. zFS commands 147

salvager displays corruption messages if verification found any inconsistencies. It
also displays progress messages (IOEZ00782I) during verification to indicate how
many objects were processed. Depending on the aggregate size and system usage,
the salvager batch job may take hours or even longer to complete.

For more information about running the salvage utility, see “Understanding the
salvager utility” on page 94.

For a batch job, the ioefsutl salvage options are specified in the EXEC PARM as
a single subparameter (a single character string enclosed in apostrophes with no
commas separating the options). You cannot put the ending apostrophe in column
72. If it needs to go to the next line, use a continuation character in column 72
(continuing in column 16 with the ending apostrophe on the second line).
Remember that a JCL EXEC PARM is limited to 100 characters. See the topic on the
EXEC PARM in z/OS MVS JCL Reference. For an example of the EXEC PARM for
ioefsutl salvage, see Figure 47.

ioefsutl salvage can be used to salvage aggregate versions 1.4 and 1.5.

The salvager utility can set or clear the aggregate damaged bit:
v The -verifyonly option can set the bit if a true corruption is found or clear it if

no corruption is found.
v Repair (with no option) can clear the bit if a successful repair is done.

Privilege required

The user must meet one of the following authorization requirements:
v Have UPDATE authority to the VSAM linear data set
v Be UID 0
v Have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS

UNIXPRIV class

If you are using an IOEFSPRM file in the JCL, the issuer must have READ
authority to the data set that contains the IOEFSPRM file. If you are using parmlib
(IOEPRMxx), the issuer does not need special authorization.

Examples

Figure 47 shows an example of a job to salvage a zFS aggregate:

//USERIDA JOB ,’Salvage verify’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//SALVAGE EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=(’salvage -aggregate OMVS.PRV.COMPAT.AGGR001 -verifyonly’)
//IOEZPRM DD DSN=SYS4.PVT.SY1.PARMLIB(IOEFSPRM),DISP=SHR
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 47. Job to verify a zFS aggregate using debug parameters specified in IOEZPRM

ioefsutl salvage

148 z/OS V2R2 Distributed File Service zFS Administration

Note: In the PARM=(’salvage -aggregate OMVS.PRV.COMPAT.AGGR001 -verifyonly’)
statement, the salvage and options -aggregate and -verifyonly must be in
lowercase.

ioefsutl salvage

Chapter 11. zFS commands 149

MOUNT
Purpose

MOUNT is a TSO/E command that mounts a file system into the z/OS UNIX
hierarchy. This section only documents MOUNT options that are unique to zFS. It
can also be invoked from the z/OS UNIX shell (/usr/sbin/mount). For additional
information about this command, see z/OS UNIX System Services Command
Reference.

Note:

1. Beginning with z/OS V2R1, zFS clones are no longer supported. An attempt to
mount an aggregate that contains a .bak (clone) file system will be denied.

2. Beginning with z/OS V2R1, multi-file system aggregates are no longer
supported. An attempt to mount a zFS file system that is contained in a zFS
multi-file system aggregate is denied.

Format

Options

TYPE (file_system_type)
Specifies the file system type. Specify ZFS or HFS and the correct file
system type is determined for the file system that is located by the data set
name. If the TYPE specified (HFS) does not match the real file system type
(ZFS), any associated ZFS parameters are ignored. For more information,
see Mounting considerations in z/OS UNIX System Services Planning.

PARM(parameter_string)
Specifies a parameter string to be passed to zFS. Parameters are
case-sensitive and separated by a comma. Enclose the parameter string
within quotation marks. If a parameter is specified multiple times, the last
parameter is used.

Note: If the value specified on the TYPE parameter (HFS) does not match
the real file system type (ZFS), any associated ZFS parameters are ignored.

AGGRFULL(threshold,increment)
Specifies the threshold and increment for reporting aggregate full
error messages to the operator. The default is the aggrfull
specification in the IOEFSPRM file.

Note: AGGRFULL and FSFULL provide the same function. You
can use either one (or both) to monitor the free space for an
aggregate. However, AGGRFULL tends to give a more accurate
view of free space and is the suggested choice.

AGGRGROW | NOAGGRGROW
Specifies whether the aggregate is eligible to be dynamically
grown. The growth is based on the secondary allocation of the
aggregate and will occur when the aggregate becomes full. The
default is the aggrgrow specification in the IOEFSPRM file.

CONVERTTOV5 | NOCONVERTTOV5
Specifies whether a zFS read/write file system is assigned the

MOUNT TYPE(file_system_type) [PARM(parameter_string)]

MOUNT

150 z/OS V2R2 Distributed File Service zFS Administration

converttov5 attribute. If it is assigned the converttov5 attribute
and the aggregate is a version 1.5 aggregate, zFS automatically
converts directories from v4 to extended (v5) as they are accessed.
If the converttov5 attribute is assigned at primary mount time, a
version 1.4 aggregate is changed to a version 1.5 aggregate.

If automatic directory conversion for a directory fails, the
conversion is not attempted again until the file system is
unmounted and mounted again.

The converttov5 attribute can also be assigned if the MOUNT
option is not specified but the converttov5 specification in the
IOEFSPRM file is on when the file system is mounted or
remounted.

The default is NOCONVERTTOV5. However, the converttov5
attribute can also be assigned if the converttov5 specification in
the IOEFSPRM file is on when the file system is mounted or
remounted.

FSFULL(threshold,increment)
Specifies the threshold and increment for reporting file system free
space error messages to the operator. The default is the fsfull
specification in the IOEFSPRM file.

Note: AGGRFULL and FSFULL provide the same function. You
can use either one (or both) to monitor the free space for an
aggregate. However, AGGRFULL tends to give a more accurate
view of free space and is the suggested choice.

RWSHARE | NORWSHARE
Specifies whether a zFS read/write mounted file system will be
mounted sysplex-aware or non-sysplex aware. zFS must be
running sysplex-aware on a file system basis (IOEFSPRM specifies
sysplex=filesys) for this parameter to take effect. The default is the
sysplex_filesys_sharemode specified in the IOEFSPRM file, or later
using the zfsadm config command. For information about whether
to make a read/write file system sysplex aware, see “Using zFS
read/write sysplex-aware file systems” on page 17.

Usage

A mount of a compatibility mode aggregate is serialized with other zfsadm
commands (because the mount of a compatibility mode aggregate does an implicit
attach).

If you attempt to mount a compatibility mode aggregate/file system read-only and
it fails because it needs to run recovery (return code EROFS (141) and reason code
EFxx6271), you should temporarily mount it read/write (so it can complete the
recovery process) and then mount it read-only. Alternatively, you can specify the
romount_recovery=on configuration option in IOEFSPRM. This causes the file
system to automatically be temporarily mounted read/write to allow log recovery
to run and then to be mounted read-only.

If the DASD volume containing the zFS compatibility mode aggregate being
mounted is read-only, you can receive message IOEZ00336I. This message indicates
that the zFS aggregate indicator cannot be set in the catalog (actually, in the VVDS
on the volume). The zFS aggregate is successfully mounted (and attached).

MOUNT

Chapter 11. zFS commands 151

DFSMSdss backup (DUMP) will not automatically quiesce and unquiesce the zFS
aggregate because it cannot determine that the VSAM linear data set is a zFS
aggregate. If the zFS aggregate can be mounted with the DASD volume in
read/write, the zFS aggregate indicator will be set.

You can determine if the zFS aggregate indicator is set by using IDCAMS LISTCAT
ALL against the zFS aggregate and looking for the zFS indicator in the output.

Do not use a path entry as the file system name in the MOUNT command (see the
topic on DEFINE PATH in z/OS DFSMS Access Method Services Commands). The
mount succeeds but the system issues messages similar to the following:

Examples

The following TSO/E example mounts a zFS file system and specifies a threshold
and increment to display a message when the file system becomes almost full:

Here is the same example as a z/OS UNIX command:

Related information

Command:
UNMOUNT (For information about this command, see z/OS UNIX System
Services Command Reference.)

File:
IOEFSPRM

IOEZ00412I Catalog search failed for aggregate PLEX.JMS.AGGR006.PATH. Shareoptions are not altered.

IOEZ00336I PLEX.JMS.AGGR006.PATH could not be marked as a zFS aggregate in the catalog, rc=60 rsn=104

MOUNT FILESYSTEM('OMVS.PRV.AGGR004.LDS0004') MOUNTPOINT('/etc/zfscompat1')
TYPE(ZFS) MODE(RDWR) PARM(’AGGRFULL(90,5)’)

/usr/sbin/mount -f OMVS.PRV.AGGR004.LDS0004 -t ZFS -o 'AGGRFULL(90,5)' /etc/zfscompat1

MOUNT

152 z/OS V2R2 Distributed File Service zFS Administration

zfsadm
Purpose

This section introduces the zfsadm command suite. The zfsadm command is run
from the z/OS UNIX shell. It can also be invoked from TSO/E by using the
program name IOEZADM or as a batch job by using PGM=IOEZADM. If PARM is
coded in the JCL to pass options or arguments to IOEZADM and any of the
options or arguments contain a slash (for example, R/O), you must specify a
leading slash as the first character in the PARM string. See Figure 49 on page 164
for an example of invoking IOEZADM from a batch job.

Command syntax

The zfsadm commands have the same general structure:

The following example illustrates the elements of a zfsadm command:
zfsadm detach {-all | -aggregate name} [-help]

The following list summarizes the elements of the zfsadm command:

Command
A command consists of the command suite (zfsadm in the previous
example) and the command name (detach). The command suite and the
command name must be separated by a space. The command suite
specifies the group of related commands.

Options
Command options always appear in monospace type in the text, are
always preceded by a - (dash), and are often followed by arguments. In the
previous example, -aggregate is an option, with name as its argument. An
option and its arguments tell the program which entities to manipulate
when running the command (for example, which aggregate, or which file
system). In general, the issuer should provide the options for a command
in the order detailed in the format description. The { | } (braces separated
by a vertical bar) indicate that the issuer must enter either one option or
the other (-all or -aggregate in the previous example).

Command options are described in alphabetic order to make them easier to
locate; this does not reflect the format of the command. The formats are
presented the same as on your system.

Arguments
Arguments for options are highlighted in the text. The { | } indicate that the
issuer must enter either one argument or the other (-all or -aggregate in
the preceding example). The ... (ellipsis) indicates that the issuer can enter
multiple arguments.

Options
Some commands have optional, as well as required, options, and
arguments. Optional information is enclosed in [] (brackets). All options
except -all or -aggregate in the previous example are optional.

command {-option1 argument... | -option2 {argument1 | argument2}...}
[-optional_information]

zfsadm

Chapter 11. zFS commands 153

|
|
|
|
|
|
|

Options

The following options are used with many zfsadm commands. They are also listed
with the commands that use them.

-aggregate name
Specifies the aggregate name of the aggregate to use with the command.

-filesystem name
Specifies the file system to use with the command.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored. For complete details about receiving
help, see “Receiving help” on page 156.

-size kbytes
Specifies the size in K-bytes for the kbytes argument.

-system sysname
Specifies the name of the system that the request is sent to.

When an option is specified multiple times on one command, the first one is
honored and the subsequent ones are ignored. This can cause a subsequent
argument to be interpreted as an option and be diagnosed as unrecognized.

Usage

Most zfsadm commands are administrative-level commands that are used by
system administrators to manage file systems and aggregates. You can issue
commands from OMVS, TSO/E, or as a batch job. Use the IOEZADM format for
TSO/E and batch. For an example, see Figure 49 on page 164. The description of
the zfsadm attach command shows an example of issuing them as a batch job. The
other zfsadm commands can be run as a batch job in a similar manner.

For a batch job, the zfsadm options are specified in the EXEC PARM as a single
subparameter (a single character string enclosed in apostrophes with no commas
separating the options). You cannot put the ending apostrophe in column 72. If it
needs to go to the next line, use a continuation character in column 72 (continuing
in column 16 with the ending apostrophe on the second line). Remember that a
JCL EXEC PARM is limited to 100 characters. See the topic on the EXEC PARM in
z/OS MVS JCL Reference.

zfsadm commands are serialized with each other. That is, when a zfsadm command
is in progress, a subsequent zfsadm command is delayed until the active zfsadm
completes. This also includes MOUNT of a compatibility mode aggregate (because
an implicit attach occurs). This does not include zfsadm grow or implicit aggregate
grow. zfsadm commands do not delay normal file system activity (except when the
zfsadm command requires it, such as zfsadm quiesce).

zfsadm commands only work on zFS file systems and aggregates. All zfsadm
commands work across sysplex members that are in a shared file system
environment.

When supplying an argument to a zfsadm command, the option (for example
-aggregate) associated with the argument (for example,
OMVS.PRV.AGGR001.LDS0001) can be omitted if:

zfsadm

154 z/OS V2R2 Distributed File Service zFS Administration

v All arguments that are supplied with the command are entered in the order in
which they appear in the command's syntax. (The syntax for each command is
provided.)

v Arguments are supplied for all options that precede the option to be omitted.
v All options that precede the option to be omitted accept only a single argument.
v No options, either those that accept an argument or those that do not, are

supplied before the option to be omitted.
v The first option cannot be followed by an additional option before the vertical

bar.

In the case where two options are presented in
{ | }

(braces separated by a vertical bar), the option associated with the first argument
can be omitted if that argument is provided; however, the option associated with
the second argument is required if that argument is provided.

If it must be specified, an option can be abbreviated to the shortest possible form
that distinguishes it from other options of the command. For example, the
-aggregate option found in many zfsadm commands can typically be omitted or
abbreviated to be simply -a. (One exception is the zfsadm attach command
because it has an -aggrfull option.)

It is also valid to abbreviate a command name to the shortest form that still
distinguishes it from the other command names in the suite. For example, it is
acceptable to shorten the zfsadm grow command to zfsadm g because no other
command names in the zfsadm command suite begin with the letter g. However,
there are two zfsadm commands that begin with l: zfsadm lsaggr and zfsadm
lsfs. To remain unambiguous, they can be abbreviated to zfsadm lsa and zfsadm
lsf.

The following examples illustrate three acceptable ways to enter the same zfsadm
grow command:
v Complete command:

zfsadm grow -aggregate omvs.prv.aggr001.lds0001 -size 50000

v Abbreviated command name and abbreviated options:
zfsadm g -a omvs.prv.aggr001.lds0001 -s 50000

v Abbreviated command name and omitted options:
zfsadm g omvs.prv.aggr001.lds0001 50000

The ability to abbreviate or omit options is intended for interactive use. If you
embed commands in a shell script, do not omit options nor abbreviate them. If an
option is added to a command in the future, it might increase the minimum
unique abbreviation that is required for an existing option or change the order of
options.

In general, zfsadm commands are processed on a worker thread while the zfsadm
thread waits. If you cancel a zfsadm command that is taking a long time (for
example, zfsadm grow or zfsadm config (to shrink a cache), the zfsadm (waiting)
thread is canceled, but the worker thread continues to process the request to
completion. In addition, most zfsadm commands require a common zfsadm lock
while they are processing. If the zfsadm command cannot get the lock, it waits for
it to become available. This means, if you issue another zfsadm command (after
canceling a previous one), it can be delayed by this common zfsadm lock until the

zfsadm

Chapter 11. zFS commands 155

previous (possibly canceled) command completes. The zfsadm fsinfo command
does not have either of these possible processing delays.

Receiving help

There are several different ways to receive help about zfsadm commands. The
following examples summarize the syntax for the different help options available:

zfsadm help
Displays a list of commands in a command suite.

zfsadm help -topic command
Displays the syntax for one or more commands.

zfsadm apropos -topic string
Displays a short description of any commands that match the specified
string.

As of z/OS V1R13, when the zfsadm command displays help text or a syntax error
message, it will show the name of the command as IOEZADM, instead of zfsadm.
This occurs because the zfsadm command is not a binary module in the z/OS
UNIX file system; rather, it is a shell script that invokes IOEZADM. IOEZADM is
an entry that has the sticky bit on in the permissions. The sticky bit means that the
IOEZADM module is found and executed from the user's STEPLIB, link pack area,
or link list concatenation. (IOEZADM is usually located in SYS1.SIEALNKE.)
However, you cannot run IOEZADM from the shell because IOEZADM is not
normally in your PATH.

Privilege required

zfsadm commands that query information (for example, lsfs, aggrinfo) require the
issuer to have READ authority to the data set that contains the IOEFSPRM file if
you are using an IOEFSPRM file in your startup proc, or require no special
authorization if you are using parmlib (IOEPRMxx). zfsadm commands that modify
(for example format) additionally require that the issuer must have one of the
following:
v UID of 0. If you are permitted READ to the BPX.SUPERUSER resource in the

RACF FACILITY class, you can become a UID of 0 by issuing the su command.
v READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS

UNIXPRIV class.

Specific privilege information is listed within each command’s description.

Related information

Commands:
zfsadm aggrinfo
zfsadm apropos
zfsadm attach
zfsadm config
zfsadm configquery
zfsadm convert
zfsadm define
zfsadm delete
zfsadm detach
zfsadm fileinfo
zfsadm format

zfsadm

156 z/OS V2R2 Distributed File Service zFS Administration

|

zfsadm grow
zfsadm help
zfsadm lsaggr
zfsadm lsfs
zfsadm lssys
zfsadm query
zfsadm quiesce
zfsadm setauditfid
zfsadm unquiesce

File:
IOEFSPRM

zfsadm

Chapter 11. zFS commands 157

zfsadm aggrinfo
Purpose

Displays information about an aggregate, or all attached aggregates, if there is no
specific aggregate specified.

Format

Options

-aggregate name
Specifies the name of an aggregate about which information is to be
displayed. The aggregate must be attached. The aggregate name is not
case-sensitive. It is translated to uppercase. If this option is omitted,
information is provided about all of the attached aggregates on the system.
Compatibility mode aggregates are implicitly attached when they are
mounted.

-fast Causes the command to display a single line of output for each attached
aggregate. See “Usage” on page 159 for an explanation of the information
that is displayed on each line.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-long Causes the output of the command to be extended to display the following
additional information about space usage in an aggregate:
v Version of the aggregate
v File system identification (auditfid)
v Indicates sysplex-aware when the aggregate is sysplex-aware for

read/write
v Indicates converttov5 if the aggregate has the converttov5 attribute
v Number of free 8-KB blocks
v Number of free 1-KB fragments
v Size of the log file
v Size of the filesystem table
v Size of the bitmap file
v If the aggregate is quiesced, the job name, system name and the time

stamp of when the quiesce occurred.

-system sysname
Specifies the name of the system that owns the attached aggregates for
which the information is displayed.

zfsadm aggrinfo [-aggregate name| -system sysname] [-fast | -long]
[-level] [-help]

zfsadm aggrinfo

158 z/OS V2R2 Distributed File Service zFS Administration

Usage

The zfsadm aggrinfo command lists information about the total amount of disk
space and the amount of disk space currently available on attached aggregates. The
-aggregate option can be used to specify a single aggregate about which
information is to be displayed. If this option is omitted, information about all
aggregates that are attached in the sysplex (if shared file systems are being used)
or the system is displayed. In a shared file system environment, you can limit the
display to a single system by using the -system option. Compatibility mode
aggregates are implicitly attached when they are mounted.

This command displays a separate line for each aggregate. Each line displays the
following information:
v The aggregate name.
v Whether the aggregate is read/write (R/W) or read-only (R/O), it is a mounted

compatibility mode aggregate (COMP) or an attached compatibility mode
aggregate (MULT), or the aggregate is currently quiesced (QUIESCED), disabled
(DISABLED), or both.

v The amount of space available in KB.
v The total amount of space in the aggregate in KB. (To grow an aggregate using

the zfsadm grow command, specify a number larger than this number.)
v If -long is specified, the version of the aggregate, the auditfid, sysplex-aware if

the aggregate is sysplex-aware for read/write, the converttov5 attribute, the
number of free 8-KB blocks, the number of free 1-KB fragments, the size of the
log file, the size of the file system table, the size of the bitmap file, and if the
aggregate is quiesced, the job name, timestamp, and system name of the job.

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

Example

Following is an example command that displays information about the disk space
that is available on all aggregates that are attached in the sysplex.

Related information

Commands:
zfsadm fsinfo
zfsadm lsaggr

DCEIMGKC:/DCEIMGKC/home/suimgkc> zfsadm aggrinfo -long
IOEZ00369I A total of 1 aggregates are attached to the sysplex.
PLEX.AGGR (R/W COMP QUIESCED): 559 K free out of total 720
version 1.5
auditfid C3C6C3F0 F0F3000E 0000
sysplex-aware, converttov5

69 free 8k blocks; 7 free 1K fragments
112 K log file; 16 K filesystem table
8 K bitmap file

Quiesced by job SUIMGKC3 on system DCEIMGKC on Mon Feb 11 16:04:36 2013

Figure 48. Sample of zfsadm aggrinfo -long command

zfsadm aggrinfo

Chapter 11. zFS commands 159

|

|

Files:
IOEFSPRM

zfsadm aggrinfo

160 z/OS V2R2 Distributed File Service zFS Administration

zfsadm apropos
Purpose

Shows each help entry containing a specified string.

Format

Options

-help Prints the online help for this command. All other valid options specified
with this option are ignored.

-level Prints the level of the zfsadm command. This is useful when you are
diagnosing a problem. Except for -help, all other valid options specified
with -level are ignored.

-topic Specifies the keyword string for which to search. If it is more than a single
word, surround it with quotation marks ("") or another delimiter. Type all
strings for zfsadm commands in all lowercase letters.

Usage

The zfsadm apropos command displays the first line of the online help entry for
any zfsadm command containing the string specified by -topic in its name or short
description. To display the syntax for a command, use the zfsadm help command.

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

Results

The first line of an online help entry for a command lists the command and briefly
describes its function. This command displays the first line for any zfsadm
command where the string specified by -topic is part of the command name or
first line.

Examples

The following command lists all zfsadm commands that have the word list in
their names or short descriptions:
zfsadm apropos list

lsaggr: list aggregates
lsfs: list filesystem information

Related information

Commands:
zfsadm help

zfsadm apropos -topic string [-level] [-help]

zfsadm apropos

Chapter 11. zFS commands 161

|

zfsadm attach
Purpose

Attaches an aggregate to zFS without mounting the file system. Beginning in z/OS
V2R2, this aggregate can only contain one file system.

Note: zfsadm aggrinfo displays an attached compatibility mode aggregate as
MULT because it is not mounted.

Format

Options

-aggregate name
Specifies the name of the aggregate to be attached. The aggregate name is
not case-sensitive. It is translated to uppercase. This aggregate does not
need an entry in the IOEFSPRM file.

Compatibility mode aggregates do not need to be attached with the zfsadm
attach command. They are automatically attached on MOUNT of the
compatibility mode file system.

-aggrfull threshold,increment
Specifies the threshold and increment for reporting aggregate full error
messages to the operator. Both numbers must be specified. The first
number is the threshold percentage and the second number is the
increment percentage. For example, if 90,5 were specified, the operator is
notified when the aggregate is 90% full, then again at 95% full, and again
at 100% full. The default is the global aggrfull entry of the IOEFSPRM file.

-aggrgrow
Specifies that the aggregate should be dynamically grown if it runs out of
physical space. The aggregate (that is, the VSAM linear data set) must have
a secondary allocation specified and there must be space available on the
volume. The default is the aggrgrow option of the IOEFSPRM file.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-nbs Specifies that new block security is used for file systems in this aggregate.
New block security refers to the guarantee made when a system fails. If a file
was being extended or new blocks were being allocated for the file, but the
user data had not yet made it to the disk when the failure occurred, zFS
shows the newly allocated blocks as all binary zeros and not whatever was
on disk in those blocks at time of failure.

-nonbs
The NONBS option is no longer supported; if NONBS is specified, it is
ignored. zFS always runs with NBS on.

zfsadm attach {-aggregate name [-system sysname]}
[-aggrfull threshold,increment]
[{-R/O | -ro | -rw}] [-nbs | -nonbs] [-aggrgrow | -noaggrgrow][-level] [-help]

zfsadm attach

162 z/OS V2R2 Distributed File Service zFS Administration

|
|

|
|

|

-noaggrgrow
Specifies that the aggregate should not be dynamically grown if it runs out
of physical space. The default is the aggrgrow option of the IOEFSPRM file.

-R/O | -ro
Specifies that the aggregate should be opened in read-only mode. The
default is read/write unless -R/O or -ro is specified.

-rw Specifies that the aggregate should be opened in read/write mode. The
default is read/write unless -R/O or -ro is specified.

-system sysname
Specifies the name of the system that will be the zFS owner of the
aggregate. The system name is not case-sensitive. It is translated to
uppercase.

Usage

The zfsadm attach command attaches zFS aggregates on this system. Beginning in
z/OS V2R2, zFS only attaches aggregates that contain exactly one file system.

If the attach fails because log recovery is unsuccessful, you can run the ioefsutl
salvage batch utility with the -verifyonly option on the aggregate to determine if
there is an inconsistency. If so, use ioefsutl salvage to recover the aggregate and
reissue the zfsadm attach command.

The zfsadm lsaggr command can be used to display a current list of all aggregates
that are attached on this sysplex with the zFS owning system indicated, or this
system when -system is used.

If the DASD volume containing the zFS aggregate that being attached is read-only,
you might receive message IOEZ00336I. This indicates that the zFS aggregate
indicator cannot be set in the catalog (actually, in the VVDS on the volume). The
zFS aggregate is successfully attached. DFSMSdss backup (DUMP) will not
automatically quiesce and unquiesce the zFS aggregate because it cannot determine
that the VSAM linear data set is a zFS aggregate. If the zFS aggregate can be
attached with the DASD volume in read/write, the zFS aggregate indicator will be
set.

You can determine if the zFS aggregate indicator is set by using IDCAMS LISTCAT
ALL against the zFS aggregate and looking for the zFS indicator in the output.

Compatibility mode aggregates do not need to be separately attached because they
are attached during MOUNT processing. However, if you want to issue a zfsadm
command against a compatibility mode aggregate without mounting the aggregate,
you can use the zfsadm attach command. You might attach an aggregate to grow
it or display information about it.

Privilege required

The issuer must have READ authority to the data set that contains the IOEFSPRM
file and is required to be logged in as root or to have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class. If you are
not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the issuer is
required to be logged in as root or to have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

zfsadm attach

Chapter 11. zFS commands 163

|
|

|
|

Examples

The following command attaches an aggregate.
zfsadm attach -aggregate OMVS.PRV.AGGR001.LDS0001

Figure 49 shows the same example as a job that invokes zfsadm attach.

If you want to specify the R/O option, you must specify a leading slash. Otherwise,
Language Environment® will treat the characters before the slash as Language
Environment parameters. That is, you must use PARM=(’/attach
OMVS.PRV.AGGR001.LDS0001 -R/O’).

Related information

Commands:
zfsadm fsinfo
zfsadm lsaggr

Files:
IOEFSPRM

//USERIDA JOB ,'Zfsadm Attach',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//AGGRINFO EXEC PGM=IOEZADM,REGION=0M,
// PARM=('attach -aggregate OMVS.PRV.AGGR001.LDS0001')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 49. Job to attach an aggregate

zfsadm attach

164 z/OS V2R2 Distributed File Service zFS Administration

|

zfsadm config
Purpose

Changes the value of zFS configuration (IOEFSPRM) options in memory. See
Chapter 12, “The zFS configuration options file (IOEPRMxx or IOEFSPRM),” on
page 219 for a complete list of IOEFSPRM options.

Format

Options

When you change options that apply to zFS aggregates and file systems, the
current default changes. However, the change does not affect file systems that have
already been mounted until they have been unmounted and remounted. Those
options are as follows:

aggrfull
aggrgrow
convert_auditfid
change_aggrversion_on_mount
converttov5
fsfull
sysplex_filesys_sharemode

-adm_threads number
Specifies the number of threads that are defined to handle pfsctl or mount
requests.

-aggrfull threshold,increment
Specifies the threshold and increment for reporting aggregate full error
messages to the operator.

-aggrgrow on | off
Specifies whether an aggregate should be dynamically extended when it
runs out of physical space.

-change_aggrversion_on_mount on | off
Specifies whether an aggregate should be changed to a version 1.5
aggregate on mount. The default is off.

-client_cache_size cache size[,fixed]
Specifies the size, in bytes, of the client cache. This is only meaningful
when zFS is running sysplex-aware. This option is not supported; if it is
specified, it is accepted but not used.

zfsadm config [-adm_threadsnumber] [-user_cache_size number[,fixed]]
[-meta_cache_size number[,fixed]] [-log_cache_size number[,fixed]]
[-sync_interval number] [-vnode_cache_size number] [-nbs {on|off}]
[-fsfull threshold,increment] [-aggrfull threshold,increment]
[-trace_dsn PDSE_dataset_name] [-tran_cache_size number]
[-msg_output_dsn Seq_dataset_name] [-metaback_cache_size number[,fixed]]
[-aggrgrow {on|off}] [-romount_recovery {on|off}]
[-convert_auditfid {on|off}] [-client_reply_storage storage size]
[-file_threads number] [-client_cache_size cache size[,fixed]]
[-token_cache_size cache size] [-sysplex_filesys_sharemode {rwshare|norwshare}]
[-change_aggrversion_on_mount {on | off}]
[-format_aggrversion {4 | 5}] [-converttov5 {on | off}]
[-system sysname] [-level] [-help]
[-modify_cmd_threads number]

zfsadm config

Chapter 11. zFS commands 165

|

|
|

-client_reply_storage storage size
Specifies the number of bytes allocated for sysplex client reply storage.
This is only meaningful when zFS is running sysplex-aware.

-convert_auditfid on | off
Specifies whether the zFS auditfid is automatically changed to the unique
format on mount (attach). If on is specified, or defaulted, mount (attach)
changes the standard auditfid format to the unique auditfid format if the
mount (attach) is read/write. If off is specified (or the mount (attach) is
read-only), the auditfid is unaffected.

-converttov5 on | off
Specifies whether directories in a version 1.5 aggregate should be
converted from v4 directories to extended (v5) directories as they are
accessed. A version 1.4 aggregate is changed to a version 1.5 aggregate.
You can override this setting at mount time by specifying CONVERTTOV5
or NOCONVERTTOV5.

-file_threads number
Specifies the current number of file threads. This option is only meaningful
when zFS is running sysplex-aware.

-format_aggrversion 4 | 5
Specifies whether a version 1.4 aggregate or a version 1.5 aggregate should
be formatted by default.

-fsfull threshold,increment
Specifies the threshold and increment for reporting file system full error
messages to the operator.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options specified
with -level are ignored.

-log_cache_size number [,fixed]
Specifies the size, in bytes, of the cache that is used to contain buffers for
log file pages. The fixed option reserves real storage for usage by zFS only.

-meta_cache_size number [,fixed]
Specifies the size, in bytes, of the cache that is used to contain metadata.
The fixed option reserves real storage for usage by zFS only.

-metaback_cache_size number
Specifies the size of the metadata backing cache. This size is combined
with meta_cache_size to get the total size of the metadata cache.

-modify_cmd_threads number
Specifies the current number of threads that are defined to handle zFS
modify commands.

-msg_output_dsn Seq_dataset_name
Specifies the name of a data set that contains any output messages that
come from the zFS PFS.

-nbs on | off
Controls the global new block security. zFS always runs with new block
security on. The off option is not supported; if it is specified, it is accepted
but not used.

zfsadm config

166 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

|
|
|

-romount_recovery on | off
Specifies whether zFS will automatically avoid a read-only mount failure
(zFS reason code EFxx6271) because of the need to run log recovery for
this aggregate. This can occur when the aggregate has been mounted
read/write and a failure occurred before it was unmounted. If the next
mount is for read-only, log recovery needs to run for the mount to be
successful. If on is specified and this situation occurs, zFS temporarily
mounts the aggregate read/write to allow log recovery to run and then
zFS will unmount and then mount the aggregate read-only.

-sync_interval number
Specifies the number of seconds between the times where zFS flushes data
in its buffers to disk. The default is 30 seconds.

-sysplex_filesys_sharemode rwshare | norwshare
Specifies the default for the mount PARM when a zFS read/write file
system is mounted on a sysplex=filesys system. You can override this
setting at mount time by specifying an alternate value in the actual mount
PARM.

-system sysname
Specifies the name of the system that the configuration option change
request is sent to.

-token_cache_size cache size
Specifies the token cache size maximum. When the token_cache_size is
decreased, it is really the maximum size that is being decreased. This is
only possible if the current usage is less than the maximum size. The token
cache size cannot be decreased to lower than the current usage. The
current usage is displayed through the MODIFY ZFS,QUERY,STKM
command. This option is only meaningful when zFS is running
sysplex-aware.

-trace_dsn PDSE_dataset_name
Specifies the name of a data set that contains the output of any operator
MODIFY ZFS,TRACE,PRINT commands or the trace output if zFS abends.

-tran_cache_size number
Specifies the number of transactions in the transaction cache. This option is
not supported; if it is specified, it is accepted but not used.

-user_cache_size number [,fixed]
Specifies the size, in bytes, of the cache that is used to contain file data.
The fixed option reserves real storage for usage by zFS only.

-vnode_cache_size number
Specifies the number of vnodes that zFS will cache.

Usage

The zfsadm config command changes the configuration options (in memory) that
were specified in the IOEFSPRM file (or defaulted). The IOEFSPRM file is not
changed. If you want the configuration specification to be permanent, you must
modify the IOEFSPRM file because zFS reads the IOEFSPRM file to determine the
configuration values when zFS is started. The values that can be specified for each
option are the same as the values that can be specified for that option in the
IOEFSPRM file. You can specify that the configuration option change request
should be sent to another system by using the -system option. The following
options cannot be set using the zfsadm config command:
v -cmd_trace

zfsadm config

Chapter 11. zFS commands 167

|
|

v -debug_dsn
v -group
v -msg_input_dsn
v -trace_table_size
v -sysplex_state

Privilege required

The issuer must have READ authority to the data set that contains the IOEFSPRM
file and must be root or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class. If you are
not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the issuer is
required to be logged in as root or to have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following example changes the size of the user cache:
zfsadm config -user_cache_size 64M

IOEZ00300I Successfully set -user_cache_size to 64M

Related information

Commands:
zfsadm configquery

Files:
IOEFSPRM

zfsadm config

168 z/OS V2R2 Distributed File Service zFS Administration

zfsadm configquery
Purpose

Queries the current value of zFS configuration options.

Format

Options

-adm_threads
Displays the number of threads that are defined to handle pfsctl or mount
requests.

-aggrfull
Displays the threshold and increment for reporting aggregate full error
messages to the operator.

-aggrgrow
Displays whether an aggregate should be dynamically extended when it
runs out of physical space.

-all Displays the full set of configuration options.

-change_aggrversion_on_mount
Displays whether a version 1.4 aggregate should be changed to a version
1.5 aggregate when it is mounted.

-client_cache_size
Displays the size, in bytes, of the client cache. This is only meaningful
when zFS is running sysplex-aware. If you use zfsadm config to set
-client_cache_size to a value, the value is displayed but not used.

-client_reply_storage
Displays the number of bytes allocated for sysplex client reply storage.
This is only meaningful when zFS is running sysplex-aware.

-cmd_trace
Displays whether command tracing is active.

-converttov5
Displays whether an aggregate should be assigned the converttov5
attribute on mount or remount. This attribute controls whether v4
directories will be converted to extended (v5) directories as they are
accessed.

-convert_auditfid
Displays whether the zFS auditfid is automatically changed to the unique
format on mount (attach). If on is specified or defaulted and the mount
(attach) is read/write, the mount (attach) changes the standard auditfid
format to the unique auditfid format. If off is specified or the mount
(attach) is read-only, the auditfid is unaffected.

zfsadm configquery [-system sysname] [-adm_threads] [-aggrfull] [-aggrgrow]
[-all] [-change_aggrversion_on_mount] [-client_cache_size] [-client_reply_storage]
[-cmd_trace] [-converttov5] [-convert_auditfid] [-debug_dsn] [-file_threads]
[-format_aggrversion] [-fsfull] [-group] [-log_cache_size] [-meta_cache_size]
[-metaback_cache_size] [-msg_input_dsn] [-msg_output_dsn] [-nbs] [-romount_recovery]
[-sync_interval] [-syslevel] [-sysplex_filesys_sharemode] [-sysplex_state]
[-token_cache_size] [-trace_dsn] [-trace_table_size] [-tran_cache_size]
[-user_cache_size] [-vnode_cache_size] [-level] [-help]
[-modify_cmd_threads]

zfsadm configquery

Chapter 11. zFS commands 169

|

|
|

-debug_dsn
Displays the name of the debug input parameters data set.

-file_threads
Displays the current number of file threads. This option is only meaningful
when zFS is running sysplex-aware.

-format_aggrversion
Displays whether an aggregate formatting default should be to format as a
version 1.4 or 1.5 aggregate.

-fsfull
Displays the threshold and increment for reporting file system full error
messages to the operator.

-group
Displays the XCF group that is used by zFS for communication between
sysplex members.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-log_cache_size
Displays the size, in bytes, of the cache that is used to contain buffers for
log file pages.

-meta_cache_size
Displays the size, in bytes, of the cache that is used to contain metadata.

-metaback_cache_size
Displays the size of the backing cache for metadata.

-modify_cmd_threads
Displays the number of threads that are defined to handle zFS modify
commands.

-msg_input_dsn
Displays the name of the data set that contains translated zFS messages.

-msg_output_dsn
Displays the name of a data set that contains any zFS initialization output
messages that come from the zFS PFS.

-nbs Controls the global new block security. zFS always runs with new block
security on. If you use zfsadm config to set -nbs to off, it is displayed as
off, but the value is not used.

-romount_recovery
Displays whether read-only mount recovery is on or off. When
romount_recovery=on, zFS temporarily mounts the aggregate read/write to
allow log recovery to run, and then zFS unmounts and mounts the
aggregate again in read-only format.

-sync_interval
Displays the number of seconds in the interval that zFS flushes data in the
buffers to disk.

-syslevel
Displays the zFS kernel (the PFS) information, including:
v The version and release of z/OS

zfsadm configquery

170 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

v The service level and FMID of zFS
v The date and time the PFS was built
v Whether the PFS is running sysplex-aware on a file system basis

(referred to as filesys), or sysplex-aware on a system basis (referred to as
file), or not sysplex-aware (referred to as admin-only), and the zFS XCF
protocol level when running in a shared file system environment. (For
information about the XCF protocol level, see “Determining the XCF
protocol interface level” on page 97.) When filesys is indicated, the
default mount PARM (NORWSHARE or RWSHARE) also displays.

This is the same information that is displayed by the operator command
MODIFY ZFS,QUERY,LEVEL. In contrast, zfsadm configquery -level
shows the level information for the zfsadm command itself.

-sysplex_filesys_sharemode
Displays the current default for the mount PARM (RWSHARE or
NORWSHARE). It is only meaningful on systems that are running zFS
sysplex=filesys.

-sysplex_state
Displays the sysplex state of zFS.

3 zFS is running in a sysplex-aware environment with
sysplex=filesys.

-system sysname
Specifies the name of the system the report request is sent to retrieve the
requested data.

-token_cache_size
Displays the current token_cache_size maximum. The current usage is
displayed through the MODIFY ZFS,QUERY,STKM command. This option
is only meaningful when zFS is running sysplex-aware.

-trace_dsn
Displays the name of the data set that contains the output of any operator
MODIFY ZFS, TRACE,PRINT commands or the trace output if zFS abends.

-trace_table_size
Displays the size, in bytes, of the internal trace table.

-tran_cache_size
Displays the number of transactions in the transaction cache. If you use
zfsadm config to set -tran_cache_size to a value, the value is displayed
but not used.

-user_cache_size
Displays the size, in bytes, of the cache that is used to contain file data.

-vnode_cache_size
Displays the number of vnodes that will be cached by zFS.

Usage

The zfsadm configquery command displays the current value of zFS configuration
options. The value is retrieved from zFS address space memory rather than from
the IOEFSPRM file. You can specify that the configuration option query request
should be sent to another system by using the -system option.

Ignore the following values when zFS is running non-sysplex aware. No storage is
obtained even though a value might be reported.

zfsadm configquery

Chapter 11. zFS commands 171

|
|
|

v - client_cache_size
v - client_reply_storage
v - file_threads
v - token_cache_size

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

Examples

The following example displays the current value of the user_cache_size option:
zfsadm configquery -user_cache_size

IOEZ00317I The value for config option -user_cache_size is 64M.

To display all the zFS configuration options from each member, you can use the
following command:
for sys in $(zfsadm lssys | grep -v IOEZ00361I); \
do; echo; echo $sys; zfsadm configquery -all -system $sys; done

Related information

Commands:
zfsadm config

Files:
IOEFSPRM

zfsadm configquery

172 z/OS V2R2 Distributed File Service zFS Administration

|

zfsadm convert
Purpose

Converts a v4 directory that is contained in a read/write mounted version 1.5
aggregate to an extended (v5) directory. The aggregate is changed from a version
1.4 aggregate to a version 1.5 aggregate, if necessary. It can also be used to change
a version 1.4 aggregate to a version 1.5 aggregate without converting any
directories.

Format

Options

-aggrversion name
Specifies the aggregate name that should be changed from a version 1.4
aggregate to a version 1.5 aggregate. No directories are converted. The
aggregate name is not case-sensitive. It is translated to uppercase.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-path name
Specifies the path name of a directory that should be converted to an
extended (v5) directory. The aggregate is changed to a version 1.5
aggregate first, if necessary.

Usage

The zfsadm convert command can be used to explicitly convert a v4 directory to
an extended (v5) directory that is contained in a read/write mounted version 1.5
aggregate. In this case, the -path option is used. If the containing aggregate is a
version 1.4 aggregate, the command attempts to change the aggregate to a version
1.5 aggregate before converting the directory.

It can also be used to explicitly change a version 1.4 aggregate to a version 1.5
aggregate without converting any directories. In this case, the -aggrversion option
is used.

The zfsadm convert command might cause the file system to grow if it needs more
space for the extended (v5) directory.

The command must be issued from a z/OS V2R1 or later system and the zFS file
system must be zFS-owned on a z/OS V2R1 or later system. The aggregate must
be mounted read/write.

Do not use this command before you have migrated all your systems to z/OS
V2R1 or later. If there are systems that are prior to z/OS V2R1 active in the shared
file system environment, no conversion of a directory nor change of aggregate
version takes place.

zfsadm convert {-path name | -aggrversion name} [-level] [-help]

zfsadm convert

Chapter 11. zFS commands 173

|
|

|

If you use a job to invoke zfsadm convert, to specify the -path option, you must
specify a leading slash in the PARM string if the path argument contains a slash.
Otherwise, Language Environment will treat the characters before the slash as
Language Environment parameters. That is, you must use PARM=(’/convert -path
/home/myname/mydir’).

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

The issuer must be the owner of the directory and must have write permission (w)
to the directory. If the aggregate version is to be changed, the issuer must be
logged in as root or must have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following example contains the steps to convert an existing version 1.4
aggregate to a version 1.5 aggregate, and to convert a v4 directory to an extended
(v5) directory.
1. To display the version of the aggregate:

zfsadm aggrinfo PLEX.JMS.AGGR009.LDS0009 -long
PLEX.JMS.AGGR009.LDS0009 (R/W COMP): 1271 K free out of total 1440
version 1.4
auditfid C3C6C3F0 F0F200A2 0000

158 free 8k blocks; 7 free 1K fragments
112 K log file; 16 K filesystem table

8 K bitmap file

2. To change the version to 1.5:

zfsadm convert -aggrversion PLEX.JMS.AGGR009.LDS0009
IOEZ00810I Successfully changed aggregate PLEX.JMS.AGGR009.LDS0009 to version 1.5.

3. To verify the aggregate version change:

zfsadm aggrinfo PLEX.JMS.AGGR009.LDS0009 -long
PLEX.JMS.AGGR009.LDS0009 (R/W COMP): 1271 K free out of total 1440
version 1.5
auditfid C3C6C3F0 F0F200A2 0000

158 free 8k blocks; 7 free 1K fragments
112 K log file; 16 K filesystem table

8 K bitmap file

4. To display the version of a directory:

zfsadm convert

174 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|

|

zfsadm fileinfo /service9
path: /service9
*** global data ***
fid 1,1 anode 69,516
length 8192 format BLOCKED
1K blocks 8 permissions 755
uid,gid 0,10 access acl 0,0
dir model acl 0,0 file model acl 0,0
user audit F,F,F auditor audit N,N,N
set sticky,uid,gid 0,0,0 seclabel none
object type DIR object linkcount 3
object genvalue 0x00000000 dir version 4
dir name count 3 dir data version 1
dir tree status VALID dir conversion na
file format bits na,na,na file charset id na
file cver na charspec major,minor na
direct blocks 25
indirect blocks none
mtime Jun 13 15:27:10 2012 atime Jun 13 10:41:43 2012
ctime Jun 13 15:27:10 2012 create time Jun 13 10:41:43 2012
reftime none

5. To convert the directory to an extended (v5) directory:

zfsadm convert -path /service
IOEZ00791I Successfully converted directory /service9 to version 5 format.

6. To display the version of the directory again:

zfsadm fileinfo /service9
path: /service9
*** global data ***
fid 1,1 anode 69,516
length 8192 format BLOCKED
1K blocks 8 permissions 755
uid,gid 0,10 access acl 0,0
dir model acl 0,0 file model acl 0,0
user audit F,F,F auditor audit N,N,N
set sticky,uid,gid 0,0,0 seclabel none
object type DIR object linkcount 3
object genvalue 0x00000000 dir version 5
dir name count 3 dir data version 1
dir tree status VALID dir conversion na
file format bits na,na,na file charset id na
file cver na charspec major,minor na
direct blocks 25
indirect blocks none
mtime Jun 13 15:27:10 2012 atime Jun 13 10:41:43 2012
ctime Jun 13 15:27:10 2012 create time Jun 13 10:41:43 2012
reftime none

Related information

Commands:
zfsadm config
zfsadm fsinfo

Files:
IOEFSPRM

zfsadm convert

Chapter 11. zFS commands 175

|

zfsadm define
Purpose

Defines a VSAM linear data set that can be formatted as a zFS aggregate.

Format

Options

-aggregate name
Specifies the aggregate name of the aggregate to be defined. This will be
the name of the VSAM linear data set that is defined. The aggregate name
is not case-sensitive. It is translated to uppercase.

-catalog catalog
Specifies the name of the catalog in which the VSAM linear data set is to
be defined.

-cylinders primary [secondary]
Specifies the primary and optionally, the secondary allocation size for the
VSAM linear data set in cylinders. The VSAM linear data set must have a
secondary allocation size specified, if you want to use dynamic grow. See
“Dynamically growing a compatibility mode aggregate” on page 30 for
more information.

-dataclass SMS_data_class
Specifies the name of the data class to be used when the VSAM linear data
set is defined.

-help Prints the online help for this command. All other valid options specified
with this option are ignored.

-kilobytes primary [secondary]
Specifies the primary and optionally, the secondary allocation size for the
VSAM linear data set in kilobytes. The VSAM linear data set must have a
secondary allocation size specified, if you want to use dynamic grow. See
“Dynamically growing a compatibility mode aggregate” on page 30 for
additional information.

-level Prints the level of the zfsadm command. This is useful when you are
diagnosing a problem. Except for -help, all other valid options specified
with -level are ignored.

-managementclass SMS_management_class
Specifies the name of the management class to be used when the VSAM
linear data set is defined.

-megabytes primary [secondary]
Specifies the primary and optionally, the secondary allocation size for the
VSAM linear data set in megabytes. The VSAM linear data set must have a

zfsadm define -aggregate name [-dataclass SMS_data_class]
[-managementclass SMS_management_class]
[-storageclass SMS_storage_class] [-catalog catalog]
[-system sysname] [-model model [catalog]]
[-volumes volume [volume ...]]
[-cylinders primary [secondary]] [-kilobytes primary [secondary]]
[-megabytes primary [secondary]] [-records primary [secondary]]
[-tracks primary [secondary]] [-level] [-help]

zfsadm define

176 z/OS V2R2 Distributed File Service zFS Administration

secondary allocation size specified, if you want to use dynamic grow. See
“Dynamically growing a compatibility mode aggregate” on page 30 for
additional information.

-model model [catalog]
Specifies the name of the model and optionally, the model entry’s catalog
to be used when the VSAM linear data set is defined.

-records primary [secondary]
Specifies the primary and optionally, the secondary allocation size for the
VSAM linear data set in records. When records is specified, the record size
is assumed to be 4089 bytes. The VSAM linear data set must have a
secondary allocation size specified, if you want to use dynamic grow. See
“Dynamically growing a compatibility mode aggregate” on page 30 for
additional information.

-storageclass SMS_storage_class
Specifies the name of the storage class to be used when the VSAM linear
data set is defined.

-system sysname
Specifies the name of the system that the define request will be sent to.

-tracks primary [secondary]
Specifies the primary and optionally, the secondary allocation size for the
VSAM linear data set in tracks. The VSAM linear data set must have a
secondary allocation size specified, if you want to use dynamic grow. See
“Dynamically growing a compatibility mode aggregate” on page 30 for
additional information.

-volumes volume
Specifies the volume on which the VSAM linear data set can have space.

Usage

The zfsadm define command defines a VSAM linear data set. The VSAM linear
data set is available to be formatted as a zFS aggregate. The command creates a
DEFINE CLUSTER command string for a VSAM linear data set with
SHAREOPTIONS(3) and passes it to the IDCAMS utility. If a failure occurs, the
zfsadm define command can display additional messages from IDCAMS
indicating the reason for the failure.

Privilege required

The issuer of the zfsadm define command requires sufficient authority to create
the VSAM linear data set.

Examples

The following command defines a VSAM linear data set.
zfsadm define -aggregate omvs.prv.aggr001.lds0001 -volumes prv000 prv001 -cylinders 10 5

Related information

Commands:
zfsadm format

zfsadm define

Chapter 11. zFS commands 177

zfsadm delete
Purpose

Removes a backup file system in a compatibility mode aggregate. Beginning in
z/OS V2R2, .bak file systems can only be deleted on aggregates that are zFS
owned on downlevel systems.

This command will be removed in a future release.

Format

Options

-aggregate name
Specifies the name of the aggregate where the zFS file system resides. It is
specified to qualify the zFS file system name (-filesystem) when there are
multiple zFS file systems with the same name in different aggregates. The
aggregate name is not case-sensitive. It is always folded to uppercase.

-filesystem name
Specifies the name of the backup file system to be removed. Include the
.bak extension. The file system name is case-sensitive.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

Usage

The zfsadm delete command removes the backup zFS file system that is indicated
by the -filesystem option from its aggregate. The aggregate containing the file
system to be deleted must be attached. Removing a backup file system does not
remove the read/write file system.

Beginning in z/OS V2R2, no aggregates can be attached that contain more than
one file system or a clone (.bak). Therefore, file systems can only be deleted from
aggregates that are zFS owned on downlevel systems.

You can delete a compatibility mode file system (and its aggregate) by using the
IDCAMS DELETE operation. This operation deletes the VSAM linear data set. For
more information about renaming or deleting a compatibility mode aggregate, see
“Renaming or deleting a compatibility mode aggregate” on page 39.

Privilege required

The issuer must have READ authority to the data set that contains the IOEFSPRM
file and must be root or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class. If you are
instead using parmlib (IOEPRMxx), the issuer is required to be logged in as root or
to have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS
UNIXPRIV class.

zfsadm delete -filesystem name [-aggregate name] [-level] [-help]

zfsadm delete

178 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

|
|
|

Examples

The following command deletes the backup (clone) file system from its attached
compatibility mode aggregate:
zfsadm delete OMVS.USER.PAT.bak

IOEZ00105I File System OMVS.USER.PAT.bak deleted successfully

Related information

Commands:
zfsadm attach
zfsadm detach
zfsadm lsfs

Files: File:
IOEFSPRM

zfsadm delete

Chapter 11. zFS commands 179

zfsadm detach
Purpose

Detaches one or more aggregates from zFS. Any file systems contained in the
detached aggregate are unavailable to zFS.

Format

Options

-aggregate aggregate name
Specifies the aggregate name of the aggregate to be detached. Use this
option or use -all, but not both. The aggregate name is not case-sensitive.
It is always translated to uppercase.

-all Specifies that all attached aggregates in the sysplex are to be detached. Use
this option or use -aggregate but not both.

-help Prints the online help for this command. All other valid options specified
with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options specified
with -level are ignored.

-system sysname
Specifies the name of the system where the aggregates to be detached
reside. It cannot be specified without the -all option.

Usage

The zfsadm detach command is used to detach an aggregate. Detaching an
aggregate makes it unavailable to the system. To detach one or more aggregates,
use the -all or the -aggregate option to specify the aggregates to be detached. Use
the -system option to limit the detach to a single system. The -system option
cannot be specified without the -all option.

zfsadm detach does not detach mounted compatibility mode aggregates.

Privilege required

The issuer must have READ authority to the data set that contains the IOEFSPRM
file and must be logged in as root or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class. If you are
not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the issuer is
required to be logged in as root or to have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following example shows a zfsadm detach command that detaches the
aggregate OMVS.PRV.AGGR001.LDS0001.

zfsadm detach [{-aggregate aggregate name| -all [-system sysname]}] [-level] [-help]

zfsadm detach

180 z/OS V2R2 Distributed File Service zFS Administration

zfsadm detach -aggregate omvs.prv.aggr001.lds0001

IOEZ00122I Aggregate OMVS.PRV.AGGR001.LDS0001 detached successfully

Related information

Commands:
zfsadm attach

Files:
IOEFSPRM

zfsadm detach

Chapter 11. zFS commands 181

zfsadm fileinfo
Purpose

Displays detailed information about a file or directory.

Format

Options

-both Causes the command to display both global and local information about
the file or directory.

-globalonly
Causes the command to display global (on-disk) information about the file
or directory. This option is the default.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-localonly
Causes the command to display local (in memory on this system)
information about the file or directory.

-path name
Specifies the path name of a file or directory about which information
should be displayed. The path name is case-sensitive.

Usage

The zfsadm fileinfo command can be used to display information about a file or
directory. It supports files and directories in version 1.4 aggregates. It also supports
files and v4 or extended (v5) directories in version 1.5 aggregates.

If an aggregate has the converttov5 attribute assigned to it, accessing a v4
directory with zfsadm fileinfo can cause its conversion to an extended (v5)
directory. For more information, see “Converting an existing v4 directory to an
extended (v5) directory” on page 28.

The command must be issued from a z/OS V2R1 or later system. The file or
directory must be contained in a file system that is locally zFS-owned or in a client
file system.

If you use a job to invoke zfsadm fileinfo, to specify the -path option you must
specify a leading slash in the PARM string if the path argument contains a slash.
Otherwise, Language Environment will treat the characters before the slash as
Language Environment parameters. That is, you must use PARM=(’/fileinfo -path
/home/myname/mydata’).

Some of the fields are only applicable to files, some are only applicable to
directories, some are only applicable to the local system and some are only
applicable to client systems. There can also be attributes that are sometimes

zfsadm fileinfo -path name [{-globalonly | -localonly | -both}] [-level] [-help]

zfsadm fileinfo

182 z/OS V2R2 Distributed File Service zFS Administration

|

|
|
|
|
|

associated with a file or directory, such as ACLs. When these situations occur, the
fields of the output display will contain values such as 0 or na or none, depending
on the type of value that the field contains when it does have valid information.

If the -globalonly option is specified (or defaulted), the following fields are
displayed:

fid The inode and uniquifier separated by a comma.

anode Anode block and offset into anode block separated by a comma.

length Length of data (directories are multiples of 8 K).

format
INLINE, FRAGMENTED, or BLOCKED.

1K blocks
Number of blocks that are used to store data, in kilobytes.

permissions
Permissions in octal format.

uid,gid
UID and GID of owner that is separated by a comma.

access acl
Anode index to ACL and length of ACL separated by a comma.

dir model acl
Anode index to directory model ACL and length of ACL separated by a
comma.

file model acl
Anode index to file model ACL and length of ACL separated by a comma.

user audit
User audit flags for read, write, and execute:
N None
S Audit successful attempts
F Audit failed attempts

auditor audit
Auditor audit flags for read, write, and execute:
N None
S Audit successful attempts
F Audit failed attempts

set sticky,uid,gid
Sticky bit, set uid, and set gid separated by a comma.

seclabel
Security label for file or directory.

object type
DIR or FILE or LINK or CHARSPEC.

object linkcount
Link count for the object.

object genvalue
Object general attributes. This value is taken from at_genvalue in the z/OS
UNIX structure ATTR.

zfsadm fileinfo

Chapter 11. zFS commands 183

dir version
The version of the directory; 5 indicates an extended (v5) directory and 4
indicates a v4 directory.

dir name count
The number of objects in an extended (v5) directory.

dir data version
A number that is incremented each time that the directory is changed.

dir tree status
For an extended (v5) directory, VALID (accessed by hash) or BROKEN
(accessed as a flat file). Not applicable for a v4 directory.

dir conversion
For an extended (v5) directory, not applicable. For a v4 directory, FAILED
(directory conversion was unsuccessful) or not applicable.

file format bits
For a file, the txt flag, the defer tag, the file format. For other objects, the
text flag, the defer tag, and the file format are not applicable.

file charset id
The coded character set ID. This value is taken from at_charsetid in the
z/OS UNIX structure ATTR.

file cver
Creation verifier. This value is taken from AT_cver in the z/OS UNIX
structure ATTR.

charspec major,minor
Character special file, major number, minor number. Each character special
file has a device major number, which identifies the device type, and a
device minor number, which identifies a specific device of a given device
type.

direct blocks
The block numbers of the first eight 8-K blocks.

indirect blocks
The block numbers of the level 0, level 1 and level 2 trees.

mtime Last modification time.

atime Last access time.

ctime Last change time.

create time
Create time.

reftime
Last reference time.

If the -localonly option is specified, the following fields are displayed:

vnode,vntok
Addresses of the ZFS vnode and the z/OS UNIX vnode.

opens
ow Number of tasks that are waiting to open due to deny mode opens
oi Number of internal opens
rd Number of read opens
rw Number of write opens

zfsadm fileinfo

184 z/OS V2R2 Distributed File Service zFS Administration

open deny
rd Number of deny-read opens
wr Number of deny-write opens
ar Number of advisory deny-read opens
aw Number of advisory deny-write opens

owner zFS owning system.

file seq read
Indicates whether user file cache considers file to be read sequentially.
Valid only for files.

file seq write
Indicates whether user file cache considers file to be written sequentially.
Valid only for files.

file unscheduled
Indicates the number of unscheduled pages (dirty data) in the user file
cache for files.

file segments
The number of 64 K segments of the file that is cached in the user file
cache.

file dirty segments
The number of dirty segments in the user file cache. Dirty segments are
regions of the file that are either dirty and not yet written to disk, or are
waiting for an I/O to disk to complete.

file meta issued
Applicable to files or directories that were accessed by the sysplex client. It
indicates whether the client made a request recently to the server where
the object's metadata was updated.

file meta pending
Applicable to files or directories that are accessed by sysplex client. It
indicates whether the client has an outstanding request to the server where
the object's metadata might be updated.

client cached fsp
Indicates that the client has security information that is cached for the
directory or file.

client cached anode
Indicates that the client has the object's attributes and location information
for the directory or file.

client cached symlink
Indicates that the content of a symbolic link was cached by the sysplex
client. This flag is valid only for symbolic links.

client revoke
Indicates whether a revoke is in progress to this sysplex client for this file
or directory.

client thrashing
Indicates whether the file or directory is considered thrashing by zFS, and
as a result, uses the zFS thrash resolution interface to the server.

client token rights
Indicates the token rights that are held by the sysplex client for the object.

zfsadm fileinfo

Chapter 11. zFS commands 185

client thrash ops
Number of forwarded requests.

client ops to server
Number of requests that the client made to the server for this object.

client meta buffers
Number of buffers in the metadata or backing cache for this object for the
sysplex client.

client meta updates
Indicates whether the sysplex client has updated metadata for this object.

dirty meta buffers
For owners, indicates the number of dirty buffers in the metadata cache for
this file or directory.

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

The issuer must have lookup authority (x) to the directory and READ authority (r)
to the file.

Examples

The following example displays information for the /service9 directory:
zfsadm fileinfo -both /service9

path: /service9
*** global data ***
fid 1,1 anode 69,516
length 8192 format BLOCKED
1K blocks 8 permissions 755
uid,gid 0,10 access acl 0,0
dir model acl 0,0 file model acl 0,0
user audit F,F,F auditor audit N,N,N
set sticky,uid,gid 0,0,0 seclabel none
object type DIR object linkcount 2
object genvalue 0x00000000 dir version 4
dir name count na dir data version 0
dir tree status na dir conversion na
file format bits na,na,na file charset id na
file cver na charspec major,minor na
direct blocks 107
indirect blocks none
mtime Jun 13 10:41:43 2012 atime Jun 13 10:41:43 2012
ctime Jun 13 10:41:43 2012 create time Jun 13 10:41:43 2012
reftime none
*** local data from system DCEIMGVM ***
vnode,vntok 0x00000000,,0x794C0900 0x00FF7CA0,,0x00000000
opens ow=0 oi=0 rd=0 wr=0
open deny rd=0 wr=0 ar=0 aw=0
owner DCEIMGVM file seq read na
file seq write na file unscheduled na
file pending na file segments na
file dirty segments na file meta issued na
file meta pending na client cached fsp na
client cached anode na client cached symlink na
client revoke na client thrashing na

zfsadm fileinfo

186 z/OS V2R2 Distributed File Service zFS Administration

|

client token rights na client thrash ops na
client ops to server na client meta buffers na
client meta updates na dirty meta buffers 0

Related information

Commands:
zfsadm fsinfo

zfsadm fileinfo

Chapter 11. zFS commands 187

|

zfsadm format
Purpose

Formats a VSAM linear data set to become a version 4 or version 5 zFS
compatibility mode aggregate.

Format

Options

-aggregate name
Specifies the name of the aggregate to be formatted. The aggregate name is
not case-sensitive. It is translated to uppercase.

-compat
Specifies that the zFS aggregate should be formatted as a compatibility
mode aggregate. That is, it should be formatted as an aggregate and then a
zFS file system should be created in the aggregate. The zFS file system will
have the same name as the aggregate. -compat is the default but is ignored.

-group {gid | name}
Specifies the group owner of the root directory of the file system. It can be
specified as a z/OS group ID or as a GID. The default is the GID of the
issuer of the zfsadm format command. If only -owner is specified, the
group is that owner’s default group.

-grow blocks
Specifies the number of 8 KB blocks that zFS uses as the increment for
extension when the -size option specifies a size greater than the primary
allocation.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-initialempty blocks
This option is being allowed for compatibility with earlier versions and is
ignored. One 8-KB block at the beginning of the aggregate is reserved for
IBM use.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-logsize blocks
Specifies the size in 8 KB blocks of the log. The valid range is from 13 to
16384 blocks (128 megabytes). The default is 1% of the aggregate size. This
default logsize will never be smaller than 14 blocks and it will never be
larger than 4096 blocks (32 megabytes). This size is normally sufficient.
However, a small aggregate that is grown to be very large will still have a
small log. You might want to specify a larger log if you expect the
aggregate to grow very large.

zfsadm format -aggregate name [-initialempty blocks] [-size blocks] [-logsize blocks]
[-owner {uid | name}] [-group {gid | name}]
[-perms decimal | octal | hex_number] [-grow blocks]
[-system sysname] [-compat] [-overwrite]
[{-newauditfid] | -nonewauditfid}] [{-version4 | -version5}]
[-level] [-help]

zfsadm format

188 z/OS V2R2 Distributed File Service zFS Administration

|
|

-newauditfid
Specifies that the aggregate should be formatted with the zFS auditfid and
stored in the aggregate. This is the default.

-nonewauditfid
Specifies that the aggregate should not be formatted with a zFS auditfid
stored in it.

-overwrite
Specifies that an existing zFS aggregate should be overlaid. All existing
data is lost. Use this option with caution. This option is not usually
specified.

-owner {uid | name}
Specifies the owner of the root directory of the file system. It can be
specified as a z/OS user ID or as a UID. The default is the UID of the
issuer of the zfsadm format command.

-perms number
Specifies the permissions of the root directory of the file system. It can be
specified as an octal number (for example, o755), as a hexadecimal number
(for example, x1ED), or as a decimal number (for example, 493). The
default is o755 (owner read/write-execute, group read-execute, and other
read-execute.)

-size blocks
Specifies the number of 8 KB blocks that should be formatted to form the
zFS aggregate. The default is the number of blocks that fits in the primary
allocation of the VSAM linear data set. If a number less than the default is
specified, it is rounded up to the default. If a number greater than the
default is specified, a single extend of the VSAM linear data set is
attempted after the primary allocation is formatted unless the -grow option
is specified. In that case, multiple extensions of the amount that is specified
in the -grow option are attempted until the -size is satisfied. Space must
be available on the volume.

-system sysname
Specifies the system that the format request will be sent to.

-version4
Specifies that the aggregate should be a version 1.4 aggregate. See “Usage
notes for zfsadm format” for the default value that is used.

-version5
Specifies that the aggregate should be a version 1.5 aggregate. See “Usage
notes for zfsadm format” for the default value that is used.

Usage notes for zfsadm format

The zfsadm format command formats a VSAM linear data set as a zFS aggregate.
All zFS aggregates must be formatted before use. The zfsadm format command
requires the zFS PFS to be active on the system. The size of the aggregate is as
many 8-KB blocks as fits in the primary allocation of the VSAM linear data set or
as specified in the -size option. To extend it, use the zfsadm grow command. If
-overwrite is specified, all existing primary and secondary allocations are
formatted and the size includes all of that space, and the backup change activity
flag is set.

If the VSAM linear data set has a SHAREOPTIONS value of other than 3, zfsadm
format changes it to SHAREOPTIONS 3 during format.

zfsadm format

Chapter 11. zFS commands 189

|
|

If the -overwrite option is specified, the backup change flag is set.

The aggregate version will be as specified if the -version4 or -version5 argument
is used. If neither is used, then the default aggregate version will be obtained from
the zFS PFS format_aggrversion setting. See “IOEFSPRM” on page 220 for a
description of the format_aggrversion variable.

Privilege required

The issuer of the zfsadm format command must meet one of the following
authorization requirements:
v Have ALTER authority to the VSAM linear data set.
v Be UID 0.
v Have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS

UNIXPRIV class.

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

Examples

The following command formats the VSAM linear data set as a compatibility mode
aggregate.

Related information

Commands:
zfsadm define

Files:
IOEFSPRM

zfsadm format -aggregate omvs.prev.aggr001.lds0001 -owner usera -group audit -perms o750

zfsadm format

190 z/OS V2R2 Distributed File Service zFS Administration

|

|

zfsadm fsinfo
Purpose

Displays detailed information about a zFS file system, which is also known as a
zFS aggregate.

Format

Options

-aggregate name
Specifies the name of the aggregate to be displayed. The aggregate name is
not case-sensitive and is translated to uppercase. To specify multiple
aggregates with similar names, use an asterisk (*) at the beginning, at the
end, or both at the beginning and the end of name as a wildcard. If
-aggregate name is specified with wildcards, the default display is -basic.
Otherwise, the default display is -owner. See “Usage notes for zfsadm
fsinfo” on page 192 for more information.

-all Displays information for all aggregates in the sysplex. It is the default
when -aggregate and -path are not specified. The default information
display will be as if -basic were specified.

