
z/OS

MVS Planning: Operations
Version 2 Release 1

SA23-1390-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 231.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this information xi
Who should use this information xi
How to use this information xi
Where to find more information xii

Conventions and terminology used in this
information xii

How to send your comments to IBM xiii
If you have a technical problem xiii

z/OS Version 2 Release 1 summary of
changes xv

Chapter 1. Planning MVS operations . . 1
Operations goals 1
Operating environment 2

Multiple console support and the MVS
environment 2
Operation modes of console support 5
Sysplex operating environment 9
Using MCS, HMCS and SMCS consoles in a
system or sysplex. 9
Extended MCS consoles 10
SDSF and MVS operations planning 14
RMF and MVS operations planning 14
IBM OMEGAMON z/OS Management Console
and MVS operations planning 15
Tivoli OMEGAMON and MVS operations
planning 15
Automated operations and z/OS operations
planning 15
Remote operations and MVS operations planning 16
ESCON, FICON, and operations planning . . . 17

Chapter 2. Defining console
configuration 19
Console considerations for z/OS V1R8 and higher 19
Choosing how to define your console configuration 21
Using CONSOLxx 22

CONSOLE statement 22
INIT, DEFAULT, and HARDCOPY statements . . 25
CONSOLxx and the sysplex 29

SMCS console considerations 33
Installing SMCS 34

Removing console definitions from a configuration 43
Sample invocation of IEARELCN 43
Environment 44

Removing extended MCS console definitions from a
configuration 45

Sample invocation of IEARELEC 46

Environment 46
Defining devices as MCS, HMCS or SMCS consoles 48

Devices MVS can use as MCS consoles 49
Using console names 49

Attaching consoles to particular systems in a
sysplex 51
Planning console recovery 52

Recovery considerations 52
Console recovery and the RESET CN command 52
Planning console groups 52
Activating CNGRPxx 52
Display of synchronous messages 53
System console automatic activation 54

Recovery for consoles 55
System problems 55
Console hardware errors 55
System programming problems. 55
Console hardware errors 59
Actions to see system messages at the system
console 60

Planning console security. 60
Controlling command authority with the AUTH
attribute 60
Assigning a console master authority 62
Using RACF to control command authority and
operator logon 62
Defining RACF profiles 63
MVS commands, RACF access authorities, and
resource names 70
Other ways to control command authority for
consoles 70

Planning console functions for operators. 70
How to control the use of an MCS console . . . 71
Defining the USE attribute 73
Message display and the full-capability console
screen 74
Specifying automatic message deletion for MCS,
HMCS or SMCS consoles 74
Temporarily suspending the screen roll 77
Comparison of roll, roll-deletable, wrap modes,
and HOLDMODE 78
Manual deletion of messages 79
How operators specify message numbering. . . 80
Using SEG to delete groups of messages from the
screen 81
Status displays and MCS, HMCS and SMCS
consoles 81
Setting up out-of-line display areas on a console 82
Where to route status displays 83
Controlling the format of messages and status
information on console screens 83
Displaying jobname, data set status, and TSO/E
information 85
Adding information to mount messages 86

Defining PFKs and other command controls for
consoles 86

© Copyright IBM Corp. 1988, 2013 iii

Setting up PFKs for consoles 86
Defining the command delimiter for
full-capability consoles 89

Hardcopy processing 89
The hardcopy message set 90
The hardcopy medium 91

Chapter 3. Managing messages and
commands 97
General characteristics of messages and commands 98
Message and command routing. 99

Message flow in a system 99
Command flow in a system 99
Command flooding 100

Message and command flow in a sysplex 100
Messages in a sysplex 101
Message recovery following system failures . . 102

Routing messages 105
Defining routing codes 106
Handling messages without routing codes. . . 106
Defining message levels for a console 107
Directing messages from other systems to a
console in a sysplex 108
Replying to messages from other systems in a
sysplex 109
Directing messages that are eligible for
automation to extended MCS consoles 109
Receiving messages that are directed to console
ID zero 109
Receiving messages that are directed to
unknown console IDs 109

Routing commands 110
Using CMDSYS on the CONSOLE statement 110
Using the ROUTE command 110
Using the command prefix facility 111
Using the L=Operand on certain commands . . 112
Sharing system commands by using system
symbols 112
MPF and MVS operations planning 115
Specifying message presentation 116
Suppressing messages 117
Retaining messages 118
Selecting messages for automation 121
Automation in a sysplex. 121
Installation exits for messages and commands 123
Monitoring messages 125
Controlling WTO and WTOR message buffers 126
Controlling reply IDs for WTOR messages . . 127
Controlling automatic ending of Multi-line WTO
messages 128
Aggregating messages returned to the ROUTE
command 128
Controlling write-to-log (WTL) message buffers 133
Handling translated messages 133
Summary of MVS message and command
processing services 138

Chapter 4. Message flooding 141
z/OS Message Flood Automation 141

Operation 141

Message flood detection behavior 143
Message Flood Automation and CONSOLxx
parameters 143
Message Flood Automation and MPFLSTxx
parameters 144
Message Flood Automation and the Subsystem
Interface (SSI) 144
Message Flood Automation and EMCS consoles 145
Limitations 145
Operator commands 146
PARMLIB specifications 146
SYSLOG records 147
SYSLOG message ordering 147
Recovery 148
Other information 148

Migration 148
Migrating from one level to another 148
Initializing Message Flood Automation 149
Interpreting message rate information 149
Setting thresholds based on message rates . . . 152
Shutting down Message Flood Automation . . 153

Chapter 5. Defining auto-reply policy
for WTORs 155
Migration 155
Operator commands 156
PARMLIB specifications 156
Displaying WTORs being monitored by auto-reply
processing 157
Auto-reply notification messages 157
SDSF support for auto-reply policy 157

Chapter 6. Planning for operation
tasks 159
Initializing the system 160

The system console and message processing . . 160
Using the system console 161
Using the AUTOACT console group. 161
Specifying LOAD information 161
The NIP console 162
The system console and CONSOLxx. 162
Problem determination and the system console 164
Specifying the time-of-day clock and the JES
subsystem 166
CLOCKxx and the sysplex 166
Setting the TOD clock accuracy monitor service 167
Handling wait states 168

Interacting with system functions. 168
Device allocation 168
Hot I/O detection 170
Device boxing 170
Considerations for operators 171

Controlling shared DASD 171
Specifying shared DASD mount characteristics 171

Using the automatic IPL function. 173
Wait state action table (WSAT) 175

Exploiting dynamic CPU addition 175
Exploiting the z/OS IBM System z Advanced
Workload Analysis Reporter (IBM zAware) for
OPERLOG 176

iv z/OS V2R1.0 MVS Planning: Operations

Chapter 7. Examples and MVS
planning aids for operations 177
Summary of CONSOLxx and commands to change
values 177
Controlling extended MCS consoles using RACF 182

Defining the user profile of an extended MCS
console 182
Granting the user access to the RACF
OPERCMDS class 182
Allowing a TSO/E user to issue the CONSOLE
command 183
Changing console attributes using RACF . . . 184

Using RACF to control APF lists 184
Command authorization. 184
Defining command profiles. 184
Controlling how to add or delete APF list
entries for a library 185
Controlling how to change the APF list format 186

Using RACF to control dynamic exits 187
Command authorization. 187
Defining command profiles. 187
Controlling defining a dynamic exit 188
Controlling adding, modifying or deleting exit
routines 189
Controlling how to undefine a dynamic exit . . 189
Controlling how to obtain a list of the dynamic
exits 190
Controlling calling of routines of a dynamic exit 191
Controlling recovering of dynamic exit
processing 191

Using RACF to control LNKLST concatenations 192
Command authorization. 192
Defining command profiles. 193
Controlling defining a LNKLST set 193
Controlling adding a data set to a LNKLST set 194
Controlling deleting a data set from a LNKLST
set 195
Controlling removing the definition of a
LNKLST set 195
Controlling testing of a LNKLST set 196
Controlling updating of a Job's LNKLST set . . 197
Controlling activation of a LNKLST set 197

Using RACF to control dynamic LPA 198
Command authorization. 198

Defining command profiles. 199
Controlling adding a module to LPA after IPL 199
Controlling deleting a module from LPA after
IPL 200

Managing messages with a console cluster . . . 201
Setting up and using a console cluster 201
Defining routing codes for the consoles. . . . 202
Defining the operating modes and the message
levels for the consoles 203
Setting up display areas 203
Setting message roll rates and message deletion
specifications for the consoles 204
Setting up a periodic display of outstanding
requests 205
Defining PFKs for CON1 205
Summary of the PFK definitions for the cluster 207
Activating the PFK table. 208
Summary of contents of CONSOLxx for the
cluster 208

Defining a console configuration for a sysplex
environment. 209

Planning your console configuration for each
system 209
Defining CONSOLxx for each system 210

Appendix A. AUTOR00 parmlib
member 213

Appendix B. Accessibility 227
Accessibility features 227
Using assistive technologies 227
Keyboard navigation of the user interface 227
Dotted decimal syntax diagrams 227

Notices 231
Policy for unsupported hardware. 232
Minimum supported hardware 233
Trademarks 233

Glossary 235

Index 241

Contents v

vi z/OS V2R1.0 MVS Planning: Operations

Figures

1. Console Configuration for an MVS System 4
2. Sysplex Showing Console attachments 9
3. Console Configuration in a Sysplex with Two

Systems and Four MCS Consoles 30
4. Console Configuration in a Sysplex with Two

Systems and Four MCS Consoles 32
5. Console Configuration in a Sysplex with Four

MCS Consoles Attached to One System . . . 33
6. Sample LOGON Mode Table Entry. 35
7. SMCS Console Selection Screen 42
8. Screen Formats of a Full-Capability, Status

Display, and Message Stream Console. . . . 73

9. Example of a Full Wrap Mode Screen 76
10. Example of the Wrap Mode Screen after the

Next Wrap 77
11. Sample Screen Showing Two Out-of-Line

Display Areas on a Full-Capability Console . . 83
12. PFKTAB01 Parmlib Member. 89
13. Sample JCL for Creating a Run-Time Message

File 135
14. Display Areas on Consoles in the Console

Cluster. 204
15. Console Configuration for a Two-System

Sysplex 210

© Copyright IBM Corp. 1988, 2013 vii

viii z/OS V2R1.0 MVS Planning: Operations

Tables

1. Console Attributes for MCS and Extended
MCS Consoles 12

2. Functions that were unique to the master
console that are now available to other
consoles. 19

3. Functions that affected the master console that
have been changed 19

4. Remaining functions that were affiliated with
the master console and removed 20

5. Changed function to help you run your
sysplex. 20

6. Summary of CONSOLE statement functions 23
7. Summary of INIT statement functions. . . . 25
8. Summary of DEFAULT statement functions 27
9. Summary of HARDCOPY statement functions 28

10. Keyword Definitions 35
11. PSERVIC Values for SNA Devices 36
12. Comparison of Roll, Roll-deletable, and Wrap

Mode 78
13. Hardcopy failure backup configurations. 94
14. Summary of Message and Command

Processing that MVS Provides 138
15. Operator commands to control Message

Flood Automation 146
16. Operator commands to control auto-reply

policy for WTORs 156
17. CONSOLE Statement Summary 177
18. Summary of INIT, HARDCOPY, and

DEFAULT Statements 180

© Copyright IBM Corp. 1988, 2013 ix

x z/OS V2R1.0 MVS Planning: Operations

About this information

This book contains planning information for MVS™ operations. It describes how to
define and use multiple console support (MCS) consoles, SNA Multiple console
support (SMCS) consoles, and extended MCS (EMCS) consoles. It also describes
how to manage messages and commands in an MVS single-system or sysplex
environment.

Who should use this information
System programmers who plan MVS operations and persons who administer the
security procedures for their installations should use this book. The book assumes
that the user understands the installation's hardware and software, and also
understands the general organization and functions of MVS.

Users should have a good understanding of parmlib and how to use it.

How to use this information
Read the chapters in this book in sequence to obtain a good understanding of MVS
operations planning.

The book is organized as follows:
v Chapter 1, “Planning MVS operations,” on page 1 describes setting operations

goals for an MVS environment. It provides a brief introduction to multiple
console support (MCS) consoles, SMCS consoles, and extended MCS consoles. It
also describes the two console support operation mode: distributed mode and
shared mode.

v Chapter 2, “Defining console configuration,” on page 19 describes how to
define an MCS and SMCS console configuration. It describes how to define a
device as a console and how to define console functions in CONSOLxx member
of parmlib. It also provides information to plan for console recovery, console
security, and system logging.

v Chapter 3, “Managing messages and commands,” on page 97 describes how to
manage messages and commands for consoles in an MVS environment. It
includes information about the message processing facility (MPF), the action
message retention facility (AMRF), installation exits to modify messages and
commands, and message translation using the MVS message service (MMS).

v Chapter 4, “Message flooding,” on page 141 describes how to use Message
Flood Automation to handle message flooding situations. It describes how to set
up message flooding policy in the MSGFLDxx member of parmlib.

v Chapter 5, “Defining auto-reply policy for WTORs,” on page 155 describes
how to use the auto-reply policy for WTORs.

v Chapter 6, “Planning for operation tasks,” on page 159 describes how to plan
for MVS operator tasks like initializing a system and operating MVS on a
day-to-day basis.

v Chapter 7, “Examples and MVS planning aids for operations,” on page 177
provides examples of defining a console cluster to handle message traffic in an
MVS system and defining a console configuration in a two-system sysplex. It
also contains reference information to help you in your planning.

© Copyright IBM Corp. 1988, 2013 xi

v Appendix A, “AUTOR00 parmlib member,” on page 213 contains the contents
of the parmlib member AUTOR00.

v Appendix B, “Accessibility,” on page 227 describes the major accessibility
features in z/OS.

In the back of this book, a glossary defines technical terms used in this book.

Where to find more information
Where necessary, this book references information in other books, using shortened
versions of the book title. For complete titles and order numbers of the books for
all products that are part of z/OS, see z/OS Information Roadmap.

Conventions and terminology used in this information
When this information refers to RACF® (Resource Access Control Facility) it is the
IBM® security management product for its large server z/OS® operating system.
You can substitute your security product in place of RACF if you are not using
RACF.

xii z/OS V2R1.0 MVS Planning: Operations

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the Contact z/OS.
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS Planning: Operations
SA23-1390-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at IBM support portal.

© Copyright IBM Corp. 1988, 2013 xiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/

xiv z/OS V2R1.0 MVS Planning: Operations

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration, GA32-0889

v z/OS Planning for Installation, GA32-0890

v z/OS Summary of Message and Interface Changes, SA23-2300

v z/OS Introduction and Release Guide, GA32-0887

© Copyright IBM Corp. 1988, 2013 xv

xvi z/OS V2R1.0 MVS Planning: Operations

Chapter 1. Planning MVS operations

Managing the operation of z/OS in today's data processing environment has
become increasingly important. Operators need to learn new skills and manage
more z/OS functions as installations grow in their computing power. Single MVS
systems are becoming part of multisystem environments with new demands on the
management of the hardware, software, and people required to run those systems.
To monitor MVS and to respond to system changes and problems make operations
planning more important than ever before.

In order to make decisions about MVS operations planning, you need to
understand:
v The operations goals of your installation
v The operating environment and how it will affect those goals.

Operations goals
MVS operations planning involves issues like workload management, system
performance, I/O device management, console security, and console operations, to
name a few. But it also involves the business goals and policies established by the
installation to allow the installation to grow and handle work efficiently. These
needs, of course, vary from installation to installation, but they are important when
you plan your MVS operations.

Managing the complexity of MVS requires you to think about the particular needs
of the installation. However, any installation might consider the following goals
when planning its MVS operations:
v Increasing system availability. Many installations need to ensure that their

system and its services are available and operating to meet service level
agreements. Installations with 24-hour, 7-day operations need to plan for
minimal disruption of their operation activities. In terms of MVS operations,
how the installation establishes console recovery or whether an operator must
re-IPL a system to change processing options are important planning
considerations.

v Controlling operating activities and functions. As more installations make use
of multisystem environments, the need to coordinate the operating activities of
those systems becomes crucial. Even for single MVS systems, an installation
needs to think about controlling communication between functional areas (like a
tape-pool library and the printer pool for example). In both single and
multisystem environments, the commands operators can issue from consoles can
be a security concern that requires careful coordination. As planner, you want to
make sure that the right people are doing the right tasks when they interact
with MVS. If your installation uses remote operations to control target systems,
you also need to decide about controlling those activities from the host system.

v Simplifying operator tasks. Because the complexity of operating MVS has
increased, an installation needs to think about the tasks and skills of its
operators. How operators respond to messages at their consoles and how you
can reduce or simplify their actions are important to operations planning. Also,
your installation needs to plan MVS operator tasks in relation to any automated
operations that help simplify those tasks.

© Copyright IBM Corp. 1988, 2013 1

v Streamlining message flow and command processing. In thinking about
operator tasks, an installation needs to consider how to manage messages and
commands. Operators need to respond to messages. Routing messages to
operator consoles, suppressing messages to help your operators manage
increased message traffic, or selecting messages for automated operations can all
help you manage system activity efficiently.

v Single system image. Single system image allows the operator, for certain tasks,
to interact with several images of a product as though they were one image. For
example, the operator can issue a single command to all MVS systems in the
sysplex instead of repeating the command for each system.

v Single point of control. Single point of control allows the operator to interact
with a suite of products from a single workstation. An operator can accomplish
a set of tasks from a single workstation, thereby reducing the number of
consoles the operator has to manage.

Operating environment
The operation of an MVS system involves the following:
v Console operations or how operators interact with MVS to monitor or control

the hardware and software.
v Message and command processing that forms the basis of operator interaction

with MVS and the basis of MVS automation.

Operating MVS involves managing hardware like processors and peripheral
devices (including the consoles where your operators do their work) and software
such as the MVS operating system, the job entry subsystem, subsystems like
NetView® that can control automated operations, and all the applications that run
on MVS.

Planning MVS operations for a system must take into account how operators use
consoles to do their work and how you want to manage messages and commands.
Because messages are also the basis of automated operations, understanding
message processing in an MVS system can help you plan MVS automation.

The MVS environment at an installation can affect how you plan to meet your
operations goals. Your MVS operating environment might be a single MVS system
or a multisystem environment. Depending on the environment, operating MVS can
involve different approaches to your planning tasks. For example, planning console
security for a multisystem environment requires more coordination than for a
single MVS system. But much of the planning you do for a single system can serve
as the basis for planning MVS operations in a multisystem environment.

Single MVS systems can be part of multisystem environments like a sysplex or a
JES3 complex. In a sysplex, MVS systems can share work and resources; messages
and commands can flow from system to system so that communication among
systems is also shared.

Multiple console support and the MVS environment
Generally, operators on an MVS system receive messages and enter commands on
MCS and SMCS consoles. (Operators can use other consoles such as NetView
consoles, to interact with MVS, but this book primarily describes MCS and SMCS
consoles and how to plan for their use. Installations can enhance their MVS
operations by using extended MCS consoles. See “Extended MCS consoles” on
page 10.)

2 z/OS V2R1.0 MVS Planning: Operations

MCS consoles are devices that are locally attached to an MVS system and provide
the basic communication between operators and MVS. (MCS consoles are attached
to control devices that do not support systems network architecture (SNA)
protocols.)

SMCS consoles are devices that do not have to be locally attached to an MVS
system and provide the basic communication between operators and MVS. SMCS
consoles use z/OS Communications Server to provide communication between
operators and MVS instead of direct I/O to the console device.

In general, there are small differences in the techniques you use to define and
activate MCS consoles and SMCS consoles. Once the consoles are activated,
however, MCS consoles and SMCS consoles are very much alike.

You can define MCS and SMCS consoles in a console configuration according to
different functions. Important messages that require action can be directed to an
operator who can act by entering commands on the console. Another console can
act as a monitor to display messages to an operator working in a functional area
like a tape pool library or to display messages about printers at your installation.

Defining a console configuration is an important part of your MVS operations
planning. You define a console configuration by defining the devices you want to
use as consoles and their console attributes, in the CONSOLxx parmlib member. In
CONSOLxx, these console attributes control important console functions like the
types of commands operators can enter from the console, routing information for
messages and commands, and how to use the console. CONSOLxx and the MCS
and SMCS console attributes that you can control are described in “Summary of
CONSOLxx and commands to change values” on page 177.

Figure 1 on page 4 shows a console configuration for an MVS system that also
includes the system console, an SMCS console, NetView, and TSO/E.

Chapter 1. Planning MVS operations 3

The system console function is provided as part of the Hardware Management
Console (HMC). An operator can use the system console to initialize MVS and
other system software and during recovery situations when other consoles are
unavailable.

In addition to MCS and SMCS consoles, the MVS system shown in Figure 1 has a
NetView console defined to it. NetView works with system messages and
command lists to help you automate MVS operator tasks. You can control many
system operations from a NetView console. For information about MVS operations
and NetView, see “Automated operations and z/OS operations planning” on page
15.

Users can monitor many MVS system functions from TSO/E terminals. Using the
System Display and Search Facility (SDSF) and the Resource Measurement
Facility™ (RMF™), TSO/E users can monitor MVS and respond to workload
balancing and performance problems. For information about MVS operations and
SDSF, see “SDSF and MVS operations planning” on page 14. For information about
MVS operations and RMF, see “RMF and MVS operations planning” on page 14.

An authorized TSO/E user can also initiate an extended MCS console session to
interact with MVS. For information on extended MCS consoles, see “Extended
MCS consoles” on page 10.

The MCS consoles in Figure 1 include the following:
v An MCS console with master authority from which an operator can view

messages and enter all MVS commands. This console is in full-capability mode
because it can receive messages and accept commands. An operator can control
the operations for the MVS system from an MCS or SMCS console with master
authority.

TSO/E

N
E
T
V
I
E
W

MVS

System
console

(attached
to the

processor
controller)

MCS console
with

master
authority

MCS status
display
console

MCS message
stream
console

NetView
console

Extended MCS
console with

master authority

TSO/E session
with SDSF

TSO/E session
with RMF

SMCS
console

VTAM
(SMCS)

Figure 1. Console Configuration for an MVS System

4 z/OS V2R1.0 MVS Planning: Operations

v An MCS status display console. An operator can view system status information
from DEVSERV, DISPLAY, or CONFIG commands. However, because this is a
status display console, an operator cannot enter commands from the console. An
operator on a full capability console can enter these commands and route the
output to a status display console for viewing. An SMCS console cannot be a
status display console.

v An MCS message-stream console. A message-stream console can display system
messages. An operator can view messages routed to this console. However,
because this is a message-stream console, an operator cannot enter commands
from the console. You can define routing codes and message level information
for the console so that the system can direct relevant messages to the console
screen for display. Thus, an operator who is responsible for a functional area like
a tape pool library, for example, can view MOUNT messages. An SMCS console
cannot be a message stream console.

Operation modes of console support
z/OS console support can be operated in one of two modes: shared mode and
distributed mode.

Shared mode
Shared mode is the name given to the way that z/OS console support has always
operated in a sysplex environment. As sysplex environments have grown larger,
various shortcomings in shared mode have been identified and are addressed by
the distributed mode of operation.

In a future release, the ability to operate in shared mode will be removed.

Distributed mode
Distributed mode is a new mode of console operation. Distributed mode improves
the operation of z/OS console support when running in a sysplex environment by:
v Potentially reducing the time that it takes to IPL a system
v Potentially reducing the time that it takes a system to join a sysplex 1

v Potentially reducing the scope of console related hangs 2

v Reducing the possibility of consoles related outages
v Allowing more MCS, SMCS and subsystem consoles to be configured

Many of the improvements present in distributed mode are due to changes in the
serialization of console resources. In some cases, synchronization requirements
have been relaxed, allowing less stringent serialization mechanisms to be used. In
other cases, where strict serialization is still required, the serialization has been
made much more granular so that the effects of the serialization are less
widespread. The relaxed synchronization and more granular serialization allow
much more parallel activity to occur, reducing the time required to perform some
operations. The relaxed synchronization and more granular serialization reduce the
possibility that a problem occurring in one place will propagate to another place
(so-called "sympathy sickness").

Distributed mode defines many of the console data structures in a data space
where they are accessible only through controlled, well-defined services, drastically
reducing the possibility that an errant program can damage the data structures and

1. Reductions in the time that it takes to IPL a system or in the time that it takes a system to join a sysplex are a function of the size
of the console configuration, with the most benefit being expected in large console configurations.

2. Installations must ensure that there are redundant consoles defined and active.

Chapter 1. Planning MVS operations 5

cause an outage. All of the new distributed mode programming includes robust
new error handling and recovery capabilities.

Distributed mode relieves the 99 MCS, SMCS and subsystem console per sysplex
constraint by allowing up to 99 MCS, SMCS and subsystem consoles to be active
per z/OS image. Additional flexibility is provided by allowing up to 250 MCS,
SMCS and subsystem consoles to be defined per z/OS image (of which up to 99
may be concurrently active on that image). The number of MCS, SMCS and
subsystem consoles that may be concurrently active in a sysplex is now a function
of the 99 active console limit of each image multiplied by the number of z/OS
images in the sysplex.

To take advantage of distributed mode, you must perform a sysplex-wide
migration to distributed mode. You can do so through a sysplex-wide IPL or
dynamically, while you are running. To perform the migration, all of your systems
must be at the z/OS V1R10 level or higher.

The ability to fallback dynamically to the shared mode of operation is also
provided. However, the fallback is potentially disruptive to your operations. See
“Migration and fallback considerations” on page 8.

IPL option: IEASYSxx and IPL prompt CON= parameter:
v CON=(...,DISTRIBUTED) to operate in DISTRIBUTED mode
v CON=(...,SHARED) to continue to operate in SHARED mode

DISTRIBUTED mode is now the default.

Dynamic ("on the fly"): SETCON MODE= command:
v SETCON MODE=DISTRIBUTED to migrate forward
v SETCON MODE=SHARED to fallback

The ability to fallback to SHARED mode will be removed in a future release when
it is no longer possible to IPL into and operate in SHARED mode.

You can determine the current console operation mode at any time by using the
DISPLAY OPDATA,MODE command.

Planning for distributed mode
There are things that you need to consider before migrating to distributed mode.

Note: The following discussion regarding console attributes applies only to MCS,
SMCS, and subsystem consoles; it does not apply to EMCS consoles (except as
noted).

In distributed mode, changes to the attributes of a console persist only while the
console is active. When a console is deactivated, its attributes revert to their
original values. The original values for consoles in distributed mode are
established either when the console is first defined or when the sysplex enters
distributed mode with the SETCON MODE=DISTRIBUTED command. More
specifically:
v For MCS and subsystem consoles, the original attributes are:

– The values specified in CONSOLxx.
– The values that were in effect when the sysplex most recently entered

distributed mode.

6 z/OS V2R1.0 MVS Planning: Operations

v SMCS console definitions are shared across the sysplex. The original attributes of
SMCS consoles are:
– The values specified in CONSOLxx of the first system to define the console

(subsequent definitions of the same console are ignored).
– The values that were in effect when the sysplex most recently entered

distributed mode.

There are a few exceptions to the rule. The following console attributes persist
when a console is deactivated:
v The last system on which the console was active overrides the SYSTEM

attributed specified in CONSOLxx.
v The LUNAME attribute for SMCS consoles.
v The LOGON attribute for SMCS consoles.

If you want to change the original attributes of a console, you must redefine the
console.
v For MCS and subsystem consoles, update CONSOLxx to reflect the desired

attributes and re-IPL the system. The original attributes of the console will be
updated only on the system that is IPLed.

v For SMCS consoles:
– Ensure that the console is not active. Use the IEARELCN sample program to

delete the console definition.
– Update CONSOLxx to reflect the desired attributes and re-IPL any system in

the sysplex. The original attributes of the console will be updated on all
systems in the sysplex.

An alternate method for changing the original attributes of an MCS, subsystem, or
SMCS console is:
v Migrate backwards to shared mode.
v Update the attributes of the consoles as desired.
v Migrate forward to distributed mode.

Note: This is potentially disruptive to your operations and should only be used if
you have not exploited the ability to define more than 99 MCS, subsystem, or
SMCS consoles. See “Migration and fallback considerations” on page 8.

In distributed mode, you cannot alter the attributes of inactive consoles (including
EMCS consoles) with the following exceptions:
v The LUNAME attribute for SMCS consoles.
v The LOGON attribute for SMCS consoles.

In distributed mode, you cannot alter the type of a console. The console name
retains the console type until the console is deleted using IEARELCN or
IEARELEC.

In distributed mode, the health checker will only report on inactive MCS and
SMCS consoles that are defined on the system on which the health checker is
running.

Chapter 1. Planning MVS operations 7

In distributed mode, console IDs for MCS, SMCS and subsystem consoles no
longer have to be in the range of 1-99. Therefore, the use of console names and the
CNZCONV service are recommended when trying to find information pertaining
to consoles.

If you have any local program that examines the console UCME array, you must
use the CNZMXURF service to access the array and your program must obtain the
local and CMS locks before invoking the CNZMXURF service. To obtain the CMS
lock, your program must be authorized. Your programming must also be able to
tolerate console IDs that are not the same as a console’s array index. Also, the
UCME array will contain only information about MCS, SMCS and subsystem
consoles that are active on this system. The tracking facility will identify users of
the CNZMXURF service that are not holding the CMS lock. IBM recommends
using the CNZCONV service for obtaining information about consoles or parsing
the response to the DISPLAY CONSOLE command.

In distributed mode, if a console is already active on another system and you
attempt to issue certain VARY commands from this system, you will see different
messages from what you receive in shared mode. For example, an MCS console
named STEVE is both defined on SYS1 and SYS2 in the sysplex. The console
STEVE is already active on SYS1. The table below lists the commands issued from
SYS2 and the messages in response when the console services support is in
distributed mode and shared mode.

VARY command issued
from SYS2 Message in response, distributed mode

Message in response, shared mode

VARY STEVE,ONLINE CNZ0005I CONSOLE STEVE ON DEVICE
device1 ALREADY ACTIVE ON SYSTEM
SY1 ON DEVICE device2

IEE302I STEVE ONLINE

VARY STEVE,OFFLINE CNZ0005I CONSOLE STEVE ON DEVICE
device1 ALREADY ACTIVE ON SYSTEM
SY1 ON DEVICE device2

IEE303I STEVE OFFLINE

VARY
STEVE,OFFLINE,FORCE

CNZ0005I CONSOLE STEVE ON DEVICE
device1 ALREADY ACTIVE ON SYSTEM
SY1 ON DEVICE device2

IEE793I STEVE OFFLINE AND BOXED

VARY STEVE,AS,ON IEE313I STEVE UNIT REF. INVALID IEE462I UNIT STEVE IS NOT A VALID
DEVICE TYPE FOR THE AUTOSWITCH
ATTRIBUTE

VARY STEVE,UNAVAIL IEE313I STEVE UNIT REF. INVALID CNZ6001I DEVICE device1 NOT
PROCESSED: DEVICE IS NOT A TAPE
DEVICE

Note that different messages are issued only when you specify a console name (in
the example, STEVE) on those VARY commands. If you issue a device number, like
VARY 3D0,ONLINE or VARY 3D0,AS,ON, you will get the same responses as in
shared mode.

Migration and fallback considerations
IBM recommends that you become comfortable with distributed mode before
exploiting the ability of distributed mode to define more than 99 MCS, SMCS and
subsystem consoles in a sysplex. Defining more than 99 MCS, SMCS and
subsystem consoles in a sysplex can greatly complicate a fallback, should one be
necessary. You should defer defining additional MCS, SMCS and subsystem
consoles in the sysplex until you are comfortable that you will not need to fallback.

8 z/OS V2R1.0 MVS Planning: Operations

If you have taken advantage of the ability to define more than 99 MCS, SMCS and
subsystem consoles in a sysplex, you will lose some number of your MCS, SMCS
and subsystem consoles when you fallback to shared mode. The way in which you
have distributed the consoles in the sysplex will determine which consoles you
will retain and which consoles you will lose when you fallback, since only the first
99 MCS, SMCS and subsystem consoles that are defined within the sysplex will
survive. You should avoid configuring large numbers of consoles on the first
systems that join the sysplex because doing so may result in only a subset of your
systems having consoles. z/OS does not require that every system in a sysplex
have a console. Properly configured, any console in the sysplex can see messages
from and send commands to any system in the sysplex. Each system will always
have a system console available through the hardware management console (HMC)
that can be used as the "console of last resort" should a fallback become necessary.
The DISPLAY CONSOLES,SHAREDMODE command can be used to show the
MCS, SMCS and subsystem consoles that will survive a fallback.

EMCS consoles are unaffected by a fallback.

Sysplex operating environment
In a sysplex, you can define an MCS and SMCS console configuration that allows
messages and commands to flow from system to system. Figure 2 shows a
two-system sysplex, with three consoles attached:

In Figure 2, two systems are part of a sysplex with cross-coupling services (XCF)
providing signalling paths that allow MCS or SMCS consoles on different systems
to communicate with each other. In a sysplex, you can define your MCS or SMCS
consoles so that any MCS or SMCS console can receive messages from any system,
and commands entered on any MCS or SMCS console can be processed on any
system.

The sysplex has great flexibility in its console attachments. When you define your
MCS or SMCS consoles for a system and IPL the system into a sysplex, your
consoles can have a logical association to any system. Any MCS or SMCS console
on a system in a sysplex can be the focal point, or MCS and SMCS consoles can
share the control they have over systems.

Chapter 7, “Examples and MVS planning aids for operations,” on page 177
describes how you can define consoles for a two-system sysplex. For information
about defining and tuning the sysplex, see z/OS MVS Setting Up a Sysplex.

Using MCS, HMCS and SMCS consoles in a system or sysplex
In the shared mode of operation, you can define up to 99 consoles including any
subsystem-allocatable consoles for an MVS system. In a sysplex, the limit is 99

MVS
System

A

MVS
System

B

MCS-2
SMCS

MCS-1

signalling
paths

Figure 2. Sysplex Showing Console attachments

Chapter 1. Planning MVS operations 9

consoles for the sysplex. You can exceed this number in a system or sysplex by
using extended MCS consoles. (See “Extended MCS consoles.”) Therefore, you
should examine any product that uses subsystem-allocatable consoles to determine
if it could use extended MCS consoles instead.

In the distributed mode of operation, you can define up to 250 consoles including
any subsystem-allocatable consoles for an MVS system. Of these, you can have up
to 99 consoles concurrently active on an MVS system. In a sysplex, the limit is
determined by the 99 console limit on each MVS system multiplied by the number
of MVS systems in the sysplex.

Subsystem allocatable consoles are defined in CONSOLxx and obtained and
released using the IEAVG700 interface. Programs invoke IEAVG700 passing in the
SCSR (subsystem console service routine) parmlist, which is mapped by IEZVG100.
IBM highly recommends the use of extended MCS (EMCS) consoles rather than
subsystem allocatable consoles.

There is no requirement to have an MCS, HMCS or SMCS console configured to
each system. You can use command and message routing capabilities on one MCS,
HMCS or SMCS console to control multiple systems in the sysplex. MCS, HMCS or
SMCS consoles are not needed on all systems; but you should have at least one
MCS, HMCS or SMCS console capable of operating the sysplex.

It is possible to control a sysplex through SMCS consoles alone. In a sysplex with
only SMCS consoles, the hardware management console takes on a more important
role; it is the only console to receive synchronous messages, for example.

If you have only SMCS consoles, the hardware management console must be used
in place of a NIP console. Consider creating an AUTOACT console group for the
system console to provide unbroken communication from NIP to the activation of
your SMCS consoles.

Because SMCS consoles connect through a network, security plays a significant
role. For example, you need to require operators to log on, and you must take
steps to protect the network connections.

Extended MCS consoles
To extend the number of consoles on MVS systems or to allow applications and
programs to access MVS messages and send commands, an installation can use
extended MCS consoles. The use of these consoles can help alleviate the constraint
of the MCS console limit. Moving to an extended MCS console base from a
subsystem-allocatable console base will allow for easier expansion in a sysplex.

You can define a TSO/E user to operate an extended MCS console from a TSO/E
terminal. The user issues the TSO/E CONSOLE command to activate the extended
MCS console.

An installation can also write an application program to act as an extended MCS
console. An authorized program issues the MVS authorized macro MCSOPER to
activate and control the extended MCS console and uses other MVS macros and
services to receive messages and send commands.

In an application program, you can define your own message presentation service,
or handle messages and commands that can help automate certain tasks.

10 z/OS V2R1.0 MVS Planning: Operations

For example, you might want to run a program that activates an extended MCS
console to control printer operations for a system or sysplex. Because you can
direct messages and commands from any system in a sysplex to a specific
extended MCS console, you can design programs to control certain automation
functions for the entire sysplex.

Both JES2 and JES3 installations can use extended MCS consoles.

Extended MCS consoles and console attributes
An installation can assign to a TSO/E user or to an MVS application program that
acts as an extended MCS console many of the same console attributes as an MCS
console. These attributes control functions like the types of commands users can
issue from the console, the routing of messages and commands, and the format
display of messages. “Defining console attributes for extended MCS consoles”
describes how you define these extended MCS console attributes.

Note: The TSO/E CONSOLE command provides only a line-mode interface.

Defining and protecting extended MCS consoles
An installation can define and protect the use of extended MCS consoles through a
security product like RACF. To define a user to RACF and control the use of the
console, consider the following:
1. Arrange with the RACF security administrator to define a RACF profile for the

user of the extended MCS console.
For an interactive TSO/E user, the security or TSO/E administrator can use
RACF commands to permit the user to issue the TSO/E CONSOLE command.
To customize the use of the TSO/E CONSOLE command, the user can use the
TSO/E operator presentation sample defined as a series of Interactive System
Productivity Facility (ISPF) panels in SYS1.SAMPLIB. The SYS1.SAMPLIB
member name that contains documentation for the TSO/E operator
presentation sample is IEATOPSD.
For an MVS application program, the administrator can use RACF commands
to protect the use of the MCSOPER macro. In the RACF profile, the
administrator defines the name of the extended MCS console that the
application must specify on the MCSOPER macro.

2. Ensure that the TSO/E user or application that acts as an extended MCS
console has the proper console attributes.
In the RACF profile for the TSO/E user or for the MCSOPER name that the
application uses to activate the console, the RACF security administrator can
specify the console attributes. An application program can use MCSOPER
instead of RACF to specify these console attributes. If both RACF and
MCSOPER define console attributes for an extended MCS console, MCSOPER
values override the RACF values.

“Controlling extended MCS consoles using RACF” on page 182 describes examples
of defining RACF user profiles for an extended MCS console.

Defining console attributes for extended MCS consoles
If your installation uses RACF to protect extended MCS consoles, RACF maintains
information about the console attributes in the OPERPARM segment of each RACF
user profile. You can define or alter these attributes using the RACF ADDUSER or
ALTUSER commands.

Table 1 on page 12 shows the console attributes that your installation can control
for users of extended MCS consoles. It lists the console attribute, the subkeyword

Chapter 1. Planning MVS operations 11

in OPERPARM if you are using RACF, the default value if you do not specify
RACF OPERPARM and do not define values through MCSOPER, and the meaning
of the default. Notes® follow the table:

Table 1. Console Attributes for MCS and Extended MCS Consoles

Console Attribute RACF
OPERPARM
Subkeyword

Default value Meaning of Default

Command authority
for the console

AUTH AUTH(INFO) Only informational commands can be
issued.

Routing codes for the
console

ROUTCODE

See Note 3

ROUTCODE(NONE) No routing codes established for the
console.

Levels of messages
directed to the console

LEVEL

See Note 3

LEVEL(ALL) All levels of messages sent to the console.

Message format for
console display

MFORM MFORM(M) Display only the message text.

System message scope
in the sysplex

MSCOPE

See Notes 2
and 3.

MSCOPE(*ALL) Display messages from all systems in the
sysplex on the console.

Command association
in the sysplex

CMDSYS CMDSYS(*) Commands are processed on the local
system where the console is attached.

Jobname and TSO/E
display information

MONITOR None No default; monitors jobname and TSO/E
information for screen displays. See
“Displaying jobname, data set status, and
TSO/E information” on page 85.

Logging of command
responses

LOGCMDRESP LOGCMDRESP(SYSTEM) SYSTEM indicates logging is controlled
by the value in HARDCOPY CMDLEVEL
in CONSOLxx. (NO indicates that the
system does not log command responses
if the response message was issued by an
authorized program).

Storage limit for
message queuing

STORAGE STORAGE(1) Storage in megabytes that the system
uses for message queuing to the console.
The maximum is 2000 megabytes.

Whether the console
receives
delete-operator-
messages (DOMs)

DOM

See Note 4

DOM(NORMAL) NORMAL indicates that the system direct
all appropriate DOMs to the console.
(ALL indicates that all systems in a
sysplex direct DOMs to the console.
NONE indicates that DOMs are not
directed to the console.)

Key name for the
console KEY

See Note 1

KEY(NONE) 1- to 8-byte character name used in
DISPLAY CONSOLES,KEY. A key name
allows you to group extended MCS
consoles by function and refer to the
group using the key name in the
DISPLAY command.

Whether the console is
to receive messages
eligible for automation

AUTO

See Notes 2 and 3

AUTO(NO) NO indicates that the console does not
receive messages specified for automation
through MPF. (YES indicates that the
console can receive messages eligible for
automation.)

12 z/OS V2R1.0 MVS Planning: Operations

Table 1. Console Attributes for MCS and Extended MCS Consoles (continued)

Console Attribute RACF
OPERPARM
Subkeyword

Default value Meaning of Default

Receive messages
directed to console id
zero

INTIDS N Whether the console receives messages
directed to console id zero.

Receive messages
directed to unknown
console ids

UNKNIDS N Whether the console receives messages
directed to unknown console ids, such as
one-byte id.

Receives the hardcopy
message set

HC N Whether the extended console receives
the hardcopy message set

Note:

1. Using the KEY name, operators can display information on the DISPLAY
CONSOLES,KEY command for all extended MCS consoles defined with the
same key.

2. Using the AUTO keyword, you can define an extended MCS console to receive
messages that MPF indicates as eligible for automation. These messages can
originate on any system in the sysplex. By specifying AUTO(YES) and
MSCOPE(*ALL) or the MCSOPER OPERPARM equivalents, an extended MCS
console can receive these messages from all systems in the sysplex.

3. Altering some console attributes might cause messages to no longer be
displayed on a console. Messages that are not displayed on a console will still
be logged in SYSLOG and/or OPERLOG, and are viewable using facilities such
as SDSF.
The potential for this situation to occur comes from using these commands:

VARY CN
VARY CONSOLE
CONTROL V,LEVEL
LOGOFF (for SMCS consoles)

4. If the MCSOPER ACTIVATE request specified MSGDLVRY=NONE, the
attribute specified or defaulted for DOM will be forced to DOM=NONE.

MCSOPER and OPERPARM
You can use MCSOPER to specify OPERPARM values for the extended MCS
console. MCSOPER OPERPARM parameter list fields correspond to the RACF
OPERPARM subkeywords in Table 1 on page 12. These MCSOPER values override
RACF OPERPARM values for an extended MCS console.

For information on MCSOPER OPERPARM, see z/OS MVS Programming: Authorized
Assembler Services Guide.

References

For information about using the TSO/E CONSOLE command for TSO/E users of
extended MCS consoles, see z/OS TSO/E System Programming Command Reference.

For information on writing MVS application programs that use extended MCS
consoles, see z/OS MVS Programming: Authorized Assembler Services Guide and z/OS
MVS Programming: Authorized Assembler Services Reference LLA-SDU. For REXX

Chapter 1. Planning MVS operations 13

language programs, see z/OS TSO/E REXX User's Guide and z/OS TSO/E REXX
Reference.

SDSF and MVS operations planning
SDSF is a program that runs on TSO/E and uses Interactive System Productivity
Facility (ISPF) panels. With SDSF, you can:
v Display immediate, up-to-date information about the jobs submitted to JES2 and

JES3 for processing, including:
– Jobs on the input queue, output queue (JES2 only), and held queue (JES2

only)
– Job status of a specific job, including the job’s priority and input class, the

time and date the job was entered in the system, and the time and date the
system began processing the job

– System information about active jobs
– Spool data sets for a specific job
– Output from a job

v Monitor and control jobs, output, and resources in a JES system without using
JES command syntax.

v Enter MVS, JES2, and JES3 system commands from any TSO/E terminal.
v View the system log (SYSLOG), operations log (OPERLOG), or user log (ULOG)

online and search for specific information, which can reduce problem
management time and eliminate the need for a printed copy of the log.

v View input data sets of jobs that are being processed or waiting to be processed.
v View output data sets online and purge them, which can reduce the system print

load.
v Control remote printers and schedule output to be printed at remote printers.
v View output from the MVS Health Checker.
v Get online information: help for panels, commands, and messages; an interactive

tutorial for ISPF users; and online documentation through BookManager®.

RMF and MVS operations planning
Resource Measurement Facility provides data for performance measurements,
capacity planning, and trouble shooting. RMF can display information at the touch
of a button and provides functions to archive collected data for future reports and
analysis.

The functions RMF offers ensure the manageability of large enterprise systems.
They assist in performance management without the need to logon to every system
where data is collected, and they support the new concept of managing workloads
by MVS through service level reporting.

With RMF, you can monitor the performance of the whole system complex from a
single point of control, thus increasing user productivity:
v Sysplex performance reports
v Selectable single-system reports in the sysplex
v Sysplex data server to access data across the sysplex

RMF provides performance data about business-oriented workloads and assists in
managing service levels efficiently. In addition, you get performance information
for CICS® and IMS™ subsystems.

14 z/OS V2R1.0 MVS Planning: Operations

Coupling technology in the sysplex makes high-performance data sharing possible
and can increase the manageability of your whole environment. RMF provides the
data necessary for planning of the coupling facility configuration.

For information on RMF, see z/OS RMF User's Guide.

IBM OMEGAMON z/OS Management Console and MVS
operations planning

The IBM OMEGAMON® z/OS Management Console (zMC) is a free offering from
Tivoli® that uses the Tivoli Enterprise Portal (TEP) graphical user interface (GUI) 3

to provide an easy to use display of z/OS job and process availability information.
Information about Coupling Facility connections and structures is also provided.
Output from the z/OS Health Checker may also be viewed through the zMC.

The zMC comes pre-configured with a set of tabular and graphical displays
(known as workspaces) and with a set of pre-configured situations. Situations are
simple rules that can be established to look for conditions within the data being
displayed and take some action, such as changing the color of the data which can
visually alert operations personnel to various anomalous conditions. The TEP GUI
is extremely flexible and may be easily customized to display the information in
the manner desired. For example, within tabular displays, columns may be
re-ordered left-to-right, and the data within a column may be sorted. Any of the
data that is being displayed in a table may be displayed graphically, in a variety of
formats. All of the pre-configured situations are easily modified and new situations
may be easily created.

The zMC workspaces are designed to be easily integrated with other workspaces
in the OMEGAMON XE for z/OS product if it is present.

For more information about the z/OS Management Console, see IBM
OMEGAMON for z/OS Management Console User's Guide.

Tivoli OMEGAMON and MVS operations planning
The OMEGAMON product suite provides performance and availability monitoring
for z/OS and for various products that run on z/OS such as CICS, IMS and DB2®.
OMEGAMON XE for z/OS uses the Tivoli Enterprise Portal (TEP) graphical user
interface (GUI) to present the performance and availability information that it has
gathered. When multiple products that use the TEP are present, the dynamic
workspace linking capabilities of the TEP make it possible to follow a trail that
begins as a symptom in one product – for example with a communications
problem reported by NetView – and move in-context from NetView’s description
of the problem, to CICS’s description of the problem, to DB2’s description of the
problem, to z/OS’s description of the problem, and so on.

For more information about OMEGAMON and the OMEGAMON suite of
monitoring products, see IBM Tivoli OMEGAMON XE on z/OS: User's Guide.

Automated operations and z/OS operations planning
As part of planning z/OS operations, consider using automated operations at your
installation. Automated operations help simplify operator tasks.

3. The Tivoli Enterprise Portal infrastructure is used by the Tivoli OMEGAMON XE product suite and by other Tivoli products such
as Tivoli NetView for z/OS, Tivoli System Automation for z/OS and Tivoli Workload Scheduler for z/OS.

Chapter 1. Planning MVS operations 15

Tivoli NetView for z/OS
NetView selects messages that you can specify through the MVS message
processing facility (MPF) and uses its own message automation functions to help
automate operations tasks. Using MPF, you can suppress large numbers of
messages that operators do not need to see or select messages that NetView can
use to automate MVS tasks. (For information about using MPF to process
messages, see “MPF and MVS operations planning” on page 115.)

The NetView console, which is attached to NetView on an MVS system, allows
operators to perform many tasks that they ordinarily perform on MCS or SMCS
consoles. On the NetView console, you can display MVS messages, highlight and
hold important messages as on an MCS or SMCS console, and enter MVS
commands. The NetView console also allows operators to define NetView
command lists. These command lists can respond to messages selected through
MPF on MVS and perform a series of command operations that simplify operator
console actions. You can also route messages to a NetView console. You can select
certain messages to be directed to a specific console for operator action.

NetView consoles allow your operators to enter MVS commands to do work on
behalf of MVS. Your operators can also use MCS or SMCS consoles to enter
NetView commands. Thus, operators can invoke NetView command lists from
MCS or SMCS consoles to accomplish NetView tasks.

See NetView Automation: Planning for more information about how to coordinate
activities for your MCS or SMCS consoles, NetView, and MPF.

Tivoli System automation for z/OS
System Automation for z/OS is a NetView application that automates console
operations in a z/OS environment. System Automation for z/OS uses the message
handling capabilities of MVS and NetView to initiate automation procedures.
These automation procedures perform goal-oriented operator functions that
manage MVS, JES2 or JES3, and program products like Websphere, DB2, CICS, IMS
and Tivoli Workload Scheduler.

See IBM Tivoli System Automation for z/OS User's Guide for more information about
how to plan console automation using System Automation and NetView.

Tivoli workload scheduler for z/OS
NetView and System Automation for z/OS can help you plan automated
operations for z/OS systems and networks and can simplify the tasks operators
need to perform. Automating production workload processing, including batch
processing, can also simplify operations and improve the workload management at
your installation. IBM's program product Tivoli Workload Scheduler (formerly the
Operations Planning and Control (OPC) product) can help you plan your MVS
production workload. It plans and schedules workload processing and monitors
and controls the flow of work through your MVS environment.

See Tivoli Workload Scheduler for z/OS for more information about how to plan the
automation of your production workload processing using Tivoli Workload
Scheduler for z/OS.

Remote operations and MVS operations planning
If your installation is managing target systems from host systems, you need to
consider how these remote operations tasks can affect your operations planning.

16 z/OS V2R1.0 MVS Planning: Operations

The Processor Operations component of the System Automation for z/OS product
uses NetView to allow a host z/OS system to automate operations at target
systems. Using System Automation for z/OS, you can automate console functions
remotely, like IPLing or power-on restarting a processor. You can initialize or
monitor target systems and let NetView operators manage several target systems
simultaneously from a host system.

In multisystem environments where remote operations is a goal, System
Automation for z/OS and NetView provide a good way to manage operations. See
IBM Tivoli System Automation for z/OS User's Guide for more information about the
planning tasks for managing remote operations of systems using System
Automation for z/OS and NetView.

ESCON, FICON, and operations planning
The I/O Operations component of the System Automation for z/OS product
manages configuration changes among channels, ESCON® Directors, control units,
and devices. System Automation for z/OS can be used to control and display the
entire I/O configuration, whether it be ESCON, FICON®, or non-ESCON or
switched (via ESCON or FICON Directors) or non-switched. System Automation
for z/OS ensures that a change to the I/O configuration will not unexpectedly
cause system or application outages due to the loss of a connection path that is in
use.

System Automation for OS/390® runs in z/OS environments providing:
v A single, logical point of control of I/O for multiple systems
v A unified multisystem view of I/O configuration and resource information
v Ability to vary online and vary offline devices attached to ESCON, FICON, or

parallel channels
v Support for coupling facilities

These enhancements significantly increase the effectiveness of managing and
controlling I/O resources resulting in improved availability of computing resources
and increased efficiency in doing problem determination.

For more information, see IBM Tivoli System Automation for z/OS User's Guide

Reference

IBM Tivoli System Automation for z/OS User's Guide.

Chapter 1. Planning MVS operations 17

18 z/OS V2R1.0 MVS Planning: Operations

Chapter 2. Defining console configuration

An MVS console configuration consists of the various consoles that operators use
to communicate with MVS. Your installation first defines the I/O devices it can use
as MCS consoles with the hardware configuration definition (HCD). HCD manages
the I/O configuration for the MVS system. You do not use HCD to define an
SMCS console. To indicate to MVS which devices to use as MCS consoles, you
specify the appropriate devices in the CONSOLxx parmlib member.

Console considerations for z/OS V1R8 and higher
In z/OS V1R8, the master console has been removed. The value of the master
console has decreased over time. Historically, the master console had been used for
important messages that required the highest level of authority to take action.

Table 2 details the functions that were unique to the master console that are now
available to other consoles.

Table 2. Functions that were unique to the master console that are now available to other consoles

Functions z/OS V1R7 and lower releases z/OS V1R8 and higher releases

Routing codes 1 and 2 The master console was forced to
have routing codes 1 and 2 assigned
to it and they could not be removed.

Routing codes 1 and 2 are no longer
forced to any console. Make sure
routing codes 1 and 2 are assigned to
the appropriate console definitions in
CONSOLxx.

Console id 0 (internal console ID
(X’00000000’))

All messages targeted for console id
0 were delivered to the master
console.

All messages targeted for console id
0 will go to any console that has the
INTIDS routing attribute. INTIDS
may be specified in CONSOLxx or
through the VARY CN command.

Table 3 details the functions that affected the master console that have been
changed.

Table 3. Functions that affected the master console that have been changed

Functions z/OS V1R7 and lower releases z/OS V1R8 and higher releases

External interrupt key The external interrupt key was used
to switch the master console function
to another console.

Since there is no longer a master
console the external interrupt key on
the hardware management console is
not supported.

SYNCHDEST The master console (*MSTCON*)
could be specified in the
SYNCHDEST group as a destination
for synchronous messages.

The master console (*MSTCON*) is
ignored. You need to explicitly
specify by name any consoles you
expect to receive synchronous
messages. The system console
remains the synchronous message
destination of last resort.

Synchronous message destination
default (no SYNCHDEST group
defined)

The master console was used if
available on the system where the
message was issued, otherwise the
system console on that system was
used.

The system console on the system
where the message was issued is
used.

© Copyright IBM Corp. 1988, 2013 19

Table 4 details the remaining functions that were affiliated with the master console
and removed.

Table 4. Remaining functions that were affiliated with the master console and removed

Functions z/OS V1R7 and lower releases z/OS V1R8 and higher releases

Console switch and the SWITCH
CN command

Console switch and/or the SWITCH
CN command was used to switch a
failing console to an alternate
console.

The main purpose was to ensure the
availability of the master console.
Since the master console has been
removed the need for console switch
and SWITCH CN command has also
been removed. This reduces the
complexity of console definitions and
the difficulties of finding the location
of the master console after a console
switch.

Hardcopy switch Depending on your configuration of
OPERLOG and SYSLOG, when one
failed, hardcopy could automatically
switch to the other.

There is no switching between
hardcopy mediums, therefore to
maintain the same level of
functionality, run with both SYSLOG
and OPERLOG as your hardcopy
medium.

ALTGRP (alternate group) The ALTGRP function was used in
selecting an alternate console.

There is no longer a need for the
ALTGRP (alternate group) function
because of the elimination of console
switch.
Note: The Parmlib(CNGRPxx)
member is still used for AUTOACT
and SYNCHDEST. In V1R8 and
higher the ALTGRP(x) keywords
need to be removed from the
CONSOLxx parmlib member.

NOCC and NOMCC NOCC (no consoles condition) and
NOMCC (no master console
condition) were considered to be
undesirable conditions. NOCCGRP
specification in CONSOLxx specifies
the name of the console group
defined in CNGRPxx from whose
members the system or sysplex can
select a master console during a no
consoles condition.

NOCC and NOMCC are no longer
considered undesirable conditions
and can be considered an acceptable
running console environment. The
specification of NOCCGRP is
ignored.

Table 5 details the functions changed to help run your sysplex.

Table 5. Changed function to help you run your sysplex.

Functions z/OS V1R7 and lower releases z/OS V1R8 and higher releases

SYSCONS (system console or
hardware management console)

SYSCONS authority was installation
defined.

SYSCONS always has master
authority to insure there is always a
master authority console available.

In V1R7 the external use of 1 byte console IDs was removed. If you compiled a
program that used 1 byte console IDs, compilation would fail. But existing
compiled programs that used 1 byte console IDs would continue to execute as
before.

20 z/OS V2R1.0 MVS Planning: Operations

In z/OS V1R8 and higher releases, 1-byte console IDs (and EMCS migration ids)
are eliminated. All messages targeted for 1 byte console IDs will go to any console
that has the UNKNIDS routing attribute. UNKNIDS may be specified in
CONSOLxx or through the VARY CN command.

Choosing how to define your console configuration
The CONSOLxx member of parmlib lets you define MCS consoles, HMCS
consoles, SMCS consoles, or subsystem-allocatable consoles.

Subsystem-allocatable consoles are defined to a subsystem such as NetView, which
manages the console for the system. For an MCS, HMCS or SMCS console,
CONSOLxx allows you to define various console attributes that control how
operators can use the console and also control message routing and command
processing for the console. For subsystem-allocatable consoles, you control console
functions through the subsystem. It is beneficial to use an extended MCS console
interface (when available) instead of a subsystem-allocatable because of the
additional control provided by the extended MCS console interface.

How you define your console configuration depends on the MVS system
environment at your installation. For a single MVS system, you might want to
consolidate console functions using NetView. A single NetView console instead of
several MCS consoles can serve as the focal point for MVS operator actions and for
NetView automation tasks. An operator can handle many operational needs of the
system from this one NetView console. For information on using NetView
consoles, see NetView Automation: Planning.

For an MVS system that manages many system resources or subsystems, you
might want to use several MCS consoles, each assigned with different functions.
For example, defining a console cluster for a system can help your installation
divide its console functions more efficiently. A console cluster is a group of several
MCS, HMCS or SMCS consoles located together that you can use in place of a
single console to divide up the functions and message traffic of the single console.
“Managing messages with a console cluster” on page 201 shows how to set up a
console cluster for an MVS system.

If your MVS system requires increased security, your installation can use RACF to
control console logon and the commands that an operator can enter from a specific
console. It is especially important to use RACF to control access to SMCS consoles
and the commands they can issue. Using RACF with MCS, HMCS or SMCS
consoles in an MVS system or sysplex can ensure that operators enter only the
commands they are authorized to use.

In a sysplex, centralizing and coordinating console functions among different
systems is an important operations goal. Message traffic and command routing are
two considerations when you define consoles for a sysplex. In a sysplex, operators
can receive messages from different systems on a single console, or can enter
commands from a console to affect the processing of another system. How you
define console functions for each MVS system can affect the operations of the
sysplex as a whole. As a result, you need to understand the operations of the
sysplex and plan the console configuration for each MVS system accordingly.

This chapter describes how to set up an MCS, HMCS and SMCS console
configurations for an MVS system using the CONSOLxx parmlib member. It
describes how to define devices as consoles to MVS and how to define console
functions to plan for console recovery and security. It also describes how to define

Chapter 2. Defining console configuration 21

console functions that help operators manage messages on their console screens
and enter commands from their keyboards. Finally, it describes how you can define
hardcopy processing to handle your MVS system recording. Because consoles in a
sysplex present special cases, the chapter also includes planning considerations for
defining and using consoles in a sysplex environment.

Using CONSOLxx
Reference

For complete information about CONSOLxx and any parmlib member, see z/OS
MVS Initialization and Tuning Reference. It provides reference information, options,
and values that you can specify for CONSOLxx and other parmlib members. When
you define your console configuration for MVS, refer to it to code your members.

To define your MCS, HMCS and SMCS console configuration, you use the
following parmlib members:
v CONSOLxx, which defines console characteristics for each MCS, HMCS or

SMCS console.
v CNGRPxx, which defines groups.
v PFKTABxx, which contains the program function key PFK tables for all MCS,

HMCS and SMCS consoles. (For information on PFKTABxx, see “Defining PFKs
and other command controls for consoles” on page 86.)

v MPFLSTxx, which defines message processing to retain, suppress, or modify
messages and commands. (For information on MPFLSTxx, see “MPF and MVS
operations planning” on page 115.)

v MSGFLDxx which defines message flood automation policy. (For more
information on MSGFLDxx, see Chapter 4, “Message flooding,” on page 141.)

CONSOLxx lets you define certain devices as consoles and specify attributes that
determine how your operators can use MCS, HMCS or SMCS consoles.

CONSOLxx contains four statements that define and control consoles for an MVS
system:
v CONSOLE
v INIT
v DEFAULT
v HARDCOPY

See “SMCS console considerations” on page 33 for specific information about
defining SMCS consoles.

CONSOLE statement
You use the CONSOLE statement to define a device as a console. You define each
console device with one CONSOLE statement. CONSOLE also lets you specify
console attributes that control the following for an MCS, HMCS or SMCS console:
v Console security by assigning command authority levels
v Certain console screen functions (console mode, methods for deleting messages

from the screen, ways to control display areas on the screen, and how to set up
the PFKs for the console)

v Message routing and message formatting
v Console operation in a sysplex

22 z/OS V2R1.0 MVS Planning: Operations

Table 6 summarizes the console functions that you control using the CONSOLE
statement. It includes the CONSOLE keyword and the MVS command to change
the keyword value. If an MVS command cannot be used, the table indicates that
you must re-IPL to change the value. The table also includes a topic reference for a
description of each keyword.

Table 6. Summary of CONSOLE statement functions

Task CONSOLE
statement
keyword

MVS command to change value See topic

Defining a device as a console:

v Device number or
SYSCONS,
SUBSYSTEM, or
SMCS

DEVNUM Must re-IPL “Defining devices as
MCS, HMCS or SMCS
consoles” on page 48

v Console name NAME Must re-IPL “Defining devices as
MCS, HMCS or SMCS
consoles” on page 48

v Kind of device UNIT Must re-IPL “Defining devices as
MCS, HMCS or SMCS
consoles” on page 48

v The VTAM® logical
unit (LU) name
(SMCS console only)

LU VARY CN,LU “Defining SMCS
consoles” on page 39

Planning console security:

Command authority
level for the console

AUTH VARY CN,AUTH “Planning console
security” on page 60

Override LOGON value
on default statement

LOGON VARY CN,LOGON “Using RACF to control
command authority and
operator logon” on page
62

Controlling the console screen function:

v Input/output
capability or console
mode

USE CONTROL V,USE “Defining the USE
attribute” on page 73

v Message deletion
mode of the console

DEL CONTROL S,DEL “Specifying automatic
message deletion for
MCS, HMCS or SMCS
consoles” on page 74

v Number of message
lines that roll on the
console screen

RNUM CONTROL S,RNUM Controlling the rolling
rate

v Number of seconds
between message rolls
or wraps

RTME CONTROL S,RTME Controlling the rolling
rate

v Conversational/
nonconversational
message deletion

CON CONTROL S,CON “Manual deletion of
messages” on page 79

Chapter 2. Defining console configuration 23

Table 6. Summary of CONSOLE statement functions (continued)

Task CONSOLE
statement
keyword

MVS command to change value See topic

v Number of lines to be
deleted from the
console screen using
CONTROL E,SEG

SEG CONTROL S,SEG “Using SEG to delete
groups of messages
from the screen” on
page 81

v Defining status
display areas of the
console screen

AREA CONTROL A “Setting up out-of-line
display areas on a
console” on page 82

v Monitoring selected
events

MONITOR MONITOR “Displaying jobname,
data set status, and
TSO/E information” on
page 85

v Defining a PFK table
for the console

PFKTAB CONTROL N,PFK “Defining PFKs and
other command controls
for consoles” on page 86

Controlling message routing and message formatting:

v Routing codes for the
console

ROUTCODE
VARY CN,ROUT
VARY CN,AROUT
VARY CN,DROUT

“Defining routing
codes” on page 106

v Message levels for the
console

LEVEL CONTROL V,LEVEL “Defining message
levels for a console” on
page 107

v Message formats for
console display

MFORM CONTROL S,MFORM “Controlling the format
of messages and status
information on console
screens” on page 83

v Receive messages
directed to console id
zero.

INTIDS VARY CN,INTIDS “Receiving messages
that are directed to
console ID zero” on
page 109

v Receive messages
directed to unknown
console ids.

UNKNIDS VARY CN,UNKNIDS “Receiving messages
that are directed to
unknown console IDs”
on page 109

Controlling console operation in a sysplex:

v System scope for
messages that the
console receives

MSCOPE
VARY CN,MSCOPE
VARY CN,AMSCOPE
VARY CN,DMSCOPE

“Directing messages
from other systems to a
console in a sysplex” on
page 108

v System association for
commands entered

CMDSYS CONTROL V,CMDSYS “Using CMDSYS on the
CONSOLE statement”
on page 110

v Specifying the system
where you want the
console to be active

SYSTEM VARY CN,SYSTEM “Attaching consoles to
particular systems in a
sysplex” on page 51

24 z/OS V2R1.0 MVS Planning: Operations

Table 6. Summary of CONSOLE statement functions (continued)

Task CONSOLE
statement
keyword

MVS command to change value See topic

Note:

1. The VARY command only changes the attributes of active consoles. Attempts to change attributes for inactive
consoles are rejected. Two exceptions are the LU and LOGON attributes for SMCS consoles (not MCS). These
can be changed for inactive consoles.

2. When a console is deactivated and system is in console services distributed mode, and then the console is
reactivated, the console attributes used are what was specified in CONSOLxx when the system was IPLed, not
the attributes that the console had when it was deactivated.

INIT, DEFAULT, and HARDCOPY statements
INIT, DEFAULT, and HARDCOPY statements define general characteristics for all
MCS, HMCS, and SMCS consoles in the system or sysplex.

