
z/OS

MVS JCL Reference
Version 2 Release 1

SA23-1385-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 661.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xix

Tables xxi

About this document xxiii
Who should use this document xxiii
Where to find more information xxiii
Related information xxiii

Programs xxiv
Hardware xxiv

How to send your comments to IBM xxv
If you have a technical problem xxv

Summary of changes xxvii
z/OS Version 2 Release 1 summary of changes xxvii

Chapter 1. Job control statements . . . 1
JCL statements. 1
JECL statements 2

Chapter 2. Job Control Tasks 5
Entering Jobs 5
Processing Jobs 6
Requesting Resources 6
Task Charts 6

Chapter 3. Format of statements. . . . 13
JCL statement fields 13

Parameter field 15
JES2 control statement fields. 16
JES3 control statement fields. 16
Continuing statements 16

Continuing JCL statements 16
Examples of continued statements 17
Continuing JES2 control statements 18
Continuing JES3 control statements 18

Chapter 4. Syntax of parameters. . . . 19
Notation used to show syntax 19
Character sets 21
Syntax notes 23
Backward references 23

Examples of backward references 24

Chapter 5. Procedures and symbols . . 27
Cataloged and in-stream procedures 27

In-stream procedures 27
Cataloged procedures 27
Using a procedure 28
Testing a procedure. 28

Modifying procedures 29
Modifying EXEC statement parameters 29

Modifying OUTPUT JCL and DD statements . . 30
Examples of procedures 33

Nested procedures 35
Nesting procedures 35
Modifying nested procedures 36
Examples of modifying nested procedures . . . 36

Using system symbols and JCL symbols 38
What are system symbols? 38
What are JCL symbols? 39
Coding symbols in JCL 43
Determining equivalent JCL 45
Examples of defining and coding symbols in JCL 50
Using symbols in nested procedures 51
Examples of coding symbols in nested
procedures 52

Using symbols in JES2 in-stream data 54
JCL symbol service (IEFSJSYM) 55
JES symbol service (IAZSYMBL) 55

Using symbols in batch JCL 56

Chapter 6. Job control statements on
the output listing 57

Chapter 7. Started tasks 59
Determining whether to use a started task 59
Determining the source JCL for the started task . . 59

START command processing when the member
is a procedure 60
START command processing when the member
is a job 60
Review current started tasks 61
Convert procedures to jobs (optional). 61

Determining system services for a started task. . . 63
Deciding under which subsystem a started task
should run 63
Running a started task under a job entry
subsystem 63
Running a started task under the master
subsystem 64
Running a started task that uses catalogs . . . 65
Set Up the master JCL 65

Coding the JCL 65
Naming the JCL member 65
Coding the JOB statement for the started task . . 66
Using symbols in started task JCL 66

Naming a started task (source JCL is a job) 70
Setting up operator education for your started task 71

Chapter 8. JCL command statement . . 73
Description 73

Syntax 73
Operation field 73
Parameter field 73
Comments field 74
Location in the JCL 74

© Copyright IBM Corp. 1988, 2013 iii

||
||
||

Defaults 74
Examples of the command statement 74

Chapter 9. COMMAND statement . . . 75
Description 75

Syntax 75
Name field 76
Operation field 76
Parameter field 76
Comments field 76
Location in the JCL 76
Defaults 76
Examples of the COMMAND statement 77

Chapter 10. Comment statement. . . . 79
Description 79

Syntax 79
Location in the JCL 79
Listing of comments statements 79
Examples of the comment statement 79

Chapter 11. CNTL statement 81
Description 81

Syntax 81
Label field 81
Operation field 81
Parameter field 81
Comments field 81
Location in the JCL 82
Program control statements 82
Program control statements in procedures . . . 82
Example of the CNTL statement 82

Chapter 12. DD statement 83
Description 83

Syntax 83
Name field 83
Operation field 85
Parameter field 85
Comments field 97
Location in the JCL 97
Examples of DD statements and ddnames . . . 100

* Parameter 101
Syntax. 101
Defaults 101
Relationship to other parameters 101
Relationship to other control statements . . . 102
Location in the JCL 102
Unread records 103
Examples of the * parameter 103

ACCODE parameter 104
Syntax. 104
Subparameter definition 104
Defaults 105
Overrides 105
Example of the ACCODE parameter. 105