-basic Displays a line of basic file system information for each specified file
system. This option is the default in the following situations:
v The -all option is specified but -full, -owner, and -reset are not

specified.
v None of -aggregate, -all, -path, -full, -owner, and -reset options are

specified.
v The -sort and -exceptions options are specified and neither -full nor

-owner is specified.
v The -aggregate option is specified with one or more wildcards.

See “Usage notes for zfsadm fsinfo” on page 192 for more information.

-exceptions
Displays information about any specified aggregate that is quiesced,
disabled, had grow failures, is low on space or damaged. Any specified
aggregate is also displayed if it has had XCF communication failures or an
error because it ran out of space or when doing an I/O operation. This
option cannot be specified with -reset, -path, -select and -aggregate with
no wildcard in name. Information is displayed by default as if the -basic
option were specified. See “Usage notes for zfsadm fsinfo” on page 192 for
more information.

-full Displays information that is maintained by the system owning each
specified file system. See Table 14 on page 194 for a description of the
information displayed for the owner. It also displays information that is
locally maintained by each system in the sysplex that has each specified

zfsadm fsinfo
[-aggregate name | -path path | -all]
[{-basic |-owner | -full |-reset}]
[-select criteria | -exceptions]
[-sort sort_name][-level][-help]

zfsadm fsinfo

Chapter 11. zFS commands 191

|

|
|
|
|

|

|

|
|
|

|
|

file system locally mounted. For information about local statistics that are
displayed when the -full option is specified, see Table 16 on page 196.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This information is useful when
you are diagnosing a problem. Except for -help, all other valid options that
are specified with -level are ignored.

-owner
Displays only information that is maintained by the system owning each
specified file system. This option is the default when -aggregate without
wildcards is specified. See “Usage notes for zfsadm fsinfo” for more
information.

-path path
Specifies the path name of a file or directory that is contained in the file
system for which information is to be displayed. The path name is
case-sensitive and can start with or without a slash (/). The default
information display will be as if -owner were specified.

-reset Resets zFS statistics that are related to each specified file system.

-select criteria
Displays each specified file system that matches the criteria. Information is
displayed by default as if the -basic option were specified. The information
that is displayed can also be sorted by using the -sort option.

To use this option, specify a selection criteria from Table 12 on page 193.

This option cannot be specified with -exceptions, -reset, -path, and
-aggregate with no wildcard in name. See “Usage notes for zfsadm fsinfo”
for more information.

-sort sort_name
Specifies that the information displayed is to be sorted as specified by the
value of sort_name. The default is sort by Name. This option cannot be
specified with -reset. The valid sorting options are listed in Table 15 on
page 196.

Usage notes for zfsadm fsinfo
1. The zfsadm fsinfo command displays detailed information about the

specified file systems. Normally, file systems must be attached before this
command can be used to display their information. However, when a specific
aggregate name (with no wildcards) is specified, the file system does not need
to be attached. You can use several methods to specify aggregates, based on
their names, as follows:
v -aggregate with an exact aggregate name. The aggregate name is not

case-sensitive and is translated to uppercase.
v -aggregate using a wildcard ('*') at the beginning of the name value to select

aggregates with a common suffix.
v -aggregate using a wildcard ('*') at the end of the name value to select

aggregates with a common prefix.
v -aggregate using a wildcard ('*') at the beginning and the end of the name

value to select aggregates with both a common prefix and a common suffix.
v -path with the path name of a file or directory in a zFS file system.

Information for the file system that contains the file or directory is
displayed.

zfsadm fsinfo

192 z/OS V2R2 Distributed File Service zFS Administration

|

|

|

|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

Note: To ensure proper processing by the z/OS UNIX shell, put single
quotation marks around the wildcard (*).
The -all option selects all file systems that are attached in the sysplex. It is the
default.

2. The -owner option displays all available information for each specified file
system from the zFS-owning system. The information is obtained via XCF
communication with the owning system if the owning system is not the local
system.

3. Aggregates can be selected by use of the -select option. To use this option,
specify a criteria from the following table. You can specify more than one
criteria by using a comma to separate them. Table 12 lists the criteria that you
can use.

Table 12. Criteria for selecting aggregates

Criteria Shows aggregates that ...

CE Had XCF communication failures between client systems and owning
systems. This typically means that applications have gotten timeout
errors.

DA Are marked damaged by the zFS salvager.

DI Are disabled for reading and writing.

GD Are disabled for dynamic grow.

GF Had failed dynamic grow attempts.

GR Are currently being grown.

IE Have had disk I/0 errors.

L Have less than 1 MB of free space, which means that increased XCF
traffic is required for writing files.

NS Are mounted NORWSHARE.

OV Contain extended (v5) directories that are using overflow pages.

Q Are currently quiesced.

RO Are mounted read-only.

RQ Had application activity.

RW Are mounted read/write.

RS Are mounted RWSHARE.

SE Have returned ENOSPC errors to applications.

TH Have sysplex thrashing objects in them.

V4 Are version 1.4.

V5 Are version 1.5.

V5D Are disabled for conversion to version 1.5.

WR Had application write activity.

4. Aggregates can be selected using the -exceptions option. This option can be
useful for identifying file systems that have encountered unexpected
conditions, and might need attention. Unexpected conditions include I/O
errors, XCF communication failures or being low on space. An aggregate can
also be damaged, quiesced, or disabled.

5. The -basic option displays the file system name, the zFS-owning system name,
and file system status. Table 13 on page 194 lists the values of the file system

zfsadm fsinfo

Chapter 11. zFS commands 193

|
|

|
|

|
|

|

||

|

|
|

||

||

||

|
|

status. A Legend string is also displayed at the end of the output as a quick
reference to show the definitions of the abbreviated status values.

6. When you use the -owner option, the displayed information has the file
system status as part of the output. The status field contains abbreviated
values. For quick reference, these values are defined in a Legend string at the
end of the output. The full definitions of these abbreviations are listed in
Table 13.

Table 13. Definitions of abbreviated values when the -basic or -owner options are
specified

Values Definition

CE The aggregate had XCF communication failures (timeout errors) since
the last statistics reset.

DA Salvage considered the aggregate damaged and it has not been repaired
yet.

DI The aggregate is disabled for access.

GD Dynamic grow was disabled. This is set if an aggregate has the
AGGRGROW attribute assigned to it but due to a dynamic grow failure
will not attempt future dynamic grows until an explicit administrator
grow command is issued against that file system.

GF Had failed dynamic grow attempts.

GR The aggregate is being grown.

IE The aggregate had disk I/O errors since the last statistics reset.

L The aggregate is low on space as defined by the zFS distributed bitmap
reservation algorithms (less than 1 MB of free space left).

NM The aggregate is attached, but not mounted.

NS The aggregate is mounted NORWSHARE, or the aggregate is attached.

OV The aggregate has directories with overflow pages.

Q The aggregate is quiesced.

RO The aggregate is mounted in R/O mode.

RQ Had application activity.

RW The aggregate is mounted R/W.

RS The aggregate is mounted RWSHARE.

SE The aggregate ran out of space at some time since the last statistics reset.

TH The aggregate has sysplex thrashing objects.

7. The -owner option displays the statistics that are shown in Table 14.

Table 14. Statistics displayed when the -owner option is specified

Statistics Description

Owner The name of the system that currently owns the aggregate.

Status The status of the aggregate as known by the owning system. The display is a subset of
the information that is available in the -basic display because it shows only what the
owner knows. The -basic display is a one-line summary for all chosen sysplex members.

zfsadm fsinfo

194 z/OS V2R2 Distributed File Service zFS Administration

|
|

||
|
|
|

|

|

|

|

|

Table 14. Statistics displayed when the -owner option is specified (continued)

Statistics Description

Converttov5 Indicates whether the file system has the CONVERTTOV5 attribute assigned to it. If the
aggregate is version 1.4, or is version 1.5 and does not have the CONVERTTOV5
attribute assigned to it, the second value will be n/a. If the aggregate has the
CONVERTTOV5 attribute assigned to it, the second value will indicate whether
automatic conversion is ENABLED or DISABLED. One possible reason it could be
DISABLED is that the aggregate was quiesced after this system assumed ownership of
the file system.

Size Size of the aggregate in kilobytes.

Free 8K Blocks Number of free 8 K blocks.

Free 1K Fragments Number of free fragments in partially allocated blocks.

Log File Size Total space in kilobytes occupied by the log file, including indirect blocks.

Bitmap Size Size of the bitmap file in kilobytes, including indirect blocks.

Anode Table Size Total space occupied by the anode table in kilobytes, including indirect blocks.

File System Objects The number of objects in the file system. This includes files, directories, symbolic links,
ACLs and z/OS UNIX special files.

Version The version of the aggregate. For example, 1.4 or 1.5.

Overflow Pages The number of overflow pages that are allocated to extended (v5) directories.

Overflow HighWater The highest number of overflow pages that were ever allocated on disk in extended (v5)
directories.

Thrashing Objects The current number of sysplex thrashing objects in the file system at one time.

Thrash Resolutions The number of times the owner invoked the thrash resolution protocol (as opposed to
the normal direct I/O protocol) to resolve sysplex contention of objects in the file
system.

Token Revocations The number of times the owner revoked tokens from other sysplex members, which
means there was contention on an object and a callback had to be made to one or more
clients.

Revocation Wait Time The average time that it took to revoke tokens from clients.

Space Monitoring The threshold and increment for space monitoring. 0,0 is used to mean that there is no
space monitoring in use for the file system.

Devno z/OS UNIX device number for the mounted file system.

Quiesce Jobname Name of job that quiesced the aggregate.

Quiesce System Name of the system where the application was running that quiesced the aggregate.

Quiesce ASID ASID of the job that quiesced the aggregate.

File System Grow Shows whether the Aggrgrow attribute is enabled (ON or OFF). It also shows the
number of grows that were performed since this system assumed ownership of the file
system.

Audit Fid The audit fid that is used to represent the file system for SAF auditing.

File System Creation
Time

Time that the file system was last formatted.

Time of Ownership Time that the current owning system assumed ownership of the file system. That is, the
time of its primary mount or when it last assumed ownership due to aggregate
movement.

Statistics Reset Time Time that the owner statistics were last reset.

Quiesce Time The time that the file system was last quiesced.

Last Grow Time The time that the file system was last grown (by command or dynamically) since this
system assumed ownership of the file system.

zfsadm fsinfo

Chapter 11. zFS commands 195

|

|

|

|

|

|

|
|

|
|

Table 14. Statistics displayed when the -owner option is specified (continued)

Statistics Description

Connected Clients This lists all client systems in the sysplex that have local mounts for a file system that is
mounted RWSHARE.

8. Table 15 lists the sorting options when the -sort option is specified.

Table 15. Sorting options when the -sort option is specified

Sorting option Function

Name Sort by file system name, in ascending order. This sorting option is the default.

Requests Sort by the number of external requests that are made to the file system by user applications,
in descending order. The most actively requested file systems are listed first.

Response Sort by response time of requests to the file system, in descending order. The slower
responding file systems are listed first.

9. The -full option displays statistics for each specified file system from the zFS
owning system and from each system in the sysplex that has it locally
mounted. This is obtained via XCF communication with each system in the
sysplex. The owning system statistics are described in Table 14 on page 194.
The local statistics are described in Table 16.

Table 16. Local statistics displayed when the full option is specified

Statistics Description

Application Reads The number of read requests that were made by applications for files and directories in this
file system.

Application Writes The number of write requests that were made by applications for files or directories in this
file system.

Average The average task wait time when it had to wait for an I/O operation. This is the full wait
time, including any queue wait time and device response time.

Avg. Rd XCF Resp.
Time

The average response time for XCF read requests for objects on the owning system.

Avg. Read Resp.
Time

The average response time for read requests that were made by applications for files or
directories in this file system.

Avg. Wr XCF Resp.
Time

The average response time for XCF write requests for objects on the owning system.

Avg. Write Resp.
Time

The average response time for write requests that were made by applications for files or
directories in this file system.

Canceled Operations The number of times a task was asynchronously abended (forced or canceled) while
accessing this file system.

DDNAME The DDNAME for the data set allocation on this system.

Disk IO Errors The number of disk I/O errors for disk I/O operations performed on this system.

ENOSPC Errors The number of out of space (ENOSPC) errors that were seen by applications for this file
system on this system.

Kbytes The number of kilobytes read from the DASD volume for this system.

LFS Held Vnodes The number of vnodes that the z/OS UNIX logical file system has allocated for the file
system.

Metadata Cache 8K
Pages

The number of 8 K pages in the metadata cache for this file system.

Mount Time The time the file system was mounted on this system.

zfsadm fsinfo

196 z/OS V2R2 Distributed File Service zFS Administration

|

|

|

|

|

|

|

|

Table 16. Local statistics displayed when the full option is specified (continued)

Statistics Description

Open objects Number of files or directories that are open.

PAV The number of noncritical concurrent I/O operations that zFS will send to the DASD at one
time for this DASD volume. zFS will send up to the device PAV capability I/O operations in
parallel for critical I/O operations. An I/O operation is deemed critical if a task is, or will be
waiting on that I/O operation to complete.

Quiesce Waiters YES if there are tasks that are waiting for the file system to be unquiesced. Otherwise, NO.

Reads The number of disk reads to the DASD volume for this system.

Read XCF Calls The number of XCF requests to read objects from the system that owns the file system. This
will be zero (0) on the owning system.

Statistics Reset Time The time that the statistics for the local file system were last reset.

Tokens The number of tokens that are held for objects in the file system by the token manager.

TOTALS The totals for all DASD volumes for the file system on this system.

User Cache 4K
Pages

The number of 4 K pages in the user file cache for this file system.

Vnodes Number of vnodes in memory for the file system.

VOLSER The DASD VOLSER that the file system resides on.

Waits The number of times a task had to wait for an I/O operation to complete for disk I/O
operations on this system.

Writes The number of disk writes to the DASD volume for this system.

Write XCF Calls The number of XCF requests to write objects to the system that owns the file system. This
will be zero (0) on the owning system.

XCF Comm. Failures The number of XCF communication failures (for example, timeouts) on XCF requests made
for this file system on this system.

10. All times are in milliseconds. Large numbers are displayed using the
following suffixes:
t Multiply the shown value by 1,000,000,000.
m Multiply the shown value by 1000000.
t Multiply the shown value by 1000.
tr Multiply the shown value by 1,000,000,000,000.
K Multiply the shown value by 1024.
M Multiply the shown value by 1048576.

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

To use the -reset option, the user must meet one of the authorization requirements:
v Be UID 0
v Have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS

UNIXPRIV class

Examples
1. To display basic file system information for zFS aggregate

PLEX.DCEIMGNK.FSINFO:

zfsadm fsinfo

Chapter 11. zFS commands 197

|

||

||
|
|
|

|
|

|

|

|

|
|

|
|

|
|
||

||

|

|

zfsadm fsinfo -aggregate PLEX.DCEIMGNK.FSINFO -basic
PLEX.DCEIMGNK.FSINFO DCEIMGNJ RW,RS,Q,GF,GD,L,SE
Legend: RW=Read-write, Q=Quiesced, GF=Grow failed, GD=Grow disabled

L=Low on space, RS=RWSHARE mounted, SE=Space errors reported

2. To display full file system status for zFS aggregate PLEX.DCEIMGNK.FSINFO:
zfsadm fsinfo -aggregate PLEX.DCEIMGNK.FSINFO -full
File System Name: PLEX.DCEIMGNK.FSINFO

*** owner information ***
Owner: DCEIMGNJ Converttov5: ON,DISABLED
Size: 336K Free 8K Blocks: 23
Free 1K Fragments: 0 Log File Size: 112K
Bitmap Size: 8K Anode Table Size: 8K
File System Objects: 3 Version: 1.5
Overflow Pages: 0 Overflow HighWater: 0
Thrashing Objects: 0 Thrashing Resolution: 0
Token Revocations: 0 Revocation Wait Time: 0
Devno: 46 Space Monitoring: 0,0
Quiescing System: DCEIMGNJ Quiescing Job Name: SUIMGNJ
Quiescor ASID: x4c File System Grow: ON,0
Status: RW,RS,Q,GF,GD,L,SE
Audit Fid: 00000000 00000000 0000

File System Creation Time: Nov 5 15:15:54 2013
Time of Ownership: Nov 5 15:25:32 2013
Statistics Reset Time: Nov 5 15:25:32 2013
Quiesce Time: Nov 5 15:28:39 2013
Last Grow Time: n/a

Connected Clients: DCEIMGNK

Legend: RW=Read-write, Q=Quiesced, GF=Grow failed, GD=Grow disabled
L=Low on space, RS=RWSHARE mounted, SE=Space errors reported

*** local data from system DCEIMGNJ (owner: DCEIMGNJ) ***
Vnodes: 1 LFS Held Vnodes: 4
Open Objects: 0 Tokens: 3
User Cache 4K Pages: 5 Metadata Cache 8K Pages: 6
Application Reads: 167837 Avg. Read Resp. Time: 0.059
Application Writes: 23460 Avg. Writes Resp. Time: 0.682
Read XCF Calls: 0 Avg. Rd XCF Resp. Time: 0.000
Write XCF Calls: 0 Avg. Wr XCF Resp. Time: 0.000
ENOSPC Errors: 0 Disk IO Errors: 0
XCF Comm. Failures: 0 Cancelled Operations: 0

DDNAME: SYS00004
Mount Time: Nov 6 09:46:44 2013

VOLSER PAV Reads KBytes Writes KBytes Waits Average
______ ___ __________ __________ __________ __________ __________ _________
CFC001 1 12 88 25767 304116 18796 1.032
______ ___ __________ __________ __________ __________ __________ _________
TOTALS 12 88 25767 304116 18796 1.032

3. To display the status of the file system owner using a wildcard:
zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.FS’*’

PLEX.DCEIMGNJ.FS1 DCEIMGNJ RW,NS
PLEX.DCEIMGNJ.FS2 DCEIMGNJ RW,RS
PLEX.DCEIMGNJ.FS3 DCEIMGNJ RW,NS
PLEX.DCEIMGNJ.FS2 DCEIMGNJ RW,RS
PLEX.DCEIMGNJ.FS3 DCEIMGNJ RW,NS
Legend: RW=Read-write,NS=Mounted NORWSHARE,RS=Mounted RWSHARE

4. A job to obtain the file system information, using a wildcard:

zfsadm fsinfo

198 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

//USERIDA JOB ,’Zfsadm fsinfo’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//GETINFO EXEC PGM=IOEZADM,REGION=0M,
// PARM=(’fsinfo -aggregate PLEX.DCEIMGNJ.FS*’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H

The following lines are possible output from the job:
PLEX.DCEIMGNJ.FS1 DCEIMGNJ RW,NS
Legend: RW=Read-write,NS=Mounted NORWSHARE

5. A job to obtain information for the file system that contains directory
/u/userida/fs1:
//USERIDA JOB ,’Zfsadm fsinfo’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//GETINFO EXEC PGM=IOEZADM,REGION=0M,
// PARM=(’/fsinfo -path /u/userida/fs1’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H

The following lines are possible output from the job:
PLEX.DCEIMGNJ.FS1 DCEIMGNJ RW,NS
Legend: RW=Read-write,NS=Mounted NORWSHARE,RS=Mounted RWSHARE

Related information

Commands:
zfsadm aggrinfo
zfsadm lsaggr
zfsadm lsfs

Files:
IOEFSPRM
MODIFY ZFS PROCESS

zfsadm fsinfo

Chapter 11. zFS commands 199

|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|

|
|
|

|

zfsadm grow
Purpose

Makes the physical size of an aggregate larger.

Format

Options

-aggregate name
Specifies the name of the aggregate to be grown. The aggregate name is
not case-sensitive. It is always translated to uppercase.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options specified
with -level are ignored.

-size kbytes
Specifies the new total size in kilobytes of the aggregate after the grow
operation. The size is rounded up to a control area (CA). A control area is
normally a cylinder or less and is based on the primary and secondary
allocation units. See z/OS DFSMS Using Data Sets for more information
about allocation size boundary. If zero is specified, the secondary allocation
size is used. The value that is specified cannot exceed the size of a single
volume.

Usage

The zfsadm grow command attempts to extend the size of an aggregate when the
size specified is greater than the current size of the aggregate or when the size is
specified as zero. If the extend fails (for example, if there is no space on the
volume, or if size zero is specified and there is no secondary allocation specified
for the VSAM linear data set), the grow operation fails. If the size specified is less
than or equal to the current size of the aggregate, no extend is attempted and the
command successfully returns. An aggregate cannot be made smaller than its
current size. In any case, if the aggregate's high used value is less than the
aggregate's high allocated value, the aggregate will be formatted up to the high
allocated value (making the high used value equal to the high allocated value). The
current (formatted) size of an aggregate can be determined by using the zfsadm
aggrinfo command. The high used value (HI-U-RBA) and the high allocated value
(HI-A-RBA) can be determined by using the IDCAMS LISTCAT ALL command.
For an explanation of the rules that apply to extending a VSAM linear data set, see
z/OS DFSMS Using Data Sets.

The size of the file system free space is increased by the amount of additional
space available.

Privilege required

The issuer must have READ authority to the data set that contains the IOEFSPRM
file and must be logged in as root or have READ authority to the

zfsadm grow -aggregate name -size kbytes [-level] [-help]

zfsadm grow

200 z/OS V2R2 Distributed File Service zFS Administration

|
|

|

|

|
|

|

|
|
|

||
|

||
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class. If you are
not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the issuer is
required to be logged in as root or to have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following command displays the online help entry for the zfsadm grow
command:
zfsadm grow -help

Usage: zfsadm grow -aggregate <name> -size <size in K bytes> [-level] [-help]

Related information

Command:
zfsadm aggrinfo
zfsadm fsinfo

zfsadm grow

Chapter 11. zFS commands 201

|
|
|
|

|

|
|

|
|
|

|

|
|
|

zfsadm help
Purpose

Shows syntax of specified zfsadm commands or lists functional descriptions of all
zfsadm commands.

Format

Options

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-topic command
Specifies each command whose syntax is to be displayed. Provide only the
second part of the command name (for example, lsfs, not zfsadm lsfs).
Multiple topic strings can be specified. If this option is omitted, the output
provides a short description of all zfsadm commands.

Usage

The zfsadm help command displays the first line (name and short description) of
the online help entry for every zfsadm command if -topic is not provided. For
each command name specified with -topic, the output lists the entire help entry.

The online help entry for each zfsadm command consists of the following two
lines:
v The first line names the command and briefly describes its function.
v The second line, which begins with Usage:, lists the command options in the

prescribed order.

Use the zfsadm apropos command to show each help entry containing a specified
string.

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

Examples

The following command displays the online help entry for the zfsadm lsfs
command and the zfsadm lsaggr command:
zfsadm help -topic lsfs lsaggr

zfsadm lsfs: list filesystem information
Usage: zfsadm lsfs [-aggregate <aggregate name>] [{-fast | -long}] [-level] [-help]
zfsadm lsaggr: list aggregates
Usage: zfsadm lsaggr [-level] [-help]

zfsadm help [-topic command...] [-level] [-help]

zfsadm help

202 z/OS V2R2 Distributed File Service zFS Administration

|

Related information

Commands:
zfsadm apropos

zfsadm help

Chapter 11. zFS commands 203

zfsadm lsaggr
Purpose

Lists all currently attached aggregates for zFS. The owning system is displayed in a
shared file system (sysplex) environment.

Format

Options

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-system name
Specifies the name of the system that owns the attached aggregates to be
displayed.

Usage

zfsadm lsaggr displays information about all attached aggregates.

zfsadm lsaggr displays a separate line for each aggregate. Each line displays the
following information:
v The aggregate name.
v The name of the system that is the zFS owner of the aggregate. If the aggregate

is unowned, *UNOWNED is displayed.
v The mode of the aggregate.
v The status of the aggregate (for example, QUIESCED, DISABLED, or both).

You can use the zfsadm aggrinfo command to display information about the
amount of disk space available on a specific aggregate or on all aggregates on a
system.

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

Examples

The following example shows that five aggregates are attached to the system or the
sysplex when running in a shared file system environment.
zfsadm lsaggr
OMVS.PRV.AGGR004.LDS0004 JS000END R/W
OMVS.PRV.AGGR003.LDS0002 JS000END R/O
OMVS.PRV.AGGR003.LDS0001 JS000END R/W
OMVS.PRV.AGGR002.LDS0002 JS000END R/W
OMVS.PRV.AGGR001.LDS0001 JS000END R/W

zfsadm lsaggr [-system name] [-level] [-help]

zfsadm lsaggr

204 z/OS V2R2 Distributed File Service zFS Administration

|

Related information

Commands:
zfsadm aggrinfo
zfsadm fsinfo

Files:
IOEFSPRM

zfsadm lsaggr

Chapter 11. zFS commands 205

|

zfsadm lsfs
Purpose

Lists all the file systems on a given aggregate or all attached aggregates.

Format

Options

-aggregate name
Specifies an aggregate name that is used to retrieve file system
information. The aggregate name is not case-sensitive. It is always
translated to uppercase. If this option is not specified, the command
displays information for all attached aggregates.

-fast Causes the output of the command to be shortened to display only the
aggregate name.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-long Causes the output of the command to be extended to display the following
additional information about space usage in a file system: the allocation
limit, the free space limit, the size of the inode table, the number of file
requests, the version of the file system, the creation date and time, and the
last update date and time.

-system sysname
Specifies the name of the system that owns the aggregates that contain the
file systems to be displayed.

Usage

The zfsadm lsfs command displays information about file systems in aggregates.
The file systems do not need to be mounted. The zfsadm lsfs command displays
the following information for a specified aggregate or all attached aggregates on a
system or all attached aggregates in the sysplex:
v The total number of file systems that are contained in the aggregate.
v The file system’s name (with a .bak extension, if appropriate).
v The type (RW for read/write, or BK for backup).
v Whether it is mounted.
v The allocation usage and the free space usage, in kilobytes.
v Whether the file system is online.
v Whether the backup is being deleted.
v The total number of file systems online, offline, busy, and mounted appear at the

end of the output for all file systems.

If -fast is specified, it only displays the file system names.

zfsadm lsfs [-aggregate name| -system sysname] [{-fast | -long}] [-level] [-help]

zfsadm lsfs

206 z/OS V2R2 Distributed File Service zFS Administration

If -long is specified, the following information is displayed:
v Total number of file systems that are contained in the aggregate.
v File system’s name.
v File system’s ID.
v The type (RW for read/write, or BK for backup).
v Whether it is mounted or not.
v State vector of the file system.
v Whether the file system is online or not.
v Whether the backup is being deleted.
v Allocation limit and allocation usage.
v Free space limit and free space usage.
v Size of the Filesystem Inode Table and the number of file requests.
v Version of the aggregate.
v Day, date, and time when the file system was created.
v Day, date, and time when the contents of the file system were last updated.
v Total number of file systems online, offline, busy, and mounted appears at the

end of the output for all file systems.

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

Examples

The following example displays information for the aggregate
OMVS.PRV.AGGR001.LDS0001:

Related information

Commands:

zfsadm fsinfo

zfsadm lsfs -aggregate omvs.prv.aggr001.lds0001 -long
IOEZ00129I Total of 1 file systems found for aggregate OMVS.PRV.AGGR001.LDS0001
OMVS.PRV.FS1 100000,,5 RW (Not Mounted) states 0x10010005 On-line

4294967232 K alloc limit; 9 K alloc usage
25000 K quota limit; 9 K quota usage
8 K Filesystem Inode Table 0 file requests

version 1.4
Creation Thu Aug 9 17:17:03 2001
Last Update Thu Aug 9 17:17:03 2001

Total file systems online 1; total off-line 0; total busy 0; total mounted 0

zfsadm lsfs

Chapter 11. zFS commands 207

|

zfsadm lssys
Purpose

Shows the names of the members in a sysplex.

Format

Options

-help Prints the online help for this command. All other valid options specified
with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options specified
with -level are ignored.

Usage

The zfsadm lssys command displays the names of the members in a sysplex.

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

Examples

The command that follows shows the current list of system names in the XCF
group for zFS.

Related information

Related commands:
zfsadm lsaggr

zfsadm lssys [-level] [-help]

zfsadm lssys

IOEZ00361I A total of 3 systems are in the XCF group for zFS
DCEIMGVM
DCEIMGVQ
DCEIMGVN

zfsadm lssys

208 z/OS V2R2 Distributed File Service zFS Administration

|

zfsadm query
Purpose

Displays internal zFS statistics (counters and timers) maintained in the zFS
Physical File System (PFS).

Format

Options

-ctkc Displays the sysplex client operations report. For more information about
this report, see “Statistics Sysplex Client Operations Information” on page
423

-dircache
Displays the directory cache counters report. Beginning in z/OS V1R13,
this option is not meaningful; the report will show zeros. For more
information about this report, see “Statistics Directory Cache Information”
on page 343.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-iobyaggregate
Displays the I/O count by aggregate report. For more information about
this report, see “Statistics iobyaggr Information” on page 347.

-iobydasd
Displays the I/O count by Direct Access Storage Device (DASD) report.
For more information about this report, see “Statistics iobydasd
Information” on page 355.

-iocounts
Displays the I/O count report. For more information about this report, see
“Statistics iocounts Information” on page 363.

-knpfs Displays the kernel counters report. This option only displays counters for
PFS calls on the zFS owner. It does not display (a second set of) counters
for PFS calls when this system is a zFS client. For more information about
this report, see “Statistics Kernel Information” on page 370.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-locking
Displays the locking statistics report. For more information about this
report, see “Statistics Locking Information” on page 378.

-logcache
Displays the log cache counters report. For more information about this
report, see “Statistics Log Cache Information” on page 387.

zfsadm query [-system sysname] [-locking] [-reset] [-storage] [-usercache] [-trancache]
[-iocounts] [-iobyaggregate] [-iobydasd] [-knpfs] [-logcache]
[-metacache] [-dircache] [-vnodecache] [-ctkc] [-svi] [-stsm]
[-level] [-help]

zfsadm query

Chapter 11. zFS commands 209

|

||
|
|

|
|

|
|
|
|

|
|

|
|

-metacache
Displays the metadata cache counters report. For more information about
this report, see “Statistics Metadata Cache Information” on page 398.

-reset Resets the report counters to zero. Should be specified with a report type.
The reset takes place after displaying the current values. For example, if
you enter zfsadm query -knpfs -reset, the command returns the current
values for the kernel counters report before resetting to zero.

-stkm Displays the server token manager report. For more information about this
report, see “Statistics Server Token Management Information” on page 405.

-storage
Displays the storage report. For more information about this report, see
“Statistics Storage Information” on page 411.

-svi Displays the server vnode interface statistics report. For more information
about this report, see “Statistics Sysplex Owner Operations Information”
on page 430.

-system sysname
Specifies the name of the system that the report request will be sent to, to
retrieve the data requested.

-trancache
Displays the transaction cache counters report. Beginning with z/OS V2R2,
this option is not meaningful; the report will show zeroes. For more
information about this report, see “Statistics Transaction Cache
Information” on page 438.

-usercache
Displays the user cache report. For more information about this report, see
“Statistics User Cache Information” on page 442.

-vnodecache
Displays the vnode cache counters report. For more information about this
report, see “Statistics Vnode Cache Information” on page 454.

Usage

Use the zfsadm query command to display performance statistics that are
maintained by the zFS Physical File System.

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

Examples

The following example is one of the queries that displays performance statistics.

zfsadm query

210 z/OS V2R2 Distributed File Service zFS Administration

||
|

|
|

||
|
|

|
|
|
|

|
|

|

Related information

Commands:

v zfsadm fsinfo

v zfsadm lsaggr

zfsadm query -iobyaggr
zFS I/O by Currently Attached Aggregate
DASD PAV
VOLSER IOs Mode Reads K bytes Writes K bytes Dataset Name
------ --- ---- ---------- ---------- ---------- ---------- ------------
CFC000 1 R/W 13 92 7641 30564 PLEX.JMS.AGGR001.LDS0001
CFC000 1 R/O 9 60 0 0 PLEX.JMS.AGGR002.LDS0002
CFC000 1 R/W 26 188 4483 17952 PLEX.JMS.AGGR004.LDS0004
------ --- ---- ---------- ---------- ---------- ---------- ------------

3 48 340 12124 48516 *TOTALS*

Total number of waits for I/O: 52
Average I/O wait time: 3.886 (msecs)

zfsadm query

Chapter 11. zFS commands 211

|

zfsadm quiesce
Purpose

Specifies that an aggregate and the file system that is contained in it should be
quiesced.

Format

Options

-aggregate name
Specifies the name of the aggregate that is to be quiesced. The aggregate
name is not case-sensitive. It is always translated to uppercase. An
aggregate must be attached to be quiesced. All current activity against the
aggregate is allowed to complete but no new activity is started. Any
mounted file systems are quiesced.

-all Specifies that all attached aggregates are to be quiesced. Use this option or
use -aggregate.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

Usage

The zfsadm quiesce command is used to temporarily drain activity to the
aggregate. During this time:
v The aggregate cannot be detached, or grown.
v No activity can occur against mounted file systems.
v If you attempt to unmount a quiesced compatibility mode aggregate, the attempt

fails unless you specify unmount force.

The aggregate can be the target of lsaggr, aggrinfo, lsfs (file systems are
indicated as busy). While at least one RWSHARE aggregate remains quiesced,
message IOEZ00581E is displayed on the zFS owning system's console. Also, if
there is at least one task that is waiting for access to the quiesced file system,
message IOEZ00830E is displayed.

While an RWSHARE file system is quiesced, the command D OMVS,F displays
QUIESCED in the PFS EXCP field.

The aggregate is typically quiesced prior to backing up the aggregate. After the
backup is complete, the aggregate can be unquiesced.

Privilege required

The issuer must have READ authority to the data set that contains the IOEFSPRM
file and must be logged in as root or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class. If you are

zfsadm quiesce {-all | -aggregate name} [-level] [-help]

zfsadm quiesce

212 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the issuer is
required to be logged in as root or to have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following command quiesces the aggregate OMVS.PRV.AGGR001.LDS0001.
zfsadm quiesce -aggregate omvs.prv.aggr001.lds0001

IOEZ00163I Aggregate OMVS.PRV.AGGR001.LDS0001 successfully quiesced

Related information

Commands:
zfsadm aggrinfo
zfsadm fsinfo
zfsadm unquiesce

zfsadm quiesce

Chapter 11. zFS commands 213

|

zfsadm setauditfid
Purpose

Sets (or resets) the zFS auditfid in the mounted aggregate.

Format

Options

-aggregate aggrname
Specifies the name of the aggregate whose auditfid is to be set. The
aggregate must be attached (mounted). The aggregate name is not
case-sensitive. It is always translated to uppercase.

-force Specifies to change the auditfid to a new zFS auditfid. If the aggregate
already contains the new form of the zFS auditfid that you want to change
to a different new zFS auditfid (for example, if you copy an aggregate and
then rename it, but keep the old aggregate), you must specify -force to
avoid inadvertently changing the zFS auditfid.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

-old Specifies that the zFS auditfid is set to binary zeros.

Usage

The zfsadm setauditfid command sets or resets the zFS auditfid in the aggregate
on disk (based on the VOLSER and the cylinder, cylinder, head, head [CCHH] of
the first extent of the aggregate). The aggregate must be attached (mounted). If
neither -force nor -old are specified, a standard form auditfid (binary zeros) is
changed to the unique form auditfid. If the aggregate already contains the unique
form of the zFS auditfid and you want to change it to a different unique zFS
auditfid (for example, if you copy an aggregate and then rename it - keeping the
old one), you must specify -force to avoid inadvertently changing the zFS
auditfid. The zFS auditfid is based on the VOLSER and the CCHH of the first
extent, unless you specify -old. In that case, the zFS auditfid is set to binary zeros.

In a shared file system environment, whether the zfsadm setauditfid command is
issued from the system owning the zFS aggregate or from a client system, the new
auditfid value will only be visible on the zFS owning system. To make it visible on
client systems, issue a remount to the same mode.

Privilege required

If you are using an IOEFSPRM file in your startup proc, the issuer must have
READ authority to the data set that contains the IOEFSPRM file. If you are using
parmlib (IOEPRMxx), the issuer does not need special authorization.

zfsadm setauditfid -aggregate aggrname[-force | -old][-level] [-help]

zfsadm setauditfid

214 z/OS V2R2 Distributed File Service zFS Administration

|

The user must be UID 0 or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples
zfsadm setauditfid -aggregate OMVS.PRV.AGGR001.LDS0001 -force

Related information

Commands:
zfsadm aggrinfo
zfsadm format

Files:
IOEFSPRM

zfsadm setauditfid

Chapter 11. zFS commands 215

zfsadm unquiesce
Purpose

Makes an aggregate (and the file system that is contained in the aggregate)
available to be accessed.

Format

Options

-aggregate name
Specifies the name of the aggregate that is to be unquiesced. The aggregate
name is not case-sensitive. It is always translated to uppercase. An
aggregate must be attached to be unquiesced. All current activity against
the aggregate is allowed to resume. Any mounted file systems are
unquiesced.

-all Specifies that all attached aggregates are to be unquiesced. Use this option
or use -aggregate.

-help Prints the online help for this command. All other valid options that are
specified with this option are ignored.

-level Prints the level of the zfsadm command. This option is useful when you are
diagnosing a problem. Except for -help, all other valid options that are
specified with -level are ignored.

Usage

The zfsadm unquiesce command allows activity that was suspended by zfsadm
quiesce, to be resumed.

The aggregate is typically quiesced prior to backing up the aggregate. After the
backup is complete, the aggregate can be unquiesced and the backup change
activity flag can be reset.

Privilege required

The issuer must have READ authority to the data set that contains the IOEFSPRM
file and must be logged in as root or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class. If you are
not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the issuer is
required to be logged in as root or to have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following command unquiesces the aggregate OMVS.PRV.AGGR001.LDS0001.

zfsadm unquiesce {-all | -aggregate name} [-level] [-help]

zfsadm unquiesce

216 z/OS V2R2 Distributed File Service zFS Administration

Related information

Commands:
zfsadm aggrinfo
zfsadm fsinfo
zfsadm quiesce

zfsadm unquiesce -aggregate omvs.prv.aggr001.lds0001

IOEZ00166I Aggregate OMVS.PRV.AGGR001.LDS0001 successfully unquiesced

zfsadm unquiesce

Chapter 11. zFS commands 217

|

zfsadm unquiesce

218 z/OS V2R2 Distributed File Service zFS Administration

Chapter 12. The zFS configuration options file (IOEPRMxx or
IOEFSPRM)

This section describes the IOEFSPRM file, which is a data set that is used during
zFS processing.

© Copyright IBM Corp. 2001, 2015 219

IOEFSPRM
Purpose

The IOEFSPRM file lists the configuration options for the zFS PFS and the batch
utilities ioefsutl and ioeagslv. There is no mandatory information in this file;
therefore, it is not required. The options all have defaults. However, if you need to
specify any options (for tuning purposes, for example), you must have an
IOEFSPRM file.

zFS allows for more than one method to specify the location of the IOEFSPRM
configuration file. These methods are described in this chapter. zFS uses the
following criteria to determine which method to use:
v If an IOEZPRM DD statement exists in the JCL, the data set that it defines will

be the configuration file for the local system.
v If there is no IOEZRPM DD statement, the IOEPRMxx parmlib members that are

specified in the PARM string of the zFS FILESYSTYPE statement is used.
v If there is no PARM string on the zFS FILESYSTYPE statement, parmlib member

IOEPRM00 is used.
v If there is no IOEPRM00 parmlib member, no zFS configuration data set will be

used.

The location of the IOEFSPRM file can be specified by the IOEZPRM DD statement
in the ZFS PROC and in the JCL for the ioefsutl or ioeagslv batch utilities. (See
“Terminology and concepts” on page 4 for a definition of the term “ZFS PROC.”)
However, the preferred method for specifying the zFS configuration option file is
to use the IOEPRMxx parmlib member as described in “Using PARMLIB
(IOEPRMxx)” on page 221. If you still want to use a single IOEFSPRM file, specify
the IOEZPRM DD statement in your JCL. The IOEFSPRM file is typically a PDS
member, so the IOEZPRM DD statement might look like the following example:

If you need to have separate IOEFSPRM files and you want to share the ZFS
PROC in a sysplex, you can use a system variable in the ZFS PROC so that it
points to different IOEFSPRM files. The IOEZPRM DD might look like the
following:

Your IOEFSPRM file might reside in SYS4.PVT.SY1.PARMLIB(IOEFSPRM) on
system SY1; in SYS4.PVT.SY2.PARMLIB(IOEFSPRM) on system SY2; and others.

If you want to share a single IOEFSPRM file, you can use system symbols in data
set names in the IOEFSPRM file. For example, msg_output_dsn=USERA.
&SYSNAME..ZFS.MSGOUT results in USERA.SY1.ZFS.MSGOUT on system SY1. Each
system has a single (possibly shared) IOEFSPRM file.

Any line beginning with # or * is considered a comment. The text in the
IOEFSPRM file is not case-sensitive. Any option or value can be uppercase or
lowercase. Blank lines are allowed. Do not have any sequence numbers in the

//IOEZPRM DD DSN=SYS4.PVT.PARMLIB(IOEFSPRM),DISP=SHR

//IOEZPRM DD DSN=SYS4.PVT.&SYSNAME..PARMLIB(IOEFSPRM),DISP=SHR

IOEFSPRM

220 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

|
|

|
|

|
|

|
|

|
|

IOEFSPRM file. If you specify an invalid text value, the default value is assigned.
If you specify an invalid numeric value, and it is smaller than the minimum
allowed value, the minimum value is assigned. If you specify an invalid numeric
value, and it is larger than the maximum allowed value, the maximum value is
assigned.

Using PARMLIB (IOEPRMxx)

The preferred alternative to a IOEZPRM DDNAME is specifying the IOEFSPRM
file as a parmlib member. In this case, the member has the name IOEPRMxx,
where xx is specified in the parmlib member list.

When the IOEFSPRM is specified in a DD statement, there can only be one
IOEFSPRM file for each member of a sysplex. Using PARMLIB, zFS configuration
options can be specified in a list of configuration parmlib files. This allows an
installation to specify configuration options that are common among all members
of the sysplex (for example, adm_threads) in a shared IOEPRMxx member and
configuration options that are system-specific (for example, trace_dsn) in a
separate, system-specific IOEPRMxx member. If a configuration option is specified
more than once, the first one found is taken. For more information about the
IOEPRMxx parmlib member, z/OS MVS Initialization and Tuning Reference.

The IOEPRMxx files are contained in the logical parmlib concatenation. The logical
parmlib concatenation is a set of up to ten partitioned data sets defined by parmlib
statements in the LOADxx member of either SYSn.IPLPARM or SYS1.PARMLIB.
The logical parmlib concatenation contains zFS IOEPRMyy members that contain
zFS configuration statements. Columns 72-80 are ignored in the IOEPRMyy
member. The yy values are specified in the PARM option of the FILESYSTYPE
statement for the zFS PFS (in the BPXPRMxx parmlib member). The only valid
value that can be specified on the PARM option for the zFS PFS is the parmlib
search parameter PRM=. The PARM string is case-sensitive. As the following
example shows, you must enter the string in uppercase.

The parmlib concatenation can also be specified in the ioeagslv and ioefsutl
batch utility parameters. Specify the -PRM keyword in the PARM string on the
EXEC statement to use IOEPRMxx parameter file members. For more information,
see “ioeagslv” on page 130 and “ioefsutl” on page 136.

Up to 32 member suffixes can be specified. You can also use any system symbol
that resolves to two characters.

See Figure 43 on page 135 for an example of using PRM.

If &SYSCLONE.=AB, this specifies that parmlib member IOEPRMAB should be
searched after parmlib member IOEPRM01. IOEPRM01 can contain common

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS,’SUB=MSTR’)
PARM(’PRM=(01,02,03)’)

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS,’SUB=MSTR’)
PARM(’PRM=(01,&SYSCLONE.)’)

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 221

configuration options and IOEPRMAB can contain configuration options that are
specific to system AB. If a parmlib member is not found, the search for the
configuration option will continue with the next parmlib member.

To specify 32 members, type the member suffixes up to column 71; then, continue
them in column 1 on the next line, as shown in Figure 50.

If no PRM suffix list is specified (and no IOEZPRM DD is specified in their
respective JCL), then parmlib member IOEPRM00 is read. Parmlib support is only
used when no IOEZPRM DD is present in the JCL.

IOEFSPRM and IOEPRMxx

Descriptions of the valid configuration variables and their respective allowed
values follow. If no IOEFSPRM file is found, the default values for each
configuration value are used.

Processing options for IOEFSPRM and IOEPRMxx

The following processing options are used for the zFS PFS.

adm_threads
Specifies the number of threads that are defined to handle pfsctl or mount
requests.

Default value: 10

Expected value: A number in the range 1 - 256.

Example: adm_threads=5

aggrfull
Specifies the threshold and increment for reporting aggregate utilization
messages to the operator. The aggrfull parameter is independent of
fsfull. However, aggrfull reports are based on free 8-K blocks; while
fsfull reports are based on free 1 K blocks. The aggrfull value tends to
give a more accurate view of free space and is the recommended choice.

Default value: Off

Expected value: Two numbers in the range 1 - 99 within parentheses that
are separated by a comma.

Example: aggrfull(90,5)

col 72
|
�

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM) ASNAME(ZFS,’SUB=MSTR’)
PARM(’PRM=(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,

15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)’)
^
|
col 1

Figure 50. How to specify 32 members

IOEFSPRM

222 z/OS V2R2 Distributed File Service zFS Administration

aggrgrow
Specifies whether aggregates can be dynamically extended when they
become full. As of z/OS V1R13, by default, a zFS read/write mounted file
system that is mounted on a system running z/OS V1R13 or later attempts
to dynamically extend when it runs out of space. The aggregate (that is,
the VSAM linear data set) must have a secondary allocation that is
specified to be dynamically extended and there must be space on the
volumes. This global value can be overridden on the MOUNT command
for compatibility mode aggregates. For an explanation of the rules for
extending a VSAM LDS, see z/OS DFSMS Using Data Sets.

Default value: On

Expected value: On or Off

Example: aggrgrow=on

change_aggrversion_on_mount
Specifies whether a version 1.4 aggregate should be changed to a version
1.5 aggregate on a primary read/write mount. No directories are converted
to extended (v5) directories. The CONVERTTOV5 or NOCONVERTTOV5
MOUNT PARM overrides this option.

Default value: Off

Expected value: On or Off

Example: change_aggrversion_on_mount=off

client_reply_storage
Specifies the amount of storage that is used to handle sysplex server
replies.

Default value: 10 M

Expected value: A number in the range 2M - 128M. K or M can qualify the
number.

Example: client_reply_storage=8M

convert_auditfid
Specifies whether the zFS auditfid of an aggregate is automatically
converted from the old form auditfid (binary zeros) to the new form
auditfid on a read/write mount (attach). If the auditfid is already the new
form, it is not changed. An auditfid of the new form will cause zFS to
generate new auditids for files and directories in the file system.

Default value: On

Expected value: On or Off

Example: convert_auditfid=on

converttov5
Specifies whether a zFS read/write file system is assigned the converttov5
attribute. If it is assigned the converttov5 attribute and the aggregate is a
version 1.5 aggregate, zFS will automatically convert directories from v4 to
extended (v5) as they are accessed. If the converttov5 attribute is assigned

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 223

at primary mount time, a version 1.4 aggregate will be changed to a
version 1.5 aggregate. The CONVERTTOV5 or NOCONVERTTOV5
MOUNT PARM overrides this option.

If automatic directory conversion for a directory fails, it is not attempted
again until the file system is unmounted and mounted again.

Default value: Off

Expected value: On or Off

Example: converttov5=off

file_threads
Specifies the number of threads that handle sysplex server requests.

Default value: 32

Expected value: A number in the range 1 - 256.

Example: file_threads=50

format_aggrversion
Specifies the default version of an aggregate when formatting it. Each
method for formatting a zFS aggregate gets this value from the zFS PFS if
no version is specified.

Default value: 4

Expected value: 4 (meaning format a version 1.4 aggregate) or 5 (meaning
format a version 1.5 aggregate)

Example: format_aggrversion=4

fsfull Specifies the threshold and increment for reporting file system utilization
messages to the operator. The fsfull parameter is independent of
aggrfull. Whereas aggrfull reports are based on free 8-KB blocks, fsfull
reports are based on free 1-KB blocks. The aggrfull parameter tends to
give a more accurate view of free space and is the recommended choice.

Default value: Off

Expected value: Two numbers in the range 1 - 99 within parentheses and
separated by a comma.

Example: fsfull(85,5)

group Specifies the XCF group that zFS uses to communicate between sysplex
members. The Expected value characters must be acceptable to XCF.
Generally, the characters A-Z, 0-9 and the national characters ($, # and @)
are acceptable. The value that is specified must match on all systems in the
sysplex that participate in a shared file system environment. Normally,
there is no reason to specify this option. For more details, see the
GRPNAME parameter of the IXCJOIN macro in z/OS MVS Programming:
Sysplex Services Reference.

Default value: IOEZFS

IOEFSPRM

224 z/OS V2R2 Distributed File Service zFS Administration

Expected value: 1 to 8 characters

Example: group=IOEZFS1

log_cache_size
Specifies the size of the cache that is used to contain buffers for log file
pages. You can also specify a fixed option, which indicates that the pages
are permanently fixed for performance. The fixed option reserves real
storage for usage by zFS only.

Default value: 16 M

Expected value: A number in the range of 2M - 1024M. A K or M can be
appended to the value to mean kilobytes or megabytes, respectively.

Example: log_cache_size=32M,fixed

meta_cache_size
Specifies the size of the cache that is used to contain metadata. You can
also specify a fixed option, which indicates that the pages are permanently
fixed for performance. The fixed option reserves real storage for usage by
zFS only

If metaback_cache_size is specified, the size of the entire metadata cache
will be a combination of the two values. It is not required, but it is
recommended to keep your IOEFSPRM configuration file clean of outdated
specifications for simplicity. Therefore, IBM recommends not to use the
metaback_cache_size option. Rather, the size of the entire metadata cache
should be assigned to the meta_cache_size option.

zFS provides a check to see if the metadata cache size is less than the
calculated default metadata cache size. For more information, see
ZFS_VERIFY_CACHESIZE in IBM Health Checker for z/OS User's Guide.

Default value: If metaback_cache_size is specified, then meta_cache_size
is 64 M. If metaback_cache_size is not specified, zFS calculates 10% of real
storage that the system has available during zFS initialization.
v If this amount is less than 64 M, then meta_cache_size is assigned 64

M.
v If this amount is between 64 M and 2 G+100 M, then meta_cache_size is

assigned 10% of real storage size.
v If the amount is greater than 2 G+100 M, then meta_cache_size is

assigned 2 G+100 M

Expected value: A number in the range 1 M - 64 G. A K or M or G can be
appended to the value to mean kilobytes, megabytes, or gigabytes,
respectively.

Example: meta_cache_size=64M,fixed

metaback_cache_size
Specifies the size of the backing portion of the metadata cache. The
backing cache is no longer in a data space. Rather, it is combined with
meta_cache_size into one cache with a size of the sum of the two values.

Tip: To avoid confusion, do not keep outdated specifications in your
IOEFSPRM configuration file. Use only the meta_cache_size option to
specify the entire size of the metadata cache.

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 225

|
|
|
|
|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

|
|
|

|
|
|

zFS provides a check to see if the sum of the metadata cache size and
metadata backing cache size is less than the sum of the default metadata
cache size and metadata backing cache size. For more information, see
ZFS_VERIFY_CACHESIZE in IBM Health Checker for z/OS User's Guide.

zFS provides a check to indicate whether this configuration option is
specified. For more information, see ZFS_CACHE_REMOVALS in IBM
Health Checker for z/OS User's Guide

Default value: If meta_cache_size is specified, then there is no value for
the metaback cache. Otherwise, see the default calculation description in
meta_cache_size.

Expected value: A number in the range 1 M - 2048 M. A K or M can be
appended to the value to mean kilobytes or megabytes, respectively.

Example: metaback_cache_size=64M

modify_cmd_threads
Specifies the number of threads that are defined to handle zFS modify
commands.

Default value: 3

Expected value: A number in the range 1 - 256.

Example: modify_cmd_threads=1

quiesce_message_delay
Specifies the minimum number of seconds to delay issuing the
IOEZ00830E message after it is determined that there is at least one
quiesced aggregate and it needs to be displayed.

Default value: 30

Expected value: A number in the range 30 - 21474836.

Example: quiesce_message_delay=300

quiesceinfo_message_delay
Specifies the minimum number of seconds to delay issuing the
IOEZ00581E message after it is determined that there is at least one task
waiting to access a quiesced aggregate and it needs to be displayed.

Default value: 30

Expected value: A number in the range 30 - 21474836.

Example: quiesceinfo_message_delay=300

romount_recovery
Specifies whether zFS will automatically avoid a read-only mount failure
because of the need to run log recovery for this aggregate. This can occur
when the aggregate has been mounted read/write, and then a failure
occurs before it was unmounted. If the next mount is for read-only, log
recovery must run for the mount to be successful. When this situation

IOEFSPRM

226 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

|
|
|

|

|
|
|

|

|

|

|
|
|

|
|
|

occurs and romount_recovery=on, zFS temporarily mounts the aggregate
read/write to run log recovery, and then zFS unmounts and mounts the
aggregate read-only.

Default value: Off

Expected value: On or Off

Example: romount_recovery=on

recovery_max_storage
Indicates the maximum amount of zFS address space storage to use for
concurrent log recovery during multiple concurrent aggregate mounts
(attaches). This allows multiple concurrent mounts to occur when sufficient
storage is available for multiple concurrent log recovery processing.

Default value: 256 M

Expected value: A number in the range 128 M - 512 M.

Example: recovery_max_storage=128M

sync_interval
Specifies the number of seconds between syncs.

Default value: 30

Expected value: A number in the range 11 - 21474836.

Example: sync_interval=45

sysplex
Starting with z/OS V1R13, zFS always runs sysplex-aware by file system,
regardless of the sysplex specification. If you specify sysplex=on, zFS
changes the default of sysplex_filesys_sharemode to rwshare. Otherwise,
the default for sysplex_filesys_sharemode is norwshare. If you specify
sysplex=off, the result is the same as specifying sysplex=filesys. For
information about whether to make a read/write file system
sysplex-aware, see “Using zFS read/write sysplex-aware file systems” on
page 17.

Default value: filesys

Expected value: Off, filesys, or On, if BPXPRMxx specifies SYSPLEX(YES).

Ignored, if BPXPRMxx does not specify SYSPLEX(YES).

Tip: Specify sysplex=filesys.

Example: sysplex=filesys

sysplex_filesys_sharemode
Specifies the default for the mount PARM for a zFS read/write file system
that is mounted in a shared file system environment. For information
about whether to make a read/write file system sysplex-aware, see “Using
zFS read/write sysplex-aware file systems” on page 17.

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 227

|

|

Default value: norwshare (unless sysplex=on was specified, then the
default is rwshare)

Expected value: rwshare or norwshare

Example: sysplex_filesys_sharemode=rwshare

token_cache_size
Specifies the maximum number of tokens in the server token manager
cache to use for cache consistency between zFS members. The number of
tokens that are initially allocated for the server token manager cache is
20480.

Default value: Double the number of vnodes (see vnode_cache_size) when
running in a shared file system environment. If you are not running in a
shared file system environment, then there is no default value. This option
is meaningful only when zFS is running sysplex-aware.

Expected value: A number in the range 20480 - 20 million.

Example: token_cache_size=30720

user_cache_size
Specifies the size, in bytes, of the cache that is used to contain file data.
You can also specify a fixed option, which indicates that the pages are
permanently fixed for performance. The fixed option reserves real storage
for usage by zFS only.

zFS provides a check to see if the user cache size is less than the default
user cache size. For more information, see ZFS_VERIFY_CACHESIZE in
IBM Health Checker for z/OS User's Guide.

Default value: zFS calculates 10% of real storage the system has available
during zFS initialization. If this amount is less than 256 M, then the default
is 256 M. If this amount is between 256 M and 2 G, then the default is 10%
of real storage. If the amount is greater than 2 G, then the default is 2 G.

Expected value: A number in the range 10 MB - 65536 MB (64 G). K or M
can be appended to the value to mean kilobytes or megabytes.

Example: user_cache_size=64M,fixed

user_running_hangdump
Specifies whether a hang dump should be taken for a user task that has
been hanging for approximately 5 minutes.

Default value: Off

Example: user_running_hangdump=on

vnode_cache_size
Specifies the initial number of vnodes that will be cached by zFS. The
number of vnodes with vnode extensions will not exceed this number.

Default value: 32768 (will grow if z/OS UNIX needs more than this
number)

Expected value: A number in the range 1000 to 10 million.

IOEFSPRM

228 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|

|

|
|

|
|
|

|

|

|

Example: vnode_cache_size=131072

The following options are used during debugging of the zFS PFS, the batch utilities
(ioeagfmt, ioeagslv, and ioefsutl) and the zfsadm command. They might not
apply to the utilities and commands that are listed in the preceding section.

cmd_trace
Specifies whether command tracing is done for the ioeagfmt batch utility
or a zfsadm command. If On, a zFS trace will be printed in the data set
specified by the zFS PFS trace_dsn configuration option after the batch
utility or command completes. A trace from ioeagfmt has a member name
of IOEAGT01. A trace from a zfsadm command has a member name of
ZFSADT01.

Default value: Off

Expected value: On or Off.

Example: cmd_trace=on

debug_settings_dsn
Specifies the name of a data set containing debug classes to enable when
the zFS PFS or the batch utilities start. It is read when zFS is started (or
restarted). The debug classes are also used by the batch utilities.

Default value: None

Expected value: The name of a data set containing debug classes to enable.

Example: debug_settings_dsn=usera.zfs.debug.input(file1)

max_errors
The maximum number of errors that the salvager program allows before it
stops. If this limit is exceeded, the salvager program ends with message
IOEZ00752E.

Default value: 100000

Expected value: A number in the range 1000 - 1000000

Example: MAX_ERRORS=5000

msg_input_dsn
Specifies the name of a data set containing translated zFS messages. It is
specified when the installation uses messages that are in languages other
than English. (When you use English messages, do not specify this option.)
It is read when zFS or the batch job is started (or restarted). Currently,
Japanese messages are supported.

Default value: None

Expected value: The name of a data set containing translated zFS
messages.

Example: msg_input_dsn=usera.sioemjpn

msg_output_dsn
Specifies the name of a data set that contains any output messages that

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 229

come from the zFS PFS during initialization. See Chapter 8, “Performance
and debugging,” on page 67. This is not a required parameter.

Default value: None

Expected value: The name of a data set that contains zFS PFS messages
issued.

Example: msg_output_dsn=usera.zfs.msg.out

trace_dsn
Specifies the name of a data set that contains the output of any operator
MODIFY ZFS,TRACE,PRINT commands or the trace output if the zFS PFS
or the batch utilities abends. Each trace output creates a member in the
PDSE. Traces that come from the zFS PFS kernel have member names of
ZFSKNTnn. Traces from the salvager program have member names of
ZFSSLVnn. Traces that come from the ioefsutl program have member
names that start with FSUTLnn.nn starts with 01 and increments for each
trace output. nn is reset to 01 when zFS is started (or restarted). See
Chapter 8, “Performance and debugging,” on page 67. This is not a
required parameter. If it is not specified, only a dump is generated if an
abend occurs.

Default value: None

Expected value: The name of a PDSE data set.

Example: trace_dsn=usera.zfs.trace.out

trace_table_size
Specifies the size, in bytes, of the internal trace table. This is the size of the
wrap-around trace table in the zFS address space and the salvager address
space that is used for internal tracing that is always on. The trace can be
sent to the trace_dsn by using the operator MODIFY ZFS,TRACE,PRINT
command. You can set the trace_table_size up to 65535 M, but to print
the trace to a PDSE you must limit its size to 750 M.

Default value:
v 16 M for the zFS address space
v 64 M for the salvager address space

Expected value: A number in the range 1 M - 65535 M.

Example: trace_table_size=256M

user_running_hangdump
Specifies that if a user task appears to be hung for approximately 5
minutes, a dump of the user address space is obtained by the ZFS hang
detector. This dump is with abend code 2C3 and reason code EA5805DB.
This dump is accompanied by message IOEZ00605I. Use this message
description to diagnose the problem.

Default value: Off

Expected value: On or Off

Example: user_running_hangdump=ON

IOEFSPRM

230 z/OS V2R2 Distributed File Service zFS Administration

|

|

|

xcf_trace_table_size
Specifies the size of the XCF trace table.

Default value: 4 M

Expected value: A number in the range 1 M - 65535 M

Example: xcf_trace_table_size=8M

Examples

Following is a sample IOEFSPRM file that contains program options.
**
* zFS Sample Parameter File: IOEFSPRM
* For a description of these and other zFS parameters, refer to the
* zFS Administration document.
* Notes:
* 1. The IOEFSPRM file and parameters in the file are optional but it
* is recommended that the parameter file be created in order to be
* referenced by the DDNAME=IOEZPRM statement the PROCLIB JCL for
* the zFS started task or through the IOEPRMxx parmlib member.
* 2. An asterisk in column 1 identifies a comment line.
* 3. A parameter specification must begin in column 1.
**
* The following msg_output_dsn parameter defines the optional output
* message data set. If this parameter is not specified, or if the data
* set is not found, messages will be written to the system log.
* You must delete the * from a line to activate the parameter.
**
*msg_output_dsn=usera.zfs.msg.out
**
* The following msg_input_dsn parameter is ONLY required if the optional
* NLS feature is installed. The parameter specifies the
* message input data set containing the NLS message text which is
* supplied by the NLS feature. If this parameter is not specified or if
* the data set is not found, English language messages will be generated
* by zFS. You must delete the * from a line to activate the parameter.
**
*msg_input_dsn=usera.sioemjpn
**
* The following are examples of some of the optional parameters that
* control the sizes of caches, tuning options, and program operation.
* You must delete the * from a line to activate a parameter.
**
*adm_threads=5
*aggrfull(90,5)
*aggrgrow=on
*change_aggrversion_on_mount=off
*client_reply_storage=10M
*cmd_trace=off
*convert_auditfid=off
*converttov5=off
*file_threads=40
*format_aggrversion=4
*fsfull(85,5)
*group=IOEZFS1
*log_cache_size=32M
*meta_cache_size=64M
*romount_recovery=off
*recovery_max_storage=128M
*sync_interval=45
*sysplex=filesys
*sysplex_filesys_sharemode=norwshare
*token_cache_size=65536

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 231

|

*user_cache_size=256M
*vnode_cache_size=131072
**
* The following are examples of some of the options that control zFS
* debug facilities. These parameters are not required for normal
* operation and should only be specified on the recommendation of IBM.
* You must delete the * column from a line to activate a parameter.
**
*debug_settings_dsn=usera.zfs.debug(file1)
*trace_dsn=usera.zfs.trace.out
*trace_table_size=256M
*xcf_trace_table_size=8M

IOEFSPRM

232 z/OS V2R2 Distributed File Service zFS Administration

|

Chapter 13. zFS application programming interface
information

Information is presented about the zFS commands and their respective
subcommands. They can be used to manage zFS aggregates and file systems, and
to query or set configuration options. Following is a list of the zFS commands:
v ZFSCALL_AGGR (0x40000005)
v ZFSCALL_CONFIG (0x40000006)
v ZFSCALL_FILESYS (0x40000004)
v ZFSCALL_FSINFO (0x40000013)
v ZFSCALL_STATS (0x40000007)

The z/OS UNIX pfsctl (command X'C000000B') can also retrieve zFS reason code
text. For more information, see the description of the PC#ErrorText pfsctl
command in the usage notes for the BPX1PCT service in z/OS UNIX System Services
Programming: Assembler Callable Services Reference.

For information about how to invoke the pfsctl (BPX1PCT) application
programming interface in a 64-bit environment, refer to Appendix A, “Running the
zFS pfsctl APIs in 64-bit mode,” on page 467.

This topic also describes a zFS w_pioctl call for fileinfo.

© Copyright IBM Corp. 2001, 2015 233

|
|
|

|

pfsctl (BPX1PCT)
Purpose

The pfsctl (BPX1PCT) application programming interface is used to send requests
to a physical file system. It is documented in z/OS UNIX System Services
Programming: Assembler Callable Services Reference. zFS is a physical file system and
supports several zFS-specific pfsctl functions, which are documented in this
section.

Format

Parameters

File_system_type
An eight-character field. In the case of zFS, it contains the characters ZFS,
followed by five blanks.

Command
An integer. There are five major ZFS commands:
v ZFSCALL_AGGR (0x40000005)
v ZFSCALL_CONFIG (0x40000006)
v ZFSCALL_FILESYS (0x40000004)
v ZFSCALL_FSINFO (0x40000013)
v ZFSCALL_STATS (0x40000007)

Each command has a set of subcommands.

Argument_Length
An integer that contains the length of the argument.

Argument
A structure that has the pfsctl parameters followed by the subcommand
parameters. The definitions of any structures that have padding bytes
added by the compiler, have the padding bytes explicitly declared in the
examples.

The fields of the structures are described in the Format sections of each
API. These descriptions contain structure names, field names inside the
structures, the length of the field, and a brief description of what the field
is used for. The lengths of the field names contain C types and are as
follows:
v int or unsigned int are four bytes.
v long long, unsigned long long, long long int, and unsigned long long

int are 8 bytes.

The following list shows the general format of the Argument for all
subcommands, where n depends on the particular subcommand:

BPX1PCT (File_system_type,
Command,
Argument_Length,
Argument,
Return_value,
Return_code,
Reason_code);

pfsctl (BPX1PCT)

234 z/OS V2R2 Distributed File Service zFS Administration

|

|

|
|
|
|
|

|

|
|

Subcommand operation code int
Parameter0 int
Parameter1 int
Parameter2 int
Parameter3 int
Parameter4 int
Parameter5 int
Parameter6 int
Buffer[n] char[n]

Return_value
An integer that contains 0 if the request is successful or -1 if it is not
successful.

Return_Code
An integer in which the return code is stored. See z/OS UNIX System
Services Messages and Codes for these codes.

Reason_Code
An integer that stores the reason code. If this code is of the form
0xEFnnxxxx, see z/OS Distributed File Service Messages and Codes. Otherwise,
see z/OS UNIX System Services Messages and Codes.

Usage notes

The major commands are summarized in Table 17 and described in detail in the
following sections. The zFS pfsctl APIs will work across sysplex members. That is,
zFS pfsctl APIs can query and set information on zFS aggregates that are owned by
the current system. They can also access and set file system information from other
systems in the sysplex.

The z/OS UNIX pfsctl (command X'C000000B') can also retrieve zFS reason code
text. For more information, see the description of the PC#ErrorText pfsctl command
in the usage notes for the BPX1PCT service in z/OS UNIX System Services
Programming: Assembler Callable Services Reference.