The INIT statement

You use the INIT statement to control basic initialization values for all MCS,
HMCS or SMCS consoles in the configuration. INIT lets you control the following:
v Specification of the console group parmlib member.
v Certain console screen functions for all consoles (activating the PFKTABxx

member to control the PFK tables for MCS, HMCS and SMCS consoles,
displaying certain information for mount messages, and specifying the command
delimiter for operator input of multiple commands)

v Message processing (such as activating MPF, AMRF, and the IEAVMXIT message
processing exit; and controlling WTO and WTOR messages, the hardcopy
message set, and MMS for message translation).

v The SMCS VTAM application for controlling SMCS consoles.

After IPL, operators can use the SET command to change some values defined on
the INIT statement. See Table 7, which summarizes console functions that you
control on the INIT statement:

Table 7. Summary of INIT statement functions

Task

Console function or
attribute

INIT statement
keyword

MVS command to change value See topic

Planning console recovery:

v Activating the
CNGRPxx member
that contains console
group definitions

CNGRP SET CNGRP “Planning console
groups” on page 52

Controlling the console screen function:

v Display of certain
information for mount
messages

MONITOR MONITOR “Adding information to
mount messages” on
page 86

v PFKTABxx member
that contains PFK
tables for consoles

PFK SET PFK “Setting up PFKs for
consoles” on page 86

Chapter 2. Defining console configuration 25

Table 7. Summary of INIT statement functions (continued)

Task

Console function or
attribute

INIT statement
keyword

MVS command to change value See topic

v Defining the
command delimiter
for multiple command
input

CMDDELIM Must re-IPL “Defining the command
delimiter for
full-capability consoles”
on page 89

v Specifying the VTAM
APPLID that SMCS is
to use on this system

APPLID CONTROL M,APPLID “Starting the SMCS
application” on page 38

v Specifying the VTAM
GENERIC resource
name that SMCS is to
use for the sysplex

GENERIC CONTROL M,GENERIC “Starting the SMCS
application” on page 38

Controlling message processing:

v Activating the
message processing
facility (MPF)

MPF SET MPF “MPF and MVS
operations planning” on
page 115

v Activating the action
message retention
facility

AMRF CONTROL M,AMRF “Retaining messages” on
page 118

v Activating the
IEAVMXIT message
processing exit

UEXIT CONTROL M,UEXIT “Installation exits for
messages and
commands” on page 123

v Maximum number of
WTO buffers

MLIM CONTROL M,MLIM “Controlling WTO and
WTOR message buffers”
on page 126

v Maximum number of
WTOR buffers

RLIM CONTROL M,RLIM “Controlling WTO and
WTOR message buffers”
on page 126

v Maximum number of
write-to-log (WTL)
buffers

LOGLIM CONTROL M,LOGLIM “Controlling write-to-log
(WTL) message buffers”
on page 133

v Activating the MVS
message service
(MMS) for message
translation

MMS SET MMS “Handling translated
messages” on page 133

v In a sysplex,
controlling the
aggregation of
messages returned by
the ROUTE *ALL or
ROUTE
systemgroupname
command

ROUTTIME CONTROL M,ROUTTIME “Aggregating messages
returned to the ROUTE
command” on page 128

Controlling component tracing options

26 z/OS V2R1.0 MVS Planning: Operations

Table 7. Summary of INIT statement functions (continued)

Task

Console function or
attribute

INIT statement
keyword

MVS command to change value See topic

Specifying the Parmlib
member that contains
tracing options for the
operations services
(OPS) component

CTRACE TRACE CT
z/OS
MVS
Initial-
ization
and
Tuning
Reference

The DEFAULT statement

You use the DEFAULT statement to control certain default values for MCS, HMCS
and SMCS consoles in the configuration. DEFAULT lets you specify console
attributes that control the following for an MCS, HMCS and SMCS console
configuration:
v Console security by specifying operator logon options
v Certain console screen functions for all consoles (ability for operators to hold

messages on the screen)
v Routing for messages without routing codes or other message queuing

information, and routing for synchronous messages that bypass normal message
queuing

v Determining the maximum value for operator REPLY ids.

Unlike values in CONSOLE and INIT, operators cannot change individual
DEFAULT statement values. Operators must re-IPL the system, or, in some cases,
the sysplex, with the CONSOLxx member that contains the new DEFAULT
statement.

Table 8 summarizes console functions that you can control using the DEFAULT
statement:

Table 8. Summary of DEFAULT statement functions

Task DEFAULT
statement
keyword

MVS command to change value See topic

Controlling console security:

v Operator logon to
MCS, HMCS and
SMCS consoles

LOGON1 V CN(...),LOGON= “Using RACF to control
command authority and
operator logon” on page
62

Controlling the console screen function:

v Freezing the display
of messages on MCS,
HMCS or SMCS
console screens

HOLDMODE Must re-IPL “Temporarily
suspending the screen
roll” on page 77

Controlling message routing:

Chapter 2. Defining console configuration 27

Table 8. Summary of DEFAULT statement functions (continued)

Task DEFAULT
statement
keyword

MVS command to change value See topic

v Assigning routing
codes for messages
without any specified
target

ROUTCODE Must re-IPL “Handling messages
without routing codes”
on page 106

v Assigning the name of
a console group to
receive synchronous
messages

SYNCHDEST Activate another CNGRPxx member (SET
CNGRP) that defines the same console
group but with different console members.

“Display of synchronous
messages” on page 53

Controlling message processing:

v Maximum number of
REPLY ids

RMAX CONTROL M,RMAX “Controlling WTO and
WTOR message buffers”
on page 126

Note: 1. VARY CN(),LOGON can be used to change attribute of an inactive SMCS (only) console.

The HARDCOPY statement: You can use the optional HARDCOPY statement to
define the characteristics of the hardcopy message set and specify the hardcopy
medium. You can control how to record messages and commands for the system.
After IPL, operators can use the VARY command to do the following:
v Change the set of messages included in the hardcopy message set
v Assign SYSLOG and/or OPERLOG as the hardcopy medium

For information about using the VARY command, see z/OS MVS System Commands.

For information about hardcopy processing, see “Hardcopy processing” on page
89.

Table 9 summarizes console functions you can control using the HARDCOPY
statement:

Table 9. Summary of HARDCOPY statement functions

Task HARDCOPY
statement
keyword

MVS command to change value See topic

Controlling logging and system recording:

v Hardcopy medium

Note: If the Hardcopy
function is important to
you, you should use
both SYSLOG and
OPERLOG.

DEVNUM
VARY OPERLOG,HARDCPY

VARY SYSLOG,HARDCPY

“Hardcopy processing”
on page 89

v Routing codes for the
hardcopy message set

ROUTCODE
VARY
OPERLOG|SYSLOG,HARDCPY,AROUT

VARY
OPERLOG|SYSLOG,HARDCPY,DROUT

“Hardcopy processing”
on page 89

v Hardcopy of
commands by level

CMDLEVEL VARY
OPERLOG|SYSLOG,HARDCPY,cmdlevel

“Hardcopy processing”
on page 89

28 z/OS V2R1.0 MVS Planning: Operations

Table 9. Summary of HARDCOPY statement functions (continued)

Task HARDCOPY
statement
keyword

MVS command to change value See topic

v Defining year format
in SYSLOG

HCFORMAT Must re-IPL “Hardcopy processing”
on page 89

CONSOLxx and the sysplex
When the operator initializes an MVS system with CONSOLxx, the console
definitions and attributes are in effect for the system. MCS, HMCS and SMCS
consoles defined by CONSOLE statements are active, and the values specified for
INIT and DEFAULT , and HARDCOPY control console operations for the system.
Operators can use the CONTROL, MONITOR, SET, and VARY commands to
change many of the definitions after the system is active.

In a sysplex, certain CONSOLxx keywords have sysplex scope. When a system
with those keywords is first IPLed into a sysplex, the keyword values are in effect
for the entire sysplex.

For example, NAME on the CONSOLE statement has sysplex scope. NAME
specifies a unique name that identifies the console within the sysplex.

For INIT and DEFAULT keywords that have sysplex scope, CONSOLxx for the
first system that joins the sysplex determines the values in effect for all systems in
the sysplex. When other systems join the sysplex, MVS ignores changes to
keyword values with sysplex scope defined in CONSOLxx for those systems. For
example, if the action message retention facility (AMRF) is active in CONSOLxx
for the first system that joins the sysplex, the sysplex ignores the AMRF keyword
specified for other systems that join, and the action message retention facility is
active for all systems in the sysplex.

CONSOLxx keywords that have system scope apply only to the system on which
they are defined. For example, UNIT for CONSOLE and all keywords for
HARDCOPY have system scope. The device type (UNIT) for the console applies
only to the system where the console is attached. Similarly, the hardcopy log
specifications for HARDCOPY apply only to the local system where CONSOLxx is
defined.

See Table 17 on page 177 and Table 18 on page 180 to check which keywords on
each CONSOLxx statement are system or sysplex in scope.

Understanding the scope of CONSOLxx keywords is important when you plan
your console configuration for a sysplex. Depending on the needs of your
installation and the scope of CONSOLxx keywords, you can specify CONSOLxx
for systems in a sysplex in different ways. Consider the following ways to define
CONSOLxx in a sysplex:
1. Share a single CONSOLxx member for all systems.
2. Use unique CONSOLxx members for each system.
3. Use unique CONSOLxx members for each system, but define all consoles in the

CONSOLxx member of the first system to join the sysplex.

The method you choose depends on how you want to use the console device
numbers. If you want to define a console with the same device number on two

Chapter 2. Defining console configuration 29

different systems, the consoles must have different names. Therefore, if you use the
same device numbers for consoles across the sysplex, you must use option 2 on
page 29, or option 1 with symbolics. If the sysplex requires unique console device
numbers, you can use any of the methods.

The following sections explain the ways to define CONSOLxx in a sysplex in
detail.

Sharing a single CONSOLxx member for all systems
Sharing the same CONSOLxx for all systems in the sysplex provides a single,
consistent set of console definitions, as if you are defining all your consoles for a
single system.

In Figure 3, systems SYA and SYB share the same CONSOLxx member. SYA has
three physically attached consoles (CON1, CON2, and CON3); SYB has two
physically attached consoles (CON3 and CON4).

The following are statements from a CONSOLxx parmlib member that is shared by
both SYA and SYB:

CONSOLE ... NAME(CON1) AUTH(MASTER)

CONSOLE ... NAME(CON2) AUTH(MASTER)

CONSOLE ... NAME(CON4) MSCOPE(SYB)

CONSOLE ... NAME(CON3) MSCOPE(SYA)
SYSTEM(SYB)

INIT AMRF(Y)

CONSOLxx for Both Systems

In this example:
v Values for INIT, DEFAULT, and HARDCOPY are the same across systems, and

the order in which systems join the sysplex does not affect the sysplex
environment.

v A console can be active on only one system at a time. In Figure 3, CON3 is
physically attached to both SYA and SYB. Without specifying SYSTEM(SYB) for

SYASYA SYB

signalling

paths

CON2

CON4

CON3

CON1

Figure 3. Console Configuration in a Sysplex with Two Systems and Four MCS Consoles

30 z/OS V2R1.0 MVS Planning: Operations

CON3, CON3 would become active on either SYA or SYB, whichever system
joins the sysplex first. Specifying SYSTEM(SYB) ensures that CON3 is activated
only on SYB.

v Because CON4 is not physically attached to SYA, it becomes active only when
SYB joins the sysplex.

When two or more systems require unique values in a shared CONSOLxx member,
you can use system symbols to represent those values. When each system
processes CONSOLxx, the system replaces the system symbols with the
substitution texts that it has defined to the system symbols.

For example, suppose you want to define names for two consoles on two different
systems, and that the consoles are both at address X'3E0'. If both consoles are to be
active at the same time, they require different names. If you plan to use one
CONSOLxx member for both systems, you can use system symbols to generate
unique console names while retaining the same device number, as follows:
CONSOLE DEVNUM(3E0)

NAME(C3E0S&SYSCLONE.) /* CONSOLE NAME "C3E0Snn" */
... /* Remaining CONSOLE keywords */

The console definition can then specify different names on different systems: For
example, if your installation accepts the default substitution text for &SYSCLONE
(the last two characters of the system name), the following console names result:
v C3E0SS1 on system SYS1
v C3E0SS2 on system SYS2
v C3E0SS3 on system SYS3

For more information about using system symbols in parmlib members, including
lists of valid system symbols, see the section on sharing parmlib members in z/OS
MVS Initialization and Tuning Reference.

Using unique CONSOLxx members for each system
You can define separate CONSOLxx members for each system in the sysplex. Like
Figure 3 on page 30, Figure 4 on page 32, shows SYA with three physically attached
consoles (CON1, CON2, and CON3) and SYB with one physically attached console
(CON4). Console statements are defined in two CONSOLxx members, one for each
system in the sysplex.

Chapter 2. Defining console configuration 31

Note: In the examples that follow, the required CONSOLE keyword DEVNUM has
been omitted.

The following are the CONSOLxx statements for each system in this configuration:

CONSOLE. . .NAME(CON1) AUTH(MASTER) CONSOLE. . .NAME(CON4) MSCOPE(SYB)

CONSOLE. . .NAME(CON2) AUTH(MASTER) INIT MPF(01)

CONSOLE. . .NAME(CON3) MSCOPE(SYA)

CONSOLxx for SYA CONSOLxx for SYB

This configuration provides great flexibility for consoles in the sysplex. You can
define consoles based on the needs of each system. However, depending on when
the systems join the sysplex, the scope of the CONSOLxx keywords can affect how
the consoles operate in the sysplex.

For CONSOLxx keywords with sysplex scope, keyword values apply to all the
systems in the sysplex. For example, the RMAX keyword in CONSOLxx defines
the maximum number of replies for the sysplex. It is specified, or defaulted to, by
the first system to enter the sysplex. Subsequent CONSOLxx RMAX values will be
ignored and the value can only be altered through command (K M,RMAX). Since
the first system governs the value it is important to understand the scope of the
CONSOLxx keywords.

For CONSOLxx keywords with system scope, keyword values apply only to the
system where the consoles are physically attached. For example, the MPF keyword
in CONSOLxx for SYB indicates that MPFLST01 is active when SYB is initialized.
However, because MPF has system scope, the default for MPF used on SYA
indicates that SYA does not perform MPF message processing. In a sysplex that
uses unique CONSOLxx members, it is therefore important to understand the
scope of CONSOLxx keywords for each system.

Defining all consoles in the CONSOLxx member of the first
system to Join the sysplex
In Figure 5 on page 33, all consoles are physically attached to SYA, and all consoles
are defined in CONSOLxx for the first system that is to join the sysplex (which is

SYASYA SYB

signalling

paths

CON2

CON4

CON3

CON1

Figure 4. Console Configuration in a Sysplex with Two Systems and Four MCS Consoles

32 z/OS V2R1.0 MVS Planning: Operations

SYA):

Although SYB joins the sysplex with a different INIT statement, its CONSOLxx
member does not define additional MCS consoles.

The following are the CONSOLxx statements for each system in the configuration:

CONSOLE. . .NAME(CON1) AUTH(MASTER) INIT MPF(01)

CONSOLE. . .NAME(CON2) AUTH(MASTER)

CONSOLE. . .NAME(CON4) MSCOPE(SYB)

CONSOLE. . .NAME(CON3) MSCOPE(SYA)

INIT AMRF(Y)

DEFAULT HOLDMODE(YES)

CONSOLxx for SYA CONSOLxx for SYB

The first system to join the sysplex (SYA) is the focal point of console operations
for the sysplex configuration in Figure 5. Thus, you are able to define all your MCS
CONSOLE statements for the entire sysplex in one place, in this example
CONSOLxx for SYA.

SYB uses an INIT statement with a specific MPF value that applies to that system.
Because MPF has system scope, the value applies only to SYB.

If SYA in Figure 5 fails, the sysplex is unable to use any MCS consoles because SYB
does not have any CONSOLE statements defined in its CONSOLxx member. Using
the system console, SMCS consoles, or extended MCS consoles (EMCS) are ways to
resolve the problem.

SMCS console considerations
SMCS consoles are MCS consoles that use z/OS Communications Server SNA and
TCP/IP services for input and output. SMCS consoles provide most of the same
functions as MCS consoles with the following exceptions:

SYASYA SYB

signalling

paths

CON3

CON4

CON2

CON1

Figure 5. Console Configuration in a Sysplex with Four MCS Consoles Attached to One System

Chapter 2. Defining console configuration 33

v Synchronous WTO/R, also known as disabled console communication facility
(DCCF), is not supported for SMCS consoles. The system console or an MCS
console must be used instead.

v SMCS consoles are not available during NIP. The system console or an MCS
console must be used instead.

v z/OS Communications Server must be active for SMCS to be active. The system
console and MCS consoles do not rely on z/OS Communications Server, and
these can be used before z/OS Communications Server is active.

v SMCS consoles must be activated differently than MCS consoles. The activation
process depends on the console definitions, but in all cases, VARY CONSOLE
and VARY CN, ONLINE do not work for SMCS.

v SMCS does not support output-only (message stream and status display)
consoles. SMCS consoles must always be full-capability consoles.

v SMCS does not support printer consoles.

Because an SMCS console is connected through a network and uses z/OS
Communications Server services, the z/OS Communications Server commands
VARY NET and HALT NET, as well as network problems, can affect console
operations.

Installing SMCS
An SMCS console can be a real 3270 type device, but usually it will be a 3270
emulator such as IBM Personal Communications. SMCS supports VTAM LU Type
0 or Type 2, and SMCS consoles must support Extended Data Stream and the Read
Partition Query function.

Installing SMCS consoles requires some VTAM Definitions:
v Define the SMCS application.
v Create a LOGON mode table (optional).
v Indicate that certain LUs are always to be used for SMCS (optional).

CONSOLxx also requires some changes:
v Specify that the SMCS application is to be started.
v Define some SMCS consoles.

Finally, RACF requires some definitions:
v Userids for operators.
v Command authority.

Defining SMCS to VTAM
To define the SMCS application to VTAM, you must update the ATCCONxx
member of SYS1.VTAMLST to point to a member of SYS1.VTAMLST that defines
the SMCS application id (APPLID). You could write the SMCS application
definition as:

SMCS VBUILD TYPE=APPL
SMCS&SYSCLONE. APPL

You can also choose to specify DLOGMOD and MODETAB, but you should take
defaults for all other keywords. Each system within the sysplex that will run SMCS
must have a unique application name. See z/OS Communications Server: SNA
Resource Definition Reference for more details.

34 z/OS V2R1.0 MVS Planning: Operations

A LOGON mode table can be provided to define the session protocols for devices
that will be used as SMCS consoles. Each LOGON mode table is assembled and
link-edited into SYS1.VTAMLIB. In most cases, the same LOGON mode table that
is used for TSO will be suitable for SMCS.

The DLOGMOD and/or MODETAB specifications indicate which LOGON mode
table to use. The specifications can be made on:
v The APPL statement pointed to by ATCCONxx.
v The LOCAL statement when defining local non-SNA major nodes.
v The LU statement when defining SNA major nodes.

See z/OS Communications Server: SNA Resource Definition Reference for details.

If certain devices are always used for SMCS, they can be defined to automatically
log on to the SMCS application when the device becomes active using the
LOGAPPL keyword on the LOCAL or LU statements:

LOCALDEV LBUILD
S&SYSCLONE.D3E0 LOCAL CUADDR=3E0

TERM=3277,
FEATUR2=(MODEL2),
ISTATUS=ACTIVE,
USSTAB=USSCNH,
DLOGMOD=S3270,
LOGAPPL=SMCS&SYSCLONE

Figure 6 shows a sample LOGON mode table entry. Table 10 defines the keywords
in the LOGON mode table entry, and the values that SMCS expects. Table 11 on
page 36 provides details about the values to specify for the PSERVIC keyword.

Table 10. Keyword Definitions

Keyword Definition Local Non-SNA Value SNA Value

FMPROF Function Management
Profile

X'02' X'03'

TSPROF Transmission Services
Profile

X'02' X'03'

PRIPROT Primary LU Protocol X'71' X'B1'

SECPROT Secondary LU Protocol X'40' X'90'

COMPROT Common LU Protocol X'2000' X'3080'

**
* *
* DYNAMIC LOGMODE ENTRY FOR SNA *
* 3270 DISPLAYS (APPLIES TO QUERIABLE TERMINALS) *
* *
**
DYNSNA MODEENT LOGMODE=DYNSNA,COS=INTERACT,APPNCOS=#INTER,

FMPROF=X’03’,
TSPROF=X’03’,
PRIPROT=X’B1’,
SECPROT=X’90’,
COMPROT=X’3080’,
RUSIZES=X’87F8’, * OUTBOUND 3840 INBOUND 1024
TYPE=1,
PSERVIC=X’028000000000000000000300’

Figure 6. Sample LOGON Mode Table Entry

Chapter 2. Defining console configuration 35

Table 10. Keyword Definitions (continued)

Keyword Definition Local Non-SNA Value SNA Value

RUSIZES Maximum length of
data in a request unit

X'0000' X'87F8' The X'87' indicates a
1024–byte maximum secondary
logical unit RU send size and the
X'F8' indicates a 3840–byte
maximum primary logical unit
RU send size.

TYPE Bind type 1 1

PSERVIC LU Presentation
Services Profile

X'008000000000185000000300' Value depends on the device
type. See Table 11 for values.

Table 11. PSERVIC Values for SNA Devices

Byte Value Definition

1 X'00' or X'02' LU type 0 or LU type 2. LU0 indicates that the
session protocol is determined by the
application. SMCS will use LU0 for non-SNA
locally attached 3270 data stream devices. LU2
indicates that the session protocol is for an
SNA 3270 data stream device. SMCS will use
this for SNA locally or remotely attached
devices.

2 X'80' Indicates that query is supported. This is the
recommended value for byte 2 whenever
possible. If X'00' is specified, the alternate
screen size may be required depending on the
presentation space size indication.

3,4,5,6 0 These must be zero.

7,8 X'0000' Screen size when in default presentation space
size (24 rows x 80 columns).

9,10 Possible values:

v X'0000'

v X'1850'

v X'1B84'

v X'2050'

v X'2B50'

Screen size when in alternate presentation
space size. This value depends on the
specification in byte 11 and the device type to
be used as an SMCS console. Byte 9 (number
of rows) is limited to 8 (X'08') through 255
(X'FF'). Byte 10 (number of columns) is limited
to 80 (X'50') through 255 (X'FF'). The product
of bytes 9 and 10 (rows * columns) must be
less than or equal to 16,383. If both bytes 9
and 10 are zero, the screen size is determined
by querying the device. Possible values are:

v X'0000' Screen size determined by querying
the device. Byte 11 contains an X'03'. This is
the recommended value for bytes 9 and 10.

v X'1850' 24 rows by 80 columns. Byte 11
contains a X'02', X'7E' or X'7F'.

v X'1B84' 27 rows by 132 columns. Byte 11
contains a X'7F'.

v X'2050' 32 rows by 80 columns. Byte 11
contains a X'7F'.

v X'2B50' 43 rows by 80 columns. Byte 11
contains a X'7F'.

36 z/OS V2R1.0 MVS Planning: Operations

Table 11. PSERVIC Values for SNA Devices (continued)

Byte Value Definition

11 Indicates which screen size should be used.
Supported values are:

v X'02' - Screen size is always 24 rows by 80
columns

v X'03' - Default presentation space is 24 x 80
and the alternate presentation space is
specified in the Query Reply. This is the
recommended value. If this value is
specified, byte 2 must contain a X'80'.

v X'7E' - The default screen size is to be used.

v X'7F' - The alternate screen size is to be
used.

12 0 Must be zero.

For more information, see z/OS Communications Server: SNA Resource Definition
Reference.

Updating CONSOLxx
To indicate that the SMCS application is to be started, you must define the SMCS
APPLID on the INIT statement of CONSOLxx:

INIT APPLID(SMCS01)

If you omit APPLID, SMCS will not be available for the life of the system. You can
change the APPLID after the system is active, but only when an APPLID was
specified in CONSOLxx during IPL.

SMCS also supports the use of VTAM generic resource. VTAM generic resource
names allow an operator who logs on to be connected to the system that VTAM
selects rather than being connected to a specific system. Specifying GENERIC in
CONSOLxx provides flexibility and promotes effective recovery from problems.
Specifying a specific system when logging on, in contrast, is sometimes necessary
when a particular operator requires affinity to facilities available on a specific
system. When you identify a specific system, make sure that the message scope
you define in CONSOLxx matches the system you identify.

VTAM has the following requirements for using generic resource names:
v The system must be part of a Parallel Sysplex® (PLEXCFG=MULTISYSTEM), and

it must have a coupling facility.
v The coupling facility must have the generic resource structure defined. The

default name of the structure is ISTGENERIC.
v VTAM must be an APPN node.

SMCS consoles must be defined in CONSOLxx, using the CONSOLE statement.
With a few exceptions, any keywords and values that you can specify for a MCS
console can also be specified for an SMCS console.

SMCS adds a value for the DEVNUM keyword and the LU and LOGON
keywords.

Chapter 2. Defining console configuration 37

SMCS and MCS console definitions can be mixed in the same CONSOLxx. Both
types of consoles can coexist within the same system, as well as within a sysplex.
An example of an SMCS console definition follows:

CONSOLE DEVNUM(SMCS)
NAME(CON1)
AUTH(MASTER)
LOGON(REQUIRED)
LU(S01LU24)
RNUM(20)
RTME(1/4)

SMCS consoles are not associated with a particular system. An SMCS console
defined on one system can be activated on another system, provided that the
SMCS application is active on both systems.

Starting the SMCS application
The SMCS application is designed to start, and restart, automatically. The SMCS
application will attempt to connect to VTAM using the SMCS APPLID every 15
seconds. If the APPLID is deactivated, the SMCS application will attempt to restart
(reconnect to VTAM using the SMCS APPLID) every 15 seconds.

The SMCS APPLID must be active before SMCS can use it. Normally, the APPLID
will be defined to be active once VTAM starts. If there is a need to deactivate the
SMCS APPLID, enter the following:

VARY NET,INACT,ID=applid[,I or ,F]

This command will cause the SMCS application to stop, deactivate all consoles
connected to the specified APPLID, and cause the SMCS application to try to
reconnect every 15 seconds.

There are some functions that require you to deactivate and reactivate the SMCS
APPLID, called 'recycling the APPLID'.

Changing APPLIDs: It may be necessary to change the SMCS APPLID for a
system. The following command will change the APPLID.

K M,APPLID=applid

SMCS will continue to use the old APPLID until it is deactivated with the VARY
NET,INACT command. Once the old APPLID is deactivated, the new one may
need to be activated using the V NET,ACT command. During the time that the old
APPLID is still in use, message IEE821E will be issued as a reminder that SMCS
needs to be recycled on that system. You can issue D C,SMCS to verify your
actions.

The new APPLID is only in effect for the life of the system. CONSOLxx will need
to be updated to use the new APPLID on the next IPL.

Using VTAM generic resource names: Use of generic resources is optional. If you
use generic resources, specify GENERIC on the INIT statement. When you specify
GENERIC, you supply one generic name for the entire sysplex. You specify the
name on the INIT statement:

INIT APPLID(SMCS01) GENERIC(SMCSGENR)

Like APPLID, GENERIC can be changed after the system is active. Unlike APPLID,
if GENERIC is not specified in CONSOLxx, you can add GENERIC later.

38 z/OS V2R1.0 MVS Planning: Operations

For more information about VTAM generic resources, see z/OS Communications
Server: SNA Resource Definition Reference.

Changing GENERICs: The operator can change the SMCS GENERIC that is in
use by the sysplex using the following command:

K M,GENERIC=generic

The operator can also turn off the SMCS GENERIC by using:
K M,GENERIC=*NONE*

Each SMCS application in the sysplex will continue to use the old GENERIC until
that SMCS application is recycled, using the V NET,INACT and V NET,ACT
commands. Each SMCS can be recycled separately. Once each SMCS application is
recycled, it will use the new GENERIC value, but any SMCS application that has
not yet been recycled will continue to use the old GENERIC value. Therefore, it is
possible to have some SMCS applications using the old GENERIC value and some
using the new GENERIC value. You can issue D C,SMCS to verify your actions.

Message IEE820E will be issued as a reminder that an SMCS needs to be recycled
and will remain outstanding until all SMCS applications are using the new
GENERIC value.

Defining SMCS consoles
The first parameter on the CONSOLE statement must be the DEVNUM parameter.
SMCS consoles must specify DEVNUM (SMCS). All other parameters on the
CONSOLE statement may be specified in any order. Do not specify the UNIT or
SYSTEM parameters on the CONSOLE statement. Also, the only acceptable value
for the USE keyword is FC.

All consoles require the NAME parameter. If NAME is not specified, or is not
valid, the CONSOLE statement is rejected. Each console in the sysplex must have a
unique name. System symbolics can be used in the name and throughout
CONSOLxx so that one CONSOLxx member can be used for the entire sysplex.

Predefined LU and LOGON: With predefined LU and LOGON, you can bypass
the SMCS selection screen by indicating that a particular console name is always
associated with a particular LU. Once the LU is logged on to the SMCS
application, the console becomes active.

The LOGAPPL VTAM function indicates that a particular LU automatically logs on
to a particular application when the LU becomes active. By indicating that a
particular LU automatically logs on to the SMCS application with LOGAPPL, and
indicating that the LU is associated with a particular console name with a
predefined LU, a console can be activated automatically once VTAM is active, in
much the same way that MCS consoles activate automatically during IPL.

The predefined LU allows an SMCS console to activate at one particular LU. To
specify a predefined LU, specify the LU keyword on the CONSOLE statement. If a
predefined LU is specified for a console, only that console can be activated at that
LU. No other console can be activated at that LU, and that console can only be
activated at that LU. The predefined LU can be changed later with the VARY CN
command.

SMCS consoles also support the LOGON keyword on the CONSOLE statement.
This keyword allows the console to override the LOGON value on the DEFAULT

Chapter 2. Defining console configuration 39

statement. However, some of the definition and operation of LOGON for SMCS is
different than MCS and also depends on whether or not a predefined LU is
specified.

If a predefined LU is specified, the LOGON definitions are the same as for MCS
consoles:
v LOGON (OPTIONAL) indicates that the console does not need to be logged on.
v LOGON (AUTO) indicates that the console is automatically logged on.
v LOGON (REQUIRED) indicates that the console must be logged on before

commands can be issued.
v LOGON (DEFAULT) indicates that the console is to use the LOGON value

specified on the DEFAULT statement.
v If LOGON is not specified, the console also uses the LOGON value specified on

the DEFAULT statement.

If a predefined LU is not specified:
v LOGON(OPTIONAL), LOGON(AUTO), LOGON(REQUIRED), and

LOGON(DEFAULT) work the same as if a predefined LU was
specified.LOGON(REQUIRED) is, however, strongly recommended.

v If LOGON is not specified, the console default is LOGON(REQUIRED). The
console does not use the LOGON value specified on the DEFAULT statement.

v Regardless of whether a predefined LU is specified or not, LOGON is different
for MCS and SMCS consoles. An MCS console always displays all messages that
it receives; the console does not have to be logged on by an operator to receive
messages. An SMCS console, in contrast, always displays messages explicitly
queued directly to it. However, to display all messages that it normally receives,
the console must be defined with LOGON(OPTIONAL), either by default or
because it was specifically indicated, or it must be logged on by an operator.

Changing LOGON: You can use the VARY CN command to change the LOGON
value of an SMCS console or an active MCS console after the system is active:

VARY CN(consname),LOGON=OPTIONAL
AUTO
REQUIRED
DEFAULT

The change will take effect immediately.

This command requires MASTER authority. It may be protected with the RACF
MVS.VARYLOGON.CN profile in the OPERCMDS class, and it requires CONTROL
authority.

For an active console, LOGON can be combined with other parameters on the
VARY command; for an inactive SMCS console, LOGON can only be combined
with LU.

Changing the predefined LU: The VARY CN command can also change the
predefined LU of an SMCS console:

VARY CN(consname),LU=luname

The same command can also turn off the predefined LU of an SMCS console:
VARY CN(consname),LU=*NONE*

40 z/OS V2R1.0 MVS Planning: Operations

This command requires MASTER authority. It may be protected with the RACF
MVS.VARYLU.CN profile in the OPERCMDS class, and it requires CONTROL
authority.

For an active console, LU can be combined with other parameters on the VARY
command; for an inactive console, LU can only be combined with LOGON.

Providing security for SMCS consoles
Now that operator consoles can be located anywhere, each installation must ensure
proper security controls of operator access. There are many security issues to
address, and these issues are installation-dependent.

Userids: The first thing to consider are userids. Each operator needs an individual
userid that appropriately restricts access to controlled functions. Most security
products control access based on the userid that is logged on to the console, not
the console itself. Controlling access is very difficult unless LOGON(REQUIRED) is
in effect.

Commands: Certain commands should be restricted only to users who need to
issue those commands. MVS Commands, RACF Access Authorities, and Resource
Names in z/OS MVS System Commands lists all of the MVS commands that can be
issued and the resource names that you can use to protect them.

SMCS has introduced some new functions on the VARY command that could allow
operators to create security exposures. SMCS options on the VARY command need
particular consideration; VARY CN,LOGON and VARY CN,LU are examples. These
commands require MASTER authority, and it is a very good idea to use a security
product to limit access to the commands. See MVS Commands, RACF Access
Authorities, and Resource Names in z/OS MVS System Commands.

Application ID: Access to the SMCS APPLID can be protected through the RACF
APPL class. You can use the APPL class to restrict certain users from accessing
certain SMCS applications while allowing access to others, which means that
certain users can activate consoles on some systems but not others. See “Planning
console security” on page 60 for more information.

Console: The CONSOLE class of the security product can be used to restrict users
from certain consoles. See “Planning console security” on page 60 for more
information.

Network: There are security considerations for SMCS consoles at the network
level. An SMCS console may display sensitive data, and since this data is flowing
across the network, it must be protected. Ways to protect this data include:
v For TCP/IP networks, Secure Sockets Layer (SSL) security can be implemented

to protect the IP session.
v Session level encryption can be used to protect a SNA session.
v Dedicated IP ports can be assigned to restrict access to SMCS.

See z/OS Communications Server and IBM SecureWay Security Server publications
for more information.

Activating an SMCS console
After the installation and definitions are complete, you can IPL the system. The
system console or a NIP console must be used to perform the IPL. Once MVS
command processing is available, VTAM must be started in one of the following
ways:

Chapter 2. Defining console configuration 41

v A START VTAM command in COMMNDxx could start VTAM.
v Automation could START VTAM.
v An operator could START VTAM manually from the system console or an MCS

console.

Once VTAM is initialized and the VTAM functions are available, the SMCS
application will start automatically. SMCS consoles can then be activated.

Assuming the SMCS is installed on a system and some SMCS consoles are defined,
there are several ways to activate an SMCS console. For example, an operator or
system programmer can:
1. Walk up to a terminal, or telnet to the system, to get to an active VTAM logon

screen
2. Log on to the SMCS application, which displays an SMCS Console Selection

screen. See Figure 7.
3. On the SMCS Console Selection screen, enter a valid SMCS console name.
4. If the name is valid, the next screen is an SMCS console screen that displays

messages unless logon is required. If logon is required, the messages appear
after the operator logs on.

Specifying a predefined LU can bypass the SMCS Console Selection screen, and the
LOGAPPL VTAM function allows automatic logon.

Deactivating an SMCS console
Once an SMCS console is active, you might need to deactivate it. There are several
ways to deactivate an SMCS console:
v The operator can issue the LOGOFF command at the console to deactivate the

console.
v VARY consname,OFFLINE can deactivate the console.
v VARY CN (consname),OFFLINE can also deactivate the console.

SMCS consoles will also be deactivated by the system when VTAM or the SMCS
application is deactivated.

SMCS CONSOLE SELECTION

Enter the Console Name you want to access and press ENTER.

CONSOLE NAME ===> (Required. This name must have been defined as an
SMCS console in CONSOLxx at IPL).

You are attempting to access:

SYSPLEX: plexname SYSTEM: sysname

Licensed Materials - Property of IBM
"Restricted Materials of IBM"
5650-ZOS (C) Copyright IBM Corp. 2001

Figure 7. SMCS Console Selection Screen

42 z/OS V2R1.0 MVS Planning: Operations

Removing console definitions from a configuration
You can delete the definition of any MCS, HMCS, SMCS, or Subsystem console
defined in CONSOLxx. In a sysplex, deleting a console definition releases the
console ID and console name associated with the console and makes it available
for other console definitions. Thus, you have flexibility controlling the number of
console IDs you need in an active console configuration.

You can also remove EMCS console definitions. See “Removing extended MCS
console definitions from a configuration” on page 45 for more information.

For example, if you define 10 consoles in CONSOLxx and you have used the VARY
CONSOLE OFFLINE command for one of the consoles (it is inactive), the system still
associates the console ID and console name with the inactive console. You can
delete the console definition making the console ID and console name available for
reuse. When you add a new console, the system reassigns the console id.

There are two ways in which you can delete a console definition. The first, and
preferred way, is to use the SETCON DELETE command. For example, to delete an
SMCS console named SMCSSY1, issue:
SETCON DELETE,CN=SMCSSY1

For more information about the SETCON DELETE command, see z/OS MVS System
Commands.

The second way to remove a console definition is to assemble and link the sample
source code for program IEARELCN in SYS1.SAMPLIB. “Sample invocation of
IEARELCN” describes the sample job for invoking the console service. The
programming environment, and the return and reason codes for invoking the
console service are described in the sample program prologue.

The following restrictions for removing a console definition apply:
v Dynamic I/O reconfiguration cannot be performed for a device that is defined

as an MCS console. If you want to change the I/O configuration of the device,
you must first delete the console definition. After the definition has been
removed, the device can be dynamically reconfigured. For more information
about dynamic I/O reconfiguration, see z/OS HCD Planning.

v The console must be defined in CONSOLxx.
v The console must not be active.
v A subsystem console that is in use must first be released. (See z/OS MVS Using

the Subsystem Interface.)
v If an HMCS console is in Standby mode, a VARY CONSOLE OFFLINE or RESET

CONSOLE must first be issued before attempting to delete the console definition.

Sample invocation of IEARELCN
SYS1.SAMPLIB provides a sample program in member IEARELCN to remove a
console definition.

//jjj JOB
//sss EXEC PGM=IEARELCN,
// PARM=’CONSNAME(xxxxxxxx)’
//SYSPRINT DD SYSOUT=A

xxxxxxxx: is the name of the console whose definition is to be removed.

Chapter 2. Defining console configuration 43

Environment
You can also invoke the console definition removal service (IEAVG730) from an
authorized program. IEAVG730 receives control with the following environment:
Minimum authorization: Supervisor state and key zero.
Dispatchable unit mode: Task
Cross Memory mode: PASN=HASN=SASN
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary

address space

Before you invoke IEAVG730 from your program, ensure that the following general
purpose register (GPR) contains the specified information:

Register
Contents

1 Address of a fullword containing the address of a field with the console
name.

Return and reason codes
When control returns from the console definition removal service (module
IEAVG730), the return code appears in register 15, and the reason code in register
0:

Hexadecimal
Return Code

Hexadecimal
Reason Code Meaning and Action

00 00 Successful processing.

04 00 Caller is not authorized. Ensure that caller is in
supervisor state.

04 04 Caller is not authorized. Ensure that caller is in key
zero.

04 08 Caller is in cross memory mode. Ensure that PASN =
HASN = SASN.

04 14 Caller is holding locks. Ensure that caller is not
holding any locks.

04 18 Caller is not in task mode. Ensure that caller is
running in task mode.

08 00 Recovery cannot be established. Report error to the
appropriate IBM support personnel.

08 04 Retry from an abend. Report error to the appropriate
IBM support personnel.

08 08 This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 0C This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 10 Secondary recovery cannot be established. Report
error to the appropriate IBM support personnel.

08 14 Retry from an abend for the secondary recovery
routine. Report error to the appropriate IBM support
personnel.

44 z/OS V2R1.0 MVS Planning: Operations

Hexadecimal
Return Code

Hexadecimal
Reason Code Meaning and Action

08 18 This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 1C This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 20 This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 24 This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 28 This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 2C This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 30 This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 34 This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

0C 00 Console is active. If the console is an MCS console,
deactivate the console. If the console is a subsystem
console, the console is currently allocated to a
subsystem. Release the subsystem console, and try
the service again to remove the console.

0C 04 Console is not an MCS or SMCS console. Ensure that
the console to be removed is for an MCS or SMCS
console defined in CONSOLxx.

0C 08 Console is not defined in CONSOLxx. Ensure that
the active CONSOLxx member contains a CONSOLE
definition statement for an MCS or SMCS or
subsystem allocatable console.

Removing extended MCS console definitions from a configuration
You can delete the definition of any extended MCS console, thus freeing the ID
and console name that had been assigned to the extended MCS console. The
system then can reuse that ID for a newly-defined extended MCS console.

There are two ways in which you can delete a console definition. The first, and
preferred way, is to use the SETCON DELETE command. For example, to delete an
extended MCS console named EMCSSY1, issue:
SETCON DELETE,CN=EMCSSY1

For more information about the SETCON DELETE command, see z/OS MVS System
Commands.

Chapter 2. Defining console configuration 45

The second way to remove a console definition is to assemble and link the sample
source code for program IEARELEC in SYS1.SAMPLIB. “Sample invocation of
IEARELEC” describes the sample job for invoking the console service. The
programming environment, and the return and reason codes for invoking the
console service are described in the sample program prologue.

The following restrictions for removing an extended MCS console apply:
v The extended MCS console must be inactive.
v The console ID of a removed extended MCS console can be reused once it has

been deactivated and removed. It is safe to use the console ID to process a
command response, but you should avoid saving the console ID for later
processing. Therefore, you should use the console name to direct messages to
specific consoles. If the console ID is used, messages may end up going to
unintended consoles.

v Do not remove or change the definition of the following system-used extended
MCS consoles:
– The ROUTE command console, named *ROUTExx, where xx is the value of

&SYSCLONE
– The OPERLOG console, named *OPLOGxx, where xx is the value of

&SYSCLONE
– The SYSLOG console, named *SYSLGxx, where xx is the value of

&SYSCLONE
– The DIDOCS EMCS console, named *DICNSxx, where xx is the value of

&SYSCLONE
– The System REXX consoles, named *AXTnnxx and *AXRnnxx, where nn is

the worker address space number and xx is the value of &SYSCLONE
– The IOS EMCS console, named SYSIOSRS
– The JES3 DLOG console, named JES3DLOG

Sample invocation of IEARELEC
SYS1.SAMPLIB provides a sample program in member IEARELEC to remove an
inactive extended MCS console.

//jjj JOB
//sss EXEC PGM=IEARELEC,
// PARM=’CONSNAME(xxxxxxxx)’
//SYSPRINT DD SYSOUT=A

xxxxxxxx: is the name of the console whose definition is to be removed. The use of
wildcards is supported.

Environment
You can also invoke the console definition removal service (CNZM1ERF) from an
authorized program. CNZM1ERF receives control with the following environment:
Minimum authorization: Supervisor state and key zero.
Dispatchable unit mode: Task
Cross Memory mode: PASN=HASN=SASN
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary

address space

Before you invoke CNZM1ERF from your program, ensure that the following
general purpose register (GPR) contains the specified information:

46 z/OS V2R1.0 MVS Planning: Operations

Register
Contents

1 Address of a fullword containing the address of a parameter list.

Parameter list contents

Bytes 0-7
Console name or wildcard pattern

Bytes 8-15
Command and response token (CART) to be associated with any
message issued by the EMCS Console Removal Service.

If a CART is not needed, specify binary zeros as input.

Bytes 16-23
The console name of the console (CONSNAME) that will receive
any message issued by the EMCS Console Removal Service.

If a CONSNAME is not needed, specify binary zeros as input.

Return and reason codes
When control returns from the extended MCS console removal service (module
CNZM1ERF), the return code appears in register 15, and the reason code in
register 0:

Hexadecimal
Return Code

Hexadecimal
Reason Code Meaning and Action

00 00 Successful processing.

04 400 All extended MCS consoles matching the wildcard
pattern are active. No console definitions were
removed.

04 404 One or more extended MCS consoles matching the
wildcard pattern are active. Console definitions were
removed for the consoles that were not active.

04 408 No extended MCS consoles were found matching
the wildcard pattern. No console definitions were
removed.

04 40C There was not enough available storage to complete
the request. Only the extended MCS consoles listed
in message CNZ4002I had their console definitions
removed.

08 800 Caller is not authorized. Caller is not in supervisor
state.

08 804 Caller is not authorized. Caller is not in key zero.

08 808 Caller is in cross memory mode.

08 80C Caller is running in SRB mode.

08 810 Requested console is active.

08 814 Requested console is not an extended MCS console.

08 818 Requested console is not defined.

08 820 Incorrect input was specified.

10 1000 An unexpected ABEND occurred.

10 1004 Storage could not be obtained.

10 1008 Resources could not be obtained.

Chapter 2. Defining console configuration 47

Hexadecimal
Return Code

Hexadecimal
Reason Code Meaning and Action

10 100C Resources could not be released.

10 1010 Unexpected return code from CONVCON.

Defining devices as MCS, HMCS or SMCS consoles
The first step in planning an MVS console configuration is to define the I/O
devices to MVS. Ensure that you define each I/O device that you plan to use as an
MCS console with the hardware configuration definition (HCD) program for each
MVS system at the installation. Use the HCD Add Device panel to define the
device number and other information that identifies the device to MVS.

Note: MCS consoles are locally attached to the system through control devices that
do not support Systems Network Architecture (SNA) protocols. SMCS consoles are
not defined to HCD.

Use the following keywords on the CONSOLE statement to define a device as an
MCS console.

DEVNUM
Defines the console device number.

NAME
Defines the console name. NAME is required for ALL consoles. If NAME is
not valid, the system rejects the CONSOLE statement.

UNIT Specifies the type of device to be used as an MCS console.

The device number you specify for each console on a CONSOLE statement -
CONSOLE DEVNUM - must correspond to the device number specified through
HCD on the Add Device panel. Except for DEVNUM, which must be first, you can
specify the keywords in any order. For MCS consoles that are managed by a
subsystem (subsystem-allocatable consoles like NetView), you can specify:
CONSOLE DEVNUM(SUBSYSTEM) NAME(name)

where name is the name of the subsystem console. NAME is required.

You can specify DEVNUM(SYSCONS) to define the system console in CONSOLxx.
See “The system console and CONSOLxx” on page 162.

Note: The system pins UCBs for console devices defined in CONSOLxx at IPL
time. Therefore, you must IPL or remove the console definition with IEARELCN if
you delete console devices via HCD.

Use the following keywords on the CONSOLE statement to define the device
number and name of an HMCS or SMCS console.

DEVNUM
Specify HMCS or SMCS. This must be the first parameter on the
CONSOLE statement.

NAME
Specify the name of the HMCS or SMCS console. If the name is not valid,
the system rejects the CONSOLE statement.

48 z/OS V2R1.0 MVS Planning: Operations

Do not specify the UNIT or SYSTEM keywords on the CONSOLE statement for
HMCS and SMCS consoles.

Devices MVS can use as MCS consoles
MCS consoles are either output-only devices like printers or input/output devices
like a 3279 display console.

Input/output devices are also called display consoles. You control how to use the
display console with the USE attribute so that it can be a full-capability console
(send commands and receive messages), or an output-only console like a message
stream console or status display console, from which an operator cannot enter
commands. For information on USE, see “Defining the USE attribute” on page 73.

If you use 3270-X devices as display consoles, consider the following:
v If the console device you plan to use is attached to a control unit that supports

the Read Partition Query Feature and the device also supports the feature,
specify 3270-X for UNIT.

v Only 3270-X devices can display synchronous messages issued during certain
recovery procedures. (For information about synchronous messages, see
“Display of synchronous messages” on page 53.)

In this book, references to devices often do not mention model numbers. When
you see a device referenced without a model number, assume the reference applies
to all models of the device.

Reference

For a list of devices that MVS can use as MCS consoles (including eligible 3270-X
devices), see z/OS MVS Initialization and Tuning Reference.

For information about using HCD to define console devices, see z/OS HCD
Planning.

Using console names
Define each console by device number and device unit on the CONSOLE statement
and name each MCS console. Console names are required for all CONSOLE
statements in CONSOLxx.

Using console names in a sysplex
When defining consoles for a sysplex, names are required for MCS, HMCS, SMCS,
and subsystem-allocatable consoles. A good way to specify unique names and
establish a consistent naming convention for all the consoles in a sysplex is to use
system symbols in console definitions, as described in “Sharing a single CONSOLxx
member for all systems” on page 30.

In a sysplex, the console name and console ID uniquely identify the console to the
sysplex for the life of the sysplex or the removal of the console by SETCON DELETE,
IEARELCN or IEARELEC. When a console is removed, the binding of the console
name to the console ID is broken. If the console ID is re-used by MVS, it may be
bound to a different console name and represent a different console. A console
name will always represent the same console in CONSOLxx; a console ID may not.
Programs that need to communicate with specific consoles should always use
console names to avoid communicating with an unintended console.

Chapter 2. Defining console configuration 49

You can also define the same console to different systems in the sysplex by using
the console name. In the following example, a console named CONB is defined in
CONSOLxx for three systems in a sysplex (SYA, SYB, and SYC). A channel
switching device allows an operator to switch the console from system to system:

CONSOLxx for each system contains the following statements:

For SYA:
CONSOLE DEVNUM(3F5) NAME(CONB)

For SYB:
CONSOLE DEVNUM(3D0) NAME(CONB)

For SYC:
CONSOLE DEVNUM(3E0) NAME(CONB)

CONB can be active on only one system in the sysplex at a time. If CONB is active
on SYA and SYA fails, the operator can switch CONB to SYB or SYC and activate
the console using the console name on the VARY CN command. In shared mode,
the attributes assigned to CONB before SYA failed are inherited by the newly
activated CONB console on either SYB or SYC; in distributed mode, the newly
activated CONB console uses the definition on its current system

Restrictions for console names
Console names must be from 2 to 8 characters and cannot start with a digit.
Characters are alphanumeric and can also include the characters #, $, and @. When
naming MCS consoles, do not use the following names:
v HC
v INSTREAM
v INTERNAL
v LOGON

SYA

SYC

SYB

Channel
switching device

MCS Console
NAME(CONB)

50 z/OS V2R1.0 MVS Planning: Operations

v LOGOFF
v OPERLOG
v SYSIOSRS
v SYSLOG
v UNKNOWN

Note about SYSIOSRS

Console name SYSIOSRS is reserved for system use.

The IOSAS address space must have an associated “trusted” userid defined in the
RACF started procedures table (ICHRIN03). This will permit the IOSAS address
space to issue commands to the SYSIOSRS extended console. For more
information, see z/OS Security Server RACF Security Administrator's Guide

Also, do not use console names that might be confused with device numbers. For
example, the following name is not a good choice:
NAME(BAD)

For information on the system console and naming restrictions, see “Naming the
system console” on page 163.

Attaching consoles to particular systems in a sysplex
Use the optional SYSTEM keyword parameter in the CONSOLxx parmlib member
to specify the system in the sysplex to which MVS should attempt to activate the
console. This parameter will primarily refer to consoles that are physically attached
to multiple systems and managed by a physical switch. In this case, the SYSTEM
parameter determines which system should attempt to activate the console.

If SYSTEM is specified and the SYSTEM value names the current system being
initialized, then MVS will activate the console device if the device is attached and
in ready status. If the SYSTEM value names a system other than the one currently
being initialized, then MVS will not activate the console even if it is attached and
ready on the system being initialized. If SYSTEM is not specified, MVS activates
the console on the first system to join the sysplex (to which the console is attached
and ready).

Attention: Use the SYSTEM parameter with great care whenever there is more
than one CONSOLxx parmlib member for the sysplex. If you define multiple
CONSOLE statements with the same DEVNUM and specify a SYSTEM differently
on different statements, the system will activate the device as a console on the first
system where it (a) is online and ready, and (b) has a SYSTEM parameter value
equal to the name of the IPLing system, or has no SYSTEM keyword.

It is possible that a device will not be ready (not turned on) when the system or
sysplex is being initialized. The device might even be attached to another system
as the sysplex is initialized (for example, during an error recovery situation). When
you decide to use the device, first turn it on or re-attach it to the proper system,
then issue a VARY CN,ONLINE command for the console.

During VARY CN,ONLINE command processing, the CONSOLE statement
SYSTEM value is used to determine where to process the VARY CN,ONLINE
command (unless the console was previously active or SYSTEM is specified on the
VARY CN,ONLINE command).

Chapter 2. Defining console configuration 51

Note: SMCS consoles are not associated with a particular system and so the
SYSTEM keyword is not valid for these types of consoles. An SMCS console
defined on one system can be activated on another system (provided both systems
have SMCS active).

Planning console recovery
The following sections discuss how to plan for console recovery.

Recovery considerations
When you plan console recovery for a system or a sysplex, first consider all the
MCS consoles, HMCS consoles, SMCS consoles, and extended MCS consoles you
have defined for your console configuration. (For MCS, HMCS and SMCS consoles,
you must consider the console definitions in CONSOLxx for each system. For
extended MCS consoles, you must consider the TSO/E userids that the RACF or
TSO/E administrator defines for each system.) You should consider defining
multiple instances of the consoles that you need to operate your installation.

Console recovery and the RESET CN command
If a problem occurs that causes a console to become unusable and attempts to
restore the console fail (for example, in response to the VARY command, the
system issues message IEE339I indicating that the console is changing status), the
operator does not have to re-IPL the system to recover the console. From another
console, the operator can first issue the RESET CN command and then either issue
the VARY CN,ONLINE command for the inactive console, or, if the inactive
console is an SMCS console, logon to the console again.

For information on using RESET CN, see z/OS MVS System Commands.

Planning console groups
The GROUP statement of CNGRPxx allows you to define a console group and its
members. On the GROUP statement, you can specify
v The name of the console group.
v The names of the MCS consoles, SMCS consoles, HMCS consoles, or extended

MCS consoles that serve as members in the console group.

You can specify the name of the console group with its console group members on
v CONSOLE AUTOACT to define the group of consoles that determine the usage

of the system console. (See “Using AUTOACT with the system console” on page
163.)

v DEFAULT SYNCHDEST to define a group of consoles able to display
synchronous messages. (See “Display of synchronous messages” on page 53.)

When you define group names in CNGRPxx, do not use the names of MCS, HMCS
or SMCS consoles defined in CONSOLxx or EMCS console key names displayed
on the DISPLAY CONSOLES,KEY command as a group name.

Activating CNGRPxx
To activate the CNGRPxx member or members at IPL time, use the following
keyword on the INIT statement of CONSOLxx:

CNGRP
Specifies the member or members of CNGRPxx that you want active.

52 z/OS V2R1.0 MVS Planning: Operations

NO indicates that you do not want to specify a console group and is the default.

You can also activate CNGRPxx members at IPL time by placing the SET CNGRP
command in the COMMNDxx of parmlib member. Operators can use SET CNGRP
to change the specifications after IPL.

You can activate more than one CNGRPxx member at a time. If you activate two
or more CNGRPxx members for a system or sysplex and define the same group
name in different members, MVS uses the group definition of the first member you
specify.

INIT CNGRP has sysplex scope. The first system IPLed into a sysplex defines
console groups for the entire sysplex through the CNGRPxx member specified on
its INIT statement. MVS ignores the INIT CNGRP values of other systems that
subsequently join the sysplex. To change the CNGRPxx member after IPL,
operators can use the SET CNGRP command, which affects all systems in a sysplex
for the life of the IPL.

To display information about the CNGRPxx members in effect for a system or
sysplex, operators can use DISPLAY CNGRP.

Reference

For complete information on CNGRPxx, see z/OS MVS Initialization and Tuning
Reference.

Display of synchronous messages
Synchronous messages are WTO or WTOR messages that can be issued during
initialization or recovery situations. When a synchronous WTOR is issued, message
CNZ4215W is issued to all active MCS consoles on the system issuing the
synchronous WTOR. The highlighted WTO will indicate:
v the message id of the synchronous WTOR for which a reply is needed
v on which console the synchronous WTOR is currently being displayed
v if the message is being managed by the z/OS auto-reply function.

You can define a full-capability MCS console, or the system console, as members of
a console group in CNGRPxx to receive synchronous messages.

Use the following keyword on the DEFAULT statement of CONSOLxx, to handle
the display of a synchronous message:

SYNCHDEST
Specifies the name of the console group whose members can receive a
synchronous message.

If a reply is not provided within approximately 125 seconds, the synchronous
WTOR is moved to the next console in the SYNCHDEST list.

MVS searches for an eligible console based on the order of the console names
specified in the group. The moving of the WTOR to different consoles will
continue until a reply is provided or until the SYNCHDEST list is exhausted. If all
consoles in the SYNCHDEST list have been tried, the WTOR is displayed on the
system console and will remain there until a reply is provided. You can specify
valid MCS console names as members of the group. You can also specify

Chapter 2. Defining console configuration 53

SYSCON, the system console. To receive the synchronous message, the console
must be attached to the system that issues the message.

Considerations using consoles to display synchronous
messages
If you do not specify a console group on SYNCHDEST or none of the consoles on
SYNCHDEST are active, the system that issues the message tries to display the
message on the system console.

For a sysplex environment, you should understand and plan where your
synchronous messages will be displayed.

Synchronous messages can be displayed only on the system where they originated.

The SYNCHDEST console group is an ordered list of consoles where MVS is to
attempt to display synchronous messages. The system console can be specified in
the list. If an MCS console in the list is not attached to the system where the
message is issued, it is skipped. So, the same SYNCHDEST group can be used for
all systems, if you wish. If a console in the list is an SMCS console, it is skipped.

If the system attempts to use a console for a synchronous message and fails, the
next console in the SYNCHDEST group, which is attached to this system, will be
used. The system console can be specified in the group, and will also be used as a
last resort, if all other console attempts have failed.

If MCS consoles share a control unit and an operator tries to respond to a
synchronous message on one of the consoles, interruptions from the other consoles
can make it impossible for the operator to reply to a synchronous message. When
you plan your sysplex recovery, you should attach the MCS console that is to
display synchronous messages to its own control unit without any other attached
console. If it shares a control unit, there is a higher probability of failure on the
console; the message will then be attempted on the next suitable console in the
SYNCHDEST group, or on the system console.

Important: You must respond to synchronous WTOR messages promptly.
Synchronous WTOR messages (such as IOS115I and IEA367A) prevent the system
from updating its status on the sysplex couple data set. This, in turn, can lead to
Sysplex Failure Management (SFM) deciding that the system is not responding
normally, and removing it from the sysplex.

If you have a standard response to synchronous WTOR messages such as these,
you may want to automate the reply to these messages to avoid delay and avoid
SFM partitioning the system out of the sysplex.

Note that MPF and typical automation products are unable to automate a response
to these messages. However, Auto-reply is able to automate these messages.

System console automatic activation
The AUTOACT keyword for the system console specifies a console group. The
consoles in this group can "replace" the system console. The AUTOACT support is
especially useful if you have no MCS consoles (for example, all of them are SMCS
consoles). With this support, the system console can be used during NIP, activated
automatically at the end of NIP, and deactivated when an SMCS console activates.
See “Using the AUTOACT console group” on page 161 for more information.

54 z/OS V2R1.0 MVS Planning: Operations

Recovery for consoles
Several errors can directly affect operation of the display consoles used by
operators. Symptoms may be obvious, such as the screen suddenly fails, messages
describe the error, or the keyboard locks. In other cases, the error might not be
immediately apparent. Prepare recovery actions for the following.

System problems
When a system error occurs, one or more of the following can happen:
v The screen blanks out, and then an error message appears in the message area.

See “Recovery actions for an error message in the message area.”
v There is an abnormal lack of console activity. See “Recovery actions for a lack of

console activity.”
v Messages IEA405E and IEA404A appear, to indicate that console messages are

backed up. See “Console message backups” on page 56.

Console hardware errors
When a console hardware error occurs, one or more of the following can happen:
v Error messages are centered on the screen. The remainder of the screen is blank.

See “Recovery actions for error messages centered on the screen” on page 59.
v The screen blanks out, but no error message appears.
v The screen appears normal, but the keyboard is locked and the operator cannot

enter commands. See “Recovery actions for a locked keyboard” on page 59.

See also the section on how to process operating system messages at the system
console. See “Actions to see system messages at the system console” on page 60.

System programming problems

Recovery actions for an error message in the message area
An error message in the message area at the top of the screen indicates that a
recoverable system error occurred.

1. Perform the action specified by the error message.

2. Perform a cancel action. This may be pressing the PA2 key. This should restore the
screen.

3. Review the messages to make sure that no messages were lost during error recovery.

Recovery actions for a lack of console activity
A lack of console activity can be no messages appearing on the console or no
response by the system to commands. Causes can be simply a low level of system
activity or a problem in message processing in the operating system.

Chapter 2. Defining console configuration 55

1. If a full-capability console appears inactive, check the system response by requesting a
display of the time. Enter a DISPLAY T command.

The system should respond within a few seconds with the time and date.

2. Take the console out of hold mode (see “Temporarily suspending the screen roll” on
page 77 for more details).

3. If it does not, enter a CONTROL C,D command to cancel any status displays being
presented on the unresponsive console.

The console should return to normal activity.

4. If it does not, assume the console has some other problem. Do the following:

a. Enter a CONTROL Q command to delete messages that are queued to the console,
but have not yet been displayed. These messages have already been through
hardcopy processing.

b. Check for a console hardware error.

c. If possible, bring up another console and enter a RESET CN command for the
unresponsive console.

d. Notify the system programmer.

e. If necessary, reIPL the system, following normal procedures.

Console message backups
The operating system places WTO and WTOR messages in buffers in virtual
storage. The WTO buffers hold messages the system has not yet displayed at
eligible consoles. Each WTOR buffer holds one WTOR message that the system has
displayed but that an operator has not replied to. The MLIM and RLIM parameters
on the INIT statement in the CONSOLxx parmlib member specify the maximum
numbers of buffers. The RMAX parameter on the default statement in CONSOLxx
also affects the number of WTOR buffers, because the system cannot have more
WTOR buffers than the largest reply identifier value. If the installation does not
code these parameters, the system defaults are:
v For WTO messages, 1500 buffers
v For WTOR messages, 10 buffers

Note: It is suggested that you specify a minimum of 99 buffers for WTOR
messages.

In a sysplex, the first system that joins determines the RMAX value. If no RLIM
value is set, RLIM is set to RMAX for all systems in the sysplex.

Messages back up when the system cannot free buffers for new messages because
the buffers contain old messages.

For more information on changing or displaying the number of allowed WTO
(write-to-operator) or WTOR (write-to-operator-with-reply) message buffers, see the
section named "Changing or Displaying the Number of Allowed WTO and WTOR
Message Buffers" in z/OS MVS System Commands, SA38-0666.

You can use Message Flood Automation to help reduce the possibility that a
message flood will cause a console message back-up. See Chapter 4, “Message
flooding,” on page 141.

WTO buffer backup: When WTO message buffer use reaches 80% of the limit,
the system issues the following message. The system also takes out of hold mode
any consoles in hold mode with messages queued.
IEA405E WTO BUFFER SHORTAGE - 80% FULL

56 z/OS V2R1.0 MVS Planning: Operations

If the problem continues and WTO buffer use reaches its limit, the system issues
the following message:
IEA404A SEVERE WTO BUFFER SHORTAGE - 100% FULL

WTOR buffer backup: When WTOR message buffer use reaches 80% of the limit,
the system issues the following message:
IEA230E WTOR BUFFER SHORTAGE - 80% FULL

If the problem continues and WTOR buffer use reaches its limit, the system issues
the following action message:
IEA231A WTOR BUFFER SHORTAGE CRITICAL - 100% FULL

Notes about console message backups:

v All lines of an out-of-line multiple-line status display that have not been
presented occupy message buffers. Therefore, the operator should erase these
displays when they are no longer needed to free the message buffers.

v During system initialization, the system does not use the MLIM and RLIM
parameter values in the CONSOLxx parmlib member until either the system log
or a console becomes active or processing by the nucleus initialization program
(NIP) completes. After NIP processing, consoles other than the initialization
console become active and buffer space becomes important.

v When activating an extended MCS console, specify the optional alert percentage
and an event control block (ECB) address on the MCSOPER macro. Then, when
the message data space reaches the specified percentage, the system will post the
ECB.

Chapter 2. Defining console configuration 57

Recovery actions for a WTO buffer shortage

1. Determine why the buffers are full and correct the problem. Possible reasons are:

v A console is not ready because:

– An I/O error occurred.

– One or more consoles have a slow roll time.

– The console is in roll deletable (RD) mode but the screen is filled with action
messages.

v The buffer limit is too low to handle the message traffic in the system. Either the
MLIM value in the CONSOLxx parmlib member is too low, or the system default is
not sufficient.

2. Also, do the following:

a. Enter a DISPLAY CONSOLES,BACKLOG command. The display lists all MCS and
SMCS consoles that have any outstanding WTO messages.

b. Look in the display for the CURR= and LIM= values for messages where

CURR=aaaa
The number of WTO buffers in use

LIM=bbbb
The limit of WTO buffers

c. If the buffer limit is not adequate, issue a CONTROL M,MLIM command to increase
the WTO buffer limit for the duration of the IPL.

d. Issue K S,DEL=R to ensure that the console is in Roll mode.

e. Issue a K Q to delete the queue of messages on the console. You may have to issue
the K Q command multiple times to clear the backlog. You should issue the K Q
command for each console that has a backlog.

3. Notify the system programmer of the buffer problem, if it was not caused by hardware.
The system programmer may want to increase the buffer limit before the next IPL.

When the number of buffers in use drops below 60% of the limit specified at IPL time, the
system issues the following message:

IEA406I WTO BUFFER SHORTAGE RELIEVED

Recovery actions for a WTOR buffer shortage

Enter a DISPLAY R,R command to see the accumulated WTOR messages.

v Reply to the outstanding WTOR messages.

v Cancel jobs that are currently issuing WTOR macros.

v Enter the CONTROL M,RLIM command to increase the number of WTOR buffers.

Note: The RLIM value cannot be higher than the RMAX value (RMAX is the highest
possible reply ID). If you need to increase RLIM higher than RMAX, consider entering the
CONTROL M,RMAX command to increase RMAX. To determine the current values of
RLIM and RMAX, issue the K M,REF command.