AMP parameter 105
Syntax. 105
Subparameter definition 107
Relationship to other parameters 111

Buffer requirements 112
Examples of the AMP parameter 112

AVGREC parameter 113
Syntax 113
Subparameter definition 113
Overrides. 114
Relationship to other parameters 114
Examples of the AVGREC parameter 114

BLKSIZE parameter 114
Syntax 115
Subparameter definition 115
Defaults 115
Overrides. 115
Relationship to other control statements . . . 116
Coexistence considerations 116
Examples of the BLKSIZE parameter 116

BLKSZLIM parameter 116
Syntax 116
Subparameter definition 117
Defaults 117
Relationship to other parameters 117
Example of the BLKSZLIM parameter 117

BURST parameter 117
Syntax 118
Subparameter definition 118
Defaults 118
Overrides. 118
Relationship to other parameters 118
Relationship to other control statements . . . 118
Example of the BURST parameter 119

CCSID parameter 119
Syntax 119
Subparameter definition 119
Default 119
Relationship to other parameters 119
Examples of the CCSID parameter 120

CHARS parameter. 121
Syntax. 122
Subparameter definition 122
Defaults 122
Overrides 122
Relationship to other parameters 123
Relationship to other control statements . . . 123
Requesting a high-density dump 123
Examples of the CHARS parameter 123

CHKPT parameter. 123
Syntax. 124
Subparameter definition 124
Overrides 124
Relationship to other parameters 124
Relationship to the SYSCKEOV DD statement 124
Checkpointing concatenated data sets 124
Examples of the CHKPT parameter 124

CNTL parameter 125
Syntax. 125
Subparameter definition 125
Examples of the CNTL parameter 125

COPIES parameter 126
Syntax. 126
Subparameter definition 126
Defaults 127

iv z/OS V2R1.0 MVS JCL Reference

Overrides 127
Relationship to Other Parameters. 127
Relationship to other control statements . . . 128
Examples of the COPIES parameter 128

DATA parameter 129
Syntax. 129
Defaults 130
Relationship to other parameters 130
Relationship to other control statements . . . 131
Location in the JCL 131
Unread records 131
Examples of the DATA parameter 131

DATACLAS parameter 132
Syntax. 133
Subparameter definition 134
Defaults 134
Overrides 134
Relationship to other parameters 135
Examples of the DATACLAS parameter . . . 135

DCB parameter. 135
Syntax. 136
Subparameter definition 137
Completing the data control block 138
Relationship to other parameters 138
Examples of the DCB parameter 139
DCB subparameters 140

DDNAME parameter 150
Syntax. 151
Subparameter definition 151
Overrides 151
Relationship to other parameters 151
Location in the JCL 151
Referenced DD statement 152
Backward references 153
Examples of the DDNAME parameter 154

DEST parameter 155
Syntax. 156
Subparameter definition for JES2 systems . . . 156
Subparameter definition for JES3 systems . . . 157
Defaults 158
Overrides 159
Relationship to other parameters 159
Relationship to other control statements . . . 159
Example of the DEST parameter 159

DISP parameter 159
Syntax. 161
Subparameter definition 161
Defaults 166
Relationship to other parameters 167
Disposition of QSAM data sets 167
Disposition of generation data sets 167
Disposition of temporary data sets 167
Disposition of partitioned data sets (PDSs and
PDSEs) 167
Adding a volume to a cataloged data set . . . 168
DISP=MOD for a multivolume data set. . . . 168
Summary of disposition processing 170
Examples of the DISP parameter 171

DLM parameter 172
Syntax. 173
Subparameter definition 173

Default 173
Relationship to other parameters 173
Invalid delimiters 174
Example of the DLM parameter 174

DSID Parameter 174
Syntax. 175
Subparameter definition 175
Relationship to other parameters 175
Example of the DSID parameter 175

DSNAME parameter 176
Syntax. 176
Subparameter definition 177
Relationship to other parameters 182
Examples of the DSNAME parameter 183

DSNTYPE parameter 184
Syntax. 185
Subparameter definition 185
Defaults 186
Overrides 186
Relationship to other parameters 187
Examples of the DSNTYPE parameter 187

DUMMY parameter 188
Syntax. 189
Parameters on DD DUMMY statements . . . 189
Relationship to other parameters 189
Relationship to other control statements . . . 189
Relationship to access methods 190
Examples of the DUMMY parameter 190