Table 17. Summary of APIs for zFS pfsctl

Command Code Subcommands and opcodes

Aggregate ZFSCALL_AGGR
(0x40000005)

v Attach Aggregate (105)
v Define Aggregate (139)
v Delete File System (136)
v Detach Aggregate (104)
v Format Aggregate (134)
v Grow Aggregate (129)
v List Aggregate Status (137)
v List Aggregate Status (Version 2) (146)
v List Attached Aggregate Names (135)
v List Attached Aggregate Names (Version 2)

(140)
v List File System Names (138)
v List File System Names (Version 2) (144)
v Quiesce Aggregate (132)
v Set Auditfid (149)
v Unquiesce Aggregate (133)
v Reset backup flag (157)

File System ZFSCALL_FILESYS
(0x40000004)

v List File System Status (142)

pfsctl (BPX1PCT)

Chapter 13. zFS application programming interface information 235

|

Table 17. Summary of APIs for zFS pfsctl (continued)

Command Code Subcommands and opcodes

Configuration ZFSCALL_CONFIG
(0x40000006)

v List Systems (174)
v Query adm_threads setting (180)
v Query aggrfull setting (181)
v Query aggrgrow setting (182)
v Query change_aggrversion_on_mount (246)
v Query client_cache_size (231)
v Query client_reply_storage (223)
v Query cmd_trace (184)
v Query convert_auditfid (237)
v Query converttov5 (250)
v Query debug_settings_dsn setting (186)
v Query file_threads (217)
v Query format_aggrversion (248)
v Query fsfull setting (187)
v Query group setting (214)
v Query log_cache_size setting (193)
v Query meta_cache_size setting (198)
v Query metaback_cache_size setting (199)
v Query modify_cmd_threads (251)
v Query msg_input_dsn setting (200)
v Query msg_output_dsn setting (201)
v Query sync_interval setting (205)
v Query syslevel (238)
v Query sysplex_filesys_sharemode (244)
v Query sysplex_state (215)
v Query token_cache_size (216)
v Query trace_dsn setting (206)
v Query trace_table_size setting (207)
v Query tran_cache_size setting (208)
v Query user_cache_size setting (210)
v Query vnode_cache_size setting (212)
v Set adm_threads (150)
v Set aggrfull (158)
v Set aggrgrow (171)
v Set change_aggrversion_on_mount (245)
v Set client_cache_size (230)
v Set client_reply_storage (222)
v Set convert_auditfid (236)
v Set converttov5 (249)
v Set file_threads (176)
v Set format_aggrversion (247)
v Set fsfull (157)
v Set log_cache_size (153)
v Set meta_cache_size (152)
v Set metaback_cache_size (163)
v Set modify_cmd_threads (173)
v Set msg_output_dsn (161)
v Set sync_interval (154)
v Set sysplex_filesys_sharemode (243)
v Set token_cache_size (177)
v Set trace_dsn (159)
v Set tran_cache_size (160)
v Set user_cache_size (151)
v Set vnode_cache_size (155)

pfsctl (BPX1PCT)

236 z/OS V2R2 Distributed File Service zFS Administration

|

|

Table 17. Summary of APIs for zFS pfsctl (continued)

Command Code Subcommands and opcodes

Statistics ZFSCALL_STATS
(0x40000007)

v Statistics directory cache information (249)
v Statistics iobyaggr information (244)
v Statistics iobydasd information (245)
v Statistics iocounts information (243)
v Statistics kernel information (246)
v Statistics locking information (240)
v Statistics log cache information (247)
v Statistics metadata cache information (248)
v Statistics storage information (241)
v Statistics transaction cache information (250)
v Statistics user data cache information (242)
v Statistics vnode cache information (251)
v Statistics server token management

information (252)
v Statistics client vnode operations (253)
v Statistics server vnode operations (254)

File System
Information

ZFSCALL_FSINFO
(0x40000013)

v List detailed file system information (153)
v Reset file system statistics (154)

Table 18. Summary of zFS w_pioctl calls

Command Code

fileinfo 0x0000A901

pfsctl (BPX1PCT)

Chapter 13. zFS application programming interface information 237

|
|
|
|

|
|
|
|
|
|

Attach Aggregate
Purpose

This subcommand call is an aggregate operation that attaches an aggregate to a
system. This makes the aggregate and all its file systems known to the zFS
physical file system running on that system. (Compatibility mode aggregates are
attached during mount so that a separate attach is not necessary.)

Format

Usage notes
v The ATT_NBS and ATT_NONBS flags are no longer supported; zFS always runs

with NBS on. If either of these parameters is specified, it is ignored.

syscall_parmlist
opcode int 105 AGOP_ATTACH_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int offset to AGGR_ATTACH
parms[2] int offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_reserved char[33] 0

AGGR_ATTACH
at_eye char[4] "AGAT"
at_len short sizeof(AGGR_ATTACH)
at_ver char 1
at_res1 char 0
at_threshold char 90
at_increment char 5
at_flags char 0x80

ATT_MONITOR 0x80 Monitor aggregate full
ATT_RO 0x40 Attach aggregate as read-only
ATT_NBS 0x20 Use New Block Security
ATT_NONBS 0x10 No longer supported
ATT_GROW 0x04 Allow dynamic grow
ATT_NOGROW 0x02 Disallow dynamic grow

at_res2 char 0
at_reserved int[64] 0 reserved for future use

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EEXIST Aggregate already attached
EINTR ZFS is shutting down
EMVSERR Internal error using an osi service
EPERM Permission denied to perform request
EINVAL Attempt to attach a multi-file system aggregate

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Attach Aggregate

238 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v ATT_GROW and ATT_NOGROW are mutually exclusive. If neither is specified,
the default is the aggrgrow setting in the IOEFSPRM file. See “Dynamically
growing a compatibility mode aggregate” on page 30 for a description of
dynamic grow.

v The at_threshold and at_increment values are ignored unless ATT_MONITOR
is set.

v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

The issuer must be logged in as root or must have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services

Detach Aggregate

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_ATTACH_PARMDATA 105

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef struct aggr_attach_t
{

char at_eye[4]; /* Eye catcher */
#define AT_EYE "AGAT"
short at_len; /* Length of structure */
char at_ver; /* Structure version */

#define AT_VER_INITIAL 1 /* Version 1 */
char at_res1; /* Reserved for internal use */
char at_threshold; /* Threshold for monitoring */
char at_increment; /* Increment */
char at_flags; /* Processing flags */

Attach Aggregate

Chapter 13. zFS application programming interface information 239

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define ATT_MONITOR 0x80 /* aggrfull monitoring should */
/* be used */

#define ATT_RO 0x40 /* aggr should be attached ro */
#define ATT_NBS 0x20 /* aggr should be attached */

/* with full NBS */
#define ATT_NONBS 0x10 /* no longer supported */
#define ATT_GROW 0x04 /* allow dynamic grow */
#define ATT_NOGROW 0x02 /* disallow dynamic grow */

char at_res2; /* Reserved for future use */
int at_reserved[64]; /* Reserved for future use */

} AGGR_ATTACH;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;
AGGR_ATTACH myaggr;
char systemname[9]; /* System to attach on */

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
struct parmstruct myparmstruct;
char aggrname[45] = "PLEX.DCEIMGQX.FS"; /* aggregate name to attach */

AGGR_ID *idp = &(myparmstruct.aggr_id);
AGGR_ATTACH *atp = &(myparmstruct.myaggr);
char *asp = myparmstruct.systemname;

myparmstruct.myparms.opcode = AGOP_ATTACH_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want the owner of the one */
/* aggregate to be a different system than this one */
/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + */
/* sizeof(AGGR_ID) + sizeof(AGGR_ATTACH); */

myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

/* Ensure reserved fields are 0 */
memset(idp, 0, sizeof(AGGR_ID));
memset(atp, 0, sizeof(AGGR_ATTACH));
memset(asp, 0, sizeof(myparmstruct.systemname));

memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myparmstruct.aggr_id.aid_name, aggrname);
memcpy(&myparmstruct.myaggr.at_eye[0], AT_EYE, 4);

myparmstruct.myaggr.at_len = sizeof(AGGR_ATTACH);
myparmstruct.myaggr.at_ver = AT_VER_INITIAL;
myparmstruct.myaggr.at_threshold = 90; /* 90 percent threshold */
myparmstruct.myaggr.at_increment = 5; /* 5 percent increment */
myparmstruct.myaggr.at_flags = 0;
myparmstruct.myaggr.at_flags |= ATT_MONITOR; /* Use threshold and */

/* increment */
myparmstruct.myaggr.at_flags |= ATT_GROW; /* allow dynamic growing */

Attach Aggregate

240 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error attaching aggregate %s on system %s\n",
aggrname, myparmstruct.systemname);

printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else
{ /* Return from attach was successful */

printf("Aggregate %s attached successfully on system %s\n",
aggrname, myparmstruct.systemname);

}
return 0;

}

Attach Aggregate

Chapter 13. zFS application programming interface information 241

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Define Aggregate
Purpose

An aggregate operation that defines (creates) a VSAM linear data set, which can
then be formatted as a zFS aggregate.

Format

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v Output buffer is space for IDCAMS to return error messages.

Privilege required

The issuer must have sufficient authority to create the VSAM linear data set.

Related services
Format Aggregate

syscall_parmlist
opcode int 139 AGOP_DEFINE_PARMDATA
parms[0] int Offset to AGGR_DEFINE
parms[1] int Size of Buffer
parms[2] int Offset to Buffer
parms[3] int Offset to system name (optional)
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_DEFINE
eye char[4] "AGDF"
len short sizeof(AGGR_DEFINE)
ver char 1
aggrName char[45] Name of aggregate dataset to create
dataClass char[9] Name of a data class
managementClass char[9] Name of a management class
storageClass char[9] Name of a storage class
model char[45] Name of a model
modelCatalog char[45] Name of a model catalog
catalog char[45] Name of a catalog
volumes[59] char[7] Null terminated list of VOLSERs
reservedChars1 char Reserved
numVolumes int Number of volumes to use
spaceUnit int Units space is allocated in
spacePrimary unsigned int Primary allocation
spaceSecondary unsigned int Secondary allocation
reservedIntsl int[32] Reserved space for future use

systemname char[9] System name where DEFINE should run

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR ZFS is shutting down
EINVAL Invalid parameters
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
EPERM Permission denied to perform request

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Define Aggregate

242 z/OS V2R2 Distributed File Service zFS Administration

|

Restrictions

The VSAM linear data set to be defined cannot already exist.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_DEFINE_PARMDATA 139

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44
#define ZFS_MAX_SMSID 8
#define ZFS_MAX_VOLID 6

typedef struct aggr_define_t {
char eye[4]; /* Eye catcher */

#define ADEF_EYE "AGDF"
short len; /* Length of this structure */
char ver; /* Version */

#define ADEF_VER_INITIAL 1 /* Initial version */
char aggrName[ZFS_MAX_AGGRNAME+1];
char dataClass[ZFS_MAX_SMSID+1];
char managementClass[ZFS_MAX_SMSID+1];
char storageClass[ZFS_MAX_SMSID+1];
char model[ZFS_MAX_AGGRNAME+1];
char modelCatalog[ZFS_MAX_AGGRNAME+1];
char catalog[ZFS_MAX_AGGRNAME+1];
char volumes[59][ZFS_MAX_VOLID+1];
char reservedChars1;
int numVolumes;
int spaceUnit;

#define ZFS_SPACE_CYLS 1
#define ZFS_SPACE_KILO 2
#define ZFS_SPACE_MEGA 3
#define ZFS_SPACE_RECS 4
#define ZFS_SPACE_TRKS 5

unsigned int spacePrimary;
unsigned int spaceSecondary;
int reservedInts1[32];

} AGGR_DEFINE;

struct parmstruct {
syscall_parmlist myparms;
AGGR_DEFINE aggdef;
char Buffer[1024];
char systemname[9];

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
char aggrname[45] = "PLEX.DCEIMGQX.LDS"; /* aggregate name to define */

Define Aggregate

Chapter 13. zFS application programming interface information 243

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char dataclass[9] = "";
char managementclass[9] = "";
char storageclass[9] = "";
char model[45] = "";
char modelcatalog[45] = "";
char catalog[45] = "";
char volumes[7] = "CFC000";

struct parmstruct myparmstruct;
AGGR_DEFINE *agp = &(myparmstruct.aggdef);
char *bufp = &(myparmstruct.Buffer[0]);

/* This next field should only be set if parms[3] is non-zero */
/* strcpy(myparmstruct.systemname,"DCEIMGVN"); */
/* set system to run define on */
myparmstruct.myparms.opcode = AGOP_DEFINE_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(myparmstruct.Buffer);
myparmstruct.myparms.parms[2] = myparmstruct.myparms.parms[0] +

sizeof(AGGR_DEFINE); /* offset to Buffer */
myparmstruct.myparms.parms[3] = 0;

/* Only specify a non-zero offset for the next field (parms[3]) if */
/* you are running z/OS 1.7 and above, and */
/* you want the define to run on a different system than this one */
/* myparmstruct.myparms.parms[3] = */
/* myparmstruct.myparms.parms[0] + sizeof(AGGR_DEFINE)+ */
/* sizeof(myparmstruct.Buffer); */

myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;
memset(agp, 0, sizeof(*agp));
strcpy(agp->eye, ADEF_EYE);

agp->ver = ADEF_VER_INITIAL;
agp->len = sizeof(AGGR_DEFINE);

memset(bufp, 0, sizeof(myparmstruct.Buffer));
strcpy(agp->aggrName, aggrname);
strcpy(agp->model, model); /* If included next 4 can be null */
strcpy(agp->dataClass, dataclass);
strcpy(agp->managementClass, managementclass);
strcpy(agp->storageClass, storageclass);
strcpy(agp->modelCatalog, modelcatalog);
strcpy(agp->volumes[0], (char *)volumes);

agp->numVolumes = 1;
agp->spaceUnit = ZFS_SPACE_CYLS;
agp->spacePrimary = 10;
agp->spaceSecondary = 1;

BPX1PCT("ZFS ",
ZFSCALL_AGGR,
sizeof(myparmstruct),
(char *)&myparmstruct,
&bpxrv,
&bpxrc,
&bpxrs);

if (bpxrv < 0)
{

printf("define: Error defining LDS %s\n", aggrname);
printf("define: BPXRV = %d BPXRC = %d BPXRS = %x\n",

bpxrv, bpxrc, bpxrs);
printf("define: job output:\n\n%s\n", myparmstruct.Buffer);
return bpxrc;

Define Aggregate

244 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}
else

printf("define: LDS %s defined successfully\n", aggrname);
return 0;

}

Define Aggregate

Chapter 13. zFS application programming interface information 245

|
|
|
|
|

Detach Aggregate
Purpose

Detach Aggregate is an aggregate operation that detaches an attached, but not
mounted, compatibility mode aggregate. Mounted compatability mode aggregates
are detached during unmount.

Format

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

The issuer must be logged in as root or must have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
Attach Aggregate

Restrictions

All file systems in the aggregate must be unmounted before the aggregate can be
detached.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

syscall_parmlist
opcode int 104 AGOP_DETACH_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int 0
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EBUSY Aggregate could not be detached due to mounted file system
EINTR ZFS is shutting down
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
EPERM Permission denied to perform request

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Detach Aggregate

246 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_DETACH_PARMDATA 104

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
char aggrname[45] = "PLEX.DCEIMGQX.FS";
struct parmstruct myparmstruct;

myparmstruct.myparms.opcode = AGOP_DETACH_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = 0;
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

/* Ensure reserved fields are 0 */
memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));

memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myparmstruct.aggr_id.aid_name, aggrname);

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error detaching aggregate %s\n", aggrname);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

Detach Aggregate

Chapter 13. zFS application programming interface information 247

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

return bpxrc;
}
else
{ /* Return from detach was successful */

printf("Aggregate %s detached successfully\n", aggrname);
}
return 0;

}

Detach Aggregate

248 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|

Format Aggregate
Purpose

Format Aggregate is an aggregate operation that formats a VSAM linear data set as
a zFS aggregate. It supports both version 1.4 aggregates and version 1.5 aggregates.

Format

syscall_parmlist
opcode int 134 AGOP_FORMAT_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int offset to AGGR_FORMAT
parms[2] int offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char Sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] Aggregate name
aid_reserved char[33] 0 (Reserved for the future)

AGGR_FORMAT
af_eye char[4] "AGFM"
af_len short Sizeof(AGGR_FORMAT)
af_ver char 1
af_aggrversion char 0 means honor format_aggrversion value

4 means format a version 1.4 aggregate
5 means format a version 1.5 aggregate

af_size int Amount of aggregate to format
af_logsize int Size of the aggregate log
af_initialempty int this is ignored - always use 1
af_overwrite int Use caution if you specify 1
af_compat int Compat aggr desired (ignored;

always compat)
af_owner int No uid specified
af_ownerSpecified int Use uid of issuer
af_group int No guid specified
af_groupSpecified int Gid set to issuer default group
af_perms int No perms specified
af_perms_specified int Perms not specified
af_grow int Grow amount, 0 means grow not

specified
af_newauditfid int 0=old auditfid; 1=newauditfid
af_reserved char[56]

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EBUSY Aggregate is busy or otherwise unavailable
EINTR ZFS is shutting down
EINVAL Invalid parameters
EMVSERR Internal error using an osi service
ENOENT No aggregate by this name is found
EPERM Permission denied to perform request

Format Aggregate

Chapter 13. zFS application programming interface information 249

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v The af_compat bit is ignored. The VSAM linear data set is always formatted as a

compatibility mode aggregate.

Privilege required

The issuer must have ALTER authority on the VSAM linear data set to be
formatted or must be logged in as root or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
Define Aggregate

Restrictions

The VSAM linear data set to be formatted cannot be attached.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_FORMAT_PARMDATA 134

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef struct aggr_format_t
{

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes
EINVAL Invalid parameters
EMVSERR Internal error using an osi service
ENOENT No aggregate by this name is found
EPERM Permission denied to perform request

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Format Aggregate

250 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char af_eye[4]; /* Eye catcher */
#define AF_EYE "AGFM"

short af_len; /* Length of structure */
char af_ver; /* Version of cb */

#define AF_VER_INITIAL 1
char af_aggrversion; /* 0 means honor */

/* format_aggrversion value */
#define AF_VERSION4 4
#define AF_VERSION5 5

int af_size; /* Amount to format of aggr */
#define AF_VERSION4 4 /* make a version 1.4 aggregate */
#define AF_VERSION5 5 /* make a version 1.5 aggregate */
#define AF_DEFAULT_SIZE 0 /* If set, we use default of entire */

/* primary partition of LDS */
int af_logsize; /* Size of logfile in aggr */

#define AF_DEFAULT_LOGSIZE 0 /* If set, we use default of */
/* 1% of aggr size */

int af_initialempty; /* Initial empty blocks */
#define AF_DEFAULT_INITIALEMPTY 1 /* This is the default & minumum too */

int af_overwrite; /* Overwrite aggr if its not empty */
#define AF_OVERWRITE_OFF 0 /* Overwrite off, that means if aggr */

/* not empty it will */
/* NOT be formatted, th default */

#define AF_OVERWRITE_ON 1 /* Overwrite in effect */
int af_compat; /* HFS-compat aggr desired */

#define AF_MULT 0 /* HFS-compat aggr desired */
#define AF_HFSCOMP 1 /* HFS-compat aggr desired */

int af_owner; /* Owner for HFS-compat */
int af_ownerSpecified; /* Indicates an owner was provided */

#define AF_OWNER_USECALLER 0 /* Owner is set to pfsctl issuer uid */
#define AF_OWNER_SPECIFIED 1 /* Use owner uid set in af_owner */

int af_group; /* Group for HFS-compat */
int af_groupSpecified; /* Indicates if group specified */

#define AF_GROUP_USECALLER 0 /* Group gets set to pfsctl */
/* issuer default group */

#define AF_GROUP_SPECIFIED 1 /* Use group gid set in af_group */
int af_perms; /* Perms for HFS-compat */

#define AF_DEFAULT_PERMS 0755 /* The default perms to use */
int af_permsSpecified; /* Indicates if perms provided */

#define AF_PERMS_DEFAULT 0 /* Perms not specified, use default */
#define AF_PERMS_SPECIFIED 1 /* Use perms set in af_perms */

int af_grow; /* Amount to extend each time until */
/* we reach desired size */
/* 0 means work the old way, just */
/* extend to desired size once */

int af_newauditfid; /* 0 = old format auditfid, */
/* 1 = new format auditfid */

char af_reserved[56]; /* For future use */
} AGGR_FORMAT; /* */

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aid;
AGGR_FORMAT aggformat;
char systemname[9];

} myparmstruct;

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
char aggrname[45] = "PLEX.DCEIMGQX.LDS"; /* aggregate name to format */
AGGR_FORMAT *aggptr = &(myparmstruct.aggformat);
AGGR_ID *idp = &(myparmstruct.aid);

/* This next field should only be set if parms[2] is non-zero */

Format Aggregate

Chapter 13. zFS application programming interface information 251

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* strcpy(myparmstruct.systemname,"DCEIMGVN"); */
/* set system to change*/

myparmstruct.myparms.opcode = AGOP_FORMAT_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and */
/* you want the format to be run on a different system than this one */
/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + */
/* sizeof(AGGR_ID)+sizeof(AGGR_FORMAT);*/

myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(idp, 0, sizeof(AGGR_ID));
memcpy(idp->aid_eye, AID_EYE, 4);
idp->aid_ver = 1;
strcpy(idp->aid_name, aggrname);
idp->aid_len = (int)sizeof(AGGR_ID);
memset(aggptr, 0, sizeof(myparmstruct.aggformat));
memcpy(aggptr->af_eye, AF_EYE, 4);

aggptr->af_len = sizeof(myparmstruct.aggformat);
aggptr->af_ver = AF_VER_INITIAL;
aggptr->af_size = AF_DEFAULT_SIZE;
aggptr->af_compat = AF_HFSCOMP; /* HFS compatibility mode aggregate */

/* aggptr->af_owner = owner; */
aggptr->af_ownerSpecified = AF_OWNER_USECALLER;
/* aggptr->af_group = group; */
aggptr->af_groupSpecified = AF_GROUP_USECALLER;
/* aggptr->af_perms = perms; */
aggptr->af_permsSpecified = AF_PERMS_DEFAULT;

aggptr->af_grow = 0; /* no grow size */
aggptr->af_aggrversion = 0; /* format with default version defined by */

/* format_aggrversion value */
aggptr->af_newauditfid = 1; /* generate a new auditfid */

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error formatting, BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else

printf("Formatted aggregate %s\n", aggrname);

return 0;
}

Format Aggregate

252 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Grow Aggregate
Purpose

Extends the physical size of an attached aggregate. It supports both version 1.4
aggregates and version 1.5 aggregates.

Format

Usage notes
v The aggregate must be mounted or attached.
v The size specified is the new total size (in 1 KB blocks) that is being requested.

The size can be rounded up by DFSMS. If a zero is specified for the new size,

syscall_parmlist
opcode int 129 AGOP_GROW_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int new size of aggregate
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1 (new size is 32 bits)
aid_name char[45] Name of aggregate
aid_reserved char[33] 0 (Reserved for future use)

- OR -

syscall_parmlist
opcode int 129 AGOP_GROW_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int high 32 bits of new 64 bit size of aggregate
parms[2] int low 32 bits of new 64 bit size of aggregate
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 3 (new size is 64 bits)
aid_name char[45] Name of aggregate
aid_reserved char[33] 0 (Reserved for future use)

Return_value 0 if request is successful, -1 if it is not successful

Return_code
8 DFSMS did not extend the aggregate
EBUSY Aggregate is busy or otherwise unavailable
EINTR ZFS is shutting down
EINVAL Invalid parameters
EMVSERR Internal error using an osi service
ENOENT No aggregate by this name is found
EPERM Permission denied to perform request

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Grow Aggregate

Chapter 13. zFS application programming interface information 253

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

the aggregate is grown by a secondary allocation. DFSMS determines whether to
extend to another volume. Requests that write to files and need aggregate blocks
that are not available yet and other requests that access those files will wait.
Other requests will not wait during the grow.

v For an AGGR_ID version 1, the new size cannot be larger than approximately 4
TB. For an AGGR_ID version 3, the new size is a 64 bit number, and cannot be
larger than approximately 16 TB.

v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

The issuer must have ALTER authority on the VSAM linear data set to be
formatted and must be logged in as root or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services

List Aggregate Status Version 2

Restrictions

The aggregate to be grown cannot already be quiesced or be attached as read-only.
An aggregate cannot be made smaller.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_GROW_PARMDATA 129

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;

};

int main(int argc, char **argv)
{

Grow Aggregate

254 z/OS V2R2 Distributed File Service zFS Administration

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int bpxrv;
int bpxrc;
int bpxrs;
char aggrname[45] = "PLEX.DCEIMGQX.FS";

struct parmstruct myparmstruct;

/* Ensure reserved fields are 0 */
memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));

myparmstruct.myparms.opcode = AGOP_GROW_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = 70000; /*New size of aggregate in K-bytes*/
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myparmstruct.aggr_id.aid_name, aggrname);

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error growing aggregate %s\n", aggrname);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else
{ /* Return from grow was successful */

printf("Aggregate %s grown succssfully\n", aggrname);
}
return 0;

}

Grow Aggregate

Chapter 13. zFS application programming interface information 255

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

List Aggregate Status (Version 1)
Purpose

An aggregate operation that returns information about a specified attached
aggregate on this system.

IBM recommends using the List Detailed File System Information API instead of
List Aggregate Status or List File System Status.

Format

syscall_parmlist
opcode int 137 AGOP_GETSTATUS_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int offset to AGGR_STATUS
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_reserved char[33] 0

AGGR_STATUS
as_eye char[4] "AGST"
as_len short sizeof(AGGR_STATUS)
as_ver char 1
as_res1 char 0
as_aggrId int Aggregate ID
as_nFileSystems int Number of File Systems
as_threshold char Aggrfull threshold
as_increment char Aggrfull increment
as_flags char

AS_MONITOR 0x80
AS_RO 0x40
AS_NBS 0x20
AS_COMPAT 0x10
AS_GROW 0x08

as_res2 char 0
as_blocks unsigned int
as_fragSize int
as_blockSize int
as_totalUsable unsigned int
as_realFree unsigned int
as_minFree unsigned int
as_reserved char[128]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

List Aggregate Status (Version 1)

256 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Usage notes
v To grow an aggregate, you need to specify a number larger than the sum of

as_totalUsable and as_minFree.
v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

None.

Related services
List Attached Aggregate Names
List Detailed File System Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_GETSTATUS_PARMDATA 137

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused */

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef struct aggr_status_t {
char as_eye[4]; /* Eye catcher */

#define AS_EYE "AGST"
short as_len; /* Length of structure */
char as_ver;

#define AS_VER_INITIAL 1 /* Initial version */
char as_res1; /* Reserved. */
int as_aggrId; /* Internal identifier */
int as_nFileSystems; /* Number of filesystems in aggregate */
char as_threshold; /* Threshold for aggrfull monitoring */
char as_increment; /* Increment for aggrfull monitoring */
char as_flags; /* Aggregate flags */

#define AS_MONITOR 0x80 /* Aggr monitored for aggr full */
#define AS_RO 0x40 /* Aggr attached Read-only */
#define AS_NBS 0x20 /* Aggr should guarantee NBS */
#define AS_COMPAT 0x10 /* Aggr is HFS compatible */
#define AS_GROW 0x08 /* Aggr can be dynamically grown */

List Aggregate Status (Version 1)

Chapter 13. zFS application programming interface information 257

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char as_res2; /* Reserved */
unsigned int as_blocks; /* Number of fragments in aggregate */
int as_fragSize; /* Size of fragment in

aggregate (normally 1K) */
int as_blockSize; /* Size of blocks on

aggregate (normally 8K) */
unsigned int as_totalUsable; /* Total available blocks on

aggregate (normally 8K) */
unsigned int as_realFree; /* Total kilobytes free */
unsigned int as_minFree; /* Minimum kilobytes free */
char as_reserved[128]; /* Reserved for future */

} AGGR_STATUS;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;
AGGR_STATUS aggr_status;

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;

/* aggregate name to getstatus */
char aggrname[45] = "PLEX.DCEIMGQX.FS";
struct parmstruct myparmstruct;
AGGR_ID *idp = &(myparmstruct.aggr_id);
AGGR_STATUS *asp = &(myparmstruct.aggr_status);

myparmstruct.myparms.opcode = AGOP_GETSTATUS_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(idp, 0, sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */
memset(asp, 0, sizeof(AGGR_STATUS)); /* Ensure reserved fields are 0 */
memcpy(&myparmstruct.aggr_status.as_eye[0], AS_EYE, 4);

myparmstruct.aggr_status.as_len = sizeof(AGGR_STATUS);
myparmstruct.aggr_status.as_ver = AS_VER_INITIAL;
memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myparmstruct.aggr_id.aid_name, aggrname);

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error getstatus aggregate %s\n", aggrname);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else
{

List Aggregate Status (Version 1)

258 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* Return from getstatus was successful */
printf("Aggregate %s getstatus successful\n", aggrname);
printf("getstatus: aggr_id=%d, no_of_filesystems=%d, aggr_flags=%x\n",

myparmstruct.aggr_status.as_aggrId,
myparmstruct.aggr_status.as_nFileSystems,
myparmstruct.aggr_status.as_flags);

printf("getstatus: threshold=%d, increment=%d\n",
myparmstruct.aggr_status.as_threshold,
myparmstruct.aggr_status.as_increment);

printf("getstatus: blocks=%d, frag_size=%d, block_size=%d\n",
myparmstruct.aggr_status.as_blocks,
myparmstruct.aggr_status.as_fragSize,
myparmstruct.aggr_status.as_blockSize);

printf("getstatus: total_usable=%d, real_free=%d, min_free=%d\n",
myparmstruct.aggr_status.as_totalUsable,
myparmstruct.aggr_status.as_realFree,
myparmstruct.aggr_status.as_minFree);

}
return 0;

}

List Aggregate Status (Version 1)

Chapter 13. zFS application programming interface information 259

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

List Aggregate Status (Version 2)
Purpose

Returns information about a specified attached aggregate on this system. Version 2
returns additional flags and fields.

IBM recommends that you should use the List Detailed File System Information
API instead of List Aggregate Status or List File System Status.

Format

syscall_parmlist
opcode int 146 AGOP_GETSTATUS2_PARMDATA
parms[0] int Offset to AGGR_ID
parms[1] int Offset to AGGR_STATUS2
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char Sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] Aggregate name
aid_reserved char[33] 0

List Aggregate Status (Version 2)

260 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

AGGR_STATUS2
as_eye char[4] "AGST"
as_len short Sizeof(AGGR_STATUS2)
as_ver char 2
as_res1 char 0
as_aggrId int Aggregate ID
as_nFileSystems int Number of File Systems
as_threshold char Aggrfull threshold
as_increment char Aggrfull increment
as_flags char

AS_MONITOR 0x80 Monitoring for aggrfull
AS_RO 0x40 Attached Read-only
AS_NBS 0x20 NBS being guaranteed
AS_COMPAT 0x10 Formatted as HFS-compat
AS_GROW 0x08 Can be dynamically grown
AS_QUIESCED 0x01 1 means aggr is quiesced

as_flags2 char
AS_DISABLED 0x80 Aggr is disabled
AS_SYSPLEXAWARE 0x40 Aggr mounted RWSHARE and

is sysplex-aware
as_blocks unsigned int Number of 8K blocks in aggr
as_fragSize int Number of 1K fragments in aggr
as_blockSize int Size of blocks (8K normally)
as_totalUsable unsigned int Total available blocks
as_realFree unsigned int Total free 1K blocks
as_minFree unsigned int Minimum kilobytes free
as_reserved2 int[3] Reserved
as_freeblocks unsigned int K available in free 8K blocks
as_freefrags unsigned int K available in free 1K frags
as_directLog unsigned int K used on the log
as_indirectLog unsigned int K used indirectly on the log
as_fstbl unsigned int K used for file system table
as_bitmap unsigned int K used for the bitmap
as_diskFormatMajorVersion unsigned int Disk format major version
as_diskFormatMinorVersion unsigned int Disk format minor version

List Aggregate Status (Version 2)

Chapter 13. zFS application programming interface information 261

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

s_auditfid char[10] Aggregate Audit Fid
as_bytes_reserved char[2] Reserved
as_reserved3 int Reserved
as_quiesce_time struct timeval If quiesced, time quiesce

occurred
posix_time_low int Seconds since epoch
posix_usecs int Micro-seconds

as_quiesce_jbname char[9] If quiesced, Job name
requesting quiesce

as_quiesce_sysname char[9] If quiesced, system name
quiesce request came from

as_reserved char[42] Reserved

OR

syscall_parmlist
opcode int 146 AGOP_GETSTATUS2_PARMDATA
parms[0] int Offset to AGGR_ID
parms[1] int Offset to AGGR_STATUS3
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char Sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] Aggregate name
aid_reserved char[33] 0

AGGR_STATUS3
as_eye char[4] "AGST"
as_len short sizeof(AGGR_STATUS2)
as_ver char 3 (supports 64 bit sizes)
as_res1 char 0
as_aggrId int Aggregate ID
as_nFileSystems int Number of File Systems
as_threshold char Aggrfull threshold
as_increment char Aggrfull increment
as_flags char

AS_MONITOR 0x80 Monitoring for aggrfull
AS_RO 0x40 Attached Read-only
AS_NBS 0x20 NBS being guaranteed
AS_COMPAT 0x10 Formatted as HFS-compat
AS_GROW 0x08 Can be dynamically grown
AS_QUIESCED 0x01 1 means aggr is quiesced

as_flags2 char
AS_DISABLED 0x80 Aggr is disabled
AS_SYSPLEXAWARE 0x40 Aggr mounted RWSHARE and

is sysplex-aware
AS_CONVERTTOV5 0x20 Aggregate enabled for

automatic V5 conversion
as_blocks unsigned int Number of 8K blocks in aggr
as_fragSize int Number of 1K fragments in aggr
as_blockSize int Size of blocks (8K normally)
as_totalUsable unsigned int Total available blocks
as_realFree unsigned int Total free 1K blocks
as_minFree unsigned int Minimum kilobytes free
as_reserved2 int[3] Reserved
as_freeblocks unsigned int K available in free 8K blocks
as_freefrags unsigned int K available in free 1K frags
as_directLog unsigned int K used on the log
as_indirectLog unsigned int K used indirectly on the log
as_fstbl unsigned int K used for file system table

List Aggregate Status (Version 2)

262 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v The aggregate must be mounted or attached.
v To grow an aggregate, you need to specify a number larger than the sum of

as_totalUsable and as_minFree.
v For an AGGR_STATUS2, if a size is too large for 32 bits, 0xFFFFFFFF is returned.

For an AGGR_STATUS3, sizes are returned in both the normal fields and the
hyper fields.

v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

None.

Related services
List Attached Aggregate Names
List Detailed File System Information

Restrictions

None.

as_bitmap unsigned int K used for the bitmap
as_diskFormatMajorVersion unsigned int Disk format major version
as_diskFormatMinorVersion unsigned int Disk format minor version
as_auditfid char[10] Aggregate Audit Fid
as_bytes_reserved char[2] Reserved
as_reserved3 int Reserved

as_quiesce_time struct timeval If quiesced, time quiesce
occurred

posix_time_low int Seconds since epoch
posix_usecs int Micro-seconds

as_quiesce_jbname char[9] If quiesced, Job name
requesting quiesce

as_quiesce_sysname char[9] If quiesced, system name
quiesce request came from

as_pad char[6] Gets alignment
as_blocks_hyper hyper Number of 8K blocks in aggr
as_totalUsable_hyper hyper Total available blocks
as_realFree_hyper hyper Total free 1K blocks
as_minFree_hyper hyper Minimum kilobytes free
as_freeblocks_hyper hyper K available in free 8K blocks
as_freefrags_hyper hyper K available in free 1K frags
as_directLog_hyper hyper K used on the log
as_indirectLog_hyper hyper K used indirectly on the log
as_fstbl_hyper hyper K used for file system table
as_bitmap_hyper hyper K used for the bitmap
as_reserved char[42] Reserved for future use

Return_value 0 if request is successful, -1 if it is not successful
Return_code

EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

List Aggregate Status (Version 2)

Chapter 13. zFS application programming interface information 263

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_GETSTATUS2_PARMDATA 146

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct timeval {
int posix_time_low; /* seconds since epoch */
int posix_usecs; /* microseconds */

} TIMEVAL;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef struct aggr_status_t {
char as_eye[4]; /* Eye catcher */

#define AS_EYE "AGST"
short as_len; /* Length of structure */
char as_ver;

#define AS_VER_2 2 /* version 2 */
char as_res1; /* Reserved. */
int as_aggrId; /* Internal identifier */
int as_nFileSystems; /* Number of filesystems in aggregate */
char as_threshold; /* Threshold for aggrfull monitoring */
char as_increment; /* Increment for aggrfull monitoring */
char as_flags; /* Aggregate flags */

#define AS_MONITOR 0x80 /* Aggr monitored for aggr full */
#define AS_RO 0x40 /* Aggr attached Read-only */
#define AS_NBS 0x20 /* Aggr should guarantee NBS */
#define AS_COMPAT 0x10 /* Aggr is HFS compatible */
#define AS_GROW 0x08 /* Aggr can be dynamically grown */

/* The following flags are for AS_VER_2 */
#define AS_QUIESCED 0x01 /* 1 = Aggr is quiesced,

0 = Aggr is unquiesced */
char as_flags2; /* Aggregate flags2 */

#define AS_DISABLED 0x80 /* 1 = Aggr is disabled */
#define AS_SYSPLEXAWARE 0x40 /* Aggr is sysplex-aware

for r/w. Attached but not
mounted compats will never
have AS_SYSPLEXAWARE on */

unsigned int as_blocks; /* Number of fragments in aggregate */

List Aggregate Status (Version 2)

264 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int as_fragSize; /* Size of fragment in aggregate
(normally 1K) */

int as_blockSize; /* Size of blocks on aggregate (normally 8K)*/
unsigned int as_totalUsable; /* Total available blocks on aggregate

(normally 8K) */
unsigned int as_realFree; /* Total kilobytes free */
unsigned int as_minFree; /* Minimum kilobytes free */
int as_reserved2[3];
unsigned int as_freeblocks; /*Number of k available in free 8k blocks*/
unsigned int as_freefrags; /*Number of k available in free 1k fragments*/
unsigned int as_directLog; /*Number of k used on the log*/
unsigned int as_indirectLog; /*Number of k used indirectly on the log*/
unsigned int as_fstbl; /*Number of k used for the filesystem table*/
unsigned int as_bitmap; /*Number of k used for the bitmap file*/
unsigned int as_diskFormatMajorVersion; /* disk format major version */
unsigned int as_diskFormatMinorVersion; /* disk format minor version */
char as_auditfid[10]; /* 6 byte volser followed by

4 byte CCHH */
char as_bytes_reserved[2]; /* reserved */
int as_reserved3;
struct timeval as_quiesce_time; /* time of last quiesce */
char as_quiesce_jbname[9]; /* job name of last quiesce -

null terminated */
char as_quiesce_sysname[9]; /* system where last quiesce

issued - null terminated */
char as_reserved[42]; /* Reserved for future */

} AGGR_STATUS2;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;
AGGR_STATUS2 aggr_status;

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i;
char buf[33];
unsigned int ptl;

/* aggregate name to getstatus */
char aggrname[45] = "PLEX.DCEIMGQX.FS";

struct parmstruct myparmstruct;
AGGR_ID *idp = &(myparmstruct.aggr_id);
AGGR_STATUS2 *asp = &(myparmstruct.aggr_status);

myparmstruct.myparms.opcode = AGOP_GETSTATUS2_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(idp, 0, sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */
memset(asp, 0, sizeof(AGGR_STATUS2)); /* Ensure reserved fields are 0 */
memcpy(&myparmstruct.aggr_status.as_eye[0], AS_EYE, 4);
myparmstruct.aggr_status.as_len = sizeof(AGGR_STATUS2);
myparmstruct.aggr_status.as_ver = AS_VER_2;
memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;

List Aggregate Status (Version 2)

Chapter 13. zFS application programming interface information 265

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

strcpy(myparmstruct.aggr_id.aid_name, aggrname);

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error getstatus aggregate %s\n", aggrname);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else
{ /* Return from getstatus was successful */

printf("Aggregate %s getstatus successful\n", aggrname);
printf("getstatus: aggr_id=%d, no_of_filesystems=%d, "

"aggr_flags=%2.2x, aggr_flags2=%2.2x\n",
myparmstruct.aggr_status.as_aggrId,
myparmstruct.aggr_status.as_nFileSystems,
myparmstruct.aggr_status.as_flags,
myparmstruct.aggr_status.as_flags2);

printf("getstatus: threshold=%d, increment=%d\n",
myparmstruct.aggr_status.as_threshold,
myparmstruct.aggr_status.as_increment);

printf("getstatus: blocks=%d, frag_size=%d, block_size=%d\n",
myparmstruct.aggr_status.as_blocks,
myparmstruct.aggr_status.as_fragSize,
myparmstruct.aggr_status.as_blockSize);

printf("getstatus: total_usable=%d, real_free=%d, min_free=%d\n",
myparmstruct.aggr_status.as_totalUsable,
myparmstruct.aggr_status.as_realFree,
myparmstruct.aggr_status.as_minFree);

printf("getstatus: free_8K_blocks=%d, free_1K_fragments=%d\n",
myparmstruct.aggr_status.as_freeblocks / 8,
myparmstruct.aggr_status.as_freefrags);

printf("getstatus: direct_Log=%d, indirect_Log=%d\n",
myparmstruct.aggr_status.as_directLog,
myparmstruct.aggr_status.as_indirectLog);

printf("getstatus: filesystem_table=%d, bitmap=%d\n",
myparmstruct.aggr_status.as_fstbl,
myparmstruct.aggr_status.as_bitmap);

printf("getstatus: version=%d.%d\n",
myparmstruct.aggr_status.as_diskFormatMajorVersion,
myparmstruct.aggr_status.as_diskFormatMinorVersion);

printf("getstatus: auditfid=");

for (i = 0; i < 10; i++)
printf("%2.2X", myparmstruct.aggr_status.as_auditfid[i]);

printf("\n");

if (myparmstruct.aggr_status.as_flags & AS_QUIESCED)
{

if (myparmstruct.aggr_status.as_quiesce_jbname[0] != 0x00)
{

List Aggregate Status (Version 2)

266 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ptl = myparmstruct.aggr_status.as_quiesce_time.posix_time_low;
if (0 == ctime_r((time_t *) & ptl, buf))

printf("Could not get timestamp.\n");
else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d",

myparmstruct.aggr_status.as_quiesce_time.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Quiesced by job %s on system %s on %s",

myparmstruct.aggr_status.as_quiesce_jbname,
myparmstruct.aggr_status.as_quiesce_sysname,
buf);

}
}

}
printf("\n");

}
return 0;

}

List Aggregate Status (Version 2)

Chapter 13. zFS application programming interface information 267

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

List Attached Aggregate Names (Version 1)
Purpose

List Attached Aggregate Names (Version 1) is an aggregate operation that returns a
list of the names of all attached aggregates on a system.

Format

Usage notes
v This call returns an array of AGGR_IDs, one for each attached aggregate on the

system. Each AGGR_ID structure is 84 bytes. You can specify a buffer that you
think might hold all of them or you can specify a buffer length and offset to
AGGR_ID of zero. If you get a return code of E2BIG, the required size for the
buffer is contained in the size field.

v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

None.

Related services
List Aggregate Status
List File System Names

syscall_parmlist
opcode int 135 AGOP_LISTAGGRNAMES_PARMDATA
parms[0] int buffer length or 0
parms[1] int offset to AGGR_ID or 0
parms[2] int offset to size
parms[3] int offset to system name (optional)
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID[2] Array of AGGR_IDs (n can be 0)
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_reserved char[33] 0

size needed int bytes returned or size needed
if the return code is E2BIG

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
E2BIG List is too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

List Attached Aggregate Names (Version 1)

268 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_LISTAGGRNAMES_PARMDATA 135
#define E2BIG 145

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct {
syscall_parmlist myparms;
/* Real malloc’d structure will have an array of AGGR_IDs here */
int size;
char systemname[9];

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
struct parmstruct myparmstruct;
AGGR_ID *aggPtr;
int aggSize = sizeof(AGGR_ID);
int buflen = sizeof(AGGR_ID);
struct parmstruct *myp = &myparmstruct;
int mypsize;
char *systemp;
int count_aggrs,

total_aggrs;

myparmstruct.myparms.opcode = AGOP_LISTAGGRNAMES_PARMDATA;
myparmstruct.myparms.parms[0] = 0;
myparmstruct.myparms.parms[1] = 0;
myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */

List Attached Aggregate Names (Version 1)

Chapter 13. zFS application programming interface information 269

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

if (bpxrc == E2BIG)
{

buflen = myp->size; /* Get buffer size needed */
mypsize = buflen + sizeof(syscall_parmlist) + sizeof(int) + 9;
myp = (struct parmstruct *)malloc((int)mypsize);
memset(myp, 0, mypsize);

/* This next field should only be set if parms[3] is non-zero */
/* systemp = (char *)myp + buflen + sizeof(syscall_parmlist) */
/* + sizeof(int); */
/* strcpy(systemp,"DCEIMGVN"); */ /* set system to get lsaggr info from*/

myp->myparms.opcode = AGOP_LISTAGGRNAMES_PARMDATA;
myp->myparms.parms[0] = buflen;
myp->myparms.parms[1] = sizeof(syscall_parmlist);
myp->myparms.parms[2] = sizeof(syscall_parmlist) + buflen;
myp->myparms.parms[3] = 0;

/* Only specify a non-zero offset for the next field (parms[3]) if */
/* you are running z/OS 1.7 and above, and */
/* you want lsaggr aggregates owned on a single system */
/* myp->myparms.parms[3] = sizeof(syscall_parmlist) + buflen */
/* + sizeof(int); */

myp->myparms.parms[4] = 0;
myp->myparms.parms[5] = 0;
myp->myparms.parms[6] = 0;

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
mypsize, /* Length of Argument */
(char *)myp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv == 0)
{

total_aggrs = buflen / aggSize;
count_aggrs = 1;

for (aggPtr = (AGGR_ID *) & (myp->size);
count_aggrs <= total_aggrs;
aggPtr++, count_aggrs++)

{
if (strlen(aggPtr->aid_name) != 0)

printf("%-64.64s\n", aggPtr->aid_name);
}

free(myp);
}
else
{ /* lsaggr names failed with large enough buffer */

printf("Error on ls aggr with large enough buffer\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}

List Attached Aggregate Names (Version 1)

270 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

else
{ /* error was not E2BIG */

printf("Error on ls aggr trying to get required size\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* asking for buffer size gave rv = 0; maybe there are no aggregates */

if (myparmstruct.size == 0)
printf("No attached aggregates\n");

else /* No, there was some other problem with getting the size needed */
printf("Error getting size required\n");

}
return 0;

}

List Attached Aggregate Names (Version 1)

Chapter 13. zFS application programming interface information 271

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

List Attached Aggregate Names (Version 2)
Purpose

The List Attached Aggregate Names (Version 2) subcommand call returns a list of
the names of all attached aggregates on a system with the system name.

Format

Usage notes
v This call returns an array of AGGR_ID2 structures, one for each attached

aggregate on the system. Each AGGR_ID2 structure is 84 bytes. You can specify
a buffer that you think might hold all of them or you can specify a buffer length
and offset to AGGR_ID2 of zero. If you get a return code of E2BIG, the required
size for the buffer is contained in the size field.

v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

None.

Related services
List Aggregate Status
List File System Names

Restrictions

None.

syscall_parmlist
opcode int 140 AGOP_LISTAGGRNAMES2_PARMDATA
parms[0] int buffer length or 0
parms[1] int offset to AGGR_ID2 or 0
parms[2] int offset to size
parms[3] int offset to system name (optional)
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID2[n] Array of AGGR_ID2s (n can be 0)
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 2
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_sysname char[9] "DCEIMGVN"
aid_reserved char[24] 0

size int bytes returned or size needed
if the return code is E2BIG

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
E2BIG List is too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

List Attached Aggregate Names (Version 2)

272 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_LISTAGGRNAMES2_PARMDATA 140 /* list attached aggregates */

/* with system name */
#define E2BIG 145

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44
#define SYS_MAX_NAMELEN 8 /* Max. z/OS system name length*/

typedef struct aggr_id2_t {
char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_2 2 /* version 2 */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
char aid_sysname[SYS_MAX_NAMELEN+1]; /* system name, NULL terminated */
char aid_reserved[24]; /* Reserved for the future */

} AGGR_ID2;

struct parmstruct {
syscall_parmlist myparms;

/* Real malloc’d structure will have an array of AGGR_ID2s here */
int size;
char systemname[9];

};

int main(int argc, char **argv)
{

int buffer_success = 0;
int bpxrv;
int bpxrc;
int bpxrs;
int t;
struct parmstruct myparmstruct;
AGGR_ID2 *aggPtr;
int aggSize = sizeof(AGGR_ID2);
int buflen = sizeof(AGGR_ID2);
struct parmstruct *myp = &myparmstruct;
int mypsize;
char *systemp;
int count_aggrs;
int total_aggrs;

myparmstruct.myparms.opcode = AGOP_LISTAGGRNAMES2_PARMDATA;
myparmstruct.myparms.parms[0] = 0;
myparmstruct.myparms.parms[1] = 0;
myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

List Attached Aggregate Names (Version 2)

Chapter 13. zFS application programming interface information 273

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

for(t = 0; t < 1000 && buffer_success == 0; t++)
{

if (bpxrv < 0)
{

if (bpxrc == E2BIG)
{

buflen = myp->size; /* Get buffer size needed */
mypsize = buflen + sizeof(syscall_parmlist) + sizeof(int) + 9;

free(myp);

myp = (struct parmstruct *)malloc((int)mypsize);
memset(myp, 0, mypsize);

/* This next field should only be set if parms[3] is non-zero */
/* systemp = (char *)myp + buflen */
/* + sizeof(syscall_parmlist) + sizeof(int); */
/* strcpy(systemp,"DCEIMGVN"); */
/* set system to get lsaggr info from */

myp->myparms.opcode = AGOP_LISTAGGRNAMES2_PARMDATA;
myp->myparms.parms[0] = buflen;
myp->myparms.parms[1] = sizeof(syscall_parmlist);
myp->myparms.parms[2] = sizeof(syscall_parmlist) + buflen;
myp->myparms.parms[3] = 0;

/* Only specify a non-zero offset for the next field (parms[3]) if */
/* you are running z/OS 1.7 and above, and */
/* you want lsaggr aggregates owned on a single system */
/* myp->myparms.parms[3] = sizeof(syscall_parmlist) */
/* + buflen + sizeof(int); */

myp->myparms.parms[4] = 0;
myp->myparms.parms[5] = 0;
myp->myparms.parms[6] = 0;

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
mypsize, /* Length of Argument */
(char *)myp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv != 0 && bpxrc == E2BIG)
printf("E2BIG: %d times total\n", t++);

else if(bpxrv == 0)
{

buffer_success = 1;
total_aggrs = buflen / aggSize;
count_aggrs = 1;
for (aggPtr = (AGGR_ID2 *) & (myp->size);

count_aggrs <= total_aggrs;
aggPtr++, count_aggrs++)

{
if (strlen(aggPtr->aid_name) != 0)

printf("%-64.64s %-8.8s\n",
aggPtr->aid_name, aggPtr->aid_sysname);

List Attached Aggregate Names (Version 2)

274 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}
free(myp);

}
else
{ /* lsaggr names failed with large enough buffer */

printf("Error on ls aggr with large enough buffer\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* error was not E2BIG */

printf("Error on ls aggr trying to get required size\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* asking for buffer size gave rv = 0; maybe there are no aggregates */

if (myparmstruct.size == 0)
printf("No attached aggregates\n");

else /* No, there was some other problem with getting the size needed */
printf("Error getting size required\n");

free(myp);
return bpxrc;

}
}

if(t == 1000)
printf("Number of failed buffer resizes exceeded.\n");

free(myp);
return 0;

}

List Attached Aggregate Names (Version 2)

Chapter 13. zFS application programming interface information 275

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

List Detailed File System Information
Purpose

Returns detailed information for one or more file systems. It offers the ability to
get information for file systems that have common names, common attributes, or
that have encountered similar unexpected conditions.

IBM recommends that you use the List Detailed File System Information API
instead of List Aggregate Status, List File System Status, List File System Names
(Version 1) or List File System Names (Version 2).

Format

syscall_parmlist
opcode int 153 AGOP_FSINFO_PARMDATA

154 AGOP_FSINFO_RESET_PARMDATA
parms[0] int offset to FSINFO_REQUEST
parms[1] int 0
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

FSINFO_REQUEST
fr_eye char[4] "FIRQ"
fr_length short Length of Structure
fr_sversion char Structure Version, must be 1
fr_reqtype char SingleQuery=0, NameCursor=1
fr_version char Version of input/output

buffer, must be 1
fr_output char Type of output/function selected, one of:

0 - Local statistics only, use only local
cache. Only allowed with
fr_nameSelection=2.

1 - Full sysplex-wide statistics
(including owner statistics).

2 - Reset statistics.
fr_nameSelection char Selection of aggregates desired, one of:

0 - When SingleQuery selected.
Options for fr_reqtype=1 (NameCursor):
1 - All aggregates. fr_output can be

1 (full) or 2 (reset).
2 - Aggregates known on the local system.

This is only allowed with fr_output
0 (local statistics).

3 - All aggregates matching a specific
pattern provided in fr_patternName.
fr_output can be 1 (full) or
2 (reset).

List Detailed File System Information

276 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|
|

|
||

fr_eol char Indicates if a multi-aggregate read has
completed. 1 if yes, 0 if no.

fr_selection int Selection mask for aggregates meeting
certain state criteria. More than one bit
can be set. Note zFS will use an OR-ing
of the criteria so that aggregates that
meet one or more criteria are returned.
0 - all aggregates desired.
x1 - Show aggregates that have sysplex

thrashing objects.
x2 - Show aggregates that contain v5

directories with overflow pages.
x4 - Show aggregates mounted R/W.
x8 - Show aggregates mounted R/O.
x10 - Show aggregates that are disabled.
x20 - Show aggregates that are growing.
x40 - Show aggregates that are quiesced.
x80 - Show aggregates that had grow

failures.
x100 - Show aggregates that are low on

space, as defined by the zFS
bitmap manager.

x200 - Show aggregates that are damaged.
x400 - Show aggregates that are mounted

RWSHARE.
x800 - Show aggregates that are mounted

NORWSHARE.
x1000 - Show aggregates that had requests
x2000 - Show aggregates that had write

requests.
x4000 - Show aggregates where applications

saw ENOSPC errors.
x8000 - Show aggregates that had disk I/O

errors.
x10000 - Show aggregates that had XCF

timeouts between client systems
and owning systems (for RWSHARE
aggregates).

x20000 - Show aggregates that are version
1.4 aggregates.

x40000 - Show aggregates that are version
1.5 aggregates.

x80000 - Show aggregates that are
disabled for dynamic grow.

x100000 - Show aggregates that are
disabled for conversion to
version 1.5.

x80000000 - Tells zFS to use an AND-ing
method of examining criteria.
Hence only aggregates meeting
all criteria will be returned.

x801FFFFF - Represents all valid bits.
fr_entries unsigned int Number of aggregatess returned in output.
fr_nonFatalRc int Non-fatal error code.
fr_nonFatalRsn int Reason code if fr_nonFatalRc is non-zero.
fr_resumeName char[45] Dataset name to resume with for NameCursor

or the name of a single-aggregate query.
fr_patternName char[45] The aggregate name to be used. This can

contain wildcards.
fr_future2 char[2] For future use (reserved).

List Detailed File System Information

Chapter 13. zFS application programming interface information 277

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

FSINFO_NAME
fn_eye char[4] "FINA"
fn_slength short Structure length.
fn_sversion short Structure version, must be 1.
fn_name char[44] Aggregate name.
fn_connected unsigned int Number of connected systems if owner

output is requested; 0 otherwise.
fn_owner char[8] System name of the owner.
fn_length unsigned int Total length of all information for this

aggregate.
fn_future char[4] For future use (reserved).
fn_sysnames char[8] Names of connected systems (32 at most).

FSINFO_OWNER
fo_eye char[4] "FIOW"
fo_length short Length of structure
fo_sversion short Structure version, must be 1.
fo_size unsigned int Number of 8K blocks in the aggregate.
fo_free unsigned int Number of unused 8K blocks in the

aggregate.
fo_frags unsigned long long int Number of free 1K fragments

available in the aggregate.
fo_logsize unsigned int Number of 8K blocks allocated to the log

file for transaction logging, including
indirect blocks.

fo_bitmapsize unsigned int Number of 8K blocks allocated to the
bitmap file, including indirect blocks.

fo_anodesize unsigned int Number of 8K blocks allocated to the
anode table.

fo_objects unsigned int Number of objects in the file system.
fo_version char Aggregate version number.
fo_threshold char Space monitoring threshold.
fo_increment char Space monitoring increment.
reserved1 char Reserved
fo_flags int Flag bits:

x01 - Mounted in R/W mode.
x02 - Disabled for access.
x04 - Grow failure occurred since

last reset.
x08 - Aggregate is low on space

(zfs definition).
x10 - Aggregate considered damaged by

salvage verification and not
repaired yet.

x20 - Aggregage using zFS sysplex sharing
(RWSHARE).

x40 - Dynamic grow set at mount time.
x80 - Aggregate is in the process of

growing at time of query.
x100 - converttov5 is set.
x200 - Aggregate is not mounted.
x400 - Aggregate is unowned.
x800 - Dynamic grow allowed, no grow

failures or since a grow failure
an admin grow was done.

x1000 - The quiesce is done for chgowner.
x2000 - converttov5 disabled.
x4000 - Aggregate version 1.4.
x8000 - Aggregate version 1.5.

List Detailed File System Information

278 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

fo_overflow unsigned int Number of overflow pages used in v5
directories.

fo_overflowhiwater unsigned int Hi-water mark of fo_overflow for life of
the file system.

fo_thrashing unsigned int Current number of objects using the
thrash-resolution protocol.

reserved2 char[4] Reserved.
fo_thrash_resolution unsigned long long int Number of thrash resolutions

performed since last statistics
reset.

fo_revocations unsigned long long int Number of token revocations
performed since last statistics
reset.

fo_revwait unsigned long long int Average revocation wait time in
microseconds.

fo_qsysname char[8] Name of system requesting quiesce, if the
aggregate is quiesced, 0 otherwise.

fo_jobname char[8] Name of job requesting the quiesce, if the
aggregate is quiesced, 0 otherwise.

fo_createtime unsigned long long int Creation time in seconds since
last epoch.

fo_ownership unsigned long long int Owership time in seconds since
last epoch.

fo_reset unsigned long long int Time statistic counters reset
in seconds since last epoch.

fo_quiesce unsigned long long int Quiesce time in seconds since
epoch, 0 if not quiesced.

fo_devno unsigned int z/OS UNIX device number.
fo_auditfid char[10] Audit fid for file system.
fo_qasid unsigned short ASID which issued the quiesce.
fo_growcount unsigned int Number of grows since mount.
reserved3 char[4] Reserved.
fo_growtime unsigned long long int Time of the last grow as known

by the owner.

FSINFO_LOCAL
fl_eye char[4] "FILO"
fl_length short Structure Length.
fl_sversion short Structure version.
fl_vnodes unsigned long long int Number of vnodes cached in

memory on the local system.
fl_ussheld unsigned long long int Number of vnodes held by USS.
fl_sysname char[8] System name stats are for.
fl_open unsigned long long int Number of open objects in the

file system.
fl_tokens unsigned long long int Number of tokens held from the

token manager.
fl_usercache unsigned int Number of 4K pages held in the

user cache for the file system.
fl_metacache unsigned int Number of 8K pages held in the

metadata cache.
fl_appreads unsigned long long int Number of application reads

done since last reset.
fl_appreadresp unsigned long long int Average read response time,

in microseconds.
fl_appwrites unsigned long long int Number of application writes

done since last reset.
fl_appwriteresp unsigned long long int Average write response time,

in microseconds.

List Detailed File System Information

Chapter 13. zFS application programming interface information 279

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

fl_xcfreads unsigned long long int Number of XCF read calls made
to the owner since last reset.

fl_xcfreadresp unsigned long long int Average XCF read call response
time, in microseconds.

fl_xcfwrites unsigned long long int Number of XCF write calls made
to the server since last reset.

fl_xcfwriteresp unsigned long long int Average XCF write call response
time, in microseconds.

fl_enospc unsigned long long int Number of ENOSPC errors
returned to applications
since last reset.

fl_ioerrs unsigned long long int Number of disk I/O errors
since last reset.

fl_commerrs unsigned long long int Number of XCF communication
timeouts or failures since last
reset.

fl_cancels unsigned long long int Number of cancelled operations
since last reset by asynchronus
abends, cancels, or forces.

fl_ddname char[8] DDNAME during allocation of
aggregagte dataset.

fl_mounttime struct timeval64 Mount time in seconds since
the last epoch.

fl_numdasd unsigned int Number of DASD volumes listed
for aggregate in FSINFO_DASD
array.

fl_flags unsigned int 1 indicates this system has tasks
waiting on a quiesced FS.

FSINFO_DASD
fd_eye char[4] "FIDA"
fd_length short Structure Length.
fd_sversion short Structure version, must be 1.
fd_volser char[6] Volume serial.
fd_pavios short Number of I/Os zFS will issue

at one time for non-critical
I/Os.

fd_reads unsigned long long int Number of reads to this volume.
fd_readbytes unsigned long long int Number of kilobytes read.
fd_writes unsigned long long int Number of writes to this volume
fd_writebytes unsigned long long int Number of kilobytes written.
fd_waits unsigned long long int Number of times a zFS task had

to wait for an I/O to this
volume.

fd_waitTime unsigned long long int (includes all time, queue wait,
DASD response time etc.)
since last reset.

fd_resptime unsigned long long int Avg. wait time in microseconds.

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR zFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred
E2BIG Information too big for buffer supplied
ENOENT Specified data set is not found
EPERM Permission denied to perform request

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

List Detailed File System Information

280 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v Users of the API supply an input buffer that contains a syscall_parmlist

followed by an FSINFO_REQUEST structure. Output will be placed in this
buffer after the FSINFO_REQUEST.

v A minimum length output buffer for a single-aggregate query is 10 K, and a
minimum length output buffer for a multi-aggregate query is 64 K.

v A single specific aggregate can be queried by putting its name in fr_resumeName.
The name must be null-terminated. Also specify fr_reqtype 0 (SingleQuery).
This aggregate does not need to be attached. fr_selection and
fr_nameSelection must also be 0.

v Multiple aggregate names can be specified by entering a string in
fr_patternName that can contain a wildcard character ('*'). A wildcard can be
specified at the beginning, at the end, or both at the beginning and the end of
the string. The string must be null-terminated. The input string is converted to
uppercase before it is processed. Use a fr_nameSelection value of 3 when
specifying a wildcard, and a fr_reqtype of NameCursor (1).

v All attached aggregates can be specified by using fr_nameSelection value of 1
and a fr_reqtype value of NameCursor (1).

v If the output buffer cannot hold all of the returned information, fr_eol will be 0
and fr_resumeName will contain a value to be returned to zFS on the next query.
Keep querying zFS until fr_eol is 1 to indicate that all information has been
returned.

v Use fr_selection to return only aggregates that match the specified criteria in a
multiple aggregate query. The options are defined in the Format section.

v fr_output determines the output of the request. Options are defined in the
Format section.

v There is no file system information returned when a reset is requested
(fr_output=2). A reset can only be requested when the opcode is 154
(AGOP_FSINFO_RESET_PARMDATA) and fr_selection is 0.

v Reserved fields and undefined flags must be set to binary zeros.
v Any names returned that are less than the full length of the field are null

terminated. If the length of the name is equal to the length of the field that
contains it, then it is not null terminated.

v Output consists of various structures following the FSINFO_REQUEST area in
the buffer. For each aggregate that has information returned, first will be an
FSINFO_NAME structure. This contains the name of an aggregate and the
systems that are connected to it. Then, if present, will be the FSINFO_OWNER
structure. This contains aggregate statistics and attributes as known by the
owner. There can be no FSINFO_OWNER in some cases when the aggregate is
unowned (fn_owner is *UNOWNED). This is followed by FSINFO_LOCAL
structures. There are fn_connected FSINFO_LOCAL structures (if it is unowned),
otherwise there are fn_connected+1 FSINFO_LOCAL structures. Each
FSINFO_LOCAL structure is followed by fl_numdasd FSINFO_DASD structures
to describe the DASD volumes that contain the zFS aggregate data set.

Privilege required

If a reset of the statistics values is requested and the fr_output field of the
FSINFO_REQUEST structure contains the value 2, the issuer must be UID 0 or
have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS
UNIXPRIV class. Otherwise, no privilege is required.