The value of RMAX controls the number of digits in all reply IDs. For example, increasing
RMAX to 100 (or higher) causes all WTORs to have 3-digit reply IDs. This might affect
automation routines. Check with the system programmer before increasing RMAX higher
than 99.

If the shortage recurs, have the system programmer increase the value for RLIM or RMAX
in the CONSOLxx parmlib member. It is suggested that you use a RMAX value of 9999.

58 z/OS V2R1.0 MVS Planning: Operations

Recovery actions for command flooding indications
Command flooding occurs when too many MVS commands are issued at one time,
possibly because a program has issued too many MGCRE macros. The first
indication of command flooding is message IEE822E COMMANDS ARE AT 80%
OF LIMIT IN COMMAND CLASS cc, followed by message IEE806A COMMANDS
EXCEED LIMIT IN COMMAND CLASS cc. The CMDS command can be used to
correct this situation.

1. Determine why the command flooding occurred.

Issue the CMDS SHOW command. This displays all of the executing commands as well
as the commands that are waiting for execution with the time that the command
started execution and the job that issued the commands.

2. If most of the commands in the CMDS SHOW output appear to be from the same job
or automation program, the job may be in a loop issuing commands, or the job may
have legitimately issued a large number of commands. For example, a program may
have issued a large number of VARY commands for many devices. If the commands
were issued legitimately, and it appears that the commands are being processed, the
commands may be allowed to complete execution.

If the commands appear to have been issued in error, take one of the following actions:

v Use the CANCEL command to cancel the job that is issuing the commands.

v Use the CMDS REMOVE command to remove the commands that are waiting for
execution. CMDS REMOVE cannot remove commands that are already executing.

3. If it appears that an executing command has been running for a long time, it may be
hung due to a resource deadlock or other required action. Issue CMDS DUMP to obtain
diagnostic data about why the command is hung. The CMDS ABEND command can be
used to ABEND the command that is hung. CMDS ABEND should be used with
extreme caution and should be used only as a last resort, as the system could be left in
an inconsistent state.

Console hardware errors

Recovery actions for error messages centered on the screen
If a console hardware error occurs, one of the following pairs of messages can
appear centered on the screen:
IEE170E RETRYABLE ERROR. RECENT ACTION MAY NEED TO BE REPEATED
IEE170E PRESS THE CANCEL KEY TO RESTORE THE SCREEN
IEE171E CONDITIONAL ERROR. RECENT ACTION MAY NEED TO BE REPEATED
IEE171E PRESS CANCEL TO CONTINUE

1. Perform a cancel action, which may be pressing the PA2 key.

The cancel action should restore most of the screen, including messages displayed in line
in the message area, the instruction line, and the warning line. However, the system blanks
out the entry area and the PFK line, positions the cursor to the first data entry position,
and ends message numbering, if active.
Note: If you do not perform a cancel action, the system rewrites the screen (same effect as
cancel) after about 30 seconds.

If the keyboard input for the cancel action results in a console hardware error, the system
sees this error as a permanent I/O error and deactivates the console.

Recovery actions for a locked keyboard
You may find that you cannot enter commands through a console that otherwise
appears normal.

Chapter 2. Defining console configuration 59

Note: Inhibited input, with or without keyboard locking, can also occur for the
following system programming problems. See “System programming problems” on
page 55.
v The system enters a wait state.
v The system is in a disabled loop.
v A problem occurs in message processing in the operating system.

1. Look for software problems first, based on messages and logrec data set error records.
Many software problems can inhibit console input.

2. If no software problems are found, try to restore the screen by performing a cancel
action, which may be pressing the PA2 key.

3. Contact hardware support to fix the error in the failed console.

Actions to see system messages at the system console
To display operating system messages, select the desired CPC or Image object(s),
and then start the Operating System Messages task. This task will provide a tabbed
interface with tabbed page for each active operating system message interface.
Each of these pages contains an entry field where commands and responses can be
entered.

Planning console security
Console security means controlling which commands operators can enter on their
consoles to monitor and control MVS. How you define command authorities for
your consoles or control logon for operators allows you to plan the operations
security of your MVS system or sysplex. In a sysplex, because an operator on one
system can enter commands that affect the processing on another system, your
security measures become more complicated and you need to plan accordingly.

If your installation plans to use extended MCS consoles, you should consider ways
to control what an authorized TSO/E user can do during a console session.
Because an extended MCS console can be associated with a TSO/E userid and not
a physical console, you might want to use RACF to limit not only the MVS
commands a user can enter but from which TSO/E terminals the user can enter
the commands.

You can control whether an operator can enter commands from a console:
v Through the AUTH keyword on the CONSOLE statement of CONSOLxx
v Through the LOGON keyword of the DEFAULT statement and RACF

commands and profiles.

“Controlling command authority with the AUTH attribute” describes the AUTH
attribute and command groups. “Using RACF to control command authority and
operator logon” on page 62 describes RACF and the LOGON keyword for the
DEFAULT statement. Special security considerations for SMCS consoles appear in
“Providing security for SMCS consoles” on page 41.

Controlling command authority with the AUTH attribute
The AUTH keyword on the CONSOLE statement of CONSOLxx allows you to
control the command authority of your full-capability consoles so that the system
accepts commands defined by command group that you assign for the console. For
example, consoles with master authority can issue all commands, including those
that affect other consoles (including extended MCS consoles). On the other hand, a

60 z/OS V2R1.0 MVS Planning: Operations

console used only to issue I/O commands, such as PURGE, MOUNT, and
UNLOAD, needs the authority to issue only certain commands. For this reason,
MVS commands are grouped into system command groups that allow you to
control which commands operators can issue from any given console.

MVS commands are assigned to one of five command groups according to
command function. The command groups are:
v Informational commands (INFO)
v System control commands (SYS)
v I/O control commands (IO)
v Console control commands (CONS)
v Master control commands (MASTER)

For a list of the commands in each group see system command group information
in z/OS MVS System Commands. (For information about JES commands, see z/OS
JES2 Commands or z/OS JES3 Commands.)

To authorize which of the command groups an operator can enter on an MCS,
HMCS or SMCS console, use the following keyword on the CONSOLE statement.

AUTH
Defines the command authority for an MCS, HMCS or SMCS console

Options you can specify for AUTH include the following:

MASTER
Specifies that the console has master authority. You can enter all MVS
operator commands

INFO Specifies that the console can issue any informational commands and is the
default value

SYS Specifies that the console can issue system control commands and
informational commands

IO Specifies that the console can issue I/O control commands and
informational commands

CONS Specifies that the console can issue console control commands and
informational commands

ALL Specifies that the console can issue informational, system control, I/O
control, and console control commands

Operators can use the VARY CN command to change AUTH.

An operator can enter informational commands from any full-capability console.
You can specify any combination of SYS, IO, and CONS together on the AUTH
keyword so that an operator can enter these commands (along with informational
commands) from the console. If an operator enters a command at a console where
it is not authorized, MVS rejects the command and sends an error message to the
issuing console.

Because consoles can receive messages based on assigned routing codes and
message levels, ensure that the console has the proper authority for the operator to
be able to respond to the message. For a description of message routing codes and
levels, see “Message and command routing” on page 99.

Chapter 2. Defining console configuration 61

Assigning a console master authority
To ensure that you have the ability to operate your installation at all times, you
should define multiple consoles with master authority. Note that the system
console is forced to have master authority.

For example, to assign master authority to a console named CONS1 (device
number 031), code the following CONSOLE statement in CONSOLxx:
CONSOLE DEVNUM(031) NAME(CONS1)AUTH(MASTER)

Operators can assign the master authority of a console by using the following
command:
VARY CN(name),AUTH=MASTER

This command authorizes the console with master authority and establishes the
commands that the console can receive. The operator must enter these commands
through the console currently defined with master authority. The effect of the
VARY command lasts only for the duration of the IPL.

Using RACF to control command authority and operator logon
CONSOLxx provides a way to limit command authority for MCS, HMCS and
SMCS consoles. However, to control operator logon, limit the use of specific
commands to specific MCS, HMCS and SMCS consoles, or control command use
for extended MCS consoles, your security administrator can help you plan your
console security. When you use RACF, you need to educate operators about the
security policy at the installation and the changes to their jobs that the security
policy requires.

An installation can audit the use of commands and limit the use of commands by
operator as well as by console:
v Based on the identity of the issuer of the command — who issued the

command. Using this method, the installation can verify that the operator who
issues a command is authorized to do so and optionally produce audit records
that log command activity. The installation can control who can issue what
commands at several different levels. For example, all operators might be
allowed to issue all commands, some operators might be allowed to enter only a
subset of the allowable commands, or some commands might be restricted to
just one or two individual operators.

v Based on the MCS console device number or the console name used to enter the
command — where the command was issued. Using this method, the
installation can verify that the command has been issued from a console that is
authorized to issue the command and optionally produce audit records that log
command activity.

v Based on both the identity of the command issuer and the console device
number or console name used to enter the command — both who issued the
command and where the command was issued. Using this method, the
installation can verify that the operator who issues a command is authorized to
do so and that the command has been issued from a console that is authorized
to issue the command. Audit records can log command activity.

Your installation can use RACF and CONSOLxx to provide restrictions on the use
of system commands to meet the security policy at your installation. If a console
definition (through the AUTH keyword) provides adequate control of command

62 z/OS V2R1.0 MVS Planning: Operations

use, you need take no action. Simply ensure that the LOGON parameter on the
CONSOLE or DEFAULT statement in the CONSOLxx Parmlib member is set to
OPTIONAL, which is the default.

Using RACF to authorize console operators and command use
If your installation requires additional security controls on the use of system
commands, you must first determine what controls are required. For example, do
you want to require all your operators to logon to MCS, HMCS or SMCS consoles,
or do you want certain operators with special authority to be able to enter
commands that require a higher authority than the console allows? Do you want to
audit logon activity? If so, do you want to log all command activity or only
unauthorized, or unsuccessful, attempts to issue system commands? Using RACF
and the LOGON keyword in CONSOLxx can help you achieve the kind of added
security you might need.

If your installation uses extended MCS consoles, you need to plan for their
security. Your TSO or security administrator can help you authorize TSO/E users
and control the console attributes (defined in the OPERPARM segment) for those
users. For examples, see “Controlling extended MCS consoles using RACF” on
page 182.

Note that using RACF to authorize commands can increase the path length the
system requires to process a command, and auditing command activity can
increase the number of security-related SMF records your system generates.

Defining RACF profiles
To determine whether a particular user (an operator) is allowed to access a
particular resource (a command or a console), security profiles are used. The
security administrator can define a security profile for:
v Each user of a console
v Each console that is to be automatically logged on
v Each MVS command issued from a console
v Each user of the SMCS application that is able to enter a command.

SMCS will support the protecting of the SMCS application via the APPL class of a
security product. If the user is defined and authorized by the security product and
the APPL class is not active or the APPL class is active but no profile matches the
SMCS APPLID, access will be granted. If the APPL class is active and a profile
matching the SMCS APPLID exists, the name the user is logging on with must be
defined in the profile's access list with at least READ authority for access to be
granted. If the console has been defined with LOGON(AUTO), the console name
must be in the access list.

Using RACF to authorize commands means that each operator requires an
individual user profile. (TSO/E users of extended MCS consoles should already
have a security profile in order for them to log on to TSO.) This user profile
establishes the userid of the individual operator, and the userid identifies the
operator when the operator logs on to the system. You can define the operator's or
TSO/E user's authority to access resources by userid, but you can also establish
access authority through a security group. For example, if you have several
operators or TSO/E users with identical access requirements, you can have the
security administrator create a security group and define the access for the
individual operators or TSO/E users through the group. For more information
using RACF, see “Defining users with RACF” on page 64.

Chapter 2. Defining console configuration 63

If you want an MCS console to be automatically logged on when you specify
LOGON(AUTO), you must ensure that each console has a user profile established
for it. Your security administrator can define a user profile by console name. When
LOGON(AUTO) is in effect, the console is automatically logged on when it is
activated. For more information, see “Automatic LOGON” on page 68.

Resources, such as commands, MCS or SMCS consoles, and TSO terminals, also
require security profiles. These profiles establish the access requirements for the
resource — such as who can issue the command or use the console or terminal —
and the level of security auditing your installation requires. For example, you
might need to audit all uses of commands or want to audit only unauthorized uses
of commands. For specific information using RACF, see “Defining commands with
RACF” on page 65 and “Defining consoles with RACF” on page 66. For an
example of defining a TSO/E terminal as a resource, see “Controlling extended
MCS consoles using RACF” on page 182.

You need to work with the security administrator to set up the security profiles
and options to implement your installation's security goals. z/OS Security Server
RACF Security Administrator's Guide includes RACF-related information about
securing access to system commands and consoles.

RACF access authorities
In RACF profiles that protect resources, the MCS authority “translates” to a RACF
access authority. This RACF access authority is specified for a user or console in an
access list of the resource profile and determines the command authority of the
user or console.

MCS Authority RACF Access Authority

MASTER CONTROL

ALL(SYS,IO,CONS) UPDATE

INFO READ

These access authorities are the same for extended MCS console users. The security
administrator can define resource profiles for MCS, HMCS, SMCS and extended
MCS consoles using RACF commands. (See “Controlling extended MCS consoles
using RACF” on page 182.)

Defining users with RACF
Your installation's security policy determines how you define the operators, MCS
consoles, HMCS consoles, or SMCS consoles for automatic logon. If your
installation's security policy requires you to audit all operator commands according
to the identity of the user, then all operators must be defined as individual users. If
your installation uses the LOGON(AUTO) option in CONSOLxx to automatically
log on MCS, HMCS and SMCS consoles when they are activated, you must ensure
that a user profile exists for each console to be logged on.

You can also grant access to commands to groups of operators. A RACF group
defines a set of related individuals who have similar security requirements.
Defining access authority by group minimizes changes to the RACF profiles when
individual users change job responsibilities or leave a particular job.

To create profiles for operators, the RACF security administrator needs to know
v Who the operators are
v Which operators fall into groups with identical access requirements.

64 z/OS V2R1.0 MVS Planning: Operations

To create profiles for consoles to be automatically logged on, the RACF security
administrator needs to know the names of the consoles defined in CONSOLxx.

Changes made to the access authority while a system is running may not take
effect until the security data for the console(s) is reset in MVS. This occurs during
LOGON for MCS, HMCS or SMCS consoles and during MCSOPER ACTIVATE for
EMCS consoles. For instance, if an active user is connected to a new group, the
user must log off and then log back on again to have the authority associated with
that new group.

Defining TSO/E users of extended MCS consoles with RACF
Your TSO or RACF security administrator should define user profiles for all
TSO/E users of extended MCS consoles. TSO/E logon can be controlled through
TSO/E or RACF, and like operators, you can define TSO/E users by individual or
group profiles. Your installation authorizes the TSO/E user to be able to issue the
TSO/E CONSOLE command. This command initiates an extended MCS console
session. For an example of how to define a TSO/E user to initiate an extended
MCS console, see “Controlling extended MCS consoles using RACF” on page 182.

Defining commands with RACF
Your installation's security policy determines which commands you must protect.
A RACF profile for the command in the OPERCMDS class protects the command.
When an operator logs on to a console and issues an MVS command that requires
a higher authority than the console allows, RACF can check the access list of the
command profile to determine if the user is authorized to issue the command.

To link the command the operator issues with the profile that protects the
command, MVS provides a construct, or structure, called a resource-name for each
command.

The resource-name for an MVS command has the following parts:
MVS.command.command-qualifier.command object

where:

MVS
Is the high-level qualifier that defines the command as a system command.
MVS is a required part of the resource-name. Subsystem commands use a
different high-level qualifier, such as JES2 or JES3.

command
Specifies the command or a specific variation of the command. To protect an
individual command, this part of the resource-name is required. It also allows
you to control significant variations of a command separately. For example,
FORCE without the ARM operand has a different effect than does FORCE with
the ARM operand; you can thus specify either FORCE or FORCEARM to
control the two uses separately.

command-qualifier
Specifies a subfunction of the command. This part of the resource-name is
optional. It allows you to protect specific command subfunctions separately.
For example, the following resource-name protects all functions of the TRACE
command:

MVS.TRACE.**

In contrast, the following resource-names protect each function of the TRACE
command separately:

Chapter 2. Defining console configuration 65

MVS.TRACE.ST
MVS.TRACE.MT
MVS.TRACE.CT
MVS.TRACE.STATUS

command-object
Specifies the object or target of the command. This part of the resource-name is
optional. Examples of objects or targets include:

The device on a CANCEL command
The jobname on a MODIFY command
The membername on a START command

MVS Commands, RACF Access Authorities, and Resource Names in z/OS MVS
System Commands defines the MVS commands and their corresponding
resource-names. It also shows the RACF access authority associated with each
command. To define resource profiles for system commands, the RACF security
administrator can use the resource-names exactly as shown in MVS Commands,
RACF Access Authorities, and Resource Names, or replace the optional fields with
asterisks or, for command-object, specific values. In the command profile, the
security administrator also defines the auditing requirements and the users or
groups allowed to issue the command in the profile's access list.

When an operator issues an MVS command with a RACF profile, MVS determines
the resource-name that matches the command and passes that resource-name to
RACF. RACF uses the resource-name to locate the profile for the command and
verifies that the operator is allowed to issue the command by checking the access
list in the profile. If RACF authorizes the access, MVS processes the command; if
RACF denies the access, MVS rejects the command. If your installation has
user-written commands that you must protect, use the CMDAUTH macro; see z/OS
MVS Programming: Authorized Assembler Services Guide and z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN.

To create profiles for MVS system commands that you do not have to change
frequently, it is a good idea to end each name with two asterisks, which indicate
that the profile protects all commands that match the specified portion of the
resource-name, regardless of whether there are additional qualifiers or how many
additional qualifiers there are. For example, use:

MVS.SET.**

to protect all SET commands with a single profile.

Defining consoles with RACF
You can use a RACF profile in the CONSOLE class to determine which userids are
authorized to log on to a particular console. The commands in the following
example define a RACF profile for console CON1 (CON1 is defined in
CONSOLxx), and authorize userid CONSID1 to log on to that console.
RDEF CONSOLE CON1 UACC(NONE)
PERMIT CON1 CLASS(CONSOLE) ID(CONSID1) ACCESS(READ)
SETROPTS CLASSACT(CONSOLE)

Setting DEFAULT LOGON requirements for MCS, HMCS and
SMCS consoles
Once you have established the RACF profiles your installation requires, you use
the LOGON keyword on the DEFAULT statement in CONSOLxx to establish your
MCS console operator LOGON requirements. You can:

66 z/OS V2R1.0 MVS Planning: Operations

v Have the system automatically log each console on as the console is activated.
Operators can log on but are not required to do so. See “Automatic LOGON” on
page 68.

v Require each operator to log on to the system before issuing commands. See
“Required LOGON” on page 69.

v Allow MCS console command authorization to control access to commands. See
“Optional LOGON” on page 70.

To control how operators can log on to MCS consoles, use the following keyword
on the DEFAULT statement in CONSOLxx:

LOGON
Controls the logon for operators of MCS or SMCS consoles

Options you can specify for LOGON are as follows:

AUTO
Specifies that the console is automatically logged on by its console name.
In addition, operators can optionally log on to the console.

REQUIRED
Specifies that operators must log on before the system allows them to enter
commands. If a system includes SMCS consoles, LOGON(REQUIRED) is
recommended.

OPTIONAL
Specifies that operators can optionally log on to the console; otherwise,
MCS console authority is in effect.

The LOGON keyword affects only full-capability display consoles. It does not
prevent the operator from receiving synchronous messages. However, the LOGON
keyword setting may prevent the operator from receiving synchronous
write-to-operator-with-reply (WTOR) messages. For details, see individual topics
about LOGON values: “Automatic LOGON” on page 68, “Required LOGON” on
page 69, and “Optional LOGON” on page 70.

Regardless of the LOGON value set on the DEFAULT statement, individual
consoles can override the value. For more information, see “Setting LOGON
requirements for individual MCS, HMCS or SMCS consoles.”

Setting LOGON requirements for individual MCS, HMCS or SMCS
consoles
With z/OS, the LOGON keyword on the CONSOLE statement in CONSOLxx can
override the console LOGON default on the DEFAULT statement.

To control how operators can log on to specific MCS, HMCS or SMCS consoles,
specify the following keywords on the CONSOLE statement in CONSOLxx:

LOGON
Controls the logon for operators of MCS, HMCS and SMCS consoles

Options you can specify for LOGON are as follows:

AUTO
Specifies that the console is automatically logged on.

REQUIRED
Specifies that the console must be logged on before commands can be
issued.

Chapter 2. Defining console configuration 67

OPTIONAL
Specifies that the console does not need to be logged on.

DEFAULT
Specifies that the console is to use the LOGON value on the DEFAULT
statement. If you specify DEFAULT and the DEFAULT statement does not
contain a LOGON value, the system issues an error message and uses
LOGON(OPTIONAL) for an MCS console and LOGON(REQUIRED) for
SMCS.

For an SMCS console, see “Defining SMCS consoles” on page 39.

Automatic LOGON
To control and audit command activity by console, specify LOGON (AUTO). When
LOGON (AUTO) is in effect and RACF is active, the system automatically issues a
LOGON for each MCS, HMCS or SMCS console as the console is activated. The
automatic LOGON uses the console name as the logon userid.

To ensure that the console is automatically logged on, the security administrator
must define a user profile for each console by console name.

Your installation must define the name of the system console as a valid USERID to
RACF. IBM recommends that if you plan to use LOGON (AUTO) for your
installation, you define the system console in CONSOLxx and do not use the
system default name as the name of the system console.

To define access requirements for the console, the security administrator defines a
resource profile for the console in the RACF CONSOLE class. The CONSOLE class
must be active when console resource profiles are used.

When automatic LOGON is in effect, operators can log on to the system but are
not required to do so. The system issues an automatic LOGON for the console
whenever RACF is active and the following conditions occur:
v The console is activated either during system initialization, as a result of the

VARY command or if an SMCS console is logged on.
v The console is switched from message-stream or status display mode to full

capability mode.
v An operator who had logged on issues the LOGOFF command.

Once the console is logged on, operators can use it to issue commands at the level
defined for the userid. This could be the level defined in the OPERCMDS class for
the userid, or lacking an OPERCMDS definition matching the command, the
authority of the console (originally defined in CONSOLxx). If you have some
consoles, perhaps those not in secure areas, that you want to require LOGONs,
LOGON (AUTO) and RACF profiles allow you to control operator logon. If an
operator wishes to issue a command requiring a higher level of authorization, and
the operator (through RACF checking of OPERCMDS profiles) has the required
level of authorization, the operator must log on to the console to be able to issue
the command successfully. The operator authority (defined in the OPERCMDS
class) then replaces the console authority. When the operator logs off, the system
automatically issues the LOGON for the console name, thus reverting back to the
original console authority.

When using LOGON(AUTO), you should ensure that at least one operator is
logged on with master authority to be able to communicate with the system.

68 z/OS V2R1.0 MVS Planning: Operations

Synchronous WTORs can be displayed on LOGON(AUTO) consoles only after the
consoles have been logged on.

Required LOGON
To audit all command activity by operator userid or to control which commands
individual operators may issue, specify LOGON(REQUIRED) on either the
CONSOLE statement or the DEFAULT statement. Specifying LOGON(REQUIRED)
is especially important for SMCS consoles. Before setting LOGON(REQUIRED),
your installation must define RACF profiles for all operators and for the
commands and consoles you want to protect. When protecting commands and
consoles with RACF resource profiles, both the OPERCMDS and CONSOLE class
must be active. Also, before setting LOGON(REQUIRED), your installation must
define the name of the system console as a valid USERID to RACF. IBM
recommends that, if you plan to use LOGON(REQUIRED) for your installation,
you define the system console in CONSOLxx and do not use the system default
name as the name of the system console.

When LOGON(REQUIRED) is in effect, all operators must log on before issuing
commands, and your installation can limit the commands they can issue. If an
operator tries to issue a command without logging on, the system rejects the
command and issues a message. The system also rejects any command the
operator is not authorized to issue. To change LOGON(REQUIRED) on the
DEFAULT statement, you must re-IPL the system. You can use the VARY CN
command to change LOGON(REQUIRED) on the CONSOLE statement.

During system initialization, the system accepts commands only from a master
authority console (or the system console) until RACF is fully initialized and able to
process LOGON requests. Allowing commands from a master authority console
before RACF is fully initialized allows an operator to intervene if required to
complete RACF initialization.

Once RACF is initialized, the LOGON prompt appears on all MCS display
consoles. The LOGON prompt requires the operator to log on by supplying at least
a userid and password. The LOGON prompt also appears:
v When a console changes from status display or message stream to full capability
v When the console is brought on line by a VARY command
v When an SMCS console is activated
v When the current operator logs off

When LOGON(REQUIRED) is in effect, no operator should leave the console
unattended without first issuing the LOGOFF command. Issuing LOGOFF leaves
the console in a secure, unattended state. For an MCS console, messages continue
to appear on the console, but the system does not accept any command from that
console until an operator logs on to the console. For SMCS consoles, the console
session is terminated.

When using LOGON(REQUIRED), you should also ensure that at least one
operator is logged on with master authority to be able to communicate with the
system.

Synchronous WTORs can be displayed on LOGON(REQUIRED) consoles only after
the consoles have been logged on.

Chapter 2. Defining console configuration 69

Optional LOGON
If you do not need special command auditing, you can specify
LOGON(OPTIONAL). LOGON(OPTIONAL) allows console command
authorization (defined by AUTH on the CONSOLE statement) to determine
whether the system is to accept the command being issued on the console.

Synchronous WTORs can be displayed on LOGON(OPTIONAL) consoles that are
active, even if the consoles are not logged on.

MVS commands, RACF access authorities, and resource
names

For lists of all MVS commands, the RACF access authority associated with them,
and the RACF resource name for the profile, see the table MVS Commands, RACF
Access Authorities, and Resource Names in Defining and Changing Console
Characteristics of z/OS MVS System Commands.

Handling Unrecognized Commands

To handle MVS system commands that operators might enter but which the system
does not recognize, create an MVS.UNKNOWN profile for RACF auditing, and
define a universal access authority of READ.

Some command processors, including CANCEL, FORCE, MODIFY, and STOP, will
also use this resource when auditing unknown tasks or address spaces.

When you specify auditing, the auditing records contain the full text of the
commands as entered.

Other ways to control command authority for consoles
If you do not use RACF to override MCS, HMCS or SMCS console authority, you
can authorize specific commands issued from an MCS, HMCS or SMCS console
through the command installation exit. You can specify command installation exits
in MPFLSTxx. See “Command installation exits” on page 124.

Planning console functions for operators
CONSOLxx allows you to plan MCS, HMCS and SMCS console screen functions
for your operators. How operators do work on consoles is affected by the
following factors:
v The capability of the console to send commands and receive messages or status

displays
v The volume of messages on the console screen
v How messages roll or wrap on the screen and how quickly they move or are

overlaid
v How easily operators can delete unnecessary messages from the screen
v The presence of out-of-line display areas for system status displays
v Message format and the information that appears in message displays
v How easily and efficiently operators can enter commands

In CONSOLxx, you can establish the use of an MCS display console. The USE
attribute for the console controls whether an operator can send commands as well
as receive messages and status. To accept commands and receive messages, your

70 z/OS V2R1.0 MVS Planning: Operations

console must be a full-capability console. On the other hand, an output-only
console is useful for an operator who only needs to monitor messages or status
displays.

How operators delete unwanted messages from the console screen has a direct
effect on the work they do. Message traffic, especially large numbers of unsolicited
messages or certain kinds of informational messages, can be controlled through
MPF message suppression. Important action messages that require a specific
operator response can be retained for later viewing by operators if AMRF is active.
However, operators need to be able to respond quickly to action messages and
remove unnecessary messages from the screen. Setting up screen functions to help
operators handle messages efficiently is an important part of console planning.

In CONSOLxx, you can establish whether messages roll or wrap on the console
screen, whether action messages are to be isolated from other types of messages, or
how operators can manually delete messages by letting them verify deletion
requests. You can also specify a hold-mode function for consoles in roll,
roll-deletable, or wrap mode so that the operator can “freeze” the screen to view
an important message.

You can define out-of-line display areas for an MCS, HMCS or SMCS console. An
out-of-line display area is a specified part of the screen that can receive status
displays separate from the other messages that appear. Output from certain
commands like CONFIG, DISPLAY, or DEVSERV can be directed to these specific
console areas on the screen for operators to view.

You can control the message format so that certain information can appear or be
suppressed. Examples: you can control whether the jobname or system name
should accompany a message, and whether status displays contain or suppress
information about certain events like job starts or stops, when a data set is freed,
or information about TSO/E users.

Finally, you can define PFKs or control the multiple entry of commands for MCS,
HMCS or SMCS consoles. Establishing PFKs for your MCS, HMCS or SMCS
consoles allows you to control command functions for operators so that they can
enter frequent commands quickly and easily from their consoles. You can also
define a command delimiter for MCS, HMCS or SMCS consoles so that operators
can enter multiple commands on the command line.

How to control the use of an MCS console
The devices that you have defined as MCS consoles can function as:
v Full-capability consoles
v Status-display consoles
v Message stream consoles

The devices that you have defined as SMCS consoles can function only as
full-capability consoles.

Full capability consoles

A full-capability console has both input and output capability; the console can be
used both to enter commands and to receive status displays and messages. You can
also control how messages move on the screen of a full capability console and how
operators can delete those messages as they fill the screen. For example, you can
specify that messages roll off the screen as the screen fills (roll or roll-deletable

Chapter 2. Defining console configuration 71

mode) or that messages wrap, that is, overlay old existing messages on the screen
(wrap mode). For consoles in roll, roll-deletable, or wrap mode, you can define
HOLDMODE that allows operators to freeze the screen to view messages.

With all modes but wrap mode, you can divide the screen of a full-capability
console so that part of it receives general messages and the other part receives
status displays. When a status display is not on the screen, MCS uses the status
display area for general messages.

Status Display Consoles

A status display console has output capability only; it cannot be used to enter
commands. The system uses the screen to receive status displays.

Message Stream Consoles

A message stream console also has output capability only; it cannot be used to
enter commands. The system uses the screen to present general messages.

Note: In this book, the term output-only mode refers to status display mode and
message stream mode.

An operator can change a full-capability console to message stream or status
display. When the change occurs, the PFK display line, the instruction line, and the
entry area are incorporated into the message area or the display area. Once a
display console enters message stream or status display mode, it can accept no
more input; you must use another console to enter commands.

Examples of MCS console screens
Figure 8 on page 73 shows screens of a full-capability, status display, and
message-stream console:

72 z/OS V2R1.0 MVS Planning: Operations

Message area is that part of the display where messages appear. Display area is
that part of the screen where status displays appear.

On full-capability console screens of 3277-2 models, the PFK display line displays
the numbers of the PFKs to select with the selector pen.

On all full-capability console screens, the instruction line displays console screen
control messages in response to certain actions (for example, if the operator makes
a CONTROL command error). The entry area (1 or 2 lines) allows operators to
enter commands on full-capability console screens.

The warning line on full-capability and message stream console screens warns the
operator of conditions that could require action (for example, when the message
area is full and one or more messages is waiting to appear.)

Operator information on the status of the console appears on some console screens
in the operator information area.

Defining the USE attribute
Use the following keyword on the CONSOLE statement to define how to use a
display console:

USE Controls how the display console is used:

Figure 8. Screen Formats of a Full-Capability, Status Display, and Message Stream Console

Chapter 2. Defining console configuration 73

The following are options for USE:

FC Defines a full-capability console able to enter commands and receive status
displays and messages

MS Defines a message stream console

SD Defines a status display console.

If a console is an input/output device, the default operating mode is full-capability
(FC).

SMCS consoles must specify the FC option.

Message display and the full-capability console screen
As programs execute during system operation, the message area of a full-capability
console screen fills with messages that operators might need to delete. The system
can automatically remove messages from a console screen, or operators can make
room for more messages by manually deleting non-action messages and messages
for which action has been taken.

You can define automatic message deletion mode for an MCS, HMCS or SMCS
console. With automatic message deletion, the system removes old messages
without operator assistance as the screen fills. “Specifying automatic message
deletion for MCS, HMCS or SMCS consoles” describes how you can control the
automatic message deletion mode for a console. It describes automatic mode, roll
mode, roll-deletable mode, and wrap mode. To handle frequent messages that
appear on full-capability MCS, HMCS or SMCS consoles, it is a good idea to use
roll, roll-deletable, or wrap mode. Specifying one of these automatic message
deletion modes prevents messages from backing up on system queues while the
system waits for screen space.

With roll, roll-deletable, and wrap modes, you can also specify that the system
freeze the console screen for easier viewing of messages. “Temporarily suspending
the screen roll” on page 77 describes HOLDMODE, the console option that allows
the operator to freeze the console screen to view messages.

Operators can also manually delete non-action messages from a full-capability
console screen. You can control whether an operator must verify a manual deletion
request to make changes or corrections. “Manual deletion of messages” on page 79
describes how operators can manually remove messages from a console screen.

You can also activate the action message retention facility (AMRF) so operators can
retrieve messages that have disappeared from the console screen. The action
message retention facility helps operators deal with the heavy volume of message
traffic in a system or sysplex. “Retaining messages” on page 118 describes message
retention of action messages.

Specifying automatic message deletion for MCS, HMCS or
SMCS consoles

Use the following keyword on the CONSOLE statement in CONSOLxx to control
automatic message deletion:

DEL Specifies the mode for message deletion

The following are options for DEL:

74 z/OS V2R1.0 MVS Planning: Operations

Y Specifies automatic deletion mode

N Specifies that messages can only be manually deleted from the console
screen

RD Specifies roll-deletable mode; roll-deletable mode is the default.

R Specifies roll mode

W Specifies wrap mode

Automatic mode

In automatic mode, messages are removed whenever the message area becomes
full, or when a status display is overlaying messages in the bottom portion of the
message area. Flagged messages are the only messages removed under automatic
mode. These messages include:
v Action messages for which the action has been taken
v System or problem program messages that are marked deletable by the issuer
v Messages that are indicated as deletable at job step end
v WTOR messages that have been answered
v WTOR messages that have not been answered but that are associated with a job

step that has ended

Roll and roll-deletable modes

In roll mode, a specified number of messages are removed (or “rolled off”) when a
specified time interval elapses. Roll mode is particularly useful for monitoring
heavy message traffic.

Roll-deletable mode is the same as roll mode except that action messages are not
removed; they accumulate at the top of your screen. The operator can then delete
the action messages one at a time, either by using the CONTROL E command or
placing the cursor or light pen on the “*” or “@” that precedes the message and
pressing ENTER.

Use the following keywords to control the rate of rolling for a console screen in
roll or roll-deletable mode:

RNUM
Controls the number of lines per screen roll; the default is 5 lines per roll.

RTME Controls the rate of the screen roll; the default is 2 seconds between rolls.

To request that roll mode go into effect and that two messages be rolled every
second, code the following parameters on the CONSOLE statement for the console:
DEL(R) RNUM(2) RTME(1)

For roll mode and roll-deletable modes, messages are not numbered on the screen.
Instead, a two-digit number appears in the first new message line after each screen
roll. This number indicates the number of messages waiting for display, and
includes any messages hidden by the status display information. If the number of
lines waiting for display is more than 99, AA appears in the first new message line.

Adjusting RNUM and RTME values

Because system workload can vary, you might want to change RNUM and RTME
values to meet the needs of your installation. To illustrate how you would code the

Chapter 2. Defining console configuration 75

values in CONSOLxx, assume for a console named TAPEMSG, that you want to
define roll-deletable mode with five messages being deleted every 10 seconds.
Also, you want each message to display the system name from where the
messages are issued. Code the statement in CONSOLxx as follows:
CONSOLE DEVNUM(0C6) NAME(TAPEMSG) DEL(RD) RTME(10) RNUM(5) MFORM(S)

For a description of MFORM, see “Controlling the format of messages and status
information on console screens” on page 83.

Wrap mode

In wrap mode operators can view messages without having messages move off the
screen. When the screen is full, new messages overlay older messages. As the
messages begin to fill up the screen in wrap mode, they appear from top to bottom
on the console screen with the old messages on the top and the newer messages on
the bottom.

The console screen still preserves the instruction line, entry area, and warning line.
(See Figure 10 on page 77.) However, when the screen is filled, the messages
themselves do not roll off the screen. Instead a highlighted separator line that
separates the last displayed message from the newest displayed message moves to
indicate the new boundary between old and new messages. (A two-digit number
at the beginning of the separator line indicates the number of messages waiting for
display.)

When a new message cannot fit on the screen, the separator line overlays the
oldest message at the top of the screen and the new message appears at the
bottom.

As new messages are added, the separator line continues to move and overlay the
next oldest message on the screen with the newest message always appearing
above the line:

IEE600I REPLY TO 01 IS:NONE
ICH501I -- RACF IS NOT ACTIVE --
IEF677I WARNING MESSAGE(S) FOR JOB JES2 ISSUED

*02 $HASP426 SPECIFY OPTIONS -- JES2 SP 3.1.1
ISG011I SYSTEM SYSTEM2 - JOINING GRS COMPLEX
ISG004I GRS COMPLEX JOINED BY SYSTEM2
CSV210I LIBRARY LOOKASIDE INITIALIZED

*IEE352A SMF ENTER DUMP FOR SYS1.MANA ON PAGE98
04 --

IEA180I USING IBM DEFAULT VALUE PFK DEFINITIONS.
NO PFK TABLES REQUESTED

IKJ712I DEFAULT VALUES WERE USED FOR TEST
IKJ712I DEFAULT VALUES WERE USED FOR PLATCMD
IRA600I SRM CHANNEL DATA NOW AVAILABLE FOR ALL SRM FUNCTIONS
ICH508I ACTIVE RACF EXITS: ICHDEX01
ICH509I SYSRACF DD STATEMENT NOT SPECIFIED INMSTRJCL OR

ALLOCATION FAILURE FOR RACF DATA SET
*01 ICH502A SPECIFY NAME FOR PRIMARY RACF DATASET SEQUENCE 091 OR

’NONE’
R 1,none

IEE612I CN=C3E0SS1 DEVNUM=0FE SYS=SYSTEM1 CMDSYS=SYSTEM1 USERID=JIM

IEE163I MODE=W

Figure 9. Example of a Full Wrap Mode Screen

76 z/OS V2R1.0 MVS Planning: Operations

Figure 10 shows the same screen when a new message (IEE366I) appears:

Specifying RTME for WRAP mode

You can specify RTME for wrap mode to update the screen. An RTME value of 1/4
or 1/2 second is good for a console in wrap mode. You should verify that your
console can handle a rapid update rate before setting the RTME value to 1/4 or
1/2 second. To specify wrap mode for a console that displays a message every 1/2
second, code the following on the CONSOLE statement for the console:
DEL(W) RTME(1/2)

Restrictions using Wrap Mode

In wrap mode, new messages overlay WTORs and action messages; unlike these
messages in roll deletable mode, WTORs and action messages are not retained on
the screen. Note also that for a console screen in wrap mode, you cannot use the
following commands:
v CONTROL A to define or change out-of-line display areas
v CONTROL D,N,HOLD to number and hold messages
v CONTROL E,nn(,nn) to remove specified lines from the screen
v CONTROL E,F to remove flagged messages from the screen
v CONTROL E,N to remove message numbers from the screen

Note that using CONTROL E,SEG to eliminate groups of messages from a console
screen in wrap mode clears the entire screen of messages. Consoles in wrap mode
do not use out-of-line areas.

Temporarily suspending the screen roll
Operators might need to suspend a rolling screen of messages to copy information
from the screen or consult a messages reference book. To suspend a rolling screen
of messages, you can use HOLDMODE to control how operators temporarily
suspend or hold screens when in roll, roll-deletable, or wrap mode.

IEE600I REPLY TO 01 IS:NONE
ICH501I -- RACF IS NOT ACTIVE --
IEF677I WARNING MESSAGE(S) FOR JOB JES2 ISSUED

*02 $HASP426 SPECIFY OPTIONS -- JES2 SP 3.1.1
ISG011I SYSTEM SYSTEM2 - JOINING GRS COMPLEX
ISG004I GRS COMPLEX JOINED BY SYSTEM2
CSV210I LIBRARY LOOKASIDE INITIALIZED

*IEE352A SMF ENTER DUMP FOR SYS1.MANA ON PAGE98
IEE366I NO SMF DATASETS AVAILABLE--DATA BEING BUFFERED TIME*13:42:42

03 --
IKJ712I DEFAULT VALUES WERE USED FOR TEST
IKJ712I DEFAULT VALUES WERE USED FOR PLATCMD
IRA600I SRM CHANNEL DATA NOW AVAILABLE FOR ALL SRM FUNCTIONS
ICH508I ACTIVE RACF EXITS: ICHDEX01
ICH509I SYSRACF DD STATEMENT NOT SPECIFIED INMSTRJCL OR

ALLOCATION FAILURE FOR RACF DATA SET
*01 ICH502A SPECIFY NAME FOR PRIMARY RACF DATASET SEQUENCE 091 OR

’NONE’
R 1,none

IEE612I CN=C3E0SS1 DEVNUM=0FE SYS=SYSTEM1 CMDSYS=SYSTEM1 USERID=JIM

IEE163I MODE=W

Figure 10. Example of the Wrap Mode Screen after the Next Wrap

Chapter 2. Defining console configuration 77

Use the following keyword on the DEFAULT statement of CONSOLxx:

HOLDMODE
Specifies that you want hold mode for MCS consoles in the system; if YES,
your operators can temporarily hold the message screen by entering nulls
on the command line or by pressing the enter key. If NO, operators cannot
use this method to hold messages on the screen.

When hold mode is in effect, an operator can press enter to hold the screen and
read messages. The following shows the bottom of the console screen when
HOLDMODE is in effect:

IEE163I MODE = HELD

The following shows the bottom of the console screen in HOLDMODE when
messages are waiting to be displayed:

IEE163I MODE = HELD IEE159I MESSAGE WAITING

The following shows the bottom of the console screen in HOLDMODE when
messages are overlaid by a status display:

IEE163I MODE = HELD IEE160I UNVIEWABLE MESSAGE

To release the screen and return to roll, roll/deletable, or wrap mode, the operator
presses enter again. HOLDMODE has system scope; if you define HOLDMODE in
CONSOLxx for a system in a sysplex, it applies only to the MCS, HMCS or SMCS
consoles on that system. If messages are backed up on a system when a console is
in hold mode, hold mode for the console is released.

Operators can also suspend the console screen using PFKs if the IBM defaults for
console PFKs are in effect:
1. Press PFK 5 to stop messages from rolling. (At IPL, PFK 5 is assigned the

command CONTROL S,DEL=N.)
2. Press PFK 6 to place the screen in roll-deletable mode and prevent message

backup. (At IPL, PFK 6 is defined as CONTROL S,DEL=RD.)

Comparison of roll, roll-deletable, wrap modes, and
HOLDMODE

Table 12 shows a comparison of roll mode, roll-deletable mode, and wrap mode,
and options you can specify including HOLDMODE.

Table 12. Comparison of Roll, Roll-deletable, and Wrap Mode

Mode HOLDMODE
allowed as option

RTME
allowed
as option

RNUM
allowed
as option

How action
messages are
handled

Roll Yes Yes Yes Roll off the screen
after RTME interval

Roll-deletable Yes Yes Yes Accumulate at top of
screen. Operator
removes them.

Wrap Yes Yes No Overlaid by new
messages

78 z/OS V2R1.0 MVS Planning: Operations

Manual deletion of messages
Operators can manually delete messages from the screen using the CONTROL E
command, the cursor, or the selector pen. If your operators need to obtain screen
space quickly, they can manually delete non-action messages as follows:
v Use the cursor or selector pen
v Use the CONTROL E command to select groups of messages to delete

Message deletion, like command entry, can be either conversational or
nonconversational. In conversational mode, the operator must verify the deletion
request using the cursor, selector pen, or CONTROL E command before the system
can remove the messages from the screen. When the operator performs one of
these functions, the screen displays the messages to be deleted and asks for
verification. The operator can then make corrections or changes, if necessary, and
then press the enter key.

In nonconversational mode, the operator can use the cursor, selector pen, or
CONTROL E command to manually delete messages; however, the deletion
requests do not need to be verified and messages are immediately deleted when
the operator performs the function. This procedure minimizes operator
intervention.

Use the following keyword on the CONSOLE statement to control conversational
mode for the console:

CON Specifies whether you want conversational mode

In conversational mode where the operator must verify a deletion request, the
procedure to manually delete non-action messages is as follows:

Chapter 2. Defining console configuration 79

Manual deletion -
operator must verify

Using a selector pen or cursor Using the
CONTROL
command

If CON(Y) and either
DEL=NO or
DEL=R/RD is not
specified

1. Place the pen or cursor on any part of a
non-action message

2. Press ENTER key

3. Vertical lines appear in position 3 of the
non-action message and each non-action
message above it.

In the instruction line, the following
message appears:

IEE157E DELETION REQUESTED

4. Message line numbers appear on screen.

CONTROL E command appears on
command line indicating the request.

5. Verify the request, make changes, if
necessary, and press the ENTER key

To cancel the request, perform the cancel
operation (PA2).

1. If DEL(N), enter
CONTROL D,N to
display message
line numbers

2. Enter CONTROL
E,line number of
non-action
message to delete
(on CONTROL E,
you can also
specify a range of
lines to delete, a
SEG value, or F to
remove all flagged
messages. See
z/OS MVS System
Commands.)

3. CONTROL E
command appears
on command line
as entered

4. Verify the request,
make changes, if
necessary, and
press the ENTER
key

In non-conversational mode, the procedure to manually delete messages is as
follows:

Manual deletion - no
verification

Using a selector pen or
cursor

Using the CONTROL
command

If CON(N) 1. Place the pen or cursor
on any part of a
non-action message

2. Press the ENTER key

The non-action message
and all non-action
messages above it are
deleted from the screen.

1. Enter CONTROL D,N to
display message line
numbers (if DEL(N))

2. Enter CONTROL E,line
number of non-action
message to delete (on
CONTROL E, you can
also specify a range of
lines to delete, a SEG
value, or F to remove all
flagged messages. See
z/OS MVS System
Commands.)

The messages are deleted
from the screen.

How operators specify message numbering
If the console is not in automatic deletion mode, operators can control whether
they want the message line numbers on the console screen. With message line
numbers, they can more easily determine the range of messages to delete using

80 z/OS V2R1.0 MVS Planning: Operations

CONTROL E or CONTROL E,SEG. Consecutive numbers in positions one and two
appear for each message line, including continuation lines, for all message area
messages except status displays. A numbered message appears as follows:
12 IEE041I THE SYSTEM LOG IS NOW ACTIVE

To request message numbering, operators use the CONTROL D,N and CONTROL
E,N commands to display and erase message numbers:
1. Enter CONTROL D,N to display consecutive numbers in character positions

one and two of each message area line
2. Enter CONTROL E,N to remove the message numbers from the screen when

CONTROL D,N HOLD is in effect

When the operator issues CONTROL D,N and then deletes a message or cancels an
action, the numbers are removed from the screen. To ensure that the remaining
messages are renumbered, the operator can add the HOLD operand to the
command.

Note:

1. Automatic message deletion (automatic mode, roll mode, or roll-deletable
mode) stops message numbering requested by the CONTROL D,N,HOLD
command.

2. Because a display console screen can be “burned” by the number images, it is
recommended that you do not have the messages numbered all of the time.
When you are in conversational mode and delete messages by the CONTROL
command, all messages are temporarily numbered so that you can verify that
you have entered the correct delete command.

3. For very large screen sizes, only the first 99 rows can be numbered. All rows
after 99 contain AA in positions 1 and 2. Message lines with AA in the number
field cannot be deleted.

Using SEG to delete groups of messages from the screen
Operators can delete groups or “segments” of non-action messages on the screen
using the CONTROL E,SEG command. SEG specifies the number of message lines
to be deleted; you can define this value as a keyword on the CONSOLE statement.

Use the following keyword on the CONSOLE statement to specify the number of
lines the system deletes when an operator enters CONTROL E,SEG:

SEG Specifies the number of lines to be deleted when the operator enters a
CONTROL E,SEG command.

The IBM default depends on the type of console. z/OS MVS Initialization and Tuning
Reference provides default information for different console devices.

Status displays and MCS, HMCS and SMCS consoles
A status display is a formatted, multi-line display of information about some part
of the system. It is written to MCS consoles in full-capability or status display
mode and to HMCS and SMCS consoles, which must be in full capability mode, in
response to certain subsystem commands or the following MVS commands:
v DISPLAY
v CONFIG
v DEVSERV

Chapter 2. Defining console configuration 81

On consoles in status display or full capability mode, status displays are usually
presented in display areas (called out-of-line display areas) set aside for their use.
If you do not define one or more display areas, status displays appear in the
general message traffic. The information in the status display could, therefore, roll
off the screen before your operators can find it. “Setting up out-of-line display
areas on a console” describes how you set up status displays for your consoles.

When you have defined your status display consoles and console areas, your
operators can obtain information, such as the status of system devices and the
identification of the jobs active in the system, that can help you decide how best to
use system resources.

You can route the output of the DISPLAY, CONFIG, or DEVSERV commands to
any status display console or console area in your system or sysplex:
v DISPLAY provides information about job activity, TSO/E users, console

configuration, device status, and more.
v Output from CONFIG contains information about changes in the configuration

of processors, storage, channel paths, and other system resources.
v DEVSERV displays the status of DASD and tape devices.

For complete information on these commands, see z/OS MVS System Commands.

“Where to route status displays” on page 83 describes how you route information
from these commands to status display consoles and areas.

Setting up out-of-line display areas on a console
You can control the number of out-of-line display areas on a status display or
full-capability console screen and the size of each area. You can specify up to 11
different out-of-line display areas, the location of the areas, and the number of
screen lines in each area. In a sysplex, you might direct status information for
several systems to different console areas on one screen of a full-capability console.

You define out-of-line display areas for an MCS console, HMCS console or SMCS
console. The HMCS console and SMCS console must be in full-capability mode.
You define the areas from the bottom of the message area to the top of the area.
Each area consists of four or more screen lines designated to receive the status
displays.

For each out-of-line display area, the system assigns the alphabetic display area
identifiers. The bottom-most area is assigned identifier A and additional areas are
assigned identifiers in alphabetic order, working toward the top of the screen. The
identifier Z always refers to the portion of the message area that is not assigned.

Figure 11 on page 83 shows the screen format for a display console in
full-capability mode when two typical out-of-line display areas are defined for the
screen. The first (bottom-most) area has four lines, and the second has six lines.
After IPL, operators can route status displays using the location operand of the
DISPLAY and CONFIG commands to area A or B, or to the general message area.

82 z/OS V2R1.0 MVS Planning: Operations

Use the following keyword on the CONSOLE statement, to define the out-of-line
display areas for a console:

AREA Defines the console out-of-line display area. The total number of lines you
specify for all out-of-line display areas must not exceed the size of the
screen.

If you do not code the AREA parameter, the system defines two display areas for
status display consoles and one display area for full-capability consoles. The
number of lines in each area depends on the type of device.

Operators can use CONTROL A to change out-of-line display areas. For the
maximum display area sizes for all devices that MVS supports as consoles, see
z/OS MVS Initialization and Tuning Reference.

Where to route status displays
Operators can use the location operand (L=) of the DISPLAY and CONFIG
commands to route status displays to specific display areas on the requesting
console or to route displays to other consoles. However, operators must have the
proper authority to route information to another console using the L= operand.

See z/OS MVS System Commands for how to use the DISPLAY and CONFIG
commands.

Controlling the format of messages and status information on
console screens

On a display console, a message can appear by itself or with information about the
message, such as job and system identification and the time the message was
issued. In a status display, information about when jobs start or stop, when a data
set is freed, or information about TSO/E user sessions can appear. Also, mount
messages in status displays can contain specific information about mounting
volumes.

You can control the information for messages or status displays that operators
view on the console screen. Controlling message formats can help free up screen

General Message Area (Z)

Display Area B
(6 lines)

Display Area A
(4 lines)

Instruction Line
Entry Area
(1 or 2 lines)
Warning Line

Operator Information Area

Figure 11. Sample Screen Showing Two Out-of-Line Display Areas on a Full-Capability Console

Chapter 2. Defining console configuration 83

space or make it easier for operators to read messages. Controlling status
information can help operators monitor workload or handle job allocation that
requires mounting requests.

Use the following keyword and its options on the CONSOLE statement to control
information about messages for display:

MFORM
Controls the message format on a console screen.

Options you can specify for MFORM are as follows:

M Specifies that the system display only the text of the message without time
stamp, job id, or job name

J Specifies that the system display the job name or id along with the
message text

S Specifies that the system display the system name that originated the
message

T Specifies that the system display a time stamp with the message

X Specifies that the system suppress the job name and system name for JES3
messages issued from the global processor

How messages are displayed on the screen can affect your operations. Consider
eliminating information from displayed messages when:
v Messages wrap to a second line making it difficult for operators to read the

screen.
One way to prevent line wrapping, or to allow system name, job name, and time
stamp to be displayed with all the message text on one line, is to use an
emulator and set a large screen width to allow all the data to appear on one line.

v The system id is not important (for example, in a single system)

To request that the system add a time stamp, the name of the system that issued
the message, and the job name or id of its issuer, code the following on the
CONSOLE statement:
MFORM(J,S,T)

Operators can also use the CONTROL S command to make these same changes.
The format of a message that includes information in the previous example is:

Time stamp System name Jobname/id Message text

MCS, HMCS or SMCS console display

Defining the X option for an MCS, HMCS or SMCS console allows you to suppress
the system name and jobname for JES3 messages that are issued from the global
processor when those messages appear on the MCS, HMCS or SMCS console
screen.

For example, to suppress both jobname and system name for JES3 messages issued
on the global processor, code the following MFORM values on the CONSOLE
statement for the MCS console:
CONSOLE DEVNUM(devnum) NAME(conname) MFORM(T,J,S,X)

For an HMCS console, devnum must be HMCS. For an SMCS console, devnum
must be SMCS.

84 z/OS V2R1.0 MVS Planning: Operations

Displaying system names in a sysplex

In a sysplex, the number of characters displayed on the console screen for system
name depends on the longest name of the system that joins the sysplex. If SYSB is
the longest name, all system names will be four characters. If SYB is the longest
name, all system names will be three characters.

For example, if three systems in a sysplex are named SYS1, SY2, and S3, the
displayed messages from any system will have a four character system name:
SYS1 message
SY2 message
S3 message

If a system with longer name joins the sysplex, the length of the system name in
the messages is adjusted to accommodate the new name. For consistency, you
might want to use system names of the same character length.

DISPLAY R, CONTROL S, and MFORM

Operators can issue the DISPLAY R command with MFORM options to retrieve
information about messages awaiting action. In a sysplex, if the operator issues
DISPLAY R without MFORM, the format of the messages depends on how
MFORM has been specified for CONSOLxx or on the CONTROL S command:
v If CONTROL S has NOT been issued, the format of the messages depends on

MFORM values specified for CONSOLxx on the system where the command is
issued.

v If CONTROL S with MFORM options has been issued before the DISPLAY R
command has been issued, the format of the messages depends on MFORM
values specified for CONTROL S.

For JES3 multisystem environments, when DISPLAY R is issued without MFORM,
the system uses the S option as a default.

Displaying jobname, data set status, and TSO/E information
You can request that the system notify operators in status displays when the
following events occur:
v Whenever a job starts and ends
v Whenever a data set is freed
v Whenever a TSO/E user starts and ends a session

Use the following keyword on the CONSOLE statement to define job, data set, or
TSO/E information:

MONITOR
Specifies that you want to display certain status information

Options you can specify for MONITOR are as follows:

JOBNAMES
Specifies that the name of the job is displayed in status display areas
whenever the job starts and stops

STATUS
Specifies that data set names and volume serial numbers are displayed in
status display areas whenever data sets are freed

Chapter 2. Defining console configuration 85

SESS Specifies that the TSO/E user identifier is displayed whenever the TSO/E
session begins and ends

With JOBNAMES or SESS, you can add a time stamp (-T).

Use of MONITOR can affect the volume of messages that are produced and you
should carefully consider which of the MONITOR messages you need and which
you do not.

You can also use the SETCON MONITOR command to enable the production of
MONITOR related messages for automation or logging purposes. See “Enabling
message monitoring” on page 126 and the SETCON MONITOR command of z/OS
MVS System Commands, SA38-0666.

Adding information to mount messages
You can request that the system add certain information to all mount messages on
consoles. The MONITOR keyword on the INIT statement in the CONSOLxx
member controls whether the system adds information to mount messages for all
console status displays.

Use the following keyword and its options on the INIT statement to specify
information about mount messages for status displays:

MONITOR
Specifies that you want to display status information for mount messages

Options you can specify for MONITOR are as follows:

SPACE
Specifies that the available space on the direct access volume appears in
the message

DSNAME
Specifies that the name of the first non-temporary data set allocated on the
volume appears in the mount message that refers to it

Defining PFKs and other command controls for consoles
You can control the program function keys (PFKs) for MCS, HMCS or SMCS
consoles and also how operators can enter multiple commands using a command
delimiter.

Setting up PFKs for consoles
CONSOLxx and PFKTABxx let you define the PFKs for all your MCS, HMCS or
SMCS consoles on a system. For each console, you activate a PFK table — a table
that your installation has defined — by specifying the PFK table name on the
CONSOLE statement. The PFK table resides, optionally with PFK tables for other
consoles, in a PFKTABxx Parmlib member.

Using entries in the PFK table, you can:
v Assign one or more commands to a PFK for the console

You can associate the text of one or more commands with a PFK. Later, when an
operator presses this PFK on the console, the commands are entered into the
system.

v Assign one or more other PFKs to a PFK for the console

86 z/OS V2R1.0 MVS Planning: Operations

You can associate the commands assigned to other PFKs with a PFK.

To create PFK table entries, use the following keywords in the PFKTABxx member
of Parmlib:

TABLE
Defines the table to contain PFKs for the console. You associate this table
with the console by specifying the table name on the PFKTAB keyword of
the CONSOLE statement.

PFK Defines the program function key.

CMD Defines the command or commands to be assigned to the PFK.

KEY Associates the PFK you define with another key or list of keys.

CON Defines whether the PFK you define operates in conversational or
nonconversational mode.

Conversational or nonconversational mode applies to commands defined to a PFK.
In nonconversational mode, the commands associated with a key are entered
immediately when the operator presses the key on the console. In conversational
mode, pressing a PFK causes the command to appear in the entry area, but no
enter action takes place. Operators can change, enter, or cancel the command
according to their requirements.

In conversational mode, the cursor normally appears under the third non-blank
character when the command is in the entry area. If you want the cursor to appear
in a different location, when you define the command, type an underscore
immediately to the right of the character under which the cursor is to appear. The
system deletes the space occupied by the underscore in the actual command. For
example, if you add the following entry to a PFK table:
PFK(5) CMD(’D U,L=_XXX’) CON(Y)

pressing PFK 5 causes the following to appear in the entry area:
D U,L=XXX

If you want an underscore to appear in the command, use two underscores. They
are treated as one underscore, and are not used for cursor placement. For example,
if the PFKTAB table contains:
PFK(17) CMD("E_XXXXXXXX,SRVCLASS=BATT__HI"),CON(Y)

when you press PFkey 17, the entry area will contain
E XXXXXXXX,SRVCLASS=BATT_HI

Selector pens also use the definitions in PFK tables.

When you have created your PFK tables in PFKTABxx, you can associate them
with the consoles in your configuration. Specify the following keyword on the
CONSOLE statement to associate a PFK table with the console:

PFKTAB
Defines the name of the PFK table defined in PFKTABxx that contains
PFKs for this console. The name must be the same as the name for TABLE
in PFKTABxx.

Chapter 2. Defining console configuration 87

When you have defined the PFK tables for all your consoles, you can activate the
PFKTABxx member that contains the table definitions at IPL. Use the following
keyword on the INIT statement of CONSOLxx to activate PFKTABxx:

PFK Defines the name of the PFKTABxx member that contains the PFK
definition tables for your consoles. For PFK you specify a value that
corresponds to xx in PFKTABxx. If you specify NONE for PFK, the system
uses IBM defaults for console PFKs.

If you do not specify PFKs for your consoles or if the system does not find the
PFK parameter, it issues the message:
IEA180I USING IBM DEFAULT PFK DEFINITIONS. NO PFK TABLES REQUESTED.

IBM supplies defaults for PFKs 1 through 8 in IEESPFK in SAMPLIB.

In a sysplex, PFK settings have system scope; they apply only to the consoles on
the system where they are defined.

An example of defining a PFK table
The following example shows you how to define and activate a PFK table for a
console configuration defined in CONSOL01. In this example, the installation has
been using IBM defaults for PFKs 1 through 8. PFK table MVSCMDS to be created
will reside in the PFKTAB01 Parmlib member.

Procedure Coding of Parmlib Member

Create the PFK table named MVSCMDS Assign commands to PFK(nn) definitions in
PFKTAB01, where nn is the PFK number.

Associate MVSCMDS with a console Specify PFKTAB(MVSCMDS) on the
CONSOLE statement in the CONSOL01
Parmlib member.

Activate the PFKTAB01 Parmlib member
that contains the PFK table named
MVSCMDS

Specify PFK(01) on the INIT statement in the
CONSOL01 Parmlib member.

When you IPL the system, the system uses MVSCMDS to define the PFKs on your
console.

Use the same PFKTAB01 member to hold the PFK tables for your JES2 and tape
library operators. Figure 12 on page 89 shows the PFKTAB01 Parmlib member. It
contains three tables: MVSCMDS, JES2CMDS, and TLCMDS.

88 z/OS V2R1.0 MVS Planning: Operations

For information about using the CONTROL command to modify PFKs for a
console, see z/OS MVS System Commands.

Defining the command delimiter for full-capability consoles
You can define full-capability consoles so that operators can enter multiple
commands from the command line. You define a character that the operator can
use to separate MVS commands. Operators can divide a series of commands on
the command line using the character as the command delimiter. (You can also
specify multiple commands using the command delimiter when defining PFKs for
consoles.)

To define a command delimiter for MCS consoles, use the following keyword on
the INIT statement of CONSOLxx:

CMDDELIM

If you do not define a command delimiter, your operators cannot enter multiple
commands from a full-capability console.

You can also use a command delimiter to separate subsystem commands; however,
some delimiters might conflict with characters used in certain subsystem
commands like JES commands.

For command delimiter characters that you can use and the restrictions that apply,
see z/OS MVS Initialization and Tuning Reference.

Hardcopy processing
Hardcopy processing allows your installation to have a permanent record of
system activity and helps you audit the use of operator commands. You can record
system messages and, optionally, commands, by using either the system log
(SYSLOG) or the operations log (OPERLOG). The group of messages and

MVSCMDS

JES2CMDS

TLCMDS

Commands that define
PFKs for MVS consoles

Commands that define
PFKs for JES2 operations

Commands that define
PFKs for tape library
consoles

PFKTAB01

Figure 12. PFKTAB01 Parmlib Member.

Chapter 2. Defining console configuration 89

commands that is recorded is called the hardcopy message set. The system log or
operations log is called the hardcopy medium.

Hardcopy processing is required in a sysplex.

Note: The term “hardcopy log” can refer to:
v The system log (SYSLOG)
v The operations log (OPERLOG)

The hardcopy message set
The hardcopy message set represents messages that can be either recorded in
hardcopy on the system log or the operations log. The hardcopy message set is
usually sent to the current active log, either the system log or the operations log,
or both. The hardcopy message set is defined at system initialization and may
subsequently be changed by the VARY command.

Characteristics of the hardcopy message set
The hardcopy message set includes messages with one or more of the following
characteristics. Messages in the hardcopy message set:
v Have the “hardcopy only” message delivery attribute
v Are WTOR messages
v Have descriptor codes of 1, 2, 3, 11, or 12
v Have no routing codes
v Have an installation-specified routing code
v Are command responses of the installation's specified command level
v Have a message type specified.

Messages for which “no hardcopy” is requested are not included in the hardcopy
message set, regardless of their other characteristics.

Defining the hardcopy message set
Messages included in the hardcopy message set are either commands and
command responses or unsolicited system messages. Installations can control the
selection criteria for commands and command responses. Installations can control
some of the criteria for unsolicited system messages; some of the criteria are fixed.

You define criteria for messages in the hardcopy message set at system
initialization with the HARDCOPY statement in the CONSOLxx member of
Parmlib:
v For commands and command responses, the CMDLEVEL option of the

HARDCOPY statement controls the types of commands included in the
hardcopy message set.

v For unsolicited system messages, the ROUTCODE option of the HARDCOPY
statement controls the routing codes the system uses to select messages for the
hardcopy message set. If an option is not specified, the default value is used for
the hardcopy message set definition.

Once MVS has been initialized, you can modify the criteria of the hardcopy
message set using the VARY HARDCPY command.

Unsolicited system messages for which the criteria are fixed are those messages
that match one or more of the following characteristics:
v Have descriptor codes of 1, 2, 3, 11, or 12

90 z/OS V2R1.0 MVS Planning: Operations

v Are WTORs
v Have no routing codes
v Have a message type specified
v Are hardcopy only messages.

In a JES2 complex, you define the hardcopy message set in the CONSOLxx
member of parmlib. If you are using the JES3 hardcopy log (JES3 DLOG), it is
maintained on the JES3 global processor for all messages issued in the complex.
For information, see z/OS JES3 Initialization and Tuning Guide.

Printing the hardcopy message set
The hardcopy message set can be directed to either the system log, the operations
log, or both; the system log is printed periodically. To obtain a permanent log
about operating conditions and maintenance for all systems in a sysplex, you
should use a coupling facility OPERLOG log stream. To obtain a permanent log
about operating conditions and maintenance for a system operating independently,
you can use either a DASD-only OPERLOG log stream or SYSLOG.

The hardcopy medium
You can specify whether the hardcopy medium is the system log (SYSLOG) or the
operations log (OPERLOG) at system initialization using the DEVNUM keyword
on the HARDCOPY statement in the CONSOLxx member of Parmlib. Once the
system has been initialized, operators can use the VARY HARDCPY command to
redefine the hardcopy medium. Operators can only enter the VARY HARDCPY
command to change a hardcopy device from MCS, HMCS , SMCS or extended
MCS consoles with master authority.