DYNAM parameter 191
Syntax. 191
Relationship to other parameters 191
Relationship to other control statements . . . 191
Example of the DYNAM parameter 191

EATTR parameter 192
Syntax. 192
Subparameter definition 192
Examples of the EATTR parameter 192

EXPDT parameter 193
Syntax. 193
Subparameter definition 193
Overrides 194
Relationship to other parameters 194
Deleting a data set before its expiration date 194
Examples of the EXPDT parameter 194

FCB parameter 195
Syntax. 195
Subparameter definition 196
Defaults 196
Overrides 196
Relationship to other parameters 196
Relationship to other control statements . . . 197
Defining an FCB image for a work station. . . 197
Requesting a high-density dump 197
Examples of the FCB parameter 197

FILEDATA parameter. 198
Syntax. 198
Subparameter definition 198
Defaults 199
Overrides 199
Relationship to other parameters 199
Example of the FILEDATA parameter 199

Contents v

FLASH parameter 199
Syntax. 200
Subparameter definition 200
Defaults 200
Overrides 200
Relationship to other parameters 200
Relationship to other control statements . . . 201
Verification of forms overlay frame 201
Printing without flashing 201
Example of the FLASH parameter 201

FREE parameter 201
Syntax. 202
Subparameter definition 202
Defaults 202
Overrides 202
Relationship to other parameters 202
Relationship to other control statements . . . 203
Relationship to the CLOSE macro instruction 203
Examples of the FREE parameter 203

FREEVOL parameter 204
Syntax. 204
Subparameter definition 204
Defaults 204
Overrides 204
Relationship to other parameters 205
Relationship to other control statements . . . 205

GDGORDER parameter 205
Syntax. 205
Subparameter definition 205
Defaults 205
Example of the GDGORDER parameter . . . 205

HOLD parameter 206
Syntax. 206
Subparameter definition 206
Defaults 207
Overrides 207
Relationship to other parameters 208
Relationship to other control statements . . . 208
Examples of the HOLD parameter 208

KEYLABL1 parameter 208
Syntax. 209
Subparameter definition 209
Defaults 209
Overrides 209
Relationship to other parameters 209
Examples of the KEYLABL1 parameter 209

KEYLABL2 parameter 210
Syntax. 210
Subparameter definition 210
Defaults 210
Overrides. 211
Relationship to other parameters 211
Examples of the KEYLABL2 parameter 211

KEYENCD1 parameter 211
Syntax 211
Subparameter definition 211
Overrides 212
Relationship to other parameters 212
Example of the KEYENCD1 parameter 212

KEYENCD2 parameter 212
Syntax. 212

Subparameter definition 212
Overrides 213
Relationship to other parameters 213
Example of the KEYENCD2 parameter 213

KEYLEN parameter 213
Syntax. 213
Subparameter definition 213
Overrides 214
Relationship to other parameters 214
Examples of the KEYLEN parameter 214

KEYOFF parameter 214
Syntax. 215
Subparameter definition 215
Overrides 215
Relationship to other parameters 215
Example of the KEYOFF parameter 215

LABEL parameter 216
Syntax. 216
Subparameter definition 217
Defaults 220
Relationship to other parameters 220
Relationship to other control statements . . . 221
Data conversion 221
Examples of the LABEL parameter 221

LGSTREAM parameter 222
Syntax. 223
Subparameter definition 223
Defaults 223
Overrides 223
Relationship to other parameters 223
Example of the LGSTREAM parameter 224

LIKE parameter 224
Syntax. 225
Subparameter definition 225
Overrides 225
Relationship to other parameters 226
Examples of the LIKE parameter 226

LRECL parameter 226
Syntax. 226
Subparameter definition 226
Overrides 227
Relationship to other parameters 227
Examples of the LRECL parameter 227

MAXGENS parameter 228
Syntax. 228
Subparameter definition 228
Relationship to other parameters 228
Examples of the MAXGENS parameter 228

MGMTCLAS parameter 228
Syntax. 229
Subparameter definition 229
Defaults 229
Overrides 229
Relationship to other parameters 230
Example of the MGMTCLAS parameter . . . 230