List Detailed File System Information

Chapter 13. zFS application programming interface information 281

|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

Related services
List Aggregate Status (Version 1)
List Aggregate Status (Version 2)
List Attached Aggregate Names (Version 1)
List Attached Aggregate Names (Version 2)
List File System Names (Version 1)
List File System Names (Version 2)
List File System Status

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <stddef.h>
#include <stdint.h>
#include <time.h>

#define ZFSCALL_FSINFO 0x40000013
#define ZFS_MAX_AGGRNAME 44
#define AGOP_FSINFO_PARMDATA 153 /* Get status on aggr & fs */
#define BUFFER_SIZE 1024 * 64

#define FSINFO_XCF_ERR 0x1
#define FSINFO_IO_ERR 0x2
#define FSINFO_SPC_ERR 0x4

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[1]-parms[6] are currently unused*/

} syscall_parmlist;

struct timeval64 {
uint64_t tv_sec;
int32_t tv_usec_pad;
uint32_t tv_usec;

};

typedef struct FSINFO_REQUEST_t {
char fr_eye[4];

#define FR_EYE "FIRQ"
short fr_length;
char fr_sversion; /* Structure version. must be 1 */
char fr_reqtype; /*request type. BulkList=0, OffsetCursor=1*/

#define FR_REQTYPE_SINGLEQUERY 0
#define FR_REQTYPE_NAMECURSOR 1

char fr_version; /* Version of input/output buffer; must be 1*/
char fr_output; /* Type of output */

#define FR_OUT_LOCAL_STAT 0 /* Local stats from local system */
#define FR_OUT_FULL_STAT 1 /* Full stats from all systems*/
#define FR_OUT_RESET 2 /* reset statistics */

char fr_nameSelection; /* Selection of aggregates desired, one of: */
#define FR_NM_ALLAGGR 1 /* All aggregates */
#define FR_NM_LOCAL 2 /* Local aggregates */
#define FR_NM_PATTERN 3 /* All aggregates matching pattern */

char fr_eol; /* Indicates if a multi-aggregate

List Detailed File System Information

282 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

read has completed */
int fr_selection; /* Selection criteria of aggregates desired */
unsigned int fr_entries; /* Number of entries returned

by zFS (for OffsetCusor) */
int fr_nonFatalRc; /* Non-fatal error code */
int fr_nonFatalRsn; /* Reason code if fr_nonFatalRc is non-0 */
char fr_resumeName[45]; /* Dataset name to resume with for NameCursor or */

/* the name for the single-aggregate query.*/
char fr_patternName[45]; /* The pattern name to be used. */
char fr_future2[2];

} FSINFO_REQUEST;

typedef struct FSINFO_NAME_t
{

char fn_eye[4];
#define FN_EYE "FINA"

short fn_slength; /* Structure length */
short fn_sversion;
char fn_name[44]; /* aggregate name */
unsigned int fn_connected; /* number of conneceted systems if owner

output is included; 0 otherwise*/
char fn_owner[8]; /* system name of the owner */
unsigned int fn_length; /* Total length of all information for this

aggregate, so programs can quickly find the
beginning of the next record
in the output buffer. */

char fn_future[4];
char fn_sysnames[8]; /* Names of connected systems (32 at most).Actual

number is defined fn_connected.*/
} FSINFO_NAME;

typedef struct FSINFO_OWNER_t {
char fo_eye[4];

#define FSO_EYE "FIOW"
short fo_length;
short fo_sversion;
unsigned int fo_size; /* Num of 8K blocks in the aggregate */
unsigned int fo_free; /* Number of unused 8K blocks

in the aggregate.*/
unsigned long long int fo_frags; /* Num of free 1K fragments

available in the aggregate.*/
unsigned int fo_logsize; /* Num of 8K blocks allocated

to the log file for
transaction logging,
including indirect blocks.*/

unsigned int fo_bitmapsize; /* Number of 8K blocks allocated to the
bitmap file including indirect blocks.*/

unsigned int fo_anodesize; /* Number of 8K blocks allocated
to the anode table.*/

unsigned int fo_objects; /* Number of objects in the file system. */
char fo_version; /* Aggregate version number */
char fo_threshold; /* Space monitoring threshold */
char fo_increment; /* Space monitoring increment*/
char reserved1;
int fo_flags;

#define FO_OWNER_MNTRW 0x1 /* Mounted in RW mode */
#define FO_OWNER_DISABLED 0x2 /* Disabled for access */
#define FO_OWNER_GROWFAIL 0x4 /* Grow failure since last reset */
#define FO_OWNER_LOW_ONSPC 0x8 /* Low on space (zfs definition)*/
#define FO_OWNER_DAMAGED 0x10 /* Aggregate is damaged by salvage

verification & not repaired yet */
#define FO_OWNER_RWSHARE 0x20 /* Aggregate using zFS sysplex

sharing (RWSHARE) */
#define FO_OWNER_GROWSET 0x40 /* Dynamic grow set at mount time */
#define FO_OWNER_GROWING 0x80 /* Aggregate is in the process

of growing at the time of query */
#define FO_CONVERTOV5 0x100 /* CONVERTTOV5 parm is set on mount. */

List Detailed File System Information

Chapter 13. zFS application programming interface information 283

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define FO_NOTMOUNT 0x200 /* Aggregate is not mounted */
#define FO_NO_OWNER 0x400 /* Aggregate is un-owned */
#define FO_OWNER_ALLOWGROW 0x800 /* Dynamic grow allowed , no

grow failures or since a grow
failure an admin grow was done. */

#define FO_OWNER_CHGOWNER 0x1000 /* The quiesce is done for a
chgowner instead of a backup */

#define FO_CONVERTTOV5_DISABLED 0x2000 /* CONVERTTOV5 is disabled
due to quiesce or failed convert */

#define FO_V4 0x4000 /* Aggregate with version 1.4 */
#define FO_V5 0x8000 /* Aggregate with version 1.5 */

unsigned int fo_overflow; /* Num of overflow pages used for v5 directories */
unsigned int fo_overflowhiwater; /* Hiwater mark of fo_overflow

for life of file system.*/
unsigned int fo_thrashing; /* Current number of objects using

the thrash-resolution protocol*/
char reserved2[4];
unsigned long long int fo_thrash_resolution; /* Number of thrash resolutions

performed since last
statistics reset.*/

unsigned long long int fo_revocations; /* Number of token revocations
performed since last
statistics reset*/

unsigned long long int fo_revwait; /* Average revocation wait time
in microseconds.*/

char fo_qsysname[8]; /* Name of system requesting quiesce,
if the aggregate is quiesced,
0 otherwise.*/

char fo_jobname[8]; /* Name of job requesting quiesce,
if the aggregate is quiesced,
0 otherwise.*/

unsigned long long int fo_createtime; /* Creation time in
seconds since epoch*/

unsigned long long int fo_ownership; /* Owership time in
seconds since epoch*/

unsigned long long int fo_reset; /* Time statistic counters reset in
seconds since last epoch*/

unsigned long long int fo_quiesce; /* Quiesce time in seconds since
epoch, 0 if file system
not quiesced.*/

unsigned int fo_devno; /* Devno for the mount*/
char fo_auditfid[10]; /* Audit fid for file system*/
unsigned short fo_qasid; /* ASID which issued the quiesce */
unsigned int fo_growcount; /* Number of grows since mount. */
char reserved3[4];
unsigned long long int fo_growtime; /* Time of the last grow

as known by owner */
} FSINFO_OWNER;

typedef struct FSINFO_LOCAL_t {
char fl_eye[4];

#define FL_EYE "FILO"
short fl_length;
short fl_sversion; /* Structure version */
unsigned long long int fl_vnodes; /* Number of vnodes cached in memory

on the local system */
unsigned long long int fl_ussheld; /* Number of USS held vnodes*/
char fl_sysname[8]; /* System name these stats are for */
unsigned long long int fl_open; /* Number of open objects in

the file system */
unsigned long long int fl_tokens; /* Number of tokens held from

the token manager */
unsigned int fl_usercache; /* Number of 4K pages held in the

user cache for the file system */
unsigned int fl_metacache; /* Number of 8k pages held in

the metadata cache */

List Detailed File System Information

284 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned long long int fl_appreads; /* Number of application reads made
since last reset */

unsigned long long int fl_appreadresp; /* Average read response
time in microseconds*/

unsigned long long int fl_appwrites; /* Number of application writes
made since last reset */

unsigned long long int fl_appwriteresp; /* Average write response
time in microseconds*/

unsigned long long int fl_xcfreads; /* Number of xcf read calls made
to the owner since last reset */

unsigned long long int fl_xcfreadresp; /* Average xcf read call response
time in microseconds*/

unsigned long long int fl_xcfwrites; /* Number of xcf write calls made to
the server since last reset */

unsigned long long int fl_xcfwriteresp; /* Average xcf write call response
time in microseconds*/

unsigned long long int fl_enospc; /* Number of ENOSPC errors returned
to apps since last reset */

unsigned long long int fl_ioerrs; /* Number of disk IO errors
since last reset*/

unsigned long long int fl_commerrs; /* Number of XCF communication timeouts
or failures since last reset*/

unsigned long long int fl_cancels; /* Number of cancelled operations
since last reset by asynchronus
abends, cancel, forces and EOMs */

char fl_ddname[8]; /* DDNAME of allocation of dataset */
struct timeval64 fl_mounttime; /* Mount time, seconds since epoch */
unsigned int fl_numdasd; /* Number of DASD volumes listed for

aggregate in FSINFO_DASD array */
unsigned int fl_flags; /* 1 indicates if this system has

tasks waiting on a quiesced FS.*/
} FSINFO_LOCAL;

typedef struct FSINFO_DASD_t
{

char fd_eye[4];
#define FSD_EYE "FIDA"

short fd_length;
short fd_sversion;

#define FSD_VER_INITIAL 1
char fd_volser[6];
short fd_pavios;
unsigned long long int fd_reads;
unsigned long long int fd_readbytes;
unsigned long long int fd_writes;
unsigned long long int fd_writebytes;
unsigned long long int fd_waits;
unsigned long long int fd_waitTime;
unsigned long long int fd_resptime;

} FSINFO_DASD;

void check_local_error(char *buffp, FSINFO_REQUEST *fs_req, int *lerr_stat);

int main(int argc, char **argv)
{

char* buffp = NULL;
syscall_parmlist* parmp = NULL;
FSINFO_REQUEST* fs_req = NULL;
char owner_sys[9];

int buff_fill_len = 0;
int fs_ownerlen = 0;
int fs_locallen = 0;
int unowned = 0;
int fr_nonFatalRc = 0;
int fr_nonFatalRsn = 0;
int sperr = 0;

List Detailed File System Information

Chapter 13. zFS application programming interface information 285

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int ioerr = 0;
int xcferr = 0;
int lerr_stat = 0;
int bpxrv, bpxrc, bpxrs;
int i, j, k;
unsigned long long int most_writes = 0;
char busiest_volume[7];
int locals = 0;

/* aggrname for fsinfo */
char aggrname[ZFS_MAX_AGGRNAME+1] = "PLEX.DCEIMGQY.FS";

/* Output structure pointers */
FSINFO_NAME* fs_namep = NULL;
FSINFO_OWNER* fs_ownerp = NULL;
FSINFO_LOCAL* fs_localp = NULL;
FSINFO_DASD * fs_dasdp = NULL;
char* outputp = NULL;

/* Allocate buffer */
buffp = (char*) malloc(BUFFER_SIZE);
if(buffp == NULL)
{

printf("Malloc Error\n");
return 0;

}

/* Set the parmdata */
parmp = (syscall_parmlist*) &buffp[0];
parmp->opcode = AGOP_FSINFO_PARMDATA;
parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
parmp->parms[1] = 0;
parmp->parms[2] = 0;
parmp->parms[3] = 0;
parmp->parms[4] = 0;
parmp->parms[5] = 0;
parmp->parms[6] = 0;

fs_req = (FSINFO_REQUEST*) &buffp[buff_fill_len];
memset(fs_req, 0x00, sizeof(FSINFO_REQUEST));

/* First obtain the statistics for all file systems. We will look */
/* through them to find the DASD volume with the most write operations. */
memcpy(fs_req->fr_eye, FR_EYE, sizeof(fs_req->fr_eye));
fs_req->fr_length = sizeof(FSINFO_REQUEST);
fs_req->fr_sversion = 1;
fs_req->fr_version = 1;
fs_req->fr_reqtype = FR_REQTYPE_NAMECURSOR;
fs_req->fr_output = FR_OUT_FULL_STAT;
fs_req->fr_nameSelection = FR_NM_ALLAGGR;

buff_fill_len += sizeof(FSINFO_REQUEST);

/* Loop getting file system information from zFS until we have it all. */
do
{

/* Call zFS. */
printf("call zfs\n");
BPX1PCT("ZFS ",

ZFSCALL_FSINFO, /* Aggregate operation */
BUFFER_SIZE, /* Length of Argument */
(char*) buffp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv)

List Detailed File System Information

286 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{
printf("Error getting fsinfo for aggregate %s\n", aggrname);
printf("Return Value: %d Return Code: %d Reason Code: %x\n",

bpxrv, bpxrc, bpxrs);
goto done;

}
if(fs_req->fr_nonFatalRc)
{

fr_nonFatalRc = fs_req->fr_nonFatalRc;
fr_nonFatalRsn = fs_req->fr_nonFatalRsn;
goto print_non_fatals;

}

/* The first structure pointed by output buffer is FSINFO_NAME.*/
fs_namep = (FSINFO_NAME *) &buffp[buff_fill_len];
for (i=0; i<fs_req->fr_entries; i++)
{

fs_ownerp = (FSINFO_OWNER *)((char *)fs_namep+fs_namep->fn_slength);
locals = fs_namep->fn_connected;

/* If file system has an owner, there will be one more */
/* FSINFO_LOCAL structure returned than this count. */
if (memcmp(fs_namep->fn_owner, "*UNOWNED") != 0)

locals++;

/* Determine if there is an FSINFO_OWNER or not. */
/* If not, then the structure should be an FSINFO_LOCAL. */
if (memcmp(fs_ownerp->fo_eye, FSO_EYE, 4) == 0)
{ /* FSINFO_OWNER returned */

fs_localp = (FSINFO_LOCAL *)((char *)fs_ownerp+fs_ownerp->fo_length);
}
else if (memcmp(fs_ownerp->fo_eye, FL_EYE, 4) == 0)
{

/* No FSINFO_OWNER returned. It’s FSINFO_LOCAL */
fs_localp = (FSINFO_LOCAL *)fs_ownerp;
fs_ownerp = NULL;

}
else
{

/* Should not get here!! */
printf("Error exit: Incorrect structure sequence!!\n");
goto done;

}

/* Loop through each FSINFO_LOCAL structure returned. */
for (j=0; j<locals; j++)
{

fs_dasdp = (FSINFO_DASD *)((char *)fs_localp + fs_localp->fl_length);
for (k=0; k<fs_localp->fl_numdasd; k++)
{

/* Determine if this DASD volume has more writes than the */
/* previously higher one. Yes, remember DASD volume name. */
if (fs_dasdp->fd_writes > most_writes)
{

strncpy(busiest_volume, fs_dasdp->fd_volser, 6);
busiest_volume[6] = 0;
most_writes = fs_dasdp->fd_writes;

}
/* Set up for next iteration. */
fs_dasdp = (FSINFO_DASD *)((char *)fs_dasdp + fs_dasdp->fd_length);

}
/* After looping through all FSINFO_DASD structures, fs_dasdp */
/* should be pointing at the next FSINFO_LOCAL structure. */
fs_localp = (FSINFO_LOCAL *)fs_dasdp;

}

/* Get ready for next loop iteration. */

List Detailed File System Information

Chapter 13. zFS application programming interface information 287

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fs_namep = (FSINFO_NAME *)((char *)fs_namep+fs_namep->fn_length);
}

}
while (!fs_req->fr_eol);

printf("DASD volume %s has the most writes (%llu)\n",
busiest_volume, most_writes);

/* Now do a single aggregate query for a specific file system. */
memset(fs_req, 0x00, sizeof(FSINFO_REQUEST));
memcpy(fs_req->fr_eye, FR_EYE, sizeof(fs_req->fr_eye));
fs_req->fr_length = sizeof(FSINFO_REQUEST);
fs_req->fr_sversion = 1;
fs_req->fr_version = 1;
fs_req->fr_output = FR_OUT_FULL_STAT;
fs_req->fr_reqtype = FR_REQTYPE_SINGLEQUERY;
memcpy(fs_req->fr_resumeName, aggrname, ZFS_MAX_AGGRNAME+1);

BPX1PCT("ZFS ",
ZFSCALL_FSINFO, /* Aggregate operation */
BUFFER_SIZE, /* Length of Argument */
(char*) buffp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv)
{

printf("Error getting fsinfo for aggregate %s\n", aggrname);
printf("Return Value: %d Return Code: %d Reason Code: %x\n",

bpxrv, bpxrc, bpxrs);
goto done;

}
if(fs_req->fr_nonFatalRc)
{

fr_nonFatalRc = fs_req->fr_nonFatalRc;
fr_nonFatalRsn = fs_req->fr_nonFatalRsn;
goto print_non_fatals;

}

buff_fill_len = sizeof(syscall_parmlist) + sizeof(FSINFO_REQUEST);
outputp = buffp + buff_fill_len;
check_local_error(outputp, fs_req, &lerr_stat);

/* The first structure pointed by output buffer would be FSINFO_NAME. */
fs_namep = (FSINFO_NAME *) &buffp[buff_fill_len];
fs_ownerp = (FSINFO_OWNER *) ((char*) fs_namep + fs_namep->fn_slength);
memcpy(owner_sys, fs_namep->fn_owner, 8);
owner_sys[8] = ’\0’;

if (memcmp(&owner_sys[0], "*UNOWNED", 8) == 0)
{

unowned = 1;
if (memcmp(fs_ownerp->fo_eye, FSO_EYE, 4) == 0)
{ /* FSINFO_OWNER returned */

fs_localp = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);
}
else if (memcmp(fs_ownerp->fo_eye, FL_EYE, 4) == 0)
{

/* No FSINFO_OWNER returned. It’s FSINFO_LOCAL */
fs_localp = (FSINFO_LOCAL *)fs_ownerp;
fs_ownerp = NULL;

}
}
else if (fs_ownerp->fo_flags & FO_NO_OWNER)
{

unowned = 1;

List Detailed File System Information

288 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fs_localp = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);
}
else

fs_localp = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);

if ((lerr_stat & FSINFO_SPC_ERR) == FSINFO_SPC_ERR)
{

fs_localp->fl_enospc = 1;
sperr = 1;

}
if ((lerr_stat & FSINFO_IO_ERR) == FSINFO_IO_ERR)
{

fs_localp->fl_ioerrs = 1;
ioerr = 1;

}
if ((lerr_stat & FSINFO_XCF_ERR) == FSINFO_XCF_ERR)
{

fs_localp->fl_commerrs = 1;
xcferr = 1;

}

if(unowned && !fs_ownerp)
{

if (!xcferr && !ioerr && !sperr)
printf("%-44.44s %-8.8s n/a \n\n",

aggrname, "*UNOWNED");
else
{

printf("%-44.44s %-8.8s %s%s%s \n\n",
aggrname, "*UNOWNED",
(sperr)? "SE" :"",
(ioerr)?((sperr)?",IE":"IE"):"",
(xcferr)?((sperr || ioerr)?",CE":"CE"):"");

/* Define the flags in a legend */
printf("Legend: %s%s%s\n\n",

(sperr)? "SE = Space errors reported":"",
(ioerr)?

((sperr)? ",IE = IO errors reported":
"IE = IO errors reported") : "",

(xcferr)?
((sperr || ioerr)?

",CE = Communication errors reported":
"CE = Communication errors reported") : "");

}
}
else
{

/* Print the aggregate info with flags */
printf("%-44.44s %-8.8s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s \n\n",

aggrname, fs_namep->fn_owner,
(fs_ownerp->fo_flags & FO_NOTMOUNT) ? "NM" : "",
/* Multiple Conditions */
(!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
(fs_ownerp->fo_flags & FO_OWNER_MNTRW)) ? "RW" :
((fs_ownerp->fo_flags & FO_NOTMOUNT) ? "" : "RO"),
/* Multiple Conditions */
(!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
(fs_ownerp->fo_flags & FO_OWNER_RWSHARE)) ? ",RS" :
((fs_ownerp->fo_flags & FO_NOTMOUNT) ? "" : ",NS"),

(fs_ownerp->fo_thrashing) ? ",TH" : "",
(fs_ownerp->fo_qsysname[0] != ’\0’) ? ",Q" : "",
(fs_ownerp->fo_flags & FO_OWNER_DISABLED) ? ",DI" : "",
(fs_ownerp->fo_flags & FO_OWNER_GROWING) ? ",GR" : "",
(fs_ownerp->fo_flags & FO_OWNER_GROWFAIL) ? ",GF" : "",
/* Multiple Conditions */
(!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&

List Detailed File System Information

Chapter 13. zFS application programming interface information 289

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

!(fs_ownerp->fo_flags & FO_OWNER_ALLOWGROW)) ? ",GD" : "",

(fs_ownerp->fo_flags & FO_OWNER_DAMAGED) ? ",DA" : "",
(fs_ownerp->fo_flags & FO_OWNER_LOW_ONSPC) ? ",L" : "",
(sperr) ? ",SE" : "",
(fs_ownerp->fo_flags & FO_OWNER_DISABLED) ? ",DI" : "",
(ioerr) ? ",IE" : "",
(xcferr) ? ",CE" : "");

/* Define the flags in a legend */
printf("Legend: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s \n\n",

(fs_ownerp->fo_flags & FO_NOTMOUNT) ? "NM = Not mounted" : "",
/* Multiple Conditions */
(!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
(fs_ownerp->fo_flags & FO_OWNER_MNTRW)) ? "RW = Read-write" :
((fs_ownerp->fo_flags & FO_NOTMOUNT) ? "" : "RO = Read-only"),
/* Multiple Conditions */
(!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
(fs_ownerp->fo_flags & FO_OWNER_RWSHARE)) ?
",RS = Mounted RWSHARE" : ((fs_ownerp->fo_flags & FO_NOTMOUNT) ?
"" : ",NS = Mounted NORWSHARE"),
(fs_ownerp->fo_thrashing) ? ",TH = Thrashing" : "",
(fs_ownerp->fo_qsysname[0] != ’\0’) ? ",Q = Queisced" : "",
(fs_ownerp->fo_flags & FO_OWNER_DISABLED) ?
",DI = Disabled" : "",
(fs_ownerp->fo_flags & FO_OWNER_GROWING) ?
",GR = Growing" : "",
(fs_ownerp->fo_flags & FO_OWNER_GROWFAIL) ?
",GF = Grow Failed": "",
/* Multiple Conditions */
(!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
!(fs_ownerp->fo_flags & FO_OWNER_ALLOWGROW)) ?

",GD = AGGRGROW disabled" : "",
(fs_ownerp->fo_flags & FO_OWNER_DAMAGED) ?
",DA = Damaged" : "",
(fs_ownerp->fo_flags & FO_OWNER_LOW_ONSPC) ?
",L = Low on space": "",
(sperr) ? ",SE = Space errors reported":"",
(fs_ownerp->fo_flags & FO_OWNER_DISABLED) ?
",DI = Disabled" : "",
(ioerr) ? ",IE = IO errors reported" : "",
(xcferr) ? ",CE = Communication errors reported":"");

}
goto done;

print_non_fatals:
if(fr_nonFatalRc)
{

printf("Non-Fatal errors:\n");
printf("Return Code: %d Reason Code: %x\n\n",

fr_nonFatalRc, fr_nonFatalRsn);
}

done:
free(buffp);
return 0;

}

void check_local_error(char *buffptr, FSINFO_REQUEST *fs_req, int *lerr_stat)
{

FSINFO_NAME * fs_namep;
FSINFO_OWNER * fs_ownerp = NULL;
FSINFO_LOCAL * fs_local;
FSINFO_DASD * dasdp;
int dasd_space;
int i, j;
int total_sys = 0;

List Detailed File System Information

290 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int unowned = 0;

if ((*lerr_stat) == (FSINFO_XCF_ERR | FSINFO_IO_ERR | FSINFO_SPC_ERR))
{

printf("FSINFO_CheckLocalErr: all 3 bits are set in *lerr_stat=%X\n",
*lerr_stat);

return ;
}

/* The first structure pointed by output buffer would be FSINFO_NAME. */
fs_namep = (FSINFO_NAME *)((char *)buffptr);
fs_ownerp = (FSINFO_OWNER *)((char *)fs_namep + fs_namep->fn_slength);

/* if UNOWNED, make sure we are processing the right stats. */
if (memcmp(&fs_namep->fn_owner, "*UNOWNED", 8) == 0)
{

unowned = 1;
if (memcmp(fs_ownerp->fo_eye, FSO_EYE, 4) == 0)
{ /* FSINFO_OWNER block */

fs_local = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);
}
else if (memcmp(fs_ownerp->fo_eye, FL_EYE, 4) == 0)
{ /* FSINFO_LOCAL block */

fs_local = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);
fs_ownerp = NULL;

}
else
{ /* We should not get here!! */

return;
}

}
else

fs_local = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);

/* If FSINFO_OWNER is not returned, we have 1 less FSINFO_LOCAL to process */
if (unowned && (fs_ownerp == NULL))

total_sys = fs_namep->fn_connected;
else

total_sys = fs_namep->fn_connected+1;

for (i=0; i < total_sys; i++)
{

if (fs_local->fl_commerrs)
(*lerr_stat) |= FSINFO_XCF_ERR;

if (fs_local->fl_enospc)
(*lerr_stat) |= FSINFO_SPC_ERR;

if (fs_local->fl_ioerrs)
(*lerr_stat) |= FSINFO_IO_ERR;

if ((*lerr_stat) == (FSINFO_XCF_ERR | FSINFO_IO_ERR | FSINFO_SPC_ERR))
return ;

/* Find the next FSINFO_LOCAL structure, which is after any FSINFO_DASD */
/* structures that might be present. */
if (fs_local->fl_numdasd > 0)
{

dasdp = (FSINFO_DASD *)((char *)fs_local + fs_local->fl_length);
dasd_space = fs_local->fl_numdasd * dasdp->fd_length;

}
else

dasd_space = 0;
fs_local = (FSINFO_LOCAL *)((char *)fs_local + fs_local->fl_length +

dasd_space);

List Detailed File System Information

Chapter 13. zFS application programming interface information 291

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

return;
}

List Detailed File System Information

292 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|

List File Information
Purpose

Lists detailed file or directory information. This API is an w_pioctl (BPX1PIO) call
specifying a path name rather than a pfsctl (BPX1PCT) call specifying a file
system name.

Format

BPX1PIO parameter list
Pathname_length int
Pathname char[1025]
Command int 0x0000A901
Argument_length int sizeof(FOBJ_INFO)
Argument ptr to FOBJ_INFO
Return_value ptr to int 0
Return_code ptr to int 0
Reason_code ptr to int 0

FOBJ_TIME
fo_seconds hyper Second since last epoch
fo_mircoseconds int Micro seconds since last epoch
fo_unused int Reserved

FOBJ_ACLINFO
fo_index int Location of ACL
fo_length int Length of ACL

FOBJ_AUDIT
fo_read char Read information
fo_write char Write information
fo_exec char Exec information
fo_res1 char 1 - No auditing

2 - Success auditing
3 - Failure auditing

FOBJ_SYSINFO
fo_vnode hyper Address of zFS vnode
fo_vntok hyper Address of z/OS UNIX vnode
fo_openwaiters int Number of tasks waiting to open a

file blocked by deny-mode opens
fo_internalopens int Number of internal opens
fo_readopens int Number of opens for read
fo_writeopens int Number of opens for write
fo_denyreads short Number of deny-read opens
fo_denywrites short Number of deny-write opens
fo_advdebyreads short Number of advisory deny-read opens
fo_advdenywrites short Number of advisory deny-write opens
fo_sysflags char Miscellaneous information:

0x01 - file being read sequentially
0x02 - file written sequentially
0x04 - security information cached
0x08 - file location information

cached
0x10 - symlink information cached
0x20 - metadata updates sent to

server, can not directly
read without a server sync

0x40 - tokens are being revoked
0x80 - file is undergoing thrashing

List File Information

Chapter 13. zFS application programming interface information 293

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fo_sysflags2 char More miscellaneous information
0x01 - file system owned locally

fo_unused char[2] Reserved
fo_unscheduled int Number of 4K pages in user file

cache that need to be written
fo_pending int Number of 4K pages being written
fo_segments int Number of 64K segments in user cache
fo_dirtysegment int Number of segments with pages that

need to be written
fo_metaissued int Number of I/Os in progress that will

require a metadata update
fo_metapending int Number of queued metadata updates
fo_rights int Token rights held by object
fo_xmits short Number of XCF messages client has

sent server for this object
fo_fwd short Number of in-progress operations

for object using thrashing protocol
fo_metabuffers int Number of buffers in metadata cache

for this object, only client systems
fo_dirtybuffers int Number of metadata buffers updated

for object that are on server and
need writing

fo_owner char[9] Name of owning system
fo_localsys char[9] Name of local system
fo_pad char[2] Reserved
fo_sysres int[9] Reserved

FOBJ_INFO
fo_eye char[4] "FOIN"
fo_len short Size of(FOBJ_INFO)
fo_ver char 1
fo_inflags char 1- Only in-memory system information

is being requested.
fo_inode int Object inode
fo_unique int Object uniquifier
fo_length hyper POSIX length of object (in bytes)
fo_mtime FOBJ_TIME Last modification time
fo_atime FOBJ_TIME Last access time
fo_ctime FOBJ_TIME Last change time
fo_reftime FOBJ_TIME Last reference time
fo_create FOBJ_TIME Create time
fo_allocation char How object stored on disk:

1 - Object is stored inline
2 - Object is stored fragmented
3 - Object is stored blocked

fo_owner_perms char Permissions for owner of file:
0x01 - Execute permission
0x02 - Write permission
0x04 - Read permission

fo_group_perms char Permissions for the group:access
to the file:
0x01 - Execute permission
0x02 - Write permission
0x04 - Read permission

fo_other_perms char Permissions of other users of file:
0x01 - Execute permission
0x02 - Write permission
0x04 - Read permission

List File Information

294 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fo_allocated unsigned int Number of allocated bytes
fo_locinfo union Location of object’s data

fo_direct unsigned int[8] Location of first 8 logical blocks
fo_indirect unsigned int[4] Location of indirect tree roots
-- or --
fo_block unsigned int Block with object’s data
fo_start unsigned short Starting fragment in block
fo_len unsigned short Number of fragments

fo_uid int UID of owner
fo_gid int GID of owner
fo_access FOBJ_ACLINFO Access acl
fo_dmodel FOBJ_ACLINFO Directory model acl
fo_fmodel FOBJ_ACLINFO File model acl
fo_user FOBJ_AUDIT User audit information
fo_auditor FOBJ_AUDIT Auditor audit information
fo_permbits char Sticky bit and other bits:

0x01 - setgid
0x02 - setuid
0x04 - Sticky bit on

<some bits> int Miscellaneous bits in an integer
fo_txtflag bit 0 Context are pure text
fo_deferflag bit 1 Defer tag set until first write
fo_filefmt bits 2-7 File format attribute:

0=NA
1=BIN
2=NL
3=CR
4=LF
5=CRLF
6=LFCR
7=CRNL
8=REC

bits 8-31 Reserved
fo_ccsid unsigned short Hex CCSID
fo_seclabel char[8] Seclabel of object
fo_entrycount unsigned int If object a directory, the number

of names it contains.
fo_linkcount unsigned int POSIX linkcount for object
fo_dataversion unsigned int Data version for directory updates
fo_genvalue unsigned int USS attribute flags of object
fo_cver char[8] Creation verifier
fo_majorminor char[8] If object a character special file,

major/minor number.
fo_type char Object type:

0x01 - directory
0x02 - regular file
0x03 - symlink
0x04 - FIFO
0x05 - character special file

fo_flags char Additional object flags:
0x01 - object is a v5 directory
0x02 - v5 directory tree structure

is broken
0x04 - automatic conversion to v5

failed
0x08 - contents are logged

fo_offset short Offset of anode
fo_anodeblock unsigned int Physical block that contains anode
fo_status_level char Directory status byte

0x80 - directory is v5
0x1F - max depth of v5 tree

fo_res char[3] Reserved
fo_res3 int[14] Reserved
fo_info FOBJ_SYSINFO System based transient information

List File Information

Chapter 13. zFS application programming interface information 295

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v The aggregate must be mounted or attached.
v If you set fo_inflags to 1, only local data is retrieved. If you set fo_inflags to

0, both global and local data are retrieved.
v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

The issuer requires lookup authority (x) to the directory and READ authority (r) to
the file.

Related services
List Aggregate Status (Version 2)

Restrictions

None.

Examples
#pragma linkage(BPX1GCW, OS)
#pragma linkage(BPX1PIO, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1GCW(int, char *, int *, int *, int *);
extern void BPX1PIO(int, char *, int, int, void *, int *, int *, int *);

#include <stdio.h>
#include <time.h>

#define ZFSIOCTL_FILEINFO 0x0000A901 /* zFS ioctl command to */
/* return detailed fileinfo */
/* for a zFS file or directory */

#define hiszero(a) ((a).low == 0 && (a).high == 0)
#define hcmp(a,b) ((a).high<(b).high? -1 : ((a).high > (b).high? 1 : \

((a).low <(b).low? -1 : ((a).low > (b).low? 1 : 0))))

#define u_int unsigned int
#define uint16_t unsigned short

typedef struct hyper { /* This is a 64 bit integer to zFS */
unsigned int high;
unsigned int low;

} hyper;

/***/
/* The FOBJ_INFO structure is used to contain the output of the fileinfo */

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EBUSY Aggregate containing file system is quiesced
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service
ENOENT No such file or directory exists

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

List File Information

296 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* ioctl query to provide detailed information for a singular object in a */
/* zFS file system. */
/***/
typedef struct FOBJ_ACLINFO_t {

int fo_index; /* Index into the anode table of */
/* the location of the ACL */

int fo_length; /* Length of the ACL */
} FOBJ_ACLINFO;

typedef struct FOBJ_AUDIT_t {
char fo_read; /* read auditing information */
char fo_write; /* write auditing information */
char fo_exec; /* exec auditing information */
char fo_res1;

#define FO_NONE 0 /* no auditing */
#define FO_SUCC 1 /* success auditing */
#define FO_FAIL 2 /* fail auditing */
} FOBJ_AUDIT;

typedef struct FOBJ_TIME_t {
hyper fo_seconds; /* number of seconds since epoch */
int fo_microseconds; /* number of microseconds since epoch*/
int fo_tres1; /* unused */

} FOBJ_TIME;

typedef struct FOBJ_SYSINFO_t { /* HEX displacement into FOBJ_INFO */
hyper fo_vnode; /* 138 - Address of vnode in zFS

kernel memory */
hyper fo_vntok; /* 140 - Address of USS vnode in

z/OS Unix address space */
int fo_openwaiters; /* 148 - Number of tasks waiting to open

file because blocked
by current deny-mode opens */

int fo_internalopens; /* 14C - Number of internal
opens on the file */

int fo_readopens; /* 150 - Number of opens for
read on the file */

int fo_writeopens; /* 154 - Number of write opens */
short fo_denyreads; /* 158 - Number of deny-read opens */
short fo_denywrites; /* 15A - Number of deny-write opens */
short fo_advdenyreads; /* 15C - Number of adv. deny read opens */
short fo_advdenywrites; /* 15E - Number of adv. deny write opens */
char fo_sysflags; /* 160 - Misc. information */

#define FO_SEQREAD 1 /* Object is a file that zFS determined
is being read sequentially */

#define FO_SEQWRITE 2 /* Object is a file that zFS is
being written sequentially */

#define FO_FSPVALID 4 /* System has security information
cached for anode */

#define FO_ANODEVALID 8 /* System has posix attribute and
disk location information cached */

#define FO_SYMLINKVALID 16 /* System has the symbolic link contents
cached for the object */

#define FO_METAUPDATES 32 /* Client has sent metadata updates to the
server, and cannot directly read without
a server sync */

#define FO_REVOKE 64 /* Revoke in progress */
#define FO_THRASH 128 /* Object is considered sysplex-thrashing

and thrash resolution is in
effect for file */

char fo_sysflags2; /* 161 - Misc. information 2 */
#define FO_OWNER 1 /* This system is the owner of

the file system */
char fo_unused[2]; /* 162 - reserved */
int fo_unscheduled; /* 164 - Number of dirty 4K pages in the

user file cache that have not yet been
written to disk */

List File Information

Chapter 13. zFS application programming interface information 297

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int fo_pending; /* 168 - Number of pending 4K pages
in transit to disk */

int fo_segments; /* 16C - Number of 64K segment structures
in the user file cache for the file */

int fo_dirtysegments; /* 170 - Number of 64K segment structures
that have dirty pages in the
user file cache */

int fo_metaissued; /* 174 - Number of in-progress IOs to disk
that will require a metadata
update to reflect new data in the file*/

int fo_metapending; /* 178 - Number of queued metadata updates
for file, for IOs completed to new data
for the file */

int fo_rights; /* 17C - Token rights held for object */
short fo_xmits; /* 180 - Number of in-progress

transmissions from client to
server for this file */

short fo_fwd; /* 182 - Number of in-progress forwarded
operations due to thrashing object */

int fo_metabuffers; /* 184 - Number of buffers for file in the
metadata cache - client only */

int fo_dirtybuffers; /* 188 - Number of dirty metadata buffers
in the metadata cache for
object - server only */

char fo_owner[9]; /* 18C - the name of the owner */
char fo_localsys[9]; /* 195 - the name of the local system */
char fo_pad[2]; /* 19E - pad */

#define FO_SYSRES_NUM 9
int fo_sysres[FO_SYSRES_NUM]; /* 1A0 - Reserved for future use */

} FOBJ_SYSINFO;

typedef struct fobj_info_t { /* HEX displacement into FOBJ_INFO */
char fo_eye[4]; /* 000 - Eye catcher */

#define FO_EYE "FOIN"
short fo_len; /* 004 - Length of this structure */
char fo_ver; /* 006 - Version */

#define FO_VER_INITIAL 1 /* Initial version */
char fo_inflags; /* 007 - Input flag bits indicating

requested function */
#define FO_SYSINFO_ONLY 1 /* Only the in-memory system information

is being requested */
int fo_inode; /* 008 - Inode of the object */
int fo_unique; /* 00C - Uniquifier of the object */
hyper fo_length; /* 010 - Posix length of object in bytes */
FOBJ_TIME fo_mtime; /* 018 - Modification time */
FOBJ_TIME fo_atime; /* 028 - access time */
FOBJ_TIME fo_ctime; /* 038 - change time */
FOBJ_TIME fo_reftime; /* 048 - referenct time */
FOBJ_TIME fo_create; /* 058 - creation time of object */
char fo_allocation; /* 068 - How the object is stored on disk */

#define FO_INLINE 1 /* Object is stored inline */
#define FO_FRAGMENTED 2 /* Object is stored fragmented */
#define FO_BLOCKED 3 /* Object is stored in the blocked

method, or is empty */
char fo_owner_perms; /* 069 - Permissions for the owner

of this file */
#define FO_READ 4 /* has read permission */
#define FO_WRITE 2 /* has write permission */
#define FO_EXEC 1 /* has execute permission */

char fo_group_perms; /* 06A -Permissions for the group
associated with this file */

char fo_other_perms; /* 06B - Permissions for other.. */
unsigned int fo_allocated; /* 06C - Number of allocated bytes to

object, including internal control
structures, in kilobyte units */

union
{

List File Information

298 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

struct {
unsigned int fo_direct[8]; /* 070 - Physical location of first 8

logical blocks of object */
unsigned int fo_indirect[4]; /* 090 - Physical location of indirect

tree roots, trees 0 - 3 */
#define FO_UNALLOCATED 0xFFFFFFFF /* This value means block is not

allocated in fo_direct or
fo_indirect slot */

} fo_blockinfo;

struct {
unsigned int fo_block; /* 070 - Block that contains the

object data */
unsigned short fo_start; /* 074 - Start fragment in the block */
unsigned short fo_len; /* 076 - Number of fragments

in the block */
} fo_fraginfo;

} fo_locinfo; /* Location of objects data */

int fo_uid; /* 0A0 - UID of the owner of object */
int fo_gid; /* 0A4 - group id of owner of object */
FOBJ_ACLINFO fo_access; /* 0A8 - ACL information for access

acl of object */
FOBJ_ACLINFO fo_dmodel; /* 0B0 - ACL information for directory

model acl */
FOBJ_ACLINFO fo_fmodel; /* 0B8 - ACL information for file

model acl */
FOBJ_AUDIT fo_user; /* 0C0 - User auditing information */
FOBJ_AUDIT fo_auditor; /* 0C4 - Auditor auditing information*/
char fo_permbits; /* 0C8 - Sticky and other bits */

#define FO_ISVTX 4 /* sticky bit on */
#define FO_ISUID 2 /* setuid */
#define FO_ISGID 1 /* setgid */

int fo_txtflag : 1; /* 0C9 - contents are pure
text indicator */

int fo_defertag : 1; /* 0C9 - Defer tag set until
first write */

int fo_filefmt : 6; /* 0C9 - File format attribute */
/* 0=NA 1=BIN 2=NL 3=CR 4= LF */
/* 5=CRLF 6=LFCR 7=CRNL 8=REC */

short fo_ccsid; /* 0CA - hex ccsid */
char fo_seclabel[8]; /* 0CC - seclabel of the object */
unsigned int fo_entrycount; /* 0D4 - Number of names in the

directory, if this is a directory */
unsigned int fo_linkcount; /* 0D8 - Posix linkcount for object */
unsigned int fo_dataversion; /* 0DC - Data version for

directory updates */
unsigned int fo_genvalue; /* 0E0 - USS attribute flags

of object */
char fo_cver[8]; /* 0E4 - Creation verifier */
char fo_majorminor[8]; /* 0EC - Major/minor number if object

is a char special file */
char fo_type; /* 0F4 - Object type */

#define FO_DIR 1 /* object is directory */
#define FO_FILE 2 /* object is a regular file */
#define FO_LINK 3 /* object is a symlink */
#define FO_FIFO 4 /* object is a fifo */
#define FO_CHARSPEC 5 /* object is a char special file */

char fo_flags; /* 0F5 - Additional flag bits of
object */

#define FO_VER5 1 /* Object is a directory stored in
new-fast format */

#define FO_BROKEN 2 /* The tree structure of this new-fast
format dir is broken */

#define FO_CONVERT_FAIL 4 /* Automatic conversion of the
directory failed */

short fo_offset; /* 0F6 - Offset into the physical block

List File Information

Chapter 13. zFS application programming interface information 299

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

that contains the anode for object*/
unsigned int fo_anodeblock; /* 0F8 - Physical block in aggregate

that contains the anode */
char fo_statuslevel; /* 0FC - directory status byte */
char fo_res[3]; /* 0FD - reserved */
int fo_res3[14]; /* 100 - For future use */
FOBJ_SYSINFO fo_info; /* 138 - System based transient

information */
} FOBJ_INFO; /* 1C4 total length */

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
char parm_pathname[1024];
char pathname[1024];
char *pathp = NULL;
FOBJ_INFO fobj;
FOBJ_INFO *fo = &fobj;
void *arg = (void *)fo;
int arglen = sizeof(fobj);
char buffer1[80];
char buffer2[80];
hyper bogusSignedTime;
char *p;
char *timep;
char time1_string[30];
char time2_string[30];
char seclabel[9];
char temp;

if (argc < 2)
{

printf("Please specify a file or directory path name as a parameter\n");
exit(1);

}

strncpy(parm_pathname, argv[1], sizeof(pathname));

if (parm_pathname[0] == ’/’) /* if absolute pathname */
pathp = parm_pathname; /* put ptr to pathname in pathp */

else
{ /* if relative pathname */

pathname[0] = 0;
bpxrc = 0;
bpxrv = 0;
bpxrs = 0;

/* get current working directory path */
BPX1GCW(sizeof(pathname), pathname, &bpxrv, &bpxrc, &bpxrs);
if (bpxrv == -1)
{

printf("BPX1GCW call failed rc %u rsn %8.8X\n", bpxrc, bpxrs);
return bpxrc;

}
if ((strlen(pathname) + strlen(parm_pathname) + 1) > sizeof(pathname))
{ /* if name longer than maximum pathname */

printf("directory path name too long - input name len "
"%d plus cwd len %d for buffer size %d\n",
strlen(parm_pathname), strlen(pathname), sizeof(pathname));

return 121; /* EINVAL */
}

/* take the current working directory and append slash */
strcat(pathname, "/");
/* then append the input relative path name */

List File Information

300 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

strcat(pathname, parm_pathname);
/* put ptr to result in pathp */
pathp = pathname;

}

bpxrc = 0;
bpxrv = 0;
bpxrs = 0;

memset((char *)&fobj, 0x00, sizeof(fobj));
memcpy(&fobj.fo_eye, FO_EYE, 4);
fobj.fo_len = sizeof(fobj);
fobj.fo_ver = FO_VER_INITIAL;
BPX1PIO(strlen(pathp), pathp, ZFSIOCTL_FILEINFO,

arglen, arg, &bpxrv, &bpxrc, &bpxrs);

if (bpxrv < 0)
{

printf("Error getting fileinfo for pathname %s\n", pathp);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else
{ /* Return from fileinfo was successful */

printf(" Object path: %s\n", pathp);
printf(" Inode is %lu\n", fo->fo_inode);
printf(" Length is %llu\n", fo->fo_length);

/* Some common object information */
printf(" Object type is %s\n",

fo->fo_type == FO_DIR ? "DIR" :
fo->fo_type == FO_FILE ? "FILE" :
fo->fo_type == FO_LINK ? "LINK" :
fo->fo_type == FO_CHARSPEC ? "CHARSPEC" : "??");

/* Some directory object information */
if (fo->fo_type == FO_DIR)

printf(" Directory version %u\n",
fo->fo_flags & FO_VER5 ? 5 : 4);

}
printf("\n");
return 0;

}

List File Information

Chapter 13. zFS application programming interface information 301

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

List File System Names (Version 1)
Purpose

Returns the names of the file systems contained in a specified aggregate on this
system; the aggregate must be attached.

IBM recommends that you should use the List Detailed File System Information
API instead of List Aggregate Status or List File System Status.

Format

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

None.

syscall_parmlist
opcode int 138 AGOP_LISTFSNAMES_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int buffer length or 0
parms[2] int offset to buffer or 0
parms[3] int offset to size
parms[4] int 0
parms[5] int 0
parms[6] 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_reserved char[33] 0

FS_ID[n] Array of FS_IDs (n can be zero)
fsid_eye char[4] "FSID"
fsid_len char sizeof(FS_ID)
fsid_ver char 1
fsid_res1 char 0
fsid_res2 char 0
fsid_id

high unsigned int
low unsigned int

fsid_aggrname char[45]
fsid_name char[45]
fsid_reserved char[32]
fsid_reserved2 char[2]

size int

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
E2BIG List is too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

List File System Names (Version 1)

302 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Related services
List Attached Aggregate Names
List Detailed File System Information
List File System Status

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_LISTFSNAMES_PARMDATA 138
#define E2BIG 145

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44
#define ZFS_MAX_FSYSNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef struct hyper { /* This is a 64 bit integer to zFS */
unsigned int high;
unsigned int low;

} hyper;

typedef struct fs_id_t {
char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"
char fsid_len; /* Length of this structure */
char fsid_ver; /* Version */
char fsid_res1; /* Reserved. */
char fsid_res2; /* Reserved. */
hyper fsid_id; /* Internal identifier */

#define FSID_VER_INITIAL 1 /* Initial version */
char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /*Aggregate name,can be NULL string*/
char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */
char fsid_reserved[32]; /* Reserved for the future */
char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;

/* Real malloc’d structure will have an array of FS_IDs here */
int size;

List File System Names (Version 1)

Chapter 13. zFS application programming interface information 303

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
struct parmstruct myparmstruct;
AGGR_ID *aggPtr;
FS_ID *fsPtr;

int fsSize = sizeof(FS_ID);
int buflen = sizeof(FS_ID);
struct parmstruct *myp = &myparmstruct;
int mypsize;
int count_fs;
int total_fs;
char aggrname[45] = "PLEX.DCEIMGQX.FS";

/* Ensure reserved fields are 0 */
memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));
memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myparmstruct.aggr_id.aid_name, aggrname);

myparmstruct.myparms.opcode = AGOP_LISTFSNAMES_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = 0;
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

if (bpxrc == E2BIG)
{

buflen = myp->size; /* Get buffer size needed */
mypsize = buflen +

sizeof(syscall_parmlist) +
sizeof(AGGR_ID) +
sizeof(int);

myp = (struct parmstruct *)malloc((int)mypsize);
memset(myp, 0, mypsize);
memcpy(myp->aggr_id.aid_eye, AID_EYE, 4);
myp->aggr_id.aid_len = sizeof(AGGR_ID);
myp->aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myp->aggr_id.aid_name, aggrname);

myp->myparms.opcode = AGOP_LISTFSNAMES_PARMDATA;
myp->myparms.parms[0] = sizeof(syscall_parmlist);
myp->myparms.parms[1] = buflen;
myp->myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
myp->myparms.parms[3] = sizeof(syscall_parmlist) +

sizeof(AGGR_ID) +
buflen;

List File System Names (Version 1)

304 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

myp->myparms.parms[4] = 0;
myp->myparms.parms[5] = 0;
myp->myparms.parms[6] = 0;

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
mypsize, /* Length of Argument */
(char *)myp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv == 0)
{

total_fs = buflen / fsSize;
printf("total file systems = %d\n", total_fs);

count_fs = 1;
for (fsPtr = (FS_ID *) & (myp->size);

count_fs <= total_fs;
fsPtr++, count_fs++)

printf("%-64.64s\n", fsPtr->fsid_name);

free(myp);
}
else
{ /* lsaggr names failed with large enough buffer */

printf("Error on ls fs with large enough buffer\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* error was not E2BIG */

printf("Error on ls fs trying to get required size\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* asking for buffer size gave rv = 0; maybe there are no file systems */

if (myparmstruct.size == 0)
printf("No file systems\n");

else /* No, there was some other problem with getting the size needed */
printf("Error getting size required\n");

}
return 0;

}

List File System Names (Version 1)

Chapter 13. zFS application programming interface information 305

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

List File System Names (Version 2)
Purpose

An aggregate operation that returns the names of the zFS file systems that are
contained in a specified aggregate on this system and their corresponding z/OS
UNIX file system names (if they are mounted). The specified aggregate must be
attached.

IBM recommends using the List Detailed File System Information API instead of
List Aggregate Status or List File System Status.

Format

Usage notes
v The version 2 List File System Names returns an array of FS_ID2s.
v Reserved fields and undefined flags must be set to binary zeros.

syscall_parmlist
opcode int 144 AGOP_LISTFSNAMES_PARMDATA2
parms[0] int offset to AGGR_ID
parms[1] int buffer length or 0
parms[2] int offset to buffer or 0
parms[3] int offset to size
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_reserved char[33] 0

FS_ID2[n] Array of FS_ID2s (n can be zero)
fsid_eye char[4] "FSID"
fsid_len char sizeof(FS_ID2)
fsid_ver char 2
fsid_res1 char 0
fsid_res2 char 0
fsid_id

high unsigned int
low unsigned int

fsid_aggrname char[45]
fsid_name char[45]
fsid_mtname char[45]
fsid_reserved char[49]

size int

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
E2BIG List is too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

List File System Names (Version 2)

306 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Privilege required

None.

Related services
List Attached Aggregate Names
List Detailed File System Information
List File System Status

Restrictions

When FS_ID2 is used, if you specify the z/OS UNIX file system name
(fsid_mtname), you cannot specify the zFS file system name (fsid_name) nor the
aggregate name (fsid_aggrname).

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_LISTFSNAMES_PARMDATA2 144
#define E2BIG 145

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44
#define ZFS_MAX_FSYSNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1
char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name,null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef struct hyper { /* 64 bit integer to zFS */
unsigned int high;
unsigned int low;

} hyper;

typedef struct fs_id2_t {
char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"
char fsid_len; /* Length of this structure */
char fsid_ver; /* Version */
char fsid_res1; /* Reserved. */
char fsid_res2; /* Reserved. */
hyper fsid_id; /* Internal identifier */

#define FSID_VER_2 2
char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, */

/* can be NULL string */
char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

List File System Names (Version 2)

Chapter 13. zFS application programming interface information 307

|

char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, */
/* null terminated */

char fsid_reserved[49]; /* Reserved for the future */
} FS_ID2;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;

/* Real malloc’d structure will have an array of FS_ID2s here */
int size;

};

int main(int argc, char **argv)
{

int buffer_success = 0;
int bpxrv;
int bpxrc;
int bpxrs;
int t;
struct parmstruct myparmstruct;
AGGR_ID *aggPtr;
FS_ID2 *fsPtr;
int fsSize = sizeof(FS_ID2);
int buflen = sizeof(FS_ID2);
struct parmstruct *myp = &myparmstruct;
int mypsize;
int count_fs, total_fs;

char aggrname[45] = "PLEX.DCEIMGQX.FS";
int *p;

memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID)); /* Ensure reserved */
/* fields are 0 */

memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myparmstruct.aggr_id.aid_name, aggrname);

myparmstruct.myparms.opcode = AGOP_LISTFSNAMES_PARMDATA2;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = 0;
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

for(t = 0; t < 1000 && buffer_success == 0; t++)
{

if (bpxrv < 0)
{

if (bpxrc == E2BIG)
{

buflen = myp->size; /* Get buffer size needed */
mypsize = buflen +

sizeof(syscall_parmlist) +
sizeof(AGGR_ID) +
sizeof(myparmstruct.size);

List File System Names (Version 2)

308 z/OS V2R2 Distributed File Service zFS Administration

free(myp);

myp = (struct parmstruct *)malloc((int)mypsize);
memset(myp, 0, mypsize);
memcpy(myp->aggr_id.aid_eye, AID_EYE, 4);
myp->aggr_id.aid_len = sizeof(AGGR_ID);
myp->aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myp->aggr_id.aid_name, aggrname);

myp->myparms.opcode = AGOP_LISTFSNAMES_PARMDATA2;
myp->myparms.parms[0] = sizeof(syscall_parmlist);
myp->myparms.parms[1] = buflen;
myp->myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
myp->myparms.parms[3] = sizeof(syscall_parmlist) +

sizeof(AGGR_ID) + buflen;
myp->myparms.parms[4] = 0;
myp->myparms.parms[5] = 0;
myp->myparms.parms[6] = 0;

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
mypsize, /* Length of Argument */
(char *)myp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv != 0 && bpxrc == E2BIG)
printf("E2BIG: %d times total\n", t++);

else if(bpxrv == 0)
{

buffer_success = 1;
total_fs = buflen / fsSize;
printf("total file systems = %d in aggregate %s\n",

total_fs, aggrname);
count_fs = 1;
for (fsPtr = (FS_ID2*) & (myp->size);

count_fs <= total_fs;
fsPtr++, count_fs++)

{
printf("\n");
printf("zFS file system name: [%s]\n", fsPtr->fsid_name);
printf("UNIX file system name: [%s]\n", fsPtr->fsid_mtname);

}
free(myp);

}
else
{ /* lsaggr names failed with large enough buffer */

printf("Error on ls fs with large enough buffer\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* error was not E2BIG */

printf("Error on ls fs trying to get required size\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* asking for buffer size gave rv = 0; maybe there are no file systems */

if (myparmstruct.size == 0)
printf("No file systems\n");

List File System Names (Version 2)

Chapter 13. zFS application programming interface information 309

else /* No, there was some other problem with getting the size needed */
printf("Error getting size required\n");

free(myp);
return bpxrc;

}
}

if(t == 1000)
printf("Number of failed buffer resizes exceeded.\n");

free(myp);
return 0;

}

List File System Names (Version 2)

310 z/OS V2R2 Distributed File Service zFS Administration

List File System Status
Purpose

Lists status information of a file system. As input, use an FS_ID or an FS_ID2,
which specifies the z/OS UNIX file system name (the mount name). For an FS_ID2,
the file system must be mounted using that z/OS UNIX file system name. The
aggregate that contains the file system must be attached and the aggregate cannot
be quiesced.

IBM recommends that you should use the List Detailed File System Information
API instead of List Aggregate Status or List File System Status.

List File System Status

Chapter 13. zFS application programming interface information 311

|
|

Format

syscall_parmlist
opcode int 142 FSOP_GETSTAT_PARMDATA
parms[0] int Offset to FS_ID
parms[1] int Offset to FS_STATUS
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

FS_ID or FS_ID2
fsid_eye char[4] "FSID"
fsid_len char sizeof(FS_ID)
fsid_ver char 1
fsid_res1 char Reserved
fsid_res2 char Reserved
fsid_id

high unsigned int High portion of generated ID
low unsigned int Low portion of generated ID

fsid_aggrname char[45] Aggregate name
fsid_name char[45] File system name
fsid_reserved char[32] Reserved
fsid_reserved2 char[2] Reserved

FS_ID2 or FS_ID
fsid_eye char[4] "FSID"
fsid_len char sizeof(FS_ID2)
fsid_ver char 2
fsid_res1 char Reserved
fsid_res2 char Reserved
fsid_id

high unsigned int High portion of generated ID
low unsigned int Low portion of generated ID

fsid_aggrname char[45] Aggregate name
fsid_name char[45] File system name
fsid_mtname char[45] Name used when mounted
fsid_reserved char[49] Reserved

FS_STATUS
fs_eye char[4] "FSST"
fs_len short sizeof(FS_STATUS)
fs_ver char 1
fs_res1 char Reserved
fs_id

high unsigned int High portion of generated ID
low unsigned int Low portion of generated ID

fsid_aggrname char[45] Aggregate name
fsid_name char[45] File system name
fsid_mtname char[45] Name used when mounted
fsid_reserved char[49] Reserved

List File System Status

312 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fs_cloneTime timeval Time file system cloned
fs_createTime timeval Time file system created
fs_updateTime timeval Time of last update
fs_accessTime timeval Time of last access
fs_allocLimit unsigned int Number of blocks available
fs_allocUsage unsigned int Number of blocks in use
fs_visQuotaLimit unsigned int Quota for file system
fs_visQuotaUsage unsigned int Blocks used in file system
fs_accError unsigned int Error for invalid operation
fs_accStatus int Operations being performed
fs_states int File system state
fs_nodeMax int Maximum inode number
fs_minQuota int Minimum inode number
fs_type int Type of file system
fs_threshold char FSFULL threshold monitoring
fs_increment char FSFULL monitoring increment
fs_mountstate char Mount status

0 - Not mounted
1 - Mounted R/W
2 - Mounted readonly

fs_msglen char Length of status message
fs_msg char[128] Status message
fs_aggrname char[45] Aggregate name
fs_reserved1 char[3] Reserved
fs_reserved2 unsigned int[3] Reserved
fs_InodeTbl unsigned int Size of Inode table
fs_requests

high unsigned int High portion of number of file
system requests by applications

low unsigned int Low portion of number of file
system requests by applications

fs_reserved3 unsigned int Reserved
fs_reserved4 unsigned int Reserved
fs_reserved5 unsigned int Reserved
fs_diskFormatMajorVersion unsigned int Major version of disk format
fs_diskFormatMinorVersion unsigned int Minor version of disk format
fs_reserved char[80] Reserved

- OR
-FS_STATUS2

fs_eye char[4] "FSST"
fs_len short sizeof(FS_STATUS)
fs_ver char 2
fs_res1 char Reserved
fs_id

high unsigned int High file system identifier
low unsigned int Low file system identifier

fs_cloneTime timeval Time file system cloned
fs_createTime timeval Time file system created
fs_updateTime timeval Time of last update
fs_accessTime timeval Time of last access
fs_allocLimit unsigned int Number of blocks available
fs_allocUsage unsigned int Number of blocks in use

List File System Status

Chapter 13. zFS application programming interface information 313

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v The aggregate must be mounted (or attached).
v For an FS_STATUS, if a size is too large for 32 bits, 0xFFFFFFFF is returned. For

an FS_STATUS2, sizes are returned in both the normal fields and the hyper fields.
v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

None.

fs_visQuotaLimit unsigned int Quota for file system
fs_visQuotaUsage unsigned int Blocks used in file system
fs_accError unsigned int Error for invalid operation
fs_accStatus int Operations being performed
fs_states int File system state
fs_nodeMax int Maximum inode number
fs_minQuota int Minimum inode number
fs_type int Type of file system
fs_threshold char FSFULL threshold monitoring
fs_increment char FSFULL monitoring increment
fs_mountstate char Mount status

0 - Not mounted
1 - Mounted R/W
2 - Mounted readonly

fs_msglen char Length of status message
fs_msg char[128] Status message
fs_aggrname char[45] Aggregate name
fs_reserved1 char[3] Reserved
fs_reserved2 unsigned int[3] Reserved
fs_InodeTbl unsigned int Size of Inode table
fs_requests

high unsigned int High portion of number of file
system requests by applications

low unsigned int Low portion of number of file
system requests by applications

fs_reserved3 unsigned int Reserved
fs_reserved4 unsigned int Reserved
fs_reserved5 unsigned int Reserved
fs_diskFormatMajorVersion unsigned int Major version of disk format
fs_diskFormatMinorVersion unsigned int Minor version of disk format
fs_allocLimit_hyper hyper Allocation limit for file system
fs_allocUsage_hyper hyper Amount of allocation used
fs_visQuotaLimit_hyper hyper Quota for file system
fs_visQuotaUsage_hyper hyper Amount of quota used
fs_reserved char[44] Reserved

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EBUSY Aggregate containing file system is quiesced
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

List File System Status

314 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related services
List Attached Aggregate Names
List Detailed File System Information

Restrictions

When FS_ID2 is used, if you specify the z/OS UNIX file system name
(fsid_mtname), you cannot specify the zFS file system name (fsid_name) nor the
aggregate name (fsid_aggrname).

The following fields are internal use only and not intended for application use:
v fs_accError
v fs_accStatus
v fs_type

The fs_states field contains flag 0x00010000, indicating a read/write file system,
and flag 0x00030000, indicating a backup file system. All other flags in this field
are internal use only and are not intended for application usage.

Examples

Example 1 uses an FS_ID; see Example 2 for an example that uses FS_ID2.
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <time.h> /* ctime */

#define ZFSCALL_FILESYS 0x40000004
#define FSOP_GETSTAT_PARMDATA 142

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* This is a 64 bit integer to zFS */
unsigned int high;
unsigned int low;

} hyper;

#define ZFS_MAX_AGGRNAME 44
#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {
char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"
char fsid_len; /* Length of this structure */
char fsid_ver; /* Version */
char fsid_res1; /* Reserved. */
char fsid_res2; /* Reserved. */
hyper fsid_id; /* Internal identifier */

#define FSID_VER_INITIAL 1 /* Initial version */
char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name,

can be NULL string */
char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */
char fsid_reserved[32]; /* Reserved for the future */
char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

List File System Status

Chapter 13. zFS application programming interface information 315

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

struct timeval {
int tv_sec; /* seconds */
int tv_usec; /* microseconds */

};

typedef struct fs_status_t {
char fs_eye[4]; /* Eye catcher */

#define FS_EYE "FSST"
short fs_len; /* Length of structure */
char fs_ver;

#define FS_VER_INITIAL 1 /* Initial version */
char fs_flags; /* Flags */

#define FS_PERFINFO 0x80 /*Performance information in output status*/
hyper fs_id; /*Internal identifier */
struct timeval fs_cloneTime; /*Time when this filesys made via

clone or when last recloned */
struct timeval fs_createTime; /*Time when this filesys was created */
struct timeval fs_updateTime; /*Time when this filesys was last updates*/
struct timeval fs_accessTime; /*Time when this filesys was last accessed*/
unsigned int fs_allocLimit; /*Allocation limit for filesys in kilobytes*/
unsigned int fs_allocUsage; /*Amount of allocation used in kilobytes*/
unsigned int fs_visQuotaLimit; /*Visible filesystem quota in kilobytes*/
unsigned int fs_visQuotaUsage; /*How much quota is used in kilobytes*/
unsigned int fs_accError; /*error to return for incompatible vnode ops */
int fs_accStatus; /*Operations currently being

performed on file system */
int fs_states; /*State bits*/

#define FS_TYPE_RW 0x10000 /* read/write (ordinary) */
#define FS_TYPE_BK 0x30000 /* ``.backup */

int fs_nodeMax; /* Maximum inode number used */
int fs_minQuota;
int fs_type;
char fs_threshold; /* Threshold for fsfull monitoring */
char fs_increment; /* Increment for fsfull monitoring */
char fs_mountstate; /* Aggregate flags */

#define FS_NOT_MOUNTED 0 /* Filesys not mounted */
#define FS_MOUNTED_RW 1 /* Filesys mounted RW */
#define FS_MOUNTED_RO 2 /* Filesys mounted RO */

char fs_msglen; /* Length of status message */
char fs_msg[128]; /* Status message for filesystem */
char fs_aggrname[ZFS_MAX_AGGRNAME+1]; /* Name of aggregate I reside on */
char fs_reserved1[3]; /* Reserved for future use/alignment */
unsigned int fs_reserved2[3]; /* reserved */
unsigned int fs_InodeTbl; /*Amount of k used for the Filesystem Inode table*/

/* fs_InodeTbl is zero for all releases prior */
/* to r7 and non zero in r7 and above */

hyper fs_requests; /* Number of filesystem requests
by users/applications */

unsigned int fs_reserved3;
unsigned int fs_reserved4;
unsigned int fs_reserved5;
int fs_pad1;
unsigned int fs_diskFormatMajorVersion; /* disk format major version */
unsigned int fs_diskFormatMinorVersion; /* disk format minor version */
char fs_reserved[80]; /* Reserved for future use */

} FS_STATUS;

struct parmstruct {
syscall_parmlist myparms;
FS_ID fs_id;
FS_STATUS fs_status;

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;

List File System Status

316 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int bpxrs;

/* file system name to getstatus */
char filesystemname[45] = "PLEX.DCEIMGQX.FS";

struct parmstruct myparmstruct;
FS_ID *idp = &(myparmstruct.fs_id);
FS_STATUS *fsp = &(myparmstruct.fs_status);

myparmstruct.myparms.opcode = FSOP_GETSTAT_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(FS_ID);
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(idp, 0, sizeof(FS_ID)); /* Ensure reserved fields are 0 */
memset(fsp, 0, sizeof(FS_STATUS)); /* Ensure reserved fields are 0 */
memcpy(&myparmstruct.fs_status.fs_eye[0], FS_EYE, 4);
myparmstruct.fs_status.fs_len = sizeof(FS_STATUS);
myparmstruct.fs_status.fs_ver = FS_VER_INITIAL;
memcpy(&myparmstruct.fs_id.fsid_eye, FSID_EYE, 4);
myparmstruct.fs_id.fsid_len = sizeof(FS_ID);
myparmstruct.fs_id.fsid_ver = FSID_VER_INITIAL;
strcpy(myparmstruct.fs_id.fsid_name, filesystemname);

BPX1PCT("ZFS ",
ZFSCALL_FILESYS, /* File system operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error getstatus file system %s\n", filesystemname);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else
{ /* Return from getstatus was successful */

printf("File system %s getstatus successful\n", filesystemname);
printf("getstatus: fs_id=%d,,%d, clone_time=%s, "

"create_time=%s, update_time=%s, access_time=%s\n",
myparmstruct.fs_status.fs_id.high,
myparmstruct.fs_status.fs_id.low,
ctime((const long*) &myparmstruct.fs_status.fs_cloneTime.tv_sec),
ctime((const long*) &myparmstruct.fs_status.fs_createTime.tv_sec),
ctime((const long*) &myparmstruct.fs_status.fs_updateTime.tv_sec),
ctime((const long*) &myparmstruct.fs_status.fs_accessTime.tv_sec));

printf("getstatus: alloc_limit=%u, alloc_usage=%u, quota_limit=%u\n",
myparmstruct.fs_status.fs_allocLimit,
myparmstruct.fs_status.fs_allocUsage,
myparmstruct.fs_status.fs_visQuotaLimit);

printf("getstatus: quota_usage=%u, accError=%u, accStatus=%x, states=%x\n",
myparmstruct.fs_status.fs_visQuotaUsage,
myparmstruct.fs_status.fs_accError,
myparmstruct.fs_status.fs_accStatus,
myparmstruct.fs_status.fs_states);

printf("getstatus: max_inode=%d, min_quota=%d, "
"type=%d, fsfull_threshold=%d\n",

List File System Status

Chapter 13. zFS application programming interface information 317

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

myparmstruct.fs_status.fs_nodeMax,
myparmstruct.fs_status.fs_minQuota,
myparmstruct.fs_status.fs_type,
myparmstruct.fs_status.fs_threshold);

printf("getstatus: fsfull_increment=%d, mount_state=%d, "
"msg_len=%d, msg=%s\n",
myparmstruct.fs_status.fs_increment,
myparmstruct.fs_status.fs_mountstate,
myparmstruct.fs_status.fs_msglen,
myparmstruct.fs_status.fs_msg);

printf("getstatus: aggrname=%s\n", myparmstruct.fs_status.fs_aggrname);
printf("getstatus: inode_table_k=%d, fs_requests=%d,,%d\n",

myparmstruct.fs_status.fs_InodeTbl,
myparmstruct.fs_status.fs_requests.high,
myparmstruct.fs_status.fs_requests.low);

printf("getstatus: version=%d.%d\n",
myparmstruct.fs_status.fs_diskFormatMajorVersion,
myparmstruct.fs_status.fs_diskFormatMinorVersion);

}
return 0;

}

The following example uses FS_ID2; see Example 1 for an example that uses
FS_ID.
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <time.h> /* ctime */

#define ZFSCALL_FILESYS 0x40000004
#define FSOP_GETSTAT_PARMDATA 142

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* This is a 64 bit integer to zFS */
unsigned int high;
unsigned int low;

} hyper;

#define ZFS_MAX_AGGRNAME 44
#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id2_t {
char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"
char fsid_len; /* Length of this structure */
char fsid_ver; /* Version */
char fsid_res1; /* Reserved. */
char fsid_res2; /* Reserved. */
hyper fsid_id; /* Internal identifier */

#define FSID_VER_2 2 /* version for FS_ID2 */
char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can

be NULL string */
char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */
char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, null terminated */

List File System Status

318 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char fsid_reserved[49]; /* Reserved for the future*/
} FS_ID2;

struct timeval {
int tv_sec; /* seconds */
int tv_usec; /* microseconds */

};

typedef struct fs_status_t {
char fs_eye[4]; /* Eye catcher */

#define FS_EYE "FSST"
short fs_len; /* Length of structure */
char fs_ver;

#define FS_VER_INITIAL 1 /* Initial version */
char fs_flags; /* Flags */

#define FS_PERFINFO 0x80 /* Performance information in
output status */

hyper fs_id; /* Internal identifier */
struct timeval fs_cloneTime; /* Time when this filesys made via

clone or when last recloned */
struct timeval fs_createTime; /* Time when this filesys

was created */
struct timeval fs_updateTime; /* Time when this filesys

was last updated */
struct timeval fs_accessTime; /* Time when this filesys

was last accessed */
unsigned int fs_allocLimit; /* Allocation limit for filesys

in kilobytes*/
unsigned int fs_allocUsage; /* Amount of allocation used

in kilobytes*/
unsigned int fs_visQuotaLimit; /* Visible filesystem quota

in kilobytes*/
unsigned int fs_visQuotaUsage; /* How much quota is used in kilobytes*/
unsigned int fs_accError; /* error to return for

incompatible vnode ops */
int fs_accStatus; /* Operations currently being

performed on file system */
int fs_states; /* State bits */

#define FS_TYPE_RW 0x10000 /* read/write (ordinary) */
#define FS_TYPE_BK 0x30000 /* ``.backup’’ */

int fs_nodeMax; /* Maximum inode number used */
int fs_minQuota;
int fs_type;
char fs_threshold; /* Threshold for fsfull monitoring */
char fs_increment; /* Increment for fsfull monitoring */
char fs_mountstate; /* Aggregate flags */

#define FS_NOT_MOUNTED 0 /* Filesys not mounted */
#define FS_MOUNTED_RW 1 /* Filesys mounted RW */
#define FS_MOUNTED_RO 2 /* Filesys mounted RO */

char fs_msglen; /* Length of status message */
char fs_msg[128]; /* Status message for filesystem */
char fs_aggrname[ZFS_MAX_AGGRNAME+1]; /* Name of aggregate

I reside on */
char fs_reserved1[3]; /* Reserved for future use/alignment */
unsigned int fs_reserved2[3]; /* reserved */
unsigned int fs_InodeTbl; /* Amount of k used for the

Filesystem Inode table*/
/* fs_InodeTbl is zero for all

releases prior to */
/* r7 and non zero in r7 and above */

hyper fs_requests; /* Number of filesystem requests by
users/applications */

unsigned int fs_reserved3;
unsigned int fs_reserved4;
unsigned int fs_reserved5;
int fs_pad1;
unsigned int fs_diskFormatMajorVersion; /* disk format major version */

List File System Status

Chapter 13. zFS application programming interface information 319

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned int fs_diskFormatMinorVersion; /* disk format minor version */
char fs_reserved[80]; /* Reserved for future use */

} FS_STATUS;

struct parmstruct {
syscall_parmlist myparms;
FS_ID2 fs_id2;
FS_STATUS fs_status;

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;

/* file system name to getstatus */
char filesystemname[45] = "PLEX.DCEIMGQX.FS";

struct parmstruct myparmstruct;
FS_ID2 *idp = &(myparmstruct.fs_id2);
FS_STATUS *fsp = &(myparmstruct.fs_status);

myparmstruct.myparms.opcode = FSOP_GETSTAT_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(FS_ID2);
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(idp, 0, sizeof(FS_ID2)); /* Ensure reserved fields are 0 */
memset(fsp, 0, sizeof(FS_STATUS)); /* Ensure reserved fields are 0 */
memcpy(&myparmstruct.fs_status.fs_eye[0], FS_EYE, 4);

myparmstruct.fs_status.fs_len = sizeof(FS_STATUS);
myparmstruct.fs_status.fs_ver = FS_VER_INITIAL;
memcpy(&myparmstruct.fs_id2.fsid_eye, FSID_EYE, 4);
myparmstruct.fs_id2.fsid_len = sizeof(FS_ID2);
myparmstruct.fs_id2.fsid_ver = FSID_VER_2;
strcpy(myparmstruct.fs_id2.fsid_mtname, filesystemname);

BPX1PCT("ZFS ",
ZFSCALL_FILESYS, /* File system operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error getstatus file system %s\n", filesystemname);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else
{ /* Return from getstatus was successful */

printf("File system %s getstatus successful\n", filesystemname);
printf("getstatus: fs_id=%d,,%d, clone_time=%s, create_time=%s, "

"update_time=%s, access_time=%s\n",
myparmstruct.fs_status.fs_id.high,
myparmstruct.fs_status.fs_id.low,
ctime((const long*) &myparmstruct.fs_status.fs_cloneTime.tv_sec),
ctime((const long*) &myparmstruct.fs_status.fs_createTime.tv_sec),
ctime((const long*) &myparmstruct.fs_status.fs_updateTime.tv_sec),

List File System Status

320 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ctime((const long*) &myparmstruct.fs_status.fs_accessTime.tv_sec));

printf("getstatus: alloc_limit=%u, alloc_usage=%u, quota_limit=%u\n",
myparmstruct.fs_status.fs_allocLimit,
myparmstruct.fs_status.fs_allocUsage,
myparmstruct.fs_status.fs_visQuotaLimit);

printf("getstatus: quota_usage=%u, accError=%u, accStatus=%x, states=%x\n",
myparmstruct.fs_status.fs_visQuotaUsage,
myparmstruct.fs_status.fs_accError,
myparmstruct.fs_status.fs_accStatus,
myparmstruct.fs_status.fs_states);

printf("getstatus: max_inode=%d, min_quota=%d, type=%d, "
"fsfull_threshold=%d\n",
myparmstruct.fs_status.fs_nodeMax,
myparmstruct.fs_status.fs_minQuota,
myparmstruct.fs_status.fs_type,
myparmstruct.fs_status.fs_threshold);

printf("getstatus: fsfull_increment=%d, mount_state=%d, "
"msg_len=%d, msg=%s\n",
myparmstruct.fs_status.fs_increment,
myparmstruct.fs_status.fs_mountstate,
myparmstruct.fs_status.fs_msglen,
myparmstruct.fs_status.fs_msg);

printf("getstatus: aggrname=%s\n", myparmstruct.fs_status.fs_aggrname);
printf("getstatus: inode_table_k=%d, fs_requests=%d,,%d\n",

myparmstruct.fs_status.fs_InodeTbl,
myparmstruct.fs_status.fs_requests.high,
myparmstruct.fs_status.fs_requests.low);

printf("getstatus: version=%d.%d\n",
myparmstruct.fs_status.fs_diskFormatMajorVersion,
myparmstruct.fs_status.fs_diskFormatMinorVersion);

}
return 0;

}

List File System Status

Chapter 13. zFS application programming interface information 321

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

List Systems
Purpose

Retrieves the system names that are part of the zFS XCF group.