Reference

For complete information about the HARDCOPY statement of CONSOLxx, see
z/OS MVS Initialization and Tuning Reference.

An extended MCS console can also receive the hardcopy message set. You request
that an extended MCS console receive the hardcopy message set by using the
MCSOPER macro with the HARDCOPY attribute on the OPERPARM parameter.
You can also use this macro to collect all the hardcopy messages from one or more
systems in a sysplex. See z/OS MVS Programming: Authorized Assembler Services
Reference LLA-SDU for information about the MCSOPER macro.

Hardcopy processing
In a sysplex, the values for the HARDCOPY statement have system scope; they
apply only to the system where HARDCOPY is defined. If you use the MCSOPER
macro to have an extended MCS console receive all the messages in the hardcopy
message set from one or more systems in a sysplex, it will receive messages from
the hardcopy message set as it is defined on each system.

Format of hardcopy records
Your hardcopy records can have a 2-digit year format or can have a 4-digit year
format. To specify use of a 4-digit year, use the HCFORMAT keyword on the
HARDCOPY statement in CONSOLxx. For any programs that read and analyze
hardcopy records (SYSLOG records, or OPERLOG records that have been
converted to the SYSLOG format), use the IHAHCLOG mapping macro. The
HCLFRMT or HCRFRMT fields will indicate which format is being used in the log
records. The HCL mapping is used for a 2-digit year format and the HCR mapping
is used for a 4-digit year format.

Chapter 2. Defining console configuration 91

Using OPERLOG
The operations log (OPERLOG) is a log stream that uses the system logger to
record and merge communications about programs and system functions from
each system in a sysplex. Only the systems in a sysplex that have specified and
activated the operations log will have their records sent to OPERLOG. For
example, if a sysplex has three systems, SYS A, SYS B, and SYS C, but only SYS A
and SYS B activate the operations log, then only SYS A and SYS B will have their
information recorded in the operations log.

IBM recommends that JES3 customers with a multisystem sysplex use an
OPERLOG coupling facility log stream and turn off JES3 DLOG and SYSLOG.

You can also use OPERLOG as a DASD-only log stream. This method is only
suitable for a single system sysplex, because a DASD-only log stream is
single-sysplex in scope and you can only have one OPERLOG log stream per
sysplex. This means that if you make OPERLOG a DASD-only log stream, only
one system can access it. See the system logger chapter of z/OS MVS Setting Up a
Sysplex for information on DASD-only log streams.

The messages are logged using message data blocks (MDB), which provide more
data than is recorded in the SYSLOG. You can use the sample program
IEAMDBLG, in SYS1.SAMPLIB, to convert OPERLOG records into SYSLOG
format.

The operations log is operationally independent of the system log. An installation
can choose to run with either or both of the logs. If you choose to use the
operations log as a replacement for SYSLOG, you can prevent the future use of
SYSLOG; once the operations log is started with the SYSLOG not active, enter the
WRITELOG CLOSE command.

Although the operations log is sysplex in scope, the commands that control its
status and the initialization parameter that activates it have a system scope,
meaning that a failure in operations log processing on one system will not have
any direct effect on the other systems in the sysplex. You can set up the operations
log to receive records from an entire sysplex or from only a subset of the systems,
depending on the needs of the installation.

Duplexing the OPERLOG logstream to coupling datasets (STG_DUPLEX = YES)
increases the recoverability of OPERLOG data in the event of a coupling facility
failure. However, it also increases overhead, slowing the servicing of OPERLOG
synchronous write requests to the logstream.

During a message flood, the slower synchronous write performance associated
with STG_DUPLEX = YES increases the likelihood of reaching the OPERLOG
extended console QLIMIT, resulting in the disabling of the OPERLOG EMCS
console and OPERLOG data loss.

While a coupling facility failure without staging datasets (STG_DUPLEX = NO)
makes recovering the OPERLOG logstream more difficult, messages lost from the
OPERLOG logstream will alternatively be available in SYSLOG, provided it is
active as a hardcopy medium.

Installations running with both SYSLOG and OPERLOG as hardcopy media should
consider the performance benefit of running without OPERLOG staging datasets
(STG_DUPLEX = NO).

92 z/OS V2R1.0 MVS Planning: Operations

Initializing the Operations Log

Before you can begin using the operations log, you must define a log stream using
the system logger services. Specify the name of the log stream as
SYSPLEX.OPERLOG in either the data administrative utility or in the IXGINVNT
macro. See z/OS MVS Setting Up a Sysplex for more information about preparing to
use a log stream and on sizing the coupling facility structure for OPERLOG.

You must also verify that the operations log will contain the messages you need.
Messages in the operations log will include the hardcopy message set, which you
control. See “The hardcopy message set” on page 90 for more information.

To activate the operations log manually, enter a VARY command.

Processing Operations Log Records

You might have your own programs for analyzing SYSLOG records in batch jobs.
These programs will not work with the operations log because the records are in
MDB format. You can convert your SYSLOG analysis programs to handle MDBs.
The IEAMDBLG sample program, available in SYS1.SAMPLIB, is an example of a
program that reads selected operations log records and converts them from MDB
to SYSLOG format for analysis. Information contained in the MDB but not in a
SYSLOG record, such as descriptor codes, are lost during this conversion.

Using SYSLOG
The system log (SYSLOG) is a data set residing in the primary job entry
subsystem's spool space. It can be used by application and system programmers to
record communications about problem programs and system functions. The
operator can use the LOG command to add an entry to the system log.

Note: You can change the SYSLOG data set characteristics dynamically through
the dynamic allocation installation exit. See z/OS MVS Installation Exits.

SYSLOG is queued for printing when the number of messages recorded reaches a
threshold specified at system initialization. The operator can force the system log
data set to be queued for printing before the threshold is reached by issuing the
WRITELOG command.

SYSLOG MPF flags
The MPF Request Flag field in the SYSLOG is an 8-character hexadecimal field
located at offset 46 in each SYSLOG record (a zero-relative offset is assumed).

The following information is from the IHAHCLOG member of SYS1.MODGEN,
which maps a SYSLOG record.

The following hexadecimal values in the 8-character field are pertinent:
xxxxxxxx
8....... - message text changed
4....... - route codes changed
2....... - descriptor codes changed
1....... - message queued to specific active console

.8...... - unused

.4...... - message queued by route codes only

.2...... - console ID was changed

.1...... - minor lines of MLWTO processed by exit

..8..... - the message was deleted (this never appears!)

Chapter 2. Defining console configuration 93

..4..... - suppression was overridden (DISPLAY was forced)

..2..... - forced to hardcopy (LOG forced)

..1..... - bypass hardcopy (this never appears!)

...8.... - forced to hardcopy only (LOG and NODISPLAY)

...4.... - broadcast

...2.... - don’t broadcast

...1.... - don’t retain in AMRF (NORETAIN)

....8... - retain in AMRF (RETAIN)

....4... - retrieval key changed

....2... - 4-byte console ID changed

....1... - message type changed

.....8.. - do not automate (set by MPFLSTxx and NOAUTO)

.....4.. - automate (set by MPFLSTxx)

.....2.. - message issued hardcopy-only

.....1.. - unused

......8. - message not serviced by any exit

......4. - ESTAE error in IEAVX600

......2. - message not serviced, incompatible request

......1. - automation requested (AUTO)

.......8 - Message Flood Automation processed this message

.......4 - suppressed by subsystem

.......2 - suppressed by exit (NODISPLAY)

.......1 - suppressed by MPF (set by MPFLSTxx and NODISPLAY)or Message
Flood Automation

Note that in any column, these hexadecimal values are additive. For example, in
the case of message flood automation, if you request LOG, NODISPLAY,
NOAUTO, you get a field containing '00080A09' which is interpreted as:
v message forced to hardcopy-only
v don't automate message
v message issued to hardcopy-only
v Message Flood Automation processed this message
v message suppressed by MPF

Hardcopy failure
Table 13 demonstrates what happens when either SYSLOG or OPERLOG are
active/inactive and one or the other fails. Use this table in configuring your
desired backup for hardcopy.

Table 13. Hardcopy failure backup configurations.

SYSLOG OPERLOG If SYSLOG fails If OPERLOG fails

Active Active No SYSLOG.

Hardcopy processing
available on
OPERLOG

No OPERLOG.

Hardcopy processing
available on SYSLOG

Active Inactive Hardcopy processing
is suspended

N/A

Inactive Active N/A Hardcopy processing
is suspended

Inactive Inactive N/A N/A

94 z/OS V2R1.0 MVS Planning: Operations

Temporarily disabling the hardcopy medium
If you are using SYSLOG as the hardcopy medium and it is not operating properly,
MVS saves the messages in log buffers until their number reaches the value of
LOGLIM. When this limit is reached, messages are held until there is no storage
available for them. At this point, no new messages can be displayed; the only way
to re-start the log is to de-activate it. This requires a re-IPL.

A parameter is available to turn off hardcopy. The parameter, UNCOND, is coded
on the VARY command. For example:
VARY SYSLOG,HARDCPY,OFF,UNCOND

After this command is executed, you can remove SYSLOG as the hardcopy
medium, and WRITELOG CLOSE is accepted.

Note: This should be a temporary measure because, if SYSLOG has been removed
the system can lose messages from hardcopy.

If SYSLOG is removed and it was the only hardcopy medium, it is considered
temporarily off. Log buffers can be saved only until they reach LOGLIM. After this
point some messages can be lost, but the outage will be prevented.

Chapter 2. Defining console configuration 95

96 z/OS V2R1.0 MVS Planning: Operations

Chapter 3. Managing messages and commands

Whether you are defining a console configuration for a system or for several
systems in a sysplex, you must take into account your operators, the amount of
message traffic they must handle, and command processing.

Messages and commands form the basis of operator communication in an MVS
system or sysplex. Message routing, sending the appropriate messages to the right
consoles, helps your operators manage work efficiently. Message routing using
CONSOLxx can simplify the work operators need to do.

If you want to increase system automation to simplify operator tasks, you should
examine message flow to determine which messages you can select for your
automation tasks and which you can suppress. Suppressing messages is important
in any MVS environment because your operators deal with fewer messages on
their console screens. Message suppression also serves as a basis for your NetView
automation planning.

In a sysplex, operators can also route commands from a console on one system to
be processed on one or more other systems in the sysplex. You might want to
encourage the use of system symbols in routed commands so you can identify the
systems that process those commands.

MVS provides message processing facilities to help you and your operators cope
with message flow on consoles. For example, MPF or the installation message
processing exit IEAVMXIT can help you select messages to suppress or to perform
further processing like message highlighting for more readable console displays.
AMRF lets your operators retrieve important action messages no longer visible on
the console screen. The MVS command installation exit lets you process and tailor
system commands. You use one or more MPFLSTxx members in SYS1.PARMLIB to
control much of this message and command processing for an MVS system. The
SETCON MONITOR command lets you produce monitored messages for
automation purposes or for logging purposes without requiring that the messages
be queued to a console. The message flooding automation as described in
Chapter 4, “Message flooding,” on page 141 can help address the message flooding
problem on z/OS.

This chapter describes how to manage messages and commands in an MVS system
or sysplex. It describes message and command routing and the message processing
that MVS provides to suppress messages, retain messages for console viewing by
operators, and select messages for automation or for further processing by
installation exits, and a brief description of automation in a sysplex. It also
provides information on controlling WTO and WTOR message buffers, specifying
installation exits to process commands, and using the MVS message service to
handle the translation of messages into other languages. For additional
information, see the section on issuing a command response message in z/OS MVS
Programming: Authorized Assembler Services Guide.

© Copyright IBM Corp. 1988, 2013 97

General characteristics of messages and commands
Operators can issue commands to correct problems or to query the system to
determine if it is operating properly. They often do this in response to system
messages. Some messages require a reply from the operator. These messages are
called WTORs (write-to-operator-with-reply). The operator responds to these
messages by entering the REPLY command. Automation programs like NetView
use messages and command lists to simplify operator tasks and actions.

Messages and commands can be routed throughout a system or sysplex; the
routing of messages and commands is an important part of operations planning.
You want to ensure that operators are receiving the necessary messages at their
consoles to perform their tasks. You want to be able to select the proper messages
for suppression, automation, or other kinds of message processing.

Commands in a sysplex can run on other systems and affect system processing. In
a sysplex, operators can also route commands from one system to another for
processing. You might want to limit command processing to a specific system in
the sysplex, or handle commands through command installation exits.

MVS messages have routing codes and message levels that, in large part,
determine how messages are routed in a system or sysplex. Routing codes are
decimal numbers from 1 to 128 that can be assigned to a console. Routing code
functions include:
v Indicating messages that require a specific operator action, such as routing code

1 (primary operator action).
v Indicating messages that convey information about a specific system function or

operator area. For example, messages with routing code 5 convey information
about the tape library.

v Indicating an error condition. For example, messages with routing code 10
convey information about a system error, an uncorrectable I/O error, or
information about system maintenance.

v Indicating a more specific meaning. For complete information, see any volume
of z/OS MVS System Messages.

For MCS, SMCS and extended MCS consoles, you can specify which routing codes
the console is to receive.

Message levels allow MVS to select messages according to the severity of the
condition or situation described in the message. Message levels can range from
WTOR messages that require an operator response, to informational messages that
indicate system status. You assign these levels to specific MCS, SMCS or extended
MCS consoles so the system can direct messages at those levels to the console. For
example, you can assign message level (R) for WTOR messages to a full-capability
console that handles critical system messages. Assigning message levels to the
appropriate consoles in your configuration is a good way to control message traffic
for MCS, SMCS and extended MCS consoles.

The system sometimes issues synchronous messages that bypass normal message
delivery. These messages might require immediate operator action or can indicate
system problems. You can define a group of consoles from which MVS can select a
candidate to display these synchronous messages. For more information, see
Chapter 2, “Defining console configuration,” on page 19.

98 z/OS V2R1.0 MVS Planning: Operations

Message and command routing
Understanding message and command flow in an MVS system or sysplex can help
you handle message and command processing.

Message flow in a system
When MVS issues either a write-to-operator (WTO) message or
write-to-operator-with-reply (WTOR) message, message processing exits receive
control to allow the installation to process the message. Each time a WTO or
WTOR message is issued, it flows through message exit IEAVMXIT, if it exists. You
can specify other message processing exits to process the message instead of
IEAVMXIT in the MPFLSTxx parmlib member. MPFLSTxx also allows you to
control other kinds of message processing like message highlighting, message
suppression, and message automation.

After a message passes through the message processing exits, subsystems like JES2,
JES3, or NetView can receive the message for processing. For example, NetView
can process any message that MPFLSTxx defines as eligible for automation.
Subsystem allocatable consoles can receive the message for display.

After subsystem processing occurs, the message passes to the hardcopy log.
Depending on CONSOLxx values that control hardcopy logging, the hardcopy log
can record the message.

After the system records the message in the hardcopy log, CNZ_WTOMDBEXIT
exit receives control from the system for each single-line WTO, multi-line WTO, or
WTOR (see “CNZ_WTOMDBEXIT exit” on page 125 for more information). Then
the message passes to MCS, SMCS and extended MCS consoles where it can be
displayed.

The following summarizes this generalized message flow for an MVS system:
1. The program issues the message.
2. Processing specified in MPFLSTxx for the message occurs. IEAVMXIT or the

installation exits specified through MPFLSTxx receive control.
3. The subsystems receive the message.
4. Depending on CONSOLxx values, hardcopy log processing records the

message. “CNZ_MSGTOSYSLOG exit” on page 125 is invoked during the
hardcopy log processing.

5. “CNZ_WTOMDBEXIT exit” on page 125 receives the message. See z/OS MVS
Installation Exits for more information.

6. The MCS, SMCS console or extended MCS console can display the message.

Command flow in a system
When the operator issues a command in a single MVS system, the system records
the command in the hardcopy log if the command is eligible for recording, as
specified in CONSOLxx. The command then flows through one or more command
installation exits specified in MPFLSTxx. If exit processing changes the original
command, the system issues message IEE295I and then, if the modified command
is eligible for recording, records the command in the hardcopy log. Finally, the
command processor for the command gets control to process the command on the
system.

The following summarizes this generalized command flow for an MVS system:

Chapter 3. Managing messages and commands 99

1. An operator or program issues the command.
2. Depending on CONSOLxx values, hardcopy log processing records the

command.
3. Processing specified in MPFLSTxx for the command occurs. The installation

exits specified through MPFLSTxx receive control.
4. If the exit processing modified the command, the system issues message

IEE295I and depending on CONSOLxx values, hardcopy log processing records
the command.

5. If any installation exit processes the command, no further command processing
occurs.

6. The subsystems receive the command.
7. If any subsystem processes the command, no further command processing

occurs.
8. The MVS command processor receives control to process the command.

Command flooding
Most MVS commands are executed by attaching a task in either the *MASTER* or
CONSOLE address space. If too many such tasks are attached at one time (usually
because a program has issued too many MGCRE macros in too short a time),
command flooding occurs.

Attached commands that run in the *MASTER* or CONSOLE address space are
divided into six “command classes”. In each class, only 50 commands can execute
at one time. Any additional commands in that class must wait for execution. This
prevents an out-of-storage condition. To manage the number of commands that are
awaiting execution, the system operator can issue the CMDS command to display
the status of commands, and remove selected commands that are awaiting
execution. The IEECMDS macro provides similar function.
v For information about the CMDS command and command flooding: z/OS MVS

System Commands

v For information about the IEECMDS macro: z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG

Message and command flow in a sysplex
In a sysplex, MVS messages and commands can flow from system to system.
Because you can direct the message or command to one or more systems, you
need to understand how exits, subsystems, and hardcopy log processing occurs in
a sysplex.

Consider the following for message and command flow in a sysplex:
v Console operations. MCS, SMCS and extended MCS consoles can receive

messages from different systems or enter commands to affect the processing of
other systems.

v Installation exits. Installation exits can perform much of your message and
command processing. For processing like message suppression, making
messages eligible for automation, or for processing that alters commands,
message and command flow in a sysplex become important.

v Subsystem processing. Subsystems can process MVS messages and commands.
To help control or coordinate subsystem functions in a sysplex, subsystems need
to consider from which systems messages and commands originate.

100 z/OS V2R1.0 MVS Planning: Operations

v Automation for systems in a sysplex. Automation programs like NetView use
messages and commands to control automation in a system. How different
systems control automation in a sysplex depends on how messages and
commands can flow from system to system.

v Logging of messages and commands in a sysplex. You can use the operations
log (OPERLOG) to record messages and commands from all the systems in a
sysplex. The operations log centralizes log data in a sysplex.

Messages in a sysplex
In a sysplex, you can direct a message to one or more systems for processing. You
can control message routing to consoles in the sysplex through the MSCOPE
keyword on the CONSOLE statement for MCS or SMCS consoles. For extended
MCS consoles, you can use RACF or MCSOPER to specify MSCOPE values. (See
Table 1 on page 12.) Operators can use the VARY command to control MSCOPE.
Specifying MSCOPE allows the console to receive messages from one or more
systems in the sysplex.

Regardless of the console MSCOPE value, the sysplex can direct messages in the
form of command responses to the system where the console that issued the
command is attached. For example, a console on SYA that issues a DISPLAY
command for other consoles on SYB can expect to receive the message display in
response to the command. For a subsystem-allocatable console, the sysplex can
deliver a message to the subsystem where the console is allocated. Thus, a
subsystem console on SYA can receive messages intended for the console even if
the messages originated on SYB.

On the system that issues the message, the message flow occurs as it does for a
single system. If the message flows to other systems in the sysplex, sysplex
services directs the message to the subsystems for processing, but the message
bypasses the message processing exits and the hardcopy log on the target systems.

The following summarizes message flow through a sysplex:
1. A program issues a WTO or WTOR message.
2. The message processing exits on the system that issues the message get control.
3. The subsystems can receive the message on the system that issues the message.
4. Hardcopy log processing on the system that issues the message can record the

message. “CNZ_MSGTOSYSLOG exit” on page 125 is invoked during the
hardcopy log processing.

5. “CNZ_WTOMDBEXIT exit” on page 125 receives the message. See z/OS MVS
Installation Exits for more information.

6. Sysplex services directs the message to the other systems in the sysplex.
7. The subsystems on each receiving system can receive the message.
8. The MCS, SMCS and extended MCS consoles on the appropriate system can

select the message for display.

As a result of this message flow in a sysplex, message processing that occurs
through exits is possible only on the system that issues the message. You need to
keep this in mind when you plan your installation exits for messages. Similarly, the
hardcopy recording of the message occurs only on the issuing system.

On the other hand, subsystems like NetView can receive the message on both the
issuing system and any receiving system where NetView is installed. You can route
messages to NetView on any system in order to control message automation for

Chapter 3. Managing messages and commands 101

the system, but the NetView subsystems must coordinate automation for the
sysplex based on the scope of the message flow to systems in a sysplex. (For
planning automation using NetView, see NetView Automation: Planning.)

Message recovery following system failures
Individual systems in a sysplex sometimes fail while the remaining systems
continue to function normally. When planning recovery for a sysplex, consider the
systems to which consoles are attached. To ensure that your operators receive
needed messages during system failures, IBM recommends that you configure your
consoles such that critical console function is available on more than one system.

Such coverage is especially important for controlling applications that run on
multiple systems, or that manage a sysplex-wide resource (such as a JES2
checkpoint data set). These applications are more likely to direct important
messages to consoles on other systems in the sysplex.

Commands in a sysplex
For commands in a sysplex, you need to consider:
v Command scope in the sysplex. Some commands only affect the system that

they are processed on; other commands may affect all of the systems in the
sysplex regardless of which system they are processed on. See z/OS MVS System
Commands for a discussion of which commands have a sysplex-wide scope and
which have a system scope. You can route commands with a system scope to the
system on which that you want them to be processed.

v Type of command routing. You can route commands to one or more systems in
the sysplex for processing.

You can route commands in the following ways:
v Using the CMDSYS keyword in CONSOLxx. CMDSYS allows an operator to

enter the command from the console and have the command automatically
routed to another system for processing. (See “Using CMDSYS on the CONSOLE
statement” on page 110.) Thus, you can define your MCS or SMCS consoles with
CMDSYS in CONSOLxx to control command routing in the sysplex. For
extended MCS consoles, you can use RACF or MCSOPER to define CMDSYS
values. (See Table 1 on page 12.) Operators can use CONTROL V to control
CMDSYS.

v Using the command prefix facility (CPF). CPF allows you to identify a unique
command prefix for each system or subsystem in the sysplex. (See “Using the
command prefix facility” on page 111.) CPF allows you to define prefixes for
commands so that the operator with sufficient authority can enter the command
from any console in the sysplex and expect the command to run on the
appropriate subsystem.

v Using the MVS ROUTE command. ROUTE specifies another command to be
routed to one or more target systems for processing (see “Using the ROUTE
command” on page 110 for details about ROUTE).

v Using the L= operand on certain MVS commands like CONTROL or DISPLAY.
L= allows the operator to specify a target console name for a console on any
system in the sysplex. (See “Using the L=Operand on certain commands” on
page 112.) For example, the operator can enter the CONTROL command with L=
on one console to change the console characteristics of another console on a
different system.

Command flow, CMDSYS and CPF in a sysplex
If you specify CMDSYS or use CPF to route commands, consider the following:

102 z/OS V2R1.0 MVS Planning: Operations

v When the operator enters the command from the console, sysplex services can
route the command to the system specified by CMDSYS or CPF.

Note: Processing for the MVS ROUTE command is different; see “Command
flow and the ROUTE command in a sysplex.”

v The system that issues the command and the system that receives the command
can process the command as follows:
1. Hardcopy log processing on both systems can record the command.
2. The command processing exit or exits of both systems get control.
3. Hardcopy log processing on both systems can record the command if exit

processing modified the command.
4. If any installation exit processed the command, no further command

processing occurs.
5. The subsystems on both systems receive the command.
6. The command processor for the command on each subsystem can process

the command. If the subsystem processes the command, no further command
processing occurs.

7. The MVS command processor on the system that receives the command
processes it.

8. If the command contains system symbols, the system that receives the command
(not the system on which the command was entered) substitutes text for the
system symbols.
For example, suppose your installation defines the command prefix S02 to
system SYS2 and you enter the following command on system SYS1:
S02 START CICS,JOBNAME=CICS&SYSNAME.,...

First, system SYS1 sends the command to system SYS2. Then SYS2
substitutes the text that it has defined to the &SYSNAME system symbol:
START CICS,JOBNAME=CICSSYS2,...

9. If a command that is specified in the COMMNDxx parmlib member contains
system symbols, the system does not substitute text for the system symbols
during parmlib processing. The system that receives the command
substitutes text for the system symbols when it processes the command.

Unlike message installation exits, command installation exits receive control on
both the system that issues the command and the system that is the target of the
command.

As with messages, NetView on any system can receive the routed command. To
coordinate command activity for automated operations, you must consider the
scope of the command flow in a sysplex.

Command flow and the ROUTE command in a sysplex
If you use the ROUTE command, consider the following:
v The MVS ROUTE command is made up of two parts: the ROUTE command

along with the target system(s) in the sysplex and a second command to be
routed to the specified system(s).

v The system that issues the command processes the ROUTE part of the command
as follows:
1. Hardcopy log processing for the system can record the ROUTE command.
2. The command processing exits of the system get control.

Chapter 3. Managing messages and commands 103

3. Hardcopy log processing for the system can record the ROUTE command if
exit processing modified the command.

4. If any installation exit processed the ROUTE command, no further command
processing occurs and sysplex services routes the second part of the
command to the appropriate system.

5. The subsystems on the system receive the ROUTE command.
6. If any subsystem processed the ROUTE command, no further command

processing occurs and sysplex services routes the second part of the
command to the appropriate system.

7. The command processor for ROUTE on the system processes the command.
8. Sysplex services can route the second part of the command to the

appropriate system for processing.
9. If CMDSYS is active for your console, a ROUTE command overrides but

does not change the CMDSYS system.
v Each system that receives the routed command processes it as follows:

1. Hardcopy log processing on the system can record the routed command.
2. The command processing exits of the system get control of the command (for

example, a DISPLAY command specified on ROUTE).
3. Hardcopy log processing on the system can record the routed command if

exit processing modified the command.
4. If any installation exit processed the routed command, no further command

processing occurs.
5. The subsystems on the system receive the routed command.
6. If any subsystem processed the routed command, no further command

processing occurs.
7. The MVS command processor for the command on the system processes the

routed command.

For example, if a ROUTE command specifies a DISPLAY command and the
operator enters the command from SYA, hardcopy log processing for SYA can log
the ROUTE command. If the routed part of the command (DISPLAY) is intended
for SYB, hardcopy log processing for SYB can log the DISPLAY command. The
installation exits of SYA can process ROUTE, and the installation exits of SYB can
process DISPLAY. Subsystems on SYA receive the ROUTE command, while sysplex
services directs the routed DISPLAY command to SYB where the subsystems on
SYB receive DISPLAY. The command processors for ROUTE on SYA and for
DISPLAY on SYB can process the command.

Note: In ROUTE commands that specify system symbols, the system on which the
command is entered processes the system symbols in the ROUTE portion of the
command. The system to which the command is routed processes the remaining
portion. See the description of the ROUTE command in z/OS MVS System
Commands for details.

Command flow and the L= Operand in a sysplex
If you enter a command from a console on one system and specify L= to affect a
console on another system, consider the following:
v The system that issues the command processes the command as follows:

1. Hardcopy log processing for the system can record the command.
2. The command processing exits of the system get control of the command.
3. If exit processing modified the command, hardcopy log processing on the

system can record the command.

104 z/OS V2R1.0 MVS Planning: Operations

4. If any installation exit processed the command, no further command
processing occurs.

5. The subsystems on the system receive the command.
6. If any subsystem processed the command, no further command processing

occurs.
7. The command processor for the command on the system processes the

command.
8. Sysplex services routes the command to the appropriate system where the

target console is attached.
v Any system that receives the command processes it as follows:

1. Hardcopy log processing for the system can record the command.
2. The command processor on the system processes the command.

For example, if the operator issues a CONTROL command from CONS1 on SYA to
change the display area of CONS2 on SYB, hardcopy log processing occurs for
both SYA and SYB. The installation exits of SYA can get control. Subsystems on
SYA receive the CONTROL command. The command processor for CONTROL
processes the command.

Sysplex services directs the CONTROL command to SYB where SYB logs the
command and changes the console display area for CONS2 on SYB. (Only the
installation exits on SYA are able to process the command.)

Note: Do not use system symbols on the L= parameter on the ROUTE command.

Routing messages
You can define routing codes and message levels to a specific console so that the
console receives the appropriate messages indicated by the routing code or
message level. For MCS or SMCS consoles, you define routing codes and message
levels in CONSOLxx. Your security or TSO/E administrator defines routing codes
for users of extended MCS consoles.

Sometimes a message is issued without any assigned routing information. You can
define default routing codes for these messages in CONSOLxx.

You can also define a group of consoles eligible to receive and display synchronous
messages that bypass normal message queuing. “Display of synchronous
messages” on page 53 describes how you can define console groups for
synchronous messages.

Altering some console attributes might cause messages to no longer be displayed
on consoles. Messages that are not displayed on a console will still be logged in
SYSLOG and/or OPERLOG, and are viewable using facilities such as SDSF.

The potential for this situation to occur comes from using these commands:
VARY CN
VARY CONSOLE
CONTROL V,LEVEL

Note: In the case of an instream or internal command, consoles receiving the
INTIDS routing attribute receive the command response.

Chapter 3. Managing messages and commands 105

Defining routing codes
Most messages have one or more routing codes. The system uses these codes,
decimal numbers from 1 to 128, to determine which console or consoles should
receive a message. You can assign routing codes to consoles in a system or sysplex
so that the appropriate messages are routed to the right console. In a sysplex,
messages are routed from any system to consoles with the matching routing
characteristics. To limit the messages a console receives in a sysplex, you can use
the MSCOPE keyword on the CONSOLE statement. See “Directing messages from
other systems to a console in a sysplex” on page 108.

Use the following keyword on the CONSOLE statement to define routing codes for
an MCS or SMCS console:

ROUTCODE
Defines the routing codes in effect for the console.

The default is NONE; ROUTCODE(NONE) means that the system assigns no
routing codes to the console. If you specify ALL, the system sends messages with
routing codes 1 to 128 to the console. For a description of routing codes, see any
volume of z/OS MVS System Messages

For every routing code (except routing code 11), you should ensure that there is a
receiving console. (Operator consoles should not need to receive routing code 11,
which indicates programmer information.)

Routing codes do not appear with a message at a console; routing codes 1 through
28 do, however, appear on the hardcopy log. To see the routing codes each console
receives in a system or sysplex, operators can use the DISPLAY CONSOLES
command.

To route all messages with routing codes 1, 2, 9, and 10 to CONS2, code the
following CONSOLE statement in the CONSOLxx member:
CONSOLE DEVNUM(81D) NAME(CONS2) AUTH(MASTER) ROUTCODE(1,2,9,10)

Notice in the example that the console has master authority and that an operator
can issue any MVS command from it. This console is not required to receive tape,
DASD, or teleprocessing messages so the routing codes for those messages are
omitted. In a sysplex, this console receives messages with defined routing codes 1,
2, 9, and 10 from all active systems unless MSCOPE limits the scope.

For users of extended MCS consoles on TSO/E, the security or TSO/E
administrator can define routing codes 1 through 128. See “Controlling extended
MCS consoles using RACF” on page 182.

Operators can use the VARY CN command to change routing codes for active
MCS, SMCS, and extended MCS consoles.

Handling messages without routing codes
For queuing messages that have no defined routing codes, descriptor codes, or
console destination, you can use DEFAULT ROUTCODE. Use the following
keyword on the DEFAULT statement of CONSOLxx for messages that have no
routing code information:

ROUTCODE
Defines the routing codes for messages that do not have them.

106 z/OS V2R1.0 MVS Planning: Operations

You can assign any combination of routing codes from 1 through 128. If you
specify ROUTCODE(ALL), the system assigns routing codes 1 through 128; if you
specify NONE, the system does not assign any routing codes. If you do not code
ROUTCODE on the DEFAULT statement, the default for messages without
assigned routing codes is the range of routing codes 1 through 16.

IBM recommends that you do not specify ROUTCODE(ALL) or include routing
code 11. Code ROUTCODE with a small number of routing codes so that you do
not send these messages to all of your consoles.

Defining message levels for a console
Assigning routing codes is one way to limit message traffic to a console. You can
further reduce the number of messages that appear on a console by directing
certain messages to consoles by message levels. Descriptor codes can also appear
with messages and further describe the significance of the message levels.

The system differentiates among the following kinds of message levels:
v Write-to-operator with reply (WTOR) messages, which might demand an

immediate reply.
v System failure and immediate action messages (descriptor codes 1 and 2), which

indicate a serious error or that a task is awaiting a requested operator action.
v Critical eventual action messages (descriptor code 11), which indicate that an

eventual action of critical importance is requested on the part of the operator.
v Eventual action messages (descriptor code 3), which request an eventual action

that does not require immediate operator attention.
v Broadcast messages, which are messages normally sent to every active console

regardless of the routing code you assigned to the console.
v Informational messages, which generally indicate system status. (Most messages

are informational. MVS recognizes informational messages with descriptor code
12 for special routing.)

Descriptor codes and message levels

The system gives special consideration to messages with descriptor codes 1, 2, 3,
11, 12, and WTOR messages.

MVS also handles messages with descriptor code 13 in a special way. If a message
has been specified for automation in MPF, you can assign descriptor code 13 to the
message in a message processing exit (like IEAVMXIT) to indicate that the message
has been previously automated. You can then reissue the message. Descriptor code
13 can be useful when a message has been automated on one system in a sysplex
but needs to be reissued to other systems in the sysplex.

To define message levels for a console, use the following keyword on the
CONSOLE statement:

LEVEL
Defines the message level in effect for the console.

Assignment by message level means that a console can accept combinations of
action, broadcast, and informational messages that the system sends to a console.
Options you can specify for LEVEL include the following:

R Messages that require an operator reply are to appear

Chapter 3. Managing messages and commands 107

I Immediate action messages (descriptor codes 1 and 2) are to appear

CE Critical eventual action messages (descriptor code 11) are to appear

E Eventual action messages (descriptor code 3) are to appear

IN Informational messages are to appear

NB Broadcast messages are not to appear

ALL All messages, including broadcast messages, are to appear

You can specify one or any combination of these options for LEVEL. If LEVEL in
the CONSOLxx member is not coded, the system sends all messages, including
broadcast messages, to the console.

To direct only WTOR messages and immediate action messages to a console
named ACCT, code this statement in CONSOLxx:
CONSOLE DEVNUM(0C6) NAME(ACCT) LEVEL(R,I)

Operators can use the CONTROL V command to change LEVEL.

Specifying message levels and routing codes for a console
The following example illustrates the relationship between the routing codes and
the message levels assigned to a console named TDISK:
CONSOLE DEVNUM(81D) NAME(TDISK) ROUTCODE(5,6) LEVEL(R,IN)

In the example, TDISK receives informational messages directed to the tape
libraries (routing code 5) and disk libraries (routing code 6). In a sysplex, console
TDISK receives messages with these defined message levels from all active systems
unless MSCOPE limits the system scope.

Directing messages from other systems to a console in a
sysplex

In a sysplex, if you don't want your operators receiving certain messages from all
systems, you can limit some of the messages they receive. These messages are any
messages not explicitly routed to a console.

Use the following keyword on the CONSOLE statement to direct certain messages
in a sysplex to a given console:

MSCOPE
In a sysplex, defines the systems from which this console can receive
messages.

The default is MSCOPE(*ALL) (except for the system console, for which the default
is MSCOPE(*)), which indicates that messages from the local system as well as all
the other systems in the sysplex appear on the console. If a system is specified on
MSCOPE but is not active, the console does not receive any unsolicited messages.

MSCOPE values override other routing attributes for the console; that is, the
console receives messages only from the system you specify. However, if MSCOPE
limits system scope, you can still send messages from other systems using the
console name on commands and macros. Operators can use the VARY command to
change MSCOPE.

108 z/OS V2R1.0 MVS Planning: Operations

Replying to messages from other systems in a sysplex
You can use the MSCOPE keyword to control which consoles can reply to
messages issued from other systems in the sysplex. To use a console to reply to
such messages, include the other system's name on the MSCOPE keyword of the
CONSOLE statement in the CONSOLxx parmlib member for this system.

Directing messages that are eligible for automation to
extended MCS consoles

You can specify a message as eligible for automation. In MPFLSTxx, you can
specify AUTO(YES) for the message, or you can use message processing exits to
indicate that the message is eligible for automation.

For any message that is eligible for automation, you can define an extended MCS
console to receive the message for processing. To allow an extended MCS console
to receive all messages that are eligible for automation, you define the automation
attribute through the MCSOPER macro or RACF using the OPERPARM parameter
list or OPERPARM segment. In a sysplex, you can also define which systems are to
direct the messages to the extended MCS console by specifying the MSCOPE
attribute in the OPERPARM parameter list or OPERPARM segment.

Using an extended MCS console in conjunction with an automation program like
NetView can help you plan your automated operations for a system or sysplex. For
information on extended MCS consoles, see “Extended MCS consoles” on page 10.
For information on MCSOPER, see z/OS MVS Programming: Authorized Assembler
Services Reference LLA-SDU. For information on NetView and automation planning,
see NetView Automation: Planning.

Receiving messages that are directed to console ID zero
You can use the INTIDS keyword on the CONSOLE statement to control whether
the console is to receive messages that are directed to console id zero. Those
messages are often the responses to internally issued commands. To enable a
console to receive such messages, specify INTIDS(Y) for this console in the
CONSOLE statement. You can also use the VARY CN command to change this
console attribute. If you do not specify this attribute, the default is N.

Note:

1. Be aware that WTORs directed to console ID zero will also be delivered to
consoles that specify INTIDS(Y). This means that the operator at that console
will be able to reply to the WTOR.

2. Multiline messages directed at an Out-Of-Line (OOL) area on a console defined
to receive INTIDS will be forced “inline”.

Receiving messages that are directed to unknown console IDs
You can use the UNKNIDS keyword on the CONSOLE statement to control
whether the console is to receive messages that are directed to unknown console
IDs, such as one-byte console IDs which are no longer supported. To enable a
console to receive such messages, specify UNKNIDS(Y) for this console on the
CONSOLE statement. You can also use the VARY CN command to change this
console attribute. If you do not specify this attribute, the default is N.

The UNKNIDS queuing attribute allows messages issued with 1-byte console IDs
to be queued to some console. Messages marked with the UNKNIDS queuing

Chapter 3. Managing messages and commands 109

attribute will be queued to any console that requests UNKNIDS messages. Note
that this may or may not be the console that would have corresponded to the
1-byte console ID.

Note: Multiline messages directed at an Out-Of-Line (OOL) area on a console
defined to receive UNKNIDS will be forced “inline”.

Routing commands
In a sysplex, you can route commands to other systems for processing in the
following ways:
v “Using CMDSYS on the CONSOLE statement”
v “Using the ROUTE command”
v “Using the command prefix facility” on page 111
v “Using the L=Operand on certain commands” on page 112

Using CMDSYS on the CONSOLE statement
Use the following keyword on the CONSOLE statement to define command
association between a console and a system in a sysplex:

CMDSYS
Defines the system in a sysplex where you want to send commands
entered on this console for processing.

Defining your consoles through this kind of command association can help your
operators view a particular system in the sysplex and limit activities to that
system. The default is CMDSYS(*), which indicates that commands entered on the
console are processed on the local system where the console is defined. If a system
specified for CMDSYS is not active, the console receives an error message
whenever the operator enters a command. Operators can use the CONTROL V
command to change CMDSYS for MCS, HMCS SMCS, and extended MCS
consoles.

To let SYA direct commands entered on an attached console called TAPE to SYB,
code the following statement in CONSOLxx for SYA:
CONSOLE DEVNUM(243) NAME(TAPE) CMDSYS(SYB)

Commands that ignore the CMDSYS specification include:
v All CONTROL commands except for CONTROL M
v LOGON/LOGOFF
v ROUTE

For examples of how these commands operate in a sysplex, see “Commands in a
sysplex” on page 102.

Using the ROUTE command
Your operators can use the ROUTE command to send commands to other systems
not specified on CMDSYS without changing the CONSOLE statement values in the
CONSOLxx Parmlib member. In the following example, an operator wants to route
the CANCEL command to SYB to cancel the job JOBPRINT:
ROUTE syb,CANCEL JOBPRINT

110 z/OS V2R1.0 MVS Planning: Operations

The ROUTE command directs a command to the system you specify, to all systems
in a sysplex, to all systems but the system, or to a group of systems in a sysplex.
ROUTE with the specified command overrides but does not change the values you
code for CMDSYS on the CONSOLE statement. In a sysplex, both systems invoke
the command installation exits if they are installed. The exit on the issuing system
handles the ROUTE part of the command; the command installation exit on the
receiving system processes the command that ROUTE specifies.

For complete syntax information on the ROUTE command, and for the list of
commands you should not route to multiple systems, see z/OS MVS System
Commands.

The aggregated command response is logged on the system that processes the
ROUTE *ALL, ROUTE *OTHER or ROUTE systemgroupname command. This
aggregated response is seen by the same system's MPF exits or user exits, and can
be automated. The system that processes the ROUTE command is the system
where the ROUTE command is issued, unless the ROUTE command was
transported using CMDSYS (command association) or CPF (command prefix
facility). The responses to the individual command that is imbedded inside of
ROUTE *ALL, ROUTE *OTHER or ROUTE systemgroupname are logged on the
systems where the command is processed. The individual responses are seen by
each target system's MPF exits or user exits, and can be automated. While the
aggregated command response is logged with the issuing console's name, each
individual response is logged with a system generated console name.

Setting up a System Group Name

You can define groups of systems to MVS by placing a list of systems in ECSA,
and addressing the list using the name/token services. A ROUTE command that
specifies the name of this group will cause a command to be routed to all active
systems in the group.

For more information on setting up name/token pairs, see z/OS MVS Programming:
Authorized Assembler Services Guide.

The program that creates the list can be set up in PROCLIB, and can be run on
each system in a sysplex at IPL using a START command in a COMMNDxx
parmlib member. For ease of use, the COMMNDxx parmlib member can be shared
by all systems.

To define a new or changed set of named system groups on all systems in the
sysplex, use the command ROUTE *ALL,START jobname, where jobname is the
name of the procedure that runs the program that creates or deletes the groups.

IBM provides a SYS1.SAMPLIB member to define named system groups.

For more information, see the comments in SYS1.SAMPLIB member IEEGSYS.

Using the command prefix facility
The MVS command prefix facility (CPF) allows a subsystem (like JES2 or DB2) to
create unique command prefixes for each copy of the subsystem in the sysplex and
control which systems can accept the subsystem commands for processing. For
example, using the JES2 CONDEF initialization statement, an installation can
define a JES2 command prefix with sysplex scope. No matter which system an

Chapter 3. Managing messages and commands 111

operator uses to enter the JES2 command, MVS can recognize the prefix and direct
the command to the system where the prefix has been defined.

For information on the JES2 initialization statement that uses the command prefix
facility, see z/OS JES2 Initialization and Tuning Reference. For information on the CPF
macro that other subsystems or application programs can use to issue commands
in a sysplex, see z/OS MVS Programming: Authorized Assembler Services Guide.

Defining a system name as a command prefix
You can run IEECMDPF (an IBM-supplied sample program in SYS1.SAMPLIB) to
define the system name as a command prefix that substitutes for the ROUTE
command on each system.

For example, if you run IEECMDPF on system S01, then the following have the
same effect on each system in the sysplex:

ROUTE S01,command
S01 command
S01command

Note: If the system name does not define a valid system, ROUTE name processing
does not return an error message.

In a sysplex, if you put a START command for IEECMDPF into a common
COMMNDxx Parmlib member, you could have a short-form ROUTE function for
each system in the sysplex. Then from any system in the sysplex, any of the
following would route a command to system S02:

ROUTE S02,command
S02 command
S02command

Using the L=Operand on certain commands
The L= operand on an MVS command (like CONTROL, DISPLAY, and MONITOR)
allows an operator to specify a console name for a console defined on a different
system in the sysplex. Sysplex services can route the command to the system
where the console is attached. For syntax of CONTROL, DISPLAY, or MONITOR,
see z/OS MVS System Commands.

Sharing system commands by using system symbols
MVS allows two or more systems in a multisystem environment to share
commands while retaining unique values in those commands. When two or more
systems share commands, you can view a multisystem environment as a single
system image from which you can perform operations for several different systems.

This section explains how to plan for sharing system commands in a multisystem
environment. It:
v Describes what system symbols are, and explains how they are used to represent

the unique values in shared commands
v Describes what wildcards are, and explains how they are used to identify

multiple resource names in commands
v Provides planning tasks for sharing system commands
v Provides tips for sharing commands in a multisystem environment.

112 z/OS V2R1.0 MVS Planning: Operations

For information about using system symbols in system commands, including lists
of system symbols that the system provides, see z/OS MVS System Commands.

What are system symbols?
System symbols represent the values in shared commands that are unique on
different systems. Each system defines its own values for system symbols; it
replaces the system symbols with those values when it processes shared
commands.

For detailed information about system symbols, including lists of system symbols
that you can specify in system commands, see the section on system symbols in
z/OS MVS Initialization and Tuning Reference.

What are wildcards?
Wildcards are characters that indicate a command applies to all resources whose
names match a specified character string.

The asterisk (*) wildcard tells the system to match zero or more specified
characters, up to the maximum length of the string. An asterisk can start the
character string, end it, appear in the middle, or appear in multiple places in the
string. A single * for the name indicates that all resource names for the particular
field are to match.

For some values, the * must be a suffix and cannot appear alone. See z/OS MVS
System Commands for examples of how to use wildcards in system commands.

Planning to share system commands
When planning to share system commands among different systems, ask yourself
the following questions:
1. What resources are good candidates for sharing?

If your goal is to greatly simplify your operating environment, the answer is:
As many as possible! If two or more systems require different names for a
resource, chances are that you can use a single system symbol to represent the
characters in the name that must be unique. If you have one “skeleton” that
represents the unique names, you have one convenient place to maintain the
resource definition. If you follow the same process with all commands that
require unique values, you can view a multisystem environment as a single
system image with one point of control.
Be aware that there are also reasons why you might not want to share certain
commands. Perhaps the release level of MVS prevents you from using a
resource on a particular system; or perhaps one or more systems do not require
a particular resource. Whatever the case, your installation must examine the
commands that are issued frequently and determine the extent to which they
can be shared.

2. What commands support system symbols?

All z/OS commands support system symbols, with the exception of:
v The LOGON command
v The VARY CN(*),ACTIVATE form of the VARY command (all other forms of

VARY support system symbols).
3. Do I want a job to have different names on each system where it runs?

If a job runs on two or more systems in a multisystem environment, IBM
recommends that you use different jobnames for each instance of the job.
Different jobnames allow you to easily identify the system on which a job runs.

Chapter 3. Managing messages and commands 113

The best way to explain how to use one command to start jobs with different
names on different systems is through an example. Suppose your installation is
to start Customer Information Control System (CICS) on each system in a
sysplex and assign a different jobname to each instance of CICS. First your
installation establishes a consistent naming convention for the instances of
CICS. For example, the jobname for each instance of CICS always begins with
the characters CICS and ends with the last four characters of the system name.
You can specify the &SYSNAME system symbol in the START command and
route the command to all systems that require CICS:
ROUTE *ALL S CICS,JOBNAME=CICS&SYSNAME.,...

Each system substitutes the text it has defined to &SYSNAME into the
command text. Assuming that you route the START CICS command to two
systems named SYS1 and SYS2, the following commands result:

S CICS,JOBNAME=CICSSYS1,...
S CICS,JOBNAME=CICSSYS2,...

Your installation can also specify system symbols in commands that are entered
at system initialization using the COMMNDxx parmlib member. See the
description of the COMMNDxx parmlib member in z/OS MVS Initialization and
Tuning Reference for information about how the system processes system
symbols in COMMNDxx.

Sharing commands that flow through multiple systems: When you specify
system symbols in commands that flow through several systems in a multisystem
environment, the target system almost always substitutes text for the system
symbols in the command text. This is true for the main ways to route commands
to other systems:
v The CMDSYS keyword in CONSOLxx, which allows operators to enter

commands from a console and have the commands automatically routed to
another system for processing. The command is first transported to the system
that has command association to the system on which the command is entered;
then substitution takes place. See “Using CMDSYS on the CONSOLE statement”
on page 110 for more information.

v A CPF prefix, which allows operators to send commands to a system in a
sysplex for which a unique prefix is defined. If a command has a CPF-defined
prefix, the command is first transported to the system that has the prefix; then
substitution takes place. See “Using CMDSYS on the CONSOLE statement” on
page 110 for more information.

v The ROUTE command, which allows operators to send commands to other
systems for processing. The command is first routed to the other system; then
substitution takes place. See “Using the ROUTE command” on page 110 for
more information.

If a command is entered on one system, and the command affects an entity (such
as a console) on another system, the target system almost always substitutes text for
the system symbols in the command text. The DUMPDS, REPLY, and ROUTE
commands have exceptions to these rules. See the descriptions of those commands
in z/OS MVS System Commands for more information.

For example, suppose the following command changes the routing codes for a
console on a different system from which the command is entered:
VARY CN(consname),ROUT=&SYSVAR1.

114 z/OS V2R1.0 MVS Planning: Operations

If the value of &SYSVAR1 is (1,2) on the system where the command was issued,
and &SYSVAR1 is (3,4) on the system where the console consname is attached, the
result of the system symbol substitution is:
VARY CN(consname),ROUT=(1,2)

For commands that accept the L=name-a keyword, which specifies that the
command output messages are to be directed to a different console, the system on
which the command is entered substitutes text for system symbols in the command
text (not the system where the L=name-a console is attached).

MPF and MVS operations planning
The message processing facility (MPF) controls message processing for an MVS
system. It controls the following:
v Message presentation (the color, intensity and highlighting, of messages) for an

MCS, HMCS or SMCS console
v The suppression of messages
v The retention of messages for the action message retention facility
v Which subsystems, if any, are to receive foreign messages.
v The selection of messages for automation programs like NetView
v Message processing exits other than IEAVMXIT that gain control when certain

messages are issued
v Command installation exits that gain control when commands are issued

You can specify presentation options, message retention, message suppression,
selection of messages by an automation program, and user exit information in the
MPFLSTxx Parmlib member.

Specifying MPFLSTxx members
At IPL, the system uses the MPFLSTxx member or members indicated on the MPF
keyword on the INIT statement in CONSOLxx. You can specify multiple
MPFLSTxx members on the MPF keyword. In a sysplex, MPF processing has
system scope; thus, you must plan MPF processing on each system in the sysplex.

Using multiple members allows your installation to define separate MPF members
to handle specific message processing functions for messages. For example, you
might specify two members of MPFLSTxx to handle different automation
procedures. Or you might have one MPFLSTxx member handle messages for
suppression and another to handle messages for automation for a system. (Note
that the system default allows the system to consider all messages as eligible for
automation.) Operators can use the SET MPF command to activate these members
as needed (for example, during shift changes or for workload balancing).

If you do not have an active MPFLSTxx member:
v Default options for message presentation are in effect (all messages are eligible

for automation).
v The action message retention facility, if it is active, retains all action messages

(those with descriptor codes 1, 2, 3, 11, and WTOR messages).
v MPF does not suppress messages.
v No installation exit except IEAVMXIT can gain control to process messages.
v All subsystems receive foreign messages and DOMs.

Chapter 3. Managing messages and commands 115

Using MPF to handle foreign messages
Using MPFLSTxx you can specify whether you want subsystems to receive foreign
messages and DOMs (messages and DOMs from another system). By reducing the
number of messages through the SSI, the installation can reduce the amount of
CPU utilized for these foreign messages.

Use the following statement and one of its option in MPFLSTxx to specify whether
you want subsystems to receive foreign messages and DOMs:

.FORNSSI
Specifies that you want to define whether subsystems should receive foreign
messages and DOMs.

The options that you can specify for .FORNSSI are as follows:
v *ALL - All subsystems will receive foreign messages and DOMs.
v *NONE - No subsystems will receive foreign messages and DOMs.
v NOCHANGE - The system should retain the previous FORNSSI statement.
v (list of subsystems) - Names of one or more subsystems that are to receive

foreign messages and DOMs. Subsystems not in this list do not receive
foreign messages and DOMs.

MPF options
Use the following keyword on the INIT statement of CONSOLxx to activate the
MPFLSTxx member or members at your installation:

MPF Specifies whether you want to activate the message processing facility at
your installation.

You can specify one or more 2-character suffixes for the MPFLSTxx members you
want to activate at IPL, or NO, in which case, MPF is not active. MPF(NO) is the
default. Operators can use the SET MPF command to change the status of MPF.

The following sections contain information about options you control in
MPFLSTxx:
v For presentation options, see “Specifying message presentation”
v For message suppression options, see “Suppressing messages” on page 117
v For message retention options, see “Retaining messages” on page 118
v For message automation options, see “Selecting messages for automation” on

page 121
v For message and command processing exits, see “Installation exits for messages

and commands” on page 123.

Specifying message presentation
Using MPFLSTxx and installation exits, you can control how you want messages to
be presented on console screens. You can control color for messages, how you want
to highlight messages, or specify the intensity of messages to make them stand out
on the screen.

To specify color, highlighting, and intensity for messages, you can use the
following statement in MPFLSTxx:

.MSGCOLR
Controls message presentation

Options that you can use for .MSGCOLR are as follows:

116 z/OS V2R1.0 MVS Planning: Operations

msgarea
Allows you to specify color, highlighting, and intensity for message
displays

DEFAULT
Specifies that you want to use the IBM supplied defaults for color,
highlighting, and intensity for message displays

NOCHANGE
Specifies that you want to use the values for color, highlighting, and
intensity established in the previous MPFLST member in effect;
NOCHANGE is the default.

Various values for msgarea allow you to specify color, highlighting, and intensity
for the entry area, for different message types or descriptor codes (action messages
or WTOR messages, for example), for control lines or data lines, for status
displays, and other screen controls.

z/OS MVS Initialization and Tuning Reference contains complete information about
IBM defaults for color, highlighting, and intensity in MPFLSTxx.

You can further control color, highlighting, and intensity through installation exits
like IEAVMXIT or other exits that your installation can define. You can change the
message presentation information (color, highlighting, and intensity) for the
message through a parameter list (CTXT) passed to the message processing exit. In
the exit, you can modify specific fields in CTXT that control color, highlighting,
and intensity.

z/OS MVS Installation Exits contains complete information about IEAVMXIT.

Suppressing messages
For a multisystem environment like a JES3 complex or a sysplex, the large volume
of messages produced by various systems makes message suppression an
important part of your operations planning. But even for a single system, IBM
recommends that you suppress informational messages that the operator does not
need to see to manage the system.

Suppressed messages do not appear on any console; however, they do appear on
the hardcopy log. If you use MPF to suppress messages, the hardcopy log must be
active.

Message suppression is also important when you plan automation for an
installation. The goal of automated operations is to streamline message flow and
simplify operator actions at a console. Suppressing messages operators do not need
to see is a good way to start your MVS automation planning. In a sysplex
environment, NetView can make use of extended MCS consoles to help manage
message automation for any system in the sysplex. For more information about
automated operations, see NetView Automation: Planning.

Note that if you specify a message for automation and suppression using MPF, you
can still deliver the message to an extended MCS console for processing. When
you activate the extended MCS console with the automation attribute, you allow
the console to receive automated messages whether MPF indicates that the
message is suppressed or not.

Chapter 3. Managing messages and commands 117

Through the MPFLSTxx parmlib member, you can specify which messages the
system is to suppress. Using the msgid parameter with the SUP option, you can
select certain messages for suppression, or specify suppression for all messages.
For further information about MPFLSTxx and examples of the kinds of messages
your installation might decide to suppress, see z/OS MVS Initialization and Tuning
Reference.

Using MPFLSTxx, you can select messages to suppress from display. To select
messages for suppression using MPFLSTxx, you can use the following MPFLST
parameter and its option:

msgid Specifies the ID or list of IDs for messages that you want to suppress

The option you can specify for the msgid is as follows:

SUP Specifies whether you want to suppress the message(s) identified by msgid
for display; SUP(YES) is the default. SUP(YES) will not suppress the
message if it is a command response. SUP(NO) indicates that you do not
want to suppress the message(s) for display. You can use SUP(ALL) to
suppress messages that are command responses.

z/OS MVS Initialization and Tuning Reference gives examples of the kinds of
messages your installation might decide to suppress.

Retaining messages
If your installation produces large volumes of messages for operators to monitor, it
is a good idea to use the action message retention facility (AMRF). If you want
operators to be able to retrieve action messages and WTOR messages that no
longer appear on the console, use AMRF. AMRF keeps action messages so that the
operator has a chance to see them at a later time. WTOR messages are always
available for operator retrieval regardless of the state of AMRF.

Action message retention facility
During initialization, the system starts AMRF if it is specified in CONSOLxx. Use
the following keyword on the INIT statement of CONSOLxx to control the action
message retention facility:

AMRF
Specifies whether you want to activate the action message retention facility.

AMRF(Y) means you want to activate the action message retention facility and is
the default. If you specify AMRF(N), AMRF is not active.

Unless you code otherwise in MPFLSTxx, AMRF retains in a buffer area all action
messages, those messages with descriptor codes 1, 2, 3, and 11, and WTOR
messages.

AMRF works as follows. When the operator has performed the action required by
a message displayed on the screen, the system deletes the message, or the operator
can use the CONTROL C command to delete the message. If AMRF is active,
operators can remove action messages from the screen, then retrieve them in their
entirety later by using the DISPLAY R command (see “Displaying information
about messages awaiting action” on page 119).

In a sysplex, it is recommended that you use AMRF. The AMRF keyword has
sysplex scope.

118 z/OS V2R1.0 MVS Planning: Operations

Using MPF to retain messages
You can also control which action messages to retain through MPFLSTxx. Thus,
you can specify on a message by message basis which messages you want the
action message retention facility to retain or not. First, ensure that both MPFLSTxx
and AMRF are active (either specified on the INIT statement of CONSOLxx or
through the operator SET command). With MPF, you can only retain action
messages (those with descriptor codes 1, 2, 3, and 11).

To specify which messages you want to retain or not in MPFLSTxx, you can use
the following parameter and its option:

msgid Specifies the ID or list of IDs for messages that you want to suppress or
retain

The option you can specify for the msgid is as follows:

RETAIN®

Specifies whether you want to retain the message(s) identified by msgid.

RETAIN(YES) is the default. RETAIN(NO) indicates that you do not want the
system to retain the action message. Thus, with MPF you can indicate which action
messages that AMRF retains you do not want to keep for retrieval.

Displaying information about messages awaiting action
The DISPLAY R command allows an operator to display all outstanding action
messages or a subset of these messages. For example, to display all the outstanding
action messages at a console, an operator enters DISPLAY R,M; to display all the
outstanding critical eventual action messages (descriptor code 11), an operator can
enter DISPLAY R,CE.

In a sysplex, the best way to describe how to use the DISPLAY R command is
through an example. Assume a sysplex has the following identifiers:

SY1 System 1 in the sysplex

SY2 System 2 in the sysplex

SY3 System 3 in the sysplex

CON1 MCS master authority console attached to SY1

ACCT MCS console attached to SY2

MSGS
MCS console attached to SY3

TAPE MCS console attached to SY1. The console is controlling the tape library
and has an MSCOPE(*) specified. MSCOPE(*) limits the messages the
console receives to SY1, the system to which it is locally attached.

The example assumes that the AMRF is active on all systems in the sysplex.

Chapter 3. Managing messages and commands 119

Operators can do the following:
v To see the texts and identification numbers of all outstanding action messages

and WTORs destined for CON1, enter the following command at CON1:
DISPLAY R,M

v To learn the number of outstanding action messages whose routing codes match
those assigned to CON1, enter the following command at CON1:
DISPLAY R,ROUT=ALL

The message includes the total of outstanding action messages for all systems in
the sysplex (SY1, SY2, and SY3) that are routed to CON1.

v To see all outstanding action messages in the sysplex, enter the following
command at CON1, ACCT, or MSGS.
DISPLAY R,M,CN=(ALL)

The message includes the total of outstanding action messages for all systems in
the sysplex (SY1, SY2, and SY3). AMRF has sysplex scope; if another system
joins the sysplex, the action message retention facility is active no matter what is
specified for AMRF on the INIT statement in CONSOLxx for that system.

v To see all outstanding action messages for the local application running on SY1,
enter the following command on TAPE:
DISPLAY R,M

MSCOPE limits the message information in the sysplex that TAPE receives to
SY1.

Grouping messages by function: To help you keep track of messages, your
application programmer can also group and name messages by function. When
AMRF is active, the WTO macro in MVS allows programs to associate a 1 to 8
alphanumeric character or “keyname” with certain messages. Operators on an
MCS console can use the KEY operand on the DISPLAY R command to display all
the outstanding action messages by keynames. For example, if an application
programmer assigned the characters “PAYROLL” to all payroll application
messages, an operator can list all the outstanding messages for payroll messages
by entering the following command from an MCS console in the system or sysplex:
DISPLAY R,M,KEY=PAYROLL

In a sysplex, you can control the scope of these messages using MSCOPE.

SY1
AMRF(YES)

SY2
AMRF(YES)

SY3
AMRF(YES)

CON1

ACCT

TAPE

MSGS

(tape library)
MSCOPE(*)

120 z/OS V2R1.0 MVS Planning: Operations

JES3 generally uses the dynamic support program (DSP) names as keynames to
group messages by function. For information on available JES3 DSPs, see z/OS JES3
Commands.

Reference

For information on the MVS DISPLAY command, see z/OS MVS System Commands.

Selecting messages for automation
Using MPFLSTxx you can specify that an automation program like NetView use
messages to automate certain system or operator actions on MVS.

Use the following parameter and its option in MPFLSTxx to specify an automation
program like NetView:

msgid Specifies the ID or list of IDs for messages that you want to select for
automation

The option you can specify for the msgid is as follows:

AUTO
Specifies whether you want the automation program at your installation to
handle the message(s) identified by msgid for automation

If you do not specify an MPFLSTxx member, all messages are eligible for
automation. AUTO(YES) or AUTO(token) indicates that you want to use an
automation program to process the message or messages. If you have defined an
extended MCS console with the automation attribute, the console can receive any
message that MPF has specified for automation from any system in the sysplex.
See “Directing messages that are eligible for automation to extended MCS
consoles” on page 109.

If a message has been specified for automation in MPFLSTxx, you can reissue the
message with a descriptor code 13 from a message processing exit. Reissuing a
message specified for automation might be useful in a sysplex where the message
does not need to be automated on every system in the sysplex.

Reference

For information on using NetView to plan the automation of messages, see
NetView Automation: Planning.

Automation in a sysplex
Because the sysplex affects the way you use consoles to receive messages or send
commands, you need to consider how sysplex functions can affect automation.
Consider the following in a sysplex:

Console definitions

Console names for MCS, SMCS, and extended MCS consoles allow automation
products like NetView to reference consoles throughout the sysplex regardless of
their system attachment. The names must be unique for each console in the
sysplex. (See “Using console names” on page 49.)

You can define extended MCS consoles to handle message and command
processing as part of your automation in a sysplex. In a system or sysplex,

Chapter 3. Managing messages and commands 121

defining extended MCS consoles allows you to exceed the 99-console limit for MCS
and SMCS consoles. (See “Extended MCS consoles” on page 10.)

Logging activity

Because the impact on hardcopy logging for systems in a sysplex is increased,
analyzing the results of message and command logging for a sysplex becomes
more complex than for a single system. For example, a message received on one
system might have originated on another system where it has already been logged.
How a system issues a command in a sysplex can affect how other systems log
command responses. See “Message and command flow in a sysplex” on page 100.

Understand that defining more consoles in a system or sysplex means that more
hardcopy logging can occur. For extended MCS consoles in a sysplex, you can
specify LOGCMDRESP=NO through RACF OPERPARM or on the MCSOPER
macro to control logging for the console. As a result, command responses are not
logged for the extended MCS console, and you can reduce the impact of hardcopy
logging in the sysplex.

Note: LOGCMDRESP=NO will control logging only for messages issued by
authorized programs. Messages issued by unauthorized programs are always
logged.

Parmlib

Because CONSOLxx and MPFLSTxx are crucial to control message and command
processing, you must define these parmlib members so that they work together for
all systems in a sysplex. For example, console attributes defined in CONSOLxx
have either system or sysplex scope. As a result, these differences can affect
console operations in the sysplex. MPFLSTxx has system scope so you must
consider how differences in MPFLSTxx for each system might affect overall
operations in the sysplex. (See “Using CONSOLxx” on page 22 and “MPF and
MVS operations planning” on page 115.)

Message and command processing

In a sysplex, you need to consider the scope of your message and command
processing. Messages and commands can flow from system to system. In order to
coordinate automation functions for the entire sysplex, automation products on
different MVS systems need to take this message and command flow into account.
(See “Message and command flow in a sysplex” on page 100.)

Installation exits for messages and commands must also take into account message
and command routing in a sysplex. Although messages and commands can be
routed to different systems in a sysplex, you must take into account where the
message or command is issued, the systems that receive the message or command,
how and when the exits get control, and when automation programs receive the
message or command. These considerations can have an impact on how an
automation program like NetView processes messages and commands that first
pass through installation exits. (See “Installation exits for messages and
commands” on page 123 and “Message and command flow in a sysplex” on page
100.)

122 z/OS V2R1.0 MVS Planning: Operations

Installation exits for messages and commands
MVS provides installation exits to allow further processing of messages and
commands. Whenever these exits are active and the system issues a message, or an
operator or program issues a command, the exits get control to process the
message or command. For messages, MVS provides IEAVMXIT, which allows you
to tailor your messages. You can also install your own message processing exits as
needed. For commands, MVS provides the command installation exit that can
accept, modify, or reject commands before the command processor for the
command gets control.

Allocation exits can get control whenever the system issues WTOR messages to
operators to cancel a waiting job, bring a device online, or allow a job to wait.
These exits allow an installation to automate responses to the messages. For more
information on allocation exits, see z/OS MVS Installation Exits.