MODIFY parameter 230
Syntax. 230
Subparameter definition 231
Defaults 231
Overrides 231
Relationship to other parameters 231

vi z/OS V2R1.0 MVS JCL Reference

||
||
||
||
||

Relationship to other control statements . . . 231
Example of the MODIFY parameter 232

OUTLIM parameter 232
Syntax. 232
Subparameter definition 232
Default 232
Relationship to other parameters 232
Relationship to other control statements . . . 233
Example of the OUTLIM parameter 233

OUTPUT parameter 233
Syntax. 234
Subparameter definition 234
Defaults 234
Overrides 235
Relationship to other parameters 235
Location in the JCL 235
No match for OUTPUT name 235
Processing options in multiple references . . . 236
Examples of the OUTPUT parameter 236

PATH parameter 237
Syntax. 237
Subparameter definition 237
Defaults 238
Relationship to other parameters 238
Relationship to other statements 239
Dummy z/OS UNIX files 239
Example of the PATH parameter 240

PATHDISP parameter 240
Syntax. 240
Subparameter definition 240
Defaults 241
Relationship to other parameters 241
Example of the PATHDISP parameter 241

PATHMODE parameter 241
Syntax. 242
Subparameter definition 242
Defaults 244
Relationship to other parameters 244
Example of the PATHMODE parameter . . . 245

PATHOPTS parameter 245
Syntax. 245
Subparameter definition 246
Defaults 247
Relationship to other parameters 247
File status 248
Example of the PATHOPTS parameter 249

PROTECT parameter 249
Syntax. 249
Subparameter definition 250
Overrides 250
Relationship to other parameters 250
Requirements for protecting a tape data set . . 250
Requirements for protecting a tape volume . . 250
Requirements for protecting a direct access data
set 251
Examples of the PROTECT parameter 251

RECFM parameter. 251
Coding RECFM for BDAM access method. . . 252
Coding RECFM for BPAM access method . . . 252
Coding RECFM for BSAM, EXCP, and QSAM
access methods 253

Overrides 254
Relationship to other parameters 254
Examples of the RECFM parameter 254

RECORG parameter 254
Syntax. 255
Subparameter definition 255
Defaults 255
Overrides 255
Relationship to other parameters 255
Example of the RECORG parameter 255

REFDD parameter 256
Syntax. 257
Subparameter definition 257
Overrides 257
Relationship to other parameters 257
Examples of the REFDD parameter 258

RETPD parameter 258
Syntax. 258
Subparameter definition 259
Overrides 259
Relationship to other parameters 259
Deleting a data set before its retention period
passes 259
Examples of the RETPD parameter 259

RLS parameter 260
Syntax. 260
Subparameter definition 260
Overrides 261
Relationship to other parameters 261
Examples of the RLS parameter 261

SECMODEL parameter 262
Syntax. 262
Subparameter definition 262
Overrides 263
Relationship to other parameters 263
Examples of the SECMODEL parameter . . . 263

SEGMENT parameter 263
Syntax. 263
Subparameter definition 264
Overrides 264
Relationship to other parameters 264
Example of the segment parameter 264

SPACE parameter 264
Syntax. 265
Subparameter definition 266
Overrides 271
Relationship to other parameters 271
SPACE for new data sets with SMS 271
Examples of the SPACE parameter 271

SPIN parameter 273
Syntax. 273
Subparameter definition 273
Defaults 274
Overrides 274
Relationship to other parameters 274
Examples of the SPIN parameter 274

STORCLAS parameter 275
Syntax. 276
Subparameter definition 276
Defaults 276
Overrides 276

Contents vii

Relationship to other parameters 276
Examples of the STORCLAS parameter. . . . 277

SUBSYS parameter 277
Syntax. 278
Subparameter definition 278
Relationship to other parameters 278
Subsystem support for JCL parameters 279
Examples of the SUBSYS parameter 279

SYMBOLS parameter 280
Syntax. 280
Relationship to other parameters 280
Example of the SYMBOLS parameter 281

SYMLIST parameter 281
Syntax. 281
Relationship to other parameters 282
Example of the SYMLIST parameter 282

SYSOUT parameter 283
Syntax. 284
Subparameter definition 284
Defaults 285
Overrides 285
Relationship to other parameters 286
Relationship to other control statements . . . 286
Starting an external writer when requested . . 287
Held classes in a JES2 system 287
Held classes in a JES3 system 287
Significance of output classes 287
Examples of the SYSOUT parameter. 287