Format

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v An array of char[9] fields is returned in buffer. Each element in the array

contains a NULL-terminated string with a system name.
v Bytes_returned / 9 is the number of elements in the array.

Privilege required

None.

Related services
Query sysplex_state

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_CONFIG 0x40000006
#define CFGOP_LSSYS 174 /* List names of systems in the sysplex */

syscall_parmlist
opcode int 174 CFGOP_LSSYS
parms[0] int size of buffer
parms[1] int offset to buffer
parms[2] int offset to bytes returned
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

buffer char[]
bytes_returned int

Return_value 0 if request successful, -1 if it is not successful

Return_code
E2BIG D Data to return is too large for buffer supplied
EINTR ZFS is shutting down
EMVSERR Internal error
ERANGE No systems to return

Reason_code
0xEFnnxxx See z/OS Distributed File Service Messages and Codes

List Systems

322 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

#define E2BIG 145 /* data to return is too big for buffer */
#define ERANGE 2 /* there were no systems to return */

typedef struct system_name_t {
char sys_name[9]; /* 8 byte name, null terminated */

} SYSTEM_NAME;

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

struct parmstruct {
syscall_parmlist myparms;
/* SYSTEM_NAME buffer[32]; */

/* output buffer for sysnames */
int size;

} myparmstruct;

int main(int argc, char **argv)
{

int buffer_success = 0;
int bpxrv;
int bpxrc;
int bpxrs;
int i,t;
struct parmstruct *myp = &myparmstruct;
int mypsize,

buflen;

myparmstruct.myparms.opcode = CFGOP_LSSYS;
myparmstruct.myparms.parms[0] = 0; /* size of buffer */
myparmstruct.myparms.parms[1] = 0; /* offset to buffer */
myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist); /*offset to size*/

/*(required size)*/
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

BPX1PCT("ZFS ",
ZFSCALL_CONFIG, /* Config query operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

for(t = 0; t < 1000 && buffer_success == 0; t++)
{

if (bpxrv < 0)
{

if (bpxrc == E2BIG)
{

buflen = myparmstruct.size; /* Get buffer size needed */
mypsize = sizeof(syscall_parmlist) +

buflen +
sizeof(myparmstruct.size);

free(myp);

myp = (struct parmstruct *)malloc((int)mypsize);
memset(myp, 0, mypsize);

List Systems

Chapter 13. zFS application programming interface information 323

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

myp->myparms.opcode = CFGOP_LSSYS;
myp->myparms.parms[0] = buflen;
myp->myparms.parms[1] = sizeof(syscall_parmlist);
myp->myparms.parms[2] = sizeof(syscall_parmlist) + buflen;
myp->myparms.parms[3] = 0;
myp->myparms.parms[4] = 0;
myp->myparms.parms[5] = 0;
myp->myparms.parms[6] = 0;

BPX1PCT("ZFS ",
ZFSCALL_CONFIG, /* Config query operation */
mypsize, /* Length of Argument */
(char *)myp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv != 0 && bpxrc == E2BIG)
printf("E2BIG: %d times total\n", t++);

else if(bpxrv == 0)
{

buffer_success = 1;
int j, syscount;
SYSTEM_NAME *syslist;
int *sizep;

sizep = (int *)((int)myp + sizeof(syscall_parmlist) + buflen);
syslist = (SYSTEM_NAME *)((int)myp + sizeof(syscall_parmlist));
syscount = (*sizep) / sizeof(SYSTEM_NAME);

for (j = 1; j <= syscount; j++)
{

printf("%-8.8s\n", syslist->sys_name);
syslist++;

}
free(myp);

}
else
{ /* lssys failed with large enough buffer */

if (bpxrc == ERANGE)
printf("No systems to display\n");

else
{

printf("Error on lssys with large enough buffer\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

}
free(myp);
return bpxrc;

}
}
else
{ /* error was not E2BIG on the original BPX1PCT */

if (bpxrc == ERANGE)
printf("No systems to display from original BPX1PCT\n");

else
{

printf("Error on lssys trying to get required size\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

}
free(myp);
return bpxrc;

}
}
else
{ /* asking for buffer size gave rv = 0; maybe there is no data */

if (myparmstruct.size == 0)
{

List Systems

324 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("No data\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

}
else
{ /* No, there was some other problem with getting the size needed */

printf("Error getting size required\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

}
free(myp);
return bpxrc;

}
}

if(t == 1000)
printf("Number of failed buffer resizes exceeded.\n");

free(myp);
return 0;

}

List Systems

Chapter 13. zFS application programming interface information 325

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Query Config Option
Purpose

A set of subcommand calls (configuration operations) that retrieve the current
value for a particular configuration setting. Each one returns the configuration
setting as a character string in the co_string field.

The Format section and Example 1 use the CFGOP_QUERY_ADM_THREADS
subcommand. Example 2 shows an example to query the syslevel. The other query
subcommands (see Table 17 on page 235) operate in a similar manner.

Format

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v The output is the null-terminated string that is returned in co_string.

Privilege required

None.

Related services
Set Config Option

Restrictions

None.

syscall_parmlist
opcode int 180 CFGOP_QUERY_ADM_THREADS
parms[0] int offset to CFG_OPTION
parms[1] int offset to system name (optional)
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

CFG_OPTION
co_eye char[4] "CFOP"
co_len short sizeof(CFG_OPTION)
co_ver char 1
co_string char[81] 0
co_value_reserved int[4] reserved

co_reserved char[24] 0
systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful
Return_code

EBUSY Aggregate could not be quiesced
EINTR ZFS is shutting down
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
EPERM Permission denied to perform request

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Query Config Option

326 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Examples

Example 1: The following example shows an API to query admin threads.
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_CONFIG 0x40000006
#define CFGOP_QUERY_ADM_THREADS 180 /* query number of admin threads */

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct config_option_t {
char co_eye[4]; /* Eye catcher */

#define CFGO_EYE "CFOP"
short co_len; /* Length of structure */
char co_ver; /* Version of structure */

#define CO_VER_INITIAL 1 /* Initial version */
#define CO_SLEN 80 /* Sizeof string */

char co_string[CO_SLEN+1]; /* String value for option
must be 0 terminated */

int co_value[4]; /* Place for integer values */
char co_reserved[24]; /* Reserved for future use */

} CFG_OPTION;

struct parmstruct {
syscall_parmlist myparms;
CFG_OPTION co;
char system[9];

} myparmstruct;

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
CFG_OPTION *coptr = &(myparmstruct.co);

/* This next field should only be set if parms[1] is non-zero */

/* strcpy(myparmstruct.system,"DCEIMGVN"); */ /* set system to query */
myparmstruct.myparms.opcode = CFGOP_QUERY_ADM_THREADS;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = 0;

/* Only specify a non-zero offset for the next field (parms[1]) if you are */
/* z/OS 1.7 and above, and you want to configquery to a different system */

/* myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + */
/* sizeof(CFG_OPTION); */

myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(coptr, 0, sizeof(CFG_OPTION));
memcpy(coptr->co_eye, CFGO_EYE, 4);
coptr->co_ver = CO_VER_INITIAL;

Query Config Option

Chapter 13. zFS application programming interface information 327

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

coptr->co_len = (int)sizeof(CFG_OPTION);

BPX1PCT("ZFS ",
ZFSCALL_CONFIG, /* Config operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error querying config -adm_threads, "
"BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else
{

printf("Config query -adm_threads = %s\n", myparmstruct.co.co_string);
}
return 0;

}

Example 2: The following example shows an API to query the syslevel.
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <string.h>

#define ZFSCALL_CONFIG 0x40000006
#define CFGOP_QUERY_SYSLEVEL 238 /* Query Config option - syslevel */

/* Not in a sysplex shared file system environment */
#define NO_SYSPLEX_SUPPORT 0
/* Admin level sysplex shared file system environment */
#define SYSPLEX_ADMIN_LEVEL 1
/* File level sysplex shared file system environment */
#define SYSPLEX_FILE_LEVEL 2
/* Sysplex-aware on a File system basis */
#define SYSPLEX_FILESYS_LEVEL 3

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct config_option_t {
char co_eye[4]; /* Eye catcher */

#define CFGO_EYE "CFOP"
short co_len; /* Length of structure */
char co_ver; /* Version of structure */

#define CO_VER_INITIAL 1 /* Initial version */
#define CO_SLEN 80 /* Sizeof string */

char co_string[CO_SLEN+1]; /* String value for option must */
/* be 0 terminated */

int co_value[4]; /* Place for integer vaalues */
char co_reserved[24]; /* Reserved for future use */

} CFG_OPTION;

struct parmstruct {

Query Config Option

328 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

syscall_parmlist myparms;
CFG_OPTION co;
char system[9];

} myparmstruct;

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
CFG_OPTION *coptr = &(myparmstruct.co);

char *version,
*service,
*created,
*sysplex,
*interface,
*rwshare_default,
*rest;

int sysplex_level;

/* strcpy(myparmstruct.system,"DCEIMGVN"); */ /* set system to query */
myparmstruct.myparms.opcode = CFGOP_QUERY_SYSLEVEL;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = 0;
/* myparmstruct.myparms.parms[1] =sizeof(syscall_parmlist) + */
/* sizeof(CFG_OPTION); */
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(coptr, 0, sizeof(CFG_OPTION));
memcpy(coptr->co_eye, CFGO_EYE, 4);
coptr->co_ver = CO_VER_INITIAL;
coptr->co_len = (int)sizeof(CFG_OPTION);

BPX1PCT("ZFS ",
ZFSCALL_CONFIG, /* Config operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error querying config -syslevel, "
"BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else
{

/* Parse our configquery string */
/* format is */
/* "OSlevel\nServicelevel\ncreatetimestamp\" + */
/* "nsysplex_state\ninterface_level\nrwshare_default\0" */

version = myparmstruct.co.co_string;
service = strchr(version, ’\n’); /* find the end of the */

/* version (for 2nd line) */
service = ’\0’; / ensure end of string for version string */
service++; /* increment to next field (service) */

Query Config Option

Chapter 13. zFS application programming interface information 329

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

created = strchr(service, ’\n’); /* find the end of the */
/*service (for 2nd line) */

created = ’\0’; / ensure end of string for service string */
created++; /* increment to next field (creation) */

sysplex = strchr(created, ’\n’); /* find the end of the */
/* creation timestamp */

sysplex = ’\0’; / ensure end of string for creation string */
sysplex++; /* increment to next field (sysplex_state) */

interface = strchr(sysplex, ’\n’); /* find end of the sysplex_state */
interface = ’\0’; / ensure end of string for sysplex_state */
interface++; /* increment to next field (interface level) */

sysplex_level = atoi(sysplex);
if (sysplex_level == NO_SYSPLEX_SUPPORT)
{

printf("zFS kernel: z/OS File System\nVersion %s "
"Service Level %s.\n Created on %s.\n",
version, service, created);

}
else
{

char buffer[80];

/* find the end of the interface */
rwshare_default = strchr(interface, ’\n’);
if (rwshare_default != NULL)
{

*rwshare_default = ’\0’;
rwshare_default++;

}
if (sysplex_level == SYSPLEX_ADMIN_LEVEL)

sprintf(buffer, "sysplex(admin-only) interface(%s)", interface);
else /* if sysplex_level is SYSPLEX_FILE_LEVEL */
{

if (sysplex_level == SYSPLEX_FILE_LEVEL)
sprintf(buffer, "sysplex(file) interface(%s)", interface);

else
{ /* if sysplex_level is SYSPLEX_FILESYS_LEVEL */

if (sysplex_level == SYSPLEX_FILESYS_LEVEL)
{

/* find the end of rwshare_default */
rest = strchr(rwshare_default, ’\n’);
if (rest != NULL)

*rest = ’\0’; /*ensure that rwshare_default is null terminated*/
sprintf(buffer, "sysplex(filesys,%s) interface(%s)",

rwshare_default, interface);
}
else

sprintf(buffer, "sysplex(%s) interface(%s)", sysplex, interface);
}

}
printf("zFS kernel: z/OS File System\nVersion "

"%s Service Level %s.\nCreated on %s.\n%s\n",
version, service, created, buffer);

}
}
return 0;

}

Query Config Option

330 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Quiesce Aggregate
Purpose

An aggregate operation that quiesces a compatibility mode aggregate. It quiesces
activity on the aggregate and its file system.

Format

Usage notes
v Quiesce Aggregate is used to suspend activity on an aggregate. All activity on

the file system contained in the aggregate that is mounted is also suspended.
This subcommand is typically used before backing up an aggregate. The
aggregate must be attached to be quiesced. The quiesce operation returns a
quiesce handle that must be supplied on the unquiesce call.

v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

The issuer must be logged in as root or must have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
Unquiesce Aggregate

Restrictions

None.

syscall_parmlist
opcode 132 AGOP_QUIESCE_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int offset to handle returned by quiesce
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_reserved char[33] 0

quiesce_handle int

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EBUSY Aggregate could not be quiesced
EINTR ZFS is shutting down
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
EPERM Permission denied to perform request

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Quiesce Aggregate

Chapter 13. zFS application programming interface information 331

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_QUIESCE_PARMDATA 132

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;
int quiesce_handle;

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
char aggrname[45] = "PLEX.DCEIMGQX.FS";
int save_quiesce_handle;
struct parmstruct myparmstruct;
AGGR_ID *idp = &(myparmstruct.aggr_id);

myparmstruct.myparms.opcode = AGOP_QUIESCE_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

/* Ensure reserved fields are 0 */
memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));
memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myparmstruct.aggr_id.aid_name, aggrname);

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */

Quiesce Aggregate

332 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error quiescing aggregate %s\n", aggrname);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else
{ /* Return from quiesce was successful */

printf("Aggregate %s quiesced successfully, quiescehandle=%d\n",
aggrname, myparmstruct.quiesce_handle);

save_quiesce_handle = myparmstruct.quiesce_handle;
}
return 0;

}

Quiesce Aggregate

Chapter 13. zFS application programming interface information 333

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Reset Backup Flag
Purpose

Used by backup programs to reset the backup bit after completion of a backup.
The backup program is expected to quiesce the aggregate and save the quiesce
handle before beginning the backup. After completing the backup, the backup bit
should be reset before unquiescing the aggregate.

Format

Usage notes
v The backup bit must be reset while the aggregate is still quiesced for backup.
v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

The issuer must be logged in as root or must have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
Quiesce Aggregate
Unquiesce Aggregate

Restrictions

None.

syscall_parmlist
opcode int 157 AGOP_RESETFLAG_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int quiesce handle
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINVAL Invalid input parameters
ENOENT Aggregate not found
ENOSYS Aggregate not locally owned
EBUSY Aggregate is growing
EMVSERR Internal error using an osi service

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes
EINVAL Invalid parameters

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Reset Backup Flag

334 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Examples
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_RESETFLAG_PARMDATA 157

typedef struct syscall_parmlist_t
{

int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[2]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t
{

char aid_eye[4]; /* Eye Catcher */
#define AID_EYE "AGID"

char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;

/*Aggregate name to attach, aggregate must
be quiesced for this API to run successfully */

char aggrname[45] = "PLEX.DCEIMGQX.FS";

struct parmstruct myparmstruct;
AGGR_ID *idp = &(myparmstruct.aggr_id);

/* This is the handle returned by zFS on a quiesce aggregate */
/* Ensure that the quiesce_handle is set to the value returned */
/* by the quiesce */
int quiesce_handle = 1;

myparmstruct.myparms.opcode = AGOP_RESETFLAG_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = quiesce_handle;
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;
memset(idp, 0, sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myparmstruct.aggr_id.aid_name, aggrname);

Reset Backup Flag

Chapter 13. zFS application programming interface information 335

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error resetting backup flag for aggregate %s\n", aggrname);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else /* Return from reset was successful */

printf("Successfully reset backup flag for aggregate %s\n", aggrname);
return 0;

}

Reset Backup Flag

336 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Set Auditfid
Purpose

An aggregate operation that sets the current value of the auditfid. The aggregate
whose auditfid is to be changed must be attached.

Format

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

The issuer must be UID=0 or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
List Aggregate Status (Version 2)

Restrictions

The aggregate cannot be attached as read-only. The aggregate cannot be quiesced.
The aggregate cannot be in the process of being moved by zFS.

syscall_parmlist
opcode int 149 AGOP_SETAUDITFID_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int 0=set new auditfid if current auditfid is 0

1=set new auditfid regardless of current value
(force)

2=set new auditfid to 0 (old)
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EBUSY auditfid could not be set
EINTR ZFS is shutting down
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
EPERM Permission denied to perform request

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Set Auditfid

Chapter 13. zFS application programming interface information 337

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_SETAUDITFID_PARMDATA 149 /* Set or reset auditfid */

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
struct parmstruct myparmstruct;

char aggrname[45] = "PLEX.DCEIMGQX.FS"; /* aggregate name to set auditfid*/
AGGR_ID *idp = &(myparmstruct.aggr_id);

myparmstruct.myparms.opcode = AGOP_SETAUDITFID_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

/* Configure options by setting myparmstruct.myparms.parms[1] to: */
/* 0 = set new auditfid if current auditfid is 0 */
/* 1 = set new auditfid regardless of current value (force) */
/* 2 = set new auditfid to 0 (pre-z/OS V1R9) */
myparmstruct.myparms.parms[1] = 1;

myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

/* Ensure reserved fields are 0 */
memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));
memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myparmstruct.aggr_id.aid_name, aggrname);

Set Auditfid

338 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error setting auditfid for aggregate %s\n", aggrname);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else /* Return from set auditfid was successful */

printf("Aggregate %s set auditfid successfully\n", aggrname);
return 0;

}

Set Auditfid

Chapter 13. zFS application programming interface information 339

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Set Config Option
Purpose

A set of subcommand calls (that are configuration operations) that set the current
value for a particular configuration setting. Each one sets the configuration setting
from input specified as a character string.

The following Format and Example use the CFGOP_ADM_THREADS
subcommand. The other set subcommands (see Table 17 on page 235) operate
similarly. That is, each sets the configuration setting from the character string in
the co_string field.

Format

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v Specify the new value as a null terminated string in co_string.

Privilege required

The issuer must be logged in as root or must have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
Query Config Option

Restrictions

None.

syscall_parmlist
opcode int 150 CFGOP_ADM_THREADS
parms[0] int offset to CFG_OPTION
parms[1] int offset to system name (optional)
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

CFG_OPTION
co_eye char[4] "CFOP"
co_len short sizeof(CFG_OPTION)
co_ver char 1
co_string char[81] "15" (New value for adm_threads)
co_value_reserved int 4 (reserved)
co_reserved char[24] 0

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EBUSY Aggregate could not be quiesced
EINTR ZFS is shutting down
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
EPERM Permission denied to perform request

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Set Config Option

340 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_CONFIG 0x40000006
#define CFGOP_ADM_THREADS 150 /* Set number of admin threads */

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct config_option_t {
char co_eye[4]; /* Eye catcher */

#define CFGO_EYE "CFOP"
short co_len; /* Length of structure */
char co_ver; /* Version of structure */

#define CO_VER_INITIAL 1 /* Initial version */
#define CO_SLEN 80 /* Sizeof string */

char co_string[CO_SLEN+1]; /* String value for option must be 0 terminated*/
int co_value[4]; /* Place for integer values */
char co_reserved[24]; /* Reserved for future use */

} CFG_OPTION;

struct parmstruct {
syscall_parmlist myparms;
CFG_OPTION co;
char system[9];

} myparmstruct;

char new_adm_threads[CO_SLEN+1] = "20"; /* New adm_threads value */

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
CFG_OPTION *coptr = &(myparmstruct.co);

/* This next field should only be set if parms[1] is non-zero */
/* strcpy(myparmstruct.system,"DCEIMGVN"); */ /* set system to change */

myparmstruct.myparms.opcode = CFGOP_ADM_THREADS;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = 0;

/* Only specify a non-zero offset for the next field (parms[1]) if */
/* you are running z/OS 1.7 and above, and */
/* you want to configquery to a different system */
/* myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) */
/* + sizeof(CFG_OPTION); */

myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(coptr, 0, sizeof(CFG_OPTION));
memcpy(coptr->co_eye, CFGO_EYE, 4);
coptr->co_ver = CO_VER_INITIAL;

Set Config Option

Chapter 13. zFS application programming interface information 341

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

coptr->co_len = (int)sizeof(CFG_OPTION);
strcpy(coptr->co_string, new_adm_threads);/*set new adm_thread value*/

BPX1PCT("ZFS ",
ZFSCALL_CONFIG, /* Config operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error setting config -adm_threads, "
"BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else

printf("Config -adm_threads = %s\n", myparmstruct.co.co_string);
return 0;

}

Set Config Option

342 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Statistics Directory Cache Information
Purpose

Returns directory cache counters, including the number of requests, hits and
discards from the directory cache.

Note: As of z/OS V1R13, this subcommand is no longer used. All output from a
call to statistics directory cache information will be zeros.

Format

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.

syscall_parmlist
opcode int 249 STATOP_DIR_CACHE
parms[0] int offset to STAT_API
parms[1] int offset of output following STAT_API
parms[2] int offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int length of buffer that follows STAT_API
sa_ver int 1
sa_flags char[1] 0x00

SA_RESET 0x80 Reset statistics
sa_fill char[3] 0
sa_reserve int[4] 0
posix_time_high unsigned int high order 32 bits since epoch
posix_time_low unsigned int low order 32 bits since epoch
posix_useconds unsigned int microseconds
pad1 int

API_DIR_STATS
ad_eye char[4] "ADIR"
ad_size short size of output
ad_version char version
ad_reserved1 char reserved byte
ad_reserved int always zero
ad_buffers int number of buffers in the cache
ad_buffersize int size of each buffer in K bytes
ad_res1 int reserved
ad_reserved int reserved
ad_requests int requests to the cache
ad_reserved int reserved
ad_hits int hits in the cache
ad_reserved int reserved
ad_discards int discards of data from the cache
ad_reserved2 int[10] reserved

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful
Return_code

EINTR zFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred
E2BIG Information too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics Directory Cache Information

Chapter 13. zFS application programming interface information 343

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Privilege required

None.

Related services
Statistics Vnode Cache Information
Statistics Metadata Cache Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <string.h>
#include <time.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_DIR_CACHE 249 /* Directory cache stats */
#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \

{ \
INTEGER = (int)RATIO; \
DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \

}

typedef struct syscall_parmlist_t
{

int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */
/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper {
unsigned int high; /* unsigned int reserved */
unsigned int low;

} hyper;

typedef struct API_DIR_STATS_t {
char ad_eye[4]; /* Eye catcher = ADIR */

#define DS_EYE "ADIR"
short ad_size; /* Size of output structure */
char ad_version; /* Version of stats */

#define DS_VER_INITIAL 1 /* First version of log stats */
char ad_reserved1; /* Reserved byte, 0 in version 1 */
hyper ad_buffers; /* Number of buffers in cache */
int ad_buffsize; /* Size of each buffer in K bytes */
int ad_res1; /* Reserved for future use, zero

in version 1 */
hyper ad_requests; /* Requests to the cache */
hyper ad_hits; /* Hits in the cache */
hyper ad_discards; /* Discards of data from cache */
int ad_reserved2[10]; /* Reserved for future use */

} API_DIR_STATS;

/* reset timestamp */
typedef struct reset_time {

unsigned int posix_time_high; /* high order 32 bits since epoc */
unsigned int posix_time_low; /* low order 32 bits since epoch */

Statistics Directory Cache Information

344 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned int posix_usecs; /* microseconds */
int pad1;

} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t
{
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/
/* this buffer area follows this struct*/
int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01
char sa_flags; /* flags field must be x00 or x80,

x80 means reset statistics*/
#define SA_RESET 0x80

char sa_fill[3]; /* spare bytes */
int sa_reserve[4]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

struct parmstruct {
syscall_parmlist myparms;
STAT_API myapi;
API_DIR_STATS mystats;
char systemname[9];

} myparmstruct;

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i;
double temp_ratio;
int whole;
int decimal;
STAT_API *stapptr = &(myparmstruct.myapi);
char buf[33];

myparmstruct.myparms.opcode = STATOP_DIR_CACHE;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want to query the directory */
/* cache statistics of a different system than this one */
/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + */
/* sizeof(STAT_API) + sizeof(API_DIR_STATS); */

myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;
memset(stapptr, 0, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_INITIAL;
stapptr->sa_len = (int)sizeof(API_DIR_STATS);

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

Statistics Directory Cache Information

Chapter 13. zFS application programming interface information 345

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error querying directory cache, "
"BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else
{

printf("\n%50s\n", "Directory Backing Caching Statistics");
printf(" \n");
printf("Buffers (K bytes) Requests Hits Ratio Discards \n");
printf("---------- --------- ---------- ---------- ------ ---------- \n");

if(myparmstruct.mystats.ad_requests.low == 0)
temp_ratio = 0;

else
temp_ratio = ((double)myparmstruct.mystats.ad_hits.low) /

myparmstruct.mystats.ad_requests.low;

temp_ratio *= 100.0;
CONVERT_RATIO_TO_INTS(temp_ratio, whole, decimal);

decimal = decimal / 100; /* Just want tenths */
printf("%10u %9u %10u %10u %3u.%1.1u%% %10u\n",

myparmstruct.mystats.ad_buffers.low,
myparmstruct.mystats.ad_buffers.low * myparmstruct.mystats.ad_buffsize,
myparmstruct.mystats.ad_requests.low, myparmstruct.mystats.ad_hits.low,
whole, decimal, myparmstruct.mystats.ad_discards.low);

printf(" \n");

if (0 == ctime_r((time_t*) & stapptr->reset_time_info.posix_time_low, buf))
printf("Could not get timestamp.\n");

else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}
}
return 0;

}

Statistics Directory Cache Information

346 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Statistics iobyaggr Information
Purpose

Displays information about the number of reads and writes (I/Os) and the amount
of data in bytes that are transferred for each aggregate.

Format

syscall_parmlist
opcode int 244 STATOP_IOBYAGGR
parms[0] int offset to STAT_API
parms[1] int offset of output following STAT_API
parms[2] int offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int Length of buffer that follows STAT_API
sa_ver int 1
sa_flags char[1] 0x80 - Reset statistics
sa_reserve int[3] Reserved
posix_time_high unsigned int High order 32 bits since epoch
posix_time_low unsigned int Low order 32 bits since epoch
posix_useconds unsigned int Microseconds

IO_REPORT2_2_GRAND_TOTALS
io_count int Count of IO_REPORT2 lines
grand_total_reads unsigned int Total reads
grand_total_writes unsigned int Total writes
grand_total_read_bytes unsigned int Total bytes read (in kilobytes)
grand_total_write_bytes unsigned int Total bytes written (in kilobytes)
grand_total_devices unsigned int Total number of aggregates
total_number_waits_for_io unsigned int Total number of waits for I/O
average_wait_time_for_io_whole unsigned int Average wait time (whole number),

average wait time in milliseconds
average_wait_time_for_io_decimal unsigned int Average wait time (decimal part)

decimal part is in thousanths
3 means .003 and 300 means .3

Statistics iobyaggr Information

Chapter 13. zFS application programming interface information 347

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v When sa_supported_ver is 0 or 1, output consists of

IO_REPORT2_GRAND_TOTALS and IO_REPORT2. When sa_supported_ver is
2, output consists of IO_REPORT2_GRAND_TOTALS2 and IO_REPORT2_2.

Privilege required

None.

Related services
Statistics iobydasd Information
Statistics iocounts Information

Restrictions

None.

IO_REPORT2[io_count]
volser char[8] DASD volser where aggregate resides
pavios unsigned int Max number of concurrent I/Os that zFS will issue
read_ind char[4] R/O or R/W (how aggregate is attached)
temp_reads unsigned int Count of reads for this aggregate
temp_read_bytes unsigned int Bytes read for this aggregate (in kilobytes)
temp_writes unsigned int Count of writes for this aggregate
temp_write_bytes unsigned int Bytes written for this aggregate (in kilobytes)
allocation_dsname char[84] Data set name of aggregate

--or--
IO_REPORT2_GRAND_TOTALS2

io_count int Count of IO_REPORT2 lines
grand_total_reads unsigned long long Total reads
grand_total_writes unsigned long long Total writes
grand_total_read_bytes unsigned long long Total bytes read (in kilobytes)
grand_total_write_bytes unsigned long long Total bytes written (in kilobytes)
grand_total_devices unsigned long long Total number of aggregates
total_number_waits_for_io unsigned long long Total number of waits for I/O
average_wait_time_for_io_whole unsigned int Average wait time (whole number),

average wait time in milliseconds
average_wait_time_for_io_decimal unsigned int Average wait time (decimal part)

decimal part is in thousanths
3 means .003 and 300 means .3

IO_REPORT2_2[io_count]
volser char[8] DASD volser where aggregate resides
pavios unsigned int Max number of concurrent I/Os that zFS will issue
read_ind char[4] R/O or R/W (how aggregate is attached)
temp_reads unsigned long long Count of reads for this aggregate
temp_read_bytes unsigned long long Bytes read for this aggregate (in kilobytes)
temp_writes unsigned long long Count of writes for this aggregate
temp_write_bytes unsigned long long Bytes written for this aggregate (in kilobytes)
allocation_dsname char[84] Data set name of aggregate

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful
Return_code
EINTR zFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred
E2BIG Information too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics iobyaggr Information

348 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_IOBYAGGR 244 /* Performance API queries */
#define E2BIG 145

typedef struct syscall_parmlist_t
{
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct reset_time {
unsigned int posix_time_high; /* high order 32 bits since epoc */
unsigned int posix_time_low; /* low order 32 bits since epoch */
unsigned int posix_usecs; /* microseconds */
int pad1;

} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"
char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct */
int sa_ver; /* the version number currently always 1*/

#define SA_VER_2 0x02
#define SA_VER_INIT 0x01
char sa_flags; /* flags field must be x00 or x80, */

/* x80 means reset statistics */
#define SA_RESET 0x80
char sa_fill[3]; /* spare bytes */
int sa_supported_ver; /* version of data returned */
int sa_reserve[3]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

typedef struct io_report2_2_t {
char volser[8];
unsigned int pavios;
char read_ind[4];
unsigned long long int temp_reads;
unsigned long long int temp_read_bytes;
unsigned long long int temp_writes;
unsigned long long int temp_write_bytes;
char allocation_dsname[84];
char reserved[4];

} IO_REPORT2_2;

typedef struct io_report2_grand_totals_2_t {
int io_count; /* number IO_REPORT2 structs in buffer */
int pad;
unsigned long long int grand_total_reads; /* Total # reads */
unsigned long long int grand_total_writes; /* Total # writes */
unsigned long long int grand_total_read_bytes; /* Total bytes read */
unsigned long long int grand_total_write_bytes; /* Total bytes written*/
unsigned long long int grand_total_devices; /* total # aggregates */

Statistics iobyaggr Information

Chapter 13. zFS application programming interface information 349

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned long long int total_number_waits_for_io;
unsigned int average_wait_time_for_io_whole;
unsigned int average_wait_time_for_io_decimal;

} IO_REPORT2_GRAND_TOTALS_2;

/* Version 1 Output structures */
typedef struct io_report2_t {
char volser[8];
unsigned int pavios;
char read_ind[4];
unsigned int temp_reads;
unsigned int temp_read_bytes;
unsigned int temp_writes;
unsigned int temp_write_bytes;
char allocation_dsname[84];

} IO_REPORT2;

typedef struct io_report2_grand_totals_t {
int io_count; /* number IO_REPORT2

structs in buffer */
unsigned int grand_total_reads; /* Total # reads */
unsigned int grand_total_writes; /* Total # writes */
unsigned int grand_total_read_bytes; /* Total bytes read */
unsigned int grand_total_write_bytes; /* Total bytes written*/
unsigned int grand_total_devices; /* total # aggregates */
unsigned int total_number_waits_for_io;
unsigned int average_wait_time_for_io_whole; /* in milliseconds */
unsigned int average_wait_time_for_io_decimal; /* in thousandths */

/* of milliseconds */
/* for example, */
/*3 means .003 and

300 means .3 */
} IO_REPORT2_GRAND_TOTALS;

struct parmstruct {
syscall_parmlist myparms;
STAT_API myapi;

/* output buffer IO_REPORT2_GRAND_TOTALS_2 + multiple IO_REPORT2_2s */
char systemname[9];

} myparmstruct;

int print_iobyaggr_version1(IO_REPORT2_GRAND_TOTALS *stgt,
IO_REPORT2 *str2);

int print_iobyaggr_version2(IO_REPORT2_GRAND_TOTALS_2 *stgt,
IO_REPORT2_2 *str2);

int main(int argc, char **argv)
{
int buffer_success = 0;
int bpxrv;
int bpxrc;
int bpxrs;
int i,t;
IO_REPORT2_GRAND_TOTALS_2 *stgt;
IO_REPORT2_2 *str2;
char *stsy;
char buf[33];
struct parmstruct *myp = &myparmstruct;
int mypsize;
int buflen;
STAT_API *stapptr = &(myparmstruct.myapi);

myparmstruct.myparms.opcode = STATOP_IOBYAGGR;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want to query the */
/* iobyaggr statistics of a different system than this one */
/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) */

Statistics iobyaggr Information

350 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* + sizeof(STAT_API); */

myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(stapptr, 0, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = 0;

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

for(t = 0; t < 1000 && buffer_success == 0; t++)
{
if (bpxrv < 0)
{
if (bpxrc == E2BIG)
{
buflen = stapptr->sa_len; /* Get buffer size needed */
mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen +

sizeof(myparmstruct.systemname);

free(myp);

myp = (struct parmstruct *)malloc((int)mypsize);
memset(myp, 0, mypsize);

printf("Need buffer size of %d, for a total of %d\n\n\n",
buflen, mypsize);

myp->myparms.opcode = STATOP_IOBYAGGR;
myp->myparms.parms[0] = sizeof(syscall_parmlist);
myp->myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
myp->myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want to query the */
/* iobyaggr statistics of a different system than this one */
/* myp->myparms.parms[2] = sizeof(syscall_parmlist) */
/* + sizeof(STAT_API) + buflen; */

myp->myparms.parms[3] = 0;
myp->myparms.parms[4] = 0;
myp->myparms.parms[5] = 0;
myp->myparms.parms[6] = 0;

stapptr = (STAT_API *)((char *)myp + sizeof(syscall_parmlist));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = buflen;
stgt = (IO_REPORT2_GRAND_TOTALS_2 *)((char *)myp +

sizeof(syscall_parmlist) +
sizeof(STAT_API));

str2 = (IO_REPORT2_2*) ((char*) stgt +
sizeof(IO_REPORT2_GRAND_TOTALS_2));

stsy = (char *)((char *)myp +
sizeof(syscall_parmlist) +
sizeof(STAT_API) + buflen);

Statistics iobyaggr Information

Chapter 13. zFS application programming interface information 351

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(stsy,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Aggregate operation */
mypsize, /* Length of Argument */
(char *)myp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv != 0 && bpxrc == E2BIG)
printf("E2BIG: %d times total\n", t++);

else if(bpxrv == 0)
{
buffer_success = 1;

if (stapptr->sa_supported_ver == SA_VER_INIT)
{
IO_REPORT2_GRAND_TOTALS *stgt_v1;
IO_REPORT2 *str2_v1;
stgt_v1 = (IO_REPORT2_GRAND_TOTALS *)((char *)myp +

sizeof(syscall_parmlist) +
sizeof(STAT_API));

str2_v1 = (IO_REPORT2 *) ((char*) stgt +
sizeof(IO_REPORT2_GRAND_TOTALS));

print_iobyaggr_version1(stgt_v1,str2_v1);
}
else
print_iobyaggr_version2(stgt, str2);

unsigned int ptl = stapptr->reset_time_info.posix_time_low;
if (0 == ctime_r((time_t *) & ptl, buf))
printf("Could not get timestamp.\n");

else
{ /* Insert the microseconds into the displayable time value */
strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}
free(myp);

}
else
{ /* iobyaggr failed with large enough buffer */
printf("Error on iobyaggr with large enough buffer\n");
printf("Error querying iobyaggr, BPXRV = %d BPXRC = %d BPXRS = %x\n",

bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* error was not E2BIG */
printf("Error on iobyaggr trying to get required size\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* asking for buffer size gave rv = 0; maybe there is no data */
if (myparmstruct.myapi.sa_len == 0)
{
printf("No data\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

}
else
{ /* No, there was some other problem with getting the size needed */

Statistics iobyaggr Information

352 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("Error getting size required\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

}
free(myp);
return bpxrc;

}
}

if(t == 1000)
printf("Number of failed buffer resizes exceeded.\n");

free(myp);
return 0;

}

int print_iobyaggr_version2(IO_REPORT2_GRAND_TOTALS_2 *stgt,
IO_REPORT2_2 *str2)

{
int i;
printf(" zFS I/O by Currently Attached Aggregate\n");
printf("\n");
printf("DASD PAV\n");
printf("VOLSER IOs Mode Reads K bytes "

"Writes K bytes Dataset Name\n");
printf("------ --- ---- ---------- ---------- "

"---------- ---------- ------------\n");

for (i = 0; i < stgt->io_count; i++, str2++)
{
printf("%6.6s %3u %s %10llu %10llu %10llu %10llu %-44.44s\n",

str2->volser,
str2->pavios,
str2->read_ind,
str2->temp_reads,
str2->temp_read_bytes,
str2->temp_writes,
str2->temp_write_bytes,
str2->allocation_dsname);

}
printf("%6llu %10llu %10llu %10llu %10llu %-44.44s\n",

stgt->grand_total_devices,
stgt->grand_total_reads,
stgt->grand_total_read_bytes,
stgt->grand_total_writes,
stgt->grand_total_write_bytes, "*TOTALS*");

printf("\n");

printf("Total number of waits for I/O: %10u\n",
stgt->total_number_waits_for_io);

printf("Average I/O wait time: %9u.%3.3u (msecs)\n",
stgt->average_wait_time_for_io_whole,
stgt->average_wait_time_for_io_decimal);

printf("\n");
return 1;

}

int print_iobyaggr_version1(IO_REPORT2_GRAND_TOTALS *stgt,
IO_REPORT2 *str2)

{
int i;
printf("Version 1 output is being displayed\n");

printf(" zFS I/O by Currently Attached Aggregate\n");
printf("\n");
printf("DASD PAV\n");
printf("VOLSER IOs Mode Reads K bytes "

"Writes K bytes Dataset Name\n");
printf("------ --- ---- ---------- ---------- "

"---------- ---------- ------------\n");

for (i = 0; i < stgt->io_count; i++, str2++) {

Statistics iobyaggr Information

Chapter 13. zFS application programming interface information 353

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("%6.6s %3u %s %10u %10u %10u %10u %-44.44s\n",
str2->volser,
str2->pavios,
str2->read_ind,
str2->temp_reads,
str2->temp_read_bytes,
str2->temp_writes,
str2->temp_write_bytes,
str2->allocation_dsname);

}
printf("%6u %10u %10u %10u %10u %-44.44s\n",

stgt->grand_total_devices,
stgt->grand_total_reads,
stgt->grand_total_read_bytes,
stgt->grand_total_writes,
stgt->grand_total_write_bytes, "*TOTALS*");

printf("\n");

printf("Total number of waits for I/O: %10u\n",
stgt->total_number_waits_for_io);

printf("Average I/O wait time: %9u.%3.3u (msecs)\n",
stgt->average_wait_time_for_io_whole,
stgt->average_wait_time_for_io_decimal);

printf("\n");
}

Statistics iobyaggr Information

354 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Statistics iobydasd Information
Purpose

Displays information about the number of reads and writes and the number of
bytes transferred for each DASD volume. The number of I/Os and the amount of
data transferred is determined on a DASD basis.

Format

syscall_parmlist
opcode int 245 STATOP_IOBYDASD
parms[0] int offset to STAT_API
parms[1] int offset of output following STAT_API
parms[2] int offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int length of buffer that follows STAT_API
sa_ver int 1 or 2
sa_flags char[1] 0x00

SA_RESET 0x80 Reset statistics
sa_fill char[3] 0
sa_supported_ver int version of data returned
sa_reserve int[3] 0
posix_time_high unsigned int high order 32 bits since epoch
posix_time_low unsigned int low order 32 bits since epoch
posix_useconds unsigned int microseconds
pad1 int

int
API_IOBYDASD_HDR

number_of_lines int count of API_IOBYDASD_DATA lines
pad int 0
grand_total_waits hyper total waits
average_wait_time_whole int average wait time (whole number)

average wait time in milliseconds
average_wait_time_decimal int average wait time (decimal part)

decimal part is in thousanths
3 means .003 and 300 means .3

API_IOBYDASD_DATA[number_of_lines]
spare int 0
volser char[6] DASD volser
filler char[2] reserved
pavios unsigned int max number of concurrent I/Os zFS will issue

for this DASD
reads unsigned int count of reads for this DASD
read_bytes unsigned int bytes read for this DASD (in kilobytes)
writes unsigned int count of writes for this DASD
write_bytes unsigned int bytes written for this DASD (in kilobytes)
waits unsigned int waits
avg_wait_whole int average wait time (whole number)

average wait time in milliseconds
avg_wait_decimal int average wait time (decimal part)

decimal part is in thousanths
3 means .003 and 300 means .3

Statistics iobydasd Information

Chapter 13. zFS application programming interface information 355

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v When sa_supported_ver is 0 or 1, the output consists of API_IOBYDASD_HDR

and API_IOBYDASD_DATA. When sa_supported_ver is 2, the output consists of
API_IOBYDADD_HDR and API_IOBYDASD_DATA2.

Privilege required

None.

Related services
Statistics iobyaggr Information
Statistics iocounts Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_IOBYDASD 245 /* Performance API queries */
#define E2BIG 145
#define ENOMEM 132

--or--
API_IOBYDASD_DATA2[number_of_lines]

spare int 0
volser char[6] DASD volser
filler char[2] reserved
unsigned int unsigned long long int max number of concurrent I/Os zFS

will issue for this DASD
reads unsigned long long int count of reads for this DASD
read_bytes unsigned long long int bytes read for this DASD (in kilobytes)
writes unsigned long long int count of writes for this DASD
write_bytes unsigned long long int bytes written for this DASD (in kilobytes)
waits unsigned long long int waits
avg_wait_whole int average wait time (whole number)

average wait time in milliseconds
avg_wait_decimal int average wait time (decimal part)

decimal part is in thousanths
3 means .003 and 300 means .3

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR zFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred
E2BIG Information too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics iobydasd Information

356 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct reset_time {
unsigned int posix_time_high; /* high order 32 bits since epoc */
unsigned int posix_time_low; /* low order 32 bits since epoch */
unsigned int posix_usecs; /* microseconds */
int pad1;

} RESET_TIME;

typedef struct hyper_t {
unsigned int high; /* unsigned int reserved */
unsigned int low;

} hyper;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct */
int sa_ver; /* the version number currently always 1*/

#define SA_VER_2 0x02
#define SA_VER_INIT 0x01

char sa_flags; /* flags field must be x00 or x80, */
/* x80 means reset statistics */

#define SA_RESET 0x80
char sa_fill[3]; /* spare bytes */
int sa_supported_ver; /* version of data returned */
int sa_reserve[3]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

typedef struct api_iobydasd_hdr
{

int number_of_lines;
int pad;
hyper grand_total_waits;
int avg_wait_time_whole; /* in milliseconds */
int avg_wait_time_decimal; /* in thousandths */

/* of milliseconds */
/* for example, 3 means .003 */
/* and 300 means .3 */

} API_IOBYDASD_HDR;

typedef struct api_iobydasd_data_2
{

int spare;
char volser[6];
char filler[2];
unsigned int pavios;
unsigned long long int reads;
unsigned long long int read_bytes;
unsigned long long int writes;
unsigned long long int write_bytes;
unsigned long long int waits;
int avg_wait_whole;
int avg_wait_decimal;

} API_IOBYDASD_DATA_2;

Statistics iobydasd Information

Chapter 13. zFS application programming interface information 357

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* Version 1 output structure */
typedef struct api_iobydasd_data
{

int spare;
char volser[6];
char filler[2];
unsigned int pavios;
unsigned int reads;
unsigned int read_bytes;
unsigned int writes;
unsigned int write_bytes;
unsigned int waits;
int avg_wait_whole;
int avg_wait_decimal;

} API_IOBYDASD_DATA;

struct parmstruct {
syscall_parmlist myparms;
STAT_API myapi;

/* output buffer API_IOBYDASD_HDR + multiple API_IOBYDASD_DATA_2s */
char systemname[9];

} myparmstruct;

int print_iobydasd_version1(API_IOBYDASD_HDR* stdh,
API_IOBYDASD_DATA *stdd);

int print_iobydasd_version2(API_IOBYDASD_HDR* stdh,
API_IOBYDASD_DATA_2 *stdd);

int main(int argc, char **argv)
{

int buffer_success = 0;
int bpxrv;
int bpxrc;
int bpxrs;
int i,t;
API_IOBYDASD_HDR *stdh;
API_IOBYDASD_DATA_2 *stdd;
char *stsy;
char buf[33];
struct parmstruct *myp = &myparmstruct;
int mypsize;
int buflen;
STAT_API *stapptr = &(myparmstruct.myapi);

myparmstruct.myparms.opcode = STATOP_IOBYDASD;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want to query the */
/* iobydasd statistics of a different system than this one */
/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) */
/* + sizeof(STAT_API); */

myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(stapptr, 0, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = 0;

/* This next field should only be set if parms[2] is non-zero */

Statistics iobydasd Information

358 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

for(t = 0; t < 1000 && buffer_success == 0; t++)
{

if (bpxrv < 0)
{

if (bpxrc == E2BIG)
{

buflen = stapptr->sa_len; /* Get buffer size needed */
mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen +

sizeof(myparmstruct.systemname);

free(myp);
myp = (struct parmstruct *)malloc((int)mypsize);
memset(myp, 0, mypsize);

printf("Need buffer size of %d, for a total of %d\n\n",
buflen, mypsize);

myp->myparms.opcode = STATOP_IOBYDASD;
myp->myparms.parms[0] = sizeof(syscall_parmlist);
myp->myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
myp->myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want to query the */
/* iobydasd statistics of a different system than this one */
/* myp->myparms.parms[2] = sizeof(syscall_parmlist) */
/* + sizeof(STAT_API) + buflen; */

myp->myparms.parms[3] = 0;
myp->myparms.parms[4] = 0;
myp->myparms.parms[5] = 0;
myp->myparms.parms[6] = 0;

stapptr = (STAT_API *)((char *)myp + sizeof(syscall_parmlist));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = buflen;
stdh = (API_IOBYDASD_HDR *)((char *)myp +

sizeof(syscall_parmlist) + sizeof(STAT_API));
stdd = (API_IOBYDASD_DATA_2*)((char*)stdh + sizeof(API_IOBYDASD_HDR));
stsy = (char *)((char *)myp + sizeof(syscall_parmlist) +

sizeof(STAT_API) + buflen);

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(stsy,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf stats operation */
mypsize, /* Length of Argument */
(char *)myp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv != 0 && bpxrc == E2BIG)
printf("E2BIG: %d times total\n", t++);

else if(bpxrv == 0)
{

Statistics iobydasd Information

Chapter 13. zFS application programming interface information 359

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

buffer_success = 1;

if(stapptr->sa_supported_ver == SA_VER_INIT)
{

API_IOBYDASD_DATA *stdd_v1;
stdd_v1 = (API_IOBYDASD_DATA *)((char *)stdh +

sizeof(API_IOBYDASD_HDR));
print_iobydasd_version1(stdh,stdd_v1);

}
else

print_iobydasd_version2(stdh,stdd);

unsigned int ptl = stapptr->reset_time_info.posix_time_low;
if (0 == ctime_r((time_t *) & ptl, buf))

printf("Could not get timestamp.\n");
else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}
free(myp);

}
else
{ /* iobydasd failed with large enough buffer */

printf("Error on iobydasd with large enough buffer\n");
printf("Error querying iobydasd, "

"BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

free(myp);
return bpxrc;

}
}
else
{ /* error was not E2BIG */

printf("Error on iobydasd trying to get required size\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* asking for buffer size gave rv = 0; maybe there is no data */

if (myparmstruct.myapi.sa_len == 0)
{

printf("No data\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

}
else
{ /* No, there was some other problem with getting the size needed */

printf("Error getting size required\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

}
free(myp);
return bpxrc;

}
}
if(t == 1000)

printf("Number of failed buffer resizes exceeded.\n");

free(myp);
return 0;

}

Statistics iobydasd Information

360 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int print_iobydasd_version2(API_IOBYDASD_HDR* stdh,
API_IOBYDASD_DATA_2 *stdd)

{
int i;
printf("%40czFS I/O by Currently Attached DASD/VOLs\n", ’ ’);
printf("\n");
printf("DASD PAV\n");
printf("VOLSER IOs Reads K bytes "

"Writes ");
printf("K bytes Waits Average Wait\n");
printf("------ --- -------------------- -------------------- "

"-------------------- ");
printf("-------------------- -------------------- ------------\n");

for (i = 0; i < stdh->number_of_lines; i++, stdd++)
{

printf("%6.6s %3u %20llu %20llu %20llu %20llu %20llu %6u.%3.3u\n",
stdd->volser,
stdd->pavios,
stdd->reads,
stdd->read_bytes,
stdd->writes,
stdd->write_bytes,
stdd->waits,
stdd->avg_wait_whole,
stdd->avg_wait_decimal);

}
printf("\n");
printf("Total number of waits for I/O: %u,,%u\n",

stdh->grand_total_waits.high, stdh->grand_total_waits.low);
printf("Average I/O wait time: %9u.%3.3u (msecs)\n",

stdh->avg_wait_time_whole,
stdh->avg_wait_time_decimal);

printf("\n");

return 1;
}

int print_iobydasd_version1(API_IOBYDASD_HDR* stdh,
API_IOBYDASD_DATA *stdd)

{
int i;
printf("Version 1 output is being displayed\n\n");
printf("%15c zFS I/O by Currently Attached DASD/VOLs\n",’ ’);
printf("\n");
printf("DASD PAV\n");
printf("VOLSER IOs Reads K bytes Writes "

"K bytes Waits Average Wait\n");
printf("------ --- ---------- ---------- ---------- "

"---------- ---------- ------------\n");

for (i = 0; i < stdh->number_of_lines; i++, stdd++)
{

printf("%6.6s %3u %10u %10u %10u %10u %10u %6u.%3.3u\n",
stdd->volser,
stdd->pavios,
stdd->reads,
stdd->read_bytes,
stdd->writes,
stdd->write_bytes,
stdd->waits,
stdd->avg_wait_whole,
stdd->avg_wait_decimal);

}
printf("\n");
printf("Total number of waits for I/O: %u,,%u\n",

stdh->grand_total_waits.high, stdh->grand_total_waits.low);

Statistics iobydasd Information

Chapter 13. zFS application programming interface information 361

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("Average I/O wait time: %9u.%3.3u (msecs)\n",
stdh->avg_wait_time_whole,
stdh->avg_wait_time_decimal);

printf("\n");

return 1;
}

Statistics iobydasd Information

362 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|

Statistics iocounts Information
Purpose

Displays information about how often zFS performs I/O for various circumstances
and how often it waits on that I/O.

Format

syscall_parmlist
opcode int 243 STATOP_IOCOUNTS
parms[0] int Offset to STAT_API
parms[1] int Offset of output following STAT_API
parms[2] int Offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int Length of buffer following STAT_API
sa_ver int 1 or 2
sa_flags char[1] 0x80 - Reset statistics
sa_fill char[3] Reserved
sa_supported_ver int Version of data returned
sa_reserve int[3] Reserved
posix_time_high unsigned int High order 32 bits since epoch
posix_time_low unsigned int Low order 32 bits since epoch
posix_useconds unsigned int Microseconds

API_IO_BY_TYPE[3]
number_of_lines unsigned int Count of API_IO_BY_TYPE lines (3)
count unsigned int Count of I/Os for type
waits unsigned int Number of waits for type
cancels unsigned int Number of cancels for type
merges unsigned int Number of merges for type
type typechar[6] Reserved
description char[54] Type description

API_IO_BY_CIRC[19]
number_of_lines unsigned int Count of API_IO_BY_CIRC lines (19)
count unsigned int count of I/Os for circumstance
waits unsigned int Number of waits for circumstance
cancels unsigned int Number of cancels for circumstance
merges unsigned int Number of merges for circumstance
type typechar[6] Reserved
description char[54] Circumstance description

Statistics iocounts Information

Chapter 13. zFS application programming interface information 363

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v When sa_supported_ver is 0 or 1, the output consists of API_IO_BY_TYPE and

API_IO_BY_CIRC. When sa_supported_ver is 2, the output consists of
API_IO_HDR, API_IO_BY_TPYE2, and API_IO_BY_CIRC2

Privilege required

None.

Related services
Statistics iobyaggr Information
Statistics iobydasd Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_IOCOUNTS 243 /* Performance API queries */

-- or --
API_IO_HDR

number_of_type_lines unsigned int Number of API_IO_BY_TYPE2 lines (3)
number_of_circ_lines unsigned int Number of API_IO_BY_CIRC2 lines (19)
reserved[6] int Reserved

API_IO_BY_TYPE2[3]
count unsigned long long Count of I/Os for type
waits unsigned long long Number of waits for type
cancels unsigned long long Number of cancels for type
merges unsigned long long Number of merges for type
type char[6] Reserved
description char[54] Type description
pad1 char[4] Pad bytes

API_IO_BY_CIRC2[19]
count unsigned long long Count of I/Os for circumstance
waits unsigned long long Number of waits for circumstance
cancels unsigned long long Number of cancels for circumstance
merges unsigned long long Number of merges for circumstance
type char[6] Reserved
description char[54] Circumstance description
pad1 char[4] Pad bytes

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR zFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred
E2BIG Information too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics iocounts Information

364 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

#define TOTAL_TYPES 3
#define TOTAL_CIRC 19
#define SA_VER_INIT 0x01

typedef struct syscall_parmlist_t
{

int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct reset_time {
unsigned int posix_time_high; /*high order 32 bits since epoc*/
unsigned int posix_time_low; /*low order 32 bits since epoch*/
unsigned int posix_usecs; /*microseconds */
int pad1;

} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct */
int sa_ver; /* the version number currently always 1*/

#define SA_VER_2 0x02
char sa_flags; /* flags field must be x00 or x80, */

/* x80 means reset statistics */
#define SA_RESET 0x80

char sa_fill[3]; /* spare bytes */
int sa_supported_ver; /* version of data returned */
int sa_reserve[3]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

typedef struct api_iocount_hdr_2 {
int number_of_type_lines;
int number_of_circ_lines;
int reserved[6];

} API_IOCOUNT_HDR_2;

typedef struct API_IO_BY_TYPE_2_t {
unsigned long long int count;
unsigned long long int waits;
unsigned long long int cancels; /* Successful cancels of IO */
unsigned long long int merges; /* Successful cancels of IO */
char type[6];
char description[54]; /*add 3 bytes for padding */
char reserved[4];

} API_IO_BY_TYPE_2;

typedef struct API_IO_BY_CIRC_2_t {
unsigned long long int count;
unsigned long long int waits;
unsigned long long int cancels;
unsigned long long int merges;
char type[6];
char description[54]; /*add 3 bytes for padding */
char reserved[4];

} API_IO_BY_CIRC_2;

/* Version 1 structures */
typedef struct API_IO_BY_TYPE_t

Statistics iocounts Information

Chapter 13. zFS application programming interface information 365

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{
unsigned int number_of_lines;
unsigned int count;
unsigned int waits;
unsigned int cancels; /* Successful cancels of IO */
unsigned int merges; /* Successful merges of IO */
char reserved1[6];
char description[51];
char pad1[3];

} API_IO_BY_TYPE;

typedef struct API_IO_BY_CIRC_t
{

unsigned int number_of_lines;
unsigned int count;
unsigned int waits;
unsigned int cancels;
unsigned int merges;
char reserved1[6];
char description[51];
char pad1[3];

} API_IO_BY_CIRC;

/***/
/* The following structures are used to represent cfgop queries */
/* for iocounts */
/***/
struct parmstruct {

syscall_parmlist myparms;
STAT_API myapi;
API_IOCOUNT_HDR_2 myiocounthdr;
API_IO_BY_TYPE_2 mystatsbytype[TOTAL_TYPES];
API_IO_BY_CIRC_2 mystatsbycirc[TOTAL_CIRC];
char systemname[9];

} myparmstruct;

int print_iocounts_version1(STAT_API* stapptr);
int print_iocounts_version2(STAT_API *stapptr,

API_IOCOUNT_HDR_2 *hdrptr,
API_IO_BY_TYPE_2 *stiotptr,
API_IO_BY_CIRC_2 *stiocptr);

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i;

STAT_API *stapptr = &(myparmstruct.myapi);
API_IOCOUNT_HDR_2 *hdrptr = &(myparmstruct.myiocounthdr);
API_IO_BY_TYPE_2 *stiotptr = &(myparmstruct.mystatsbytype[0]);
API_IO_BY_CIRC_2 *stiocptr = &(myparmstruct.mystatsbycirc[0]);
char buf[33];

myparmstruct.myparms.opcode = STATOP_IOCOUNTS;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) +

sizeof(STAT_API);
myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want to query the iocounts*/
/* of a different system than this one */
/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) */
/* + sizeof(STAT_API) */
/* + (sizeof(API_IOCOUNT_HDR_2 */

Statistics iocounts Information

366 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* + (TOTAL_TYPES * sizeof(API_IO_BY_TYPE_2)) */
/* + (TOTAL_CIRC * sizeof(API_IO_BY_CIRC_2)); */

myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(stapptr, 0, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = (int)(sizeof(API_IOCOUNT_HDR_2)) +

(TOTAL_TYPES * sizeof(API_IO_BY_TYPE_2)) +
(TOTAL_CIRC * sizeof(API_IO_BY_CIRC_2));

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error querying iocounts, BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else
{

/* Check the output that version that was returned */
if (stapptr->sa_supported_ver == SA_VER_INIT)

print_iocounts_version1(stapptr);
else

print_iocounts_version2(stapptr, hdrptr, stiotptr, stiocptr);

unsigned int ptl = stapptr->reset_time_info.posix_time_low;
if (0 == ctime_r((time_t *) & ptl, buf))

printf("Could not get timestamp.\n");
else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}

}
return 0;

}

int print_iocounts_version1(STAT_API* stapptr)
{

char *p = (char*) stapptr;
p += sizeof(STAT_API);
API_IO_BY_TYPE *stiotptr = (API_IO_BY_TYPE*) p;
p += sizeof(API_IO_BY_TYPE) * TOTAL_TYPES;
API_IO_BY_CIRC *stiocptr = (API_IO_BY_CIRC*) p;

int i;
printf("Displaying Version 1 Output\n");
if (stiotptr->number_of_lines != TOTAL_TYPES)

Statistics iocounts Information

Chapter 13. zFS application programming interface information 367

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{
printf("Unexpected number of IO Types, %d instead of TOTAL_TYPES\n",

stiotptr->number_of_lines);
return 1;

}
if (stiocptr->number_of_lines != TOTAL_CIRC)
{

printf("Unexpected number of IO Circumstances, %d instead of TOTAL_CIRC\n",
stiocptr->number_of_lines);

return 2;
}
printf("\n I/O Summary By Type\n");
printf(" -------------------\n");
printf("\n");
printf("Count Waits Cancels Merges Type \n");
printf("---------- ---------- ---------- ---------- ----------\n");

for (i = 0; i < TOTAL_TYPES; i++)
{

printf("%10u %10u %10u %10u %s\n",
stiotptr->count, stiotptr->waits,
stiotptr->cancels, stiotptr->merges,
stiotptr->description);

stiotptr = stiotptr + 1;
}

printf("\n");
printf(" I/O Summary By Circumstance\n");
printf(" ---------------------------\n");
printf("\n");
printf("Count Waits Cancels Merges Circumstance\n");
printf("---------- ---------- ---------- ---------- ------------\n");
for (i = 0; i < TOTAL_CIRC; i++)
{

printf("%10u %10u %10u %10u %s\n",
stiocptr->count, stiocptr->waits,
stiocptr->cancels, stiocptr->merges,
stiocptr->description);

stiocptr = stiocptr + 1;
printf("\n");

}
return 0;

}

int print_iocounts_version2(STAT_API *stapptr,
API_IOCOUNT_HDR_2 *hdrptr,
API_IO_BY_TYPE_2 *stiotptr,
API_IO_BY_CIRC_2 *stiocptr)

{
int i;
if (hdrptr->number_of_type_lines != TOTAL_TYPES)
{

printf("Unexpected number of IO Types, %d instead of TOTAL_TYPES\n",
hdrptr->number_of_type_lines);

return 1;
}
if (hdrptr->number_of_circ_lines != TOTAL_CIRC)
{

printf("Unexpected number of IO Circumstances, %d instead of TOTAL_CIRC\n",
hdrptr->number_of_circ_lines);

return 2;
}

printf("\n I/O Summary By Type\n");
printf(" -------------------\n");
printf("\n");
printf("Count Waits Cancels "

Statistics iocounts Information

368 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

"Merges Type \n");
printf("-------------------- -------------------- -------------------- "

"-------------------- ----------\n");

for (i = 0; i < TOTAL_TYPES; i++)
{

printf("%20llu %20llu %20llu %20llu %s\n",
stiotptr->count, stiotptr->waits,
stiotptr->cancels, stiotptr->merges,
stiotptr->description);

stiotptr = stiotptr + 1;
}

printf("\n");
printf(" I/O Summary By Circumstance\n");
printf(" ---------------------------\n");
printf("\n");
printf("Count Waits Cancels "

"Merges Circumstance\n");
printf("-------------------- -------------------- -------------------- "

"-------------------- ------------\n");

for (i = 0; i < TOTAL_CIRC; i++)
{

printf("%20llu %20llu %20llu %20llu %s\n",
stiocptr->count, stiocptr->waits,
stiocptr->cancels, stiocptr->merges,
stiocptr->description);

stiocptr = stiocptr + 1;
printf("\n");

}

return 0;
}

Statistics iocounts Information

Chapter 13. zFS application programming interface information 369

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Statistics Kernel Information
Purpose

A performance statistics operation that returns kernel counters, including the
number of kernel operations and average time for the operation.