IEAVMXIT and message processing
The message processing installation exit IEAVMXIT can gain control when any
WTO or WTOR message is issued. In this exit, you can change routing codes,
descriptor codes, and message texts and perform other message processing; you
can also override the message processing facility (MPF).

If you do not specify your own message processing exit through MPFLSTxx,
IEAVMXIT will get control if it is available and active when any WTO or WTOR
message is issued. See “Message processing exits other than IEAVMXIT.”

To specify that you want to activate IEAVMXIT, use the following keyword on the
INIT statement of CONSOLxx:

UEXIT
Defines whether you want the installation exit IEAVMXIT to process
messages

UEXIT(Y) is the default; if you do not code this parameter, IEAVMXIT will be
activated if it's installed. Operators can use the CONTROL M command to change
the status of IEAVMXIT.

To have the user exit IEAVMXIT inactive at IPL, code the following parameter on
the INIT statement:
UEXIT(N)

Reference

z/OS MVS Installation Exits describes IEAVMXIT in detail and provides a sample
exit.

Message processing exits other than IEAVMXIT
Use the following parameter and its option in MPFLSTxx to specify an
installation-defined message processing exit other than IEAVMXIT:

msgid Specifies the ID or list of IDs for messages that you want the exit to
process

The option you can specify for the msgid is as follows:

USEREXIT
Specifies the name of the installation supplied exit to handle messages
identified by msgid

Chapter 3. Managing messages and commands 123

The exit gets control whenever the system issues the message or messages
identified by msgid. If you do not supply an exit name, the system uses the
IEAVMXIT, if it exists and is active.

Command installation exits
Using MPFLSTxx, you can specify MVS command installation exits to modify
commands that an operator can issue at a console. You can authorize a console to
use a specific command or commands, reject the command, direct the command to
specific consoles for display, modify the command text, or execute the command in
the exit.

Use the following parameter and its option in MPFLSTxx to specify command
installation exits:

.CMD Specifies the statement that allows you to specify up to six command
installation exits

The option you can specify for the .CMD is as follows:

USEREXIT
Specifies from 1 to 6 names for command installation exits.

If you code USEREXIT but do not supply an exit name, the system issues a syntax
error message.

See z/OS MVS Installation Exits for a detailed description of the command
installation exit and a sample exit.

Considerations for a sysplex: In a sysplex, when an operator uses the ROUTE
command to direct a command to execute on a different system and the command
installation exits are installed on both systems, both systems invoke the command
installation exits. The exit on the issuing system handles the ROUTE part of the
command; the command installation exit on the receiving system processes the
command that ROUTE specifies. To understand the effect command routing in a
sysplex has on the installation exits, see “Commands in a sysplex” on page 102.

The exit changes the console authority of a console only to permit the console to
enter the specified command or commands coded in the exit. The original AUTH
attribute of the console is still in effect and determines the ability of the console to
enter any other command. Note that RACF command profiles, if specified,
override command authorization in the command authorization exits.

In a JES3 complex, use the JES3 exit IATUX18 to process JES3 commands and the
MVS command installation exit to process MVS commands. For information on
JES3 exits, see z/OS JES3 Customization.

Considerations for system symbols: When a command contains system symbols,
MVS provides the command text to command installation exits after it substitutes
text for the system symbols. For example, if the following command is entered to
display a console group on system SYS1:
DISPLAY CNGRP,G=(C1GP&SYSNAME.)

The command installation exit receives the following text:
DISPLAY CNGRP,G=(C1GPSYS1)

124 z/OS V2R1.0 MVS Planning: Operations

If a command installation exit requires the original command text (the one that
existed before symbolic substitution), the exit can access the CMDXOLIB field in the
command installation exit routine parameter list (CMDX).

Note: Do not use command installation exits to add or change system symbols in
command text. The system cannot substitute text for system symbols that are
added or changed through those exits.

See the section on sharing system commands in z/OS MVS System Commands for
more information about using system symbols in commands.

CNZ_MSGTOSYSLOG exit
The Message to SYSLOG installation exit CNZ_MSGTOSYSLOG gets control for
every message sent to the SYSLOG. Every message line that is sent to SYSLOG will
be passed to the exit routines active at the exit point. Multi-line messages will be
presented as a major line first, then major and each minor (one at a time). For
example, a multi-line message with one major and three minor lines will result in
the exit routines receiving control four times:
1. First time - For the major line
2. Second time - For the first minor line
3. Third time - For the second minor line
4. Fourth time - For the last minor line.

Code a CNZ_MSGTOSYSLOG exit routine when you want to view all messages
being sent to the SYSLOG. IBM has defined the CNZ_MSGTOSYSLOG exit to the
dynamic exits facility. You can refer to the exit by the name CNZ_MSGTOSYSLOG.
You can use the EXIT statement of the PROGxx parmlib member, the SETPROG
EXIT operator command, or the CSVDYNEX macro to control this exit and its exit
routines.

Note: This exit is not able to change messages.

See z/OS MVS Installation Exits for a detailed description of the
CNZ_MSGTOSYSLOG installation exit and a sample exit.

CNZ_WTOMDBEXIT exit
CNZ_WTOMDBEXIT receives control from the system for each single-line WTO,
multi-line WTO, or WTOR. Every single-line message that is sent by WTO or
WTOR will be passed to the exit routines active at the exit point. Multi-line
messages will be presented only when all lines have been completed. For example,
a multi-line message with 1 major and 3 minor lines will result in the exit routine
receiving control one time.

Code a CNZ_WTOMDBEXIT exit routine when you want to view all messages
being sent by WTO or WTOR. Information in the message is read-only; you cannot
modify the message contents.

See z/OS MVS Installation Exits for a detailed description of the
CNZ_WTOMDBEXIT installation exit and a sample exit.

Monitoring messages
Monitor messages display information about jobnames, data set names, and other
status information. Use the MONITOR command to generate these messages,
which appear on the console. If you want the system to generate monitor message
for automation or logging purposes, but do not want the messages to appear on

Chapter 3. Managing messages and commands 125

the console or to be written to SYSLOG and/or OPERLOG, use the SETCON
MONITOR command. The DISPLAY OPDATA,MONITOR command provides
information about the monitoring enablement status of the message types
supported.

Enabling message monitoring
To enable monitor message production for a particular message type without
sending the messages to a specific console, do one of the following:
v Issue the SETCON MONITOR command
v At IPL time, specify the SETCON MONITOR command in COMMNDxx
v For SPACE and DSNAME, specify the MONITOR keyword on the INIT

statement of CONSOLxx

To enable monitor message production and identify the console to receive the
monitored messages, do one of the following:
v Issue the MONITOR command
v For JOBNAMES, SESS, and STATUS, specify the MONITOR keyword on the

CONSOLE statement of CONSOLxx
v For an EMCS console, use the OPERPARM parameter of the MSCOPER service

when activating the EMCS console.

The MONITOR command enables monitor message production if it has not already
been enabled with the SETCON MONITOR command.

Disabling message monitoring
If the SETCON MONITOR command was used to enable monitor message
production, issue the SETCON MONITOR command to disable it for a particular
message type. Note that the monitor message production is disabled only if there
are no consoles currently receiving that message type.

If the MONITOR command was used to enable monitor message production, issue
the STOP MONITOR command to disable the function. The STOP MONITOR
command stops monitor message production only if it was enabled with the
MONITOR command and there are no other consoles listening for that message
type. If monitor message production was enabled with the SETCON MONITOR
command, message production continues even if the messages are not being
delivered to the console.

Controlling WTO and WTOR message buffers
MVS places WTORs in buffers in virtual storage. MVS also places WTOs queued to
MCS, HMCS or SMCS consoles in buffers in virtual storage. You can control the
number of buffer areas for WTO and WTOR messages at your installation by using
CONSOLxx.

To specify buffers for WTO and WTOR messages, use the following keywords on
the INIT statement of CONSOLxx:

MLIM Defines the maximum number of buffers the system uses for writing WTO
messages; the default is 1500.

RLIM Defines the maximum number of buffers the system uses for writing
WTOR messages; the default is 10 for a single system. It is suggested that
you use a minimum value of 99 for RLIM. For a sysplex, see the following
description for RMAX.

126 z/OS V2R1.0 MVS Planning: Operations

z/OS MVS Initialization and Tuning Reference provides the range of values for MLIM
and RLIM. You should use an MLIM value for WTO messages that is significantly
larger than the RLIM value for WTOR messages.

Controlling reply IDs for WTOR messages
Operators use an ID on the REPLY command to respond to WTOR messages. In
CONSOLxx, you can also specify the maximum number (RMAX) for reply IDs to a
WTOR message.

To specify the RMAX value, use the following keyword on the DEFAULT
statement of CONSOLxx:

RMAX
Defines the maximum number of reply ids. The default is 99. It is
suggested the you use a value of 9999 for RMAX.

z/OS MVS Initialization and Tuning Reference provides the range of values for
RMAX.

Note:

1. Set a value of 9999 for the RMAX parameter on the DEFAULT statement in the
CONSOLxx parmlib member (if possible) for optimal performance.

2. When a sysplex is configured with a MAXSYSTEM value greater than 8, reply
IDs are no longer assigned in strict sequential order. Instead, systems obtain
groups of reply IDs for assignment to WTORs, and the ids might not be
assigned in sequential order. This change requires no coding changes on the
installation's part, but might surprise an operator. You should consider
informing operators of this change.

RLIM and RMAX values
The relationship between RLIM and RMAX values in your sysplex can help you
plan for WTOR messages and operator replies. In a sysplex, the first system to join
sets the RMAX value, which has sysplex scope. If you do not specify RLIM, the
first system to join the sysplex sets RLIM to the value of RMAX.

In a sysplex running JES2, when XCFLOCAL is set, the sysplex runs without a
couple data set and systems cannot join or use the services of the sysplex. In both
these situations, the RLIM default of 10 is used, if no RLIM value is specified,
regardless of what is set for RMAX.

Reply IDs and RMAX
The RMAX value determines the maximum number of reply IDs that an operator
can use to respond to WTOR messages. Using the short form of the JES2 REPLY
command, the operator can omit the comma, but the system might misinterpret the
command depending on the RMAX value. For example, if RMAX is 99, and the
operator enters the following:
103NONE

MVS interprets the command as follows:
R 10,3NONE

Using the JES3 form of the REPLY command, an operator must use a comma to
separate the reply ID from the command text:
5,NONE

Chapter 3. Managing messages and commands 127

Controlling automatic ending of Multi-line WTO messages
If a program issues a multi-line WTO message but does not end the message by
issuing an endline, the system will hold the message in a staging area until an
endline is received. Unended multiline messages will not be delivered to a console
until an endline is received. The system monitors unended multi-line WTOs and
will detect when a time interval threshold has been exceeded. This threshold
specifies the number of seconds that the system will wait before truncating an
unended multiline WTO that has not received a connecting WTO. When this time
interval threshold is reached, the system ends the message automatically.

To end a multi-line WTO message when it detects that no data line or endline has
been issued for the message after an interval of 30 seconds, the system issues the
following endline:

MESSAGE TIMED OUT - MESSAGE COMPLETION FORCED

The default interval is 30 seconds. You can control the length of the interval by
using AMASPZAP or IGWSPZAP to set a value from X'0001' to X'FFFF' (1 second
to 65,535 seconds). To update the time interval, run either AMASPZAP or
IGWSPZAP with the following input statements:
NAME IEANUC01 IEEUCMC
VER 01B8 001E /* verify currently 30 seconds */
REP 01B8 002D /* alter setting to 45 seconds */

IBM recommends altering the value using a formal SMP/E ++USERMOD so that
SMP/E can track the modification. Use the following statements to make the
alteration using SMP/E:
++USERMOD(TIMEOUT) /* USERMOD name of your choice */
++VER(Z038) FMID(HBB7750) /* FMID of your system */
++ZAP(IEECVUCM),
NAME IEANUC01 IEEUCMC
VER 01B8 001E /* verify currently 30 seconds */
REP 01B8 002D /* alter setting to 45 seconds */

Aggregating messages returned to the ROUTE command
If an operator routes a command to more than one system, the command
responses returned to the originating console can be very confusing if they are
simply presented at the console in the order they are received. To help avoid the
confusion, MVS collects the messages so they can be presented in a more readable
format on the console. This is called an “aggregated response”. The messages that
are aggregated are sorted in alphabetical order by system name.

If some messages arrive too late to be aggregated, MVS first displays the name(s)
of the system(s) from which messages have not arrived in time, then displays the
aggregated messages. Any messages that are not aggregated are displayed singly
on the console, as they arrive.

By default, MVS waits as long as 30 seconds before displaying aggregated
messages. However, MVS doesn't always make the operator wait the maximum
time. MVS displays the aggregated messages a short time after receiving at least
one response from each system to which the command was routed.

By default, the maximum amount of time that MVS waits for messages before
aggregating them is 30 seconds. You can change this maximum wait time as
follows:

128 z/OS V2R1.0 MVS Planning: Operations

v Specify the ROUTTIME parameter on the INIT statement in CONSOLxx. This
affects the entire sysplex.

v Change the current ROUTTIME value by entering the CONTROL M command.
This affects the entire sysplex.

v Request a one-time routing time interval by entering the T= operand on the
ROUTE command itself. This affects only the ROUTE command on which it is
specified.

See z/OS MVS Initialization and Tuning Reference for more details about CONSOLxx,
and z/OS MVS System Commands about the CONTROL and ROUTE command.

Command responses are aggregated if:
v The command responses are received within the timeout period.
v The command responses are identified with console IDs.

Note: If, when issuing a command response, a command processor does not use
the console ID of the command issuer, MVS cannot return an aggregated
command response to the ROUTE command issuer.

Command responses received after the timeout period are not aggregated. MVS
attempts to send them back to the originator.

Note: If the current ROUTTIME value is 0, or if T=0 is specified on the ROUTE
command, no messages are aggregated; they are presented at the originating
console as they are received.

Appearance of aggregated messages
The following examples illustrate how MVS aggregates command responses. In
these examples, the command responses are returned to an out-of-line area on the
console. The sysplex has three systems, named SYS1, SYS2, and SYS3.

Example 1: Comparison of Aggregated and non-Aggregated Messages: The
following two panels use the D T command (DISPLAY TIME) to show how
command responses are aggregated.

The following panel shows several uses of the D T command without aggregation
of command responses:

Chapter 3. Managing messages and commands 129

- SYS1 d t
�A� SYS1 IEE136I LOCAL: TIME=00.26.27 DATE=2006.060 UTC: TIME=04.26.27

DATE=2006.060
- SYS1 ro sys2,d t

�B� SYS2 IEE136I LOCAL: TIME=00.26.33 DATE=2006.060 UTC: TIME=04.26.33
DATE=2006.060

- SYS1 ro t=0,*all,d t
�C� SYS1 IEE136I LOCAL: TIME=00.26.45 DATE=2006.060 UTC: TIME=04.26.45

DATE=2006.060
SYS2 IEE136I LOCAL: TIME=00.26.45 DATE=2006.060 UTC: TIME=04.26.45
DATE=2006.060
SYS3 IEE136I LOCAL: TIME=00.26.45 DATE=2006.060 UTC: TIME=04.26.45
DATE=2006.060

IEE612I CN=C3E0SS1 DEVNUM=03E0 SYS=SYS1 CMDSYS=SYS1

IEE163I MODE= RD

�A� The D T command is issued and processed on SYS1.

�B� The D T command is issued on SYS1 and routed to SYS2 for processing.

�C� The D T command is issued on SYS1 and routed to all systems (SYS1,
SYS2, and SYS3) for processing. To ensure that responses are not
aggregated, T=0 is specified.

The following panel shows the difference between non-aggregated and aggregated
command responses:

130 z/OS V2R1.0 MVS Planning: Operations

- SYS1 d t
SYS1 IEE136I LOCAL: TIME=00.26.27 DATE=2006.060 UTC: TIME=04.26.27
DATE=2006.060

- SYS1 ro sys2,d t
SYS2 IEE136I LOCAL: TIME=00.26.33 DATE=2006.060 UTC: TIME=04.26.33
DATE=2006.060

- SYS1 ro t=0,*all,d t
�A� SYS1 IEE136I LOCAL: TIME=00.26.45 DATE=2006.060 UTC: TIME=04.26.45

DATE=2006.060
SYS2 IEE136I LOCAL: TIME=00.26.45 DATE=2006.060 UTC: TIME=04.26.45
DATE=2006.060
SYS3 IEE136I LOCAL: TIME=00.26.45 DATE=2006.060 UTC: TIME=04.26.45
DATE=2006.060

- SYS1 ro t=5,*all,d t

�B�

IEE421I RO *ALL,D T FRAME LAST F E SYS=SYS1
SYSNAME RESPONSES ---
SYS1 IEE136I LOCAL: TIME=00.29.41 DATE=2006.060 UTC:

TIME=04.29.41 DATE=2006.060
SYS2 IEE136I LOCAL: TIME=00.29.41 DATE=2006.060 UTC:

TIME=04.29.41 DATE=2006.060
SYS3 IEE136I LOCAL: TIME=00.29.41 DATE=2006.060 UTC:

TIME=04.29.41 DATE=2006.060

IEE612I CN=C3E0SS1 DEVNUM=03E0 SYS=SYS1 CMDSYS=SYS1

IEE163I MODE= RD

�A� The D T command is issued on SYS1 and routed to all systems (SYS1,
SYS2, and SYS3) for processing. With T=0 specified on the ROUTE
command, responses to D T from the three systems are not aggregated.

�B� Again, the D T command is issued on SYS1 and routed to all systems
(SYS1, SYS2, and SYS3) for processing. With T=5 specified on the ROUTE
command, responses to D T from the three systems are aggregated. In this
example, the aggregated messages are shown in highlighted text. Note
how the responses in the T=5 response are formatted as compared to the
T=0 response.

Example 2: Another Sample Aggregation of Command Responses: The following
two panels use a very short timeout interval (T=1) to show how non-aggregated
responses are handled.

Chapter 3. Managing messages and commands 131

�A�
- SYS1 ro t=1,*all,v 414,offline

�B�
IEE421I RO *ALL,V 414,OFFLINE FRAME 1 F E SYS=SYS1
NO RESPONSE RECEIVED FROM THE FOLLOWING SYSTEM(S):
SYS2

IEE612I CN=C3E0SS1 DEVNUM=03E0 SYS=SYS1 CMDSYS=SYS1

IEE163I MODE= RD

�A� The ROUTE command is used to try to vary device 414 offline on all
systems. A timeout interval of 1 second (T=1) is specified on the ROUTE
command.

System SYS2 does not respond within one second. Therefore MVS cannot
include the command response from SYS2 in the aggregated response.

�B� MVS lists the systems from which no response was received in time for
aggregation. In this case, only SYS2 is listed, under NO RESPONSE RECEIVED
FROM THE FOLLOWING SYSTEM(S):. This output is in FRAME 1 of message
IEE421I.

- SYS1 ro t=1,*all,v 414,offline
�C�
- SYS2 IEF281I 0414 NOW OFFLINE

�D�
IEE421I RO *ALL,V 414,OFFLINE FRAME LAST F E SYS=SYS1
SYSNAME RESPONSES ---
SYS1 IEF281I 0414 NOW OFFLINE
SYS3 IEE303I 0414 OFFLINE

IEE612I CN=C3E0SS1 DEVNUM=03E0 SYS=SYS1 CMDSYS=SYS1

IEE163I MODE= RD

�C� MVS displays the non-aggregated command response from SYS2. The time
when the non-aggregated messages appear does not depend on when the
operator scrolls to the second frame of message IEE421I.

�D� After the operator scrolls forward to the second (and last) frame of
message IEE421I, MVS displays the aggregated messages.

132 z/OS V2R1.0 MVS Planning: Operations

Controlling write-to-log (WTL) message buffers
You can specify the number of buffers that the system uses to write messages to
SYSLOG. To specify the number of write-to-log (WTL) message buffers, use the
following keyword on the INIT statement of CONSOLxx:

LOGLIM
Defines the number of WTL buffers that the system uses.

Ensure that your installation has enough storage for the LOGLIM buffers. z/OS
MVS Initialization and Tuning Reference provides the range of values for LOGLIM
and provides examples.

Handling translated messages
The MVS message service (MMS) enables your installation to use message files for
message translation. MMS substitutes a message translated into a different
language for the U. S. English equivalent message. If MMS is active, authorized
users of extended MCS consoles on TSO/E can select available languages for
message translation and receive translated messages on their screens. Application
programs can also use MMS to handle translation of messages. Depending on how
the installation displays the messages, users can receive those translated messages
wherever they are displayed or recorded.

TSO/E terminal users can also receive translated messages (including TSO/E
messages) during a TSO/E session or from a batch job.

For MMS to handle translated messages, your installation must use the MVS
message compiler to format install message files that contain English message
skeletons and the translated language message skeletons.

IBM provides English and Japanese versions of MVS messages and English and
Japanese versions of TSO/E messages. If you want languages other than Japanese,
the installation must supply its own version of the translated message skeletons.

References

Applications can use macros for the MVS message translation services. For
information on how applications handle message translation or how to create
message skeletons for languages, see z/OS MVS Programming: Assembler Services
Guide.

Steps for providing translated messages
The following steps describe what your installation must do for users to receive
translated messages.
1. Ensure that the appropriate system install message files have been installed on

your system.
For MVS messages, IBM provides an install message file for U. S. English
messages and an install message file for the Japanese translation. As a feature
of TSO/E, IBM also provides an English and Japanese install message file for
TSO/E messages. Each install message file for the language is a PDS. Your
installation uses SMP/E to install each install message file on the system. You
can install concatenated PDSs. For installation information, see the program
directory for the product.

2. Allocate space for each run-time message file.
You use the MVS message compiler to format each install message file to a
run-time message file. (The compiler formats one run-time message file for each

Chapter 3. Managing messages and commands 133

language including English.) This run-time message file must be a VSAM linear
data set. You must allocate a VSAM linear data set for each run-time message
file. See “Allocating storage for a run-time message file.”

3. Use the MVS message compiler to format the install message file into a
run-time message file.
The input to the compiler is the install message file PDS. The output from the
compiler is the run-time message file (allocated in the previous step). See
“Compiling message files” on page 135.

4. If needed, create installation exit routines.
IBM provides two exits that an installation can use for MMS processing. You
specify the exit names in MMSLSTxx of SYS1.PARMLIB. See “Controlling MMS
through installation exits” on page 137 and “Using parmlib to control message
translation” on page 137.

5. Create or update the following parmlib members to initialize values for MMS:
v MMSLSTxx to define the available languages for message translation and

other message translation processing
v CNLcccxx to define the date and time formats for translated messages
v CONSOLxx to specify the MMSLSTxx member in effect for the system

See “Using parmlib to control message translation” on page 137.
6. Activate MMS.

You can activate, refresh, or stop MMS. You can use the INIT statement in
CONSOLxx to activate MMS at initialization. The operator can activate or stop
MMS by using the SET MMS command. See “Activating MMS” on page 138.

On TSO/E, the installation can indicate in the TSO/E LOGON exit a primary or
secondary language for message translation. Otherwise, TSO/E users can specify
the primary or secondary language on the TSO/E PROFILE command, and TSO/E
can deliver the translated messages. See z/OS TSO/E User's Guide for information.

Allocating storage for a run-time message file
The install message file contains PDS members that include message skeletons for
the language. (For the English PDS and Japanese PDS that IBM provides, each PDS
member contains message skeletons for each MVS component.) The MVS message
compiler converts the install message file into a run-time message file. The
run-time message file for each language must be a VSAM linear data set.

To create the data set for the run-time message files, you need to specify the
DEFINE CLUSTER function of access method services (IDCAMS) with the LINEAR
parameter. When you code the SHAREOPTIONS parameter for DEFINE CLUSTER,
use SHAREOPTIONS (1,3). For a complete explanation of SHAREOPTIONS, see
z/OS DFSMS Using Data Sets.

Figure 13 on page 135 shows a sample job that invokes Access Method Services
(IDCAMS) to create the linear data set named SYS1.ENURMF.DATA on the volume
called MMSPK1. When IDCAMS creates the data set, it creates it as an empty data
set. Note that there is no RECORDS parameter; linear data sets do not have
records.

134 z/OS V2R1.0 MVS Planning: Operations

When you have allocated a VSAM linear data set for each run-time message file,
you can run the message compiler to convert the install message file for messages
in that language. (You must allocate one VSAM linear data set for each run-time
message file.)

Compiling message files
The message compiler converts the message skeletons in an install message file
into a run-time message file. The compiler expects a PDS or concatenated PDSs as
input. The message compiler reads from the install message file and creates a
run-time message file in the VSAM linear data set that you have allocated. If the
compiler cannot process a message, it issues an error message. The message
compiler also sets a return code.

You must run the message compiler:
v For each language install message file, including U. S. English
v Whenever you receive updates to the messages in the install message file

Invoking the message compiler: The message compiler is an executable program.
You can use a batch job, a TSO/E CLIST, or a REXX EXEC to invoke the message
compiler. The syntax to invoke the message compiler for each follows. The
lowercase variables used in the examples have the following meanings:

msg_pds
is the name of the install message file PDS containing all the message skeletons
for a single language. msg_pds must be a partitioned data set.

msg_div_obj
specifies the name of the run-time message file that is to contain the compiled
format of the message skeletons for the language. msg_div_obj must be a linear
VSAM data set suitable for use as a data-in-virtual object.

lang,dbcs
specifies parameters. lang is the three character code of the messages contained
in the install message file. dbcs indicates whether this language contains
double-byte characters (y is yes, n is no).

Using JCL to invoke the message compiler: To invoke the compiler as a batch
job, code the following JCL:

//DEFCLUS JOB ’ALLOCATE LINEAR’,MSGLEVEL=(2,0),
// CLASS=R,MSGCLASS=D,USER=IBMUSER
//*
//* ALLOCATE A VSAM LINEAR DATASET
//*
///*DCLUST EXEC PGM=IDCAMS,REGION=4096K
//SYSPRINT DD SYSOUT=*
//MMSPK1 DD UNIT=3380,VOL=SER=MMSPK1,DISP=OLD
//SYSIN DD *

DELETE (SYS1.ENURMF) CL PURGE
DEFINE CLUSTER (NAME(SYS1.ENURMF) -

VOLUMES(MMSPK1) -
CYL(1 1) -
SHAREOPTIONS(1 3) -
LINEAR) -

DATA (NAME(SYS1.ENURMF.DATA))

Figure 13. Sample JCL for Creating a Run-Time Message File

Chapter 3. Managing messages and commands 135

Using CLIST to invoke the message compiler: To invoke the compiler as a
CLIST, code the following statements:

Using REXX to invoke the message compiler: To invoke the compiler as a REXX
exec, code the following statements:
/* MESSAGE COMPILER INVOCATION EXEC */

"FREE DD(SYSUT1,SYSUT2,SYSPRINT)"

"ALLOC DD(SYSUT1) DSN(msg_pds) SHR"
"ALLOC DD(SYSUT2) DSN(msg_div_obj) OLD"
"ALLOC DD(SYSPRINT) DSN(*)"

"CALL ’SYS1.LINKLIB(CNLCCPLR)’ (lang,dbcs)"

compiler_rc=rc

"FREE DD(MSGIN,MSGOUT,SYSPRINT)"

return(compiler_rc)

Note: For the variables msg_pds, msg_div_obj, lang, and dbcs, REXX substitutes
values that you have assigned. For information on using REXX, see z/OS TSO/E
REXX User's Guide.

Example of running the message compiler: Run a batch job to produce the
run-time message file for the Japanese messages. In the example, the install
message file is named INSTALL.MSG.JAPAN. The data set for the run-time
message file is SYS1.MSG.JAPAN and has been previously defined. You can supply
your own names.
//*
//* Creating the run-time message file
//*
//COMPILE EXEC PGM=CNLCCPLR,PARM=(’JPN,Y’)
//SYSUT1 DD DSN=INSTALL.MSG.JAPAN,DISP=SHR
//SYSUT2 DD DSN=SYS1.MSG.JAPAN,DISP=OLD
//SYSPRINT DD SYSOUT=*
//*

Message compiler return codes: The message compiler generates a return code
contained in register 15 and compiler error messages, both of which can be sent to
SYSPRINT. The return codes are as follows:

//*
//* GENERATE DATA OBJECT FROM EXTRACTED MESSAGES
//*
//COMPILE EXEC PGM=CNLCCPLR,
// PARM=(lang,dbcs)
//SYSUT1 DD DSN=msg_pds,DISP=SHR /* THE INSTALL MESSAGE FILE */
//SYSUT2 DD DSN=msg_div_obj,DISP=(OLD,KEEP,KEEP) /* THE VSAM DATA SET */
//SYSPRINT DD SYSOUT=*

PROC 0
FREE DD(SYSUT1,SYSUT2,SYSPRINT) /* FREE DD’S */
ALLOC DD(SYSUT1) DSN(’msg_pds’) SHR /* ALLOC INPUT - INSTALL MESSAGE FILE */
ALLOC DD(SYSUT2) DSN(’msg_div_obj’) OLD /* ALLOC OUTPUT - VSAM DATA SET */
ALLOC DD(SYSPRINT) DSN(*) /* ALLOC SYSPRINT */
CALL ’SYS1.LINKLIB(CNLCCPLR)’ (’lang,dbcs’) /* CALL MESSAGE COMPILER */
SET &RCODE = &LASTCC /* SET RETURN CODE */
FREE DD(SYSUT1,SYSUT2,SYSPRINT) /* FREE FILES */
EXIT CODE(&RCODE) /* EXIT */

136 z/OS V2R1.0 MVS Planning: Operations

Code Meaning

0 Successful completion

4 Process complete. Run-time message file is complete but the compiler generated
warnings.

8 Processing complete. The run-time message file is usable but incomplete.

12 Processing ended prematurely. The run-time message file is unusable.

Controlling MMS through installation exits
You can code two installation exits that the system invokes to tailor MMS
processing. You specify the names of these exits in MMSLSTxx. See z/OS MVS
Installation Exits.

Using parmlib to control message translation
To control information about the languages you have installed for translation, you
must specify parmlib members MMSLSTxx and CNLcccxx. To activate MMS, you
use the INIT statement of CONSOLxx. (Operators can use the SET MMS command
to affect the status of MMS.)

References

For the complete syntax of these SYS1.PARMLIB members, see z/OS MVS
Initialization and Tuning Reference.

Using MMSLSTxx statements: MMSLSTxx allows you to control information for
each language on your system. It specifies the default language that the installation
can use, the name of the installation exits, the name of the run-time message file,
the name of the SYS1.PARMLIB member that controls the configuration of date
and time formats, and an alternate name for the language, which is optional.

The following examples show how to use MMSLSTxx statements to specify two
languages, U. S. English and Japanese. (Note that the number at the beginning of
each statement is used for reference only; do not code it as part of the statement.)

Statement 1 specifies the language available for use by other MVS components and
application programs. In the example, JPN is the language code for Japanese:
1 DEFAULTS LANGCODE(JPN)

Statements 2 and 3 specify two installation exit routines to tailor MMS processing:
2 EXIT NUMBER(1) ROUTINE(NLSEXIT1)
3 EXIT NUMBER(2) ROUTINE(NLSEXIT2)

Statements 4 and 5 describe information for two languages installed on the system:
4 LANGUAGE LANGCODE(JPN) DSN(RUNTIME.VSAM.JAPAN) CONFIG(CNLJPN01)
5 LANGUAGE LANGCODE(ENU) DSN(RUNTIME.VSAM.US) CONFIG(CNLENU01)

NAME(AMERICAN) NAME(ENGLISH)

Statement 4 describes the language code for Japanese and names the run-time
message file on the DSN parameter. It also specifies the CNLcccxx parmlib member
(CNLJPN01) that contains configuration data for the display of dates and times in
Japanese messages.

Statement 5 describes the language code for U. S. English and names the run-time
message file on the DSN parameter. It specifies the CNLcccxx parmlib member
(CNLENU01) for the display of dates and times in U. S. English. It also specifies

Chapter 3. Managing messages and commands 137

two names for referencing the language. The first is the preferred name for the
language (AMERICAN); the second is the alternate name (ENGLISH). TSO/E users
can select the language using either name.

Using CNLcccxx: For each language that you define in MMSLSTxx, you must
provide a CNLcccxx parmlib member. CNLcccxx controls configuration data used
to display dates and times for the translated messages of each language. In the
member name, ccc is the three-character language code; xx uniquely identifies the
member name. You specify the month, day, and date and time formats for the
language. (If you want, you can specify defaults for date and time formats.)

Using the INIT statement on CONSOLxx
Use the following keyword on the INIT statement of CONSOLxx to specify the
MMSLSTxx member.

MMS Defines the MMSLSTxx member that contains information about languages
available for translation.

Activating MMS
To activate MMSLST01, code the following on the INIT statement of CONSOLxx:
MMS(01)

If you specify MMS(NO), MMS is not active. After IPL, operators can issue the
following command to activate MMS, where xx is the unique member name:
SET MMS=xx

To display information about MMS, operators can issue the following command:
DISPLAY MMS

The system displays information about MMS and the languages that are available
for message translation.

Summary of MVS message and command processing services
Table 14 summarizes the message and command processing that MVS provides. It
briefly describes the features of each service, indicates how the service is invoked,
and gives the scope of the service in a sysplex environment:

Table 14. Summary of Message and Command Processing that MVS Provides

Service Features Where specified Scope

CONSOLxx INIT v Activate MPF

v Activate AMRF

v Specify WTO,
WTOR, and WTL
buffers

v Activate MMS

v Specify default
timeout value for
aggregating
command responses
from other systems
in the sysplex

Parmlib Sysplex for
activating AMRF
and for
aggregating
command
responses; system
for other features.

138 z/OS V2R1.0 MVS Planning: Operations

Table 14. Summary of Message and Command Processing that MVS Provides (continued)

Service Features Where specified Scope

MPF v Suppress messages

v Retain messages

v Select messages for
automation

v Specify installation
exits to process
messages and
commands

MPFLSTxx System

Message Flood
Automation

v Recognize message
floods

v Take action against
flood messages

MSGFLDxx System

AMRF v Retain action
messages

CONSOLxx INIT Sysplex

IEAVMXIT v Process messages

v Control color,
highlighting, and
intensity of messages

CONSOLxx INIT System

Installation-defined
message processing
exits

v Process messages
selected through
MPFLSTxx

v Control color,
highlighting, and
intensity of messages

MPFLSTxx System

Command Installation
exits

v Process commands MPFLSTxx System

MMS v Process messages for
translation

CONSOLxx INIT System

Chapter 3. Managing messages and commands 139

140 z/OS V2R1.0 MVS Planning: Operations

Chapter 4. Message flooding

Many z/OS systems are troubled by cases of message flooding, where a user
program or a z/OS process itself issues a large number of messages to the z/OS
consoles in a short time. For example, a user program might enter an unintentional
loop that includes a WTO call, with the result that a potentially infinite number of
messages are issued in a short time. Cases of hundreds (or even thousands) of
messages a second are not uncommon.

The messages in a message flood are often similar or identical, but are not
necessarily so. Techniques to identify similar messages can be difficult and time
consuming.

z/OS Message Flood Automation
z/OS Message Flood Automation addresses the problems of message flooding on
z/OS. z/OS Message Flood Automation does not claim to identify all cases of
erroneous behavior, nor to take the 'correct' action in all cases. Its intention is to
identify runaway WTO conditions that can cause severe disruptions to z/OS
operation and to take installation-specified actions in these cases.

Message flooding causes disruptions as follows:
v Large numbers of messages to the z/OS consoles can obscure important

messages and delay them from being acted on.
v Large numbers of messages to the automation system (for example, NetView)

can delay the processing of normal messages.
v Messages can use excessive CPU and storage resources. Buffering excessive

message traffic can use large amounts of virtual and real storage and it can
cause SQA to overflow into CSA. This can cause jobs, subsystems and complete
systems to be delayed or even to fail.

Message Flood Automation can react to potential message flooding situations in a
matter of tens or hundreds of messages (specifiable by the installation), before
buffers begin to fill, console queues begin to build, and console message rates
begin to skyrocket. Furthermore, its actions do not result in residual buffers or
queues of messages that must be worked down to return to normal processing.
Because its processing is targeted to the messages causing the problem, very few
uninvolved messages are acted upon. By contrast, the act of flushing console
queues (with the K Q command) can result in throwing away innocent and often
important messages.

Message Flood Automation cannot handle DOM (Delete Operator Message) floods.

Operation
Message Flood Automation is part of z/OS WTO processing. Message Flood
Automation examines each message in the z/OS system, and attempts to identify
when too many WTOs are being issued and by whom. It then takes appropriate
actions: usually to suppress the message from display at a z/OS console, and to
indicate that automation processing is not required. It can also issue commands,
for example, to cancel the user or process.

© Copyright IBM Corp. 1988, 2013 141

Three separate classes of messages are handled. These classes are:
v SPECIFIC messages: a set of messages identified by the installation that are to be

handled separately.
v ACTION messages: messages that have one or more of the following descriptor

codes sets:

1 System failure messages (typically messages with a W message ID
suffix)

2 Messages requiring immediate action (typically messages with an A or D
message ID suffix)

3 Messages requiring eventual action (typically messages with an E
message ID suffix)

11 Messages requiring critical eventual action (typically messages with an E
message ID suffix)

v REGULAR messages: messages that do not fall into any of the above categories.

Each class of messages is handled separately. Each class has its own set of controls
(MSGTHRESH, INTVLTIME, and so on). Each set of controls operate
independently; for example, the system can be in intensive mode for regular
messages but not for action messages. The effect is that z/OS still processes action
messages in the normal way.

Message Flood Automation can take action against privileged messages that are
queued to consoles even in storage shortage situations.

Message Flood Automation runs in two modes: normal and intensive.
v In normal mode, messages are counted. When a threshold number

(MSGTHRESH) of messages have been counted, the time taken to count those
messages is determined. If the time is less than a limit value (INTVLTIME), the
system is placed into intensive mode. This determination is likely to be done
infrequently, for example, every 50-100 messages or more. The INTVLTIME
value should be set to identify high message rates, for example, a value of 5
seconds for INTVLTIME indicates an average rate of 20 messages per second if
MSGTHRESH is set to 100.
The processing overhead in normal mode is therefore very small. Only a small
number of instructions are executed in Message Flood Automation for each
message.

v In intensive mode, each message is subject to extra processing. Messages are
counted for each address space (up to a maximum of 128) issuing messages and
compared to a further limit value (JOBTHRESH). If any one address space issues
JOBTHRESH messages within INTVLTIME, it is subject to action from that time
on. This action can be installation-specified, but is typically defaulted to be
no-display and no-automation.
At the end of each interval of MSGTHRESH messages a check is made to see if
intensive mode should be maintained, and whether address spaces in act-upon
mode should remain so.
Message bursts can end suddenly. The address space that issues them might
suddenly exit a tight-loop condition and resume normal processing. In this
circumstance, it is likely that subsequent messages are important and should be
processed normally. To allow this to happen, there are two further controls:
system inter-message time (SYSIMTIME) and job (or message) inter-message
time (JOBIMTIME or MSGIMTIME).

142 z/OS V2R1.0 MVS Planning: Operations

In intensive mode, if the time since the last message is greater than SYSIMTIME,
then intensive mode is discontinued. This ensures that the first message after a
break is not acted upon.
Similarly, if an address space is in act-upon mode, and the time since its last
message exceeds the JOBIMTIME, then it is removed from act-upon mode.
For specific messages, if a message is in act-upon mode, and the time since the
last message exceeds the MSGIMTIME, then the message is removed from
act-upon mode.

The control algorithms for regular and action messages are identical as described
previously. For specific messages, the control algorithm is similar although it is
applied to individual messages and not to jobs or address spaces. The MSGLIMIT
parameter performs the same function in specific message processing that the
JOBTHRESH parameter performs in regular and action message processing. The
MSGIMTIME parameter performs the same function in specific message processing
that the JOBIMTIME parameter performs in regular and action message processing,
although it is applied against specific messages rather than address spaces.

Message flood detection behavior
A message flood can begin when a message counter is anywhere between zero to
MSGTHRESH; for example, zero, one, or equal to MSGTHRESH.
v If the message counter is zero, the first message of the flood will cause the

timestamp to be stored and MSGTHRESH messages later (assuming this occurs
in less than INTVLTIME), cause the threshold exceeded message to be issued
and intensive mode to be entered. For this case, only MSGTHRESH messages
are required to enter intensive mode.

v If the message counter is one, the timestamp marking the beginning of the
interval has already been stored, and after MSGTHRESH-1 messages have been
counted and the ending timestamp acquired, the difference between the timestamps
may not cause intensive mode to be entered. If a flood is underway, the next
MSGTHRESH number of flood messages will cause intensive mode to be
entered. In this case, it will take 2 x MSGTHRESH - 1 flood messages to cause
intensive mode to be entered.

v If the message counter is already at MSGTHRESH, the first flood message will
cause the ending timestamp to be stored, and the difference in timestamps will
probably cause intensive mode to not be entered. However, the next
MSGTHRESH flood messages will cause intensive mode to be entered. So in this
case, it will take MSGTHRESH + 1 messages to cause intensive mode to be
entered.

v If the message counter is between one and MSGTHRESH, it will take 2 x
MSGTHRESH - n messages to cause intensive mode to be entered, where "n" is
the number of messages already counted.

The bottom line is that the triggering of intensive mode may not occur precisely
after MSGTHRESH flood messages have occurred.

Message Flood Automation and CONSOLxx parameters
CONSOLxx members of PARMLIB contain statements that can affect the routing
and hardcopying of messages.

During WTO processing, the route codes defined by the DEFAULT statement are
applied to unsolicited messages which have been issued without route codes,
without descriptor codes, or without a console ID or console name.

Chapter 4. Message flooding 143

If the ROUTCODE parameter is not supplied on the DEFAULT statement, route
codes 1-16 are applied.

Message Flood Automation can affect the processing of messages whose route
codes are defined by DEFAULT processing just like messages that have been issued
with route codes, descriptor codes or console routing information.

Specifying the MSGFLD parameter on the CONSOLxx INIT statement allows a
MSGFLDxx parmlib member to be automatically loaded and optionally enabled
during system initialization. This eliminates the need for an operator or
automation to enter a SET MSGFLD=xx command, followed by a SETMF ON
command to initialize Message Flood Automation. For more details, see z/OS MVS
Initialization and Tuning Reference.

The HARDCOPY statement defines the route codes of the messages that are subject
to being hardcopied. Messages with route codes 1, 2, 3, 4, 7, 8, 10 and 42 are
always hardcopied whether the ROUTCODE parameter is supplied on the
HARDCOPY statement or not.

Message Flood Automation can affect the hardcopying of messages that have been
forced to hardcopy by HARDCOPY processing just like messages that were
explicitly issued to hardcopy.

Message Flood Automation and MPFLSTxx parameters
MPFLSTxx members of PARMLIB contain statements that can affect the display,
automation and retention of messages.

During MPF processing, the RETAIN, AUTO and SUP parameters on an
MPFLSTxx entry are processed first. Then either a user exit (specified by the
USEREXIT parameter) is invoked or IEAVMXIT is invoked — but not both.

Note that if an MPFLSTxx entry does not exist for a message, the settings from the
NO_ENTRY specification are applied.

Message Flood Automation message processing runs before MPF exit processing.
Therefore, MPF exits can override the RETAIN, AUTO and SUP specifications set
by Message Flood Automation.

Message Flood Automation and the Subsystem Interface (SSI)
Message Flood Automation processing occurs before a message is placed onto the
Subsystem Interface (SSI). Automation products such as NetView, which can obtain
messages from the subsystem interface, see messages after Message Flood
Automation have seen (and potentially modified) them. All requests to delete, log
or queue messages are processed after return from the subsystem interface.
Therefore, NetView and other automation products that sit on the subsystem
interface can see the message and potentially copy or modify the message (possibly
overriding Message Flood Automation decisions) before z/OS deletes, logs or
queues the message.

The NetView 5.2 Message Revision Table (MRT) performs all of its message
processing on the Subsystem Interface, after Message Flood Automation has
processed the message. Message Revision Table logic can see and override message
specification changes that Message Flood Automation requested. Changes to the
message's specifications that the Message Revision Table requested can affect the
logging, display, retention and automation of the message by z/OS.

144 z/OS V2R1.0 MVS Planning: Operations

NetView can obtain messages for automation through either the Subsystem
Interface or an EMCS console interface or both. (If the NetView MSGIFAC
parameter is set to SSIEXT, USESSI, QUESSI or QSSIAT, NetView will obtain
messages for processing from the Subsystem Interface. If the MSGIFAC parameter
is set to SSIEXT, only unsolicited messages are obtained from the SSI; command
response messages are obtained through the EMCS console interfaces). When
NetView obtains messages from the Subsystem Interface, it obtains a copy of the
original message, before z/OS has an opportunity to delete, log or queue the
message to a console. The original message is processed for deletion, logging and
queuing after NetView has made its copy. Traditional (non-Message Revision Table)
NetView automation can see but cannot alter changes to the message that Message
Flood Automation made.

Message Flood Automation and EMCS consoles
Message Flood Automation processing occurs before a message is queued to
Extended MCS (EMCS) consoles. Because EMCS console interfaces can be used by
automation products such as NetView, there are special considerations:
v If a message flood occurs, and Message Flood Automation has been requested to

suppress the message from display, the message is not queued to any EMCS
console unless automation of the message has been requested (typically by
specifying AUTO on the message's MPFLSTxx entry).

v If a message flood occurs, and Message Flood Automation has been requested to
suppress the message from display and NOT automate it, the message is not
queued to any EMCS console.

Note that the decisions to log, display or automate a message are independent
decisions. It is possible (and might be desirable) to obtain messages at EMCS
consoles for automation purposes without logging or displaying them.

If the NetView MSGIFAC parameter is set to SYSTEM, NetView obtains all
messages for automation processing from the EMCS console interfaces. (If the
MSGIFAC parameter is set to SSIEXT, NetView only obtains command response
messages from the EMCS console interfaces; unsolicited messages are obtained
from the SSI). The messages that NetView "sees" at the EMCS console interface
have already been processed by both Message Flood Automation and z/OS
deletion, logging and console queuing processing.

Limitations
Message Flood Automation has the following limitations:
v It only counts the first (major) line of multi-line messages.
v It does not handle branch-entry messages until they are re-issued as normal

messages. It cannot affect them while they are being queued for re-issue.
v It specifically ignores IEF196I and IEF170I messages.

IEF170I
A write-to-programmer message operation failed. The IEF170I message
includes the reason for the failure and 53 characters of the failing
message's text.

IEF196I
A message from a task started under the Master Subsystem (MSTR) is
being written to the system log because it could not be written to the
system message data set or joblog data set. The IEF196I message
includes the message ID and text of the failing message.

Chapter 4. Message flooding 145

v It does not receive control for WTOR messages.

If Message Flood Automation does not take action against a message, it is often
because of these restrictions.

Operator commands
The following operator commands are available to control Message Flood
Automation. For more details, see z/OS MVS System Commands.

Table 15. Operator commands to control Message Flood Automation

Function Command

Enable message flood checking. SETMF ON

Disable message flood checking. SETMF OFF

Enable the collection of message rate information. SETMF MONITORON

Disable the collection of message rate information. SETMF MONITOROFF

Re-initialize the counts, indicators and actions, and
read the specified MSGFLDxx PARMLIB member.

SET MSGFLD=xx

Modify the counts and parameters used by
Message Flood Automation.

SETMF MSGTYPE=msgtype,
keyword=value[,keyword=value]

Display the counts and parameters used by
Message Flood Automation.

D MSGFLD,PARAMETERS

Display the status of the Message Flood
Automation function.

D MSGFLD,STATUS

Display whether intensive mode is active for the
different classes of messages.

D MSGFLD,MODE

Display message rate information collected by the
message rate monitoring function.

D MSGFLD,MSGRATE[,n][,m]

PARMLIB specifications
Installation policy for controlling message flooding situations is specified through
the MSGFLDxx member of PARMLIB.

To provide a MSGFLDxx member in PARMLIB:
1. See the sample MSGFLDxx member as shown in the MSGFLDxx (message

flood automation parameters) chapter of z/OS MVS Initialization and Tuning
Reference. You should provide a MSGFLDxx member similar to it and place the
member into a data set in the PARMLIB concatenation.

2. You might have as many MSGFLDxx PARMLIB members as you like but
Message Flood Automation only supports one member to be active at a time.
Message flood automation processing requires that the MSGFLDxx suffix xx be
alphabetic, numeric or national characters. Other special characters are not
supported.

The following statement types are provided. For more details about the statement
and parameters, see z/OS MVS Initialization and Tuning Reference.
v comment statements
v msgtype statements
v DEFAULT statements
v DEFAULTCMD statements
v JOB statements

146 z/OS V2R1.0 MVS Planning: Operations

v MSG statements

SYSLOG records
The SYSLOG will contain information about the messages that Message Flood
Automation processed. It will contain Message Flood Automation messages about
the decisions it made and the actions it took. It will also contain information about
the actions taken on individual messages (unless NOLOG was specified).

Each SYSLOG record is prefaced by a two-character record type field.

Valid first characters are:
v N - single-line message
v W - single-line message with reply

– WTOR messages are not processed by Message Flood Automation.
v M - first line of a multi-line message

– Message Flood Automation can only react to the first line of a multiline
message, not to any of the label, data or end lines

v L - multi-line message label line
v D - multi-line message data line
v E - multi-line message data/end line
v S - continuation of previous line
v O - LOG command input
v X - non-hardcopy or LOG command source

Valid second characters are:
v C - command issued by operator
v R - command response message
v I - internally issued command
v U - command from unknown console ID (z/OS R8 and above)

SYSLOG message ordering
Message flood automation processing is driven by the issuance of a message. As
soon as that message is created, it obtains a timestamp, and this occurs before the
message is seen by Message Flood Automation. If Message Flood Automation
makes a decision based on that message, it interrupts the processing of that
message until it has taken whatever action it needs to take. Once that has occurred,
processing of the original message by the operating system is then allowed to
resume.

In the following example, the second IOS100I message caused Message Flood
Automation to exceed the REGULAR message threshold. Further processing of the
second IOS100I message was then suspended while:
v Message Flood Automation issued its CNZZ002E message
v Message Flood Automation took action against the second IOS100I message (as

seen in its MPF flags)

The second IOS100I message was then allowed to continue, causing it to be written
to the SYSLOG after the CNZZ002E message had been written to it.
11:14:58.79 ... 00000010 IOS100I DEVICE 891B BOXED, LAST PATH 75 LOST
11:14:58.91 ... 00000010 CNZZ002E MESSAGE THRESHOLD REACHED FOR JOB NONAME
11:14:58.79 ... 00080A09 IOS100I DEVICE 891C BOXED, LAST PATH 75 LOST

Chapter 4. Message flooding 147

Recovery
If a failure occurs during message flood automation processing, a dump will be
taken. Some failures might cause Message Flood Automation to be turned off and
the policy to be reset to the default policy. It might be possible to reactivate
Message Flood Automation using the SETMF ON command.

Other information
The Message Flood Automation software has not been tested with ISV software,
including message automation products. Before activating the Message Flood
Automation function, you need to assess whether there are possible interactions
between Message Flood Automation and any ISV software you run. Use of
Message Flood Automation with ISV software might require adjustments to
Message Flood Automation policy, ISV policy or both and it is possible that
Message Flood Automation cannot be used in conjunction with particular ISV
software. Service is provided by IBM Support, Console Services, Level 2.

Migration
This section describes how to install, initialize and shut down z/OS Message Flood
Automation.

Migrating from one level to another
As of z/OS Version 1 Release 12 Message Flood Automation is part of the z/OS
operating system; therefore, you no longer require the IEAVMXIT ++USERMOD
for Message Flood Automation and need to remove it. If you have already used
the PTF for OA25602 on z/OS Version 1 Release 11 to implement the
++USERMOD for Message Flood Automation, do not reapply the ++USERMOD
through the SMP/E RESTORE command on Version 1 Release 12. Review all
Message Flood Automation user exits to verify the appropriate actions to take in
order to ensure successful migration to the new version of Message Flood
Automation for Release 12.

If you have been using Message Flood Automation and want to install a new level,
take the following actions:
1. Remove Message Flood Automation processing from the MPF installation exit

IEAVMXIT. If Message Flood Automation is the only user of IEAVMXIT, do the
following:
v Replace the UEXIT(Y) parameter with UEXIT(N) on the INIT statement with

the CONSOLxx PARMLIB member.
v Remove IEAVMXIT from the LINKLIST concatenation.

If Message Flood Automation is not the only user of IEAVMXIT, do one of the
following:
v Fall back to the earlier version of the exit without Message Flood

Automation invocations.
v Remove the invocations of Message Flood Automation from the exit.

Reassemble and rebind the exit to verify that the new exit has replaced the
old exit in the LINKLIST concatentation.

v Remove the invocation of Message Flood Automation from the CNZZVXT2
sample program. Reassemble and rebind the exit to verify that the new exit
replaced the old exit in the LINKLIST concatenation.

v Remove IEAVMXIT from the LINKLIST concatenation.

148 z/OS V2R1.0 MVS Planning: Operations

2. If Message Flood Automation is the only user of the command processing exit
specified for USEREXIT on the MPFLSTxx .CMD statement, before you load the
initial program of z/OS Version 1 Release 12, remove the .CMD statement from
all MPFLSTxx members in which the exit has been specified. If Message Flood
Automation is not the only user of the exit, remove the CNZZCMXT entry
from all .CMD statements.

3. Remove all invocations of the SETMF FREE command from the system,
including COMMNDxx and automation.

4. You are not required to make changes to the MSGFLDxx PARMLIB member.
Because Message Flood Automation commands are now subject to
authorization checking, you can define the Message Flood Automation
commands to your security product. For profiles defined to security products,
you can see the table MVS Commands, RACF Access Authorities, and Resource
Names in z/OS MVS System Commands.

Initializing Message Flood Automation
Issue a SET MSGFLD=00 command from a z/OS console to cause the Message
Flood Automation PARMLIB member MSGFLD00 to be read.
v You should see a message indicating that PARMLIB member MSGFLD00 is

being loaded and another message indicating that the loading of PARMLIB
member MSGFLD00 was complete.

To activate Message Flood Automation processing, issue a SETMF ON command.
v You should see a message indicating that Message Flood Automation is enabled.

Interpreting message rate information
The message rate information gathered is presented in multi-line message
CNZZ043I:
v The total number of messages counted
v The total elapse time from when message rate monitoring was started to the

current time
v The average message rate (in messages / second) from when message rate

monitoring was started to the current time
v The number of messages occurring at the most common message rate
v A message rate distribution graph

The message rate distribution graph shows the percent of time at a given message
rate on the Y-axis and instantaneous message rates (in messages/second) on the
X-axis. The X-axis scale is logarithmic with each character position being a factor of
2 greater than the previous position in the rightward direction. Tick marks are
provided at 8X intervals.

Each vertical bar of asterisks in the graph is rightward cumulative, that is, each bar
represents not only the fraction of time at its own rate, but the fraction of time
with a lesser rate. (A bar's own contribution to the time at a given message rate is
therefore the difference between its height and the height of its immediate leftward
neighbor).

A vertical line (|) indicates the most common message rate.

Chapter 4. Message flooding 149

The graph should have a characteristic S shape to it caused by there being
relatively few messages occurring at very low message rates (the bottom left of the
S curve) and very few messages occurring at very high message rates (the top right
of the S curve).
CNZZ043I MSGFLD Message Rates

Instantaneous Message Rates
515 messages in 492 seconds 1.046 msg/sec

% of time at msg rate 112 messages w/most common rate
100.000%| | ***********
96.000%| |************
92.000%| |************
88.000%| |************
84.000%| *************
80.000%| *************
76.000%| *************
72.000%| *************
68.000%| *************
64.000%| *************
60.000%| **************
56.000%| **************
52.000%| **************
48.000%| **************
44.000%| **************
40.000%| **************
36.000%| **************
32.000%| ***************
28.000%| ***************
24.000%| ***************
20.000%| ***************
16.000%| ****************
12.000%| ****************
8.000%| ******************
4.000%| ******************

0+--+--+>-+--|--+--+---+-<+-------------------
0 1 8 64 1K 8K messages/second

Suggested threshold for 95% is 2
Suggested threshold for 96% is 3
Suggested threshold for 97% is 3
Suggested threshold for 98% is 4
Suggested threshold for 99% is 6

This example was produced using a testcase that issued messages with an
exponential distribution of inter-arrival times and a mean inter-arrival time of 0.5
seconds. The vertical bar indicates that the most common (mean) message rate is 1
messages/second. The average message rate is only slightly more than 1
message/second, a rate that has been determined by IBM human factor studies to
be the maximum rate that messages should be presented on any one console.

On the X-axis, the minimum and maximum message rates recorded are indicated
(by the > and < symbols respectively) on either side of the mean message rate. The
percentage of messages occurring at the maximum message rate is usually quite
small and may not be visible unless the resolution of the graph is improved by
increasing the number of message lines in the graph.

The graph presents instantaneous message rates that are determined from the
inter-arrival times of the messages. Small inter-arrival times result in high
instantaneous message rates; large inter-arrival times result in low instantaneous
message rates. A high message rate on the graph does not necessarily imply that
multiple, consecutive messages were issued at that rate. It is quite possible (as in
the example) for a high message rate to be indicated without Message Flood

150 z/OS V2R1.0 MVS Planning: Operations

Automation being triggered. (It is multiple, consecutive, high message rate
messages that trigger Message Flood Automation).

The suggested threshold values represent the message rates that are not exceeded
some fraction of the time. In the example, a message rate of 4 messages/second is
not exceeded 98% of the time; a message rate of 6 messages/second is not
exceeded 99% of the time. You can use the suggested threshold values to set an
appropriate REGULAR MSGTHRESH value.

Look at a more interesting graph:
CNZZ043I MSGFLD Message Rates

Instantaneous Message Rates
34299 messages in 78111 seconds 0.439 msg/sec

% of time at msg rate 5993 messages w/most common rate
100.000%| **********************
96.000%| *************************
92.000%| **************************
88.000%| **************************
84.000%| ***************************
80.000%| ***************************
76.000%| ***************************
72.000%| ****************************
68.000%| ****************************
64.000%| ****************************
60.000%| ****************************
56.000%| ****************************
52.000%| ****************************
48.000%| *****************************
44.000%| *****************************
40.000%| *****************************
36.000%| *****************************
32.000%| *****************************
28.000%| *****************************
24.000%| *****************************
20.000%| ******************************
16.000%| ******************************
12.000%| ******************************
8.000%| ******************************
4.000%| ******************************

0+->+--+--+--+--+--+--|+--+-----<-------------
0 1 8 64 1K 8K messages/second

Suggested threshold for 95% is 1
Suggested threshold for 96% is 1
Suggested threshold for 97% is 1
Suggested threshold for 98% is 1
Suggested threshold for 99% is 1

This graph looks very different from the previous one. The first reaction of most
people is to look at the average message rate of 0.439 messages per second and the
fact that the most commonly occurring message has a rate of 512 messages per
second and wonder how these two statistics can be reconciled. It is important to
understand what an average can tell you and what it cannot. What an average can
tell you is that (in this case) 34299 messages occurred during the 78111 second
interval that was monitored. What the average message rate cannot tell you is
how those messages were distributed within the monitoring interval. If the
messages were distributed uniformly within the monitoring interval, the time
between messages would be the same -- but a quick look at the graph shows this
to not be the case: there were some number of messages that occurred at an
instantaneous message rate of 1 message every 1024 seconds (at the left edge of the
graph) and there were some number of messages that occurred at an instantaneous
message rate of 262144 messages per second (at the right edge of the graph). And

Chapter 4. Message flooding 151

there were the 5993 "most commonly occurring" messages that occurred at a rate of
512 messages per second. The answer to this riddle is that one or more message
"spikes" occurred at some point in the monitoring interval, and those spikes
produced at least 5993 messages at a rate of 512 messages per second. Why doesn't
this very high message rate affect the overall average message rate? Because, this
very high message rate only occurred for 11.7 seconds (5993/512) -- which
represents only 0.015% of the time within the interval of 78111 seconds.

The very broad "top" to the graph is indicative of a very small number of messages
that occurred with very high instantaneous message rates. However, these
messages occur for such brief periods of time that they have almost no effect on
the overall message rate. The very broad "base" of the graph is indicative of a very
non-uniform distribution of messages within the monitoring interval.

The "suggested thresholds" are all one because one is the lowest value that can be
specified.

Setting thresholds based on message rates
The Message Rate Monitoring function measures the message rate for all messages
that are subject to control by Message Flood Automation. The suggested thresholds
provided in message CNZZ043I in response to a DISPLAY MSGFLD,MSGRATE
command are good values to start with.
v Set your REGULAR message threshold (MSGTHRESH) value based on the

suggested thresholds in the CNZZ043I message. IBM recommends that you use
the 99% threshold value, but you may want to set the MSGTHRESH value
higher.
Inter-message time is the inverse of message rate: a message rate of 2.0
messages/second means that messages arrive on average every 0.5 seconds (so
the inter-message time is 0.5 second). You should set your REGULAR message
inter-message time (SYSIMTIME) at or slightly above the inverse of the
REGULAR MSGTHRESH value (1/MSGTHRESH). For example, if the
REGULAR MSGTHRESH value is set to 25, you should set the REGULAR
message inter-message time (SYSIMTIME) value to 0.04 (1/25) or slightly higher.
The REGULAR JOB message threshold (JOBTHRESH) must be set to a value less
than that of MSGTHRESH. A JOBTHRESH value that is 30-40% of MSGTHRESH
is a good starting point. This will allow you to handle 2-3 message flooding jobs
simultaneously. A general "Rule of Thumb" is to take the MSGTHRESH value
and divide by the number of jobs (less than 128) that you want Message Flood
Automation to be able to handle simultaneously and use the result as the
JOBTHRESH value.

v The message rate for ACTION messages is typically a small fraction of
REGULAR messages, so your ACTION message threshold (MSGTHRESH) can
be less than your REGULAR message threshold. (Setting the ACTION threshold
lower than the REGULAR threshold does not increase your overhead because
the ACTION messages occur less frequently.) Because the ACTION message rate
is lower, the ACTION inter-message time (SYSIMTIME) can be greater than your
REGULAR message inter-message time.
The ACTION JOB message threshold (JOBTHRESH) must be set to a value less
than that of MSGTHRESH. A JOBTHRESH value that is 30-40% of MSGTHRESH
is a good starting point. This will allow you to handle 2-3 message flooding jobs
simultaneously. A general "Rule of Thumb" is to take the MSGTHRESH value
and divide by the number of jobs (less than 128) that you want Message Flood
Automation to be able to handle simultaneously and use the result as the
JOBTHRESH value.

152 z/OS V2R1.0 MVS Planning: Operations

v Unless you have chosen very common messages, the message rate for SPECIFIC
messages is typically a small fraction of REGULAR messages, so your SPECIFIC
message threshold (MSGTHRESH) can be less than your REGULAR message
threshold. Because the SPECIFIC message rate is lower, the SPECIFIC
inter-message time (SYSIMTIME) can be greater than your REGULAR message
inter-message times.
The SPECIFIC MSG message threshold (MSGLIMIT) must be set to a value less
than that of MSGTHRESH. A MSGLIMIT value that is 15-20% of MSGTHRESH
is a good starting point. This will allow you to handle 5-6 SPECIFIC message
flooding messages simultaneously. A general "Rule of Thumb" is to take the
MSGTHRESH value and divide by the number of messages (less than 1024) that
you want Message Flood Automation to be able to handle simultaneously and
use the result as the MSGLIMIT value.

The message rate specified by a threshold is also a function of the interval over
which the threshold number of messages occurs. You can specify the same message
rate through different combinations of the threshold and interval values. For
example, setting MSGTHRESH=50 and INTVLTIME=1 specifies a message rate of
50 messages / second. Setting MSGTHRESH=100 and INTVLTIME=2 also specifies
a message rate of 50 minutes / second. You may wish to choose which way you
specify the message rates to achieve other goals:
v Using the MSGTHRESH=50 and INTVLTIME=1 specification will make Message

Flood Automation more responsive to detecting message flooding situations
because only 50 messages will be counted between computations of the message
rate; however, the overhead of the message rate computation will be incurred
twice as frequently as the MSGTHRESH=100 and INTVLTIME=2 specification.

v Using the MSGTHRESH=100 and INTVLTIME=2 specification will make
Message Flood Automation less responsive to detecting message flooding
situations because 100 messages will be counted between computations of the
message rate; however, the overhead of the message rate computation will be
incurred half as frequently as the MSGTHRESH=50 and INTVLTIME=1
specification.

You can use different combinations of threshold and interval to trade-off message
flood detection responsiveness and message flood detection overhead.

The general idea is to set the various thresholds high enough that they are not
being triggered by normal fluctuations in message rates but are triggered when
sudden, very high message rates are encountered. For REGULAR messages, using
one of the suggested threshold values provided by the CNZZ043I message is a
good first approximation. You should set your thresholds high enough that
Message Flood Automation is not constantly oscillating into and out of intensive
mode. Receiving message CNZZ001I is usually a good indication that you have set
the REGULAR message threshold too low; receiving message CNZZ019I is usually
a good indication that you have set the ACTION message threshold too low.

Shutting down Message Flood Automation
Issue a SETMF OFF command from a z/OS console to disable Message Flood
Automation.
v You should see a message indicating that message flood automation was

disabled.
v You can re-enable message flood automation by issuing a SETMF ON command

from a z/OS console.

Chapter 4. Message flooding 153

The state of message flood automation can always be queried using the DISPLAY
MSGFLD,STATUS command.

154 z/OS V2R1.0 MVS Planning: Operations

Chapter 5. Defining auto-reply policy for WTORs

With the auto-reply policy for WTORs, you can get an automatic response from the
system to WTOR messages, when there is no automation, the operator is unaware
of the outstanding request, or spends a long time determining what response
should be given.