TERM parameter 288
Syntax. 289
Subparameter definition 289
Relationship to other parameters 289
Location in the JCL 289
Examples of the TERM parameter 289

UCS parameter 290
Syntax. 290
Subparameter definition 290
Defaults 291
Overrides 292
Relationship to other parameters 292
Using special character sets. 292
Examples of the UCS parameter 292

UNIT parameter 293
Syntax. 293
Subparameter definition 293
Overrides 297
Relationship to other parameters 298
Relationship to other control statements . . . 298
Location in the JCL 298
Examples of the UNIT parameter. 298

VOLUME parameter 300
Syntax. 301
Subparameter definition 302
Overrides 309
Relationship to other parameters 309
VOLUME parameter in a JES3 system 309
VOLUME parameter for optical readers . . . 309
VOLUME parameter for nonspecific volume
requests 309
VOLUME parameter for specific multi-volume
tape requests 310

Examples of the VOLUME parameter 310

Chapter 13. Special DD statements 313
Description 313

Syntax. 313
Special ddnames 313

JOBLIB DD statement 313
Syntax. 313
Parameters on JOBLIB DD statements 313
Relationship to other control statements . . . 315
Location in the JCL 315
Relationship of a JOBLIB to a STEPLIB 315
Examples of the JOBLIB DD statement 315

STEPLIB DD statement 316
Syntax. 317
Parameters on STEPLIB DD statements. . . . 317
Relationship to other control statements . . . 318
Location in the JCL 318
Relationship of a STEPLIB to a JOBLIB 318
Examples of the STEPLIB DD statement . . . 318

SYSABEND, SYSMDUMP, and SYSUDUMP DD
statements 319

Syntax. 320
Location in the JCL 320
Storing a dump. 320
Printing a dump 321
Overriding dump DD statements 321
Duplicate dump requests 322
Examples of the SYSABEND, SYSMDUMP, and
SYSUDUMP DD statements 322

SYSCHK DD statement 323
Syntax. 323
Parameters on SYSCHK DD statements. . . . 323
Relationship to other control statements . . . 324
Location in the JCL 325
Examples of the SYSCHK DD statement . . . 325

SYSCKEOV DD statement 325
Syntax. 325
Parameters on SYSCKEOV DD statements. . . 325
Location in the JCL 326
Example of the SYSCKEOV DD statement . . . 326

SYSIN DD statement 326
Syntax. 326
Parameters on SYSIN DD statements 326
Location in the JCL 326
Examples of SYSIN DD statements 326

Chapter 14. Delimiter statement . . . 329
Description 329

Syntax. 329
Comments field 329
Relationship to the DLM parameter 329
Location in the JCL 330
Examples of the delimiter statement 330

Chapter 15. ENDCNTL statement . . . 331
Description 331

Syntax. 331
Label field 331
Operation field 331

viii z/OS V2R1.0 MVS JCL Reference

||
||
||
||
||
||
||
||

Comments field 331
Location in the JCL 331
Example of the ENDCNTL statement 331

Chapter 16. EXEC statement 333
Description 333

Syntax. 333
Name field 333
Operation field 334
Parameter field 334
Comments field 337
Location in the JCL 337
Examples of EXEC statements 337

ACCT parameter 338
Syntax. 338
Subparameter definition 339
On an EXEC statement that calls a procedure 339
Examples of the ACCT parameter 339

ADDRSPC parameter. 340
Syntax. 340
Subparameter definition 340
Defaults 340
Overrides 340
Relationship to the EXEC REGION parameter 341
On an EXEC statement that calls a procedure 341
Examples of the ADDRSPC parameter 341

CCSID parameter 341
Syntax. 342
Subparameter definition 342
Default 342
Relationship to other parameters 342
Examples of the CCSID parameter 342

COND parameter 342
Syntax. 343
Subparameter definition 344
Overrides 345
Location in the JCL 345
On an EXEC statement that calls a procedure 345
Considerations when using the COND
parameter 346
Summary of COND parameters 347
Examples of the COND parameter 348

DYNAMNBR parameter. 350
Syntax. 350
Subparameter definition 350
Defaults 351
On an EXEC statement that calls a procedure 351
Example of the DYNAMNBR parameter . . . 351