Format

syscall_parmlist
opcode int 246 STATOP_KNPFS
parms[0] int Offset to STAT_API
parms[1] int offset of output following STAT_API
parms[2] int Offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int Length of buffer following STAT_API
sa_ver int 1 or 2
sa_flags char[1] 0x80 - Reset statistics
sa_fill char[3] Reserved
sa_supported_ver int Version of data returned or 0
sa_reserve int[3] Reserved
posix_time_high unsigned int High order 32 bits since epoch
posix_time_low unsigned int Low order 32 bits since epoch
posix_useconds unsigned int Microseconds
pad1 int Reserved

KERNEL_CALL_STATS
kc_eye char[8] Reserved
kc_version short Reserved
kc_len short Reserved
pad1 int Reserved
KERNEL_LINE[40]

kl_operation_name char[27] Operation name string
kl_valid char Operation entry is valid (0x01)
kl_count unsigned int Count of operations
kl_time two_words High - integer part of average time

Low - fractional part of average time
kl_bytes hyper Bytes associated with read and write

operations, 0 otherwise
kl_reserved int[6] Reserved

kc_totalops unsigned int Grand total operations
pad2 int Reserved
kc_totaltime hyper High=integer part of average

wait time
Low=fractional part of average
wait time

kc_valid_slots int Number of slots in above array that
actually contains data

kc_reserved int[10] Reserved
pad3 int Reserved

Statistics Kernel Information

370 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v When a_supported_ver is 0 or 1, output consists of KERNEL_CALL_STATS and

KERNEL_LINE. When sa_supported_ver is 2, output consists of
KERNEL_CALL_STATS2 and KERNEL_LINE2.

v When a_supported_ver is 2, the KERNEL_LINE2 follows the
KERNEL_CALL_STATS2 structure. There are kc_kernel_line_count
KERNEL_LINE2 structures to represent kernel lines of output. These are
followed by kc_client_line_count KERNEL_LINE2 structures of client output
lines.

-- or --
KERNEL_CALL_STATS2

kc_eye char [8] "KCSTAT2"
kc_version short 1
kc_len short Size of KERNEL_CALL_STATS2
pad1 int Reserved
kc_kernel_line_count unsigned int Number of KERNEL_LINE2s

for kernel
kc_client_line_count unsigned int Number of KERNEL_LINE2s

for clients
kc_totalops unsigned long long Total operations
kc_totalxcfops unsigned long long Total xcf operations
kc_client_totalops unsigned long long Total operations for

clients
kc_client_totalxcfops unsigned long long Total xcf operations for

clients
kc_totaltime_whole unsigned int Whole portion of average

total time
kc_totaltime_decimal unsigned int Decimal portion of average

total time
kc_client_totaltime_whole unsigned int Whole portion of average

client total time
kc_client_totaltime_decimal unsigned int Decimal portion of average

client total time
kc_reserved[10] int Reserved

KERNEL_LINE2[n]
kl_operation_name char[27] operation name string
kl_valid char 1 - operation entry valid
pad1 int Reserved
kl_count unsigned long long Count of operations
kl_xcfcount unsigned long long Count of xcf operations
kl_time hyper High=integer part of

average time
Low=fractional part of
average time

kl_bytes unsigned long long Bytes in read and write
operations, otherwise 0

kl_reserved int[4] Reserved
systemname char[9] System to get stats from

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR zFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred
E2BIG Information too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics Kernel Information

Chapter 13. zFS application programming interface information 371

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

Privilege required

None.

Related services
Statistics Vnode Cache Information
Statistics Metadata Cache Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <time.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_KNPFS 246
#define BUFFER_SIZE 1024 * 64
#define SA_VER_INIT 0x01

typedef struct syscall_parmlist_t
{

int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef union {
struct double_word_t {

unsigned int first_word;
unsigned int second_word;

} double_word;

double alignment_dummy;
} two_words;

#define MAX_KERNEL_LINES 40

typedef struct KERNEL_line_t2 {
char kl_operation_name[27];
char kl_valid;
int pad1;
unsigned long long kl_count;
unsigned long long kl_xcfcount;
two_words kl_time;
uint64_t kl_bytes;
int kl_reserved[4];

} KERNEL_LINE2;

typedef struct kernel_call_stats_t2 {
char kc_eye[8]; /*eye catcher */
short kc_version;
short kc_len;
int pad1;
int kc_kernel_line_count;

Statistics Kernel Information

372 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int kc_client_line_count;
unsigned long long kc_totalops; /*Owner grand Total operations*/
unsigned long long kc_totalxcfops; /*Owner grand Total xcf operations*/
unsigned long long kc_client_totalops; /*Client grand Total operations*/
unsigned long long kc_client_totalxcfops; /*Client grand Total operations*/
two_words kc_totaltime; /*Owner Grand Total wait time*/
two_words kc_client_totaltime; /*Client Grand Total wait time*/
int kc_reserved[10];

} KERNEL_CALL_STATS2;

/* Version 1 Output Structures */
typedef struct KERNEL_line_t {

char kl_operation_name[27];
char kl_valid;
unsigned int kl_count;
two_words kl_time;
int kl_reserved[6];

} KERNEL_LINE;

typedef struct kernel_call_stats_t {
char kc_eye[8]; /*eye catcher */
short kc_version;
short kc_len;
int pad1;
KERNEL_LINE OUTPUT[MAX_KERNEL_LINES];
unsigned int kc_totalops; /*Grand Total operations */
int pad2;
two_words kc_totaltime; /*Grand Total wait time*/
int kc_valid_slots; /* Number of slots in the above array*/

/* that actually contain data*/
int kc_reserved[10];
int pad3;

} KERNEL_CALL_STATS;

/* reset timestamp */
typedef struct reset_time {

unsigned int posix_time_high; /*high order 32 bits since epoc*/
unsigned int posix_time_low; /*low order 32 bits since epoch*/
unsigned int posix_usecs; /*microseconds*/
int pad1;

} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t
{
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct*/
int sa_ver; /* the version number currently always 1*/

#define SA_VER_2 0x02
char sa_flags; /* flags field must be x00 or x80,

x80 means reset statistics*/
#define SA_RESET 0x80

char sa_fill[3]; /* spare bytes */
int sa_supported_ver; /* version of data returned */
int sa_reserve[3]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

struct parmstruct {
syscall_parmlist myparms;
STAT_API myapi;
KERNEL_CALL_STATS2 mystats;

Statistics Kernel Information

Chapter 13. zFS application programming interface information 373

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

KERNEL_LINE2 mykernline;
char systemname[9];

} myparmstruct;

int print_stat_kern_version1(STAT_API* stapptr);

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i,j;
int processing_server_data = 1;
int lines;
int buff_fill_len;
char itoaBuff[11];
two_words totaltime;
unsigned long long totalops;
unsigned long long totalxcfops;

STAT_API local_req;
char* buffp = NULL;
syscall_parmlist* parmp = NULL;
STAT_API* stapptr = NULL;
KERNEL_CALL_STATS2* kcp = NULL;
KERNEL_LINE2* klp = NULL;
char buf[33];

stapptr = &local_req;
memset(stapptr, 0x00, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);

stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = ((2 * MAX_KERNEL_LINES) * sizeof(KERNEL_LINE2)) +

sizeof(KERNEL_CALL_STATS2);

buffp = (char*) malloc(BUFFER_SIZE);
if(buffp == NULL)
{

printf("Malloc Error\n");
return 0;

}
memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

parmp = (syscall_parmlist*) &buffp[0];
parmp->opcode = STATOP_KNPFS;
parmp->parms[0] = sizeof(syscall_parmlist);
parmp->parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
parmp->parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want to query the kernel */
/* statistics of a different system than this one */
/* parmp->parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + */
/* sizeof(KERNEL_CALL_STATS2); */

parmp->parms[3] = 0;
parmp->parms[4] = 0;
parmp->parms[5] = 0;
parmp->parms[6] = 0;

buff_fill_len = sizeof(syscall_parmlist);
stapptr = (STAT_API*) &buffp[buff_fill_len];
memcpy(stapptr, &local_req, sizeof(STAT_API));
buff_fill_len += sizeof(STAT_API);

Statistics Kernel Information

374 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
BUFFER_SIZE, /* Length of Argument */
(char *) buffp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error querying kernel calls, "
"BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else
{

if (stapptr->sa_supported_ver == SA_VER_INIT)
{

print_stat_kern_version1(stapptr);
}
else
{

/* Get the pointers to the output structures */
kcp = (KERNEL_CALL_STATS2*) &buffp[buff_fill_len];
buff_fill_len += sizeof(KERNEL_CALL_STATS2);
klp = (KERNEL_LINE2*) &buffp[buff_fill_len];

lines = kcp->kc_kernel_line_count;
totaltime = kcp->kc_totaltime;
totalops = kcp->kc_totalops;
totalxcfops = kcp->kc_totalxcfops;

printf(" zFS Kernel PFS Calls\n");
printf(" ---------------------\n\n");

/* Do once if no client information, */
/* otherwise loop again printing out client stats */
int do_client = 1;
while(do_client)
{

if(processing_server_data)
printf("%15c On Owner \n", ’ ’);

else
printf("%15c On Client \n", ’ ’);

printf(" ---------------------\n\n");

printf("Operation Count XCF req "
"Avg Time Bytes \n");

printf("--------- ---------- ---------- "
"--------- ----------\n");

for (j = 0; j < lines; j++)
{

if (!(klp->kl_valid))
break;

sprintf(itoaBuff, "%d", klp->kl_bytes);

printf("%13s %10llu %10llu %9u.%3.3u %10s\n",
klp->kl_operation_name,
klp->kl_count,
klp->kl_xcfcount,

Statistics Kernel Information

Chapter 13. zFS application programming interface information 375

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

klp->kl_time.double_word.first_word,
klp->kl_time.double_word.second_word,
klp->kl_bytes ? itoaBuff : "");

klp++;
}

/* Print out the Totals */
printf("------------ ---------- ---------- ----------\n");
printf("%13s %10llu %10llu %9u.%3.3u\n\n\n",

"TOTALS*",
totalops,
totalxcfops,
totaltime.double_word.first_word,
totaltime.double_word.second_word);

/* If client data exists, and we have not already processed it */
if ((processing_server_data) && (kcp->kc_client_line_count))
{

/* setup the client data */
lines = kcp->kc_client_line_count;
totaltime = kcp->kc_client_totaltime;
totalops = kcp->kc_client_totalops;
totalxcfops = kcp->kc_client_totalxcfops;
processing_server_data = 0;
do_client = 1;

}
else

do_client = 0;
}

}

if (0 == ctime_r((time_t*) & stapptr->reset_time_info.posix_time_low, buf))
printf("Could not get timestamp.\n");

else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}
}
return 0;

}

int print_stat_kern_version1(STAT_API* stapptr)
{

int i;
char *p = (char*) stapptr;
p += sizeof(STAT_API);
KERNEL_CALL_STATS *stkcptr = (KERNEL_CALL_STATS*) p;

printf("Displaying the Version 1 Stats\n");
printf("\n%34s\n", "zFS Kernel PFS Calls");
printf("%34s\n", "--------------------");
printf("\n");
printf("Operation Count Avg Time \n");
printf("--------- ---------- ----------\n");

i = 0;
while (stkcptr->OUTPUT[i].kl_valid == 1)
{

printf("%13s %10u %9u.%3.3u\n",
stkcptr->OUTPUT[i].kl_operation_name,
stkcptr->OUTPUT[i].kl_count,
stkcptr->OUTPUT[i].kl_time.double_word.first_word,
stkcptr->OUTPUT[i].kl_time.double_word.second_word);

Statistics Kernel Information

376 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

i += 1;
}
printf("--------- ---------- ----------\n");
printf("*TOTALS* %10u %9u.%3.3u\n",

stkcptr->kc_totalops,
stkcptr->kc_totaltime.double_word.first_word,
stkcptr->kc_totaltime.double_word.second_word);

}

Statistics Kernel Information

Chapter 13. zFS application programming interface information 377

|
|
|
|
|
|
|
|

Statistics Locking Information
Purpose

A performance statistics operation that returns locking information. Requesting
version 1 output returns counters with 4-byte values. Requesting version 2 output
returns counters with 8-byte values.

Format

syscall_parmlist
opcode int 240 STATOP_LOCKING
parm[0] int Offset to STAT_API
parm[1] int Offset of output following STAT_API
parm[2] int Offset to system name
parm[3] int 0
parm[4] int 0
parm[5] int 0
parm[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int Length of buffer that

follows STAT_API
sa_ver int 1 or 2
sa_flags char 0x80 for reset; 0 otherwise
sa_fill char[3] 0
sa_supported_ver int Version of data returned (0

and 1 both mean version 1)
sa_reserve int[3] 0
posix_time_high unsigned int High order 32 bits since

epoch
posix_time_low unsigned int Low order 32 bits since

epoch
posix_useconds unsigned int Microseconds
pad1 int Reserved

STAT_LOCKING
reserved1 int Reserved
stlk_untimed_sleeps unsigned int Number of untimed sleeps
stlk_timed_sleeps unsigned int Number of timed sleeps
stlk_wakeups unsigned int Number of wake ups
stlk_total_wait_for_locks unsigned int total waits for locks

pad1 int Reserved
stlk_average_lock_wait_time double Average lock wait time

stlk_avg_lock_wait_time_whole int Average lock wait time in
msecs (left of the decimal)

stlk_avg_lock_wait_time_decimal int Average lock wait time in
msecs (decimal part in
thousandths (3 means .003,
300 means .3)

Statistics Locking Information

378 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
||

stlk_total_monitored_sleeps unsigned int Total monitored sleeps
pad2 int Reserved

stlk_average_monitored_sleep_time double Average monitored sleep time
stlk_avg_mon_sleep_time_whole int Average monitored sleep time

in msecs (left of decimal)
stlk_avg_mon_sleep_time_decimal int Average monitored sleep time

in msecs. Decimal part is in
thousandths (3 means .003,
00 means .3)

stlk_total_contentions unsigned int Total lock contention
stlk_reserved_space char[48] Reserved for future use

pad3 int Reserved
LOCK_LINE[15] struct Lock_line[15] Lock data

count int Number of waits for lock
async int Asynchronous disposition
spins int Number of attempts to get

lock that did not resolve
immediately

pad int Keep alignment boundaries
percentage double
percentage_whole int Percentage >= 1
percentage_decimal int Percentage < 1. Decimal part

is in thousandths (3 means
.003 and 300 means .3)

description char[84] Description of the lock
pad2 int Reserved

SLEEP_LINE[5] struct Sleep_line[5] Storage for sleep data
sleepcount unsigned int Time spent sleeping
pad int Keep alignment boundaries
percentage double Percentage of time spent

sleeping
percentage_whole int Percentage >=1
percentage_decimal int Percentage < 1. Decimal part

is in thousandths (3 means
.003 and 300 means .3)

description char[84] Description of the thread
pad int Keep alignment boundaries

systemname char[9]
-- or --
STAT_LOCKING2

reserved1 int[2] int
stlk_untimed_sleeps unsigned long long int Untimed sleeps
stlk_timed_sleeps unsigned long long int Timed sleeps
stlk_wakeups unsigned long long int Wake ups
stlk_total_wait_for_locks unsigned long long int Total waits for

locks
stlk_average_lock_wait_time double Average lock wait time
stlk_avg_lock_wait_time_whole int Average lock wait time

in msecs (left of the
decimal part)

stlk_avg_lock_wait_time_decimal int Average lock wait time
in msecs Decimal part
is in thousandths (3
means .003, 300 is .3)

stlk_total_monitored_sleeps unsigned long long int Total monitored
sleeps

stlk_average_monitored_sleep_time double Average monitored sleep time
stlk_avg_mon_sleep_time_whole int Average monitoredsleep time

in msecs left of the decimal

Statistics Locking Information

Chapter 13. zFS application programming interface information 379

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Usage notes
v When sa_supported_ver is 0 or 1, the output consists of STAT_LOCKING,

followed by one or more LOCK_LINE, followed by one for more SLEEP_LINE.
When sa_supported_ver is 2, the output consists of STAT_LOCKING2, followed
by one or more LOCK_LINE2, followed by one for more SLEEP_LINE2.

v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

None.

Related services
Statistics Storage Information
Statistics User Cache Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

stlk_avg_mon_sleep_time_decimal int Average monitored
sleep time in msecs.
decimal part is in
thousandths (3 means
.003, 300 means .3)

stlk_total_contentions unsigned long long int Total lock contention
stlk_reserved_space char[48] Reserved for future
stlk_lock_line_count int Number of lock lines
stlk_sleep_line_count int Number of sleep lines

LOCK_LINE2[m]
count unsigned long long int Number of thread waits for

this lock
async unsigned long long int Asynchronous disposition
spins unsigned long long int Number of attempts to get

lock that did not
resolve immediately

percentage double
percentage_whole int Percentage >= 1
percentage_decimal int Percentage < 1. Decimal part

is in thousandths
(3 means .003, 300 means .3)

description char[84] Description of the lock
pad int Fill space to align

SLEEP_LINE2[n]
sleepcount unsigned long long int Time spent sleeping
percentage double Percentage of time spent

sleeping
percentage_whole int Percentage >=1
percentage_decimal int Percentage < 1. decimal part

is in thousandths
(3 means .003, 300 means .3)

description char[84] Description of the thread
pad int Keep boundary alignment

Statistics Locking Information

380 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|
|
|
|

#define ZFSCALL_STATS 0x40000007
#define STATOP_LOCKING 240 /* Performance API queries */
#define BUFFER_SIZE 1024 * 64
#define TOP15 15

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct Lock_line_2
{

unsigned long long int count; /* Number of thread waits for this lock */
unsigned long long int async; /* Asynchronous disposition */
unsigned long long int spins; /* Number of attempts to get lock */

/* that didnt resolve immediately*/
double reserved;
int percentage_whole; /* percentage >= 1*/
int percentage_decimal;/* percentage < 1*/
char description[84]; /* Description of the lock */
int pad2;

} LOCK_LINE_2;

typedef struct Sleep_line_2
{

unsigned long long int sleepcount; /* Time spent sleeping */
double reserved;
int percentage_whole; /* Percentage >=1 */
int percentage_decimal; /* Percentage < 1 */
char description[84]; /*Description of the thread*/
int pad2;

} SLEEP_LINE_2;

/*Version 1 Output Structures */
typedef struct Lock_line_t {

int count; /* Number of thread waits for this lock */
int async; /* Asynchronous disposition*/
int spins; /* Number of attempts to get lock that

did not resolve immediately*/
int pad1;
double percentage;
int percentage_whole; /* percentage >= 1*/
int percentage_decimal; /* percentage < 1*/

/* in thousandths.*/
/* For example, 3 means .003 and 300 means .3 */

char description[84]; /* Description of the lock */
int pad2;

} LOCK_LINE;

typedef struct Sleep_line_t {
unsigned int sleepcount; /* Time spent sleeping */
int pad1;
double percentage; /* Percentage of time spent sleeping*/
int percentage_whole; /* Percentage >=1 */
int percentage_decimal; /* Percentage < 1 */

/* in thousandths.*/
/* For example, 3 means .003 and 300 means .3 */

char description[84]; /* Description of the thread*/
int pad2;

} SLEEP_LINE;

typedef struct stat_locking_t {
int reserved1;
unsigned int stlk_untimed_sleeps; /* Number of untimed sleeps */
unsigned int stlk_timed_sleeps; /* Number of timed sleeps */

Statistics Locking Information

Chapter 13. zFS application programming interface information 381

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned int stlk_wakeups; /* Number of wake ups */
unsigned int stlk_total_wait_for_locks; /* Total waits for locks */
int pad1;
double stlk_average_lock_wait_time; /*Average lock wait time */
int stlk_avg_lock_wait_time_whole; /*Average lock wait time in msecs*/

/*left of the decimal part */
int stlk_avg_lock_wait_time_decimal; /*Average lock wait time in msecs*/

/* decimal portion */
/* in thousandths */
/* for example, 3 means*/
/* .003 and 300 means .3 */

unsigned int stlk_total_monitored_sleeps; /* Total monitored sleeps */
int pad2;
double stlk_average_monitored_sleep_time; /* Average monitored sleep time */
int stlk_avg_mon_sleep_time_whole; /* Average monitored sleep time */

/* in msecs left of the */
/* decimal part */

int stlk_avg_mon_sleep_time_decimal; /* Average monitored sleep */
/* time in msecs */
/* decimal portion */
/* in thousandths */
/* for example, 3 means .003 */
/* and 300 means .3 */

unsigned int stlk_total_contentions; /*Total lock contention of all kinds*/
char stlk_reserved_space[48]; /* reserved for future use */
int pad3;

#define MAX_LOCKS 15 /* Maximum number of locks in this release*/
#define MAX_SLEEPS 5 /* Maximum number of sleeps in this release*/

LOCK_LINE stlk_locks[MAX_LOCKS]; /* Storage for the lock data */
SLEEP_LINE stlk_sleeps[MAX_SLEEPS]; /* Storage for the top 5 most */

/* common sleep threads*/
} STAT_LOCKING;

/* reset timestamp */
typedef struct reset_time {

unsigned int posix_time_high; /* high order 32 bits since epoc */
unsigned int posix_time_low; /* low order 32 bits since epoch */
unsigned int posix_usecs; /* microseconds */
int pad1;

} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct */
int sa_ver; /* the version number currently always 1*/

#define SA_VER_2 0x02
#define SA_VER_INIT 0x01

char sa_flags; /* flags field must be x00 or x80, */
/* x80 means reset statistics */

#define SA_RESET 0x80
char sa_fill[3]; /* spare bytes */
int sa_supported_ver; /* version of data returned */
int sa_reserve[3]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

typedef struct api_lock_stats_2
{

int pad1;
int ls_total_bytes_of_data; /* Total bytes of data*/
unsigned long long int ls_untimed_sleeps; /* Number of untimed sleeps*/

Statistics Locking Information

382 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned long long int ls_timed_sleeps; /* Number of timed sleeps */
unsigned long long int ls_wakeups; /* Number of wake ups */
unsigned long long int ls_total_wait_for_locks; /* Total waits for locks */
double ls_average_lock_wait_time; /*Average lock wait time */
int ls_avg_lock_wait_time_whole; /*Average lock wait time in msecs left

of the decimal part*/
int ls_avg_lock_wait_time_decimal; /*Average lock wait time in

msecs decimal portion */
unsigned long long int ls_total_monitored_sleeps; /*Total monitored sleeps */
double ls_average_monitored_sleep_time;/* Average monitored sleep time */
int ls_avg_mon_sleep_time_whole; /*Average monitored sleep time in msecs

left of the decimal part*/
int ls_avg_mon_sleep_time_decimal; /*Average monitored sleep time in msecs

decimal portion */
unsigned long long int ls_total_contentions; /*Total lock contention

of all kinds*/
char ls_reserved_space[48]; /* reserved for future use */

#define MAX_LOCKS 15 /* Maximum number of locks in this release*/
#define MAX_SLEEPS 5 /* Maximum number of sleeps in this release*/

int ls_lock_line_count; /* count of lock lines, currently 15 */
int ls_sleep_line_count; /* count of sleep lines,currently 5 */

} API_LOCK_STATS_2;

int print_locking_version1(char *buffp,
int buff_fill_len);

int print_locking_version2(char *buffp,
int buff_fill_len);

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i;
int buff_fill_len;

STAT_API local_req;
char *buffp = NULL;
syscall_parmlist *parmp = NULL;
STAT_API *stapptr = NULL;

stapptr = &local_req;
memset(stapptr, 0x00, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);

stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = 2 * sizeof(API_LOCK_STATS_2) +

(MAX_LOCKS * sizeof(LOCK_LINE_2)) +
(MAX_SLEEPS * sizeof(SLEEP_LINE_2));

buffp = (char*) malloc(BUFFER_SIZE);
if(buffp == NULL)
{

printf("Malloc Error\n");
return 0;

}
memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

parmp = (syscall_parmlist*) &buffp[0];
parmp->opcode = STATOP_LOCKING;
parmp->parms[0] = sizeof(syscall_parmlist);
parmp->parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
parmp->parms[2] = 0;
parmp->parms[3] = 0;
parmp->parms[4] = 0;
parmp->parms[5] = 0;

Statistics Locking Information

Chapter 13. zFS application programming interface information 383

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

parmp->parms[6] = 0;

buff_fill_len = sizeof(syscall_parmlist);
stapptr = (STAT_API*) &buffp[buff_fill_len];
memcpy(stapptr, &local_req, sizeof(STAT_API));
buff_fill_len += sizeof(STAT_API);

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
BUFFER_SIZE, /* Length of Argument */
buffp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error querying locking stats, BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else
{

if(stapptr->sa_supported_ver == SA_VER_INIT)
print_locking_version1(buffp, buff_fill_len);

else
print_locking_version2(buffp, buff_fill_len);

}
return 0;

}

int print_locking_version2(char *buffp,
int buff_fill_len)

{
int i;
API_LOCK_STATS_2 *stlkptr = NULL;
LOCK_LINE_2 *llp = NULL;
SLEEP_LINE_2 *slp = NULL;

/* Point at output structures located in the buffer */
stlkptr = (API_LOCK_STATS_2*) &buffp[buff_fill_len];
buff_fill_len += sizeof(API_LOCK_STATS_2);
llp = (LOCK_LINE_2*) &buffp[buff_fill_len];
buff_fill_len += sizeof(LOCK_LINE_2);

/* Print out the locking statistics */
printf("%55s\n","Locking Statistics\n\n");
printf("Untimed sleeps: %20llu Timed Sleeps: "

"%20llu Wakeups: %20llu\n\n",
stlkptr->ls_untimed_sleeps,
stlkptr->ls_timed_sleeps,
stlkptr->ls_wakeups);

printf("%-42s %20llu\n",
"Total waits for locks:",
stlkptr->ls_total_wait_for_locks);

printf("%-42s %10u.%3.3u (msecs)\n\n",
"Average lock wait time:",
stlkptr->ls_avg_lock_wait_time_whole,
stlkptr->ls_avg_lock_wait_time_decimal);

printf("%-42s %10llu\n",
"Total monitored sleeps:",
stlkptr->ls_total_monitored_sleeps);

printf("%-42s %10u.%3.3u (msecs)\n\n",

Statistics Locking Information

384 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

"Average monitored sleep time:",
stlkptr->ls_avg_mon_sleep_time_whole,
stlkptr->ls_avg_mon_sleep_time_decimal);

printf("%20c Top %u Most Highly Contended Locks\n", ’ ’, TOP15);
printf(" Thread Async "

"Spin \n");
printf(" Wait Disp. "

"Resol. Pct. Description \n");
printf("-------------------- -------------------- "

"-------------------- ------ --------------\n");

/* Iterate through all the LOCK_LINE_2 structures */
for (i = 0; i < stlkptr->ls_lock_line_count; i++)
{

printf("%20llu %20llu %20llu %3u.%1.1u%% %.80s\n",
llp->count, llp->async, llp->spins,
llp->percentage_whole, llp->percentage_decimal,
llp->description);

llp++;
}
printf("\n");

printf("Total lock contention of all kinds: %10llu\n\n",
stlkptr->ls_total_contentions);

printf(" Top 5 Most Common Thread Sleeps\n");
printf("Thread Wait Pct. Description\n");
printf("--------------------- ------- -----------\n");

/* Point where the SLEEP_LINE_2 output structures begin in the buffer */
slp = (SLEEP_LINE_2*) llp;
for (i = 0; i < stlkptr->ls_sleep_line_count; i++)
{

printf(" %20llu %3u.%-3.1u%% %.80s\n\n",
slp->sleepcount,
slp->percentage_whole, slp->percentage_decimal,
slp->description);

slp++; /* point at next entry */
}

return 1;
}

int print_locking_version1(char *buffp,
int buff_fill_len)

{
int i;
printf("Version 1 Output is being displayed\n\n");

STAT_LOCKING *stlkptr;
stlkptr = (STAT_LOCKING*) &buffp[buff_fill_len];

printf("\n%50s\n\n", "Locking Statistics");

printf("Untimed sleeps: %10u \n",stlkptr->stlk_untimed_sleeps);
printf("Timed Sleeps: %10u \n",stlkptr->stlk_timed_sleeps);
printf("Wakeups: %10u \n\n",stlkptr->stlk_wakeups);

printf("Total waits for locks: %10u\n",
stlkptr->stlk_total_wait_for_locks);

printf("Average lock wait time: %6u.%3.3u (msecs)\n\n",
stlkptr->stlk_avg_lock_wait_time_whole,
stlkptr->stlk_avg_lock_wait_time_decimal);

printf("Total monitored sleeps: %10u\n",
stlkptr->stlk_total_monitored_sleeps);

Statistics Locking Information

Chapter 13. zFS application programming interface information 385

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("Average monitored sleep time: %6u.%3.3u (msecs)\n",
stlkptr->stlk_avg_mon_sleep_time_whole,
stlkptr->stlk_avg_mon_sleep_time_decimal / 1000);

printf("\n");
printf(" Top %u Most Highly Contended Locks\n\n", MAX_LOCKS);
printf(" Thread Async Spin \n");
printf(" Wait Disp. Resol. Pct. Description \n");
printf("---------- ---------- ---------- ----- --------------\n");

for (i = 0; i < MAX_LOCKS; i++)
{

printf("%10u %10u %10u %3u.%1.1u%% %.80s\n",
stlkptr->stlk_locks[i].count,
stlkptr->stlk_locks[i].async,
stlkptr->stlk_locks[i].spins,
stlkptr->stlk_locks[i].percentage_whole,
stlkptr->stlk_locks[i].percentage_decimal / 100,
stlkptr->stlk_locks[i].description);

}

printf("\n");
printf("Total lock contention of all kinds: u\n",

stlkptr->stlk_total_contentions);

printf("\n");
printf(" Top %u Most Common Thread Sleeps\n\n",

MAX_SLEEPS);

printf("Thread Wait Pct. Description\n");
printf("----------- ----- -----------\n");

for (i = 0; i < MAX_SLEEPS; i++)
{

printf(" %10u %3u.%1.1u%% %.80s\n",
stlkptr->stlk_sleeps[i].sleepcount,
stlkptr->stlk_sleeps[i].percentage_whole,
stlkptr->stlk_sleeps[i].percentage_decimal / 100,
stlkptr->stlk_sleeps[i].description);

}

}

Statistics Locking Information

386 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Statistics Log Cache Information
Purpose

A performance statistics operation that returns log cache counters, such as the
number of requests, hits, and waits on the log buffer cache.

Beginning in z/OS V2R2, a new log caching facility is used. If version 1 output is
requested, only the fields al_buffers and al_writtenPages are filled in with actual
data. All other fields are filled in with zeroes. Statistics for the new log caching
facility is returned when version 2 output is requested.

Format

syscall_parmlist
opcode int 247 STATOP_LOG_CACHE
parms[0] int Offset to STAT_API
parms[1] int offset of output following STAT_API
parms[2] int Offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int Length of buffer following STAT_API
sa_ver int 1 or 2
sa_flags char[1] 0x80 - Reset statistics
sa_fill char[3] Reserved
sa_supported_ver int Version returned in output buffer
sa_reserve int[3] Reserved
posix_time_high unsigned int High order 32 bits since epoch
posix_time_low unsigned int Low order 32 bits since epoch
posix_useconds unsigned int Microseconds
pad1 int Reserved

API_LOG_STATS
al_eye char[4] "ALOG"
al_size short Size of output
al_version char Version (1)
al_reserved1 char Reserved byte
al_buffers unsigned long long int Number of buffers used
al_reserved2 int Reserved
al_buffersize int Size of each buffer in

K bytes
al_lookups_reserved int Reserved
al_lookups int Lookups/creates of item

in log buffer cache
al_hits_reserved int Reserved
al_hits int Hits - number of items

time item found in cache
al_writtenPages unsigned long long int Number of log buffer pages

written to disk

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 387

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

al_fullWaits_reserved int Reserved
al_fullWaits int Number of times new log

buffer
requires wait on prior log
pages

al nbsWaits_reserved int Reserved
al nbsWaits int Number of times new log

buffer requires wait on
new block user I/O

al_reserved3 int[10] Reserved
API_NL_STATS

nl_eye char[4] "NLST"
nl_sizE short Size of output structure
nl_version char 2
nl_future char Reesrved for future use
nl_logs unsigned int Number of log files
nl_reclaim_pct unsigned int Percentage of logs

reclaimed at log-full time
nl_blocks_per_pio unsigned int Max number of log file

blocks to write per log IO
nl_sched_pct unsigned int Inactive buffer schedule

percentage (of log size)
nl_cachesize unsigned int Number of pages in log

cache
nl_fixed unsigned int Non-zero if cache

permanently fixed in memory
nl_freeitems unsigned int Number of unused pages in

cache
nl_ios unsigned int Number of I/Os in-progress
nl_numblks unsigned int Number of dirty metadata

blocks
nl_future1 unsigned int Number of unused pages in

cache
nl_tran_started unsigned long long int Number of started

transactions
nl_act_schedules unsigned long long int Number of times active

records scheduled to disk
nl_comp_schedules unsigned long long int Numner of times complete

records scheduled to disk
nl_act_pages unsigned long long int Number of active pages

scheduled to disk
nl_comp_pages unsigned long long int Number of completed pages

scheduled to disk
nl_tran_merged unsigned long long int Number of merged

transactions
nl_act_recswrote unsigned long long int Number of active records

written
nl_comp_recswrote unsigned long long int Number of complete tran

records written
nl_comp_transize unsigned long long int Number of batched/merged

transactions written
nl_tran_active_force unsigned long long int Number of times an active

tran forced
nl_tran_complete_force unsigned long long int Number of times a complete

tran forced

Statistics Log Cache Information

388 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

nl_recoveries unsigned long long int Number of times log file
recovery was run

nl_bufupdates unsigned long long int Number of buffer updates
nl_bufnew unsigned long long int Number of buffer updates

creating new update record
nl_bufavoid unsigned long long int Number of buffer updates

avoided due to prior update
nl_bufovlap unsigned long long int Number of buffer updates

that had overlap
nl_killavoid unsigned long long int Avoided metadata IOs due to

kill-avoid
nl_schedules unsigned long long int Number of times older

buffers scheduled to disks
nl_bufsched unsigned long long int Number of actual buffers

schedules and also avg.
quicksort size

nl_endmerges unsigned long long int Number of times merged
active records with
previously completed active
trans

nl_endmgcnt unsigned long long int Number of records merged
active records with
previously completed active
trans

nl_endnew unsigned long long int Number of records merged
that were new to prior
completed tran records

nl_endavoid unsigned long long int Number of records merged
that could be skipped
because prior completed
record covered it

nl_endovlap unsigned long long int Number of records merged
that had overlap with
previously written trans

nl_nbswrites unsigned long long int Number of times we added
NBS blocks to active tran

nl_kills unsigned long long int Number of kill calls for
buffers deallocated with
tran

nl_forcecomp unsigned long long int Number of times a forced
write of buffer forces
complete tran recods to
log

nl_forceact unsigned long long int Number of times a forced
write of buffer forces
active tran recods to log

nl_forces unsigned long long int Number of force calls
nl_forcewaits unsigned long long int Number of times a force has

to wait for in-progress
log pages

nl_hfact unsigned long long int Number of times a
handle-full has to write
active records

nl_hfcomp unsigned long long int Number of times a
handle-full has to write
comp records

nl_hf unsigned long long int Number of handle full calls

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 389

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v The output buffer contains an API_LOG_STATS structure when version 1

information is returned; for example, when sa_supported_ver is 0 or 1.
Otherwise, it contains an API_NL_STATS structure when sa_supported_ver is 2.

v As previously noted, when V2R2 returns version 1 data in API_LOG_STATS,
only the al_buffers and al_writtenPages fields are set.

Privilege required

None.

Related services
Statistics Vnode Cache Information
Statistics Metadata Cache Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_LOG_CACHE 247 /* Performance API queries */
#define BUFFER_SIZE 1024 * 64

#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \
{ \

INTEGER = (int)RATIO; \
DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \

}

typedef struct syscall_parmlist_t
{

nl_hfsched unsigned long long int Number of times a
handle-full had to schedule
buffers

nl_hfsched_blocks unsigned long long int Number of times a
handle-full scheduled
buffers and hence quicksort
blocks

nl_sync unsigned long long int Number of times a log sync
was requested

nl_bufwaits unsigned long long int Number of times had to wait
for a buffer

nl_bufmallocs unsigned long long int Number of emergency mallocs
to avoid deadlock

nl_act_comp_copies unsigned long long int Number of times a write to
active log had to copy
completed tran bytes

nl_future2 unsigned long long int[8] Future use
systemname char[9] System name to get stats from

Statistics Log Cache Information

390 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper {
unsigned int high; /* unsigned int reserved */
unsigned int low;

} hyper;

typedef struct API_NL_STATS_t {
char nl_eye[4]; /* Eye catcher = AMET */

#define NL_EYE "NLST"
short nl_size; /* Size of output structure */
char nl_version; /* Version of statistics returned */

#define NL_VER_2 2
char nl_future; /* Future use */
unsigned int nl_logs; /* Number of log files */
unsigned int nl_reclaim_pct; /* Pct. of log reclaimed at log-full time */
unsigned int nl_blocks_per_pio; /* Max number of log file blocks to write

per log IO */
unsigned int nl_sched_pct; /*Inactive buffer schedule pct. (of log size)*/
unsigned int nl_cachesize; /*Number of pages in cache*/
unsigned int nl_fixed; /*Non-zero if cache permanently fixed in memory*/
unsigned int nl_freeitems; /*Number of unused pages in cache*/
unsigned int nl_ios; /*Number of IOs in-progress*/
unsigned int nl_numblks; /*Number of dirty meta blocks*/
unsigned int nl_future1; /*Number of unused pages in cache*/
unsigned long long int nl_tran_started; /* Number of started

transactions */
unsigned long long int nl_act_schedules; /* Number of times active

records scheduled to disk */
unsigned long long int nl_comp_schedules; /* Numner of times complete

records scheduled to disk */
unsigned long long int nl_act_pages; /* Number of active pages

scheduled to disk */
unsigned long long int nl_comp_pages; /* Number of completed pages

scheduled to disk */
unsigned long long int nl_tran_merged; /* Number of merged

transactions */
unsigned long long int nl_act_recswrote; /* Number of active records

written */
unsigned long long int nl_comp_recswrote; /* Number of complete tran

records written */
unsigned long long int nl_comp_transize; /* Number of batched/merged

transactions written */
unsigned long long int nl_tran_active_force; /* Number of times an active

tran forced */
unsigned long long int nl_tran_complete_force;/* Number of times a complete

tran forced */
unsigned long long int nl_recoveries; /* Number of times log file

recovery was run */
unsigned long long int nl_bufupdates; /* Number of buffer updates */
unsigned long long int nl_bufnew; /* Number of buffer updates

creating new update record*/
unsigned long long int nl_bufavoid; /* Number of buffer updates

avoided due to prior
update */

unsigned long long int nl_bufovlap; /* Number of buffer updates
that had overlap */

unsigned long long int nl_killavoid; /* Avoided metadata IOs due to
kill-avoid */

unsigned long long int nl_schedules; /* Number of times older
buffers scheduled to disks*/

unsigned long long int nl_bufsched; /* Number of actual buffers
schedules and also avg.

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 391

quicksort size */
unsigned long long int nl_endmerges; /* Number of times merged

active records with
previously completed active
trans */

unsigned long long int nl_endmgcnt; /* Number of records merged
active records with
previously completed active
trans */

unsigned long long int nl_endnew; /* Number of records merged
that were new to prior
completed tran records */

unsigned long long int nl_endavoid; /* Number of records merged
that could be skipped
because prior completed
record covered it */

unsigned long long int nl_endovlap; /* Number of records merged
that had overlap with
previously written trans */

unsigned long long int nl_nbswrites; /* Number of times we added
NBS blocks to active tran */

unsigned long long int nl_kills; /* Number of kill calls for
buffers deallocated with
tran */

unsigned long long int nl_forcecomp; /* Number of times a forced
write of buffer forces
complete tran recods to
log */

unsigned long long int nl_forceact; /* Number of times a forced
write of buffer forces
active tran recods to log */

unsigned long long int nl_forces; /* Number of force calls */
unsigned long long int nl_forcewaits; /* Number of times a force has

to wait for in-progress
log pages*/

unsigned long long int nl_hfact; /* Number of times a
handle-full has to write
active records*/

unsigned long long int nl_hfcomp; /* Number of times a
handle-full has to write
comp records*/

unsigned long long int nl_hf; /* Number of handle full
calls */

unsigned long long int nl_hfsched; /* Number of times a
handle-full had to schedule
buffers */

unsigned long long int nl_hfsched_blocks; /* Number of times a
handle-full scheduled
buffers and hence quicksort
blocks */

unsigned long long int nl_sync; /* Number of times a log sync
was requested */

unsigned long long int nl_bufwaits; /* Number of times had to wait
for a buffer */

unsigned long long int nl_bufmallocs; /* Number of emergency mallocs
to avoid deadlock */

unsigned long long int nl_act_comp_copies; /* Number of times a write to
active log had to copy
completed tran bytes */

unsigned long long int nl_future2[8]; /* Stats for the future */
} API_NL_STATS;

/* Version 1 Output structure */
typedef struct API_LOG_STATS_t {

char al_eye[4]; /* Eye catcher = ALOG */
#define LS_EYE "ALOG"

Statistics Log Cache Information

392 z/OS V2R2 Distributed File Service zFS Administration

short al_size; /* Size of output structure */
char al_version; /* Version of stats */

#define LS_VER_INITIAL 1 /* First version of log stats */
char al_reserved1; /* Reserved byte, 0 in version 1 */
hyper al_buffers; /* Number of buffers used */
int al_reserved2; /* Reserved for future use, 0 in version 1 */
int al_buffsize; /* Size in kilobytes of one buffer */
hyper al_lookups; /* Lookups/creates of item in log buffer cache */
hyper al_hits; /* Hits, number of times item found in cache */
hyper al_writtenPages; /* Number of log buffer pages written to disk */
hyper al_fullWaits; /* Number of time new log buffer requires wait

on prior log pages */
hyper al_nbsWaits; /* Number of time new log buffer requires wait

on new block user IO */
int al_reserved3[10]; /* Reserved for future use */

} API_LOG_STATS;

/* reset timestamp */
typedef struct reset_time {

unsigned int posix_time_high; /* high order 32 bits since epoc */
unsigned int posix_time_low; /* low order 32 bits since epoch */
unsigned int posix_usecs; /* microseconds */
int pad1;

} RESET_TIME;

/***/
/* The following structure is the api query control block. */
/* It is used for all api query commands. */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct */
int sa_ver; /* the version number currently 1 or 2 */

#define SA_VER_2 0x02
#define SA_VER_INIT 0x01

char sa_flags; /* flags field must be x00 or x80, */
/* x80 means reset statistics */

#define SA_RESET 0x80
char sa_fill[3]; /* spare bytes */
int sa_supported_ver; /* version of data returned */
int sa_reserve[3]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

int print_logcache_version1(char *buffp, int buff_fill_len);
int print_logcache_version2(char *buffp, int buff_fill_len);

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i;
double temp_ratio;
int buff_fill_len;
int whole, decimal;
char buf[33];

unsigned long long int temp_hits, temp_total;

STAT_API local_req;
char* buffp = NULL;
syscall_parmlist* parmp = NULL;
STAT_API* stapptr = NULL;
API_NL_STATS* nlp = NULL;

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 393

stapptr = &local_req;
memset(stapptr, 0x00, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);

stapptr->sa_ver = NL_VER_2;
stapptr->sa_len = sizeof(API_NL_STATS);

buffp = (char*) malloc(BUFFER_SIZE);
if(buffp == NULL)
{

printf("Malloc Error\n");
return 0;

}
memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

parmp = (syscall_parmlist*) &buffp[0];
parmp->opcode = STATOP_LOG_CACHE;
parmp->parms[0] = sizeof(syscall_parmlist);
parmp->parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
parmp->parms[2] = 0;
parmp->parms[3] = 0;
parmp->parms[4] = 0;
parmp->parms[5] = 0;
parmp->parms[6] = 0;

buff_fill_len = sizeof(syscall_parmlist);
stapptr = (STAT_API*) &buffp[buff_fill_len];
memcpy(stapptr, &local_req, sizeof(STAT_API));
buff_fill_len += sizeof(STAT_API);

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
BUFFER_SIZE, /* Length of Argument */
buffp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error querying log cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else
{

if(stapptr->sa_supported_ver == SA_VER_INIT)
print_logcache_version1(buffp, buff_fill_len);

else
print_logcache_version2(buffp, buff_fill_len);

if (0 == ctime_r((time_t*) & stapptr->reset_time_info.posix_time_low, buf))
printf("Could not get timestamp.\n");

else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}
}
return 0;

}

Statistics Log Cache Information

394 z/OS V2R2 Distributed File Service zFS Administration

int print_logcache_version2(char *buffp, int buff_fill_len)
{

int i;
int whole, decimal;
double temp_ratio;
unsigned long long int temp_hits, temp_total;
API_NL_STATS *nlp = NULL;

/* Set nlp pointer to the output structure in the buffer */
nlp = (API_NL_STATS*) &buffp[buff_fill_len];
printf("%52s\n","Log File Caching Statistics\n");
printf("Logs\n");
printf("--------\n");
printf("%20u : Log files cached \n", nlp->nl_logs);
printf("%20llu : Log files recoveries performed \n",nlp->nl_recoveries);
printf("%20llu : Log file syncs (filesys quiesce)\n\n", nlp->nl_sync);
printf("Policies\n");
printf("--------\n");

printf("%20u : Reclaim pct. (amount reclaimed at log-full time)\n",
nlp->nl_reclaim_pct);

printf("%20u : Maximuem log pages per IO\n",
nlp->nl_blocks_per_pio);

printf("%20u : Inactive buffer schedule pct. (of log size)\n\n",
nlp->nl_sched_pct);

printf("Storage\n");
printf("--------\n");
printf("%20u : Log Cache Size (in 4K pages, fixed=%s)\n",

nlp->nl_cachesize, nlp->nl_fixed ? "YES" : "NO");

temp_hits = nlp->nl_freeitems;
temp_total = nlp->nl_cachesize;
if(temp_hits > temp_total)

temp_hits = temp_total;
temp_ratio = ((double)temp_hits) / temp_total;
temp_ratio *= 100.0;

/* Convert the ratio to ints representing the whole and decimal parts */
CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
whole = 100 - whole;

printf("%20u : Pct. of cache in-use\n", whole);
printf("%20llu : Free page obtain waits\n", nlp->nl_bufwaits);
printf("%20llu : Allocations to avoid deadlock\n\n",nlp->nl_bufmallocs);

printf("Transactions\n");
printf("------------\n");
printf("%20llu : Transactions started\n", nlp->nl_tran_started);
printf("%20llu : Transactions merged\n", nlp->nl_tran_merged);

temp_total = nlp->nl_comp_schedules;
temp_hits = nlp->nl_comp_transize;
temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits) / temp_total;
CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
decimal = decimal / 100;

printf("%18u.%1.1u : Average number of transactions batched together\n",
whole, decimal);

printf("%20llu : Sync calls to an active transaction\n",
nlp->nl_tran_active_force);

printf("%20llu : Sync calls to a completed transaction\n\n",
nlp->nl_tran_complete_force);

printf("IOs and Blocks\n");
printf("--------------\n");
printf("%20u : Log IOs in progress \n", nlp->nl_ios);

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 395

printf("%20u : Dirty metadata blocks\n", nlp->nl_numblks);
printf("%20llu : Metadata block kill calls\n", nlp->nl_kills);
printf("%20llu : Log File writes initiated\n", nlp->nl_comp_schedules);

temp_total = nlp->nl_comp_schedules;
temp_hits = nlp->nl_comp_pages;
temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits) / temp_total;
CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
decimal = decimal / 100; /* Just want tenths */

printf(" %13u.%1.1u : Average number of pages per log write\n",
whole, decimal);

printf("%20llu : Avoided IOs for metadata block due to deallocation\n",
nlp->nl_killavoid);

printf("%20llu : Scheduled not-recently-updated (NRU) metadata blocks\n",
nlp->nl_schedules);

temp_total = nlp->nl_schedules;
temp_hits = nlp->nl_bufsched;
temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits) / temp_total;
CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
decimal = decimal / 100; /* Just want tenths */

printf(" %13u.%1.1u : Avergage number of blocks per NRU IO\n",
whole, decimal);

printf("%20llu : Metadata buffers forced to disk\n",
nlp->nl_forces);

temp_total = nlp->nl_forces;
temp_hits = nlp->nl_forcecomp;
temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits)/temp_total;
CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
decimal = decimal / 100; /* Just want tenths */

printf(" %13u.%1.1u : Avg where metadata write forced write of log\n",
whole, decimal);

temp_hits = nlp->nl_forcewaits;
temp_total = nlp->nl_forces;

if(temp_hits > temp_total)
temp_hits = temp_total;

temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits)/temp_total;
temp_ratio *= 100.0;
CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);

printf("%18u.%1.1u : Pct. of metadata buffer forces waited on log IO\n",
whole, decimal);

printf("%20llu : Log-full processing calls\n", nlp->nl_hf);
temp_total = nlp->nl_hf;
temp_hits = nlp->nl_hfsched_blocks;
temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits)/temp_total;
CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
decimal = decimal / 100; /* Just want tenths */

printf("%18u.%1.1u : Avg number of metadata blocks "
"written per log-full\n\n",
whole, decimal);

printf("Update Records\n");
printf("--------------\n");
temp_total = nlp->nl_comp_schedules;
temp_hits = nlp->nl_comp_recswrote;
temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits)/temp_total;
CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
decimal = decimal / 100; /* Just want tenths */

Statistics Log Cache Information

396 z/OS V2R2 Distributed File Service zFS Administration

printf(" %13u.%1.1u : Avg number of update records per log IO.\n",
whole, decimal);

printf("%20llu : Number of NBS records written \n", nlp->nl_nbswrites);
printf("%20llu : Number of metadata buffer updates \n",

nlp->nl_bufupdates);
printf("%20llu : Number of updates requiring old-byte copying\n",

nlp->nl_act_comp_copies);
printf("%20llu : Avoided buffer update records due to overlap\n",

nlp->nl_bufavoid);
printf("%20llu : Avoided merge update records due to overlap\n\n",

nlp->nl_endavoid);
}

int print_logcache_version1(char *buffp, int buff_fill_len)
{

double temp_ratio;
int whole;
int decimal;
API_LOG_STATS *lgstptr = (API_LOG_STATS*) &buffp[buff_fill_len];

printf("%52s\n", "Log File Caching Statistics");
printf(" \n");
printf("Buffers (K bytes) Requests Hits Ratio Written \n");
printf("---------- --------- ---------- ---------- ------ ----------\n");

temp_ratio = (lgstptr->al_lookups.low == 0) ? 0.0 :
(((double)lgstptr->al_hits.low) /
lgstptr->al_lookups.low);

temp_ratio *= 100.0;
CONVERT_RATIO_TO_INTS(temp_ratio, whole, decimal);
decimal = decimal / 100; /* Just want tenths */

printf("%10u %9u %10u %10u %3u.%1.1u%% %10u\n",
lgstptr->al_buffers.low,
lgstptr->al_buffers.low * lgstptr->al_buffsize,
lgstptr->al_lookups.low, lgstptr->al_hits.low,
whole, decimal, lgstptr->al_writtenPages.low);

printf(" \n");
printf("New buffer: log full waits %10u NBS IO waits %10u\n",

lgstptr->al_fullWaits.low, lgstptr->al_nbsWaits.low);

printf(" \n");
}

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 397

Statistics Metadata Cache Information
Purpose

A performance statistics operation that returns metadata cache counters. It is used
to determine the number of requests, hits, and discards from the directory cache.

Format

syscall_parmlist
opcode int 248 STATOP_META_CACHE
parms[0] int Offset to STAT_API
parms[1] int Offset of output following STAT_API
parms[2] int Offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int length of buffer following STAT_API
sa_ver int 1 or 2
sa_flags char[1] 0x80 - Reset statistics
sa_fill char[3] Reserved
sa_supported_ver int Version of data returned
sa_reserve int[3] Reserved
posix_time_high unsigned int High order 32 bits since epoch
posix_time_low unsigned int Low order 32 bits since epoch
posix_useconds unsigned int Microseconds
pad1 int Reserved

API_META_STATS
am_eye char[4] "AMET"
am_size short Size of output
am_version char Version
am_reserved1 char Reserved byte
PRIMARY_STATS

buffers unsigned long long int Number of buffers in the cache
buffsize int Size of each buffer in K bytes
amc_res1 int Reserved
requests unsigned long long int Requests to the cache
hits unsigned long long int Hits in the cache
updates unsigned long long int Updates to buffers in the cache
reserved int[10] Reserved

BACK_STATS
buffers hyper Number of buffers in the cache
buffsize int Size of each buffer in K bytes
amc_res1 int Reserved

Statistics Metadata Cache Information

398 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v When sa_supported_ver is 0 or 1, the output buffer contains an

API_META_STATS structure. The BACK_STATS structure contains zeros because
there is no longer a metaback cache in V2R2. When sa_supported_ver is 2, the
output buffer contains an API_META_STATS2 structure.

Privilege required

None.

Related services
Statistics Vnode Cache Information
Statistics Metadata Cache Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_META_CACHE 248 /* Metadata cache (and back cache) stats */
#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \
{ \

requests_reserved int Reserved
requests int Requests to the cache
hits_reserved int Reserved
hits int Hits in the cache
discards_reserved int Reserved
discards int Discards of data from the cache
reserved int[10] Reserved

am_reserved3 int Reserved

--- or ---

API_META_STATS2
am_eye char[4] "AMET"
am_size short Size of output
am_version char Version
am_reserved1 char Reserved byte
PRIMARY_STATS2

buffers unsigned long long int Number of buffers in the cache
buffsize int Size of each buffer in K bytes
amc_res1 int Reserved
requests unsigned long long int Requests to the cache
hits unsigned long long int Hits in the cache
updates unsigned long long int Updates to buffers in the cache
partialwrites unsigned long long int Times only part of 8K block written
reserved int[8] Reserved

am_reserved3 int Reserved

systemname char[9] Name of system to get stats from

Statistics Metadata Cache Information

Chapter 13. zFS application programming interface information 399

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

INTEGER = (int)RATIO; \
DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \

}

typedef struct syscall_parmlist_t
{

int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper {
unsigned int high; /* unsigned int reserved */
unsigned int low;

} hyper;

/***/
/* META cache stats, including backing cache. */
/***/
typedef struct PRIMARY_STATS2_t
{

unsigned long long int buffers; /* Number of buffers in cache */
int buffsize; /* Size of each buffer in K bytes */
int amc_res1; /* Reserved for future use, zero in version 1 */
unsigned long long int requests; /* Requests to the cache */
unsigned long long int hits; /* Hits in the cache */
unsigned long long int updates; /* Updates to buffers in the cache */
unsigned long long int partialwrites; /* Only part of 8K block written to

reduce byte transfer. For version 1
always set partialwrites to 0 */

int reserved[8]; /* For future use */ /*@F18508S2*/
} PRIMARY_STATS2;

typedef struct API_META_STATS2_t
{

char am_eye[4]; /* Eye catcher = AMET */
#define MS_EYE "AMET"

short am_size; /* Size of output structure */
char am_version; /* Version of stats */

#define MS_VER_INITIAL 1 /* First version of log stats */
char am_reserved1; /* Reserved byte, 0 in version 1 */
PRIMARY_STATS2 am_primary; /* Primary space cache statistics */
int am_reserved3[10]; /* Reserved for future use */

} API_META_STATS2;

/* reset timestamp */
typedef struct reset_time {

unsigned int posix_time_high; /* high order 32 bits since epoc */
unsigned int posix_time_low; /* low order 32 bits since epoch */
unsigned int posix_usecs; /* microseconds */
int pad1;

} RESET_TIME;

/* Version 1 Output Structures */
typedef struct PRIMARY_STATS_t {

hyper buffers; /* Number of buffers in cache */
int buffsize; /* Size of each buffer in K bytes */
int amc_res1; /* Reserved for future use, zero in version 1 */
int requests_reserved; /* Reserved */
int requests; /* Requests to the cache */
int hits_reserved; /* Reserved */
int hits; /* Hits in the cache */
int updates_reserved; /* Reserved */
int updates; /* Updates to buffers in the cache */
int reserved[10]; /* For future use */

} PRIMARY_STATS;

Statistics Metadata Cache Information

400 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

typedef struct BACK_STATS_t {
hyper buffers; /* Number of buffers in cache */
int buffsize; /* Size of each buffer in K bytes */
int amc_res1; /* Reserved for future use, zero in version 1 */
int requests_reserved; /* Reserved */
int requests; /* Requests to the cache */
int hits_reserved; /* Reserved */
int hits; /* Hits in the cache */
int discards_reserved; /* Reserved */
int discards; /* Discards of data from backing cache */
int reserved[10]; /* For future use */

} BACK_STATS;

typedef struct API_META_STATS_t {
char am_eye[4]; /* Eye catcher = AMET */

#define MS_EYE "AMET"
short am_size; /* Size of output structure */
char am_version; /* Version of stats */

#define MS_VER_INITIAL 1 /* First version of log stats */
char am_reserved1; /* Reserved byte, 0 in version 1 */
PRIMARY_STATS am_primary; /* Primary space cache statistics */
BACK_STATS am_back; /* Backing cache statistics */
int am_reserved3[10]; /* Reserved for future use */

} API_META_STATS;

/***/
/* The following structure is the api query control block. */
/* It is used for all api query commands. */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct */
int sa_ver; /* the version number (1 or 2) */

#define SA_VER_2 0x02
#define SA_VER_INIT 0x01

char sa_flags; /* flags field must be x00 or x80, */
/* x80 means reset statistics */

#define SA_RESET 0x80
char sa_fill[3]; /* spare bytes */
int sa_supported_ver; /* version of data returned */
int sa_reserve[3]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

typedef struct parmstruct {
syscall_parmlist myparms;
STAT_API myapi;
API_META_STATS mystats;
char systemname[9];

} myparmstruct;

int print_metadata_version1(API_META_STATS *metastptr);
int print_metadata_version2(API_META_STATS2 *metastptr);

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i;
double temp_ratio;
int whole;
int decimal;
myparmstruct parmstruct;

Statistics Metadata Cache Information

Chapter 13. zFS application programming interface information 401

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

STAT_API *stapptr = &(parmstruct.myapi);
char buf[33];

parmstruct.myparms.opcode = STATOP_META_CACHE;
parmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
parmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
parmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want to query the */
/* metadata cache statistics of a different system than this one */
/* parmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + */
/* sizeof(STAT_API) + */
/* sizeof(API_META_STATS); */

parmstruct.myparms.parms[3] = 0;
parmstruct.myparms.parms[4] = 0;
parmstruct.myparms.parms[5] = 0;
parmstruct.myparms.parms[6] = 0;

memset(stapptr, 0, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = (int)sizeof(API_META_STATS);

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&parmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error querying meta cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else
{

if(stapptr->sa_supported_ver == SA_VER_INIT)
{

API_META_STATS *metastptr1 = &(parmstruct.mystats);
print_metadata_version1(metastptr1);

}
else
{

API_META_STATS2 *metastptr = (API_META_STATS2*)&(parmstruct.mystats);
print_metadata_version2(metastptr);

}

if (0 == ctime_r((time_t*)&stapptr->reset_time_info.posix_time_low, buf))
printf("Could not get timestamp.\n");

else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}
}
return 0;

Statistics Metadata Cache Information

402 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

int print_metadata_version2(API_META_STATS2 *metastptr)
{

double temp_ratio;
int whole;
int decimal;

/* Primary cache */
printf("\n%60s\n", "Metadata Caching Statistics");
printf(" \n");
printf("Buffers (K bytes) Requests ");
printf("Hits Ratio Updates \n");
printf("-------------------- ------------------- -------------------- ");
printf("-------------------- ------ -------------------- \n");

temp_ratio = (metastptr->am_primary.requests == 0) ? 0.0 :
((double)metastptr->am_primary.hits) /
metastptr->am_primary.requests;

temp_ratio *= 100.0;
CONVERT_RATIO_TO_INTS(temp_ratio, whole, decimal);
decimal = decimal / 100; /* Just want tenths */

printf("%20llu %19llu %20llu %20llu %3u.%1.1u%% %20llu\n",
metastptr->am_primary.buffers,
metastptr->am_primary.buffers *
metastptr->am_primary.buffsize,
metastptr->am_primary.requests,
metastptr->am_primary.hits,
whole, decimal, metastptr->am_primary.updates);

printf(" \n");
return 1;

}

int print_metadata_version1(API_META_STATS *metastptr)
{

double temp_ratio;
int whole;
int decimal;
printf("Version 1 output is being displayed\n\n");

/* Primary cache */
printf("\n%44s\n", "Metadata Caching Statistics");
printf(" \n");
printf("Buffers (K bytes) Requests Hits Ratio Updates \n");
printf("---------- --------- ---------- ---------- ------ ----------\n");

temp_ratio = (metastptr->am_primary.requests == 0) ? 0.0 :
((double)metastptr->am_primary.hits) / metastptr->am_primary.requests;

temp_ratio *= 100.0;
CONVERT_RATIO_TO_INTS(temp_ratio, whole, decimal);
decimal = decimal / 100; /* Just want tenths */

printf("%10u %9u %10u %10u %3u.%1.1u%% %10u\n",
metastptr->am_primary.buffers.low,
metastptr->am_primary.buffers.low * metastptr->am_primary.buffsize,
metastptr->am_primary.requests, metastptr->am_primary.hits,
whole, decimal, metastptr->am_primary.updates);

printf(" \n");

/* Backing cache */
printf("%48s\n", "Metadata Backing Caching Statistics");
printf(" \n");
printf("Buffers (K bytes) Requests Hits Ratio Discards \n");
printf("---------- --------- ---------- ---------- ------ ----------\n");

if(metastptr->am_back.requests == 0)

Statistics Metadata Cache Information

Chapter 13. zFS application programming interface information 403

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

temp_ratio = 0.0;
else

temp_ratio = 100 * (((double)metastptr->am_back.hits) /
metastptr->am_back.requests);

CONVERT_RATIO_TO_INTS(temp_ratio, whole, decimal);
decimal = decimal / 100; /* Just want tenths */

printf("%10u %9u %10u %10u %3u.%1.1u%% %10u\n",
metastptr->am_back.buffers.low,
metastptr->am_back.buffers.low * metastptr->am_back.buffsize,
metastptr->am_back.requests, metastptr->am_back.hits,
whole, decimal, metastptr->am_back.discards);

printf(" \n");
}

Statistics Metadata Cache Information

404 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Statistics Server Token Management Information
Purpose

Returns the server token manager statistics. These statistics can be used to monitor
token-related activity for all file systems that are owned on the local server system.
It can also be used to monitor token related activity between this local server
system and each individual client system that is accessing the file systems that are
owned on the local server system.

Format

syscall_parmlist

opcode int 252 STATOP_STKM
parms[0] int offset to STAT_API
parms[1] int Offset of output following STAT_API
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int length of buffer that

follows STAT_API
sa_ver int 1
sa_flags char[1] 0x00
SA_RESET 0x80 Reset statistics
sa_fill char[3] 0
sa_reserve int[4] 0
sa_supported_ver int version of data returned
sa_reserved int[3] 0
posix_time_high unsigned int high order 32 bits since epoch
posix_time_low unsigned int low order 32 bits since epoch
posix_useconds unsigned int microseconds
pad1 int

STKM_API_STATS
st_eye char[4] "STKM"
st_len short size of STKM_API_STATS structure
st_reserved1 char[2]
st_maxtokens unsigned long long Max num of tokens allowed
st_allocated unsigned long long Number of physically allocated

tokens
st_inuse unsigned long long Number of tokens in use
st_files unsigned long long Number of file structures

allocated
st_obtains unsigned long long Number of tokens obtained
st_returns unsigned long long Number of tokens returned
st_revokes unsigned long long Number of tokens revoked
st_asyncgrants unsigned long long Number of async grants requests
st_gcs unsigned long long Number of token garbage collections
st_reserved2 char[8]
st_thrashing unsigned long long Number of thrashing files
st_resolution unsigned long long Number of thrash resolutions
st_reserved3 char[40]

Statistics Server Token Management Information

Chapter 13. zFS application programming interface information 405

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

|
||

Usage notes
v Users of the API supply as input a buffer that contains a syscall_parmlist

followed by a STAT_API structure. Output is placed in the buffer after the
STAT_API structure.

v The output consists of up to 33 STKM_SYS_STATS and up to 64
STKM_THRASHING_FILES structures.

v Unused elements of the ss_sysinfo array have an ss_name field that consists of
hex zeros.

v Unused elements of the ss_thrashing_objs array have an inode field with the
value 0.

Privilege required

None.