Specifically, the auto-reply policy provides the following enhancements on z/OS:
v If an operator or customer-supplied automation has not provided any reply to a

WTOR in a specified amount of time, and the auto-reply policy contains this
WTOR, the system will use the reply from the policy to reply to the message.

v The default auto-reply policy is activated during IPL, unless you explicitly
request that the policy not be activated. If you don't activate the default policy,
WTORs issued during NIP cannot be automated.

v You can add to or alter the default auto-reply policy, or provide your own
auto-reply policy.

v You can use an operator command to activate or deactivate the auto-reply policy
on a system.

v You can use an operator command to display the auto-reply policy and the
current outstanding WTORs that are being monitored by auto-reply processing.

v You can use an operator command to deactivate auto-reply processing or to stop
monitoring a current outstanding WTOR.

v You can specify a system parameter AUTOR=xx in the IEASYSxx parmlib
member or in response to message IEA101A SPECIFY SYSTEM PARAMETERS,
to allow your installation to provide a set of parmlib members that contain the
auto-reply policy, or to request that auto-reply processing not be activated.

Migration
During IPL, if the parmlib member AUTOR00 exists, auto-reply processing is
activated. If the WTORs listed in AUTOR00 are automated by your existing
automation product, examine the WTOR replies in the AUTOR00 parmlib member.
If the replies or delay duration are not desirable, you can create a new AUTORxx
parmlib member and make corresponding changes. Also compare the replies to
what your automation product would reply to these WTORs. Make sure that the
AUTOR00 replies are in accordance with the replies from your automation
product. It's not recommend to make updates to AUTOR00, because updates to
AUTOR00 might be made by the service stream or in new z/OS releases.

Note:

1. If you have created an AUTORxx parmlib member, update the IEASYSyy
parmlib member that you use for IPL. Add the following statement to the
IEASYSyy member:
AUTOR=(xx,00)

Here xx corresponds to the AUTORxx parmlib member that you created. The
IEASYSyy members specifying AUTOR cannot be shared with prior z/OS
releases. If you only need the default AUTOR00 settings, you can omit
specifying AUTOR= in IEASYSyy, and other z/OS levels can continue to use
IEASYSyy. Even if AUTOR= is not specified in IEASYSyy, AUTOR00 is used if
it exists.

© Copyright IBM Corp. 1988, 2013 155

2. If you don't want to activate auto-reply processing, specify AUTOR=OFF in the
parmlib member IEASYSxx or in response to message IEA101A SPECIFY
SYSTEM PARAMETERS. It is not recommended that you remove AUTOR00
from parmlib, because service or new releases might reinstall AUTOR00. If
there is no AUTOR00 member in parmlib, auto-reply is not activated and the
following messages are produced:
CNZ2600I AUTO-REPLY POLICY ATTEMPTING TO USE AUTOR=00.
IEA301I AUTOR00 NOT FOUND IN PARMLIB
CNZ2601I AUTO-REPLY POLICY NOT ACTIVATED.
NO ENTRIES SPECIFIED

Operator commands
The following operator commands are available to control the auto-reply policy for
WTORs. For more details, see z/OS MVS System Commands.

Table 16. Operator commands to control auto-reply policy for WTORs

Function Command

Activate auto-reply processing on a system by
specifying the AUTORxx parmlib member that the
system is to use.

SET AUTOR=(xx[,xx]...)

Display the auto-reply policy active on the system. D AUTOR,POLICY

Display the current outstanding WTORs that are
being monitored by auto-reply processing.

D AUTOR,WTORS

Deactivate the auto-reply processing and stop
monitoring all WTORs issued on the system.

SETAUTOR OFF

Request that the auto-reply processing stop
monitoring an outstanding WTOR.

SETAUTOR IGNORE

PARMLIB specifications
To activate auto-reply processing on a system, you need to specify the AUTORxx
member of PARMLIB.

Statements provided for the AUTORxx parmlib member are NOTIFYMSGS and
MSGID(). The parameters include:
v NOTIFYMSGS(HC)
v NOTIFYMSGS(CONSOLE)
v MSGID() NOAUTORREPLY
v MSGID() DELAY() REPLY()

For details about the statements and parameters, and the wildcard rules applied
when you specify MSGID(), see z/OS MVS Initialization and Tuning Reference.

IBM supplies a suggested auto-reply policy as AUTOR00. You can modify the
member (which is not recommended), or define another AUTORxx member to
customize the auto-reply policy. If you don't want a WTOR in AUTOR00 to be
monitored, your AUTORxx member can override the policy by specifying the
NOAUTOREPLY option. If you want to change the reply or delay value, code a
new MSGID() statement for the WTOR. When you specify parmlib members, make
sure that AUTORxx comes before AUTOR00.

To enable your installation to specify its own auto-reply policy during IPL, or to
request that auto-reply processing not be activated, you need to specify an

156 z/OS V2R1.0 MVS Planning: Operations

AUTOR= option in the parmlib member IEASYSxx or in response to message
IEA101A SPECIFY SYSTEM PARAMETERS.

Displaying WTORs being monitored by auto-reply processing
Outstanding WTORs that are being monitored by auto-reply processing can be
displayed using the D AUTOR,WTORS command. The response to the command is
message CNZ2604I, indicating the WTOR text, the reply that will be used, and the
time at which the reply will be issued. See z/OS MVS System Messages, Vol 4
(CBD-DMO) for details about message CNZ2604I.

You can also issue the DISPLAY R command to display outstanding WTORs that
are being monitored by auto-reply processing. The reply ID of the WTORs will be
prefixed with a % or & character, depending on whether the message issuer was
executing in problem state or in supervisor state.

Additionally, MPF can be used to specify the presentation attributes (color,
highlighting, and intensity) for WTORs that are being monitored by auto-reply
processing. Attributes can be specified by including a .MSGCOLR AUTOR(c,h,i)
statement in your MPFLSTxx member. The default is the same attributes as other
WTORs that are specified in the IMEDACTN MPF entry. For more information
about the parmlib member MPFLSTxx, see z/OS MVS Initialization and Tuning
Reference.

Auto-reply notification messages
The purpose of auto-reply notification messages is to record in the hardcopy log
the fact that auto-reply plans to take action and whether auto-reply does take
action. One of the messages is for notification if the reply would be too long for
the WTOR issuer. Where the notification messages are displayed depends on the
setting of the NOTIFYMSGS statement in the AUTORxx parmlib member. For more
information about auto-reply notification messages, see z/OS MVS Initialization and
Tuning Reference and z/OS MVS System Messages, Vol 4 (CBD-DMO).

SDSF support for auto-reply policy
SDSF provides support for auto-reply policy with columns and an action character
"AutoReply Ignore" (AI) on the system requests (SR) panel. For more information
about action characters, and information about providing security for the action
character and adding the columns to customized field lists, see z/OS SDSF
Operation and Customization.

Chapter 5. Defining auto-reply policy for WTORs 157

158 z/OS V2R1.0 MVS Planning: Operations

Chapter 6. Planning for operation tasks

Once you have established your logical parmlib values to define your consoles and
their use, you need to consider how your operators will interact with MVS at your
installation.

The tasks of starting, running, and stopping systems involve controlling the MVS
system software and most installation hardware, including processors, channel
paths, I/O devices as well as the MCS consoles and extended MCS consoles that
operators use to perform their tasks. In a multisystem environment, you need to
decide how much control over the systems in a complex or sysplex you want your
operators to have to meet your operations goals for the installation.

While planning MVS operations, you or your operators need to understand how to
develop procedures for daily operations and how to make those procedures work
best for the installation. As operations planner, you and your operators must also
be able to predict problems and set up procedures to handle them.

The tasks of operating a z/OS system that are described in this topic include:
v Initializing the system
v Interacting with system functions
v Controlling shared DASD

Your installation can specify logical parmlib members that can affect how your
operators handle these basic tasks. This topic describes operator tasks from the
point of view of MVS operations planning and what you can do to simplify how
operators run MVS.

Other basic operator tasks include:
v Building, controlling, or rebuilding a global resource serialization ring or star

complex. These tasks are described in z/OS MVS Planning: Global Resource
Serialization.

v Responding to failing devices and reconfiguring system resources.
v Controlling the following system activities:

– Controlling system status, device status, the availability of paths, or the
system restart functions

– Controlling time-sharing
– Controlling jobs
– Controlling system information recording for SMF, system trace, the

generalized trace facility (GTF), or master trace.
– Quiescing the system
– Stopping the system
These tasks are described in z/OS MVS System Commands, which also describes
the syntax for every MVS command and provides examples of commands.

Operators can activate dynamic I/O configuration for MVS using the Hardware
Configuration Definition or the ACTIVATE command. For information, see z/OS
HCD Planning and z/OS MVS System Commands.

© Copyright IBM Corp. 1988, 2013 159

Operators can use commands to control and display information about MVS and
Advanced Program-to-Program Communication (APPC). APPC uses the Systems
Network Architecture (SNA) LU 6.2 protocol and allows interconnected systems to
communicate through applications that exchange data. The APPC/MVS
environment is controlled through SYS1.PARMLIB members APPCPMxx and
ASCHPMxx, and MVS commands START, SET, and DISPLAY. For information, see
z/OS MVS Planning: APPC/MVS Management, z/OS MVS System Commands, and
z/OS MVS Initialization and Tuning Reference.

Operators can activate the AutoIPL function so that the system can take predefined
actions automatically when it is about to enter a disabled wait state. An automatic
response can be to re-IPL z/OS, or to take a stand alone dump (SADMP), or to
take a SADMP and have SADMP re-IPL z/OS when it has finished. See “Using the
automatic IPL function” on page 173 for details.

Operators need to take certain software-side actions after performing the dynamic
CPU addition on the hardware side. The newly-added CPUs are either not
available or offline and thus need to be brought online. In addition, because the
total number of the active processors changes, operators might want to adjust the
trace buffer size of the system. See “Exploiting dynamic CPU addition” on page
175 for more details.

Initializing the system
During initialization of an MVS system, the operator uses the system console or
hardware management console, which is connected to the support element. From
the system console, the operator initializes the system control program during the
nucleus initialization program (NIP) stage.

During the NIP stage, the system might prompt the operator to provide system
parameters that control the operation of MVS. The system also issues informational
messages that inform the operator about the stages of the initialization process.

The LOADxx parmlib member allows your installation to control the initialization
process. For example, if you specify, in LOADxx, the IEASYSxx or IEASYMxx
members that the system is to use, the system does not prompt the operator for
system parameters that are specified in those members; it uses the values in those
members instead.

For information about the placement of LOADxx at initialization, see z/OS MVS
Initialization and Tuning Reference.

For specific information on initialization procedures and the system console, see
the processor operator's guide.

The system console and message processing
How you define the system console can determine the volume of messages that the
system console receives during and after initialization.

During initialization you can control the volume of messages that the console
receives. See “Specifying LOAD information” on page 161. You can reply to all
WTOR messages from the system console during initialization.

You can control how the system console receives messages after initialization by
defining values in CONSOLxx. You define routing attributes for the system console

160 z/OS V2R1.0 MVS Planning: Operations

in CONSOLxx that control message traffic when the operator places the console in
problem determination mode. See “Messages that the system console receives in
problem determination mode” on page 165.

Using the system console
Use the system console facility of the hardware management console for
initialization of MVS and for backup recovery purposes. For normal operation of
the system, use MCS, SMCS consoles or extended MCS consoles, or subsystem
consoles like NetView consoles. During abnormal situations when these consoles
cannot operate, operators can use the system console to diagnose the console error
and restore normal console operations. See “Problem determination and the system
console” on page 164.

Using the AUTOACT console group
If an "automatic activate group" (AUTOACT) is active for the system console, the
system will automatically activate and deactivate the system console by issuing the
VARY CN(syscons),ACTIVATE and VARY CN(syscons),DEACTIVATE commands.
v To find out if an AUTOACT group is in place, issue D EMCS,I,CN=syscons name

or D C,CN=syscons name

v To display the consoles in the AUTOACT group, issue D CNGRP
v To add or change the AUTOACT value for the system console, issue VARY

CN(syscons name),AUTOACT=groupname

v To add or change a console group, change the parmlib member CNGRPxx , then
issue SET CNGRP=xx

v To delete the AUTOACT value for the system console, issue VARY CN(syscons
name),AUTOACT=*NONE*

For more information on AUTOACT, see “Using AUTOACT with the system
console” on page 163.

Specifying LOAD information
From the system console facility of the hardware management console, operators
can specify the device number of the volume for the input/output definition file
(IODF), select a LOADxx member, and control the display of messages and system
prompts during initialization.

The operator can specify the following values to initialize the system control
program:
v The device number of the volume where the IODF, a VSAM data set that

manages system configuration data, resides. This is also the device on which the
search for the LOADxx member of SYSn.IPLPARM or SYS1.PARMLIB begins.
For information about IODF and SYSn.IPLPARM, see z/OS HCD Planning and
z/OS MVS Initialization and Tuning Reference.

v The LOADxx member of SYS1.PARMLIB or SYSn.IPLPARM (see z/OS MVS
Initialization and Tuning Reference for a detailed description of LOADxx).

v The initialization message suppression indicator (IMSI) that controls the
suppression of messages and system prompts during initialization.

v The alternate nucleus. (This specification overrides the value specified for the
alternate nucleus in LOADxx.)

LOADxx allows you to specify I/O configuration data and information about the
IODF data set, the nucleus, the master catalog, and the IEASYMxx and IEASYSxx

Chapter 6. Planning for operation tasks 161

parmlib members. For information about those parmlib members, see z/OS MVS
Initialization and Tuning Reference. For information about the IODF data set, see
z/OS HCD Planning.

Using LOADxx is a good way to automate the initialization procedure for your
system and simplify the process for your operators.

The IMSI character tells the system whether or not to do the following during
system initialization:
v Display most informational messages.
v Prompt for system parameters.
v Prompt for the name of the master catalog.

See the section on loading the system software in z/OS MVS System Commands for
a table that shows the possible values for the IMSI character. The values indicate
all possible combinations of the actions listed above.

The NIP console
If no NIP console is defined and ready, MVS will use the system console as the
NIP-time console. The first NIP console which is defined and ready will be used
during initialization. MVS will not switch from one console to another during NIP.

You can also define the same device that you use for the NIP console on a
CONSOLE statement in CONSOLxx as an MCS console. An SMCS console cannot
be the NIP console.

If you define a NIP console for use during initialization, the system directs
messages to the NIP console depending on the values that the operator specifies
for IMSI.

Reference

For information about using HCD to define console devices, see z/OS HCD User's
Guide.

The system console and CONSOLxx
RACF definitions for the system console may also be required. For more
information about the system console and console security, see “Defining RACF
profiles” on page 63.

If you define message routing values for the system console in CONSOLxx, those
values control message routing to the system console only when the operator
activates problem determination mode. During normal operations, when problem
determination mode is inactive, the system ignores these CONSOLxx routing
values. For information about problem determination mode, see “Problem
determination and the system console” on page 164.

During initialization, your operator can also specify CON=NONE in response to
the system prompt for a CONSOLxx member. In that case, the system console
assumes default CONSOLxx values and message routing depends on the IMSI
values specified during initialization.

162 z/OS V2R1.0 MVS Planning: Operations

Using AUTOACT with the system console
AUTOACT specifies the "automatic activate group" for the system console. It is
only valid when DEVNUM(SYSCONS) is specified. If AUTOACT (groupname) is
specified in CONSOLxx, groupname is the name of a console group, as defined in
CNGRPxx.

While the AUTOACT group is defined and not suspended:
v The system console will automatically be placed into problem detemination (PD)

mode when all of the consoles in AUTOACT are inactive.
v The system console will automatically be removed from PD mode when any

console in the AUTOACT group becomes active.

To suspend AUTOACT processing, issue a VARY CN(*),ACTIVATE or
DEACTIVATE command from the system console. This manual intervention will
override automatic processing until the opposite command is issued.

Naming the system console
It is strongly recommended that you name the system console in CONSOLxx. You
can specify a name for the system console using the NAME keyword. Select a
unique name for the system console that cannot be confused with a valid device
number. (For other console naming restrictions, see “Restrictions for console
names” on page 50.)

If your operator specifies CON=NONE, or if you do not name the system console
in CONSOLxx, MVS tries to use the name of the system to which the console is
attached as the name of the system console. The system uses the system name
defined on the IEASYSxx parameter SYSNAME as long as that name is unique and
cannot be interpreted as a valid device number. If you do not name the system
console in CONSOLxx, use a system name that cannot be confused with a device
number that the system can use. For example, do not use a system console name
like ABC, BAD, or C01.

If you specify a system name that the system can interpret as a valid device
number, the system does not use SYSNAME as the name of the system console. If
the system cannot use SYSNAME for the system console name, or if the system
console name is not unique, the name of the system console is SYSCNxxx, where
xxx is a three-character suffix generated by the system.

The system console during normal operations
During normal operations, when the system console is not in problem
determination mode, it receives a minimal set of messages. Otherwise, the volume
of messages received during normal operations might flood the system console
and have an impact on operations.

When it is not in problem determination mode, the system console can receive the
following kinds of messages or perform the following functions:
v Synchronous messages not displayed on another MCS console. Synchronous

messages can indicate system problems that require the operator to respond
through the system console directly attached to the support element.

v Messages that an operator directs to the system console by specifying the system
console name.

v

v Issue any MVS command.

Chapter 6. Planning for operation tasks 163

During normal operations, an operator can reply to any WTOR message from the
system console. However, the system console cannot receive messages defined by
routing code or message level. Also, except for VARY CN,ACTIVATE, an operator
cannot issue commands from the system console to change the system console
characteristics.

Problem determination and the system console
For normal message traffic after initialization, operators use MCS consoles, SMCS
consoles, extended MCS consoles, or subsystem consoles. During regular system
operations, an operator does not generally use the system console to interact with
MVS.

When hardware or software operation problems occur that might cause MCS,
SMCS, extended MCS, or subsystem consoles to fail, an operator can place the
system console in problem determination mode. When the system console is in
problem determination mode, the operator can:
v Enter commands and receive messages to help debug the system problem
v Receive messages to help debug the system problem.
v Control console attribute values for the system console.

The system console in problem determination mode
To respond to system problems when other consoles fail or are unavailable, you
can activate problem determination (PD) mode manually or automatically (for
diagnosis purposes, PD mode expands message processing for the system console).
To manually activate and deactivate PD mode, use the VARY CN,ACTIVATE and
VARY CN,DEACTIVATE commands, respectively. To set up the system console to
automatically activate and deactivate PD mode, use the VARY CN,AUTOACT=
command (see “Using AUTOACT with the system console” on page 163.)

For details on the syntax and usage of VARY CN,ACTIVATE, VARY
CN,DEACTIVATE, and VARY CN,AUTOACT=, see z/OS MVS System Commands.

Establishing console attributes for problem determination mode
in CONSOLxx
You can define system console attributes for problem determination mode in
CONSOLxx. In CONSOLxx, you can define routing codes (ROUTCODE), message
level (LEVEL), and MONITOR attribute on the CONSOLE statement for the system
console.

During regular operations (when the system console in not in problem
determination mode), the system ignores CONSOLxx values for message routing to
minimize message traffic. (See “The system console during normal operations” on
page 163.) When the operator activates problem determination mode for the first
time after the IPL, the system uses the CONSOLxx values that you have defined to
control problem determination mode for the system console.

If you do not define the system console in CONSOLxx, the system uses
CONSOLxx default values to control problem determination mode for the system
console. For information on console attribute default values, see z/OS MVS
Initialization and Tuning Reference.

Changing console attributes through commands
When the system console is in problem determination mode, the operator can issue
any MVS command. To alter the message routing values for the system console,
the operator can issue VARY, CONTROL, or MONITOR commands. Making

164 z/OS V2R1.0 MVS Planning: Operations

changes to system console attributes through commands allows the operator
flexibility in controlling message processing for the system console during problem
determination mode. MVS commands can be issued from the system console
regardless of its operating mode. For example, using the VARY command during
problem determination mode, the operator can redefine routing codes for the
system console without having to reIPL the system.

When the operator removes the system console from problem determination mode,
the system stores the command changes to the console attributes. If the operator
activates problem determination mode again from the system console during the
same IPL, the system uses the console attribute changes it has stored instead of the
values defined in CONSOLxx. See “Example of controlling problem determination
mode for the system console.”

Messages that the system console receives in problem
determination mode
When the system console is in problem determination mode, the system console
receives all synchronous messages and can reply to all WTOR messages. In
addition, the system console can receive the following messages:
v Messages identified by ROUTCODE or LEVEL either in CONSOLxx or by

operator command. Note that if you use the default value for LEVEL, the system
console in problem determination mode receives all messages except broadcast
messages.

v Messages that an operator directs to the system console by specifying the system
console name.

Example of controlling problem determination mode for the
system console
The following example shows how an operator can control problem determination
mode for the system console. The example illustrates how the system handles the
console attribute definition ROUTCODE for the system console SYSCON1 defined
in CONSOLxx as follows:
CONSOLE DEVNUM(SYSCONS) NAME(SYSCON1)

ROUTCODE(1-5)

The operator initializes the system from the system console SYSCON1. After
initialization, the CONSOLxx defaults are in effect for the system console. In this
example, the following default value applies:
v ROUTCODE(NONE)
1. Normal operations

The operator receives a minimum set of messages on the system console and
monitors normal system operations from an MCS console.
The MCS console fails on the system. The operator enters VARY
CN(*),ACTIVATE on SYSCON1 to place the console in problem determination
mode for the first time during this IPL.

2. Problem determination mode

The system console is now in problem determination mode. The system uses
the value for ROUTCODE defined in CONSOLxx:
v ROUTCODE(1-5)
Along with other messages it can receive, the system console receives messages
defined by routing codes 1 through 5.

To receive more information about the problem, the operator decides to change the
routing codes on the system console.

Chapter 6. Planning for operation tasks 165

1. Problem determination mode

Without having to re-IPL, the operator issues the VARY command to change
ROUTCODE to ALL. The system console can receive messages with all routing
codes. The operator is able to restore the MCS console and continue normal
operations. The operator enters VARY CN(SYSCON1),DEACTIVATE on any
console to deactivate problem determination mode.

2. Normal operations

The system console again receives a minimum set of messages. The CONSOLxx
default for ROUTCODE is in effect:
v ROUTCODE(NONE)

The MCS console fails again on the system. The operator reissues VARY
CN(*),ACTIVATE on SYSCON1 for the second time during this IPL.
1. Problem determination mode

The system console is again in problem determination mode. In this example,
the system uses the system console attribute for ROUTCODE based on when
the operator last changed the routing code value:
v ROUTCODE(ALL)
Along with other messages it can receive, the system console receives messages
defined by all routing codes.
The operator restores the MCS console and issues VARY CN(SYSCON1)
DEACTIVATE on the system console to deactivate problem determination
mode.

2. Normal operations

The operator continues normal operations from the MCS console.

Specifying the time-of-day clock and the JES subsystem
The system prompts the operator to set the date and time-of-day (TOD) clock and
to start the job entry subsystem. You can
v Control if the operator needs to set the date and time by using CLOCKxx.
v Start JES automatically by using IEFSSNxx.

You can specify CLOCKxx and IEFSSNxx in IEASYSxx, and then specify the
IEASYSxx member in LOADxx. Thus, depending on how you define values for
your Parmlib members, the operator does not have to be prompted during
initialization to set the clock or start JES. Using LOADxx is thus a good way to
automate the initialization procedure for your system and simplify the process for
your operators.

CLOCKxx and the sysplex
CLOCKxx also allows you to specify that the system use an external time reference
for sysplex operations. In a sysplex, each MVS system shares a clock that provides
synchronized time stamps. This requirement allows the sysplex to monitor and
sequence events across member systems. Systems that run on different processors
in a sysplex require a Sysplex Timer® to synchronize different TOD time stamps
from the processors. Systems that run on a single processor in a sysplex (MVS
systems running under VM as guest systems, or systems running in logical
partitions in a PR/SM™ environment) can use the TOD clock in the processor to
allow the sysplex to control timing events.

Plan the local time for CLOCKxx carefully. To maintain the integrity of time
stamps within the sysplex, the standard time origin for the TOD clock must always

166 z/OS V2R1.0 MVS Planning: Operations

be the same. Ensure that the TOD clock for each system in the sysplex is set to the
same standard time origin. IBM strongly recommends the use of Greenwich Mean
Time (GMT).

Consider those occasions when you want to adjust local time, such as the initiation
of Daylight Savings Time in a system or sysplex. If you need to change the time
zone, for example, you can change the time without resetting the TOD processor
clocks. For a sysplex that uses the Sysplex Timer, you can adjust the time offset
from the Sysplex Timer console, or use CLOCKxx and the SET CLOCK command
to reflect the new time. For a sysplex that does not use the Sysplex Timer, you can
use CLOCKxx and the SET CLOCK command. The changes that you make do not
reset the TOD clock in the processor.

When you make adjustments to local time, IBM recommends that you do not reset
the TOD clock on a processor in a sysplex. If you reset the TOD clock on a
processor in a sysplex, the change affects sysplex timing.

References

For information about the LOAD parameter, see z/OS MVS System Commands. For
information about LOADxx, IEASYSxx, CLOCKxx, and IEFSSNxx, see z/OS MVS
Initialization and Tuning Reference.

For information on CLOCKxx, sysplex operations, and specifying local time
changes, see z/OS MVS Setting Up a Sysplex.

Setting the TOD clock accuracy monitor service
The TOD clock accuracy monitor service allows the specification of an acceptable
time deviation for the TOD clock from the current external time source (ETS). This
service is disabled unless a non-zero value is specified for the ACCURACY
parameter in the active CLOCKxx member of SYS1.PARMLIB. This service is
activated only if the CEC is operating in an STP-only Coordinated Timing Network
(CTN) using one of the following External Timing Sources (ETS) as the source of
time:
v The dial-out service on the HMC.
v A Network Time Protocol (NTP) server.
v A NTP server with a pulse per second output option.

Note: The ACCURACY value specified is with respect to the ETS time, which may
deviate from Universal Coordinated Time (UTC) by a small amount. See section 2.3
of Server Time Protocol Planning Guide Redbook, SG24-7280, for additional details of
the ETS accuracies.

If the ACCURACY value is non-zero and the system requirements are met,
message IEA034I 'THE TOD CLOCK ACCURACY MONITOR IS ACTIVE' is
issued.

If the ACCURACY value is non-zero, but the system requirements are not met,
message IEA036I 'THE TOD CLOCK ACCURACY MONITOR IS NOT ACTIVE' is
issued at IPL.

If the TOD clock exceeds +/- the ACCURACY value, message IEA032E 'TOD
CLOCK ACCURACY LIMITS MAY HAVE BEEN EXCEEDED' is issued and then
re-issued every one hour until the condition is corrected. Possible corrective actions
are:

Chapter 6. Planning for operation tasks 167

v Allow the system to correct the time difference on its own. Note: This may take
up to 7 hours per every second of deviation to correct.

v Follow your installation's clock synchronization process. Note: This may cause
outages of the partitions on all the affected CEC(s).

v Shut down the CTN, deconfigure it, and then use the Set or Adjust the Time
panel on the Hardware Management Console (HMC) to correct the time on the
CEC. Next, reconfigure the CTN, and then re-IPL the partitions.

If the TOD clock exceeds +/- the ACCURACY value, but drifts back or is corrected
to be within the specified tolerance range, message IEA033I 'THE TOD CLOCK IS
NOW WITHIN SPECIFIED ACCURACY BOUNDS' is issued.

Handling wait states
When software errors occur during system initialization, the system enters a
disabled wait state. To diagnose the problem, the operator must display the
program status word (PSW) to determine the wait state code (the low-order 12
bits) and reason codes if any. z/OS MVS System Codes contains the operator
responses to the wait state codes. The operator can follow the instructions for the
specified wait state and reason codes. For how to display the PSW, see the
operator's guide for the processor.

Interacting with system functions
To plan your installation's I/O operations so that operators can respond
appropriately to mounting requests, device allocation, and I/O problems, you need
to consider the following system functions:
v Device allocation
v Hot I/O detection
v Device boxing

Device allocation
Device allocation is the assignment of input/output devices and volumes to job
steps. Requests for device allocation come from data definition (DD) statements
and dynamic device allocation requests.

The system accepts DD statements from:
v Job input to the JES reader
v Jobs submitted through the TSO SUBMIT command
v Started cataloged procedures
v The MOUNT command
v TSO/E LOGONs

Installation programs that run on the system can specify dynamic device
allocation/unallocation requests.

To control the amount of work needed for device allocation, you might want to
restrict device allocation requests. You can define default values for allocation
processing in ALLOCxx of the parmlib concatenation. ALLOCxx allows your
installation to specify space, data set, and other allocation parameters for dynamic
allocation requests. For more information about ALLOCxx, see z/OS MVS
Initialization and Tuning Reference.

168 z/OS V2R1.0 MVS Planning: Operations

You can specify installation exits that get control whenever an allocation request
occurs to perform further processing. In these exits, you can cancel the job that is
making the request or satisfy the allocation request without having an operator
perform actions like mounting volumes or varying devices on or offline. For more
information about allocation exits, see z/OS MVS Installation Exits.

To control device allocation requests from DD statements, you might restrict each
of the forms of input for these statements (for example, by holding the reader, or
by setting a maximum LOGON count). However, because they originate within
executing programs, you cannot control dynamic device allocation/unallocation
requests.

While allocating devices, the system might ask operators to:
v Mount or dismount volumes
v Make decisions (for example, to bring a device online immediately or to wait)

Use VATLSTxx in the parmlib concatenation to control how to mount volumes for
an installation. Based on the values you set in VATLSTxx, operators can issue MVS
MOUNT and UNLOAD commands to mount or unload volumes efficiently. See
“Specifying shared DASD mount characteristics” on page 171 for a description of
mount characteristics.

At IPL time or whenever a VARY command is issued, the system uses the
VATLSTxx entries that you have specified. VATLSTxx helps reduce the amount of
volume mounting so the system can process allocation requests for mounted
devices quickly. Allocation processing is also faster when you define volumes as
reserved rather than removable. For information on allocating devices in a
multisystem that shares DASD, see “Controlling shared DASD” on page 171. For
more information using VATLSTxx, see z/OS MVS Initialization and Tuning Reference.

If a requested volume is not mounted, the system issues a mount message asking
the operator to mount a specific volume or scratch volume. If the operator mounts
the wrong volume, the system finds out as soon as it reads the volume label. The
system unloads the volume and repeats the mount message.

If your system uses automatic volume recognition (AVR), operators can mount
labeled volumes on unused drives not managed by JES3. The system recognizes
these volumes and assigns the drives to later job steps as required.

Generally, to be allocated to job steps, devices must be online. Exceptions are (1)
when the online test executive program (OLTEP) or a similar testing program is
running and (2) when teleprocessing devices are allocated. Operators can bring
offline devices online with the VARY command or in response to the allocation
recovery message, IEF238D.

Operators can also specify that a pending offline device is eligible for allocation
through their response to message IEF238D.

Considerations for operators
Your operators should understand the need for enough work volumes to satisfy
requests for temporary data sets at peak loads. A shortage of work volumes can
cause the system to request additional scratch volumes so operators need to
balance work volumes across channel paths to increase system efficiency.

Operators should not use the MOUNT command for devices managed by JES3. See
z/OS JES3 Commands. They also should not mount a blank tape volume because the

Chapter 6. Planning for operation tasks 169

system scans the entire volume for a tape label and this scanning wastes time. If an
unlabeled tape is needed, the operator can write a tapemark to avoid unnecessary
scanning. After the operator mounts the tape volume and readies the drive, the
system reads the volume label. If an incorrect volume is mounted, the system
unloads the incorrect volume and repeats the mounting message.

Occasionally operators might receive two mount messages for the same volume,
one starting with IEF and the other with IEC. They should treat the two messages
as though they were one. The second is a reminder.

To refer to I/O devices in MVS commands, operators can use the unique device
number assigned to each device (devnum).

In MVS commands, operators should not specify the symbolic names that
programmers use in DD statements to group several devices for allocation to the
job.

The IBM 3495 Tape Library Dataserver performs some operator actions such as
mounts, demounts, and swaps. Operators might notice fewer messages associated
with these actions. These messages are no longer sent to the console, but rather to
the hardcopy log, where they are available for tracing and diagnosis.

Hot I/O detection
Hot I/O refers to the repeated I/O interruptions that result from hardware
malfunctions. Because hot I/O can cause the system to loop or to fill the system
queue area with I/O control blocks, operators need to detect hot I/O quickly and
correct the problem.

When the number of repeated interruptions exceeds an installation-defined
threshold value, the system assumes there is a hot I/O condition. You can establish
hot I/O recovery threshold values. If the threshold is reached, the system issues
message IOS109I and attempts to recover from the hot I/O condition. The
IECIOSxx parmlib member allows you to change threshold default values. See
z/OS MVS Initialization and Tuning Reference for information on setting up hot I/O
recovery defaults.

Considerations for operators
Operators who must respond to hot I/O conditions should try to solve the
problem at the lowest possible level; that is, they should try to correct the problem
at the device first, and then the control unit. Operators can power the device off
and on. If that does not help, they can reset the control unit if the affected device is
not a direct access device. If these actions do not correct the problem, they might
have to physically disconnect the device or control unit.

Whatever action operators take, they must respond to the prompting message or
restartable wait state.

Device boxing
In certain error recovery situations and in response to certain VARY and CONFIG
commands, the MVS system can “box” an I/O device.

The system boxes a device:
v When it detects hot I/O on the device and the device cannot be recovered
v When, because of a channel path error, it takes the last path to the device offline

170 z/OS V2R1.0 MVS Planning: Operations

v When, because of a channel path error, it releases a reserve or assign on the
device

v When it releases an unconditional reserve for the device
v When the operator issues a VARY OFFLINE command with the FORCE option

for the device
v When the operator issues a CONFIG OFFLINE command with the FORCE

operand for a channel path and the command releases a hardware reserve or
removes the last path to the device

Once a device enters a boxed state, the system:
v Immediately terminates I/O in progress on the device
v Rejects future I/O requests (by a user or by the system) to the device as

permanent I/O errors
v Rejects any attempts to allocate the device
v Puts the device in pending offline status

Considerations for operators
Because operators might release a reserve or assign on a device and cause a data
integrity exposure, they should use the VARY OFFLINE and CONFIG OFFLINE
commands with FORCE only in emergency situations.

When the boxing problem is fixed, operators can take the device out of the boxed
state at any time by issuing VARY device ONLINE. Once the VARY command
takes effect, the device is again available for I/O and allocations. Operators cannot
take a boxed device out of the boxed state by replying with the device name to the
allocation recovery message, IEF238D.

Controlling shared DASD
The shared direct access storage device (DASD) option allows multiple systems to
access common data on direct access storage devices. This sharing is accomplished
through a hardware feature of the DASD control unit together with the
reserve/release function of the operating system or through the global resource
serialization function of the operating system. (For more information, see z/OS
MVS Planning: Global Resource Serialization.)

During system installation, you can choose the shared DASD option. The
advantages of using shared DASD include:
v Reducing the amount of time your operators have to spend moving volumes

from one system to another.
v Minimizing the updating of data sets because operators have to update only one

instead of two or more duplicates.
v Simplifying scheduling. Unless the job has other special requirements, you can

run a job needing a specific data set on a shared device on any of the sharing
systems.

Specifying shared DASD mount characteristics
Shared DASD can affect the volume characteristics, device status, volume
mounting, and unloading at your installation. You can define shared DASD in
VATLSTxx as permanently resident on the system; volumes on the DASD can be
shared but the DASD itself cannot be physically mounted on another system.

Chapter 6. Planning for operation tasks 171

You can also define the DASD as removable; the DASD can be mounted on
another system, but first any other system using the device must take the DASD
offline. Finally, you can define DASD as reserved; operators can also reserve
removable DASD by using the MOUNT command. This means that the DASD is
reserved for use by the system and that the device is offline to other sharing
systems.

You can control the mount characteristics for shared DASD in a system by using
VATLSTxx. Use VATLSTxx to set initial values for the mount characteristics of
shared DASD at your installation.

Your operators can use MOUNT, VARY, and CONFIG commands to reserve
volumes for the system, take devices offline, and inform other sharing systems
about the mounting of the volumes.

References

For information about VATLSTxx, see z/OS MVS Initialization and Tuning Reference.
For information and examples on using MOUNT, VARY, and CONFIG see z/OS
MVS System Commands.

Considerations for operators
Before mounting a DASD volume to reserve it for the system, operators first must
ensure that jobs requiring the volume are not selected by an initiator. Operators
can hold up job selection by one of the following:
v Using the TYPRUN=HOLD parameter on the job statement.
v Using the appropriate subsystem command.
v Assigning the job to a job class and not activating that class for subsystem

scheduling.

To reserve the volume, the operator then must:
1. Use the VARY command to put the device offline to each sharing system and

wait for the offline message in each system. The device does not go offline until
the message is issued.

2. Use the MOUNT command to notify each sharing system of the unit where the
new volume is being placed, and to put the volume in reserved status.

3. Use the MOUNT command to mount the volume.

After the volume is mounted, operators can use a JES command or activate the
class for subsystem scheduling.

Note:

1. To stop I/O to a shared device or group of devices, operators can use
IOACTION QUIESCE. See z/OS MVS System Commands for syntax and
examples.

2. If there is a hardware failure on a device other than the system residence
device, the operators must vary the failing device offline on all sharing systems.
Operators can then mount the shared volume on another shared device, if one
is available, as long as parallel mount procedures occur on all sharing systems.

3. Operators can release a reserved device and remove a path to it by issuing
CONFIG CHP,OFFLINE,FORCE. If operators try to remove a path to a reserved
device with any other CONFIG command or with a VARY command, the
system issues message IEE379I or IEE719I and does not execute the command.

172 z/OS V2R1.0 MVS Planning: Operations

4. When you want a shared non-JES3 device to be allocated by only one system,
the operator of each system sharing the device should use the VARY command
to place the device offline on the sharing systems.

IPLing a system that shares DASD
Shared DASD can also affect how an operator IPLs a system that requires devices
in use by other systems. An operator might have to re-IPL a system that is sharing
DASD. If a device is being used by another system, the initializing system waits
and then issues the following message to the operator:
* id IOS120A DEVICE ddd SHARED. REPLY ’CONT’ or ’WAIT’

The operators should reply with “WAIT”.

“WAIT” causes the system to wait until the reserved device is released. If the
system waits more than one minute, the operator should re-IPL.

If the device is still reserved, the system reissues message IOS120A. The operator
should then reply with “CONT” and the path to the device is marked offline to the
system. Thus, the device is also unavailable to jobs running on the system.

Using the automatic IPL function
As part of planning your installation's operations so that operators or the system
can respond promptly and appropriately to disabled wait states, consider
activating the AutoIPL function. AutoIPL can re-IPL z/OS, or take a stand alone
dump (SADMP), or take a SADMP and have SADMP re-IPL z/OS when it has
finished. The desired actions are represented in an AutoIPL policy, which you state
in a DIAGxx parmlib member that the system checks at wait state time.

AutoIPL requires hardware support, standard on all systems beginning with
System z10™ Enterprise Class (z10 EC). For System z9® Enterprise Class (z9 EC),
AutoIPL is provided with feature code 9904 and hardware driver 67 or later (both
are required). After applying the feature, you must IPL the system to detect
AutoIPL on the z9 EC.

AutoIPL is also available for a z/OS guest on z/VM® Release 5.3.0 or later.

AutoIPL works on a single-system basis (that is, a disabled wait state on a given
system prompts that system to take the actions stated in the AutoIPL policy of the
system).

Use the following steps to activate AutoIPL:
1. If the policy is to include the taking of a SADMP, generate SADMP on some

volume, ensuring that the level of SADMP is correct for the level of z/OS, that
the SADMP data set is of sufficient size and has the correct properties set.

2. Code an AUTOIPL statement in a DIAGxx parmlib member, using the syntax
described in the z/OS MVS Initialization and Tuning Reference.

3. Prompt the system to read the DIAGxx member, either by setting up the
parmlib concatenation and IPLing, or by issuing a SET DIAG=xx operator
command.

4. Issue the DISPLAY DIAG command to verify that the policy established is what
you intended.

To deactivate AutoIPL:

Chapter 6. Planning for operation tasks 173

1. Code the following statement in the DIAGxx member, and prompt the system
to read it:
AUTOIPL SADMP(NONE) MVS(NONE)

2. Next, issue DISPLAY DIAG to verify that the system displays AUTOIPL
SADMP(NONE) MVS(NONE).

Part of the AutoIPL support includes a hard-coded table of wait state and reason
codes, called the wait state action table (WSAT), which is part of the z/OS nucleus.
Each entry has a flag to indicate whether the SADMP part of the AutoIPL policy
should be honored, and a flag to indicate whether the MVS part of the AutoIPL
policy should be honored. (This is necessary because a few z/OS wait states are
inappropriate for a SADMP or a re-IPL.)

When the Loadwait component of z/OS is invoked to load a disabled wait state, it
checks the requested wait state and reason code against the table.

For non-restartable wait states, Loadwait will fully honor the AutoIPL policy
unless a matching WSAT entry is found that has one or both flags off. If a bit is
found off, then the corresponding SAD or re-IPL will not be performed.

For restartable wait states, Loadwait will ignore the AutoIPL policy unless a
matching WSAT entry is found that has one or both flags on. If a bit is found on,
then the corresponding SAD or re-IPL will be performed. As of this writing, the
WSAT contains no entries matching any restartable wait state and reason codes, so
a restartable wait state request will not result in any AutoIPL action.

The contents of the wait state action table are described in “Wait state action table
(WSAT)” on page 175.

Note:

1. AutoIPL is not appropriate in a GDPS® environment.
2. Do not specify a load device that is defined as a secondary device in a PPRC

pair.
3. If an AutoIPL action is performed, the following message does not appear at

the HMC: Central processor (CP) x is in a nonrestartable stopped state
due to a System Control Program (SCP)initiated reset of the I/O
interface for partition n.

4. Verify the required hardware support on the system by attempting to establish
an AutoIPL policy (with SADMP setting other than NONE). If message IGV010I
appears, some or all the required support is not present.

5. AutoIPL supports only ECKD™ devices.
6. To give sysplex failure management (SFM) some time to perform fencing

isolation on the failed system, AutoIPL might delay for several minutes before
actually initiating the SADMP or the re-IPL. During this time, the failed system
will appear to be hung.

7. The AutoIPL functions can optionally be requested on a VARY XCF command
issued to remove a system from a sysplex. They may not be performed as
requested if the sysplex partitioning and/or sysplex resource cleanup activities
initiated on the removed system cause that system to request a disabled wait
state other than the one associated with the SADMP and/or REIPL keywords
specified on the VARY XCF command. If a wait state is requested as a result of
sysplex partitioning and/or resource cleanup activities on the removed system,
the AutoIPL functions are performed based on the wait state code that was

174 z/OS V2R1.0 MVS Planning: Operations

actually requested to be loaded, rather than based on the AutoIPL functions
that were requested on the VARY XCF command.

8. Specialty processors such as the System z® Integrated Information Processor
(zIIP) and System z Application Assist Processor (zAAP) do not support the
Load function that AutoIPL initiates. If a wait state that should result in
AutoIPL actions is requested on a specialty processor, the system attempts to
switch to a general-purpose processor. If a switch cannot be performed, the
AutoIPL action is not performed, and the system loads the requested wait state.

Wait state action table (WSAT)
Entries are of the form frrrrwww, where

f represents flags

rrrr represents the reason code

www represents the wait state code

The '0010'b flag indicates that SADMP is to be IPLed.

The '0001'b flag indicates that z/OS is to be IPLed.

Both flags on ('0011'b) indicates that SADMP is to be IPLed, followed by z/OS.

The '1000'b flag indicates that any reason code (for this wait state code) should be
considered a match.

The entries coded into the WSAT as of this writing are as follows:

X'000040A2'
X'1017C0A2'
X'201800A2'
X'301840A2'
X'200010B5'
X'200020B5'
X'A0000001'
X'A0000007'
X'A0000008'
X'A0000009'
X'A0000010'
X'A0000037'
X'A0000039'
X'A0000056'
X'A0000079'

Exploiting dynamic CPU addition
This section describes the software-side actions after you perform the dynamic
CPU addition on the hardware side. For more information about how to update
the LPAR definition, see the "Dynamic Capacity Upgrade on Demand" topic of
System z10 Enterprise Class Processor Resource/Systems Manager™ Planning Guide.

After you add CPUs to an LPAR, message ISN011I will be issued for each CPU
that is dynamically added.

HiperDispatch=NO environments support only the first 64 CPUs being brought
online. When HiperDispatch=NO, you can dynamically add a CPU after the 64th

Chapter 6. Planning for operation tasks 175

CPU has been added, but z/OS does not allow the CPU to be brought online while
the system is running HiperDispatch=NO. If a CPU is dynamically added after the
64th CPU is brought online when HiperDispatch=NO, the system issues ISN012E
to indicate HiperDispatch=YES is required to bring the CPU online. For
information about HiperDispatch, see "HiperDispatch Mode" in z/OS MVS
Planning: Workload Management and "IEAOPTxx (OPT) Parameters" in z/OS MVS
Initialization and Tuning Reference.

Then you need to check if the newly-added processors are offline or not available.
Issue the DISPLAY M=CPU command to view the status of the newly-added
processors, and the status shown will be either OFFLINE or NOT AVAILABLE.
The actions to take are as follows:
1. Change the NOT AVAILABLE status to OFFLINE: either deconfigure one or

more CPUs offline from one or more other logical partitions as needed, or
perform a physical machine upgrade to add more physical processors to the
machine configuration.

2. Bring offline processors online: use the CONFIG CPU command.

For more information about the CONFIG command, see z/OS MVS System
Commands.

With the CPU addition, you might want to adjust the trace buffer size of your
system. The way that you defined the buffer size for the previously existing
processors will impact the buffer size set aside for the newly-added processors.
v If you used the TRACE ST,nn command to define the size of the per-processor

trace buffer, the newly-added processors will get the same size you assigned to
the previously existing processors. If the total size of all the trace buffers exceeds
a system-defined maximum, the size per processor will be reduced.

v If you used the TRACE ST,BUFSIZ=nn command to define the overall size of the
trace buffer, the total BUFSIZ value will still be honored and the per-processor
buffer size will be calculated based on the new number of processors, thus
reducing the per-processor size by a value related to the number of newly-added
processors compared to the number of previously existing processors.

To resize the total trace buffer size, use the TRACE ST,BUFSIZ= command. For
more information about the TRACE ST command, see z/OS MVS System Commands.

Exploiting the z/OS IBM System z Advanced Workload Analysis
Reporter (IBM zAware) for OPERLOG

Steps necessary to set it up and have operlog messages sent to IBM zAware server:
1. Use OPERLOG hardcopy log. For complete information about the HARDCOPY

statement of CONSOLxx, see z/OS MVS Initialization and Tuning Reference.
2. Specify ZAI(YES) ZAIDATA('OPERLOG') on the SYSPLEX.OPERLOG log

stream definition. See Planning for system logger applications in z/OS MVS
Setting Up a Sysplex for information on system logger requirements and log
stream usage.

3. See Preparing for z/OS IBM zAware log stream client usage in z/OS MVS
Setting Up a Sysplex for details on getting operlog data to the IBM zAware
server.

176 z/OS V2R1.0 MVS Planning: Operations

Chapter 7. Examples and MVS planning aids for operations

This chapter provides some planning aids and reference information for MVS
operations. It includes a summary of CONSOLxx statements and keywords,
OPERPARM subkeywords for extended MCS consoles, and the MVS commands
that operators can use to modify values. It also includes examples of using RACF
to define and authorize a TSO/E user of an extended MCS console and how to
control the console attributes associated with the user.

Finally, the chapter provides two examples for planning consoles in an MVS
environment:
v Setting up an MCS console cluster for a single MVS system
v Setting up an MCS console configuration for a two-system sysplex

Summary of CONSOLxx and commands to change values
The following tables summarize the CONSOLxx keywords and the operator
commands that can change those keyword values. Table 17 describes the
CONSOLE statement keywords, the OPERPARM equivalent, the MVS command to
change the keyword value, the scope of the keyword, and meaning of the
keyword.

Table 18 on page 180 describes the keywords INIT, HARDCOPY, and DEFAULT,
the MVS command to change the keyword value, the scope of the keyword, and
the meaning of the keyword.

Note: The values for these keywords can also be changed by using the SET CON=xx
command.

“N/A” in a column indicates that no OPERPARM equivalent exists for the
CONSOLE keyword. (There are no OPERPARM equivalents for keywords on INIT
and DEFAULT statements.) “Must Re-IPL” in a column indicates that operators
cannot change the keyword value through commands. Values for keywords with a
sysplex scope persist through single system IPLs; however, when the sysplex is
reinitialized, the values set in the CONSOLxx parmlib members or the IBM
defaults are in effect. z/OS MVS System Commands provides complete reference
information and examples for using MVS commands.

Table 17. CONSOLE Statement Summary

CONSOLE statement
keyword

OPERPARM
equivalent for
extended MCS

consoles

Command to change
keyword value

Scope in
shared
mode

Scope in
distributed

mode

Meaning

CONSOLE DEVNUM N/A Must re-IPL See Note 2 See Note 2 Identifies SMCS,
SYSCONS,
subsystem, or
the 3-digit or
4-digit device
number for the
MCS console

© Copyright IBM Corp. 1988, 2013 177

Table 17. CONSOLE Statement Summary (continued)

CONSOLE statement
keyword

OPERPARM
equivalent for
extended MCS

consoles

Command to change
keyword value

Scope in
shared
mode

Scope in
distributed

mode

Meaning

CONSOLE UNIT N/A Must re-IPL System System Defines the unit
device for the
MCS console

CONSOLE NAME See Note 1 Must re-IPL Sysplex Sysplex Defines the
console name

CONSOLE AUTH OPERPARM
AUTH

VARY CN,AUTH Sysplex See Note 2 Defines
command
groups or
authority

CONSOLE USE N/A CONTROL V,USE Sysplex See Note 4 Defines the
input/output
capability of the
console

CONSOLE DEL N/A CONTROL S,DEL Sysplex See Note 4 Specifies
automatic
message deletion

CONSOLE RNUM N/A CONTROL S,RNUM Sysplex See Note 4 Defines number
of messages per
screen rolls

CONSOLE RTME N/A CONTROL S,RTME Sysplex See Note 4 Defines interval
of time between
screen rolls

CONSOLE CON N/A CONTROL S,CON Sysplex See Note 4 Defines
conversational or
non-
conversational
message deletion

CONSOLE SEG N/A CONTROL S,SEG Sysplex See Note 4 Defines the
number of lines
to delete using
CONTROL
E,SEG

CONSOLE AREA N/A CONTROL A Sysplex See Note 4 Defines status
display areas for
a console

CONSOLE MFORM OPERPARM
MFORM

CONTROL S,MFORM Sysplex See Note 4 Defines message
formats for the
console

CONSOLE MONITOR OPERPARM
MONITOR

MONITOR Sysplex See Note 3 Displays
jobname, data
set status, or
TSO/E
information

CONSOLE PFKTAB N/A CONTROL N,PFK System See Note 4 Defines the PFK
table for the
console

178 z/OS V2R1.0 MVS Planning: Operations

Table 17. CONSOLE Statement Summary (continued)

CONSOLE statement
keyword

OPERPARM
equivalent for
extended MCS

consoles

Command to change
keyword value

Scope in
shared
mode

Scope in
distributed

mode

Meaning

CONSOLE
ROUTCODE

OPERPARM
ROUTCODE VARY CN,ROUT

VARY CN,AROUT
VARY CN,DROUT

Sysplex See Note 3 Defines the
routing codes for
the console

CONSOLE LEVEL OPERPARM
LEVEL

CONTROL V,LEVEL Sysplex See Note 3 Defines message
levels

CONSOLE MSCOPE OPERPARM
MSCOPE VARY CN,AMSCOPE

VARY CN,DMSCOPE
VARY CN,MSCOPE

Sysplex See Note 3 Defines systems
that direct
messages to a
console

CONSOLE CMDSYS OPERPARM
CMDSYS

CONTROL V,CMDSYS Sysplex See Note 3 Defines systems
where
commands on a
console can be
directed for
processing

CONSOLE SYSTEM N/A VARY
CN,ONLINE,SYSTEM

Sysplex Sysplex In a sysplex,
specifies which
system the
installation
expects the
console to be
initialized on.

CONSOLE LOGON N/A VARY CN,LOGON Sysplex See Note 4 Defines the
LOGON
attribute of this
console.

CONSOLE LU N/A VARY CN,LU Sysplex Sysplex Defines the
predefined LU
for an SMCS
console only.

CONSOLE INTIDS OPERPARM
INTIDS

VARY CN,INTIDS Sysplex See Note 3 Defines the
INTIDS attribute
for this console.

CONSOLE UNKNIDS OPERPARM
UNKNIDS

VARY CN,UNKNIDS Sysplex See Note 3 Defines the
UNKNIDS
attribute for this
console.

CONSOLE RBUF N/A None Sysplex See Note 4 Specifies the
number of
previously
entered
commands that
can be retrieved
on this console
by pressing the
PA1 key.

Chapter 7. Examples and MVS planning aids for operations 179

Table 17. CONSOLE Statement Summary (continued)

CONSOLE statement
keyword

OPERPARM
equivalent for
extended MCS

consoles

Command to change
keyword value

Scope in
shared
mode

Scope in
distributed

mode

Meaning

CONSOLE AUTOACT N/A VARY CN,AUTOACT System System Specifies the
automatic
activate group
for the system
console.

Note:

1. For the name of the extended MCS console, the system uses the TSO/E userid defined by RACF and under
which the OPERPARM segment is stored.

2. Has sysplex scope for SMCS, SYSCONS, and subsystem console; system scope for MCS console.

3. Has sysplex scope for SMCS and SYSCONS console; system scope for MCS console.

4. Has sysplex scope for SMCS console; system scope for MCS console.

Table 18. Summary of INIT, HARDCOPY, and DEFAULT Statements

INIT, HARDCOPY, and
DEFAULT statement
keywords

Command to change keyword value Scope Meaning

INIT APPLID CONTROL M,APPLID System Sets the APPLID used by
SMCS on this system

INIT GENERIC CONTROL M,GENERIC Sysplex Sets the GENERIC used by
SMCS for the entire sysplex

INIT CNGRP SET CNGRP Sysplex Activates the member of
CNGRPxx that defines console
groups for the system or
sysplex

INIT MONITOR
MONITOR
SETCON MN

System Displays mount message
information

INIT PFK SET PFK System Activates the PFKTABxx
member for MCS consoles

INIT CMDDELIM Must re-IPL System Defines the command
delimiter for entering multiple
messages on MCS consoles

INIT CTRACE TRACE CT System Specifies the parmlib member
that contains tracing options
for the operation services
component

INIT MPF SET MPF System Activates the message
processing facility

INIT AMRF CONTROL M,AMRF Sysplex Activates the action message
retention facility

INIT UEXIT CONTROL M,UEXIT System Activates message processing
exit IEAVMXIT

INIT MLIM CONTROL M,MLIM System Specifies buffers for WTO
messages

INIT RLIM CONTROL M,RLIM Sysplex Specifies buffers for WTOR
messages

180 z/OS V2R1.0 MVS Planning: Operations

Table 18. Summary of INIT, HARDCOPY, and DEFAULT Statements (continued)

INIT, HARDCOPY, and
DEFAULT statement
keywords

Command to change keyword value Scope Meaning

INIT LOGLIM CONTROL M,LOGLIM System Specifies buffers for messages
that the system writes to the
hardcopy log

INIT MMS SET MMS System Activates the MVS message
translation service

INIT ROUTTIME CONTROL M,ROUTTIME Sysplex In a sysplex, specifies the
maximum amount of time
MVS waits before aggregating
responses to commands routed
to other systems.

DEFAULT SYNCHDEST See Note 2 on page 182. System Specifies the console group
from which the system can
select a console to display
synchronous messages

DEFAULT LOGON Must re-IPL System Specifies default LOGON
attributes for MCS and SMCS
consoles

DEFAULT HOLDMODE Must re-IPL System Specifies whether the operator
can freeze the display on MCS
console screens

DEFAULT ROUTCODE Must re-IPL System Assigns routing codes for
messages without a target
console

DEFAULT RMAX
K M,RMAX
See Note 1 on page 182.

Sysplex Specifies maximum number of
WTOR reply ids

HARDCOPY DEVNUM VARY OPERLOG|SYSLOG,HARDCPY System Specifies the hardcopy log

HARDCOPY
ROUTCODE VARY

OPERLOG|SYSLOG,HARDCPY,AROUT

VARY
OPERLOG|SYSLOG,HARDCPY,ROUT

VARY
OPERLOG|SYSLOG,HARDCPY,DROUT

System Defines route codes for the
hardcopy log

HARDCOPY
CMDLEVEL VARY

OPERLOG|SYSLOG,HARDCPY,NOCMDS

VARY
OPERLOG|SYSLOG,HARDCPY,INCMDS

VARY
OPERLOG|SYSLOG,HARDCPY,STCMDS

VARY
OPERLOG|SYSLOG,HARDCPY,CMDS

System Defines command recording
options for the hardcopy log.
See Note 3 on page 182.

HARDCOPY
HCFORMAT

Must re-IPL System Defines 4-digit year format for
hardcopy records

Chapter 7. Examples and MVS planning aids for operations 181

Table 18. Summary of INIT, HARDCOPY, and DEFAULT Statements (continued)

INIT, HARDCOPY, and
DEFAULT statement
keywords

Command to change keyword value Scope Meaning

Note:

1. You can increase RMAX without a re-IPL in most cases.

2. You can activate another CNGRPxx member (SET CNGRP) that defines the same console group but with
different console members.

3. HARDCOPY CMDLEVEL controls logging of responses to commands directed to MCS consoles. For extended
MCS consoles, OPERPARM LOGCMDRESP controls the logging of command responses.
LOGCMDRESP(SYSTEM) indicates that the value for HARDCOPY CMDLEVEL in effect for the system is in
effect for the extended MCS console.

Controlling extended MCS consoles using RACF
The following examples show how to use RACF commands to define user profiles
for an extended MCS console user.

Defining the user profile of an extended MCS console
The security administrator can define a RACF user profile to control the console
attributes of the extended MCS console user.

The following example shows how to define a RACF profile for new TSO/E user
TAPE1:
ADDUSER TAPE1 OPERPARM(ROUTCODE(46) AUTH(SYS) MFORM(S))

This example defines the userid TAPE1 as an extended MCS console with console
attributes defined by the OPERPARM keyword. (Note that the example includes
only the information about console attributes for TAPE1. For complete information
on the RACF ADDUSER command, see z/OS Security Server RACF Command
Language Reference.

When TAPE1 is active, TAPE1 receives messages with routing code 46, has a
command authority of SYS, and receives messages prefixed with the name of the
system that issues the messages.

For application programs, you can define console attributes for TAPE1 through the
MCSOPER macro instead of through RACF. The console attributes specified on
MCSOPER override the RACF values specified through RACF OPERPARM. See
z/OS MVS Programming: Authorized Assembler Services Guide.

Granting the user access to the RACF OPERCMDS class
Ensure that the user of the extended MCS console has READ access to a profile in
the RACF OPERCMDS class named:
MVS.MCSOPER.console-name

For a TSO/E user, the CONSOLE command defaults to the userID as the console
name, but the user can override the default with the NAME(console-name)
operand. For an application program, console-name is the name specified on the
MCSOPER macro.

Before the RACF administrator can grant a RACF user (TSO/E user or MCSOPER
name) access to the RACF OPERCMDS class, the administrator must ensure that

182 z/OS V2R1.0 MVS Planning: Operations

the user has a RACF user profile. In the following example, assume that the
TSO/E user or application program name has a RACF user profile already defined.

The RACF security administrator can take the following steps to give users access
to the RACF OPERCMDS class:
1. Issue the SETROPTS command to activate the OPERCMDS class:

SETROPTS CLASSACT(OPERCMDS)

2. Create specific MVS.MCSOPER.console-name profiles naming the intended
consoles, and granting users to them only as appropriate for their intended
level of authority.
RDEFINE OPERCMDS MVS.MCSOPER.console-name UACC(NONE)

3. Grant the TSO/E user or application program access to the OPERCMDS
resources:
PERMIT MVS.MCSOPER.console-name CLASS(OPERCMDS) ID(console-name) ACCESS(READ)

Console_name must have a RACF user profile defined. See “Defining the user
profile of an extended MCS console” on page 182.

4. Issue SETROPTS RACLIST command to refresh the OPERCMDS reserve class:
SETROPTS RACLIST(OPERCMDS)

Allowing a TSO/E user to issue the CONSOLE command
The following steps allow TSO/E user TAPE1 to issue the TSO/E CONSOLE
command to activate the extended MCS console. In the example, assume that
TAPE1 has a RACF user profile already defined:
1. Create specific MVS.MCSOPER.console-name profile naming the intended

console, and granting the user access only as appropriate for their intended
level of authority. The following example assumes the OPERCMDS class is
active and RACLISTed.
RDEFINE OPERCMDS MVS.MCSOPER.TAPE1 UACC(NONE)

PERMIT MVS.MCSOPER.TAPE1 CLASS(OPERCMDS) ID(TAPE1) ACCESS(READ)

SETR RACLIST(OPERCMDS) REFRESH

2. Issue SETROPTS to activate the TSOAUTH resource class:
SETROPTS CLASSACT(TSOAUTH)

3. Issue RDEFINE to define the command CONSOLE in the resource class
TSOAUTH with a universal access authority (UACC) of NONE:
RDEFINE TSOAUTH CONSOLE UACC(NONE)

This command creates a profile in the RACF TSOAUTH class for the TSO/E
CONSOLE command.

4. Issue RACF PERMIT to authorize TAPE1 to use the CONSOLE command:
PERMIT CONSOLE CLASS(TSOAUTH) ID(TAPE1) ACCESS(READ)

To limit from which TSO/E terminal TAPE1 can initiate an extended MCS
console session, the security administrator can specify the following:
PERMIT CONSOLE CLASS(TSOAUTH) ID(TAPE1) ACCESS(READ)
WHEN(TERMINAL(terminal-id))

In this example, user TAPE1 can enter the TSO/E CONSOLE command only
from the terminal specified by terminal-id.

5. To refresh the TSOAUTH resource class using SETROPTS RACLIST, issue the
following:
SETROPTS RACLIST(TSOAUTH)

Chapter 7. Examples and MVS planning aids for operations 183

Changing console attributes using RACF
To change the console attributes, use one of the console-related MVS commands.
The RACF ALTUSER command method changes the default attributes for the
named console, but will not be effective until the next time the console is activated.
It does not change the attributes of existing consoles. Console related MVS
commands are used to change the attributes of existing consoles.
ALTUSER TAPE1 OPERPARM(ROUTCODE(ALL))

This example changes the console routing code for TAPE1 to ROUTCODE(ALL).
Other console attributes defined on the ADDUSER command remain the same.

Note: The ADDUSER command does not affect console attributes specified on the
MCSOPER macro.

Reference

For information about RACF, see z/OS Security Server RACF Security Administrator's
Guide.

Using RACF to control APF lists
RACF allows you to control the use of the MVS commands SETPROG and SET
PROG, and the use of the CSVAPF macro, for processing authorized program
facility (APF) lists.

The SETPROG APF command allows a user to add and delete entries in the
authorized program facility (APF) list, or to change the format of the APF list. SET
PROG allows a user to activate the PROGxx member of SYS1.PARMLIB that
contains definitions for controlling the format and contents of the list of
APF-authorized libraries. CSVAPF is an authorized MVS macro that allows you to
perform the same APF list processing from an application program.

Note: For information on using CSVAPF, including authorization required with
RACF, see z/OS MVS Programming: Authorized Assembler Services Guide. For
information on using PROGxx, see z/OS MVS Initialization and Tuning Reference.

Command authorization
An operator can issue the SETPROG or SET PROG command from a console with
AUTH(SYS) or higher. If RACF authorization checking is in effect, you can control
the use of these commands through RACF profiles. RACF authorization checking
overrides the CONSOLxx AUTH specification.

To use RACF authorization checking to control any MVS command, the security
administrator must ensure that each userid that issues the command is defined to
RACF. Operators with a userid and a RACF profile can log on to a console, or the
installation can define a RACF userid for the console itself. (For information, see
“Using RACF to control command authority and operator logon” on page 62 and
“Defining RACF profiles” on page 63.)

Defining command profiles
To define the resource profile for SETPROG, the RACF administrator can take the
following steps:
1. To create a profile for the SETPROG command, issue RDEFINE:

RDEFINE OPERCMDS MVS.SETPROG UACC(NONE)

184 z/OS V2R1.0 MVS Planning: Operations

2. To permit the userid for the user logging on to the console (in this example
user OPER1) to use the command in the OPERCMDS class, issue the following:
PERMIT MVS.SETPROG CLASS(OPERCMDS) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the OPERCMDS class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(OPERCMDS)

(To ensure that the OPERCMDS class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the OPERCMDS resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(OPERCMDS) REFRESH

For the SET PROG command, you follow the same steps as outlined for SETPROG
but use the following RACF profile name:
MVS.SET.PROG

When you have given access to users of SETPROG and SET PROG, you can
further control the use of the command.

Controlling how to add or delete APF list entries for a library
To control who can add or delete APF list entries for a library name, the RACF
security administrator can take the following steps:
1. To establish a profile for the library name for the FACILITY class, issue

RDEFINE:
RDEFINE FACILITY CSVAPF.libname UACC(NONE)

where libname is the fully qualified data set name of the library (without
quotation marks). For example,
CSVAPF.SYS1.SUPER.UTILS

The length of the RACF profile including qualifiers should not exceed 39
characters. Otherwise, if the length of the library name is greater than 32
characters, RACF truncates the profile to 39 characters.
You can use generic characters for the qualifiers in the library name. For
example,
CSVAPF.*.SUPER.UTILS

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all APF library names:
CSVAPF.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For complete coverage of APF-authorized library names, check the names
currently specified in the IEAAPFxx or PROGxx SYS1.PARMLIB members.

2. To permit the user (in this example user OPER1) to add or delete the library
name, issue the following:
PERMIT CSVAPF.libname CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Chapter 7. Examples and MVS planning aids for operations 185

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

If any library name is not covered by a RACF profile and a user has access to
the SETPROG or SET PROG command, MVS accepts the command. To ensure
that only authorized users can perform the operation, you might define a
generic profile for all library names (CSVAPF.**) with UACC(NONE), then
define specific RACF profiles for each set of libraries that the user has
authorization to control.