Related services
Query token_cache_size
Set token_cache_size
Statistics Sysplex Client Operations Information
Statistics Sysplex Owner Operations Information

Restrictions

None.

ss_sysinfo STKM_SYS_STATS[33]
ss_eye char[4] "STSS"
ss_len short size of STKM_SYS_STATS structure
ss_reserved1 char[2]
ss_name char[8] Sysname
ss_token unsigned long long Number of tokens the

system currently holds
ss_obtains unsigned long long Number of token obtained
ss_returns unsigned long long Number of token returned
ss_revokes unsigned long long Number of token revokes
ss_asyncgrant unsigned long long Number of asynchronously

granted tokens
ss_reserved2 char[16]

ss_thrashing_objs STKM_THRASHING_FILES[64]
inode unsigned int thrashing file inode
unique unsigned int thrashing file uniqueifer
name char[45] name of thrashing file
reserved char[3]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR zFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics Server Token Management Information

406 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|

|

|
|
|
|
|

|

|

Example
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include "stdio.h"

#define ZFSCALL_STATS 0x40000007
#define STATOP_STKM 252
#define BUFFER_SIZE 1024 * 64

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

} syscall_parmlist;

typedef struct reset_time {
unsigned int posix_time_high;
unsigned int posix_time_low;
unsigned int posix_usecs;
int pad1;

} RESET_TIME;

typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct*/
int sa_ver; /* the version number currently always 1*/

#define SA_VER_INIT 0x01
char sa_flags; /* command field must be x00 or x80, */

/* x80 means reset statistics */
#define SA_RESET 0x80

char sa_fill[3]; /* spare bytes */
int sa_reserve[4]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

typedef struct stkm_sys_stats_t {
char ss_eye[4]; /* eye catcher-"STSS" */

#define SS_EYE "STSS"
short ss_len;
char ss_reserved1[2];
char ss_name[8]; /* Sysname */
unsigned long long ss_token; /* Number of tokens the system */

/* currently holds */
unsigned long long ss_obtains; /* Number of token obtained */
unsigned long long ss_returns; /* Number of token returned */
unsigned long long ss_revokes; /* Number of token revokes */
unsigned long long ss_asyncgrant; /* Number of asynchronously */

/* granted tokens */
char ss_reserved2[16];

} STKM_SYS_STATS;

typedef struct stkm_thrashing_files_t
{

unsigned int inode;
unsigned int unique;
char name[45];
char reserved[3];

} STKM_THRASHING_FILES;

#define MAX_THRASHING_FILES 64
#define SYS_MAX_SYSPLEX_SYSTEMS 32 /* Current max # sysplex images*/
typedef struct stkm_api_stats_t
{

char st_eye[4]; /* eye catcher-"STKM" */

Statistics Server Token Management Information

Chapter 13. zFS application programming interface information 407

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define ST_EYE "STKM"
short st_len;
char st_reserved1[2];
unsigned long long st_maxtokens; /* Max num of tokens allowed */
unsigned long long st_allocated; /* Num. of physically allocated */

/* tokens */
unsigned long long st_inuse; /* Number of tokens in use */
unsigned long long st_files; /* Number of file structures */

/* allocated */
unsigned long long st_obtains;
unsigned long long st_returns;
unsigned long long st_revokes;
unsigned long long st_asyncgrants;
unsigned long long st_gcs;
char st_reserved2[8];
unsigned long long st_thrashing;
unsigned long long st_resolution;
char st_reserved3[40];

/* 32 sysplex-members + 1 zlc */
STKM_SYS_STATS ss_sysinfo[SYS_MAX_SYSPLEX_SYSTEMS+1];
STKM_THRASHING_FILES ss_thrashing_objs[MAX_THRASHING_FILES];

} STKM_API_STATS;

int main(int argc, char** argv)
{

int buff_fill_len = 0;
int bpxrv, bpxrc, bpxrs;
char sysname[9];
int title_done;

STAT_API local_req;
STAT_API *st_req = NULL;
syscall_parmlist *parmp = NULL;
STKM_API_STATS *st_stats = NULL;
STKM_SYS_STATS *ss_stats = NULL;
STKM_THRASHING_FILES *thrashingp = NULL;
char *buffp = NULL;

/* Initialize the local_req to 0s */
st_req = &local_req;
memset(st_req, 0x00, sizeof(STAT_API));

strcpy(local_req.sa_eye, SA_EYE, sizeof(local_req.sa_eye));
local_req.sa_len = sizeof(STKM_API_STATS);
local_req.sa_ver = SA_VER_INIT;

/* Allocate Buffer */
buffp = (char*) malloc(BUFFER_SIZE);
if(buffp == NULL)
{

printf("Malloc Error\n");
return 0;

}
memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

/* Set the run parms */
parmp = (syscall_parmlist*) &buffp[0];
parmp->opcode = STATOP_STKM;
parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
parmp->parms[1] = buff_fill_len + sizeof(STAT_API);
parmp->parms[2] = 0;
parmp->parms[3] = 0;
parmp->parms[4] = 0;
parmp->parms[5] = 0;
parmp->parms[6] = 0;

Statistics Server Token Management Information

408 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

st_req = (STAT_API*) &buffp[buff_fill_len];

memcpy(st_req, &local_req, sizeof(STAT_API));
buff_fill_len += sizeof(STAT_API);

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Aggregate operation */
BUFFER_SIZE, /* Length of Argument */
(char*) buffp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv)
{

/* Bad Return code */
printf("Error requesting info for stkm stats\n");
printf("Return Value: %d Return Code: %d Reason Code: %x\n",

bpxrv, bpxrc, bpxrs);
}
else
{

/* Success. Print the information in a table */
st_stats = (STKM_API_STATS*) &buffp[buff_fill_len];
ss_stats = st_stats->ss_sysinfo;
thrashingp = st_stats->ss_thrashing_objs;

printf("%20c Server Token Manager (STKM) Statistics\n", ’ ’);
printf("%20c --------------------------------------\n", ’ ’);
printf("Maximum tokens: %20llu Allocated tokens: %20llu\n",

st_stats->st_maxtokens, st_stats->st_allocated);
printf("Tokens In Use: %20llu File structures: %20llu\n",

st_stats->st_inuse, st_stats->st_files);
printf("Token obtains: %20llu Token returns: %20llu\n",

st_stats->st_obtains, st_stats->st_returns);
printf("Token revokes: %20llu Async Grants: %20llu\n",

st_stats->st_revokes, st_stats->st_asyncgrants);
printf("Garbage Collects: %20llu Thrash Resolutions: %20llu\n",

st_stats->st_gcs, st_stats->st_resolution);
printf("Thrashing Files: %20llu\n\n", st_stats->st_thrashing);

printf("%30c Usage Per System: \n", ’ ’);
printf("System Tokens Obtains ");
printf("Returns Revokes Async Grt\n");
printf("-------- ------------------- --------------------");
printf("-------------------- -------------------- ");
printf("--------------------\n");

for (int i = 0; i < (SYS_MAX_SYSPLEX_SYSTEMS+1); i++)
{

if (ss_stats[i].ss_name[0] == ’\0’)
break;

memcpy(&sysname, &ss_stats[i].ss_name, 8);
sysname[8] = ’\0’;

printf("%8.8s %20llu %20llu %20llu %20llu %20llu\n",
sysname,
ss_stats[i].ss_token,
ss_stats[i].ss_obtains,
ss_stats[i].ss_returns,
ss_stats[i].ss_revokes,
ss_stats[i].ss_asyncgrant);

}
printf("\n");

title_done = 0;

Statistics Server Token Management Information

Chapter 13. zFS application programming interface information 409

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

for (int j = 0; j < MAX_THRASHING_FILES; j++)
{

if (thrashingp[j].inode == 0)
break;

if (title_done == 0)
{

printf(" Thrashing Objects:\n");
printf("Inode Uniquifier File system \n");
printf("---------- ---------- --------------------\n");
title_done = 1;

}
printf("%20u %20u %s\n", thrashingp[j].inode,

thrashingp[j].unique,
thrashingp[j].name);

}
if (title_done)

printf("\n");
}
return 0;

}

Statistics Server Token Management Information

410 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Statistics Storage Information
Purpose

A performance statistics operation that returns storage information.

STATOP_STORAGE (241) returns below the 2 G bar information.
STATOP_STORAGE (255) returns above the 2 G bar information.

Format

syscall_parmlist
opcode int 241 STATOP_STORAGE or

255 STATOP_STORAGE_ABOVE
parm[0] int Offset to STAT_API
parm[1] int Offset of output following STAT_API

following STAT_API
parm[2] int Offset to system name

(optional)
parm[3] int 0
parm[4] int 0
parm[5] int 0
parm[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int Length of buffer that follows

the STAT_API
sa_ver int 1 or 2 for STATOP_STORAGE

1 for STATOP_STORAGE_ABOVE
sa_flags char 0x80 for reset; 0x00 otherwise
sa_fill char[3] Reserved
sa_supported_ver int Version of data returned
sa_reserve int[3] Reserved
posix_time_high unsigned int High order 32 bits since epoch
posix_time_low unsigned int Low order 32 bits since epoch
posix_useconds unsigned int Microseconds
pad1 int Reserved

API_STOR_STATS
reserved1 int
ss_total_bytes_allocated unsigned int Total bytes allocated
ss_total_pieces_allocated unsigned int Total pieces allocated
ss_total_allocation_requests unsigned int Total allocation requests
ss_total_free_requests unsigned int Total free requests
ss_number_of_comp_lines unsigned int Total number of component

lines in buffer
ss_reserved_space char[52] Reserved for future use

COMP_LINE[n]
ss_comp_bytes_allocated int The number of bytes allocated

by this component
ss_comp_pieces int The number of pieces allocated
ss_comp_allocations int Number of storage allocation

requests done by this component
ss_comp_frees int The number of storage frees

done by this component
ss_comp_description char[84] The component description
ss_number_of_detail_lines int The number of detail lines

following this component line

Statistics Storage Information

Chapter 13. zFS application programming interface information 411

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
||

DETAIL_LINE[m]
ss_detail_bytes_allocated int Number of bytes allocated
ss_detail_pieces int Number of pieces allocated
ss_detail_allocations int Number of allocation requests
ss_detail_frees int Number of free requests
ss_detail_description char[84] Description

-- or --
API_STOR_STATS2

ss_total_bytes_of_data unsigned long long int
Total storage allocated. May
include storage used by other
components in the address space.

ss_ioefscm_allocated unsigned long long int
0 for STATOP_STORAGE (241)
Total bytes allocated by IOEFSCM
for STATOP_STORAGE_ABOVE (255)

ss_ioefscm_heap_allocated unsigned long long int
Total bytes allocated by the
IOEFSCM heap.

ss_ioefscm_heap_pieces unsigned long long int
Total storage pieces in the
IOEFSCM heap.

ss_ioefscm_heap_allocations unsigned long long int
Total allocation requests to
IOEFSCM heap.

ss_ioefscm_heap_frees unsigned long long int
Total free requests to IOEFSCM
heap.

ss_ioefskn_allocated unsigned long long int
0 for STATOP_STORAGE (241)
Total bytes discarded for
STATOP_STORAGE_ABOVE (255)

ss_ioefskn_heap_allocated unsigned long long int
Total bytes allocated by the
IOEFSKN heap.

ss_ioefskn_heap_pieces unsigned long long int
Total storage pieces in the
IOEFSKN heap.

ss_ioefskn_heap_allocations unsigned long long int
Total allocation requests to
IOEFSKN heap.

ss_ioefskn_heap_frees unsigned long long int
Total free requests to IOEFSKN
heap.

ss_ioefskn_heap_discarded unsigned long long int
0 for STATOP_STORAGE (241)

ss_number_of_comp_lines unsigned int
Total number of components
lines in buffer

pad int Reserved
ss_reserved_space char[56] Reserved for future use

COMP_LINE2[n]
ss_comp_bytes_allocated unsigned long long int

The number of bytes allocated
by this component

ss_comp_pieces unsigned long long int
The number of pieces allocated

ss_comp_allocations unsigned long long int
The number of storage
allocations requests done by
this component

ss_comp_frees unsigned long long int
The number of storage frees
done by this component

Statistics Storage Information

412 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v You can specify a buffer that you think might be large enough or you can

specify a buffer length of zero. If you get a return code E2BIG, the required size
for the buffer is contained in the sa_len field.

v Reserved fields and undefined flags must be set to binary zeros.
v When sa_supported_ver is 0 or 1, output consists of API_STOR_STATS,

COMP_LINE and DETAIL_LINE. When sa_supported_ver is 2, output consists
of API_STOR_STATS2, COMP_LINE2 and DETAIL_LINE2.

v For STATOP_STORAGE_ABOVE, sa_supported_ver is 1 and output consists of
API_STOR_STATS2, COMP_LINE2 and DETAIL_LINE2.

Privilege required

None.

Related services
Statistics Locking Information
Statistics User Cache Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

ss_comp_description char[84]
The component description

ss_number_of_detail_lines int
The number of detail lines
following this component line

DETAIL_LINE2[m]
ss_detail_bytes_allocated unsigned long long int

Number of bytes allocated
ss_detail_pieces unsigned long long int

Number of pieces allocated
ss_detail_allocations unsigned long long int

Number of allocation requests
ss_detail_frees unsigned long long int

Number of free requests
ss_detail_description char[84] description
ss_detail_reserved char[4] Reserved

systemname char[9] System name where the query is ran

Return value 0 if request is successful, -1 if it is not successful

Return code
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred
E2BIG Information too big for buffer supplied

Reason code
0xEFxxnnnn See z/OS Distributed File Service Messages and Codes

Statistics Storage Information

Chapter 13. zFS application programming interface information 413

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

|
|
|

|
|

|

|

|
|
|

|

|

|

|
|
|

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_STORAGE 241 /* below-bar storage stats */
#define STATOP_STORAGE_ABOVE 255
#define STATOP_LAST STATOP_STORAGE_ABOVE
#define E2BIG 145

typedef struct syscall_parmlist_t
{

int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct reset_time {
unsigned int posix_time_high; /* high order 32 bits since epoc */
unsigned int posix_time_low; /* low order 32 bits since epoch */
unsigned int posix_usecs; /* microseconds */
int pad1;

} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct */
int sa_ver; /* the version number currently always 1*/

#define SA_VER_2 0x02
#define SA_VER_INIT 0x01

char sa_flags; /* flags field must be x00 or x80, */
/* x80 means reset statistics */

#define SA_RESET 0x80
char sa_fill[3]; /* spare bytes */
int sa_supported_ver; /* version of data returned */
int sa_reserve[3]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

typedef struct comp_line_2
{

unsigned long long int ss_comp_bytes_allocated; /* Number of bytes */
/* allocated */
/* by this component */

unsigned long long int ss_comp_pieces; /* The number of pieces allocated */
unsigned long long int ss_comp_allocations; /* the number of storage */

/* allocations requests done */
/* by this component */

unsigned long long int ss_comp_frees; /* number of storage frees */
/* done by this component */

char ss_comp_description[84]; /* the component description */
int ss_number_of_detail_lines; /* the number of detail lines */

/* following this component line */
/* before the next component line */
/* or end of buffer */

} COMP_LINE_2;

typedef struct detail_line_2
{

unsigned long long int ss_detail_bytes_allocated; /* number of bytes */

Statistics Storage Information

414 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* allocated */
unsigned long long int ss_detail_pieces; /*number of pieces allocated*/
unsigned long long int ss_detail_allocations; /*number of allocation */

/*requests */
unsigned long long int ss_detail_frees; /*number of free requests*/
char ss_detail_description[84]; /*description */
char ss_reserved_pad[4];

} DETAIL_LINE_2;

typedef struct api_stor_stats_2
{

/* Total storage allocated, this comes from OS data structures */
/* and is via a query from OS and may include storage */
/* used by other OS components in the address space */
/* QUERY,STORAGE equivalent: */
/* Total Storage Above/Below 2G Bar Allocated */
unsigned long long int ss_total_bytes_of_data;

/* Total number of bytes allocated by IOEFSCM */
/* The number of bytes allocated via IARV64 by/for program IOEFSCM */
/* This field valid only for an above-bar storage query */
/* QUERY,STORAGE equivalent: */
/* Total Bytes Allocated by IOEFSCM (Stack + Heap) */
unsigned long long int ss_ioefscm_allocated;

/* Total number of bytes allocated by IOEFSCM heap */
/* The number of bytes allocated via calls to obtain storage for IOEFSCM */
/* QUERY,STORAGE equivalent: */
/* IOEFSCM Heap Bytes Allocated */
unsigned long long int ss_ioefscm_heap_allocated;

/* Total number of storage pieces in IOEFSCM heap */
/* The number of pieces of allocated storage from calls to obtain storage */
/* for IOEFSCM */
/* QUERY,STORAGE equivalent: */
/* IOEFSCM Heap Pieces Allocated */
unsigned long long int ss_ioefscm_heap_pieces;

/* Total number of allocation requests to IOEFSCM heap since
/* last stats reset */
/* QUERY,STORAGE equivalent: */
/* IOEFSCM Heap Allocation Requests */
unsigned long long int ss_ioefscm_heap_allocations;

/* Total number of free requests for IOEFSCM heap since last stats reset */
/* QUERY,STORAGE equivalent: */
/* IOEFSCM Heap Free Requests */
unsigned long long int ss_ioefscm_heap_frees;

/* Total number of bytes allocated by IOEFSKN */
/* The number of bytes allocated via IARV64 by/for program IOEFSKN */
/* This field valid only for an above-bar storage query */
/* QUERY,STORAGE equivalent: */
/* Total Bytes Allocated by IOEFSKN (Stack + Heap) */
unsigned long long int ss_ioefskn_allocated;

/* Total number of bytes allocated by IOEFSKN heap */
/* The number of bytes allocated via calls to obtain storage for IOEFSKN */
/* QUERY,STORAGE equivalent: */
/* IOEFSKN Heap Bytes Allocated */
unsigned long long int ss_ioefskn_heap_allocated;

/* Total number of storage pieces in IOEFSKN heap */
/* The number of pieces of allocated storage from calls to obtain */
/* storage for IOEFSKN */
/* QUERY,STORAGE equivalent: */
/* IOEFSKN Heap Pieces Allocated */

Statistics Storage Information

Chapter 13. zFS application programming interface information 415

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned long long int ss_ioefskn_heap_pieces;

/* Total number of allocation requests to IOEFSKN heap since */
/* last stats reset */
/* QUERY,STORAGE equivalent: */
/* IOEFSKN Heap Allocation Requests */
unsigned long long int ss_ioefskn_heap_allocations;

/* Total number of free requests for IOEFSKN heap since last stats reset */
/* QUERY,STORAGE equivalent: */
/* IOEFSKN Heap Free Requests */
unsigned long long int ss_ioefskn_heap_frees;

/* Total number of bytes discarded via IARV64 DISCARD function */
/* ... valid only for above-bar storage query. */
/* QUERY,STORAGE equivalent: */
/* Total Bytes Discarded (unbacked) by IOEFSKN */
unsigned long long int ss_ioefskn_heap_discarded;

/* Total number of components lines in buffer*/
unsigned int ss_number_of_comp_lines;
int pad;
char ss_reserved_space[48]; /* reserved for future use */
char ss_returned_data[1]; /* start of buffer to put data into */
char ss_reserved_pad[7]; /* sizeof() will return size including */

/* these 7 bytes */
} API_STOR_STATS_2;

/* Version 1 Output Structures */

typedef struct comp_line
{

int ss_comp_bytes_allocated; /* The number of bytes
allocated by this component */

int ss_comp_pieces; /* The number of pieces allocated*/
int ss_comp_allocations; /* the number of storage allocations

requests done by this component */
int ss_comp_frees; /* the number of storage frees

done by this component */
char ss_comp_description[84]; /* the component description */
int ss_number_of_detail_lines; /* the number of detail lines

following this component line before the
next component line or end of buffer */

} COMP_LINE;

typedef struct detail_line
{

int ss_detail_bytes_allocated; /*number of bytes allocated*/
int ss_detail_pieces; /*number of pieces allocated*/
int ss_detail_allocations; /*number of allocation requests*/
int ss_detail_frees; /*number of free requests*/
char ss_detail_description[84]; /*description */

} DETAIL_LINE;

typedef struct api_stor_stats
{

int reserved1;
unsigned int ss_total_bytes_allocated; /* Total bytes allocated*/
unsigned int ss_total_pieces_allocated; /* Total pieces allocated*/
unsigned int ss_total_allocation_requests; /*Total allocation requests*/
unsigned int ss_total_free_requests; /*Total free requests*/
unsigned int ss_number_of_comp_lines; /* Total number of

components lines in buffer*/
char ss_reserved_space[48]; /* reserved for future use */

/***/
/* The returned data can contain comp_lines and detail_lines ******/

Statistics Storage Information

416 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* The first line is a component line ******/
/* The number of component lines returned is in this structure ******/
/* Each component line is followed by zero or more detail lines ******/
/* The comp_line struct indicates how many detail lines follow ******/
/***/

} API_STOR_STATS;

struct parmstruct {
syscall_parmlist myparms;
STAT_API myapi;

/* output buffer API_STOR_STATS_2 + COMP_LINE_2s and DETAIL_LINE_2s */
char systemname[9];

} myparmstruct;

int print_storage_version1(struct parmstruct *buffp, int buflen);
int print_storage_version2(struct parmstruct *buffp,int buflen,int above_bar);

int main(int argc, char **argv)
{

int buffer_success = 0;
int above_bar = 0;
int bpxrv;
int bpxrc;
int bpxrs;
int i,j,t;

char buf[33];
struct parmstruct *myp = &myparmstruct;
int mypsize;
int buflen;

STAT_API *stapptr = &(myparmstruct.myapi);

myparmstruct.myparms.opcode = STATOP_STORAGE;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want to query the storage */
/* statistics of a different system than this one: */
/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) */
/* + sizeof(STAT_API); */

myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(stapptr, 0, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = 0;

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

for(t = 0; t < 1000 && buffer_success == 0 && above_bar < 2; t++)

Statistics Storage Information

Chapter 13. zFS application programming interface information 417

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{
if (bpxrv < 0)
{

if (bpxrc == E2BIG)
{

buflen = stapptr->sa_len; /* Get buffer size needed */
mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen +

sizeof(myparmstruct.systemname);

free(myp);
myp = (struct parmstruct *)malloc((int)mypsize);
memset(myp, 0, mypsize);
printf("Need buffer size of %d, for a total of %d\n\n",

buflen, mypsize);

/* Base the opcode on the type of storage needed*/
if(above_bar == 0)

myp->myparms.opcode = STATOP_STORAGE;
else

myp->myparms.opcode = STATOP_STORAGE_ABOVE;

myp->myparms.parms[0] = sizeof(syscall_parmlist);
myp->myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
myp->myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you are running z/OS 1.7 and above, and you want to query the */
/* storage statistics of a different system than this one: */
/* myp->myparms.parms[2] = sizeof(syscall_parmlist) */
/* + sizeof(STAT_API) + buflen; */

myp->myparms.parms[3] = 0;
myp->myparms.parms[4] = 0;
myp->myparms.parms[5] = 0;
myp->myparms.parms[6] = 0;

stapptr = (STAT_API*) ((char *) myp + sizeof(syscall_parmlist));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_len = buflen;

/* Above bar storage needs SA_VER_INIT*/
stapptr->sa_ver = above_bar == 0 ? SA_VER_2 : SA_VER_INIT;

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Aggregate operation */
mypsize, /* Length of Argument */
(char *)myp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv != 0 && bpxrc == E2BIG)
printf("E2BIG: %d times total\n", t++);

else if(bpxrv == 0)
{

buffer_success = 1;
bpxrv = -1;

/*If version 1, either above bar stats or downlevel system*/
if(stapptr->sa_supported_ver == SA_VER_INIT)

above_bar ? print_storage_version2(myp, buflen, above_bar) :
print_storage_version1(myp, buflen);

else if (stapptr->sa_supported_ver == SA_VER_2)
{

/* First pass get below the bar */
print_storage_version2(myp, buflen, above_bar);
buffer_success = 0;

Statistics Storage Information

418 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

above_bar += 1;
}

unsigned int ptl = stapptr->reset_time_info.posix_time_low;
if (0 == ctime_r((time_t *) & ptl, buf))

printf("Could not get timestamp.\n");
else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}
free(myp);

}
else
{ /* storage stats failed with large enough buffer */

printf("Error on storage stats with large enough buffer\n");
printf("Error querying storage stats, "

"BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

free(myp);
return bpxrc;

}
}
else
{ /* error was not E2BIG */

printf("Error on storage stats trying to get required size\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
free(myp);
return bpxrc;

}
}
else
{ /* asking for buffer size gave rv = 0; maybe there is no data */

if (myparmstruct.myapi.sa_len == 0)
{

printf("No data\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

}
else
{ /* No, there was some other problem with getting the size needed */

printf("Error getting size required\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

}

free(myp);
return bpxrc;

}
}
if(t == 1000)

printf("Number of failed buffer resizes exceeded.\n");

free(myp);
return 0;

}

int print_storage_version2(struct parmstruct *buffp, int buflen, int above_bar)
{

int i,j;
API_STOR_STATS_2 *stst;
COMP_LINE_2 *stcl;
DETAIL_LINE_2 *stdl;
char *stsy;

stst = (API_STOR_STATS_2*) ((char *) buffp +

Statistics Storage Information

Chapter 13. zFS application programming interface information 419

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

sizeof(syscall_parmlist) + sizeof(STAT_API));
stsy = (char *) ((char *) buffp +

sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen);

if (above_bar)
printf(" zFS Primary Address Space >2G Stge Usage\n");

else
printf(" zFS Primary Address Space <2G Stge Usage\n");

printf(" --\n");
printf(" \n");

if (above_bar)
printf("Total Storage Above 2G Bar Allocated: %12llu\n",

stst->ss_total_bytes_of_data);
else

printf("Total Storage Below 2G Bar Allocated: %12llu\n\n",
stst->ss_total_bytes_of_data);

if (above_bar)
printf("Total Bytes Allocated by IOEFSCM (Stack+Heap): %12llu\n",

stst->ss_ioefscm_allocated);

printf("IOEFSCM Heap Bytes Allocated: %12llu\n",
stst->ss_ioefscm_heap_allocated);

printf("IOEFSCM Heap Pieces Allocated: %12llu\n",
stst->ss_ioefscm_heap_pieces);

printf("IOEFSCM Heap Allocation Requests %12llu\n",
stst->ss_ioefscm_heap_allocations);

printf("IOEFSCM Heap Free Requests %12llu\n",
stst->ss_ioefscm_heap_frees);

printf("\n");

if (above_bar)
{

printf("Total Bytes Allocated by IOEFSKN (Stack+Heap): %12llu\n",
stst->ss_ioefskn_allocated);

printf("Total Bytes Discarded (unbacked) by IOEFSKN: %12llu\n",
stst->ss_ioefskn_heap_discarded);

}
printf("IOEFSKN Heap Bytes Allocated: %12llu\n",

stst->ss_ioefskn_heap_allocated);
printf("IOEFSKN Heap Pieces Allocated: %12llu\n",

stst->ss_ioefskn_heap_pieces);
printf("IOEFSKN Heap Allocation Requests %12llu\n",

stst->ss_ioefskn_heap_allocations);
printf("IOEFSKN Heap Free Requests %12llu\n",

stst->ss_ioefskn_heap_frees);

/* Point the comp_line to the ss_returned_data value */
/* instead of adding sizeof(API_STOR_STATS_2) */
stcl = (COMP_LINE_2*) stst->ss_returned_data;

for (i = 0; i < stst->ss_number_of_comp_lines; i++)
{

printf("\n");
printf(" Storage Usage By Component\n");
printf(" --------------------------\n");
printf("Bytes No. of No. of \n");
printf("Allocated Pieces Allocs Frees Component\n");
printf("---------- ------ ------ ------ ---------\n");
printf("\n");

printf("%10llu %6llu %6llu %6llu %s\n",
stcl->ss_comp_bytes_allocated,
stcl->ss_comp_pieces,
stcl->ss_comp_allocations,
stcl->ss_comp_frees,

Statistics Storage Information

420 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

stcl->ss_comp_description);

stdl = (DETAIL_LINE_2 *)((char *)stcl + sizeof(COMP_LINE_2));
for (j = 0; j < stcl->ss_number_of_detail_lines; j++, stdl++)
{

if (j == 0)
{

printf("\n");
printf(" Storage Details by Component\n");
printf(" ----------------------------\n");
printf("\n");

}
printf("%10llu %6llu %6llu %6llu %s\n",

stdl->ss_detail_bytes_allocated,
stdl->ss_detail_pieces,
stdl->ss_detail_allocations,
stdl->ss_detail_frees,
stdl->ss_detail_description);

}
stcl = (COMP_LINE_2 *) stdl;

}
printf("\n");

}

int print_storage_version1(struct parmstruct *buffp, int buflen)
{

int i,j;
COMP_LINE *stcl;
DETAIL_LINE *stdl;
char *stsy;
API_STOR_STATS *stst;

printf("Version 1 Output is being displayed\n\n");

stst = (API_STOR_STATS *)((char *)buffp + sizeof(syscall_parmlist) +
sizeof(STAT_API));

stsy = (char *)((char *)buffp + sizeof(syscall_parmlist) +
sizeof(STAT_API) + buflen);

printf("%18czFS Primary Address Space Storage Usage\n", ’ ’);
printf("%18c---------------------------------------\n", ’ ’);
printf("\n");
printf("Total Bytes Allocated: %u (%uK) (%uM)\n",

stst->ss_total_bytes_allocated,
stst->ss_total_bytes_allocated / 1024,
stst->ss_total_bytes_allocated / (1024 * 1024));

printf("Total Pieces Allocated: %u\n",
stst->ss_total_pieces_allocated);

printf("Total Allocation Requests: %u\n",
stst->ss_total_allocation_requests);

printf("Total Free Requests: %u, %u\n",
stst->ss_total_free_requests,
stst->ss_number_of_comp_lines);

stcl = (COMP_LINE *)((char *)stst + sizeof(API_STOR_STATS));
for (i = 0; i < stst->ss_number_of_comp_lines; i++)
{

printf("\n");
printf(" Storage Usage By Component\n");
printf(" --------------------------\n");
printf("Bytes No. of No. of \n");
printf("Allocated Pieces Allocs Frees Component\n");
printf("---------- ------ ------ ------ ---------\n");
printf("\n");
printf("%10u %6u %6u %6u %s\n",

stcl->ss_comp_bytes_allocated,

Statistics Storage Information

Chapter 13. zFS application programming interface information 421

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

stcl->ss_comp_pieces,
stcl->ss_comp_allocations,
stcl->ss_comp_frees,
stcl->ss_comp_description);

stdl = (DETAIL_LINE *)((char *)stcl + sizeof(COMP_LINE));
for (j = 0; j < stcl->ss_number_of_detail_lines; j++, stdl++)
{

if (j == 0)
{

printf("\n");
printf(" Storage Details by Component\n");
printf(" ----------------------------\n");
printf("\n");

}
printf("%10u %6u %6u %6u %s\n",

stdl->ss_detail_bytes_allocated,
stdl->ss_detail_pieces,
stdl->ss_detail_allocations,
stdl->ss_detail_frees,
stdl->ss_detail_description);

}
stcl = (COMP_LINE *)stdl;

}
printf("\n");

}

Statistics Storage Information

422 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Statistics Sysplex Client Operations Information
Purpose

Returns information about the number of local operations that required the
sending of a message to another system.

Format

syscall_parmlist
opcode int 253 STATOP_CTKC
parms[0] int offset to STAT_API
parms[1] int Offset of output following STAT_API
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API

sa_eye char[4] "STAP"
sa_len int length of buffer that

follows STAT_API
sa_ver int 1
sa_flags char[1] 0x00
SA_RESET 0x80 Reset statistics
sa_fill char[3] 0
sa_supported_ver int version of data returned or reserved
sa_reserve int[3] 0
posix_time_high unsigned int high order 32 bits since epoch
posix_time_low unsigned int low order 32 bits since epoch
posix_useconds unsigned int microseconds
pad1 int

CT_HEADER
ct_eye char[4] "CTHD"
ct_length short
ct_version short
number_of_ct_sys unsigned int
number_of_ct_call unsigned int

CT_SYS_STATS[number_of_ct_sys]
cs_eye char[4] "CTSY"
cs_length short
cs_version short
cs_sysname char[9] Name of system. A value of 0

means there is no information in
this record and any subsequent
record (end of list)

reserved char[7]

Statistics Sysplex Client Operations Information

Chapter 13. zFS application programming interface information 423

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
||

Usage notes
v Users of the API supply as input a buffer that contains a syscall_parmlist,

followed by a STAT_API structure, followed by an output buffer.
v The output consists of a CT_HEADER followed by an array of CT_SYS_STATS

structures and an array of CT_CALL_STATS structures. The number of elements
in each array is returned in number_of_ct_sys and number_of_ct_call
respectively.

v If the output buffer is not large enough to contain all of the output, E2BIG is
returned and the required size is placed in sa_len. The caller can then try the
request again with a larger buffer.

v A CT_SYS_STATS structure is returned only for systems that the local client
system sent messages to since the last statistics reset.

Privilege required

None.

Related services
Statistics Sysplex Owner Operations Information
Statistics Server Token Management Information

CT_CALL_STATS[number_of_ct_call]
cc_eye char[4] "CTCL"
cc_length short Length of structure
cc_version short Structure version
cc_count unsigned long long Number of calls of that type

since last statistics reset.
cc_xcfreq unsigned long long Indicates if an XCF request

was required to process the call.
Always equal tocc_count.

cc_qwait unsigned long long Number of times a request had
to wait in queue before being
dispatched to a processing
task at the owner. Invalid for
this report, will be equal to 0.

cc_avg_wait_whole int Average time for system to
process call in milliseconds.
This will be round-trip call time
(which includes XCF transmission
time) This is the part before
the decimal point.

cc_avg_wait_decimal int The part after the decimal
point for average wait time.
This is microseconds.

cc_name char[25]
reserved char[7]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR zFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred
E2BIG Information too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics Sysplex Client Operations Information

424 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|

|
|

|

|

|
|
|

Restrictions

None.

Example
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_CTKC 253 /* outbound calls to remote owners */
#define E2BIG 145

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

} syscall_parmlist;

typedef struct reset_time {
unsigned int posix_time_high;
unsigned int posix_time_low;
unsigned int posix_usecs;
int pad1;

} RESET_TIME;

typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct*/
int sa_ver; /* the version number currently always 1*/

#define SA_VER_INIT 0x01
char sa_flags; /* command field must be x00 or x80, */

/* x80 means reset statistics */
#define SA_RESET 0x80

char sa_fill[3]; /* spare bytes */
int sa_reserve[4]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

typedef struct CT_CALL_STATS_t {
char cc_eye[4];

#define CC_EYE "CTCL"
short cc_length;
short cc_version;

#define CC_VER_INITIAL 1
unsigned long long cc_count;
unsigned long long cc_xcfreq;
unsigned long long cc_qwait; /* number of waits */
int cc_avg_wait_whole; /* average wait time for calls */

/* of this type */
int cc_avg_wait_decimal;
char cc_name[25];
char reserved[7];

} CT_CALL_STATS;

typedef struct CT_SYS_STATS_t {
char cs_eye[4];

#define CS_EYE "CTSY"
short cs_length;
short cs_version;

#define CS_VER_INITIAL 1

Statistics Sysplex Client Operations Information

Chapter 13. zFS application programming interface information 425

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char cs_sysname[9];
char reserved[7];

} CT_SYS_STATS;

typedef struct CT_HEADER_t {
char ct_eye[4];

#define CT_EYE "CTHD"
short ct_length;
short ct_version;

#define CT_VER_INITIAL 1
unsigned int number_of_ct_sys;
unsigned int number_of_ct_call;

} CT_HEADER;

int main(int argc, char** argv)
{

int buff_fill_len = 0;
int buffer_success = 0;
int bpxrv, bpxrc, bpxrs;
char sysname[9];
int num_systems;
int num_calls;
int entry_size;
int mypsize;
int buflen;
int i,j,t;

STAT_API local_req;
STAT_API* st_req = NULL;
syscall_parmlist* parmp = NULL;
CT_HEADER* ct_p = NULL;
CT_SYS_STATS* ct_sysp = NULL;
CT_CALL_STATS* ct_callp = NULL;
char* p = NULL;
char* buffp = NULL;

/* Initialize the local_req to 0s */
st_req = &local_req;
memset(st_req, 0x00, sizeof(STAT_API));

strcpy(local_req.sa_eye, SA_EYE, sizeof(local_req.sa_eye));
local_req.sa_len = 0;
local_req.sa_ver = SA_VER_INIT;

/* Allocate Buffer */
buffp = (char*) malloc(sizeof(syscall_parmlist) + sizeof(STAT_API));
if(buffp == NULL)
{

printf("Malloc Error\n");
return 0;

}
memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

/* Set the run parms */
parmp = (syscall_parmlist*) &buffp[0];
parmp->opcode = STATOP_CTKC;
parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
parmp->parms[1] = buff_fill_len + sizeof(STAT_API);
parmp->parms[2] = 0;
parmp->parms[3] = 0;
parmp->parms[4] = 0;
parmp->parms[5] = 0;
parmp->parms[6] = 0;

st_req = (STAT_API*) &buffp[buff_fill_len];
memcpy(st_req, &local_req, sizeof(STAT_API));
buff_fill_len += sizeof(STAT_API);

Statistics Sysplex Client Operations Information

426 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Aggregate operation */
buff_fill_len, /* Length of Argument */
(char*) buffp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

for(t = 0; t < 1000 && buffer_success == 0; t++)
{

if(bpxrv < 0)
{

/* Look for E2BIG to get the required file size back in the st_req */
if(bpxrc == E2BIG)
{

buflen = st_req->sa_len;
mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen;

free(buffp);

buffp = (char*) malloc(mypsize);
if(buffp == NULL)
{

printf("Malloc Error\n");
return 0;

}
memset(buffp, 0x00, mypsize);
printf("Need buffer size of %d, for a total of %d\n",

buflen, mypsize);

/* Set the run parms */
parmp = (syscall_parmlist*) &buffp[0];
parmp->opcode = STATOP_CTKC;
parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
parmp->parms[1] = buff_fill_len + sizeof(STAT_API);
parmp->parms[2] = 0;
parmp->parms[3] = 0;
parmp->parms[4] = 0;
parmp->parms[5] = 0;
parmp->parms[6] = 0;

st_req = (STAT_API*) &buffp[buff_fill_len];
memcpy(st_req->sa_eye, SA_EYE, 4);
buff_fill_len += sizeof(STAT_API);
st_req->sa_ver = SA_VER_INIT;
st_req->sa_len = buflen;

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Aggregate operation */
mypsize, /* Length of Argument */
(char*) buffp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv != 0 && bpxrc == E2BIG)
printf("E2BIG: %d times total\n", t++);

else if(bpxrv == 0)
{

buffer_success = 1;
ct_p = (CT_HEADER*) &buffp[buff_fill_len];
buff_fill_len += ct_p->ct_length;
ct_sysp = (CT_SYS_STATS*) &buffp[buff_fill_len];
buff_fill_len += ct_sysp->cs_length;
ct_callp = (CT_CALL_STATS*) &buffp[buff_fill_len];

Statistics Sysplex Client Operations Information

Chapter 13. zFS application programming interface information 427

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* Make sure there are systems */
num_systems = ct_p->number_of_ct_sys;
if(num_systems == 0)
{

printf("Ctkc completed successfully. "
"There is no information to display\n");

free(buffp);
return 0;

}
num_calls = ct_p->number_of_ct_call;
entry_size = ct_sysp->cs_length +

(ct_callp->cc_length * num_calls);

for (j = 0; j < num_systems; j++)
{

printf("CS");
printf("%5c SVI Calls to System %s\n", ’ ’,

ct_sysp->cs_sysname);
printf(" ");
printf("%15c----------------------------\n", ’ ’);
printf("SVI Call Count"

" Avg. Time\n");
printf("-------------------- --------------------"

" ----------\n");

for (i = 0; i < num_calls-1; i++)
{

printf("%-25s %20llu %8u.%3.3u\n",
ct_callp[i].cc_name,
ct_callp[i].cc_count,
ct_callp[i].cc_avg_wait_whole,
ct_callp[i].cc_avg_wait_decimal);

}

/* Put out the Totals entry */
printf("-------------------- --------------------"

" ----------\n");
printf("%-25s %20llu %8u.%3.3u\n",

ct_callp[i].cc_name,
ct_callp[i].cc_count,
ct_callp[i].cc_avg_wait_whole,
ct_callp[i].cc_avg_wait_decimal);

printf("\n");

/* Get the pointers to the next system entry */
p = (char*) ct_sysp;
p += entry_size;
ct_sysp = (CT_SYS_STATS*) p;

p += ct_sysp->cs_length;
ct_callp = (CT_CALL_STATS*) p;

}
}
else
{

/* Second API call failed */
printf("Error on next request for ctkc stats\n");
printf("Return Value: %d Return Code: %d Reason Code: %x\n",

bpxrv, bpxrc, bpxrs);
buffer_success = -1;

}
}
else
{

/* Expecting E2BIG and it was a different error */
printf("Error on storage stats trying to get required size\n");

Statistics Sysplex Client Operations Information

428 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

buffer_success = -1;
}

}
else
{

/* If rv is 0, most likely there was no data to get */
if (st_req->sa_len == 0)
{

printf("No data\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",

bpxrv, bpxrc, bpxrs);
buffer_success = -1;

}
else
{ /* No, there was other problem with getting the size needed */

printf("Error getting size required\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",

bpxrv, bpxrc, bpxrs);
buffer_success = -1;

}
}

}

if(t == 1000)
printf("Number of failed buffer resizes exceeded.\n");

free(buffp);
return 0;

}

Statistics Sysplex Client Operations Information

Chapter 13. zFS application programming interface information 429

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Statistics Sysplex Owner Operations Information
Purpose

Returns information about the number of calls processed on the local system as a
result of a message sent from another system. Vnode operation statistics are
returned for each client system that accessed a file system owned on the local
server.

Format

syscall_parmlist
opcode int 253 STATOP_SVI
parms[0] int offset to STAT_API
parms[1] int Offset of output following STAT_API
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API

sa_eye char[4] "STAP"
sa_len int length of buffer that

follows STAT_API
sa_ver int 1
sa_flags char[1] 0x00
SA_RESET 0x80 Reset statistics
sa_fill char[3] 0
sa_supported_ver int version of data returned or reserved
sa_reserve int[3] 0
posix_time_high unsigned int high order 32 bits since epoch
posix_time_low unsigned int low order 32 bits since epoch
posix_useconds unsigned int microseconds
pad1 int

CT_HEADER
ct_eye char[4] "CTHD"
ct_length short Length of the structure
ct_version short Structure version
number_of_ct_sys unsigned int Number of CT_SYS_STATS structures
number_of_ct_call unsigned int Number of CT_CALL_STATS structures

CT_SYS_STATS[number_of_ct_sys]
cs_eye char[4] "CTSY"
cs_length short Length of the structure
cs_version short Structure version
cs_sysname char[9] Name of system. A value of 0

means there is no information in
this record and any subsequent
record (end of list)

reserved char[7]

CT_CALL_STATS[number_of_ct_call]
cc_eye char[4] "CTCL"
cc_length short Length of structure
cc_version short Structure version
cc_count unsigned long long Number of calls of that type

since last statistics reset.

Statistics Sysplex Owner Operations Information

430 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

|
||

cc_xcfreq unsigned long long Indicates if an XCF request
was required to process the call.
Number of XCF requests that were
required to make callbacks to one
or more clients to process
the requests.

cc_qwait unsigned long long Number of times a request had
to wait in queue before being
dispatched to a processing
task at the owner, valid only
for SVI report

cc_avg_wait_whole int Average time for system to
process call in milliseconds.
This will be average time for the
owner to process the call for SVI
reports. This is the part
before the decimal point.

cc_avg_wait_decimal int The part after the decimal
point for avg. waits time.
This is microseconds.

cc_name char[25]
reserved char[7]

CT_CALL_STATS
cc_eye char[4] "CTCL"
cc_length short Length of structure
cc_version short Structure version
cc_count unsigned long long Number of calls of that type

since last statistics reset.
cc_xcfreq unsigned long long Indicates if an XCF request

was required to process the call.
Number of XCF requests that were
required to make callbacks to one
or more clients to process
the requests.

cc_qwait unsigned long long Number of times a request had
to wait in queue before being
dispatched to a processing
task at the owner, valid only
for SVI report

cc_avg_wait_whole int Average time for system to
process call in milliseconds.
This will be average time for the
owner to process the call for SVI
reports. This is the part
before the decimal point.

cc_avg_wait_decimal int The part after the decimal
point for avg. waits time.
This is microseconds.

cc_name char[25]
reserved char[7]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics Sysplex Owner Operations Information

Chapter 13. zFS application programming interface information 431

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v Users of the API supply as input a buffer that contains a syscall_parmlist

followed by a STAT_API structure, followed by an output buffer.
v Output consists of a CT_HEADER followed by an array of CT_SYS_STATS

structures and an array of CT_CALL_STATS structures. The number of elements
in each array is returned in number_of_ct_sys and number_of_ct_call
respectively.

v If the output buffer is not large enough to contain all of the output, E2BIG is
returned and the required size is placed in sa_len. The caller can then try the
request again with a larger buffer.

v A CT_SYS_STATS structure is returned only for client systems that sent the local
server system messages since the last statistics reset.

Privilege required

None.

Related services
Statistics Server Token Management Information
Statistics Sysplex Client Operations Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_SVI 254 /* inbound calls from remote clients */
#define E2BIG 145

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

} syscall_parmlist;

typedef struct reset_time {
unsigned int posix_time_high;
unsigned int posix_time_low;
unsigned int posix_usecs;
int pad1;

} RESET_TIME;

typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct*/
int sa_ver; /* the version number currently always 1*/

#define SA_VER_INIT 0x01
char sa_flags; /* command field must be x00 or x80, */

/* x80 means reset statistics */
#define SA_RESET 0x80

char sa_fill[3]; /* spare bytes */

Statistics Sysplex Owner Operations Information

432 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int sa_reserve[4]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

typedef struct CT_CALL_STATS_t {
char cc_eye[4];

#define CC_EYE "CTCL"
short cc_length;
short cc_version;

#define CC_VER_INITIAL 1
unsigned long long cc_count;
unsigned long long cc_xcfreq;
unsigned long long cc_qwait; /* number of waits */
int cc_avg_wait_whole; /* average wait time for */

/* calls of this type */
int cc_avg_wait_decimal;
char cc_name[25];
char reserved[7];

} CT_CALL_STATS;

typedef struct CT_SYS_STATS_t {
char cs_eye[4];

#define CS_EYE "CTSY"
short cs_length;
short cs_version;

#define CS_VER_INITIAL 1
char cs_sysname[9];
char reserved[7];

} CT_SYS_STATS;

typedef struct CT_HEADER_t {
char ct_eye[4];

#define CT_EYE "CTHD"
short ct_length;
short ct_version;

#define CT_VER_INITIAL 1
unsigned int number_of_ct_sys;
unsigned int number_of_ct_call;

} CT_HEADER;

int main(int argc, char** argv)
{

int buff_fill_len = 0;
int bpxrv, bpxrc, bpxrs;
char sysname[9];
int num_systems;
int num_calls;
int entry_size;
int mypsize;
int buflen;
int i,j,t;
int buffer_success = 0;

STAT_API local_req;
STAT_API* st_req = NULL;
syscall_parmlist* parmp = NULL;
CT_HEADER* ct_p = NULL;
CT_SYS_STATS* ct_sysp = NULL;
CT_CALL_STATS* ct_callp = NULL;
char* p = NULL;
char* buffp = NULL;

/* Initialize the local_req to 0s */
st_req = &local_req;
memset(st_req, 0x00, sizeof(STAT_API));

strcpy(local_req.sa_eye, SA_EYE, sizeof(local_req.sa_eye));

Statistics Sysplex Owner Operations Information

Chapter 13. zFS application programming interface information 433

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

local_req.sa_len = 0;
local_req.sa_ver = SA_VER_INIT;

/* Allocate Buffer */
buffp = (char*) malloc(sizeof(syscall_parmlist) + sizeof(STAT_API));
if(buffp == NULL)
{

printf("Malloc Error\n");
return 0;

}
memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

/* Set the run parms */
parmp = (syscall_parmlist*) &buffp[0];
parmp->opcode = STATOP_SVI;
parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
parmp->parms[1] = buff_fill_len + sizeof(STAT_API);
parmp->parms[2] = 0;
parmp->parms[3] = 0;
parmp->parms[4] = 0;
parmp->parms[5] = 0;
parmp->parms[6] = 0;

st_req = (STAT_API*) &buffp[buff_fill_len];
memcpy(st_req, &local_req, sizeof(STAT_API));
buff_fill_len += sizeof(STAT_API);

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Aggregate operation */
buff_fill_len, /* Length of Argument */
(char*) buffp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

printf("bpxrv %d\n", bpxrv);

for(t = 0; t < 1000 && buffer_success == 0; t++)
{

if(bpxrv < 0)
{

/* Look for E2BIG to get required file size back in the st_req */
if(bpxrc == E2BIG)
{

buflen = st_req->sa_len;
mypsize = sizeof(syscall_parmlist) +

sizeof(STAT_API) + buflen;

free(buffp);

buffp = (char*) malloc(mypsize);
if(buffp == NULL)
{

printf("Malloc Error\n");
return 0;

}
memset(buffp, 0x00, mypsize);
printf("Need buffer size of %d, for a total of %d\n",

buflen, mypsize);

/* Set the run parms */
parmp = (syscall_parmlist*) &buffp[0];
parmp->opcode = STATOP_SVI;
parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
parmp->parms[1] = buff_fill_len + sizeof(STAT_API);
parmp->parms[2] = 0;
parmp->parms[3] = 0;

Statistics Sysplex Owner Operations Information

434 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

parmp->parms[4] = 0;
parmp->parms[5] = 0;
parmp->parms[6] = 0;

st_req = (STAT_API*) &buffp[buff_fill_len];
memcpy(st_req->sa_eye, SA_EYE, 4);
buff_fill_len += sizeof(STAT_API);
st_req->sa_ver = SA_VER_INIT;
st_req->sa_len = buflen;

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Aggregate operation */
mypsize, /* Length of Argument */
(char*) buffp, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv != 0 && bpxrc == E2BIG)
printf("E2BIG: %d times total\n", t);

else if(bpxrv == 0)
{

buffer_success = 1;
ct_p = (CT_HEADER*) &buffp[buff_fill_len];
buff_fill_len += ct_p->ct_length;
ct_sysp = (CT_SYS_STATS*) &buffp[buff_fill_len];
buff_fill_len += ct_sysp->cs_length;
ct_callp = (CT_CALL_STATS*) &buffp[buff_fill_len];

/* Make sure there are systems */
num_systems = ct_p->number_of_ct_sys;
if(num_systems == 0)
{

printf("Svi stats completed successfully. "
"There is no information to display\n");

free(buffp);
return 0;

}
num_calls = ct_p->number_of_ct_call;
entry_size = ct_sysp->cs_length +

(ct_callp->cc_length * num_calls);

for (j = 0; j < num_systems; j++)
{

printf("SV");
printf("%30cSVI Calls from System %s\n", ’ ’,

ct_sysp->cs_sysname);
printf(" ");
printf("%30c------------------------------\n", ’ ’);
printf("SVI Call "

"Count "
"Qwait "
"XCF Req. "
"Avg. Time\n");

printf("-------------------- "
"-------------------- "
"---------------- ---------------- "
"----------\n");

for (i = 0; i < num_calls-1; i++)
{

printf("%-25s%20llu %16llu %16llu%8u.%3.3u\n",
ct_callp[i].cc_name,
ct_callp[i].cc_count,
ct_callp[i].cc_qwait,
ct_callp[i].cc_xcfreq,
ct_callp[i].cc_avg_wait_whole,

Statistics Sysplex Owner Operations Information

Chapter 13. zFS application programming interface information 435

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ct_callp[i].cc_avg_wait_decimal);
}

/* Put out the Totals entry */
printf("-------------------- "

"-------------------- "
"---------------- ---------------- "
"----------\n");

printf("%-25s%20llu %16llu %16llu%8u.%3.3u\n",
ct_callp[i].cc_name,
ct_callp[i].cc_count,
ct_callp[i].cc_qwait,
ct_callp[i].cc_xcfreq,
ct_callp[i].cc_avg_wait_whole,
ct_callp[i].cc_avg_wait_decimal);

printf("\n");

/* Get the pointers to the next system entry */
p = (char*) ct_sysp;
p += entry_size;
ct_sysp = (CT_SYS_STATS*) p;

p += ct_sysp->cs_length;
ct_callp = (CT_CALL_STATS*) p;

}
}
else
{

/* Second API call failed */
printf("Error on next request for svi stats\n");
printf("Return Value: %d "

"Return Code: %d "
"Reason Code: %x\n",
bpxrv, bpxrc, bpxrs);

buffer_success = -1;
}

}
else
{

/* Expecting E2BIG and it was a different error */
printf("Error on storage stats trying to get required size\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",

bpxrv, bpxrc, bpxrs);
buffer_success = -1;

}
}
else
{

/* If rv is 0, most likely there was no data to get */
if (st_req->sa_len == 0)
{

printf("No data\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",

bpxrv, bpxrc, bpxrs);
}
else
{ /* There was some other problem with getting required size */

printf("Error getting size required\n");
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",

bpxrv, bpxrc, bpxrs);
}
buffer_success = -1;

}
}

if(t == 1000)

Statistics Sysplex Owner Operations Information

436 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("Number of failed buffer resizes exceeded.\n");

free(buffp);
return 0;

}

Statistics Sysplex Owner Operations Information

Chapter 13. zFS application programming interface information 437

|
|
|
|
|

Statistics Transaction Cache Information
Purpose

A performance statistics operation that returns transaction cache counters. It
determines the number of transactions in the transaction cache.

As of z/OS V2R2, this subcommand is no longer used. All output fields from a call
to statistics transaction cache information will be filled in with zeros.

Format

syscall_parmlist
opcode int 250 STATOP_TRAN_CACHE
parms[0] int Offset to STAT_API
parms[1] int Offset of output following STAT_API
parms[2] int Offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int Length of buffer following STAT_API
sa_ver int 1
sa_flags char[1] 0x80 - Reset statistics
sa_fill char[3] Reserved
sa_reserve int[4] Reserved
posix_time_high unsigned int High order 32 bits since epoch
posix_time_low unsigned int Low order 32 bits since epoch
posix_useconds unsigned int Microseconds
pad1 int Reserved

STAT_TRAN_CACHE
sttr_started_high unsigned int Transactions started high 32 bits
sttr_started unsigned int Transactions started
sttr_lookups_high unsigned int Lookups on transaction high 32

bits
sttr_lookups unsigned int Lookups on transaction
sttr_ec_merges_high unsigned int Equivalence class merges high 32

bits
sttr_ec_merges unsigned int Equivalence class merges
sttr_alloc_trans_high unsigned int Allocated transactions high 32

bits
sttr_alloc_trans unsigned int Allocated transactions
sttr_trans_act_high unsigned int Transactions active high 32 bits
sttr_trans_act unsigned int Transactions active
sttr_trans_pend_high unsigned int Transactions pending high 32 bits
sttr_trans_pend unsigned int Transactions pending
sttr_trans_comp_high unsigned int Transactions completed high 32

bits
sttr_trans_comp unsigned int Transactions completed
sttr_trans_free_high unsigned int Free transactions high 32 bits
sttr_trans_free unsigned int Free transactions
reserved char[60] Reserved

systemname char[9] System name to get stas from

Statistics Transaction Cache Information

438 z/OS V2R2 Distributed File Service zFS Administration

|
|

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

None.

Related services
Statistics Vnode Cache Information
Statistics Metadata Cache Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */
#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_TRAN_CACHE 250 /* Performance API queries */

typedef struct syscall_parmlist_t
{

int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct stat_tran_cache_t
{

unsigned int sttr_started_high;
unsigned int sttr_started;
unsigned int sttr_lookups_high;
unsigned int sttr_lookups;
unsigned int sttr_ec_merges_high;
unsigned int sttr_ec_merges;
unsigned int sttr_alloc_trans_high;
unsigned int sttr_alloc_trans;
unsigned int sttr_trans_act_high;
unsigned int sttr_trans_act;
unsigned int sttr_trans_pend_high;
unsigned int sttr_trans_pend;
unsigned int sttr_trans_comp_high;

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR zFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred
E2BIG Information too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics Transaction Cache Information

Chapter 13. zFS application programming interface information 439

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned int sttr_trans_comp;
unsigned int sttr_trans_free_high;
unsigned int sttr_trans_free;
char reserved[60];

} STAT_TRAN_CACHE;

/* reset timestamp */
typedef struct reset_time {

unsigned int posix_time_high; /* high order 32 bits since epoc */
unsigned int posix_time_low; /* low order 32 bits since epoch */
unsigned int posix_usecs; /* microseconds */
int pad1;

} RESET_TIME;

/***/
/* The following structure is the api query control block. */
/* It is used for all api query commands. */
/***/
typedef struct stat_api_t
{
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct*/
int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01
char sa_flags; /* flags field must be x00 or x80,

x80 means reset statistics*/
#define SA_RESET 0x80

char sa_fill[3]; /* spare bytes */
int sa_reserve[4]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

struct parmstruct {
syscall_parmlist myparms;
STAT_API myapi;
STAT_TRAN_CACHE mystats;
char systemname[9];

} myparmstruct;

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i;

STAT_API *stapptr = &(myparmstruct.myapi);
STAT_TRAN_CACHE *sttcptr = &(myparmstruct.mystats);
char buf[33];

myparmstruct.myparms.opcode = STATOP_TRAN_CACHE;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist)+sizeof(STAT_API);
myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */
/* you want to query the tran cache statistics of another system. */
/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + */
/* sizeof(STAT_API) + */
/* sizeof(STAT_TRAN_CACHE); */

myparmstruct.myparms.parms[3] = 0;

Statistics Transaction Cache Information

440 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(stapptr, 0, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_INITIAL;
stapptr->sa_len = (int) sizeof(STAT_TRAN_CACHE);

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error querying tran cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else
{

printf("\n%52s\n", "Transaction Cache Statistics");
printf("%52s\n", "----------------------------");
printf("Trans started: %8u Lookups on Tran: %8u EC Merges: %8u\n",

myparmstruct.mystats.sttr_started,
myparmstruct.mystats.sttr_lookups,
myparmstruct.mystats.sttr_ec_merges);

printf("Allocated Trans: %8u \n(Act= %7u, Pend= %7u, ",
myparmstruct.mystats.sttr_alloc_trans,
myparmstruct.mystats.sttr_trans_act,
myparmstruct.mystats.sttr_trans_pend);

printf("Comp=%7u, Free= %7u)\n",
myparmstruct.mystats.sttr_trans_comp,
myparmstruct.mystats.sttr_trans_free);

if (0 == ctime_r((time_t *)&stapptr->reset_time_info.posix_time_low,
buf))

printf("Could not get timestamp.\n");
else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s\n", buf);

}
}
return 0;

}

Statistics Transaction Cache Information

Chapter 13. zFS application programming interface information 441

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Statistics User Cache Information
Purpose

A performance statistics operation that returns user cache information.

Format

syscall_parmlist
opcode int 242 STATOP_USER_CACHE
parm[0] int Offset to STAT_API
parm[1] int Offset of output following STAT_API
parm[2] int Offset to system name (optional)
parm[3] int 0
parm[4] int 0
parm[5] int 0
parm[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int Length of buffer that follows STAT_API
sa_ver int 1 or 2
sa_flags char[1] 0x80 for reset; 0x00 otherwise
sa_fill char[3] Reserved
sa_supported_ver int Version of data returned when sa_ver

is 2
sa_reserve int[3] Reserved
posix_time_high unsigned int High order 32 bits since epoch
posix_time_low unsigned int Low order 32 bits since epoch
posix_useconds unsigned int Microseconds
pad1 int Reserved

STAT_USER_CACHE[2]
VM_STATS[2]

vm_schedules unsigned int Number of I/O requests
vm_setattrs unsigned int Number of setattr requests
vm_fsyncs unsigned int Number of fsync operations
vm_unmaps unsigned int Number of file deletions
vm_reads unsigned int Number of read operations
vm_readasyncs unsigned int Number of readaheads
vm_writes unsigned int Number of write operations
vm_getattrs unsigned int Number of getattr requests
vm_flushes unsigned int Number of cache flushes
vm_scheduled_deletes unsigned int Number of times an I/O is

canceled because the file was
deleted

vm_reads_faulted unsigned int Number of times I/O needed to
satisfy read operation
(data was not in cache)

vm_writes_faulted unsigned int Number of times I/O needed to
read data before data can be
written to cache

vm_read_ios unsigned int Total number of file system
reads for any reason

vm_scheduled_writes unsigned int Number of data write I/Os issued
vm_error_writes unsigned int Number of data writes done when

flushing a file from the cache
after an I/O error or canceled
user

Statistics User Cache Information

442 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

vm_reclaim_writes unsigned int Number of data writes during
space reclaim

vm_read_waits unsigned int Number of times a read had to
wait for pending I/O

vm_write_waits unsigned int Number of waits for pending I/O
so that new data could be
written to the file

vm_fsync_waits unsigned int Number of waits for pending I/O
fsync operations did

vm_error_waits unsigned int Number of waits when flushing a
file from the cache after an I/O
error or canceled user

vm_reclaim_waits unsigned int Number of waits done during
reclaim processing for I/O

vm_reclaim_steal unsigned int Number of pages stolen during
space reclaim processing

vm_waits_for_reclaim unsigned int Number of waits for reclaim
processing to complete

vm_reserved int[10] Reserved
suc dataspaces int Number of dataspaces in user

data cache
suc pages_per_dataspace int Number of pages per dataspace
suc seg_size_local int Local segment size (in K)
suc seg_size_remote int Remote segment size (in K)
suc page_size int Page size (in K)
suc cache_pages int Number of pages in user cache
suc total_free int Number of free pages
suc segment_cachesize int Number of segments
stuc_reserved int[5] Reserved
DS_ENTRY[32]

ds_name char[9] Dataspace name
pad1 char[3] Reserved
ds_alloc_segs int Number of used (allocated)

segments in the dataspace
ds_free_pages int Number of free dataspace pages
ds_reserved int[5] Reserved

STAT_USER_CACHE2
VM_STATS2

vm_schedules unsigned long long int Number of I/O requests
vm_setattrs unsigned long long int Number of setattrs
vm_fsyncs unsigned long long int Number of fysnc operations
vm_unmaps unsigned long long int Number of file deletions
vm_reads unsigned long long int Number of read operations
vm_readasyncs unsigned long long int Number of readaheads
vm_writes unsigned long long int Number of write operations
vm_getattrs unsigned long long int Number of getattrs
vm_flushes unsigned long long int Number of times the

user cache was flushed

vm_scheduled_deletes unsigned long long int Number of times an I/O
is canceled because the
file was deleted

Statistics User Cache Information

Chapter 13. zFS application programming interface information 443

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

vm_reads_faulted unsigned long long int Number of times I/O needed
to satisfy read operation
(data was not in cache)

vm_writes_faulted unsigned long long int Number of times I/O needed
to read data before data
can be written to cache

vm_read_ios unsigned long long int Total number of file
system reads for any
reason

vm_scheduled_writes unsigned long long int Number of data write
I/Os issued

vm_error_writes unsigned long long int Number of data writes
when flushing a file
from the cache after
an I/O error or a
canceled user

vm_reclaim_writes unsigned long long int Number of data writes
during space reclaim

vm_read_waits unsigned long long int Number of times a read had
to wait for pending I/O

vm_write_waits unsigned long long int Number of waits for a
pending I/O so that new
data could be written to
the file

vm_fsync_waits unsigned long long int Number of waits for
pending I/O fsync
operations did

vm_error_waits unsigned long long int Number of waits in
user cache error
processing

vm_reclaim_waits unsigned long long int Number of waits done
during the reclaim
processing for I/O

vm_reclaim_steal unsigned long long int Number of user cache
pages stolen during
reclaim processing

vm_waits_for_reclaim unsigned long long int Number of waits for
space reclaim process
to complete

vm_reserved unsigned long long int[10] Reserved
suc dataspaces int Number of dataspaces in

user data cache
suc pages_per_dataspace int Number of pages per

dataspace
suc seg_size_local int Local segment size (in K)
suc seg_size_remote int Remote segment size (in K)
suc page_size int Page size (in K)
suc cache_pages int Number of pages in cache
suc total_free int Number of free pages
suc segment_cachesize int Number of segments
stuc_reserved int[5] Reserved
DS_ENTRY[32]

ds_name char[9] Dataspace name
pad1 char[3] Reserved
ds_alloc_segs int Number of used segments in

dataspace
ds_free_pages int Number of free pages in

dataspace
ds_reserved int[5] Reserved

reserved char[4] Reserved
systemname char[9] Name of system to get

statistics from

Statistics User Cache Information

444 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v When sa_supported_ver is 0 or 1, the output consists of STAT_USER_CACHE[2]

and DS_ENTRY.
v When sa_supported_ver is 2 the output consists of STAT_USER_CACHE2 and

DS_ENTRY.

Privilege required

None.