Controlling how to change the APF list format
To control who can make the APF list dynamic, the RACF security administrator
can take the following steps:
1. To establish a profile for the following command name to the FACILITY class,

issue RDEFINE:
RDEFINE FACILITY CSVAPF.MVS.SETPROG.FORMAT.DYNAMIC UACC(NONE)

2. To permit the user (in this example user OPER1) to use the command in the
class, issue the following:
PERMIT CSVAPF.MVS.SETPROG.FORMAT.DYNAMIC CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

To control who can to make the APF list static, the RACF security administrator
can take the following steps:
1. Issue RDEFINE to establish a profile for the following command name for the

FACILITY class:
RDEFINE FACILITY CSVAPF.MVS.SETPROG.FORMAT.STATIC UACC(NONE)

2. To permit the user (in this example user OPER1) to use the command in the
class, issue the following:
PERMIT CSVAPF.MVS.SETPROG.FORMAT.STATIC CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

186 z/OS V2R1.0 MVS Planning: Operations

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Using RACF to control dynamic exits
RACF allows you to control the use of the MVS commands SETPROG and SET
PROG, and the use of the CSVDYNEX macro, for processing dynamic exits.

The SETPROG command allows a user to add and delete routines associated with
a dynamic exit, to change the state of an exit routine, to undefine an
implicitly-defined exit, or to change the attributes of an exit. SET PROG allows a
user to activate the PROGxx member of SYS1.PARMLIB that contains definitions
for controlling dynamic exits. CSVDYNEX is an authorized MVS macro that allows
you to perform the same dynamic exit processing from an application program,
along with defining a dynamic exit, calling the exit routines associated with a
dynamic exit, providing recovery for an exit call, and obtaining a list of the
dynamic exits.

Note: For information on using CSVDYNEX, including authorization required with
RACF, see z/OS MVS Programming: Authorized Assembler Services Guide. For
information on using PROGxx, see z/OS MVS Initialization and Tuning Reference.

Command authorization
An operator can issue the SETPROG or SET PROG command from a console with
AUTH(SYS) or higher. If RACF authorization checking is in effect, you can control
the use of these commands through RACF profiles. RACF authorization checking
overrides the CONSOLxx AUTH specification.

To use RACF authorization checking to control any MVS command, the security
administrator must ensure that each userid that issues the command is defined to
RACF. Operators with a userid and a RACF profile can log on to a console, or the
installation can define a RACF userid for the console itself. (For information, see
“Using RACF to control command authority and operator logon” on page 62 and
“Defining RACF profiles” on page 63.)

Defining command profiles
To define the resource profile for SETPROG, the RACF administrator can take the
following steps:
1. To create a profile for the SETPROG command, issue RDEFINE:

RDEFINE OPERCMDS MVS.SETPROG UACC(NONE)

2. To permit the userid for the user logging on to the console (in this example
user OPER1) to use the command in the OPERCMDS class, issue the following:
PERMIT MVS.SETPROG CLASS(OPERCMDS) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Chapter 7. Examples and MVS planning aids for operations 187

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the OPERCMDS class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(OPERCMDS)

(To ensure that the OPERCMDS class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the OPERCMDS resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(OPERCMDS) REFRESH

For the SET PROG command, you follow the same steps as outlined for SETPROG
but use the following RACF profile name:
MVS.SET.PROG

When you have given access to users of SETPROG and SET PROG, you can
further control the use of the command.

Controlling defining a dynamic exit
To control who can define a dynamic exit via the REQUEST=DEFINE option of the
CSVDYNEX macro, the RACF security administrator can take the following steps:
1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:

RDEFINE FACILITY CSVDYNEX.exitname.DEFINE UACC(NONE)

where exitname is the name of the dynamic exit. For example,
MYEXIT

You can use generic characters for the qualifiers in the exit name. For example,
CSVDYNEX.MYEX*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all dynamic exit names:
CSVDYNEX.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of exit names, check the names currently specified in the PROGxx
parmlib members. Also use the DISPLAY PROG,EXIT system command.

2. To permit the user (in this example user USER1) to use the REQUEST=DEFINE
option of the CSVDYNEX macro for exit e, issue the following:
PERMIT CSVDYNEX.e.DEFINE CLASS(FACILITY) ID(USER1) ACCESS(UPDATE)

USER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

188 z/OS V2R1.0 MVS Planning: Operations

Controlling adding, modifying or deleting exit routines
To control who can add an exit routine to a dynamic exit, or modify or delete an
exit routine routine associated with a dynamic exit, the RACF security
administrator can take the following steps:
1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:

RDEFINE FACILITY CSVDYNEX.exitname.modname UACC(NONE)

where exitname is the name of the dynamic exit. For example,
SYS1.IEFACTRT

modname is the name of the exit routine. For example,
MYACTRT

You can use generic characters for the qualifiers in the exit name or routine
name. For example,
CSVDYNEX.SYS1.IEF*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all dynamic exit names:
CSVDYNEX.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of exit names, check the names currently specified in the PROGxx
parmlib members. Also use the DISPLAY PROG,EXIT system command.

2. To permit the user (in this example user OPER1) to add or delete the routine
name r to exit e, issue the following:
PERMIT CSVDYNEX.e.r CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

If any exit or exit routine is not covered by a RACF profile and a user has
access to the SETPROG or SET PROG command, MVS accepts the command.
To ensure that only authorized users can perform the operation, you might
define a generic profile for all exit names (CSVDYNEX.**) with UACC(NONE),
then define specific RACF profiles for each exit or exit routine that the user has
authorization to control.

Controlling how to undefine a dynamic exit
To control who can undefine a dynamic exit, the RACF security administrator can
take the following steps:
1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:

RDEFINE FACILITY CSVDYNEX.exitname.UNDEFINE UACC(NONE)

where exitname is the name of the dynamic exit. For example,

Chapter 7. Examples and MVS planning aids for operations 189

MYEXIT

You can use generic characters for the qualifiers in the exit name or routine
name. For example,
CSVDYNEX.MYEX*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all dynamic exit names:
CSVDYNEX.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of exit names, check the names currently specified in the PROGxx
parmlib members. Also use the DISPLAY PROG,EXIT system command.

2. To permit the user (in this example user OPER1) to undefine exit e, issue the
following:
PERMIT CSVDYNEX.e.UNDEFINE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

If any exit or exit routine is not covered by a RACF profile and a user has
access to the SETPROG or SET PROG command, MVS accepts the command.
To ensure that only authorized users can perform the operation, you might
define a generic profile for all exit names (CSVDYNEX.**) with UACC(NONE),
then define specific RACF profiles for each exit or exit routine that the user has
authorization to control.

Controlling how to obtain a list of the dynamic exits
To control who can obtain a list of the dynamic exits via the REQUEST=LIST
option of the CSVDYNEX macro, the RACF security administrator can take the
following steps:
1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:

RDEFINE FACILITY CSVDYNEX.LIST UACC(NONE)

2. To permit the user (in this example user USER1) to use the REQUEST=LIST
option of the CSVDYNEX macro for exit e, issue the following:
PERMIT CSVDYNEX.LIST CLASS(FACILITY) ID(USER1) ACCESS(READ)

USER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

190 z/OS V2R1.0 MVS Planning: Operations

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling calling of routines of a dynamic exit
To control who can call a dynamic exits routines via the REQUEST=CALL option
of the CSVDYNEX macro, the RACF security administrator can take the following
steps:
1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:

RDEFINE FACILITY CSVDYNEX.exitname.CALL UACC(NONE)

where exitname is the name of the dynamic exit. For example,
MYEXIT

You can use generic characters for the qualifiers in the exit name. For example,
CSVDYNEX.MYEX*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all dynamic exit names:
CSVDYNEX.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of exit names, check the names currently specified in the PROGxx
parmlib members. Also use the DISPLAY PROG,EXIT system command.

2. To permit the user (in this example user USER1) to use the REQUEST=CALL
option of the CSVDYNEX macro for exit e, issue the following:
PERMIT CSVDYNEX.e.CALL CLASS(FACILITY) ID(USER1) ACCESS(UPDATE)

USER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling recovering of dynamic exit processing
To control who can use the REQUEST=RECOVER option of the CSVDYNEX macro
to have the system complete its recovery processing of a prior use of CSVDYNEX
REQUEST=CALL, the RACF security administrator can take the following steps:
1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:

RDEFINE FACILITY CSVDYNEX.exitname.RECOVER UACC(NONE)

where exitname is the name of the dynamic exit. For example,
MYEXIT

You can use generic characters for the qualifiers in the exit name. For example,
CSVDYNEX.MYEX*

Chapter 7. Examples and MVS planning aids for operations 191

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all dynamic exit names:
CSVDYNEX.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of exit names, check the names currently specified in the PROGxx
parmlib members. Also use the DISPLAY PROG,EXIT system command.

2. To permit the user (in this example user USER1) to use the
REQUEST=RECOVER option of the CSVDYNEX macro for exit e, issue the
following:
PERMIT CSVDYNEX.e.RECOVER CLASS(FACILITY) ID(USER1) ACCESS(UPDATE)

USER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Using RACF to control LNKLST concatenations
RACF allows you to control the use of the MVS commands SETPROG and SET
PROG, and the use of the CSVDYNL macro, for processing LNKLSTs.

The SETPROG command allows a user to update LNKLST concatenations, by
defining a LNKLST set, adding data sets to or deleting data sets from a LNKLST
set, removing the definition of a LNKLST set from the system, testing for the
location of a specific module in the LNKLST concatenation, activating a LNKLST
set, and updating a job to use the current LNKLST set. SET PROG allows a user to
activate the PROGxx member of SYS1.PARMLIB that contains definitions for
controlling LNKLSTs. CSVDYNL is an authorized MVS macro that allows you to
perform this LNKLST processing from an application program.

Note: For information on using CSVDYNL, including authorization required with
RACF, see z/OS MVS Programming: Authorized Assembler Services Guide. For
information on using PROGxx, see z/OS MVS Initialization and Tuning Reference.

Command authorization
An operator can issue the SETPROG or SET PROG command from a console with
AUTH(SYS) or higher. If RACF authorization checking is in effect, you can control
the use of these commands through RACF profiles. RACF authorization checking
overrides the CONSOLxx AUTH specification.

To use RACF authorization checking to control any MVS command, the security
administrator must ensure that each userid that issues the command is defined to
RACF. Operators with a userid and a RACF profile can log on to a console, or the

192 z/OS V2R1.0 MVS Planning: Operations

installation can define a RACF userid for the console itself. (For information, see
“Using RACF to control command authority and operator logon” on page 62 and
“Defining RACF profiles” on page 63.)

Defining command profiles
To define the resource profile for SETPROG, the RACF administrator can take the
following steps:
1. To create a profile for the SETPROG command, issue RDEFINE:

RDEFINE OPERCMDS MVS.SETPROG UACC(NONE)

2. To permit the userid for the user logging on to the console (in this example
user OPER1) to use the command in the OPERCMDS class, issue the following:
PERMIT MVS.SETPROG CLASS(OPERCMDS) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the OPERCMDS class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(OPERCMDS)

(To ensure that the OPERCMDS class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the OPERCMDS resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(OPERCMDS) REFRESH

For the SET PROG command, you follow the same steps as outlined for SETPROG
but use the following RACF profile name:
MVS.SET.PROG

When you have given access to users of SETPROG and SET PROG, you can
further control the use of the command.

Controlling defining a LNKLST set
To control who can define a LNKLST set, the RACF security administrator can take
the following steps:
1. To establish a profile for the LNKLST set name for the FACILITY class, issue

RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.DEFINE UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

Chapter 7. Examples and MVS planning aids for operations 193

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to use the REQUEST=DEFINE
option of the CSVDYNL macro for LNKLST set l, issue the following:
PERMIT CSVDYNL.l.DEFINE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling adding a data set to a LNKLST set
To control who can add a data set to a LNKLST set, the RACF security
administrator can take the following steps:
1. To establish a profile for the LNKLST set name for the FACILITY class, issue

RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.ADD UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to add a data set to LNKLST
set l, issue the following:
PERMIT CSVDYNL.l.ADD CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

194 z/OS V2R1.0 MVS Planning: Operations

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling deleting a data set from a LNKLST set
To control who can delete a data set from a LNKLST set, the RACF security
administrator can take the following steps:
1. To establish a profile for the LNKLST set name for the FACILITY class, issue

RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.DELETE UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to delete a data set from
LNKLST set l, issue the following:
PERMIT CSVDYNL.l.DELETE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling removing the definition of a LNKLST set
To control who can remove the definition of a LNKLST set, the RACF security
administrator can take the following steps:
1. To establish a profile for the LNKLST set name for the FACILITY class, issue

RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.UNDEFINE UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

Chapter 7. Examples and MVS planning aids for operations 195

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to remove the definition of
LNKLST set l, issue the following:
PERMIT CSVDYNL.l.UNDEFINE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling testing of a LNKLST set
To control who can test a LNKLST set, the RACF security administrator can take
the following steps:
1. To establish a profile for the LNKLST set name for the FACILITY class, issue

RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.TEST UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to test LNKLST set l, issue the
following:

196 z/OS V2R1.0 MVS Planning: Operations

PERMIT CSVDYNL.l.TEST CLASS(FACILITY) ID(OPER1) ACCESS(READ)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling updating of a Job's LNKLST set
To control who can update a job to use the current LNKLST, the RACF security
administrator can take the following steps:
1. To establish a profile for updating LNKLSTs for the FACILITY class, issue

RDEFINE:
RDEFINE FACILITY CSVDYNL.UPDATE.LNKLST UACC(NONE)

2. To permit the user (in this example user OPER1) to update a job to use the
current LNKLST, issue the following:
PERMIT CSVDYNL.l.UPDATE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling activation of a LNKLST set
To control who can activate a LNKLST set, the RACF security administrator can
take the following steps:
1. To establish a profile for the LNKLST set name for the FACILITY class, issue

RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.ACTIVATE UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

Chapter 7. Examples and MVS planning aids for operations 197

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to activate LNKLST set l, issue
the following:
PERMIT CSVDYNL.l.ACTIVATE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Using RACF to control dynamic LPA
RACF allows you to control the use of the MVS commands SETPROG and SET
PROG, and the use of the CSVDYLPA macro, for processing Dynamic LPA.

The SETPROG command allows a user to add modules to the LPA following IPL,
delete modules from the LPA following IPL, and set threshold values for minimum
amounts of CSA storage that still must be available after an ADD operation. SET
PROG allows a user to activate the PROGxx member of SYS1.PARMLIB that
contains definitions for controlling Dynamic LPA. CSVDYLPA is an authorized
MVS macro that allows you to perform the dynamic LPA processing from an
application program.

Note: For information on using CSVDYLPA, including authorization required with
RACF, see z/OS MVS Programming: Authorized Assembler Services Guide. For
information on using PROGxx, see z/OS MVS Initialization and Tuning Reference.

Command authorization
An operator can issue the SETPROG or SET PROG command from a console with
AUTH(SYS) or higher. If RACF authorization checking is in effect, you can control
the use of these commands through RACF profiles. RACF authorization checking
overrides the CONSOLxx AUTH specification.

To use RACF authorization checking to control any MVS command, the security
administrator must ensure that each userid that issues the command is defined to
RACF. Operators with a userid and a RACF profile can log on to a console, or the
installation can define a RACF userid for the console itself. (For information, see
“Using RACF to control command authority and operator logon” on page 62 and
“Defining RACF profiles” on page 63.)

198 z/OS V2R1.0 MVS Planning: Operations

Defining command profiles
To define the resource profile for SETPROG, the RACF administrator can take the
following steps:
1. To create a profile for the SETPROG command, issue RDEFINE:

RDEFINE OPERCMDS MVS.SETPROG UACC(NONE)

2. To permit the userid for the user logging on to the console (in this example
user OPER1) to use the command in the OPERCMDS class, issue the following:
PERMIT MVS.SETPROG CLASS(OPERCMDS) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the OPERCMDS class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(OPERCMDS)

(To ensure that the OPERCMDS class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the OPERCMDS resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(OPERCMDS) REFRESH

For the SET PROG command, you follow the same steps as outlined for SETPROG
but use the following RACF profile name:
MVS.SET.PROG

When you have given access to users of SETPROG and SET PROG, you can
further control the use of the command.

Controlling adding a module to LPA after IPL
To control who can add a particular module to the LPA after IPL, the RACF
security administrator can take the following steps:
1. To establish a profile for the library name for the FACILITY class, issue

RDEFINE:
RDEFINE FACILITY CSVDYLPA.ADD.modname UACC(NONE)

where modname is the name of the module to add to the LPA. For example,
MYMODULE

You can use generic characters for the qualifiers in the module name. For
example,
CSVDYLPA.ADD.M*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all module names:
CSVDYLPA.ADD.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

2. To permit the user (in this example user OPER1) to add module m to the LPA,
issue the following:
PERMIT CSVDYLPA.ADD.m CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Chapter 7. Examples and MVS planning aids for operations 199

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling deleting a module from LPA after IPL
To control who can delete a particular module from dynamic LPA, the RACF
security administrator can take the following steps:
1. To establish a profile for the library name for the FACILITY class, issue

RDEFINE:
RDEFINE FACILITY CSVDYLPA.DELETE.modname UACC(NONE)

where modname is the name of the module to delete from the LPA. For example,
MYMODULE

You can use generic characters for the qualifiers in the module name. For
example,
CSVDYLPA.DELETE.M*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all module names:
CSVDYLPA.DELETE.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

2. To permit the user (in this example user OPER1) to delete module m from the
LPA, issue the following:
PERMIT CSVDYLPA.DELETE.m CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See “Defining
RACF profiles” on page 63.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS LIST
command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

200 z/OS V2R1.0 MVS Planning: Operations

Managing messages with a console cluster
A console cluster is a good way to divide functions and handle message traffic in
an MVS console configuration. In a console cluster, you define a group of consoles
located together, each console handling a different function. One console can
receive system status displays, another unsolicited messages, and still another
operate as a full-capability console to handle commands.

You can design a cluster to suit the special needs of your installation. A typical
cluster might consist of four consoles set up as follows:
v A console with master authority, a minimum of routing codes 1 and 2, and in

full-capability mode to receive the action messages or important informational
messages that you must see.

v A console in message stream mode to receive the information messages that you
must see.

v A console in message stream mode to receive ordinary system message traffic
(This console gives you basic information on how the system is running.)

v A console in status display mode to dynamically display the active jobs in the
system and provide display areas for system status displays.

Include other consoles in the cluster if you want to divide the console message
traffic even more.

Setting up and using a console cluster
If you decide to set up a console cluster, you might want to follow the procedures
outlined in the following detailed example. You need not follow the example
exactly as it is given. Depending on your needs and the characteristics of your
consoles, choose your own values for area sizes and numbers, PFK definitions,
commands, and so forth.

This example describes how to set up and use a console cluster that consists of
four consoles. The example assumes that:
v Each of the devices is a 3270-type device with a screen that holds 43 lines. Also,

the device has 24 PFKs.
v All devices in the cluster come online during the IPL process. They come online

with the characteristics that you define in CONSOLxx member. The PFKs on the
consoles are defined at IPL with the definitions you establish in the PFK table
you assign to the console.

v The console names and device numbers of the consoles used in this example are
as follows (the mode each console is in when you finish setting up the cluster is
also shown):

You should put the four devices in the cluster on different control units, if possible,
to make recovery easier if a control unit fails.

CONSD
Device number 1E0

MESSAGE
Device number 314

CON1
Device number 21A

INFO
Device number 41B

Status Display (SD) Message Stream (MS)Full-capability (FC)
Console

Message Stream (MS)

Chapter 7. Examples and MVS planning aids for operations 201

Many of the statements you define in the CONSOLxx member serve to divide the
message traffic among the consoles and set up the message roll rate for each
screen. When you complete the procedure described on the following pages:
v CONSD, the status display console, will receive the output from the DISPLAY

command.
v CON1, the full-capability console with master authority, will receive the

messages that the console operator must act on. The console will be in
roll-deletable mode. (In roll-deletable mode, outstanding action messages are not
automatically removed from the screen.)

v MESSAGE, a message stream console, will receive the messages that operators at
other consoles must act on. The console will be in wrap mode.

v INFO, another message stream console, will receive all the information messages
in the system. The console will be in roll mode. (In roll mode, a specified
number of flagged messages roll off the screen after a specified time interval.)

The procedure for setting up a console cluster involves coding the statements in
CONSOLxx and placing PFK definitions in a PFK table in the PFKTABxx Parmlib
member. See “Summary of contents of CONSOLxx for the cluster” on page 208 for
a summary of the coded CONSOLE statements used in this example. See “Defining
PFKs for CON1 ” on page 205 for a summary of the PFK table definitions for the
console CON1.

Operators can use commands to change these values; however, in this example,
only the SYS1.PARMLIB definitions are shown.

Setting up a console cluster requires several steps. This example describes:
v How to define routing codes for the consoles
v How to define the operating modes and message levels for the consoles
v How to set up display areas
v How to set message roll rates and message deletion specifications for the

consoles
v How to direct command responses to specific consoles
v How to set up a periodic display of outstanding requests for JES2 or JES3
v How to define program function keys (PFKs)

Defining routing codes for the consoles
Use routing codes to set up CON1 so that it receives only messages for which the
operator is responsible. Direct other messages to MESSAGE and all routing codes
to INFO. In the section "Defining the Operating Modes and the Message Levels for
the Consoles", you will see how the LEVEL parameter in CONSOLxx further limits
messages to these consoles. Code the following statements to set up the routing
codes for CON1 and the message stream consoles (MESSAGE and INFO),
substituting device numbers appropriate to your installation:

Use the INTIDS and UNKNIDS attributes to set up CON1 so that it receives
messages issued to console id zero and unknown console ids.
CONSOLE DEVNUM(21A) NAME(CON1) ROUTCODE(1,2,9,10) INTIDS(Y) UNKNIDS(Y)
CONSOLE DEVNUM(314) NAME(MESSAGE) ROUTCODE(3-8,12-15,42)
CONSOLE DEVNUM(41B) NAME(INFO) ROUTCODE(1-10,12-128)

As a result of these statements, CON1, MESSAGE, and INFO display the range of
messages to be processed by this cluster. You do not need to define routing codes
for CONSD because you are going to put CONSD in status display mode.

202 z/OS V2R1.0 MVS Planning: Operations

Defining the operating modes and the message levels for the
consoles

Code the following statement in CONSOLxx to define the operating mode of
CONSD to output-only for system status displays:
CONSOLE DEVNUM(1E0) NAME(CONSD) USE(SD)

Use statements in CONSOLxx to define the operating modes and the message
levels for CON1, MESSAGE, and INFO. To further reduce the messages that
appear at CON1, which is already in full-capability mode, eliminate non-action
messages from CON1. Code the following statement in CONSOLxx:
CONSOLE DEVNUM(21A) NAME(CON1) LEVEL(R,I,CE,E,NB)

As a result of this statement CON1 receives all action messages with routing codes
1, 2, 9, and 10; it receives no informational or broadcast messages.

Define MESSAGE and INFO as message stream consoles. Set up message levels for
the two consoles so that MESSAGE receives all the action messages that CON1
does not receive, and INFO receives all the informational messages for the system.
Code the following statement in CONSOLxx:
CONSOLE DEVNUM(314) NAME(MESSAGE) USE(MS) LEVEL(R,I,CE,E,NB)
CONSOLE DEVNUM(41B) NAME(INFO) USE(MS) LEVEL(IN)

As a result of these statements, MESSAGE receives all messages with routing codes
3, 4, 5, 6, 7, 8, 12, 13, 14, 15, and 42 that require operator response; INFO receives
all informational messages that the system issues.

Setting up display areas
The next step is to define the areas on CONSD. In this example, the screen size of
CONSD is 43 lines. To define area A to be 28 lines and area B to be 15 lines, code
the following statement in CONSOLxx:
CONSOLE DEVNUM(1E0) NAME(CONSD) AREA(28,15)

CON1 should also have a display area. An area of ten lines should be enough. To
establish this area, code the following statement in CONSOLxx:
CONSOLE DEVNUM(21A) NAME(CON1) AREA(10)

The display areas you have established on the consoles are:

Chapter 7. Examples and MVS planning aids for operations 203

Setting message roll rates and message deletion
specifications for the consoles

The message roll rate appropriate for a console depends on the message traffic to
that console. To establish a starting message roll rate for consoles CON1,
MESSAGE, and INFO, code the following statements in CONSOLxx:
CONSOLE DEVNUM(21A) NAME(CON1) DEL(RD) SEG(39) RNUM(10) RTME(1/2)
CONSOLE DEVNUM(314) NAME(MESSAGE) DEL(W) RTME(1/4)
CONSOLE DEVNUM(41B) NAME(INFO) DEL(R) SEG(39) RNUM(10) RTME(1/2)

These statements put CON1 in roll-deletable mode, MESSAGE in wrap mode, and
INFO in roll mode. (See “Specifying automatic message deletion for MCS, HMCS
or SMCS consoles” on page 74 for a description of roll, roll-deletable, and wrap
modes.) Adjust the RNUM and RTME specifications until the roll rate is
appropriate for the message traffic on CON1 and INFO. Adjust the RTME
specification for MESSAGE in wrap mode. To allow HOLDMODE code the
following DEFAULT statement:
DEFAULT HOLDMODE(YES)

Inline message area

Inline message area Area B (15 lines)

Inline message area

Warning line

Warning line

Warning line

MESSAGE
Device number 314

CON1
Device number 21A

CONSD
Device number 1E0

Message Stream (MS) Console

Full-capability (FC) Console Status Display (SD) Console

Message Stream (MS) Console

INFO
Device number 41B

Area A (10 lines) Area A (28 lines)

Instruction line
Entry area (2 lines)

Figure 14. Display Areas on Consoles in the Console Cluster

204 z/OS V2R1.0 MVS Planning: Operations

HOLDMODE allows operators to freeze the screen for consoles in roll,
roll-deletable, or wrap mode by pressing the enter key. To unfreeze the screen,
operators can press the enter key again. See “Temporarily suspending the screen
roll” on page 77.

Once you determine the appropriate values for RNUM and RTME, code the values
in the RNUM and RTME parameters in CONSOLxx.

If your system includes JES2, when you bring up the console, you can use the JES2
REDIRECT command to direct the responses to certain JES2 $D commands to
specific consoles. For this example, direct the responses to the JES2 commands
$DA, $DF, $DI, $DJ, $DN, $DQ, and $DU to display area B of CONSD. Issue the
following command to make this change:
REDIRECT(CON1),DA=CONSD-B,DF=CONSD-B,
DF=CONSD-B,DI=CONSD-B,DJ=CONSD-B,DN=CONSD-B,
DQ=CONSD-B,DU=CONSD-B

Note: Put this command in the JES2 initialization data set so that it is issued
automatically once JES2 is initialized. For more information, see z/OS JES2
Initialization and Tuning Reference.

If your system includes JES3, use JES3 commands to direct messages to specified
consoles.

Setting up a periodic display of outstanding requests
If your system includes JES2, you can have the system periodically display
outstanding requests so that you always know how many there are.

You can set up such a periodic display through the JES2 automatic command
facility, telling JES2 to issue a command at a defined interval. (The minimum time
interval you can specify is 30 seconds.) You must use the $TA JES2 command to
define both the command you want issued and the number of seconds in the
interval between commands. To cause JES2 to issue a DISPLAY R command every
60 seconds and to direct the command output to display area B of CONSD, issue
the following command:
$TA,I=60,’$VS,’’D R,L,L=CONSD-B’’’

Note: Put this command in the JES2 initialization data set so that it is issued
automatically once JES2 is initialized.

You use the $ZA JES2 command to temporarily stop JES2 from issuing the defined
commands. You use the $SA command to cause JES2 to resume issuing the defined
commands. Use the $CA command to cancel both the defined commands and time
interval:
$CAxxxx

where xxxx is the ID of the periodic display.

Defining PFKs for CON1
You have to redefine some of the PFKs 1 through 8 that the system assigns at IPL
and define additional PFKs for CON1 because:
v The eight PFKs are not enough to set up and use the console cluster effectively.
v PFKs 1 through 8 do not put the commands you need to operate the console

cluster in the most convenient places.

Chapter 7. Examples and MVS planning aids for operations 205

You need to define PFKs on CON1 for the common operator command functions
and the commands to control the console cluster because CON1 is the only
full-capability console in the cluster.

Place all your definitions for PFKs in a PFK table that you create with the name
PFKDEF1. All the definitions in this section follow the first statement in the table:
PFKTAB TABLE(PFKDEF1)

The commands you define in this table go into effect at IPL, providing you activate
the table. The section “Activating the PFK table” on page 208 describes how you
activate PFKDEF1 by defining the PFKTABxx member in SYS1.PARMLIB member
that contains it. (To change PFK tables, operators can use the SET PFK command.
To dynamically redefine a PFK, operators can use the CONTROL N,PFK command.
See z/OS MVS System Commands for how to use these commands.)

Define PFKs 13, 14, 17, and 18, to enter the functions defined for PFKs 1, 2, 5, and
6 at IPL. Add the following entries to PFKDEF1 to control erasing and displaying
of messages on CON1:
PFK(13) CMD(’K E,1’)
PFK(14) CMD(’K E’)
PFK(17) CMD(’K S,DEL=N’)
PFK(18) CMD(’K S,DEL=RD’)

For controlling the cluster, define PFKs 15 and 16 to erase and frame system status
displays on CON1, code the following entry in PFKDEF1:
PFK(15) CMD(’K E,D,L=CONSD-B’)
PFK(16) CMD(’K D,F,L=CONSD-B’)

As a result of these definitions, PFK 15 erases a status display from display area B
of CONSD and PFK 16 frames a status display in display area B of CONSD.

To establish the message routing instructions for JES2 messages, add the following
entry to PFKDEF1:
PFK(3) CMD("$ADD REDIRECT(CON1),DA=CONSD-B,DF=CONSD-B,

DF=CONSD-B,DI=CONSD-B,DJ=CONSD-B,DN=CONSD-B,
DQ=CONSD-B,DU=CONSD-B;$TA,I=60,’$VS,
’’D R,L,L=CONSD-B’’’")

For more information about the JES2 REDIRECT command, see z/OS JES2
Commands.

As a result of this definition, pressing PFK 3
v Directs the output of any of the following JES2 $D commands entered on CON1

to display area B of CONSD:
$DA $DJ $DQ
$DF $DN $DU
$DI

v Makes the JES2 automatic command facility issue a DISPLAY R command every
60 seconds and direct the command response to display area B of CONSD.

You should define PFKs to remove action messages quickly from the screen of
CON1 because the console will be in roll-deletable mode. In roll-deletable mode,
outstanding action messages are not automatically removed from the screen.
Therefore, if you do not remove the action messages, the screen eventually fills
with these messages and messages that are waiting to appear start to use up the
message buffer space.

206 z/OS V2R1.0 MVS Planning: Operations

Define PFK 12 by adding the following entry to PFKDEF1:
PFK(12) CMD(’K S,DEL=R,L=CON1’)

As a result of this command, pressing PFK 12 causes CON1 to roll all messages.

When PFK 12 makes CON1 roll all its messages, it reduces the number of
backed-up messages, in effect, by displaying them all.

Note:

1. If the action message retention facility is active, operators can issue a DISPLAY
R command to display again any action messages that are retained (that is, the
messages that roll off or are erased from a screen).

2. If action messages fill up a console screen frequently, operators should first
make sure that they are responding to the messages. If they do not respond to
them, the system cannot remove them automatically from the screen. If they are
responding to the messages as they should, check the configuration of the
console cluster. You might have to:
v Add another console to the cluster so you can split up the message traffic

even more
v Tailor the 3270 emulator to support larger screen sizes. For example, you can

define the number of rows to be 90 and the number of columns to be 100
v Keep CON1 in the roll mode of message deletion (instead of the

roll-deletable mode) so that all messages roll off the screen
3. Because console MESSAGE is in wrap mode, action messages are automatically

overlaid as new messages appear on the screen. There is no need to define
PFKs to remove action messages as for CON1.

You should define a PFK to display all the outstanding requests at once so you can
always keep track of or respond to them. Define PFK 21 by adding the following
entry to PFKDEF1:
PFK(21) CMD(’K V,USE=MS,L=CONSD;K V,USE=SD,L=CONSD;K A,15,18,10,

L=CONSD;$DU,L=CONSD-A;D R,L,L=CONSD-B)

As a result of this command, pressing PFK 21:
v Changes CONSD to message stream mode
v Puts CONSD back in status display mode
v Defines new out-of-line display areas A (15 lines), B (18 lines), and C (10 lines)

for CONSD
v Displays JES2 unit record device status in out-of-line display area A of CONSD
v Displays outstanding requests in out-of-line display area B of CONSD

Summary of the PFK definitions for the cluster
The PFK table named PFKDEF1 now contains the definitions that have been
defined as in the section “Defining PFKs for CON1 ” on page 205. If you issue
DISPLAY PFK,TABLE=PFKDEF1, the definitions, including those that IBM
supplies, display. In message IEE235I, the NO that appears in the column labelled
CON, indicates that the commands are non-conversational. The display appears as
follows:
PFK DEFINITIONS FOR MASTER TABLE=PFKDEF1 IN PFKTAB02

KEY# CON ------------DEFINITION-----------------------

1 NO K E,1 ERASE TOP LINE FROM SCREEN

Chapter 7. Examples and MVS planning aids for operations 207

2 NO K E ERASE ONE SEGMENT FROM SCREEN
3 NO $ADD REDIRECT(CON1),DA=CONSD-B,DF=CONSD-B

DF=CONSD-B,DI=CONSD-B,DJ=CONSD-B,DN=CONSD-B,
DQ=CONSD-B,DU=CONSD-B;$TA,I=60,’$VS,’D R,L,L=CONSD-B’

4 NO K D,F FRAME DISPLAY FORWARD IN AREA
5 NO K S,NAME(CON1) DEL=N HOLD IN-LINE OUTPUT
6 NO K S,NAME(CON1) DEL=RD RESUME IN-LINE OUTPUT
7 NO D A,L LIST ACTIVE JOBS AND TSO USERS
8 NO D R,L LIST OPERATOR REQUESTS
9 NOT DEFINED
10 NOT DEFINED
11 NOT DEFINED
12 NO K S,NAME(CON1) DEL=R
13 NO K E,1
14 NO K E
15 NO K E,D,L=CONSD-B
16 NO K D,F,L=CONSD-B
17 NO K S,DEL=N
18 NO K S,DEL=RD
19 NOT DEFINED
20 NOT DEFINED
21 NO K V,USE=MS,L=CONSD;K V,USE=SD,L=CONSD;

K A,15,18,10,L=CONSD;$DU,L=CONSD-A;
D R,L,L=CONSD-B

22 NOT DEFINED
23 NOT DEFINED
24 NOT DEFINED

Note:

1. The PFKs that are noted NOT DEFINED are available for you to define
according to your needs.

2. If you put the console into message stream or display status mode, you can no
longer use the PFKs.

Activating the PFK table
The PFK table named PFKDEF1 must reside in a PFKTABxx Parmlib member. In
this example, assume that the member is named PFKTAB02. The following
statements in CONSOLxx activate PFKDEF1:
CONSOLE DEVNUM(21A) NAME(CON1) PFKTAB(PFKDEF1)
INIT PFK(02)

The PFK commands you defined in PFKDEF1 go in effect for CON1 at the next
IPL.

Summary of contents of CONSOLxx for the cluster
The statements you place in CONSOLxx to initialize the cluster are:
CONSOLE DEVNUM(1E0) NAME(CONSD)

USE(SD)
AREA(28,15)

CONSOLE DEVNUM(21A) NAME(CON1) AUTH(MASTER)
ROUTCODE(1,2,9,10)
LEVEL(R,I,CE,E,NB)
AREA(10)
DEL(RD) SEG(39) CON(N) RNUM(10) RTME(1/2) INTIDS(Y) UNKNIDS(Y)
PFKTAB(PFKDEF1)

CONSOLE DEVNUM(314) NAME(MESSAGE)
ROUTCODE(3-8,12-15,42)
USE(MS) LEVEL(R,I,CE,E,NB)
DEL(W) RTME(1/4)

208 z/OS V2R1.0 MVS Planning: Operations

CONSOLE DEVNUM(41B) NAME(INFO)
ROUTCODE(ALL)
USE(MS) LEVEL(IN)
DEL(R) SEG(39) RNUM(10) RTME(1/2)

HARDCOPY CMDLEVEL(STCMDS)

DEFAULT HOLDMODE(YES)

INIT PFK(02) CNGRP(01)

Note:

1. Substitute the device numbers and console names that are appropriate to your
installation.

2. Adjust SEG, RNUM, RTME, and other values, as appropriate to the devices in
your console cluster.

3. If you have JES2 at your installation, place the following command in the
initialization data set:
v REDIRECT(CON1),DA=CONSD-B,DF=CONSD-B,DF=CONSD-B,DI=CONSD-

B,DJ=CONSD-B,DN=CONSD-B,DQ=CONSD-B,DU=CONSD-B
v $TA,I=60,‘$VS,’‘D R,L’‘’

Defining a console configuration for a sysplex environment
In a sysplex, your operators can receive messages from other systems and send
commands to process on another system in the sysplex.

In this example, you want to define the console configuration for two MVS
systems (SYA and SYB) that are part of a sysplex. Your console definitions reside in
CONSOLxx, and you need to define your console configuration separately for each
system in the sysplex. In this example you will define two CONSOLxx members,
one for SYA and one for SYB.

Planning your console configuration for each system
Before you start to define your consoles, it is a good idea to plan the console
attachments to each system in the sysplex. You might ask yourself how you want
your operators to be able to monitor the systems in the sysplex (you might want to
limit message traffic, for example, using MSCOPE). You might want to set up a
console group on each system to handle synchronous messages.

Figure 15 on page 210 illustrates one plan that you might use:

Chapter 7. Examples and MVS planning aids for operations 209

This configuration uses four consoles in the sysplex. Solid® lines indicate physical
attachments. OPER1 and TAPELIB are both defined to SYA. PRINTCON and
OPER2 are both defined to SYB. However, all consoles in this configuration have a
logical connection to both systems. Full-capability consoles can receive messages
from both SYA and SYB and enter commands to run on either SYA or SYB.
PRINTCON is a console that monitors print operations for both systems. TAPELIB
is a full-capability console that handles information for tape libraries. OPER1 and
OPER2 are defined similarly to provide redundancy.

Console groups for the sysplex
The following console groups definitions are defined for the sysplex:
CNGRP0A GROUP NAME(SYNCHSYA)

MEMBERS(OPER1,TAPELIB,*SYSCON*)

CNGRP0B GROUP NAME(SYNCHSYB)
MEMBERS(OPER2,PRINTCON,*SYSCON*)

Both CNGRP0A and CNGRP0B can be specified on the INIT statement of the first
system that joins the sysplex (in this example, SYA). Console group definitions are
inherited by SYB when it joins the sysplex.

Group SYNCHSYA in CNGRP0A and SYNCHSYB in CNGRP0B define consoles
that can receive synchronous messages. Because a console must be physically
attached to the system that issues the synchronous message, consoles in
SYNCHSYA are all attached to SYA, and consoles in SYNCHSYB are all attached to
SYB. You define these console group names on DEFAULT SYNCHDEST for each
system. (See “Planning console recovery” on page 52.)

Defining CONSOLxx for each system
SYA and SYB use unique CONSOLxx members to define the console configuration
for the sysplex in Figure 15.

The CONSOLxx definitions for SYA are as follows:

SYA SYB

signalling

paths

PRINTCONTAPELIB

OPER1

3F1

3FE

3E1

3E0

OPER2

Figure 15. Console Configuration for a Two-System Sysplex

210 z/OS V2R1.0 MVS Planning: Operations

You plan to IPL SYA into the sysplex first.

When SYA is IPLed into the sysplex, OPER1 and TAPELIB are active. Both OPER1
and TAPELIB are full-capability consoles. Console group members CNGRP0A and
CNGRP0B are active and the console group definitions in both members are
established for the sysplex.

OPER1 is in roll-deletable mode with 15 messages rolling off the screen every
second. Action messages accumulate at the top of the message display area where
the operator can delete them. OPER1 also has two display areas defined of 18 lines
and 12 lines.

TAPELIB is in roll mode also with 15 messages rolling every second. The
CONSOLE statement for TAPELIB includes MFORM(S), which specifies that the
name of the system that issues a message (SYA or SYB) will appear with the
message text on the screen display for TAPELIB.

OPER1 receives primary operator action and informational messages, messages
about the disk library, processor information, security, and system error messages
(indicated by routing codes) from both SYA and SYB. All messages targeted for
console id 0 will go to OPER1 since it has the INTIDS routing attribute. All
messages targeted for 1 byte console IDs will go to OPER1 since it has the
UNKNIDS routing attribute. TAPELIB receives tape messages and general
informational messages for JES2 (indicated by routing codes) from both systems.
TAPELIB also receives certain messages indicated by message level (WTOR
messages, immediate action messages, and informational messages). OPER1 by
default receives messages from all message levels.

SYA specifies MPFLST01, MPFLST02, and MPFLST03 on the INIT statement.

HOLDMODE is in effect for the consoles on SYA. The console group SYNCHSYA
is specified on DEFAULT SYNCHDEST. Consoles defined in SYNCHSYA can
display synchronous messages.

The CONSOLxx definitions for SYB are as follows:
CONSOLE DEVNUM(3FE) NAME(OPER2) UNIT(3270-X)

AUTH(MASTER) ROUTCODE(1,2,4,6,8,65-96,9,10)
USE(FC) DEL(RD) AREA(18,12) INTIDS(Y) UNKNIDS(Y)
RNUM(15) RTME(1) MSCOPE(*ALL)

CONSOLE DEVNUM(3E1) UNIT(3270-X) NAME(PRINTCON)
ROUTCODE(97-128) USE(FC) DEL(W) RTME(1/4)

INIT MPF(04) MMS(01) CNGRP(0C)

DEFAULT SYNCHDEST(SYNCHSYB)

CONSOLE DEVNUM(3E0) NAME(OPER1) UNIT(3270-X)
AUTH(MASTER) ROUTCODE(1,2,4,6,8,65-96,9,10)
USE(FC) DEL(RD) AREA(18,12) INTIDS(Y) UNKNIDS(Y)
RNUM(15) RTME(1) MSCOPE(*ALL)

CONSOLE DEVNUM(3E1) NAME(TAPELIB) UNIT(3270-X) AUTH(SYS,IO,CONS)
ROUTCODE(3,5,42) LEVEL(R,I,IN)
USE(FC) DEL(R) RNUM(15) RTME(1)
AREA(18,12) MFORM(S) MSCOPE(*)

INIT MPF(01,02,03) CNGRP(0A,0B)

DEFAULT HOLDMODE(YES) SYNCHDEST(SYNCHSYA)

Chapter 7. Examples and MVS planning aids for operations 211

When SYB is IPLed into the sysplex, OPER2 and PRINTCON are active on SYB.
Both CNGRP0A and CNGRP0B are already active in the sysplex.

Although SYB has specified CNGRP0C on the INIT statement, the sysplex ignores
it. The first system that joins the sysplex with active CNGRPxx members
establishes console group definitions for all systems in the sysplex. Operators must
use the SET CNGRP command to add groups, remove groups, or change the
members of a group.

OPER2 is in roll-deletable mode with 15 messages rolling off the screen every
second. PRINTCON is in wrap mode with messages appearing at the rate of 1/4
second.

SYB specifies MPFLST04 and MMSLST01 on the INIT statement. Because MMS,
like MPF, has system scope, the MVS message service for translating messages is
available only on SYB.

HOLDMODE(NO) and SYSLOG are default values for SYB. HOLDMODE is not in
effect for consoles attached to SYB. The console group SYNCHSYB is specified on
DEFAULT SYNCHDEST. Consoles defined in SYNCHSYB can display synchronous
messages.

212 z/OS V2R1.0 MVS Planning: Operations

Appendix A. AUTOR00 parmlib member

The following is the contents of the parmlib member AUTOR00.
/**/
/* */
/* Auto-Reply Policy Specifications */
/* */
/* PROPRIETARY STATEMENT= */
/** Proprietary Statement ***/
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* 5650-ZOS COPYRIGHT IBM CORP. 2010, 2013 */
/* */
/* STATUS= HBB7790 */
/* */
/** End of Proprietary Statement ************************************/
/* */
/* Function: Provide auto-reply policy definitions for common WTORs */
/* */
/* Notes : The message descriptions are just comments. In some */
/* cases, the WTORs refer to other messages and those */
/* other messages are included here for documentation. */
/* */
/* For JES2 messages, the wildcard ? is used as the first */
/* character since the first character is installation */
/* dependent. */
/* */
/* The rule delay time is a suggested value. Actual @P3A*/
/* values are determined by the WTOR owners. @P3A*/
/* */
/* For synchronous WTORs, it is suggested that the @L4A*/
/* delay value be less than the XCF’s failure @L4A*/
/* detection interval. @L4A*/
/* */
/* For synchronous WTORs, the reply should not @L4A*/
/* contain any symbolics since they will not be @L4A*/
/* resolved when the reply is issued. @L4A*/
/* */
/* Rules used to determine if a WTOR should be considered for */
/* auto-reply processing: */
/* */
/* 1 System Detected Problem */
/* */
/* If the system detected an error during execution of an */
/* operator initiated action, for example if an operator */
/* reply could cause corruption, an auto-reply is needed. */
/* */
/* Reply: Cancel the action */
/* Rationale: Resources could be held up; respond quickly. */
/* Worst case is that the user has to reinitiate */
/* the action. */
/* Delay time: 60 seconds (reject quickly and allow user */
/* to reinitiate) */
/* */
/* */
/* 2 System Detected Recovery Issue */
/* */
/* Tough love on sick but not dead situations. */
/* */
/* Reply: Terminate */
/* Rationale: Want to quickly address before situation */
/* further deteriorates. */

© Copyright IBM Corp. 1988, 2013 213

/* Delay time: 60 seconds */
/* */
/* */
/* 3 System Detected Dynamic Changes */
/* */
/* For dynamic changes that were made, choose the latest */
/* system active configuration when there is a recognized */
/* discrepancy. */
/* */
/* Reply: Option that reflects latest configuration */
/* Rationale: Dynamic changes were intended, but not */
/* hardened. Return to intended state (dynamic) */
/* Delay Time: 30 seconds */
/* */
/* */
/* 4 Confirmation WTORs */
/* */
/* If a generic confirmation message, reply negative. */
/* */
/* Reply: Negative confirmation (e.g., NO, CANCEL ...) */
/* Rationale: If the operator has not responded immediately */
/* to the message, assume there is some confusion */
/* and do not automatically assume the original */
/* command was correctly entered. Allow him to */
/* re-enter the command. */
/* Delay time: 60 seconds */
/* */
/* */
/* 5 Continue with IPL */
/* */
/* If there is a condition that is preventing the system */
/* from IPLing, reply to allow the system to continue to */
/* IPL. */
/* */
/* Reply: Option to allow IPL to continue. (e.g., GO, */
/* CONTINUE ...) */
/* Rationale: If the condition is preventing the system from */
/* ipling and the system needs to be up to */
/* correct the condition, reply to allow the */
/* system to continue the IPL. */
/* Delay time: 60 seconds */
/* */
/* */
/* 6 Component/Product Recommended Values */
/* */
/* Component level expert specified values. */
/* */
/* Reply: Specified by component level expert */
/* Rationale: Component Level expert specifications may */
/* over-ride auto-reply rules. */
/* Delay time: Specified by component level expert */
/* */
/* */
/* Change Activity: */
/* $L0=AUTOR HBB7770 081225 PDSS: Auto-Reply support */
/* $P1=ME15924 HBB7770 080421 PDED: Fix message id type */
/* $P2=ME16939 HBB7770 090831 PDSS: Fix typo in prolog */
/* $P3=ME17157 HBB7770 090917 PDSS: Update XCF delay values */
/* $L1=ME17489 HBB7770 091029 PDSS: Add RMM messages */
/* $L2=ME18784 HBB7780 100611 PDED: Add ARC0264A and BBO msgs */
/* $L3=ME19489 HBB7780 100708 PDED: Remove BBOT0025D */
/* $L4=AUTORDCF HBB7790 101225 PDSS: Auto-Reply for DCCF */
/* $L5=FLASHSUP HBB7790 110701 PD00A8: Auto-Reply for CONFIG */
/* $L6=FLASHSUP HBB7790 110801 PD00FX: New message ID */
/* =ME23014 HBB7790 111021 PD00FX: Cleanup */
/* $01=OA38452 HBB7770 120127 PDHB: Added ending comment */
/* delimiter for EDG8011D.@01A*/

214 z/OS V2R1.0 MVS Planning: Operations

/* $L7=ME25144 HBB7790 121113 PD00FX: Reinstate FLASHSUP */
/* $02=OA41019 HBB7770 130213 PDOF: IXC501A IXC560A IXC508A */
/* $04=OA42321 HBB7770 130628 PDHB: Remove EDG4001D. @04A*/
/* */
/**/
/* $HASP070 SPECIFY RECOVERY OPTIONS (’RECOVER’ OR ’TERMINATE’ OR */
/* ’SNAP’ AND, OPTIONALLY, ’,NODUMP’) */
/* */
/* Rule: 2 */
/* */

Msgid(?HASP070) Delay(30S) Reply(TERMINATE)
/**/
/* $HASP294 WAITING FOR RESERVE (VOL volser). REPLY ’CANCEL’ TO */
/* END WAIT */
/* */
/* Rule: 1 */
/* */

Msgid(?HASP294) Delay(30S) Reply(CANCEL)
/**/
/* $HASP360 jobname REQUESTS ACCESS TO JESNEWS (Y OR N) */
/* */
/* Rule: 4 */
/* */

Msgid(?HASP360) Delay(60S) Reply(N)
/**/
/* $HASP457 FORWARDED DATA SET NAME FOUND. SHOULD JES2 FORWARD? */
/* (’Y’ OR ’N’) */
/* */
/* Rule: 3 */
/* */

Msgid(?HASP457) Delay(60S) Reply(Y)
/**/
/* $HASP811 REPLY Y TO CONTINUE OR N TO TERMINATE START PROCESSING */
/* */
/* Rule: 5 */
/* */

Msgid(?HASP811) Delay(30S) Reply(Y)
/**/
/* ANTU2220D "READY FOR FLASHCOPY. REPLY ’I’ TO INITIATE, ’C’ TO */
/* CANCEL" */
/* */
/* Rule: 4 */
/* */

Msgid(ANTU2220D) Delay(60S) Reply(C)
/**/
/* ANTX8925A device_number TERMINATE STORAGE CONTROL SESSION */
/* session_number? REPLY ’Y’ OR ’N’ */
/* */
/* Rule: 4 */
/* */

Msgid(ANTX8925A) Delay(60S) Reply(N)
/**/
/* ANTX8926A device_number RECOVER STORAGE CONTROL SESSION */
/* session_number? REPLY ’Y’ OR ’N’ */
/* */
/* Rule: 4 */
/* */

Msgid(ANTX8926A) Delay(60S) Reply(N)
/**/
/* ANTX8942A REMOVE device_number FROM STORAGE CONTROL SESSION */
/* session_number? REPLY ’Y’ OR ’N’ */
/* */
/* Rule: 4 */
/* */

Msgid(ANTX8942A) Delay(60S) Reply(N)
/**/
/* ANTX8943A TERMINATE ALL type SDM SESSIONS? REPLY ’Y’ OR ’N’ */

Appendix A. AUTOR00 parmlib member 215

/* */
/* Rule: 4 */
/* */

Msgid(ANTX8943A) Delay(60S) Reply(N)
/**/
/* ANTX8944A TERMINATE STORAGE CONTROL SESSION session_id ON STORAGE*/
/* CONTROL ssid? REPLY ’Y’ OR ’N’ */
/* */
/* Rule: 4 */
/* */

Msgid(ANTX8944A) Delay(60S) Reply(N)
/**/
/* ANTX8973A device_number SUSPEND STORAGE CONTROL SESSION */
/* session_number? REPLY ’Y’ OR ’N’ */
/* */
/* Rule: 4 */
/* */

Msgid(ANTX8973A) Delay(60S) Reply(N)
/**/
/* ANTX8978A EXECUTE CREFRESH FORCE? REPLY ’Y’ OR ’N’ */
/* */
/* Rule: 4 */
/* */

Msgid(ANTX8978A) Delay(60S) Reply(N)
/**/
/* ANTX8981A SUSPEND ALL XRC SESSIONS? REPLY ’Y’ OR ’N’ */
/* */
/* Rule: 4 */
/* */

Msgid(ANTX8981A) Delay(60S) Reply(N)
/**/
/* ARC0264A {MCDS|BCDS} CLUSTERS CHANGED FROM m TO d. IF NOT */
/* INTENDED, STARTUP WILL RESULT IN CDS CORRUPTION. */
/* INTENDED? (Y OR N) */
/* */
/* Rule: 1 */
/* @L2A*/

Msgid(ARC0264A) Delay(15M) Reply(N)
/**/
/* ARC0310A CAN TAPE volser BE MOUNTED ON DEVICE devno? REPLY Y OR N*/
/* */
/* Rule: 1 */
/* */

Msgid(ARC0310A) Delay(15M) Reply(N)
/**/
/* ARC0311A SYSTEM TIMER INOPERABLE - CAN volser BE MOUNTED? REPLY */
/* Y OR N */
/* */
/* Rule: 1 */
/* */

Msgid(ARC0311A) Delay(15M) Reply(N)
/**/
/* ARC0314A CAN THE nvol VOLUME(S) ABOVE BE MOUNTED FOR {RECYCLE | */
/* RECOVER | RESTORE}? REPLY Y OR N */
/* */
/* Rule: 6 */
/* */

Msgid(ARC0314A) Delay(15M) Reply(Y)
/**/
/* ARC0346A OPEN HAS NOT COMPLETED FOR TAPE volser MOUNTED IN */
/* DEVICE ddd. REPLY Y TO START ADDITIONAL minutes MINUTES */
/* */
/* Rule: 1 */
/* */

Msgid(ARC0346A) Delay(30S) Reply(Y)
/**/
/* ARC0380A RECALL WAITING FOR VOLUME volser IN USE BY HOST procid, */

216 z/OS V2R1.0 MVS Planning: Operations

/* FUNCTION function. REPLY WAIT, CANCEL, OR MOUNT */
/* */
/* Rule: 1 */
/* */

Msgid(ARC0380A) Delay(60S) Reply(CANCEL)
/**/
/* ARC0387A RECOVER OF DATA SET dsname TIMED OUT WAITING FOR TAPE */
/* VOLUME volser TO BECOME AVAILABLE. SHOULD THE DATA SET */
/* RECOVER REQUEST CONTINUE TO WAIT? REPLY Y OR N */
/* */
/* Rule: 2 */
/* */

Msgid(ARC0387A) Delay(60S) Reply(N)
/**/
/* ARC0505D {PRIMARY SPACE MANAGEMENT | SECONDARY SPACE MANAGEMENT |*/
/* INTERVAL MIGRATION | AUTOMATIC BACKUP | AUTOMATIC DUMP} */
/* ABOUT TO START, REPLY ’Y’ TO START OR ’N’ TO SKIP IT */
/* */
/* Rule: 6 */
/* */

Msgid(ARC0505D) Delay(60S) Reply(Y)
/**/
/* ARC0803A WARNING: AUDIT OF CATALOG MAY DEGRADE PERFORMANCE, */
/* REPLY ’Y’ TO START AUDIT OR ’N’ TO CANCEL AUDIT COMMAND */
/* */
/* Rule: 6 */
/* */

Msgid(ARC0803A) Delay(60S) Reply(Y)
/**/
/* ARC0825D RECYCLE TAPE LIST CREATED, DSN=dsname. DO YOU WISH TO */
/* CONTINUE? REPLY ’N’ TO STOP RECYLE OR ’Y’ WHEN READY */
/* TO MOUNT TAPES. */
/* */
/* Rule: 6 */
/* */

Msgid(ARC0825D) Delay(60S) Reply(Y)
/**/
/* ARC0962A All VOLUMES NOT CONTAINED IN THE SAME TAPE LIBRARY OR */
/* STORAGE GROUP. ENTER ’C’ TO CANCEL OR MAKE CORRECTION */
/* AND ENTER ’R’ TO RETRY */
/* */
/* Rule: 1 */
/* */

Msgid(ARC0962A) Delay(30S) Reply(C)
/**/
/* ARC6254A ABACKUP CANNOT ALLOCATE TAPE VOLUME volser BECAUSE */
/* ANOTHER DFSMSHSM FUNCTION HAS IT IN USE. RETRY? */
/* REPLY Y OR N */
/* */
/* Rule: 1 */
/* */

Msgid(ARC6254A) Delay(30S) Reply(N)
/**/
/* BBOO0286A BACKWARDS INCOMPATIBLE POST INSTALL ACTION(S) PENDING. */
/* NOTE FOR UNINSTALL. REPLY ’CONTINUE’ OR ’CANCEL’ */
/* */
/* Rule: 1 */
/* @L2A*/

Msgid(BBOO0286A) Delay(60S) Reply(CANCEL)
/**/
/* BBOO0287A SERVER IS STARTING OUT OF PLACE AT MIXED PTF LEVELS. */
/* REPLY ’CONTINUE’ OR ’CANCEL’ */
/* */
/* Rule: 3 */
/* @L2A*/

Msgid(BBOO0287A) Delay(60S) Reply(CONTINUE)
/**/

Appendix A. AUTOR00 parmlib member 217

/* BBOT0015D OTS UNABLE TO RESOLVE ALL INCOMPLETE TRANSACTIONS FOR */
/* SERVER string. REPLY CONTINUE OR TERMINATE. */
/* */
/* Rule: 5 */
/* @L2A*/

Msgid(BBOT0015D) Delay(30S) Reply(CONTINUE)
/**/
/* BLW004A RESTART INTERRUPT DURING jobname stepname ASID=asid */
/* MODE=mode PSW=pppppppp */
/* SYSTEM NON-DISPATCHABILITY INDICATOR IS {ON|OFF} */
/* REPLY ABEND TO ABEND INTERRUPTED PROGRAM, */
/* RESUME TO RESUME INTERRUPTED PROGRAM, */
/* REPAIR TO PERFORM REPAIR ACTIONS. @L4A*/
/* */
/* Rule: 6 @L4A*/
/* Synchronous Message @L4A*/
/* */

Msgid(BLW004A) Delay(60S) Reply(REPAIR)
/**/
/* BPXI078D STOP OF NLSname_type REQUESTED, REPLY ’Y’ TO PROCEED. */
/* ANY OTHER REPLY WILL CANCEL THIS STOP. */
/* */
/* Rule: 4 */
/* */

Msgid(BPXI078D) Delay(60S) Reply(N)
/**/
/* BPXI083D RESPAWNABLE PROCESS job_name ENDED. REPLY R TO RESTART */
/* THE PROCESS. ANYTHING ELSE TO END THE PROCESS. */
/* */
/* Rule: 1 */
/* */

Msgid(BPXI083D) Delay(30S) Reply(N)
/**/
/* BPXM055D THIS SYSTEM WILL BE DISABLED AS A FILESYSTEM OWNER. */
/* REPLY ’Y’ TO CONTINUE OR ANY OTHER KEY TO EXIT. */
/* */
/* Rule: 4 */
/* */

Msgid(BPXM055D) Delay(60S) Reply(N)
/**/
/* BPXM061D REPLY "Y" TO PROCEED WITH ACTIVATION. ANY OTHER REPLY */
/* ENDS THE COMMAND. */
/* */
/* Rule: 4 */
/* */

Msgid(BPXM061D) Delay(60S) Reply(N)
/**/
/* BPXM063D REPLY "Y" TO PROCEED WITH DEACTIVATION. ANY OTHER REPLY */
/* ENDS THE COMMAND. */
/* */
/* Rule: 4 */
/* */

Msgid(BPXM063D) Delay(60S) Reply(N)
/**/
/* BPXM120D F BPXOINIT,FILESYS=funcname SHOULD BE USED WITH CAUTION.*/
/* REPLY ’Y’ TO CONTINUE. ANY OTHER REPLY TERMINATES. */
/* */
/* Rule: 4 */
/* */

Msgid(BPXM120D) Delay(60S) Reply(N)
/**/
/* CBR9810D Reply ’QUIT’ to terminate or ’GO’ to proceed with */
/* recovery. */
/* */
/* Rule: 4 */
/* */

Msgid(CBR9810D) Delay(60S) Reply(QUIT)

218 z/OS V2R1.0 MVS Planning: Operations

/**/
/* CNZ9009D CONTINUE WITH MIGRATION? REPLY N TO ABORT OR Y TO */
/* CONTINUE */
/* */
/* Rule: 4 */
/* */

Msgid(CNZ9009D) Delay(60S) Reply(N)
/**/
/* CPO4205I CPC name: Enter ’1’ to keep waiting for pending */
/* activation or ’2’ to accept current capacity setting */
/* */
/* Rule: 3 */
/* */

Msgid(CPO4205I) Delay(60S) Reply(2)
/**/
/* CPO4206I CPC name: Enter ’1’ to keep waiting for pending */
/* deactivation or ’2’ to accept current capacity setting */
/* */
/* Rule: 3 */
/* */

Msgid(CPO4206I) Delay(60S) Reply(2)
/**/
/* EDG0103D DFSMSrmm SUBSYSTEM INTERFACE IS INACTIVE - ENTER */
/* "IGNORE", "CANCEL" OR "RETRY" */
/* */
/* Notes: */
/* This message is normal for starting RMM after IPL. */
/* */
/* Rule: 5 */
/* */

Msgid(EDG0103D) Delay(60s) Reply(RETRY)
/**/
/* EDG1107D REQUESTS WAIT TO BE PROCESSED - REPLY "STOP", */
/* "QUIESCE", "RESTART", OR "M=xx" */
/* */
/* Notes: */
/* You stopped DFRMM while QUIESCED. Reply "RESTART". */
/* */
/* Rule: 6 */
/* */

Msgid(EDG1107D) Delay(2m) Reply(RESTART)
/**/
/* EDG1200D I/O ERROR ON CONTROL DATA SET WHEN PROCESSING MESSAGE */
/* msg_number, REPLY EITHER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* Low on scratch processing cannot wait during a WTO. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG1200D) Delay(30s) Reply(CANCEL)
/**/
/* EDG1203D INVENTORY MANAGEMENT PREVENTED PROCESSING OF MESSAGE */
/* msg_number, REPLY EITHER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* Low on scratch processing cannot wait during a WTO. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG1203D) Delay(30s) Reply(CANCEL)
/**/
/* EDG2103D PERMANENT JOURNAL ERROR - REPLY "R" TO RETRY, "I" TO */
/* IGNORE, "D" TO DISABLE OR "L" TO LOCK */
/* */
/* Notes: */
/* Reply "L" and notify Tech Support to run EDGHSKP BACKUP */

Appendix A. AUTOR00 parmlib member 219

/* to re-enable the journal. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG2103D) Delay(30s) Reply(L)
/**/
/* EDG2106D JOURNAL AND CONTROL DATASET DO NOT MATCH - REPLY "C" TO */
/* CANCEL, "D" TO DISABLE OR "L" TO LOCK */
/* */
/* Notes: */
/* Reply "L" and notify Tech Support to run EDGHSKP BACKUP */
/* to re-enable the journal. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG2106D) Delay(30s) Reply(L)
/**/
/* EDG3213D ANOTHER GETVOLUME CURRENTLY IN PROGRESS - ENTER */
/* "RETRY", "CANCEL", OR "IGNORE" */
/* */
/* Notes: */
/* Reply "RETRY" until GETVOLUME satisfied. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG3213D) Delay(30s) Reply(RETRY)
/**/
/* EDG4000D JOURNAL FILE IS LOCKED DURING action FOR volser BY */
/* jobname, stepname, ddname; ENTER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* Reply "RETRY" so production tape process is good. */
/* Run EDGHSKP BACKUP to re-enable the journal ASAP. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG4000D) Delay(2m) Reply(RETRY)
/**/
/* EDG4010D BACKUP IN PROGRESS DURING action FOR volser BY jobname, */
/* stepname, ddname; ENTER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* Reply "RETRY" so production tape process is good. */
/* Switch to use DSS Concurrent Copy for EDGHSKP BACKUP(DSS) */
/* */
/* Rule: 6 */
/* */

Msgid(EDG4010D) Delay(60s) Reply(RETRY)
/**/
/* EDG8008D DFSMSrmm I/O ERROR DURING task function REQUEST FOR */
/* volser - ENTER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* EDGTVEXT - DFRMM is probably QUIESCEd. Automation should */
/* start DFRMM again, meanwhile we RETRY. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG8008D) Delay(60s) Reply(RETRY)
/**/
/* EDG8010D BACKUP IN PROGRESS DURING task function REQUEST FOR */
/* volser - ENTER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* EDGTVEXT - Reply "RETRY" so production tape is good. */
/* Ensure EDGHSKP uses BACKUP(DSS) with concurrent copy. */
/* */

220 z/OS V2R1.0 MVS Planning: Operations

/* Rule: 6 */
/* */

Msgid(EDG8010D) Delay(60s) Reply(RETRY)
/**/
/* EDG8011D DFSMSrmm SUBSYSTEM IS NOT ACTIVE DURING task function */
/* FOR volser - ENTER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* EDGTVEXT - Reply "RETRY" so production tape is good. */
/* Ensure DFRMM is always active. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG8011D) Delay(60s) Reply(RETRY)
/**/
/* EDG8013D DFSMSrmm JOURNAL FILE IS LOCKED DURING task function */
/* REQUEST FOR volser - ENTER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* EDGTVEXT - Reply "RETRY" so production tape is good. */
/* Run EDGHSKP BACKUP(DSS) to empty and enable the journal. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG8013D) Delay(60s) Reply(RETRY)
/**/
/* EDG8102D DFSMSrmm SUBSYSTEM NOT ACTIVE DURING function PROCESSING*/
/* FOR volser - ENTER "RETRY", "IGNORE", OR "CANCEL" */
/* */
/* Notes: */
/* EDGLCSUX - Reply "RETRY" so production tape is good. */
/* Occurs when SMS tape is in use and volume not in library. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG8102D) Delay(60s) Reply(RETRY)
/**/
/* EDG8108D DFSMSrmm I/O ERROR DURING function PROCESSING FOR */
/* volser - ENTER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* EDGLCSUX - Reply "RETRY" so production tape is good. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG8108D) Delay(60s) Reply(RETRY)
/**/
/* EDG8110D BACKUP IN PROGRESS DURING function PROCESSING FOR */
/* VOLUME volser - ENTER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* EDGLCSUX - Reply "RETRY" so production tape is good. */
/* Ensure EDGHSKP uses BACKUP(DSS) with concurrent copy. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG8110D) Delay(60s) Reply(RETRY)
/**/
/* EDG8113D DFSMSrmm JOURNAL FILE IS LOCKED DURING */
/* function PROCESSING FOR VOLUME volser - */
/* ENTER "RETRY" OR "CANCEL" */
/* */
/* Notes: */
/* EDGLCSUX - Reply "RETRY" so production tape is good. */
/* Run EDGHSKP BACKUP(DSS) to empty and enable the journal. */
/* */
/* Rule: 6 */

Appendix A. AUTOR00 parmlib member 221

/* */
Msgid(EDG8113D) Delay(60s) Reply(RETRY)

/**/
/* EDG8121D ENTER volume req_volser INTO LIBRARY lib_name AND REPLY */
/* "RETRY", OTHERWISE REPLY "CANCEL" OR "CONTINUE" */
/* */
/* Notes: */
/* EDGLCSUX - Reply "RETRY" and let operator enter the tape. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG8121D) Delay(60s) Reply(RETRY)
/**/
/* EDG8122D ENTER volume req_volser INTO LIBRARY lib_name AND REPLY */
/* "RETRY", OTHERWISE REPLY "CANCEL" */
/* */
/* Notes: */
/* EDGLCSUX - Reply "RETRY" and let operator enter the tape. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG8122D) Delay(60s) Reply(RETRY)
/**/
/* EDG8123D ENTER volume req_volser EXPORTED IN STACKED VOLUME */
/* stack_volser LOCATION loc_name SHELF shelf_number HOME LOCATION */
/* home - IMPORT VOLUME TO LIBRARY lib_name AND REPLY */
/* "RETRY", OTHERWISE REPLY "CANCEL" */
/* */
/* Notes: */
/* EDGLCSUX - Reply "RETRY" and let operator enter the tape. */
/* */
/* Rule: 6 */
/* */

Msgid(EDG8123D) Delay(60s) Reply(RETRY)
/**/
/* ERB306D sid : REPLY WITH OPTIONS OR GO */
/* */
/* Rule: 5 */
/* */

Msgid(ERB306D) Delay(60S) Reply(GO)
/**/
/* IAT2855 JES3/VTAM OPEN ACB FAILURE, SPECIFY "RETRY" TO ATTEMPT */
/* OPEN AGAIN OR "TERM" TO TERMINATE SNARJP */
/* */
/* Rule: 5 */
/* */

Msgid(IAT2855) Delay(60S) Reply(RETRY)
/**/
/* IAT3155 SPOOL DATA INTEGRITY CHECKING IS ACTIVE; */
/* DO YOU WANT TO TURN IT OFF? (OFF OR CONTINUE) */
/* */
/* Rule: 5 */
/* */

Msgid(IAT3155) Delay(60S) Reply(CONTINUE)
/**/
/* ICH15033A IF ANY SYSTEM IS USING THE DATABASE WITH MASTER DATASET*/
/* dsname IN DATA SHARING MODE, AND ANY OTHER SYSTEM */
/* CONCURRENTLY USES IT IN NON-DATA SHARING MODE, DATABASE*/
/* CORRUPTION WILL RESULT. PROFILE profile-name IN CLASS */
/* class-name INDICATES THAT THIS DATABASE WAS LAST USED */
/* IN DATA SHARING MODE, BUT IT IS NOW TO BE USED IN */
/* NON-DATA SHARING MODE. IF THE DATABASE IS NOT BEING */
/* USED BY ANOTHER SYSTEM IN DATA SHARING MODE, SPECIFY */
/* ’CONTINUE’. OTHERWISE SPECIFY ’CANCEL’. */
/* or */
/* */
/* ICH15034A IF SYSTEMS FROM MULTIPLE SYSPLEXES USE THE DATABASE */

222 z/OS V2R1.0 MVS Planning: Operations

/* WITH MASTER DATASET DSNAME IN DATA SHARING MODE */
/* DATABASE CORRUPTION WILL RESULT. YOU ARE RVARYING INTO */
/* A DATA SHARING MODE ENVIRONMENT. OTHER IRRPLEX_ */
/* PROFILES EXIST, SUCH AS IRRPLEX_sysplex-name IN CLASS */
/* class-name. IF THE DATABASE IS NOT BEING USED BY */
/* ANOTHER SYSPLEX, THEN SPECIFY ’CONTINUE’. OTHERWISE */
/* SPECIFY ’CANCEL’. */
/* */
/* or */
/* */
/* ICH15042A IF ANY SYSTEM IS USING THE DATABASE WITH MASTER DATA */
/* SET DSNAME IN DATA SHARING MODE, AND ANY OTHER SYSTEM */
/* CONCURRENTLY USES IT IN NON-DATA SHARING MODE, DATABASE*/
/* CORRUPTION WILL RESULT. YOU ARE RVARYING INTO A DATA */
/* SHARING MODE ENVIRONMENT. PROFILE profile-name IN */
/* CLASS class-name INDICATES THAT THIS DATABASE WAS LAST */
/* USED IN NON-DATA SHARING MODE, BUT IT IS NOW TO BE USED*/
/* IN DATA SHARING MODE. IF THE DATABASE IS BEING USED BY */
/* ANOTHER SYSTEM NOT ENABLED FOR RACF SYSPLEX */
/* COMMUNICATION SPECIFY ’CANCEL’. OTHERWISE SPECIFY */
/* ’CONTINUE’. */
/* */
/* ICH15041A VALID RESPONSES ARE ’CONTINUE’ OR ’CANCEL’ */
/* */
/* Rule: 1 */
/* */

Msgid(ICH15041A) Delay(30S) Reply(CANCEL)
/**/
/* IEA015A THIS SYSTEM HAS LOST ALL CONNECTION TO THE SYSPLEX TIMER.*/
/* IF THIS EVENT OCCURRED ON SOME, BUT NOT ALL SYSPLEX MEMBERS, THE */
/* LIKELY CAUSE IS A LINK FAILURE. TO FIX, ENSURE THAT EACH AFFECTED*/
/* SYSTEM HAS AT LEAST ONE CORRECTLY CONNECTED AND FUNCTIONAL LINK. */
/* */
/* IF THIS EVENT OCCURRED ON ALL SYSPLEX MEMBERS, THEN THE LIKELY */
/* CAUSE IS A SYSPLEX TIMER FAILURE. TO FIX, REFER TO THE MESSAGE */
/* IEA015A DESCRIPTION IN MVS SYSTEM MESSAGES. */
/* */
/* AFTER FIXING THE PROBLEM, REPLY "RETRY" FROM THE SERVICE CONSOLE */
/* (HMC). IF THE PROBLEM WAS NOT CORRECTED, THIS MESSAGE WILL BE */
/* REISSUED AND YOU MAY TRY AGAIN. REPLY "ABORT" TO EXIT MESSAGE */
/* LOOP. PROBABLE RESULT: 0A2-114 WAITSTATE @L4A*/
/* */
/* Rule: 6 @L4A*/
/* Synchronous Message @L4A*/
/* */

Msgid(IEA015A) Delay(2M) Reply(RETRY)
/**/
/* IEA029D {IEASVC|ALLOC|SCHED} PARMLIB MEMBER HAS AN UNBALANCED */
/* COMMENT. REPLY YES TO CONTINUE IPL OR NO TO RESPECIFY */
/* {SVC|ALLOC|SCHED} PARM */
/* */
/* Rule: 5 */
/* */

Msgid(IEA029D) Delay(60S) Reply(YES)
/**/
/* IEA367A MULTIPLE CONSOLE SUPPORT INOPERATIVE ERROR CODE = xxxx */
/* REPLY WITH ANY CHARACTER TO CONTINUE WITHOUT MULTIPLE CONSOLE */
/* SUPPORT @L4A*/
/* */
/* Rule: 2 @L4A*/
/* Synchronous Message @L4A*/
/* */

Msgid(IEA367A) Delay(15S) Reply(U)
/**/
/* IEA394A THIS SERVER HAS LOST CONNECTION TO ITS SOURCE OF TIME. */
/* IF THIS EVENT OCCURRED ON SOME, BUT NOT ALL NETWORK SERVERS, THE */
/* LIKELY CAUSE IS A LINK FAILURE. */

Appendix A. AUTOR00 parmlib member 223

/* TO FIX, ENSURE THAT EACH AFFECTED SERVER HAS AT LEAST ONE */
/* CORRECTLY CONNECTED AND FUNCTIONAL LINK. */
/* IF THIS EVENT OCCURRED ON ALL NETWORK SERVERS, THEN THE LIKELY */
/* CAUSE IA A TIMING NETWORK FAILURE. */
/* TO FIX, REFER TO THE MESSAGE IEA394A DESCRIPTION IN MVS SYSTEM */
/* MESSAGES. */
/* AFTER FIXING THE PROBLEM, REPLY "RETRY" FROM THE SERVICE CONSOLE */
/* (HMC). */
/* IF THE PROBLEM WAS NOT CORRECTED, THIS MESSAGE WILL BE REISSUED */
/* AND YOU MAY TRY AGAIN. */
/* REPLY "ABORT" TO EXIT THE MESSAGE LOOP. PROBABLE RESULT: 0A2-158 */
/* WAITSTATE. @L4A*/
/* */
/* Rule: 6 @L4A*/
/* Synchronous Message @L4A*/
/* */

Msgid(IEA394A) Delay(2M) Reply(RETRY)
/**/
/* IEA893A NOT READY. REPLY U WHEN DEVICES ARE READY, OR NO IF NOT */
/* MOUNTING. dev,dev,... */
/* */
/* Rule: 1 */
/* */

Msgid(IEA893A) Delay(30S) Reply(NO)
/**/
/* IEA500A RESTART INTERRUPT DURING jobname stepname ASID=aaaa */
/* MODE=mmmm PSW=psw */
/* REPLY RESUME TO RESUME INTERRUPTED PROGRAM */
/* REPLY ABEND TO ABEND INTERRUPTED PROGRAM @L4A*/
/* */
/* Rule: 2 @L4A*/
/* Synchronous Message @L4A*/
/* */

Msgid(IEA500A) Delay(60S) Reply(ABEND)
/**/
/* IEA502A RESTART REASON COULD NOT BE OBTAINED. REPLY WITH RESTART */
/* REASON CODE: @L4A*/
/* */
/* Rule: 2 @L4A*/
/* Synchronous Message @L4A*/
/* */

Msgid(IEA502A) Delay(60S) Reply(1)
/**/
/* IEE599A CONFIG SCM WAITING TO COMPLETE - REPLY C TO CANCEL @L7A*/
/* */
/* Rule: 4 @L7A*/
/* */

Msgid(IEE599A) Delay(30S) Reply(C)
/**/
/* IEE799D VARY CONSOLE DELAYED - REPLY RETRY OR CANCEL */
/* */
/* Rule: 1 */
/* */

Msgid(IEE799D) Delay(30S) Reply(CANCEL)
/**/
/* IEE800D CONFIRM VARY FORCE FOR {nnnnnnnn|dev],(dev,...)(} - */
/* REPLY NO OR YES */
/* */
/* Rule: 4 */
/* */

Msgid(IEE800D) Delay(60S) Reply(NO)
/**/
/* IEF739D CONFIGURATION CHANGE DELAYED DUE TO EXCESSIVE WAIT ON */
/* PREVIOUS EDT - REPLY ’WAIT’ OR ’TERM’. */
/* */
/* Rule: 1 */
/* */

224 z/OS V2R1.0 MVS Planning: Operations

Msgid(IEF739D) Delay(30S) Reply(TERM)
/**/
/* ISG017D CONFIRM PURGE REQUEST FOR SYSTEM sysname - REPLY NO OR */
/* YES */
/* */
/* Rule: 4 */
/* */

Msgid(ISG017D) Delay(60S) Reply(NO)
/**/
/* ISG027D CONFIRM RESTART-RING FOR SYSTEM sysname - REPLY NO OR YES*/
/* */
/* Rule: 4 */
/* */

Msgid(ISG027D) Delay(60S) Reply(NO)
/**/
/* ISG082D CONFIRM REBUILD-RING FOR SYSTEM sysname - REPLY NO OR YES*/
/* */
/* Rule: 4 */
/* */

Msgid(ISG082D) Delay(60S) Reply(NO)
/**/
/* ISG101D CONFIRM PURGE FOR ACTIVE SYSTEM sysname - REPLY NO OR YES*/
/* */
/* Rule: 4 */
/* */

Msgid(ISG101D) Delay(60S) Reply(NO)
/**/
/* ISG117D CONFIRM REACTIVATE SHOULD BE COMPLETED - REPLY NO OR YES */
/* */
/* Rule: 4 */
/* */

Msgid(ISG117D) Delay(60S) Reply(NO)
/**/
/* ISG186D GRS CTC dev WAS TARGET OF VARY OFFLINE,FORCE. REPLY KEEP */
/* TO HAVE GRS RETAIN THE CTC OR FREE TO REMOVE THE CTC */
/* FROM GRS. */
/* */
/* Rule: 4 */
/* */

Msgid(ISG186D) Delay(60S) Reply(KEEP)
/**/
/* ISG220D REPLY C TO CANCEL RNL CHANGE COMMAND, OR S FOR SUMMARY OF*/
/* RNL CHANGE PROGRESS. */
/* */
/* Rule: 4 */
/* */

Msgid(ISG220D) Delay(60S) Reply(C)
/**/
/* ISG366D CONFIRM SETGRS REQUEST ON SYSTEM system-name. REPLY */
/* {ENQMAXA|ENQMAXU}=value TO CONFIRM OR C TO CANCEL. */
/* */
/* or */
/* */
/* ISG366D CONFIRM REQUEST TO MIGRATE THE CNS TO system-name. REPLY */
/* CNS=system-name TO CONFIRM OR C TO CANCEL. */
/* */
/* Rule: 4 */
/* */

Msgid(ISG366D) Delay(60S) Reply(C)
/**/
/* ISG880D WARNING GRSRNL=EXCLUDE IS IN USE. REPLYING FORCE WILL */
/* RESULT IN THE USE OF SPECIFIED RNSL. REPLY C TO CANCEL. */
/* */
/* Rule: 4 */
/* */

Msgid(ISG880D) Delay(60S) Reply(C)
/**/

Appendix A. AUTOR00 parmlib member 225

/* IXC222D REPLY U TO USE RESOLVED DATA SETS OR R TO RESPECIFY */
/* COUPLEXX */
/* */
/* Rule: 3 */
/* */

Msgid(IXC222D) Delay(60S) Reply(U)
/**/
/* IXC289D REPLY U TO USE THE DATA SETS LAST USED FOR typename OR C */
/* TO USE THE COUPLE DATA SETS SPECIFIED IN COUPLExx */
/* */
/* Rule: 3 */
/* */

Msgid(IXC289D) Delay(60S) Reply(U)
/**/
/* IXC394A ARM ELEMENT IN USE. REPLY Y TO CONFIRM THAT elementname */
/* SHOULD BE DEREGISTERED OR N TO CANCEL */
/* */
/* Rule: 1 */
/* */

Msgid(IXC394A) Delay(60S) Reply(N) /* @P3C*/
/**/
/* IXC403D sysname STARTED INITIALIZATION AT hh:mm:ss. REPLY W TO */
/* WAIT FOR sysname OR I TO COMPLETE INITIALIZATION. */
/* */
/* Rule: 1 */
/* */

Msgid(IXC403D) Delay(60S) Reply(W) /* @P3C*/
/**/
/* IXC501A REPLY Y TO USE COUPLING FACILITY NAMED cfname OR N TO */
/* NOT USE COUPLING FACILITY */
/* */
/* Rule: 1 */
/* */

Msgid(IXC501A) Delay(60S) Reply(N) /* @02A*/
/**/
/* IXC560A REPLY Y TO CONFIRM THAT COUPLING FACILITY NAMED cfname */
/* SHOULD BE USED BY plexname, OR N TO DENY THE USE. */
/* */
/* Rule: 4 */
/* */

Msgid(IXC560A) Delay(60S) Reply(N) /* @02A*/
/**/
/* IXC508A REPLY K TO KEEP, D TO DELETE STRUCTURES FROM SYSPLEX */
/* plexname */
/* */
/* Rule: 4 */
/* */

Msgid(IXC508A) Delay(60S) Reply(K) /* @02A*/
/**/

226 z/OS V2R1.0 MVS Planning: Operations

Appendix B. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1988, 2013 227

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

228 z/OS V2R1.0 MVS Planning: Operations

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix B. Accessibility 229

230 z/OS V2R1.0 MVS Planning: Operations

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2013 231

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

232 z/OS V2R1.0 MVS Planning: Operations

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices 233

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

234 z/OS V2R1.0 MVS Planning: Operations

Glossary

This glossary defines technical terms and
abbreviations used in z/OS MVS documentation.
If you do not find the term you are looking for,
refer to the index of the appropriate manual or
view IBM Glossary of Computing Terms, located
at:

http://www.ibm.com/ibm/terminology

action message retention facility (AMRF)
A facility that, when active, retains all
action messages except those specified by
the installation in the MPFLSTxx member
in effect.

action message sequence number
A decimal number assigned to action
messages.

Advanced Program-to-Program Communications
(APPC)

A set of inter-program communication
services that support cooperative
transaction processing in a SNA network.

allocate
To assign a resource for use in performing
a specific task.

AMRF
action message retention facility

APPC Advanced Program-to-Program
Communications

automated operations
Automated procedures to replace or
simplify actions of operators in both
systems and network operations.

AVR Automatic volume recognition.

CART Command and response token.

CNGRPxx
The Parmlib member that defines console
groups for the system or sysplex.

command and response token (CART)
A parameter on WTO, WTOR, MGCRE,
and certain TSO/E commands and REXX
execs that allows you to link commands
and their associated message responses.

command prefix facility (CPF)
An MVS facility that allows you to define
and control subsystem and other
command prefixes for use in a sysplex.

console
That part of a computer used for
communication between the operator or
user and the computer.

console group
In MVS, a group of consoles defined in
CNGRPxx, each of whose members can
serve as a console to display synchronous
messages or provide auto-activation
facilities for the system console.

CONSOLxx
The Parmlib member used to define
message handling, command processing,
and MCS, HMCS and SMCS consoles.

control unit
Synonymous with device control unit.

conversational
Pertaining to a program or a system that
carries on a dialog with a terminal user,
alternately accepting input and then
responding to the input quickly enough
for the user to maintain a train of
thought.

CPF Command prefix facility.

DASD
Direct access storage device.

data definition name
The name of a data definition (DD)
statement, which corresponds to a data
control block that contains the same
name. Abbreviated as ddname.

data definition (DD) statement
A job control statement that describes a
data set associated with a particular job
step.

data set label
(1) A collection of information that
describes the attributes of a data set and
is normally stored on the same volume as
the data set. (2) A general term for data
set control blocks and tape data set labels.

© Copyright IBM Corp. 1988, 2013 235

http://www.ibm.com/ibm/terminology

deallocate
To release a resource that is assigned to a
specific task.

device control unit
A hardware device that controls the
reading, writing, or displaying of data at
one or more input/output devices or
terminals.

device number
The unique number assigned to an
external device.

device type
The general name for a kind of device; for
example, 3330.

direct access storage device (DASD)
A device in which the access time is
effectively independent of the location of
the data.

distributed mode
One of the two console services operation
mode (the other is shared mode).
Distributed mode improves the console
operations running in sysplex
environment.

display console
In MVS, an MCS, HMCS or SMCS console
whose input/output function you can
control.

DOM An MVS macro that removes outstanding
WTORs or action messages that have
been queued to a console

end-of-tape-marker
A marker on a magnetic tape used to
indicate the end of the permissible
recording area, for example, a
photo-reflective strip, a transparent
section of tape, or a particular bit pattern.

entry area
In MVS, the part of a console screen
where operators can enter commands or
command responses.

extended MCS console (EMCS)
In MVS, a console other than an MCS or
SMCS console from which operators or
programs can issue MVS commands and
receive messages. An extended MCS
console is defined through an
OPERPARM segment.

full-capability console
An MCS, HMCS or SMCS console that
can receive messages and send
commands. See message-stream console
and status-display console.

hardcopy log
In systems with multiple console support
or a graphic console, a permanent record
of system activity. See SYSLOG or
OPERLOG.

hardware
Physical equipment, as opposed to the
computer program or method of use; for
example, mechanical, magnetic, electrical,
or electronic devices. Contrast with
software.

hardware configuration dialog
In MVS, a panel program that is part of
the hardware configuration definition.
The program allows an installation to
define devices for MVS system
configurations.

HCD Hardware configuration definition.

HMCS
HMC multiple console support.

initial program load (IPL)
The initialization procedure that causes an
operating system to begin operation.

instruction line
In MVS, the part of the console screen
that contains messages about console
control and input errors.

internal reader
A facility that transfers jobs to the job
entry subsystem (JES2 or JES3).

IPL Initial program load.

JES2 multi-access spool configuration
A multiple MVS system environment that
consists of two or more JES2 processors
sharing the same job queue and spool

keyword
A part of a command operand or Parmlib
statement that consists of a specific

236 z/OS V2R1.0 MVS Planning: Operations

character string (such as NAME= on the
CONSOLE statement of CONSOLxx).

line number
A number associated with a line in a
console screen display.

MAS Multi-access spool.

master authority console
In a system or sysplex, a console defined
with AUTH(MASTER)

MCS Multiple console support.

MCS console
A non-SNA device defined to MVS that is
locally attached to an MVS system and is
used to enter commands and receive
messages.

message flooding automation
An automation that reacts to the message
flooding situation.

message processing facility (MPF)
A facility used to control message
retention, suppression, and presentation.

message queue
A queue of messages that are waiting to
be processed or waiting to be sent to a
terminal.

message-stream console
An MCS console which receives messages
but from which an operator cannot enter
commands. See full-capability console
and status-display console.

message text
The part of a message consisting of the
actual information that is routed to a user
at a terminal or to a program.

message window
The area of the console screen where
messages appear.

MMS In MVS, the MVS message service.

MPF Message processing facility.

MPFLSTxx
The Parmlib member that controls the
message processing facility for the system.

multiple console support (MCS)
The operator interface in an MVS system.

multi-access spool (MAS)
A complex of multiple processors running
MVS/JES2 that share a common JES2
spool and JES2 checkpoint data set.

multisystem console support
Multiple console support for more than
one system in a sysplex. Multisystem
console support allows consoles on
different systems in the sysplex to
communicate with each other (send
messages and receive commands)

MVS message service (MMS)
An MVS component that allows an
installation to display messages translated
into other languages on a console or
terminal.

NIP Nucleus initialization program.

nonstandard labels
Labels that do not conform to American
National Standard or IBM System/370
standard label conventions.

nucleus initialization program (NIP)
The stage of MVS that initializes the
control program; it allows the operator to
request last minute changes to certain
options specified during initialization.

offline
Pertaining to equipment or devices not
under control of the processor.

online Pertaining to equipment or devices under
control of the processor.

operations log (OPERLOG)
In MVS, the operations log is a central
record of communications and system
problems for each system in a sysplex.

OPERLOG
The operations log.

OPERPARM
In MVS, a segment that contains
information about console attributes for
extended MCS consoles running on
TSO/E.

out-of-line display area
For status-display and full-capability MCS
and SMCS consoles, areas of the screen
set aside for formatted, multi-line display

Glossary 237

of status information written in response
to certain MVS and subsystem
commands.

PFK Program function key.

PFK capability
On a display console, indicates that
program function keys are supported and
were specified at system generation.

PFKTABxx
The Parmlib member that controls the
PFK table settings for MCS consoles in a
system.

printer
A device that writes output data from a
system on paper or other media.

program function key (PFK)
A key on the keyboard of a display device
that passes a signal to a program to call
for a particular program operation.

program status word (PSW)
A doubleword in main storage used to
control the order in which instructions are
executed, and to hold and indicate the
status of the computing system in relation
to a particular program.

PSW Program status word.

remote operations
Operation of remote sites from a host
system.

roll mode
The MCS, HMCS and SMCS console
display mode that allows messages to roll
off the screen when a specified time
interval elapses.

roll-deletable mode
The console display mode that allows
messages to roll off the screen when a
specified time interval elapses. Action
messages remain at the top of the screen
where operators can delete them.

routing
The assignment of the communications
path by which a message will reach its
destination.

routing code
A code assigned to an operator message
and used to route the message to the
proper console.

shared DASD option
An option that enables independently
operating computing systems to jointly
use common data residing on shared
direct access storage devices.

shared mode
One of the two console services operation
mode (the other is distributed mode).
Shared mode is a name given to the way
console services used to operate in
sysplex environment before distributed
mode was introduced.

SMCS SNA Multiple Console Support consoles
are consoles that use SecureWay
Communications Server to provide
communication between operators and
MVS as opposed to MCS consoles, which
do direct I/O to the device.

software
(1) All or part of the programs,
procedures, rules, and associated
documentation of a data processing
system. (2) Contrast with hardware. A set
of programs, procedures, and, possibly,
associated documentation concerned with
the operation of a data processing system.
For example, compilers, library routines,
manuals, circuit diagrams. Contrast with
hardware.

status-display console
An MCS console that can receive displays
of system status but from which an
operator cannot enter commands. See
full-capability console and
message-stream console.

subsystem-allocatable console
A console managed by a subsystem like
JES3 or NetView used to communicate
with an MVS system.

synchronous messages
WTO or WTOR messages issued by an
MVS system during certain recovery
situations.

SYSLOG
The system log data set.

238 z/OS V2R1.0 MVS Planning: Operations

system log (SYSLOG)
In MVS, the system log data set that
includes all entries made by the WTL
(write-to-log) macro as well as the
hardcopy log. SYSLOG is maintained by
JES in JES SPOOL space.

sysplex
A multiple-MVS system environment that
allows MCS, HMCS, SMCS consoles or
extended MCS consoles to receive
messages and send commands across
systems.

system console
In MVS, a console attached to the
processor controller used to initialize an
MVS system.

terminal
A device, usually equipped with a
keyboard and some kind of display,
capable of sending and receiving
information over a link.

terminal user
In systems with time-sharing, anyone
who is eligible to log on.

virtual telecommunications access method
(VTAM)

A set of programs that maintain control of
the communication between terminals
and application programs running under
DOS/VS, OS/VS1, and OS/VS2 operating
systems.

volume
(1) That portion of a single unit of storage
which is accessible to a single read/write
mechanism, for example, a drum, a disk
pack, or part of a disk storage module. (2)
A recording medium that is mounted and
demounted as a unit, for example, a reel
of magnetic tape, a disk pack, a data cell.

volume serial number
A number in a volume label that is
assigned when a volume is prepared for
use in the system.

volume table of contents (VTOC)
A table on a direct access volume that
describes each data set on the volume.

VTAM
Virtual telecommunications access
method.

VTOC Volume table of contents.

wait state
Synonymous with waiting time.

waiting time
(1) The condition of a task that depends
on one or more events in order to enter
the ready condition. (2) The condition of a
processing unit when all operations are
suspended.

warning line
The part of the console screen that alerts
the operator to conditions requiring
possible action.

wrap mode
The console display mode that allows a
separator line between old and new
messages to move down a full screen as
new messages are added. When the
screen is filled and a new message is
added, the separator line overlays the
oldest message and the newest message
appears immediately before the line.

write-to-log (WTL) message
A message sent to SYSLOG or the
hardcopy log.

write-to-operator (WTO) message
A message sent to an operator console
informing the operator of errors and
system conditions that may need
correcting.

write-to-operator-with-reply (WTOR) message
A message sent to an operator console
informing the operator of errors and
system conditions that may need
correcting. The operator must enter a
response.

WTL message
Write-to-log message

WTO message
Write-to-operator message

WTOR message
Write-to-operator-with-reply message.

Glossary 239

240 z/OS V2R1.0 MVS Planning: Operations

Index

Special characters
? (question mark)

specified on parameter of system
command 113

* (asterisk)
specified on parameter of system

command 113

Numerics
3277-2 display station

in console cluster 201
in message stream mode 74
PFK (program function key) display

line 73

A
accessibility 227

contact IBM 227
features 227

action message
deletion 75
display of information 119
limiting number received at a

console 207
retention by action message retention

facility 118
action message retention facility 115
activation

action message retention facility 118
command installation exit 124
general message processing exit

IEAVMXIT 123
allocation of storage for a run-time

message file 134
ALLOCxx member of parmlib

concatenation 168
AMRF (action message retention facility)

deactivation 118
description 118
display of an action message that is

not retained 115, 207
retrieval of an action message 118
when JES3 uses an MCS console 121

AMRF keyword 118
APPC (Advanced-Program-to-Program

Communication) 160
assistive technologies 227
AUTH keyword 61
AUTH subkeyword of OPERPARM 12
AUTO subkeyword of OPERPARM 12
auto-reply

displaying WTORs 157
migration 155
operator commands 156
SDSF support 157

auto-reply for WTORs 155
AUTOACT 161

AutoIPL
how to use 173
policy 173
verify status 174

automatable message
directing to an extended MCS

console 109
automated end of WTO messages 128
automated message

handling with descriptor code 13 107
automatic IPL 173
automatic LOGON 68
automatic message deletion 74
automatic mode 75
automatic mode of message deletion

description 75
automatic volume recognition 169
automation 15

directing an automated message to an
extended MCS console 121

reissuing an automated message 121
selecting a message 121
use of descriptor code 13 for a

message 107
automation in a sysplex 121
automation, message flooding 141
AUTOR00 parmlib member 213
AVR (automatic volume

recognition) 169

B
boxing a device 170
broadcast message

description 107

C
cancellation

automatic message deletion 75
change

MMSLSTxx member 138
MPFLSTxx member of

SYS1.PARMLIB 116
CLOCKxx and the sysplex 166
CLOCKxx member of

SYS1.PARMLIB 166
CMD keyword 87
CMD parameter

USEREXIT option 124
CMDDELIM keyword 89
CMDSYS keyword 110

using with commands in a
sysplex 102

CMDSYS subkeyword of
OPERPARM 12

CNGRP keyword 52
CNGRPxx member of Parmlib

activating 52
definition of a console group 52

CNLcccxx member 138
CNZ_MSGTOSYSLOG 125
CNZ_WTOMDBEXIT 125
command

flow in a sysplex 102
flow in an MVS system 99
general characteristics 98
groups 61
summary of MVS commands to

change CONSOLxx values 177
command assignment

MCS console 61
command association in a sysplex 110
command delimiter

definition 89
command flooding 100
command group 60

figure 61
command installation exit 124
command prefix

system name as synonym for ROUTE
command

IEECMDPF samplib member 112
command prefix facility 111
command profile in RACF 65
COMMNDxx member of Parmlib

using with SET CNGRP
command 53

compilation of a message file for
translation 135

CON keyword
in PFKTABxx 87
on the CONSOLE statement of

CONSOLxx 79
CON=NONE operator prompt 162
CONFIG command 83
CONFIG OFFLINE command

FORCE operand 171
considerations

for using shared DASD 173
console

cluster 201
defining a subsystem-allocatable

console 48
definition of an MCS console 48
display of a synchronous

message 53, 54
error condition 55
examples of console screens 72
extended MCS (multiple console

support) 10
hardware error 59
locked keyboard 59
MCS (multiple console support) 2
message backed up 56
message centered on screen 59
message in message area 55
message roll rate 204
NetView 16
NIP (nucleus initialization

program) 162

© Copyright IBM Corp. 1988, 2013 241

console (continued)
no message 55
operating mode 71
recovery

error condition 55
hardware error 59
locked keyboard 59
message backed up 56
message centered on screen 59
message in message area 55
system error 55

system 160
system error 55

console cluster
example 201
example of CONSOLxx statements

used for 208
console command assignment 61
console command authority

specification of authority for a console
to issue a console control
command 61

specification of authority for a console
to issue a system control
command 61

specification of authority for a console
to issue an I/O control
command 61

specification of authority for a console
to issue an informational
command 61

specification of master authority 61
console considerations

for z/OS V1R8 and higher 19
console consolidation 21
console control command 61

description 61
console display area 82
console function

control of the format of messages and
status information 83

controlling the use of an MCS
console 71

defining out-of-line areas on an MCS
console screen 82

deleting messages manually from an
MCS console screen 79

message display on a full-capability
console 74

routing status display 83
specification of message number 80
specifying automatic message deletion

for an MCS console 74
status display 81
temporary suspension of the screen

roll 77
use of SEG to delete a group of

messages 81
ways to define 70

console group
using CNGRPxx to define 52

console ID
considerations using 49

CONSOLE keyword
CON keyword 79

console name
advantages using 49

console name (continued)
considerations when naming a console

group 52
defining for an extended MCS

console 11
defining in a sysplex 49
definition of a subsystem-allocatable

console 49
definition of an MCS console 49
definition of the same console to a

different system 50
for the system console 163
restrictions 50

console operating mode
defining for consoles in console

cluster 203
definition 71

console operation mode
distributed mode 5
shared mode 5

console recovery
considerations 52
in a system or sysplex 52
RESET CN command 52

console security 60
using MCS 60
using the command installation

exit 70
using your security product 62

CONSOLE statement 22
AREA keyword 83
AUTH keyword 61
CMDSYS keyword 110
DEL keyword 74, 80
DEVNUM keyword 48
INTIDS keyword 109
LEVEL keyword 107
MFORM keyword 84
MONITOR keyword 85
MSCOPE keyword 108
NAME keyword 48
PFKTAB keyword 87
RNUM keyword 75
ROUTCODE keyword 106
RTME keyword 75
SEG keyword 81
summary of console function 23
UNIT keyword 48
UNKNIDS keyword 109
USE keyword 73

console with master authority
recovery

system action 60
CONSOLxx member

Parmlib
MLIM parameter 56
RLIM parameter 56
RMAX parameter 56

CONSOLxx member of Parmlib 21
CONSOLE statement 22
DEFAULT statement 25
defining an MCS console

configuration 22
defining in a sysplex 29
DEL keyword

example 76

CONSOLxx member of Parmlib
(continued)

DEVNUM keyword
example 62

HARDCOPY statement 25, 89, 90
INIT statement 25
MFORM parameter

example 76
RTME parameter

example 76
scope of keywords in a sysplex 29

CONSOLxx member of SYS1.PARMLIB
defining problem determination mode

routing for the system console 164
example of for a console cluster 208
example of PFK parameter 208
summary of keywords 177
summary of MVS commands to

change keyword values 177
UEXIT parameter

example 123
control

format of message 83
JES3 through an MCS console 121
message in a console cluster 201
messages processed by MPF 115
NetView through an MCS console 16
shared DASD 171
status display 81
WTL message 133
WTO and WTOR message 126

CONTROL access authority used by
RACF 64

conversational mode
definition 79
message deletion 79
PFK (program function key) 87

CPF (command prefix facility) 111
using in a sysplex 102

critical eventual action message
description 107

CSVAPF macro
defining RACF profiles for 184

CSVDYLPA macro
defining RACF profiles for 198

CSVDYNEX macro
defining RACF profiles for 187

CSVDYNL macro
defining RACF profiles for 192

D
DASD (direct access storage device)

shared 171
data definition statement 168
data set status

display 85
DD (data definition statement) 168
DEFAULT statement 25, 27

HOLDMODE keyword 78
LOGON keyword 67
RMAX keyword 127
ROUTCODE keyword 106
summary of console function 27
SYNCHDEST keyword 53

242 z/OS V2R1.0 MVS Planning: Operations

definition
command assignment to a PFK

(program function key) 205
command for PFK (program function

key) 87
console configuration for a sysplex 9
console name 49
extended MCS console 10
MCS console 48
MCS console configuration 19
PFK (program function key)

table 206, 208
routing code for consoles 105
routing codes for a console 202
same named console to a different

system 50
DEL keyword 74, 80
deletion

action message for which action has
been taken 74

description of automatic message
deletion 74

messages 74
non-action message 74

descriptor code
descriptor code 1 107
descriptor code 11 107
descriptor code 12 107
descriptor code 13 107
descriptor code 2 107
descriptor code 3 107
during message suppression 117
message presentation 116

device
allocation 168
assignment 169
boxing 170

operator considerations 171
device allocation request

operator action 169
device that MVS can use as a console 49
DEVNUM keyword 48

on the CONSOLE statement 48
devnum parameter of a system

command 170
direct access storage device 171
direction of a command from a console to

another system in a sysplex 110
direction of an automatable message to

an extended MCS console 109
direction of messages from other systems

to a console in a sysplex 108
display

action messages awaiting action 119
active job 83
data set status 85
job information 85
TSO information 85

display area
definition 73, 82
setting up for console cluster 203

DISPLAY command 83
PFK (program function key)

example of output 207
R parameter

examples 120
display console 49

display of a synchronous message 53, 54
distributed mode 5
DOM subkeyword of OPERPARM 12
dynamic device allocation 168

E
entry area

definition 73
example 82

error code 168
error recovery 168
eventual action message

description 107
example of defining a console

configuration for a sysplex
environment 209

examples and planning aids for MVS
operations planning 177

examples of commands
CONFIG command 172
DISPLAY PFK 207
DISPLAY R 120

extended MCS console
console attributes 11
defining console attributes 11
definition 10
direction of an automatable

message 109
example of defining 182
MCSOPER macro 11
OPERPARM segment used with 12
RACF ADDUSER command 11
RACF ALTUSER command 11
security 11
system console 162
TSO/E CONSOLE command 11
using the automation attribute

with 13
extended MCS consoles

increasing the 99 console limit 10
MCSOPER and OPERPARM 13

F
flagged message

removed under automatic mode 75
flooding, message 141
FORCE operand of CONFIG command

cautions about using 171
FORCE operand of VARY command

cautions about using 171
format of message

control 83
full-capability console 71

definition 71
example of console screen 72

G
general characteristics of messages and

commands 98

H
hardcopy log

considerations in a sysplex 101
definition 90

hardcopy medium
controlling 91
disabling 95

hardcopy message set
characteristics 90
controlling 91
definition 90
selection criteria

fixed 90
installation controllable 90

HARDCOPY statement 25, 28
definition 89
in CONSOLxx 90
summary of console function 28

Hardware Configuration Definition 48
hardware console 160
hardware malfunction 170
HCD (Hardware Configuration

Definition) 48
HMCS

consoles in a system or sysplex 9
HOLDMODE keyword 78
hot I/O detection 170

operator considerations 170

I
I/O control command 61

description 61
I/O Operations 17
IEA180 message 88
IEASYSxx member of Parmlib 88
IEASYSxx member of

SYS1.PARMLIB 162
CON=NONE prompt 162
specification of CLOCKxx and

IEFSSNxx information 166
IEASYSxx member of

SYSn.IPLPARM 162
IEAVMXIT installation exit 123

description 123
status when MPF is off 115

IEE041I message 81
IEE379I message 173
IEE719I message 173
IEECMDPF samplib member

system name as synonym for ROUTE
command 112

IEEGSYS SYS1.SAMPLIB member
description 111

IEF238D message 169, 171
IEFSSNxx member of

SYS1.PARMLIB 166
IMSI (initialization message suppression

indicator) 162
informational command 61

description 61
informational message

description 107
handling with descriptor code 13 107

INIT statement 25
AMRF keyword 118

Index 243

INIT statement (continued)
CMDDELIM keyword 89
CNGRP keyword 52
definition 25
LOGLIM keyword 133
MLIM keyword 126
MMS keyword 137, 138
MONITOR keyword 86
MPF keyword 116
PFK (program function key)

keyword 88
RLIM keyword 126
summary of console function 25
UEXIT keyword 123

initialization
definition 160
from shared device 173
using LOADxx for 161

initialization of an extended MCS console
session 11

initialization of the MVS system 160
input/output definition file 161
installation exit routine

CNZ_MSGTOSYSLOG 125
CNZ_WTOMDBEXIT 125
considerations in a sysplex 100
description of use in processing a

command 124
description of use in processing a

message 123
instruction line

definition 73
example 82

interaction with system function 168
INTIDS keyword 109
IODF (input/output definition file) 161
IOS109I message 170
IOS120A message 173

J
JES2 (job entry subsystem)

automatic command facility 205
commands used in console

cluster 205, 206, 207
CONDEF initialization statement 111
initialization data set 205
use of the command prefix

facility 111
JES3 complex

control through an MCS console 121
DSP name as keyname 121

job information
display 85

K
KEY keyword

on the PFKTABxx member 87
KEY subkeyword of OPERPARM 12
keyboard

locked
console 59
recovery 59

navigation 227
PF keys 227

keyboard (continued)
shortcut keys 227

L
L= operand

using in a sysplex 104
using with commands 112

LEVEL keyword 107
LEVEL subkeyword of OPERPARM 12
load

process 168
LOAD command function 161
LOAD command parameter function

IMSI (initialization message
suppression indicator) 162

on system console 161
LOADxx member 160
LOADxx member of SYS1.PARMLIB 162
LOADxx member of SYSn.IPLPARM

specifying on the system console
frame 162

LOGCMDRESP subkeyword of
OPERPARM 12

LOGLIM keyword 133
LOGON in conjunction with a RACF

profile 66

M
management of messages and

commands 97
MCS (multiple console support console)

console configuration
definition for a sysplex 9

MCS (multiple console support)
command group 61

MCS (multiple console support) console
defining 48
definition 3
definition of a console name 49
devices MVS can use 49

MCS (multiple console support) console
authority 60

MCS console cluster
example 201

MCS console configuration 19
defining in a multisystem

environment 21
using CONSOLxx 22

MCSOPER macro 11
message

backed up 56
centered on screen 59
console message area 55
control of status display 81
control of the format 83
deletion 74

description of automatic message
deletion 74

descriptor code 13 107
flow in a sysplex 101
flow in an MVS system 99
general characteristics 98
processed by IEAVMXIT 123
processed by MPF 115

message (continued)
processed by user exit 123
recovery

backed up 56
centered on screen 59
console message area 55

reissuing an automated message 107
routing 105
selecting for automation 121
suppressed by MPF 116, 117
synchronous 53, 54
system console

recovery 60
message and command flow

in a sysplex 100
in a system 99

message area
definition 73
example 82

message deletion specification 74
message flooding automation 141
message format

changing 83
message level

assigning to a console 107, 203
relationship with routing code 108

MESSAGE macro in JES3 120
message number

aid in manual message deletion 81
display of consecutive numbers 81
stopped by automatic message

deletion 81
when not recommended 81

message presentation
specifying 116

message roll rate
specification 204
temporary suspension 77

message routing 105
message routing code 105

definition 106
for an extended MCS console 106
for messages without any

defined 106
message scope

defining in a sysplex 108
message stream console

definition 72
message suppression

for automation 117
message translation 133

creating a VSAM linear data set 134
run-time message file 134
using the MVS message

compiler 134
message translation service 133
message-stream console

example of console screen 72
messages

commands 97
managing system commands 97
managing system messages 97

messages directed to console ID
zero 109

messages directed to unknown console
IDs 109

MFORM keyword 84

244 z/OS V2R1.0 MVS Planning: Operations

MFORM subkeyword of OPERPARM 12
migration

auto-reply for WTORs 155
MLIM keyword 126
MLIM parameter

Parmlib CONSOLxx member
recovery 56

MMS (MVS message service) 133
installation exit used to control 137
using SYS1.PARMLIB to control 137

MMS keyword 137, 138
on the INIT statement of

CONSOLxx 138
MMSLSTxx member 137

activating 138
MONITOR keyword

on the CONSOLE statement of
CONSOLxx 85

on the INIT statement of
CONSOLxx 86

MONITOR subkeyword of
OPERPARM 12

mount
characteristics 171
characteristics for shared DASD 171
message 86

MOUNT command 169, 172
data definition statement 168

mounting a volume
operator considerations 169

MPF (message processing facility)
auto-reply processing 157
changing messages suppressed 115
description 115
displaying MPF options in effect 115
ending message suppression 115
messages unable to be suppressed

by 116, 117
planning for MVS 115
retention of a message 119
selecting a message for

automation 121
specification of automation for a

message 121
specification of command installation

exit 124
specification of message

presentation 116
specification of message processing

exit 123
through MPFLSTxx 116
use of NetView 16

MPF keyword 116
MPFLSTxx member of SYS1.PARMLIB

changing 116
CMD parameter

USEREXIT option 124
MSGCOLR statement 116, 118
msgid parameter

AUTO option 121
RETAIN option 119
SUP option 118
USEREXIT option 123

MSCOPE keyword 108
MSCOPE subkeyword of

OPERPARM 12
MSGCOLR statement 116, 118

msgid parameter 121
AUTO option 121
RETAIN option 119
SUP option 118
USEREXIT option 123

multiple console support 2
MVS command profile summary 70
MVS message compiler 133

invoking 135
MVS operations planning

automation 15
console function 70
examples and planning aids 177
recovery 52
remote operation 16
security 60

MVS single system
consolidation of consoles 21

MVS system environment
defining a console configuration

for 21
maximum number of MCS consoles

defined for 9
MVS.MCSOPER.console-name profile in

OPERCMDS class
defining 182

MVS.UNKNOWN profile 70

N
NAME keyword 48
navigation

keyboard 227
NetView 16

consolidating consoles using 21
use of MPF to suppress a

message 16
NetView console 16
NIP console

definition 162
nn on the console warning line 73
nonconversational mode

definition 79
message deletion 79
PFK (program function key) 87

Notices 231
number of messages waiting to be

displayed 73

O
OLTEP (online test executive

program) 169
online test executive program 169
operating environment

APPC (Advanced
Program-to-Program
Communication) 160

considerations 2
in a sysplex 9
multiple console support 2
NetView 15
remote operation 16
RMF (Resource Measurement

Facility) 14

operating environment (continued)
SDSF (System Display and Search

Facility) 14
single system 2
System Automation 16
Tivoli Workload Scheduler 16

operations goals
control of operating activity and

function 1
increasing system availability 1
simplifying the task of the

operator 1
single point of control 2
single system image 2
streamlining message flow and

command processing 2
operations log

purpose 92
Operations Planning and Control

(OPC) 16
operator commands

auto-reply policy 156
operator information area

definition 73
example 82

operator reply
control using RLIM and RMAX

value 127
OPERLOG (operations log) 92
OPERPARM segment 12
optional LOGON 70
out-of-line display area 82
output-only console 49

definition 72

P
Parmlib 22

AUTORxx 156
CONSOLxx member

HARDCOPY statement 90
Parmlib CONSOLxx member

MLIM parameter 56
recovery

MLIM parameter 56
RLIM parameter 56
RMAX parameter 56

RLIM parameter 56
RMAX parameter 56

PFK (program function key)
defining commands for 206
definition of command 87
in conversational mode 87
summary of keys for console

cluster 207
PFK (program function key) display line

definition 73
PFK (program function key) keyword

on the PFKTABxx member 87
PFK (program function key) table

definition 87
example of defining command 88

PFK keyword 88
on the INIT statement in

CONSOLxx 88
PFK table

example of defining 208

Index 245

PFK table (continued)
example of defining for a console in a

console cluster 206
PFKTAB keyword 87
PFKTAB parameter

example 208
PFKTABxx member of Parmlib

CMD keyword 87
CON keyword 87
description 87
example of coding 88
KEY keyword 87
PFK (program function key)

keyword 87
PFK keyword 87
TABLE keyword 87

PFKTABxx member of SYS1.PARMLIB
example of defining for a console

cluster 206
planning

basic operator procedure 159
considerations for using consoles in a

sysplex 29
console function 70
console recovery 52
MCS console configuration 19
NetView and MVS operation 15
operations goals 1
remote operation 16
RMF and MVS operation 14
SDSF and MVS operation 14
System Automation 16
Tivoli Workload Scheduler 16

printing the system log 93
problem determination mode 164

changing console attributes for the
system console 164

CONSOLxx and routing values 164
messages received on the system

console when in 165
messages received when in problem

determination mode 164
using VARY, CONTROL, or

MONITOR commands when in 164
Processor Operations 17
profile

RACF (Resource Access Control
Facility) 63

program status word 168
PSW (program status word) 168

R
RACF (Resource Access Control Facility)

definition of resource profile for
command 65

definition of resource profile for
console 66

definition of user profile for
console 65

definition of user profile for
operator 64

LOGON requirements using 66
summary of the MVS command

profile 70
using to define an extended MCS

console 182

RACF (Resource Access Control Facility)
(continued)

using with CSVAPF macro 184
using with CSVDYLPA macro 198
using with CSVDYNEX macro 187
using with CSVDYNL macro 192
using with SET PROG

command 184, 187, 192, 198
using with SETPROG command 184,

187, 192, 198
RACF access authority used with

command profile 64
RACF ADDUSER command

used with extended MCS console 11
RACF ALTUSER command

used with extended MCS console 11
RACF profile 63

authority 64
resource 64

READ access authority used by
RACF 64

recovery
boxing 170
error 168
hot I/O 170

remote operation
Processor Operations 16

removal of message from the screen 74
reply

WAIT for shared DASD 173
required LOGON 69
reserve/release 171
RESET CN command 52
resource allocation 168
Resource Measurement Facility 14
retention of an action message 118
RLIM keyword 126
RLIM parameter

Parmlib CONSOLxx member
recovery 56

RMAX keyword 127
RMAX parameter

Parmlib CONSOLxx member
recovery 56

RMF (Resource Measurement
Facility) 14

RNUM keyword 75
roll mode 75

for consoles in a console cluster 204
roll mode of message deletion

for consoles in a console cluster 207
roll-deletable mode 75

for consoles in a console cluster 204
roll-deletable mode of message deletion

defining 76
ROUTCODE keyword

on the CONSOLE statement of
CONSOLxx 106

on the DEFAULT statement of
CONSOLxx 106

ROUTCODE subkeyword of
OPERPARM 12

ROUTE command
description 110
using in a sysplex 103

routing
command 110

routing (continued)
message 106
message by routing code 105

routing code
assigning to a console 106, 202
description 106
handling messages without 106
relationship with message level 108

RTME keyword 75
run-time message file

creating a VSAM linear data set
for 134

S
scope of CONSOLxx keywords in a

sysplex
examples for a console

configuration 31
scratch volume 169
screen format

example 82
SDSF (System Display and Search

Facility) 14
SDSF support

auto-reply 157
security

planning console 60
SEG keyword 81
selector pen

defining commands for 87
deleting messages using 79

sending comments to IBM xiii
SET CNGRP command 53
SET PROG command

example of defining using
RACF 184, 187, 192, 198

SETPROG command
example of defining using

RACF 184, 187, 192, 198
shared DASD

operating guidelines 173
operator considerations 172
option 171

shared mode 5
sharing system commands

in COMMNDxx 114
in multiple systems 114
overview 112
planning 113

shortcut keys 227
SMCS

consoles in a system or sysplex 9
specification

console operating mode 203
message level 107, 203
PFK (program function key) 205
routing code 202
shared DASD mount

characteristics 171
specification of automatic message

deletion 75
specification of color

through an installation exit 117
through MPFLSTxx 116

specification of highlighting
through an installation exit 117

246 z/OS V2R1.0 MVS Planning: Operations

specification of highlighting (continued)
through MPFLSTxx 116

specification of intensity
through an installation exit 117
through MPFLSTxx 116

stand alone dump (SADMP)
AutoIPL 173

started cataloged procedure
data definition statement 168

status display
control 81
description 81

status display console
definition 72
example of console screen 72

STORAGE subkeyword of
OPERPARM 12

subsystem processing
considerations in a sysplex 100

subsystem-allocatable console 21
using names for 49

Summary of changes xv
summary of CONSOLxx keywords 177
summary of MVS message and command

processing 138
suppression

job and system name for message 84
message from a console 116, 117

suspension
message roll rate 77

symbolic group name 170
SYNCHDEST keyword 53
synchronous message

considerations in a sysplex 54
console interruption 54
displaying 53, 54
issued on a 3270-X device 49
issued on an MCS console 53
issued on the system console 53

SYSLOG (system log) 93
SYSLOG MPF Flags 93
sysplex 100

automated message 109
automation in 121
command association for a

system 110
direction of a console command to

another system 110
direction of messages from other

systems to a console 108
example of CONSOLxx keyword

scope for an MCS console 31
example of defining a console

configuration 209
maximum number of MCS consoles

defined for 9
operating environment 9
scope of CONSOLxx keywords 29
use of a console name 49
use of CONSOLxx 29
use of the MCS console 22

sysplex operating environment 9
system

activity recording 91
monitoring 168

System Automation 16
system command group 60

system console
activating problem determination

mode 164
changing console attributes when in

problem determination mode 164
defining in CONSOLxx 162
defining using DEVNUM on the

CONSOLE statement 48
definition 160
example of console in problem

determination mode 165
example of in an MCS console

configuration 4
in an MVS console configuration 4
in problem determination mode 164
LOAD command parameter

function 161
messages received during normal

operations 163
messages received during problem

determination mode 165
naming 163
naming restrictions 163
recovery

system action 60
using CONSOLxx to define problem

determination mode routing
values 164

using VARY, CONTROL, or
MONITOR commands for problem
determination mode 164

system control command 61
description 61

System Display and Search Facility 14
system group name

setting up for ROUTE command
use 111

system log
purpose 93

system name
synonym for ROUTE command 112

system symbols
using in commands 113

T
TABLE keyword

on the PFKTABxx member 87
tape

blank 169
labeled 170
unlabeled 170

tapemark 170
temporary suspension of the screen roll

using HOLDMODE 77
time stamp

adding to message 85
Tivoli Workload Scheduler 16
trademarks 233
translation

handling messages 133
treatment of message for translation 133
TSO SUBMIT command 168
TSO/E (time sharing option/extended)

display of information 85

TSO/E CONSOLE command
initialization of an extended MCS

console session using 11
TSO/E LOGON command

data definition statement 168

U
UEXIT keyword

on the INIT statement of
CONSOLxx 123

UNIT keyword 48
UNKNIDS keyword 109
unlabeled tape 170
UPDATE access authority used by

RACF 64
use

console cluster 201
X option of MFORM 84

USE attribute of VATLSTxx 169
USE keyword 73
user interface

ISPF 227
TSO/E 227

V
VARY CN command

examples 62
VARY CN,ACTIVATE command 164
VARY CN,AUTOACT= command 164
VARY CN,DEACTIVATE command 164
VARY CN(*),ACTIVATE 164
VARY CN(*),DEACTIVATE 164
VARY command 171, 172, 173
VARY HARDCPY command

using to modify hardcopy message
set 90

VATLSTxx member
at IPL time 169
controlling mounting of volumes 169
when the VARY command is

issued 169
volume

characteristics 171
mounting 169, 171

W
wait state

restartable 170
wait state action table (WSAT)

AutoIPL 174
warning line

definition 73
example 82
nn 73

wildcards
using in commands 113

wrap mode 76
WRITELOG command

to force printing of SYSLOG 93
WTL message

specifying buffers through
CONSOLxx 133

Index 247

WTO message
controlled by user exit

IEAVMXIT 123
specifying buffers through

CONSOLxx 126
WTO messages

controlling automated end 128
WTOR message

controlled by user exit
IEAVMXIT 123

description 123
specifying buffers through

CONSOLxx 126

248 z/OS V2R1.0 MVS Planning: Operations

����

Product Number: 5650-ZOS

Printed in USA

SA23-1390-00

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	Where to find more information
	Conventions and terminology used in this information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Planning MVS operations
	Operations goals
	Operating environment
	Multiple console support and the MVS environment
	Operation modes of console support
	Shared mode
	Distributed mode
	Planning for distributed mode
	Migration and fallback considerations

	Sysplex operating environment
	Using MCS, HMCS and SMCS consoles in a system or sysplex
	Extended MCS consoles
	Extended MCS consoles and console attributes
	Defining and protecting extended MCS consoles
	Defining console attributes for extended MCS consoles
	MCSOPER and OPERPARM

	SDSF and MVS operations planning
	RMF and MVS operations planning
	IBM OMEGAMON z/OS Management Console and MVS operations planning
	Tivoli OMEGAMON and MVS operations planning
	Automated operations and z/OS operations planning
	Tivoli NetView for z/OS
	Tivoli System automation for z/OS
	Tivoli workload scheduler for z/OS

	Remote operations and MVS operations planning
	ESCON, FICON, and operations planning

	Chapter 2. Defining console configuration
	Console considerations for z/OS V1R8 and higher
	Choosing how to define your console configuration
	Using CONSOLxx
	CONSOLE statement
	INIT, DEFAULT, and HARDCOPY statements
	CONSOLxx and the sysplex
	Sharing a single CONSOLxx member for all systems
	Using unique CONSOLxx members for each system
	Defining all consoles in the CONSOLxx member of the first system to Join the sysplex

	SMCS console considerations
	Installing SMCS
	Defining SMCS to VTAM
	Updating CONSOLxx
	Starting the SMCS application
	Defining SMCS consoles
	Providing security for SMCS consoles
	Activating an SMCS console
	Deactivating an SMCS console

	Removing console definitions from a configuration
	Sample invocation of IEARELCN
	Environment
	Return and reason codes

	Removing extended MCS console definitions from a configuration
	Sample invocation of IEARELEC
	Environment
	Return and reason codes

	Defining devices as MCS, HMCS or SMCS consoles
	Devices MVS can use as MCS consoles
	Using console names
	Using console names in a sysplex
	Restrictions for console names

	Attaching consoles to particular systems in a sysplex
	Planning console recovery
	Recovery considerations
	Console recovery and the RESET CN command
	Planning console groups
	Activating CNGRPxx
	Display of synchronous messages
	Considerations using consoles to display synchronous messages

	System console automatic activation

	Recovery for consoles
	System problems
	Console hardware errors
	System programming problems
	Recovery actions for an error message in the message area
	Recovery actions for a lack of console activity
	Console message backups
	Recovery actions for a WTO buffer shortage
	Recovery actions for a WTOR buffer shortage
	Recovery actions for command flooding indications

	Console hardware errors
	Recovery actions for error messages centered on the screen
	Recovery actions for a locked keyboard

	Actions to see system messages at the system console

	Planning console security
	Controlling command authority with the AUTH attribute
	Assigning a console master authority
	Using RACF to control command authority and operator logon
	Using RACF to authorize console operators and command use

	Defining RACF profiles
	RACF access authorities
	Defining users with RACF
	Defining TSO/E users of extended MCS consoles with RACF
	Defining commands with RACF
	Defining consoles with RACF
	Setting DEFAULT LOGON requirements for MCS, HMCS and SMCS consoles
	Setting LOGON requirements for individual MCS, HMCS or SMCS consoles
	Automatic LOGON
	Required LOGON
	Optional LOGON

	MVS commands, RACF access authorities, and resource names
	Other ways to control command authority for consoles

	Planning console functions for operators
	How to control the use of an MCS console
	Examples of MCS console screens

	Defining the USE attribute
	Message display and the full-capability console screen
	Specifying automatic message deletion for MCS, HMCS or SMCS consoles
	Temporarily suspending the screen roll
	Comparison of roll, roll-deletable, wrap modes, and HOLDMODE
	Manual deletion of messages
	How operators specify message numbering
	Using SEG to delete groups of messages from the screen
	Status displays and MCS, HMCS and SMCS consoles
	Setting up out-of-line display areas on a console
	Where to route status displays
	Controlling the format of messages and status information on console screens
	Displaying jobname, data set status, and TSO/E information
	Adding information to mount messages

	Defining PFKs and other command controls for consoles
	Setting up PFKs for consoles
	An example of defining a PFK table

	Defining the command delimiter for full-capability consoles

	Hardcopy processing
	The hardcopy message set
	Characteristics of the hardcopy message set
	Defining the hardcopy message set
	Printing the hardcopy message set

	The hardcopy medium
	Hardcopy processing
	Format of hardcopy records
	Using OPERLOG
	Using SYSLOG
	SYSLOG MPF flags
	Hardcopy failure
	Temporarily disabling the hardcopy medium

	Chapter 3. Managing messages and commands
	General characteristics of messages and commands
	Message and command routing
	Message flow in a system
	Command flow in a system
	Command flooding

	Message and command flow in a sysplex
	Messages in a sysplex
	Message recovery following system failures
	Commands in a sysplex
	Command flow, CMDSYS and CPF in a sysplex
	Command flow and the ROUTE command in a sysplex
	Command flow and the L= Operand in a sysplex

	Routing messages
	Defining routing codes
	Handling messages without routing codes
	Defining message levels for a console
	Specifying message levels and routing codes for a console

	Directing messages from other systems to a console in a sysplex
	Replying to messages from other systems in a sysplex
	Directing messages that are eligible for automation to extended MCS consoles
	Receiving messages that are directed to console ID zero
	Receiving messages that are directed to unknown console IDs

	Routing commands
	Using CMDSYS on the CONSOLE statement
	Using the ROUTE command
	Using the command prefix facility
	Defining a system name as a command prefix

	Using the L=Operand on certain commands
	Sharing system commands by using system symbols
	What are system symbols?
	What are wildcards?
	Planning to share system commands

	MPF and MVS operations planning
	Specifying MPFLSTxx members
	Using MPF to handle foreign messages
	MPF options

	Specifying message presentation
	Suppressing messages
	Retaining messages
	Action message retention facility
	Using MPF to retain messages
	Displaying information about messages awaiting action

	Selecting messages for automation
	Automation in a sysplex
	Installation exits for messages and commands
	IEAVMXIT and message processing
	Message processing exits other than IEAVMXIT
	Command installation exits
	CNZ_MSGTOSYSLOG exit
	CNZ_WTOMDBEXIT exit

	Monitoring messages
	Enabling message monitoring
	Disabling message monitoring

	Controlling WTO and WTOR message buffers
	Controlling reply IDs for WTOR messages
	RLIM and RMAX values
	Reply IDs and RMAX

	Controlling automatic ending of Multi-line WTO messages
	Aggregating messages returned to the ROUTE command
	Appearance of aggregated messages

	Controlling write-to-log (WTL) message buffers
	Handling translated messages
	Steps for providing translated messages
	Allocating storage for a run-time message file
	Compiling message files
	Controlling MMS through installation exits
	Using parmlib to control message translation
	Using the INIT statement on CONSOLxx
	Activating MMS

	Summary of MVS message and command processing services

	Chapter 4. Message flooding
	z/OS Message Flood Automation
	Operation
	Message flood detection behavior
	Message Flood Automation and CONSOLxx parameters
	Message Flood Automation and MPFLSTxx parameters
	Message Flood Automation and the Subsystem Interface (SSI)
	Message Flood Automation and EMCS consoles
	Limitations
	Operator commands
	PARMLIB specifications
	SYSLOG records
	SYSLOG message ordering
	Recovery
	Other information

	Migration
	Migrating from one level to another
	Initializing Message Flood Automation
	Interpreting message rate information
	Setting thresholds based on message rates
	Shutting down Message Flood Automation

	Chapter 5. Defining auto-reply policy for WTORs
	Migration
	Operator commands
	PARMLIB specifications
	Displaying WTORs being monitored by auto-reply processing
	Auto-reply notification messages
	SDSF support for auto-reply policy

	Chapter 6. Planning for operation tasks
	Initializing the system
	The system console and message processing
	Using the system console
	Using the AUTOACT console group
	Specifying LOAD information
	The NIP console
	The system console and CONSOLxx
	Using AUTOACT with the system console
	Naming the system console
	The system console during normal operations

	Problem determination and the system console
	The system console in problem determination mode
	Establishing console attributes for problem determination mode in CONSOLxx
	Changing console attributes through commands
	Messages that the system console receives in problem determination mode
	Example of controlling problem determination mode for the system console

	Specifying the time-of-day clock and the JES subsystem
	CLOCKxx and the sysplex
	Setting the TOD clock accuracy monitor service
	Handling wait states

	Interacting with system functions
	Device allocation
	Considerations for operators

	Hot I/O detection
	Considerations for operators

	Device boxing
	Considerations for operators

	Controlling shared DASD
	Specifying shared DASD mount characteristics
	Considerations for operators
	IPLing a system that shares DASD

	Using the automatic IPL function
	Wait state action table (WSAT)

	Exploiting dynamic CPU addition
	Exploiting the z/OS IBM System z Advanced Workload Analysis Reporter (IBM zAware) for OPERLOG

	Chapter 7. Examples and MVS planning aids for operations
	Summary of CONSOLxx and commands to change values
	Controlling extended MCS consoles using RACF
	Defining the user profile of an extended MCS console
	Granting the user access to the RACF OPERCMDS class
	Allowing a TSO/E user to issue the CONSOLE command
	Changing console attributes using RACF

	Using RACF to control APF lists
	Command authorization
	Defining command profiles
	Controlling how to add or delete APF list entries for a library
	Controlling how to change the APF list format

	Using RACF to control dynamic exits
	Command authorization
	Defining command profiles
	Controlling defining a dynamic exit
	Controlling adding, modifying or deleting exit routines
	Controlling how to undefine a dynamic exit
	Controlling how to obtain a list of the dynamic exits
	Controlling calling of routines of a dynamic exit
	Controlling recovering of dynamic exit processing

	Using RACF to control LNKLST concatenations
	Command authorization
	Defining command profiles
	Controlling defining a LNKLST set
	Controlling adding a data set to a LNKLST set
	Controlling deleting a data set from a LNKLST set
	Controlling removing the definition of a LNKLST set
	Controlling testing of a LNKLST set
	Controlling updating of a Job's LNKLST set
	Controlling activation of a LNKLST set

	Using RACF to control dynamic LPA
	Command authorization
	Defining command profiles
	Controlling adding a module to LPA after IPL
	Controlling deleting a module from LPA after IPL

	Managing messages with a console cluster
	Setting up and using a console cluster
	Defining routing codes for the consoles
	Defining the operating modes and the message levels for the consoles
	Setting up display areas
	Setting message roll rates and message deletion specifications for the consoles
	Setting up a periodic display of outstanding requests
	Defining PFKs for CON1
	Summary of the PFK definitions for the cluster
	Activating the PFK table
	Summary of contents of CONSOLxx for the cluster

	Defining a console configuration for a sysplex environment
	Planning your console configuration for each system
	Console groups for the sysplex

	Defining CONSOLxx for each system

	Appendix A. AUTOR00 parmlib member
	Appendix B. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