Related services
Statistics Locking Information
Statistics Storage Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_USER_CACHE 242 /* Performance API queries */
#define NUM_DATASPACES 32
#define REMOTE 1
#define LOCAL 0

typedef struct syscall_parmlist_t
{

int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct ds_entry
{

char ds_name[9];
char pad1[3];
int ds_alloc_segs;
int ds_free_pages;
int ds_reserved[5]; /*reserved for future use*/

} DS_ENTRY;

Return value 0 if request is successful, -1 if it is not successful

Return code
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred

Reason code
0xEFxxnnnn See z/OS Distributed File Service Messages and Codes

Statistics User Cache Information

Chapter 13. zFS application programming interface information 445

|
|
|
|
|
|
|
|
|

|
|

|
|

typedef struct reset_time {
unsigned int posix_time_high; /* high order 32 bits since epoc */
unsigned int posix_time_low; /* low order 32 bits since epoch */
unsigned int posix_usecs; /* microseconds */
int pad1;

} RESET_TIME;

/***/
/* The following structure is the user data cache statistics */
/***/
typedef struct vm_stats_2_t
{

/**/
/* First set of counters are for external requests to the VM system. */
/**/
unsigned long long int vm_schedules;
unsigned long long int vm_setattrs;
unsigned long long int vm_fsyncs;
unsigned long long int vm_unmaps;
unsigned long long int vm_reads;
unsigned long long int vm_readasyncs;
unsigned long long int vm_writes;
unsigned long long int vm_getattrs;
unsigned long long int vm_flushes;
unsigned long long int vm_scheduled_deletes;

/**/
/* Next two are fault counters, they measure number of read or write */
/* requests requiring a fault to read in data, this synchronizes */
/* an operation to a DASD read, we want these counters as small as */
/* possible. (These are read I/O counters). */
/**/
unsigned long long int vm_reads_faulted;
unsigned long long int vm_writes_faulted;
unsigned long long int vm_read_ios;

/**/
/* Next counters are write counters. They measure number of times */
/* we scheduled and waited for write I/Os. */
/**/
unsigned long long int vm_scheduled_writes;
unsigned long long int vm_error_writes;
unsigned long long int vm_reclaim_writes; /* Wrote dirty data for reclaim */

/**/
/* Next counters are I/O wait counters. They count the number of */
/* times we had to wait for a write I/O and under what conditions. */
/**/
unsigned long long int vm_read_waits;
unsigned long long int vm_write_waits;
unsigned long long int vm_fsync_waits;
unsigned long long int vm_error_waits;
unsigned long long int vm_reclaim_waits; /* Waited for pending

I/O for reclaim */

/**/
/* Final set are memory management counters. */
/**/
unsigned long long int vm_reclaim_steal; /* Number of times steal from

others function invoked */
unsigned long long int vm_waits_for_reclaim; /* Waits for reclaim thread */
unsigned long long int vm_reserved[10]; /*reserved for future use*/

} VM_STATS_2;

typedef struct stat_user_cache_2_t
{

/*Various statistics for both LOCAL and REMOTE systems */

Statistics User Cache Information

446 z/OS V2R2 Distributed File Service zFS Administration

VM_STATS_2 stuc;

int stuc_dataspaces; /* Number of dataspaces in user data cache */
int stuc_pages_per_ds; /* Pages per dataspace */
int stuc_seg_size_loc; /* Local Segment Size (in K) */
int stuc_seg_size_rmt; /* Remote Segment Size (in K) */
int stuc_page_size; /* Page Size (in K) */
int stuc_cache_pages; /* Total number of pages */
int stuc_total_free; /* Total number of free pages */
int stuc_vmSegTable_cachesize; /* Number of segments */
int stuc_reserved[5]; /*reserved for future use*/
DS_ENTRY stuc_ds_entry[NUM_DATASPACES]; /* Array of dataspace entries */
char reserved[4];

} STAT_USER_CACHE_2;

/* Version 1 Output Structures */

/***/
/* The following structure is the user data cache statistics */
/***/
typedef struct vm_stats_t {

/**/
/* First set of counters are for external requests to the VM system. */
/**/
unsigned int vm_schedules;
unsigned int vm_setattrs;
unsigned int vm_fsyncs;
unsigned int vm_unmaps;
unsigned int vm_reads;
unsigned int vm_readasyncs;
unsigned int vm_writes;
unsigned int vm_getattrs;
unsigned int vm_flushes;
unsigned int vm_scheduled_deletes;
/**/
/* Next two are fault counters, they measure number of read or write */
/* requests requiring a fault to read in data, this synchronizes */
/* an operation to a DASD read, we want these counters as small as */
/* possible. (These are read I/O counters). */
/**/
unsigned int vm_reads_faulted;
unsigned int vm_writes_faulted;
unsigned int vm_read_ios;
/**/
/* Next counters are write counters. They measure number of times */
/* we scheduled and waited for write I/Os. */
/**/
unsigned int vm_scheduled_writes;
unsigned int vm_error_writes;
unsigned int vm_reclaim_writes; /* Wrote dirty data for reclaim */
/**/
/* Next counters are I/O wait counters. They count the number of */
/* times we had to wait for a write I/O and under what conditions. */
/**/
unsigned int vm_read_waits;
unsigned int vm_write_waits;
unsigned int vm_fsync_waits;
unsigned int vm_error_waits;
unsigned int vm_reclaim_waits; /* Waited for pending

I/O for reclaim */

/**/
/* Final set are memory management counters. */
/**/
unsigned int vm_reclaim_steal; /* Number of times steal from

others function invoked */

Statistics User Cache Information

Chapter 13. zFS application programming interface information 447

unsigned int vm_waits_for_reclaim; /* Waits for reclaim thread */
unsigned int vm_reserved[10]; /*reserved for future use*/

} VM_STATS;

typedef struct stat_user_cache_t {
VM_STATS stuc[2]; /* Various statistics for both

LOCAL and REMOTE systems*/
int stuc_dataspaces; /* Number of dataspaces

in user data cache */
int stuc_pages_per_ds; /* Pages per dataspace */
int stuc_seg_size_loc; /* Local Segment Size (in K) */
int stuc_seg_size_rmt; /* Remote Segment Size (in K) */
int stuc_page_size; /* Page Size (in K) */
int stuc_cache_pages; /* Total number of pages */
int stuc_total_free; /* Total number of free pages */
int stuc_vmSegTable_cachesize; /* Number of segments */
int stuc_reserved[5]; /* reserved */
DS_ENTRY stuc_ds_entry[32]; /* Array of dataspace entries */

} STAT_USER_CACHE;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct */
int sa_ver; /* the version number currently always 1*/

#define SA_VER_2 0x02
#define SA_VER_INIT 0x01

char sa_flags; /* flags field must be x00 or x80, */
/* x80 means reset statistics */

#define SA_RESET 0x80
char sa_fill[3]; /* spare bytes */
int sa_supported_ver; /* version of data returned */
int sa_reserve[3]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

struct parmstruct {
syscall_parmlist myparms;
STAT_API myapi;
STAT_USER_CACHE_2 mystats;
char systemname[9];

} myparmstruct;

int print_user_cache_version1(STAT_USER_CACHE *stcacheptr);
int print_user_cache_version2(STAT_USER_CACHE_2 *stcacheptr);

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i,j;
char buf[33];

STAT_API *stapptr = &(myparmstruct.myapi);

myparmstruct.myparms.opcode = STATOP_USER_CACHE;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

Statistics User Cache Information

448 z/OS V2R2 Distributed File Service zFS Administration

/* you are running z/OS 1.7 and above, and you want to query the user cache
statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) +
sizeof(STAT_API) + */

/* sizeof(STAT_USER_CACHE_2); */

myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(stapptr, 0, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = (int) sizeof(STAT_USER_CACHE_2);

/* This next field should only be set if parms[2] is non-zero */
/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error querying user cache stats, "
"BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);

return bpxrc;
}
else
{

if(stapptr->sa_supported_ver == SA_VER_INIT)
{

STAT_USER_CACHE *stcacheptr_v1;
stcacheptr_v1 = (STAT_USER_CACHE*) &(myparmstruct.mystats);
print_user_cache_version1(stcacheptr_v1);

}
else
{

STAT_USER_CACHE_2 *stcacheptr = &(myparmstruct.mystats);
print_user_cache_version2(stcacheptr);

}

if (0 == ctime_r((time_t*) & stapptr->reset_time_info.posix_time_low, buf))
printf("Could not get timestamp.\n");

else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}
}
return 0;

}

int print_user_cache_version2(STAT_USER_CACHE_2* stcacheptr)
{

int i;
double ratio1, ratio2, ratio3, ratio4;
printf(" User File (VM) Caching System Statistics\n");

Statistics User Cache Information

Chapter 13. zFS application programming interface information 449

printf(" --\n");
printf("\n");

printf(" Direct Statistics\n");
printf(" -----------------\n\n");

printf("External Requests:\n");
printf("------------------\n");
printf("%-9s %20llu %-9s %20llu %-9s %20llu\n",

"Reads" , stcacheptr->stuc.vm_reads,
"Fsyncs" , stcacheptr->stuc.vm_fsyncs,
"Schedules", stcacheptr->stuc.vm_schedules);

printf("%-9s %20llu %-9s %20llu %-9s %20llu\n",
"Writes" , stcacheptr->stuc.vm_writes,
"Setattrs" , stcacheptr->stuc.vm_setattrs,
"Unmaps" , stcacheptr->stuc.vm_unmaps);

printf("%-9s %20llu %-9s %20llu %-9s %20llu\n",
"Asy Reads", stcacheptr->stuc.vm_readasyncs,
"Getattrs" , stcacheptr->stuc.vm_getattrs,
"Flushes" , stcacheptr->stuc.vm_flushes);

printf("\n");

printf("File System Reads:\n");
printf("------------------\n");

ratio1 = ratio2 = ratio3 = ratio4 = 0.0;

if (stcacheptr->stuc.vm_reads > 0)
{

ratio1 = 100 * (((double)stcacheptr->stuc.vm_reads_faulted)
/ ((double)stcacheptr->stuc.vm_reads));

}
if (stcacheptr->stuc.vm_writes > 0)
{

ratio2 = 100 * (((double)stcacheptr->stuc.vm_writes_faulted)
/ ((double)stcacheptr->stuc.vm_writes));

}
if (stcacheptr->stuc.vm_reads > 0)
{

ratio3 = 100 * (((double)stcacheptr->stuc.vm_read_waits)
/ ((double)stcacheptr->stuc.vm_reads));

}

printf("%-14s %20llu (%s Ratio %.2f%%)\n",
"Reads Faulted", stcacheptr->stuc.vm_reads_faulted,
"Fault", ratio1);

printf("%-14s %20llu (%s Ratio %.2f%%)\n",
"Writes Faulted", stcacheptr->stuc.vm_writes_faulted,
"Fault", ratio2);

printf("%-14s %20llu (%s Ratio %.2f%%)\n",
"Read Waits", stcacheptr->stuc.vm_read_ios,
"Wait", ratio3);

printf("\n");
printf("File System Writes:\n");
printf("-------------------\n");
printf("%-19s %20llu %-13s %20llu\n",

"Scheduled Writes" ,stcacheptr->stuc.vm_scheduled_writes,
"Sync Waits" ,stcacheptr->stuc.vm_fsync_waits);

printf("%-19s %20llu %-13s %20llu\n",
"Error Writes" ,stcacheptr->stuc.vm_error_writes,
"Error Waits" ,stcacheptr->stuc.vm_error_waits);

printf("%-19s %20llu %-13s %20llu\n",

Statistics User Cache Information

450 z/OS V2R2 Distributed File Service zFS Administration

"Page Reclaim Writes", stcacheptr->stuc.vm_reclaim_writes,
"Reclaim Waits" , stcacheptr->stuc.vm_reclaim_waits);

if (stcacheptr->stuc.vm_writes > 0)
{

ratio4 = 100 * (((double)stcacheptr->stuc.vm_write_waits)
/ ((double)stcacheptr->stuc.vm_writes));

}
printf("%-19s %20llu (Wait Ratio %.2f%%)\n",

"Write Waits", stcacheptr->stuc.vm_write_waits,
ratio4);

printf("\n");
printf("Page Management (Segment Size = (%dK Local %dK Remote)) "

"(Page Size = %dK)\n",
stcacheptr->stuc_seg_size_loc,
stcacheptr->stuc_seg_size_rmt,
stcacheptr->stuc_page_size);

printf("--"
"---------------------------------\n");

printf("Total Pages %10u Free %10u\n",
stcacheptr->stuc_cache_pages,
stcacheptr->stuc_total_free);

printf("Segments %10u\n",
stcacheptr->stuc_vmSegTable_cachesize);

printf("Steal Invocations %20llu Waits for Reclaim %21llu\n\n",
stcacheptr->stuc.vm_reclaim_steal,
stcacheptr->stuc.vm_waits_for_reclaim);

printf("Number of dataspaces used: %5d ",
stcacheptr->stuc_dataspaces);

printf("Pages per dataspace: %11d\n",
stcacheptr->stuc_pages_per_ds);

printf("\n");
printf("Dataspace Allocated Free\n");
printf("Name Segments Pages\n");
printf("-------- ---------- ----------\n");

for (i = 0; i < stcacheptr->stuc_dataspaces; i++)
{

printf("%8s %10u %10u\n\n",
stcacheptr->stuc_ds_entry[i].ds_name,
stcacheptr->stuc_ds_entry[i].ds_alloc_segs,
stcacheptr->stuc_ds_entry[i].ds_free_pages);

}
return 1;

}

int print_user_cache_version1(STAT_USER_CACHE *stcacheptr)
{

int i;
double ratio1, ratio2, ratio3, ratio4;
printf("Version 1 Output is being displayed\n\n");

printf(" User File (VM) Caching System Statistics\n");
printf(" --\n");
printf("\n");

for (i = 0; i <= REMOTE; i++)
{

if (i == 0)
{

printf(" Direct Statistics\n");
printf(" -----------------\n\n");

}

Statistics User Cache Information

Chapter 13. zFS application programming interface information 451

else
{

printf("\n Client Statistics\n");
printf(" -----------------\n\n");

}

printf("External Requests:\n");
printf("------------------\n");
printf("%-9s %10u %-9s %10u %-9s %10u\n",

"Reads" , stcacheptr->stuc[i].vm_reads,
"Fsyncs" , stcacheptr->stuc[i].vm_fsyncs,
"Schedules", stcacheptr->stuc[i].vm_schedules);

printf("%-9s %10u %-9s %10u %-9s %10u\n",
"Writes" , stcacheptr->stuc[i].vm_writes,
"Setattrs" , stcacheptr->stuc[i].vm_setattrs,
"Unmaps" , stcacheptr->stuc[i].vm_unmaps);

printf("%-9s %10u %-9s %10u %-9s %10u\n",
"Asy Reads", stcacheptr->stuc[i].vm_readasyncs,
"Getattrs" , stcacheptr->stuc[i].vm_getattrs,
"Flushes" , stcacheptr->stuc[i].vm_flushes);

printf("\n");

printf("File System Reads:\n");
printf("------------------\n");

ratio1 = ratio2 = ratio3 = ratio4 = 0.0;

if (stcacheptr->stuc[i].vm_reads > 0)
{

ratio1 = 100 * (((double)stcacheptr->stuc[i].vm_reads_faulted)
/ ((double)stcacheptr->stuc[i].vm_reads));

}
if (stcacheptr->stuc[i].vm_writes > 0)
{

ratio2 = 100 * (((double)stcacheptr->stuc[i].vm_writes_faulted)
/ ((double)stcacheptr->stuc[i].vm_writes));

}
if (stcacheptr->stuc[i].vm_reads > 0)
{

ratio3 = 100 * (((double)stcacheptr->stuc[i].vm_read_waits)
/ ((double)stcacheptr->stuc[i].vm_reads));

}

printf("%-14s %10u (%s Ratio %.2f%%)\n",
"Reads Faulted", stcacheptr->stuc[i].vm_reads_faulted,
"Fault", ratio1);

printf("%-14s %10u (%s Ratio %.2f%%)\n",
"Writes Faulted", stcacheptr->stuc[i].vm_writes_faulted,
"Fault", ratio2);

printf("%-14s %10u (%s Ratio %.2f%%)\n",
"Read Waits", stcacheptr->stuc[i].vm_read_ios,
"Wait", ratio3);

printf("\n");
printf("File System Writes:\n");
printf("-------------------\n");
printf("%-19s %10u %-13s %10u\n",

"Scheduled Writes" , stcacheptr->stuc[i].vm_scheduled_writes,
"Sync Waits" , stcacheptr->stuc[i].vm_fsync_waits);

printf("%-19s %10u %-13s %10u\n",
"Error Writes" , stcacheptr->stuc[i].vm_error_writes,
"Error Waits" , stcacheptr->stuc[i].vm_error_waits);

printf("%-19s %10u %-13s %10u\n",

Statistics User Cache Information

452 z/OS V2R2 Distributed File Service zFS Administration

"Page Reclaim Writes", stcacheptr->stuc[i].vm_reclaim_writes,
"Reclaim Waits" , stcacheptr->stuc[i].vm_reclaim_waits);

if (stcacheptr->stuc[i].vm_writes > 0)
{

ratio4 = 100 * (((double)stcacheptr->stuc[i].vm_write_waits)
/ ((double)stcacheptr->stuc[i].vm_writes));

}
printf("%-19s %10u (Wait Ratio %.2f%%)\n",

"Write Waits", stcacheptr->stuc[i].vm_write_waits,
ratio4);

}

printf("\n");
printf("Page Management (Segment Size = (%dK Local %dK Remote)) "

"(Page Size = %dK)\n",
stcacheptr->stuc_seg_size_loc,
stcacheptr->stuc_seg_size_rmt,
stcacheptr->stuc_page_size);

printf("--------------------------------------"
"-----------------------------------\n");

printf("Total Pages %10u Free %10u\n",
stcacheptr->stuc_cache_pages,stcacheptr->stuc_total_free);

printf("Segments %10u\n",
stcacheptr->stuc_vmSegTable_cachesize);

printf("Steal Invocations %10u Waits for Reclaim %11u\n\n",
stcacheptr->stuc[0].vm_reclaim_steal,
stcacheptr->stuc[0].vm_waits_for_reclaim);

printf("Number of dataspaces used: %5d ", stcacheptr->stuc_dataspaces);
printf("Pages per dataspace: %11d\n", stcacheptr->stuc_pages_per_ds);
printf("\n");
printf("Dataspace Allocated Free\n");
printf("Name Segments Pages\n");
printf("-------- ---------- ----------\n");

for (i = 0; i < stcacheptr->stuc_dataspaces; i++)
{

printf("%8s %10u %10u\n\n",
stcacheptr->stuc_ds_entry[i].ds_name,
stcacheptr->stuc_ds_entry[i].ds_alloc_segs,
stcacheptr->stuc_ds_entry[i].ds_free_pages);

}

return 1;
}

Statistics User Cache Information

Chapter 13. zFS application programming interface information 453

Statistics Vnode Cache Information
Purpose

A performance statistics operation that returns vnode cache counters. It determines
the number of requests, hits, and discards from the vnode cache.

Format

syscall_parmlist
opcode int 251 STATOP_VNODE_CACHE
parms[0] int Offset to STAT_API
parms[1] int Offset of output following STAT_API
parms[2] int Offset to system name (optional)
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

STAT_API
sa_eye char[4] "STAP"
sa_len int Length of buffer that follows

the STAT_API
sa_ver int 1 or 2
sa_flags char[1] 0x80 - Reset statistics
sa_fill char[3] Reserved
sa_supported_ver int Version of data returned
sa_reserve int[3] Reserved
posix_time_high unsigned int High order 32 bits since epoch
posix_time_low unsigned int Low order 32 bits since epoch
posix_useconds unsigned int Microseconds
pad1 int Reserved

STAT_VNODE_CACHE
VNM_STATS_API_STRUCT

reserved unsigned int Reserved
Vnodes unsigned int Number of vnodes
Requests unsigned int Number of requests
Hits unsigned int Number of hits
RatioWhole hyper Ratio of hits to requests

(whole number part)
RatioDecimal hyper Ratio of hits to requests

(decimal part). Decimal part is
in thousanths (3 means .003 and
300 means .3)

Allocates hyper Allocates
Deletes hyper Deletes
VnodeStructSize hyper Base vnode structure size
ExtendedVnodes hyper Number of extended vnodes
extensionSize hyper Size of vnode extension
USSHeldVnodes hyper Number of held vnodes
USSHeldVnodesHi hyper Held vnodes high water mark
OpenVnodes hyper Number of open vnodes
OpenVnodesHi hyper Open vnodes high water mark
OpenVnodesReuse hyper Number vnodes that can be reused
reserved2 hyper[12] Reserved

Statistics Vnode Cache Information

454 z/OS V2R2 Distributed File Service zFS Administration

EFS_STATS_API_STRUCT
reserved hyper Reserved
grand_total_vnodes hyper Total count of vnode ops
total_ops hyper Number of vnode op counts
convert_namecount unsigned int Count of names processed during

conversion
reserved int Reserved
reserved1 hyper[11] Reserved

ZFSVNODEOPCOUNTS[50]
opname char[26] vnode operation name
pad1 char[2] reserved
opcount hyper count of vnode op requests
reserved hyper[2] reserved

reserved hyper[10] reserved

-- or --
STAT_VNODE_CACHE2

VNM_STATS_API_STRUCT2
reserved unsigned long long int Reserved
Vnodes unsigned long long int Number of vnodes
Requests unsigned long long int Number of requests
Hits unsigned long long int Number of hits
RatioWhole hyper Ratio of hits to requests

(whole number part)
RatioDecimal hyper Ratio of hits to requests

(decimal part). Decimal
part is in thousandths
(3 means .003, 300 is .3)

Allocates unsigned long long int Allocates
Deletes unsigned long long int Deletes
VnodeStructSize unsigned long long int Base vnode structure size
ExtendedVnodes unsigned long long int Number of extended vnodes
extensionSize unsigned long long int Size of vnode extension
USSHeldVnodes unsigned long long int Number of held vnodes
USSHeldVnodesHi unsigned long long int Held vnode high water mark
OpenVnodes unsigned long long int Number of open vnodes
OpenVnodesHi unsigned long long int Open vnode high water mark
OpenVnodesReuse unsigned long long int Number of vnodes that can

be reused
extCleans unsigned long long int Number of vnodes extensions

that were cleaned
reserved2 hyper[11] Reserved

EFS_STATS_API_STRUCT2
reserved unsigned long long int Reserved
grand_total_vnodes unsigned long long int Total count of vnode ops
total_ops unsigned long long int Number of vnode op counts
convert_namecount unsigned long long int Count of names processed

during auto conversion for
version 2, reserved for
version 1.

v2dir_splits unsigned long long int V5 directory bucket splits
v2dir_merges unsigned long long int V5 directory bucket merges
reserved1 hyper[9] Reserved
_Packed ZFSVNODEOPCOUNTS[50]
opname char[26] Vnode operation name
pad1 char[2] Reserved
opcount unsigned long long int Count of vnode op requests
reserved hyper[2] Reserved

reserved hyper[10] Reserved
systemname char[9] Name of system to get stats

Statistics Vnode Cache Information

Chapter 13. zFS application programming interface information 455

Usage notes
v Reserved fields and undefined flags must be set to binary zeros.
v Version 1 provided 8-byte counters but only used the low order 4-bytes. Version

2 uses full 8-byte counters.
v Same named fields in version 1 and 2 that are not reserved start at the same

offset.

Privilege required

None.

Related services
Statistics Metadata Cache Information

Restrictions

None.

Examples
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */
#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_VNODE_CACHE 251 /* vnode cache stats */
#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \
{ \

INTEGER = (int)RATIO; \
DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \

}

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper {
unsigned int high; /* unsigned int reserved */
unsigned int low;

} hyper;

/* reset timestamp */
typedef struct reset_time {

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR zFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error occurred
E2BIG Information too big for buffer supplied

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics Vnode Cache Information

456 z/OS V2R2 Distributed File Service zFS Administration

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned int posix_time_high; /* high order 32 bits since epoc */
unsigned int posix_time_low; /* low order 32 bits since epoch */
unsigned int posix_usecs; /* microseconds */
int pad1;

} RESET_TIME;

/* API STATOP_VNODE_CACHE storage structures */
typedef struct VNM_STATS_API_STRUCT_T
{

hyper reserved;
hyper Vnodes;
hyper Requests;
hyper Hits;
hyper RatioWhole;
hyper RatioDecimal; /* decimal part is in thousandths */
/* 3 means .003 and 300 means .3 */
hyper Allocates;
hyper Deletes;
hyper VnodeStructSize;
hyper ExtendedVnodes;
hyper extensionSize; /* (minimum) in bytes */
hyper USSHeldVnodes;
hyper USSHeldVnodesHi;
hyper OpenVnodes;
hyper OpenVnodesHi;
hyper OpenVnodesReuse;
int reserved1[3];
int pad1;
hyper reserved2[10];

} VNM_STATS_API_STRUCT;

typedef struct ZFSVNODEOPCOUNTS_T {
char opname[26]; /* Operation being counted */
char pad1[2];
hyper opcount; /* Number of operations performed */
hyper reserved[2]; /* reserved for future use */

} ZFSVNODEOPCOUNTS;

typedef struct EFS_STATS_API_STRUCT_T
{

hyper reserved;
hyper grand_total_vnodes;
hyper total_ops;
int convert_namecount;
int reserved1[3];
hyper reserved2[10];
ZFSVNODEOPCOUNTS zFSOpCounts[50];

} EFS_STATS_API_STRUCT;

typedef struct stat_vnode_cache_t
{

VNM_STATS_API_STRUCT vnm_stats_info;
EFS_STATS_API_STRUCT efs_stats_info;
hyper reserved[10];

} STAT_VNODE_CACHE;

typedef struct VNM_STATS_API_STRUCT2_T
{

unsigned long long int reserved;
unsigned long long int Vnodes;
unsigned long long int Requests;
unsigned long long int Hits;
hyper RatioWhole;
hyper RatioDecimal; /* decimal part is in thousandths */

Statistics Vnode Cache Information

Chapter 13. zFS application programming interface information 457

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* 3 means .003 and 300 means .3 */
unsigned long long int Allocates;
unsigned long long int Deletes;
unsigned long long int VnodeStructSize;
unsigned long long int ExtendedVnodes;
unsigned long long int extensionSize; /* (minimum) in bytes */
unsigned long long int USSHeldVnodes;
unsigned long long int USSHeldVnodesHi;
unsigned long long int OpenVnodes;
unsigned long long int OpenVnodesHi;
unsigned long long int OpenVnodesReuse;
unsigned long long int extCleans;
int reserved1[2];
hyper reserved2[10];

} VNM_STATS_API_STRUCT2;

typedef _Packed struct zFSVnodeOpCounts_t {
char opname[26]; /* Operation being counted */
char pad1[2];
unsigned long long int opcount; /* Number of operations performed */
hyper reserved[2]; /* reserved for future use */

} _Packed zFSVnodeOpCounts;

typedef struct EFS_STATS_API_STRUCT2_T
{

unsigned long long int reserved;
unsigned long long int grand_total_vnodes;
unsigned long long int total_ops;
unsigned long long int convert_namecount;
unsigned long long int v5dir_splits;
unsigned long long int v5dir_merges;
hyper reserved2[9];
_Packed zFSVnodeOpCounts zFSOpCounts[50];

} EFS_STATS_API_STRUCT2;

typedef struct stat_vnode_cache2_t
{

VNM_STATS_API_STRUCT2 vnm_stats_info;
EFS_STATS_API_STRUCT2 efs_stats_info;
hyper reserved[10];

} STAT_VNODE_CACHE2;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into */

/* this buffer area follows this struct. */
int sa_ver; /* the version number currently always 1 */

#define SA_VER_INITIAL 0x01
#define SA_VER_2 0x02

char sa_flags; /* flags field, x80 means reset stats */
#define SA_RESET 0x80

char sa_fill[3]; /* spare bytes */
int sa_supported_ver; /* version of data returned */
int sa_reserve[3]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

struct parmstruct {
syscall_parmlist myparms;

Statistics Vnode Cache Information

458 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

STAT_API myapi;
STAT_VNODE_CACHE2 mystats;
char systemname[9];

} myparmstruct;

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i;
double temp_ratio;
int whole;
int decimal;
STAT_API *stapptr = &(myparmstruct.myapi);
char buf[33];

myparmstruct.myparms.opcode = STATOP_VNODE_CACHE;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist)+sizeof(STAT_API);
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(stapptr, 0, sizeof(STAT_API));
memcpy(stapptr->sa_eye, SA_EYE, 4);
stapptr->sa_ver = SA_VER_2;
stapptr->sa_len = (int)sizeof(STAT_VNODE_CACHE2);

BPX1PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{
printf("Error querying vnode cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",
bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else
{
if (stapptr->sa_supported_ver == SA_VER_INITIAL)
{
/* Print the version 1 ouput */
STAT_VNODE_CACHE *mystatsp = (STAT_VNODE_CACHE *)&myparmstruct.mystats;
i = 0;
printf("%50s\n", "zFS Vnode Op Counts");
printf(" \n");
printf("Vnode Op Count "

"Vnode Op Count \n");
printf("------------------------ ---------- "

"------------------------ ---------- \n");

while (i < mystatsp->efs_stats_info.total_ops.low)
{

printf("%-25s %10u ",
mystatsp->efs_stats_info.zFSOpCounts[i].opname,
mystatsp->efs_stats_info.zFSOpCounts[i++].opcount.low);

Statistics Vnode Cache Information

Chapter 13. zFS application programming interface information 459

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if (i < mystatsp->efs_stats_info.total_ops.low)
{

printf("%-25s %10u\n",
mystatsp->efs_stats_info.zFSOpCounts[i].opname,
mystatsp->efs_stats_info.zFSOpCounts[i++].opcount.low);

}
}
printf("\nTotal zFS Vnode Ops %10u\n\n",

mystatsp->efs_stats_info.grand_total_vnodes.low);
printf("%52s\n", "zFS Vnode Cache Statistics");
printf(" \n");
printf(" Vnodes Requests Hits Ratio "

"Allocates Deletes\n");
printf(" ---------- ---------- ---------- ------- "

"---------- ----------\n");
printf("%10u %10u %10u %3u.%1.1u%% %10u %10u\n",

mystatsp->vnm_stats_info.Vnodes.low,
mystatsp->vnm_stats_info.Requests.low,
mystatsp->vnm_stats_info.Hits.low,
mystatsp->vnm_stats_info.RatioWhole.low,
mystatsp->vnm_stats_info.RatioDecimal.low,
mystatsp->vnm_stats_info.Allocates.low,
mystatsp->vnm_stats_info.Deletes.low);

printf(" \n");
printf("zFS Vnode structure size: %u bytes\n",

mystatsp->vnm_stats_info.VnodeStructSize.low);

printf("zFS extended vnodes: %u, extension size %u bytes (minimum)\n",
mystatsp->vnm_stats_info.ExtendedVnodes.low,
mystatsp->vnm_stats_info.extensionSize.low);

printf("Held zFS vnodes: %10u (high %10u) \nOpen zFS vnodes: %10u "
"(high %10u) Reusable: %u\n",
mystatsp->vnm_stats_info.USSHeldVnodes.low,
mystatsp->vnm_stats_info.USSHeldVnodesHi.low,
mystatsp->vnm_stats_info.OpenVnodes.low,
mystatsp->vnm_stats_info.OpenVnodesHi.low,
mystatsp->vnm_stats_info.OpenVnodesReuse.low);

printf(" \n");

if (0 == ctime_r((time_t *)&stapptr->reset_time_info.posix_time_low,
buf))

printf("Could not get timestamp.\n");
else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}
}
else
{
/* Print the version 2 ouput */
STAT_VNODE_CACHE2 *mystatsp = &myparmstruct.mystats;
i = 0;
printf("%50s\n", "zFS Vnode Op Counts");
printf(" \n");
printf("Vnode Op Count "

"Vnode Op Count \n");
printf("------------------------ ---------- "

"------------------------ ---------- \n");

Statistics Vnode Cache Information

460 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

while (i < mystatsp->efs_stats_info.total_ops)
{

printf("%-25s %10llu ",
mystatsp->efs_stats_info.zFSOpCounts[i].opname,
mystatsp->efs_stats_info.zFSOpCounts[i++].opcount);

if (i < mystatsp->efs_stats_info.total_ops)
{

printf("%-25s %10llu\n",
mystatsp->efs_stats_info.zFSOpCounts[i].opname,
mystatsp->efs_stats_info.zFSOpCounts[i++].opcount);

}
}
printf("\nTotal zFS Vnode Ops %10llu\n\n",

mystatsp->efs_stats_info.grand_total_vnodes);
printf("%52s\n", "zFS Vnode Cache Statistics");
printf(" \n");
printf(" Vnodes Requests Hits Ratio "

"Allocates Deletes\n");
printf(" ---------- ---------- ---------- ------- "

"---------- ----------\n");
printf("%10llu %10llu %10llu %3llu.%1.1llu%% %10llu %10llu\n",

mystatsp->vnm_stats_info.Vnodes,
mystatsp->vnm_stats_info.Requests,
mystatsp->vnm_stats_info.Hits,
mystatsp->vnm_stats_info.RatioWhole,
mystatsp->vnm_stats_info.RatioDecimal,
mystatsp->vnm_stats_info.Allocates,
mystatsp->vnm_stats_info.Deletes);

printf(" \n");
printf("zFS Vnode structure size: %llu bytes\n",

mystatsp->vnm_stats_info.VnodeStructSize);

printf("zFS extended vnodes: %llu, extension size %llu "
"bytes (minimum)\n",
mystatsp->vnm_stats_info.ExtendedVnodes,
mystatsp->vnm_stats_info.extensionSize);

printf("Held zFS vnodes: %10llu (high %10llu) \nOpen zFS vnodes: "
"%10llu (high %10llu) Reusable: %llu\n",
mystatsp->vnm_stats_info.USSHeldVnodes,
mystatsp->vnm_stats_info.USSHeldVnodesHi,
mystatsp->vnm_stats_info.OpenVnodes,
mystatsp->vnm_stats_info.OpenVnodesHi,
mystatsp->vnm_stats_info.OpenVnodesReuse);

printf(" \n");

if (0 == ctime_r((time_t *)&stapptr->reset_time_info.posix_time_low,
buf))

printf("Could not get timestamp.\n");
else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]), &(buf[20]), 6);
sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
buf[26] = ’ ’;
buf[19] = ’.’;
printf("Last Reset Time: %s", buf);

}
}

}
return 0;

}

Statistics Vnode Cache Information

Chapter 13. zFS application programming interface information 461

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Unquiesce Aggregate
Purpose

An aggregate operation that unquiesces a zFS compatibility mode aggregate on a
system. This subcommand call allows activity on the aggregate and its file system
to resume.

Format

Usage notes
v The unquiesce call must supply the quiesce handle that was returned by the

quiesce call. The aggregate is typically quiesced before backing up the aggregate.
After the backup is complete, the aggregate can be unquiesced.

v Reserved fields and undefined flags must be set to binary zeros.

Privilege required

The issuer must be logged in as root or must have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
Quiesce Aggregate

Restrictions

None.

syscall_parmlist
opcode int 133 AGOP_UNQUIESCE_PARMDATA
parms[0] int offset to AGGR_ID
parms[1] int quiesce handle
parms[2] int 0
parms[3] int 0
parms[4] int 0
parms[5] int 0
parms[6] int 0

AGGR_ID
aid_eye char[4] "AGID"
aid_len char sizeof(AGGR_ID)
aid_ver char 1
aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EINTR ZFS is shutting down
EMVSERR Internal error using an osi service
ENOENT Aggregate is not attached
EPERM Permission denied to perform request

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Unquiesce Aggregate

462 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Examples
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <stdlib.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_UNQUIESCE_PARMDATA 133

typedef struct syscall_parmlist_t {
int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"
char aid_len; /* Length of this structure */
char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */
char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct {
syscall_parmlist myparms;
AGGR_ID aggr_id;

};

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
char aggrname[45] = "PLEX.DCEIMGQX.FS";
int save_quiesce_handle;
struct parmstruct myparmstruct;

if (argc != 2)
{

printf("This unquiesce program requires a quiesce handle"
"from the quiesce program as a parameter\n");

return 1;
}

save_quiesce_handle = atoi(argv[1]);

myparmstruct.myparms.opcode = AGOP_UNQUIESCE_PARMDATA;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = save_quiesce_handle;
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

/* Ensure reserved fields are 0 */
memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));
memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);

Unquiesce Aggregate

Chapter 13. zFS application programming interface information 463

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
strcpy(myparmstruct.aggr_id.aid_name, aggrname);

BPX1PCT("ZFS ",
ZFSCALL_AGGR, /* Aggregate operation */
sizeof(myparmstruct), /* Length of Argument */
(char *)&myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)
{

printf("Error unquiescing aggregate %s\n", aggrname);
printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
return bpxrc;

}
else
{ /* Return from unquiesce was successful */

printf("Aggregate %s unquiesced successfully\n", aggrname);
}
return 0;

}

Unquiesce Aggregate

464 z/OS V2R2 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Part 3. Appendixes

© Copyright IBM Corp. 2001, 2015 465

466 z/OS V2R2 Distributed File Service zFS Administration

Appendix A. Running the zFS pfsctl APIs in 64-bit mode

The pfsctl (BPX1PCT) application programming interface can be invoked in a 64-bit
environment. To do this, you must take the following steps:
1. Replace the BPX1PCT with BPX4PCT
2. Replace the #pragma linkage(BPX1PCT, OS) statement with #pragma

linkage(BPX4PCT, OS64_NOSTACK)

3. Ensure that there are appropriate includes for function calls
4. Ensure all functions that require 64-bit parameters are passing 64-bit numbers

(for example, ctime_r).

The remaining code is, or can remain, unchanged. “Statistics iocounts information
(64-bit mode)” shows example code that were updated to be invoked in a 64-bit
environment.

Statistics iocounts information (64-bit mode)
Examples
#pragma linkage(BPX4PCT, OS64_NOSTACK)
extern void BPX4PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <time.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_IOCOUNTS 243 /* Performance API queries */

#define TOTAL_TYPES 3
#define TOTAL_CIRC 19

#define u_int unsigned int

typedef struct syscall_parmlist_t
{

int opcode; /* Operation code to perform */
int parms[7]; /* Specific to type of operation, */

/* provides access to the parms */
/* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct reset_time {
u_int posix_time_high; /* high order 32 bits since epoc */
u_int posix_time_low; /* low order 32 bits since epoch */
u_int posix_usecs; /* microseconds */
int pad1;
} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/

typedef struct stat_api_t
{
#define SA_EYE "STAP"

char sa_eye[4]; /* 4 byte identifier must be */
int sa_len; /* length of the buffer to put data into*/

/* this buffer area follows this struct*/
int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01
char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80
char sa_fill[3]; /* spare bytes */
int sa_reserve[4]; /* Reserved */
struct reset_time reset_time_info;

} STAT_API;

© Copyright IBM Corp. 2001, 2015 467

|

typedef struct API_IO_BY_TYPE_t
{

unsigned int number_of_lines;
unsigned int count;
unsigned int waits;
unsigned int cancels; /* Successful cancels of IO */
unsigned int merges; /* Successful merges of IO */
char reserved1[6];
char description[51];
char pad1[3];

} API_IO_BY_TYPE;

typedef struct API_IO_BY_CIRC_t
{

unsigned int number_of_lines;
unsigned int count;
unsigned int waits;
unsigned int cancels;
unsigned int merges;
char reserved1[6];
char description[51];
char pad1[3];

} API_IO_BY_CIRC;

/***/
/* The following structures are used to represent cfgop queries */
/* for iocounts */
/***/

struct parmstruct
{

syscall_parmlist myparms;
STAT_API myapi;
API_IO_BY_TYPE mystatsbytype[TOTAL_TYPES];
API_IO_BY_CIRC mystatsbycirc[TOTAL_CIRC];

} myparmstruct;

int main(int argc, char **argv)
{

int bpxrv;
int bpxrc;
int bpxrs;
int i;

STAT_API *stapptr = &(myparmstruct.myapi);
API_IO_BY_TYPE *stiotptr = &(myparmstruct.mystatsbytype[0]);
API_IO_BY_CIRC *stiocptr = &(myparmstruct.mystatsbycirc[0]);

char buf[33];

myparmstruct.myparms.opcode = STATOP_IOCOUNTS;
myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
myparmstruct.myparms.parms[2] = 0;
myparmstruct.myparms.parms[3] = 0;
myparmstruct.myparms.parms[4] = 0;
myparmstruct.myparms.parms[5] = 0;
myparmstruct.myparms.parms[6] = 0;

memset(stapptr,0,sizeof(STAT_API));
memcpy(stapptr->sa_eye,SA_EYE,4);
stapptr->sa_ver=SA_VER_INITIAL;
stapptr->sa_len=(int) (TOTAL_TYPES * sizeof(API_IO_BY_TYPE))

+ (TOTAL_CIRC * sizeof(API_IO_BY_CIRC));

BPX4PCT("ZFS ",
ZFSCALL_STATS, /* Perf statistics operation */
sizeof(myparmstruct), /* Length of Argument */
(char *) &myparmstruct, /* Pointer to Argument */
&bpxrv, /* Pointer to Return_value */
&bpxrc, /* Pointer to Return_code */
&bpxrs); /* Pointer to Reason_code */

if(bpxrv < 0)
{

printf("Error querying iocounts, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);
return bpxrc;

}
else
{

Statistics iocounts information (64-bit) mode

468 z/OS V2R2 Distributed File Service zFS Administration

if(stiotptr->number_of_lines != TOTAL_TYPES)
{

printf("Unexpected number of IO Types, %d instead of TOTAL_TYPES\n",
stiotptr->number_of_lines);
return 1;

}
if(stiocptr->number_of_lines != TOTAL_CIRC)
{

printf("Unexpected number of IO Circumstances, %d instead of TOTAL_CIRC\n",
stiocptr->number_of_lines);
return 2;

}
printf(" I/O Summary By Type\n");
printf(" -------------------\n");
printf("\n");

printf("Count Waits Cancels Merges Type\n");
printf("---------- ---------- ---------- ---------- ----------\n");
for(i=0; i<TOTAL_TYPES; i++)
{

printf("%10u %10u %10u %10u %s\n",
stiotptr->count, stiotptr->waits,
stiotptr->cancels, stiotptr->merges,
stiotptr->description);

stiotptr = stiotptr + 1;
}
printf("\n");
printf(" I/O Summary By Circumstance\n");
printf(" ---------------------------\n");
printf("\n");
printf("Count Waits Cancels Merges Circumstance\n");
printf("---------- ---------- ---------- ---------- ------------\n");
for(i=0; i<TOTAL_CIRC; i++)
{

printf("%10u %10u %10u %10u %s\n",
stiocptr->count, stiocptr->waits,
stiocptr->cancels, stiocptr->merges,
stiocptr->description);

stiocptr = stiocptr +1;
printf("\n");

}
if (0==ctime_r((time_t *) &stapptr->reset_time_info, buf))
{

printf("Could not get timestamp.\n");
}
else
{ /* Insert the microseconds into the displayable time value */

strncpy(&(buf[27]),&(buf[20]),6);
sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);
buf[26]=’ ’;
buf[19]=’.’;
printf("Last Reset Time: %s",buf);

}
}
return 0;

}

Statistics iocounts information (64-bit) mode

Appendix A. Running the zFS pfsctl APIs in 64-bit mode 469

Statistics iocounts information (64-bit) mode

470 z/OS V2R2 Distributed File Service zFS Administration

Appendix B. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 2001, 2015 471

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

472 z/OS V2R2 Distributed File Service zFS Administration

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix B. Accessibility 473

474 z/OS V2R2 Distributed File Service zFS Administration

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2001, 2015 475

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

476 z/OS V2R2 Distributed File Service zFS Administration

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This publication, z/OS Distributed File Service zFS Administration, primarily
documents information that is NOT intended to be used as Programming
Interfaces of the Distributed File Service.

z/OS Distributed File Service zFS Administration also documents intended
Programming Interfaces that allow the customer to write programs to obtain the
services of the Distributed File Service. This information is identified where it
occurs by an introductory statement to a chapter or section or by the following
marking.
[--- NOT Programming Interface information ---]
[--- End of NOT Programming Interface information ---]

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 477

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

478 z/OS V2R2 Distributed File Service zFS Administration

Glossary

This glossary includes terms and definitions for
Distributed File Service z/OS File System. The
following cross-references are used in this
glossary:
1. See refers the reader from a term to a

preferred synonym, or from an acronym or
abbreviation to the defined full form.

2. See also refers the reader to a related or
contrasting term.

To view glossaries for other IBM products, go to
www.ibm.com/software/globalization/
terminology.

aggregate
A structured collection of data objects that
form a data type.

attach In z/OS, to create a task that can execute
concurrently with the attaching code.

audit identifier
In zFS, a 16-byte value associated with
each z/OS UNIX file or directory that
provides identity in an SMF audit record
or in certain authorization failure
messages.

bitmap
In zFS, a file listing the blocks that are
free on disk. The file size is dependent on
the size of the aggregate.

catch-up mount
A local mount that z/OS UNIX
automatically issues to every other
system’s physical file system that is
running sysplex-aware for that mode
(read-write or read-only) when a
sysplex-aware file system mount is
successful on a system in a shared file
system environment.

compatibility mode aggregate
A Virtual Storage Access Method linear
data set (VSAM LDS) that contains a
single read-write zFS file system.

DFS See Distributed File Service.

Distributed File Service (DFS)
A base element of z/OS that allows users
to access and share data in a distributed
environment across a wide range of IBM
and non-IBM platforms.

EAV See extended address volume.

extended address volume (EAV)
DASD storage that can contain more than
65,521 cylinders per volume.

file handle
A number that is used by the client and
server sides of the Network File System
(NFS) or the Server Message Block (SMB)
to specify a particular file or prefix.

file system owner
In z/OS, the system that coordinates
sysplex activity for a particular file
system.

function shipping
The process of requesting function from
to the owning file system and returning
the response to the requester through XCF
communications.

global resource serialization
A component of z/OS that serializes the
use of system resources and converts
hardware reserves on direct access storage
device (DASD) volumes to data set
enqueues.

global resource serialization complex
A group of systems that use global
resource serialization to serialize access to
shared resources such as data sets on
shared direct access storage device
(DASD) volumes.

hang To become unresponsive to user
commands and to stop or appear to stop
processing.

i-node The internal structure that describes the
individual files in the UNIX file system.
An i-node contains the node, type, owner,
and location of a file.

local mount
A mount that is known to the physical
file system.

metadata
Data that describes the characteristics of
data; descriptive data.

non-sysplex aware
A mounted file system that has file

© Copyright IBM Corp. 2001, 2015 479

http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology

requests handled by remotely function
shipping requests through z/OS UNIX

root file system
The basic file system onto which all other
file systems can be mounted. The root file
system contains the operating system files
that run the rest of the system.

salvager
In zFS, a program that examines a zFS
aggregate to determine if there are any
inconsistencies in the structure of the
aggregate.

Server Message Block (SMB)
A protocol that manages requests and
responses in a client/server environment
so that clients on a network can share
files, directories, and devices.

SMB See Server Message Block.

sysplex
A set of z/OS systems that communicate
with each other through certain
multisystem hardware components and
software services.

sysplex-aware
A mounted file system that has file
requests handled locally instead of
function shipping requests through z/OS
UNIX.

version file system
See root file system.

zFS See z/OS file system.

zFS aggregate
A Virtual Storage Access Method Linear
Data Set (VSAM LDS) that contains a zFS
file system.

z/OS File System (zFS)
A type of file system that resides in a
Virtual Storage Access Method (VSAM)
linear data set (LDS) and has a
hierarchical organization of files and
directories with a root directory.

480 z/OS V2R2 Distributed File Service zFS Administration

Index

Special characters
\ (backslash) xi
(pound sign) xi

A
abort command 94, 104
accessibility 471

contact IBM 471
features 471

ACL (access control lists) 3
active file system 22
address space 21

determining usage 85
OMVS 6
zFS 7

aggregate 105, 106
adding volumes 33
back up 61
converting

from v4 to v5 28
to version 1.5 27

copying files and directories to a
larger data set 33

corruption 94
creating

version 1.5 26
decreasing size of 38
determining state 102
disabled 105
increasing size of 33
movement 4
operations 235
restore 62
version 1.5 26

allocation
blocked 44, 68
fragmented 44, 68
inline 43, 68

anode 133
APARS 16
application programming interface

(API) 3
Attach Aggregate 238
BPX1PCT (pfsctl) 233, 234
Define Aggregate 242, 246
Format Aggregate 249
Grow Aggregate 253
List Aggregate Status (Version 1) 256
List Aggregate Status (Version 2) 260
List Attached Aggregate Names

(Version 1) 268
List Attached Aggregate Names

(Version 2) 272
List Detailed File System

Information 276
List File Information 293
List File System Names (Version

1) 302

application programming interface (API)
(continued)

List File System Names (Version
2) 306

List File System Status 311
List Systems 322
Query Config Option 326
Quiesce Aggregate 331
Reset Backup Flag 334
Set Auditfid 337
Set Config Option 340
Statistics Directory Cache

Information 343
Statistics iobyaggr Information 347
Statistics iobydasd Information 355
Statistics iocounts Information 363
Statistics Kernel Information 370
Statistics Locking Information 378
Statistics Log Cache Information 387
Statistics Metadata Cache

Information 398
Statistics Server Token Management

Information 405
Statistics Storage Information 411
Statistics Sysplex Client Operations

Information 423
Statistics Sysplex Owner Operations

Information 430
Statistics Transaction Cache

Information 438
Statistics User Cache Information 442
Statistics Vnode Cache

Information 454
Unquiesce Aggregate 462

applying required 16
ASID, determining 101
assistive technologies 471
attach

definition of 4
Attach Aggregate 238

examples 239
attributes, changing 40
auditfid

converting 111
function 109
set subcommand 337

auditid
contents 111
enabling 110
overview 109
tool 109

B
back up

how to 61
restore 62
using DFSMSdss logical dump 61
zFS aggregate 62

backup change activity flag 64
balancing I/O 70

batch job 154
blocked file allocation 44, 68
BPX1PCT (pfsctl) 233, 234

aggregate operations 235
configuration operations 235
file system operations 235
query operations 235

bpxmtext 125

C
cache

debugging 85
log file 70
metadata 68
user file 69
vnode 69

cache report
VM 89

cache size
IOEFSPRM 67
storage shortage 104
total 67

catch-up mount 51
definition of 4

checking zFS storage 85
command suite, zfsadm 153
commands 178

bpxmtext 125
ioeagfmt 126
ioeagslv 130
ioefsutl converttov5 139
ioefsutl format 141
ioefsutl salvage 145
man 125
MODIFY ZFS PROCESS 116
mount 25
MOUNT 150
SETOMVS RESET 123
z/OS system 115
zfsadm 162
zfsadm aggrinfo 30, 158
zfsadm apropos 161
zfsadm attach 220
zfsadm config 165
zfsadm configquery 169
zfsadm convert 173
zfsadm define 176
zfsadm detach 180
zfsadm fileinfo 182
zfsadm format 188
zfsadm fsinfo 191
zfsadm grow 30, 200
zfsadm help 202
zfsadm lsaggr 204
zfsadm lsfs 206
zfsadm lsquota 208
zfsadm query 209
zfsadm setauditfid 212, 214
zfsadm unquiesce 216

© Copyright IBM Corp. 2001, 2015 481

compatibility mode aggregate
adding volumes 33
changing attributes 40
creating 31
decreasing size of 38
deleting 39
disabled 105
dynamically growing 30
growing 30
increasing size of 33
renaming 39
size 47

compatibility mode file system 23
maximum size 47
minimum size 46
mounting 25

concepts 4
configuration operations 235
configuring

zFS (z/OS File System) 13
contact

z/OS 471
contention, lock 81
conversion 29
converting auditfids 111
copying

using an intermediate archive file 66
without using an intermediate archive

file 66
correction, namespace 98
creating

compatibility mode aggregate 23
compatibility mode file system 23
zFS file system 23

CTKC report 72

D
data sets

IOEFSPRM 220
DATASET report 73
debugging 93

storage 85
storage shortage 104

Define Aggregate 242
examples 243, 246

definitions
anode 133
attach 4
catch-up mount 4
definition of 6
file system ownership 5
function shipping 6
local mount 6
non-sysplex aware 6
OMVS address space

definition of 6
read-only file system 7
read-write file system 7
shared file system environment 7
sysplex 7
sysplex-aware 7
sysplex-aware file system 7
sysplex-aware PFS 7
z/OS UNIX file system owner 5
zFS address space 7
zFS aggregate 8

definitions (continued)
zFS file system owner 5
zFS physical file system 8
ZFS PROC 8

delays
in a shared file system

environment 99
troubleshooting 99

Detach Aggregate 246
DFS information

references xii
dfs_cpfiles program 15
DFSMSdss logical dump

using for backup 61
diagnosing disabled 105

z/OS V1R13 or later 106
directory

creating 16
determining size 48
extended (v5) 26
size 47

directory space
how to reclaim 48

disabled aggregates 106
compatibility mode aggregate 105

disk space allocation
understanding 42

dumps
obtaining 96
understanding 96

dynamically growing compatibility mode
aggregates 30

E
ENQs, displaying 98
examples

Attach Aggregate 239
backing up zFS aggregates 62
creating compatibility mode file

system 24
Define Aggregate 243
detach aggregate 246
Format Aggregate 250
Grow Aggregate 254
ioeagfmt 128
ioeagslv command 134
IOEFSPRM sample file 231
ioefsutl converttov4 138
ioefsutl converttov5 140
ioefsutl format 143
ioefsutl salvage 148
List Aggregate Status (Version 1) 257
List Aggregate Status (Version 2) 264
List Attached Aggregate Names

(Version 1) 269
list attached aggregate names (version

2) 273
List File Information 296
List File System Names (Version

1) 303
List File System Names (Version

2) 307
List File System Status 315
List Systems 322
logical restore 63
MODIFY ZFS FSINFO 122

examples (continued)
MODIFY ZFS PROCESS 122
Query Config Option 327
Quiesce Aggregate 332
replace 63
Reset Backup Flag 335
restore 63
salvager utility 148
Set Auditfid 338
Set Config Option 341
SETOMVS RESET 123
Statistics Directory Cache

Information 344
Statistics iobyaggr Information 349
Statistics iobydasd Information 356
Statistics iocounts Information 364
Statistics Kernel Information 372
Statistics Locking Information 380
Statistics Log Cache Information 390
Statistics Metadata Cache

Information 399
Statistics Server Token Management

Information 407
Statistics Storage Information 413
Statistics Sysplex Owner Operations

Information 432
examples 432

Statistics Transaction Cache
Information 439

Statistics User Cache Information 445
Statistics Vnode Cache

Information 456
Unquiesce Aggregate 463
zFS aggregate restore 63
zfsadm aggrinfo command 159
zfsadm apropos command 161
zfsadm attach command 164
zfsadm config command 168
zfsadm configquery command 172
zfsadm convert command 174
zfsadm define command 177
zfsadm delete command 179
zfsadm detach command 180
zfsadm fileinfo command 186
zfsadm format command 190
zfsadm fsinfo command 197
zfsadm grow command 201
zfsadm help command 202
zfsadm lsaggr command 204
zfsadm lsfs command 207
zfsadm lsquota command 208
zfsadm query command 210
zfsadm quiesce command 213
zfsadm setauditfid command 215
zfsadm unquiesce command 216

explanation of 41
extended (v5) aggregate

converting to version 1.5 27
extended (v5) directories 26
extended director XCF communications

protocol 97

F
Fast Response Cache Accelerator

restriction 17
features 4

482 z/OS V2R2 Distributed File Service zFS Administration

features (continued)
zFS 3

file allocation
blocked 44, 68
fragmented 44, 68
inline 43, 68

FILE report 74
file system

active 22
corruption 94
definition of zFS file system 8
determining owner 54
dynamic movement 57
maximum size 46
minimum size 46
ownership 54, 56
read-/write with different levels of

sysplex-awareness 52
read-only sysplex-aware 51
status 22
sysplex-aware 7
z/OS UNIX owner 56

file system information
displaying 122
usage notes for displaying 121

file system operations 235
file system owner

z/OS UNIX 54
zFS 54

file system ownership
definition of 5

files
IOEFSPRM 220

fixed storage 70
Format Aggregate 249

example 250
fragmented file allocation 44, 68
function shipping

definition of 6

G
Grow Aggregate 253

examples 254
guidelines for v4 to v5 conversion 29

H
hang detector 99
hangs

in a shared file system
environment 99

steps for resolving 100
troubleshooting 99

HFS to zFS migration tool
using the 65

I
I/O

balancing 70
statistics 75

initialization messages, saving in a data
set 97

inline file allocation 43, 68

installing
zFS (z/OS File System) 13

intermediate archive file 66
internal restart 94, 104
IOBYDASD

related subcommand 355
report 75

ioeagfmt 126
creating a compatability mode

aggregate 23
ioeagslv 130

example 134
understanding the utility 94

IOEFSPRM 220, 222
example 231
sharing 58
total cache size 67

ioefsutl converttov4 137
example 138

ioefsutl converttov5 139
example 140

ioefsutl format 141
example 143

ioefsutl salvage
command 145
example 148
understanding the utility 94

ioefsutl utility 136
IOEPRMxx 222
IOEZADM module 156

K
keyboard

navigation 471
PF keys 471
shortcut keys 471

KN report 76

L
large directory 49
largedir.pl command 48
LFS report 78
List Aggregate Status (Version 1) 256

examples 257
List Aggregate Status (Version 2) 260

examples 264
List Attached Aggregate Names (Version

1) 268
examples 269

List Attached Aggregate Names (Version
2) 272

examples 273
List Detailed File System

Information 276
examples 282

List File Information 293
examples 296

List File System Names (Version 1) 302
examples 303

List File System Names (Version 2) 306
examples 307

List File System Status 311
examples 315

List Systems 322

List Systems (continued)
examples 322

local mount 51
definition of 6

LOCK report 81
log file cache 70
log files 70
LOG report 82

M
man pages

enabling 125
example of command 125

managing
processes 21
zFS file system 23

maximum size
for file system 46

messages 223, 229
messages, initialization, saving in a data

set 97
metadata cache 68
migrating

from HFS to zFS 65
using the z/OS HFS to zFS migration

tool 65
minimum size

for file system 46
MODIFY ZFS FSINFO command

examples 122
MODIFY ZFS PROCESS command 116

examples 122
monitoring performance periods 72
mount command 25
MOUNT command 150
mount delay 41
mount, local 6
mounting

compatibility mode file system 25
msg_output_dsn option of

IOEFSPRM 97
multilevel security 3

N
namespace validation 98
navigation

keyboard 471
NBS (New Block Security) 162
New Block Security (NBS) 162
NLS 223, 229
non-sysplex aware

definition of 6
NORWSHARE

MOUNT 151
zfsadm config 167

Notices 475

O
objects

maximum number 47
OMVS address space 6, 19
options

zFS PFS 220

Index 483

owner of file system 54

P
path entry 152
pax command 65
performance considerations 4, 67

monitoring 71
number of file names 47

PFS (physical file system) 220
definition of 8
state 22
sysplex-aware 7

pfsctl (BPX1PCT) 233, 234
aggregate operations 235
configuration operations 235
file system operations 235
query operations 235

Policy Agent Server (Pagent)
restriction 17

post installation processing 13

Q
Query Config Option 326

examples 327
query operations 235
QUERY,KN report 76
QUERY,STOR report 85
Quiesce Aggregate 331

examples 332
quota 24

R
read-only file system 51

definition of 7
read/write file system 52

definition of 7
reason codes, using bpxmtext 125
Reset Backup Flag 334

examples 335
resetting performance data 72
restart 4
restart, internal 104
restore

from back up 63
root, large directory 49
running in 19
RWSHARE

MOUNT 151
zfsadm config 167

S
salvager utility 94, 145
security label 3
sending comments to IBM xiii
service level, determining 97
Set Auditfid 337

examples 338
Set Config Option 340

examples 341
SETOMVS RESET command 123

examples 123

shared file system 51
overview 51

shared file system environment
definition of 7
hangs and delays 99
z/OS UNIX consideration 58

sharing zfs data between systems 46
shortcut keys 471
small files, scanning 42
SMB

effect on user file cache hit ratio 70
restriction 17
running dfs_cpfiles program 15

SMF record
auditid 109

source file 66
Statistics Directory Cache

Information 343
examples 344

Statistics iobyaggr Information 347
examples 349

Statistics iobydasd Information 355
examples 356

Statistics iocounts Information 363
examples 364

Statistics iocounts information (64-bit
mode)

examples 467
Statistics Kernel Information 370

examples 372
Statistics Locking Information 378

examples 380
Statistics Log Cache Information 387

examples 390
Statistics Metadata Cache

Information 398
examples 399

Statistics Server Token Management
information 405

Statistics Server Token Management
Information

examples 407
Statistics Storage Information 411

examples 413
Statistics Sysplex Client Operations

Information 423
examples 425

Statistics Sysplex Owner Operations
Information 430

Statistics Transaction Cache
Information 438

examples 439
Statistics User Cache Information 442

examples 445
Statistics Vnode Cache Information 454

examples 456
STKM report 83
STOR report 85
storage

shortage 104
storing files

blocked 68
fragmented 68
inline 68

striped VSAM linear data set 25
Summary of changes xviii
summary of changes for V2R2 xv

SVI report 88
sysplex

considerations 51
definition of 7
z/OS UNIX consideration 58

sysplex-aware
changing, of a mounted zFS

read/write file system 18
definition of 7
file system 7, 51
file system, with different levels of

sysplex-awareness 52
overview 51
PFS 7
specifying 16
using read/write 17
zFS-enhanced 53

system commands
MODIFY ZFS PROCESS 116
SETOMVS RESET 123

SYSZIOEZ 98

T
terminology 4
token manager statistics 83
total cache size 67
trace options 93
tracing zFS

steps for 93
trademarks 477
type 30 SMF record

support for 45
typographic conventions xi

U
unquiesce

operator command 120
Unquiesce Aggregate 462

examples 463
user file cache 69
user interface

ISPF 471
TSO/E 471

V
v4 directory

considerations 47
converting to extended (v5) 28

v5 directory
converting from v4 28

valid characters in aggregate name 126
version 1.4 aggregates

maximum size 47
version 1.5 aggregates 26

creating 26
maximum size 47

VM cache report 89
vnode cache 69
volume

adding to an aggregate 33
VSAM linear data set 23

formatting 126
restriction 8

484 z/OS V2R2 Distributed File Service zFS Administration

VSAM linear data set (continued)
striped 25

W
what's new in V2R1 9
what's new in V2R2 8

X
XCF protocol interface level,

determining 97

Z
z/OS

system commands 115
UNIX commands

pax 65
z/OS UNIX address space 19
z/OS UNIX file system owner 54

definition of 5
z/OS UNIX owner 56
z/OS UNIX Tools web page

auditid tool 109
largedir.pl command 48
zfsspace utility 42

z/OS V1R13 or later 106
zFS (z/OS file system)

determining status 22
zFS (z/OS File System)

back up 61
disk space allocation 43
installing 13
managing processes 21
overview 3
starting 21
stopping 21

zFS address space 21
definition of 7

zFS aggregate 62
definition of 8

zFS file system
definition of 8

zFS file system owner 54
definition of 5

zFS file systems
creating 23
managing 23
specifying as sysplex-aware 16
unmounting 41

zFS physical file system (PFS)
options 220

ZFS PROC
definition of 8

zFS QUERY reports
list of sample reports 72

zFS reason codes 125
zfsadm aggrinfo command 30, 158

example 159
zfsadm apropos command 161

example 161
zfsadm attach command 162, 220

example 164
zfsadm commands 153
zfsadm config command 165

zfsadm config command (continued)
example 168

zfsadm configquery command 169
example 172

zfsadm convert command 173
example 174

zfsadm define command 176
example 177

zfsadm delete command 178
example 179

zfsadm detach command 180
example 180

zfsadm fileinfo command 182
example 186

zfsadm format command 188
example 190

zfsadm fsinfo command 191
example 197

zfsadm grow command 30, 200
example 201

zfsadm help command 202
example 202

zfsadm lsaggr command 204
example 204

zfsadm lsfs command 206
example 207

zfsadm lsquota command 208
example 208

zfsadm query command 209
example 210

zfsadm quiesce command
example 213

zfsadm setauditfid command 212, 214
example 215

zfsadm unquiesce command 216
example 216

zfsspace utility 42

Index 485

486 z/OS V2R2 Distributed File Service zFS Administration

����

Product Number: 5650-ZOS

Printed in USA

SC23-6887-01

	Contents
	Figures
	Tables
	About this document
	How this document is organized
	Conventions used in this document
	z/OS information
	References to DFS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 2 (V2R2)
	Summary of changes for z/OS Version 2 Release 1

	Part 1. zFS administration guide
	Chapter 1. z/OS File System overview
	Features
	Terminology and concepts
	What's new or changed for zFS in z/OS V2R2
	What's new or changed for zFS in z/OS V2R1

	Chapter 2. Installing and configuring zFS
	zFS installation and configuration steps
	Applying required APARs for z/OS V2R2
	Specifying zFS file systems as sysplex-aware
	Using zFS read/write sysplex-aware file systems
	Changing the sysplex-awareness of a mounted zFS read/write file system

	zFS running in the z/OS UNIX address space

	Chapter 3. Managing zFS processes
	Starting zFS
	Stopping zFS
	Determining zFS status

	Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates
	Creating a compatibility mode aggregate
	Using version 1.5 aggregates and extended (v5) directories
	Creating a version 1.5 aggregate
	Converting an existing aggregate to version 1.5
	Converting an existing v4 directory to an extended (v5) directory
	Guidelines for v4 to v5 conversion

	Growing a compatibility mode aggregate
	Dynamically growing a compatibility mode aggregate
	Creating a multi-volume compatibility mode aggregate
	Adding volumes to a compatibility mode aggregate
	Increasing the size of a compatibility mode aggregate
	Copying each file and directory of the aggregate to a larger data set
	Copying the physical blocks of the aggregate to a larger data set

	Decreasing the size of a compatibility mode aggregate
	Renaming or deleting a compatibility mode aggregate
	Changing zFS attributes on a mounted zFS compatibility mode file system
	Unmounting zFS file systems before copying or moving
	Understanding zFS disk space allocation
	How data is stored on systems before z/OS V1R13
	Support for type 30 SMF record

	Sharing zFS data in a non-shared file system sysplex
	Minimum and maximum file system sizes
	Version 1.5 aggregates
	Version 1.4 aggregates
	v4 directory considerations

	Chapter 5. Using zFS in a shared file system environment
	Overview of the shared file system environment
	Read-only mounted file systems
	zFS support for read/write file systems with different levels of sysplex-awareness
	zFS-enhanced sysplex-aware support
	zFS ownership versus z/OS UNIX ownership of file systems
	Determining the file system owner

	When is the z/OS UNIX owner important?
	Dynamic movement of the zFS owner
	Considerations when using zFS in a shared file system environment

	Chapter 6. Copying or performing a backup of a zFS
	Backing up a zFS aggregate
	Restoring an aggregate with DFSMSdss logical restore

	Chapter 7. Migrating data from HFS or zFS to zFS
	Using the z/OS HFS to zFS migration tool
	Using the z/OS UNIX pax command
	Using an intermediate archive file
	Without using an intermediate archive file

	Chapter 8. Performance and debugging
	Performance tuning
	Total cache size
	Metadata cache
	Vnode cache
	User file cache
	Log files
	Log file cache
	Fixed storage
	I/O balancing

	Monitoring zFS performance
	Resetting performance monitoring data
	Sample zFS QUERY reports
	CTKC
	DATASET
	FILE
	IOBYDASD
	KN
	LFS
	LOCK
	LOG
	STKM
	STOR
	SVI
	VM

	Debugging aids for zFS
	Overview of trace options for zFS
	Steps for tracing on zFS

	Understanding the salvager utility
	Understanding zFS dumps
	Determining the XCF protocol interface level
	Saving initialization messages in a data set
	Determining service levels
	Understanding namespace validation and correction
	Understanding delays and hangs in zFS using the zFS hang detector
	Hangs and delays in shared file system environment
	Steps for diagnosing and resolving a zFS hang

	Identifying storage shortages in zFS

	Diagnosing disabled aggregates
	Handling disabled aggregates
	Disabled aggregates when some systems are on z/OS V1R13 or later

	Chapter 9. Overview of the zFS audit identifier
	Enabling the zFS auditid

	Part 2. zFS administration reference
	Chapter 10. z/OS system commands
	MODIFY ZFS PROCESS
	SETOMVS RESET

	Chapter 11. zFS commands
	ioeagfmt
	ioeagslv
	ioefsutl
	ioefsutl converttov4
	ioefsutl converttov5
	ioefsutl format
	ioefsutl salvage
	MOUNT
	zfsadm
	zfsadm aggrinfo
	zfsadm apropos
	zfsadm attach
	zfsadm config
	zfsadm configquery
	zfsadm convert
	zfsadm define
	zfsadm delete
	zfsadm detach
	zfsadm fileinfo
	zfsadm format
	zfsadm fsinfo
	zfsadm grow
	zfsadm help
	zfsadm lsaggr
	zfsadm lsfs
	zfsadm lssys
	zfsadm query
	zfsadm quiesce
	zfsadm setauditfid
	zfsadm unquiesce

	Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM)
	IOEFSPRM

	Chapter 13. zFS application programming interface information
	pfsctl (BPX1PCT)
	Attach Aggregate
	Define Aggregate
	Detach Aggregate
	Format Aggregate
	Grow Aggregate
	List Aggregate Status (Version 1)
	List Aggregate Status (Version 2)
	List Attached Aggregate Names (Version 1)
	List Attached Aggregate Names (Version 2)
	List Detailed File System Information
	List File Information
	List File System Names (Version 1)
	List File System Names (Version 2)
	List File System Status
	List Systems
	Query Config Option
	Quiesce Aggregate
	Reset Backup Flag
	Set Auditfid
	Set Config Option
	Statistics Directory Cache Information
	Statistics iobyaggr Information
	Statistics iobydasd Information
	Statistics iocounts Information
	Statistics Kernel Information
	Statistics Locking Information
	Statistics Log Cache Information
	Statistics Metadata Cache Information
	Statistics Server Token Management Information
	Statistics Storage Information
	Statistics Sysplex Client Operations Information
	Statistics Sysplex Owner Operations Information
	Statistics Transaction Cache Information
	Statistics User Cache Information
	Statistics Vnode Cache Information
	Unquiesce Aggregate

	Part 3. Appendixes
	Appendix A. Running the zFS pfsctl APIs in 64-bit mode
	Statistics iocounts information (64-bit mode)

	Appendix B. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