MEMLIMIT parameter 351
Syntax. 351
Subparameter definition 351
Defaults 352
Overrides 352
Relationship to the REGION parameter. . . . 352
Considerations When Using the MEMLIMIT
parameter 352
Example of the MEMLIMIT parameter 352

PARM parameter 352
Syntax. 353
Subparameter definition 353
On an EXEC statement that calls a procedure 353

Examples of the PARM parameter 353
PARMDD parameter 354

Syntax. 354
Relationship to other control statements . . . 355
Data set requirements 355
Record length requirements 355
Parameter string requirements. 355
Examples of the PARMDD parameter 356

PERFORM parameter. 356
Syntax. 357
Subparameter definition 357
Defaults 357
Overrides 357
On an EXEC statement that calls a procedure 358
Example of the PERFORM parameter 358

PGM parameter 358
Syntax. 358
Subparameter definition 358
Examples of the PGM parameter 359

PROC and procedure name parameters. 360
Syntax. 360
Subparameter definition 360
Effect of PROC parameter on other parameters
and following statements 360
Examples of the PROC parameter 360

RD parameter 361
Syntax. 362
Subparameter definition 362
Defaults 363
Overrides 363
Relationship to other control statements . . . 363
On an EXEC statement that calls a procedure 363
Examples of the RD parameter 363

REGION parameter 364
Syntax. 364
Subparameter definition 364
Defaults 365
Overrides 365
Relationship to the EXEC ADDRSPC parameter 366
On an EXEC statement that calls a procedure 366
Relationship to the MEMLIMIT parameter. . . 366
Considerations when using the REGION
parameter 366
Examples of the REGION parameter 366

RLSTMOUT parameter 366
Syntax. 367
Defaults 367
Examples of the RLSTMOUT parameter . . . 367

TIME parameter 367
Syntax. 368
Subparameter definition 368
Defaults 368
Overrides 369
On an EXEC statement that calls a procedure 369
Examples of the TIME parameter 369

Chapter 17. EXPORT statement. . . . 371
Description 371

Syntax. 371
Label field 371
Operation field 371

Contents ix

||
||
||
||
||

Parameter field 371
Comments field 372
Location in the JCL 372

SYMLIST parameter 372
Syntax. 372
Subparameter definition 373
Examples 373

Chapter 18. IF/THEN/ELSE/ENDIF
statement construct 375
Description 375

Syntax. 375
Name field 375
Operation field 376
Relational-expression field 376
Comments field 381
Location in the JCL 381
Relationship to other parameters 381
THEN and ELSE clauses 382
Considerations when using the
IF/THEN/ELSE/ENDIF construct 382
Examples of IF/THEN/ELSE/ENDIF statement
constructs 384

Chapter 19. INCLUDE statement . . . 389
Description 389

Syntax. 389
Name field 389
Operation field 389
Parameter field 389
Comments field 390
Location in the JCL 390
Considerations for using INCLUDE groups . . 390
Examples of the INCLUDE statement: 391

Chapter 20. JCLLIB statement 393
Description 393

Syntax. 393
Name field 393
Operation field 394
Parameter field 394
Comments field 395
Location in the JCL 395
Considerations for using the JCLLIB statement 395
Examples of the JCLLIB statement 396

Chapter 21. JOB statement 397
Description 397

Syntax. 397
Name field 397
Operation field 398
Parameter field 398
Comments field 402
Location in the JCL 402
Examples of JOB statements 402

Accounting information parameter 403
Syntax. 403
Subparameter definition 404
Relationship to other control statements . . . 404
JES2 accounting information format 404

Syntax. 404
Examples of the accounting information
parameter 405

ADDRSPC parameter. 406
Syntax. 406
Subparameter definition 406
Defaults 406
Overrides 406
Relationship to the JOB REGION parameter . . 406
Examples of the ADDRSPC parameter 407

BYTES parameter 407
Syntax. 407
Subparameter definition 407
Defaults 408
Overrides 408
Relationship to other parameters 408
Relationship to other control statements . . . 408
Examples of the BYTES parameter 408

CARDS parameter. 409
Syntax. 409
Subparameter definition 409
Defaults 410
Overrides 410
Relationship to other parameters 410
Relationship to other control statements . . . 410
Examples of the CARDS parameter 410

CCSID parameter 411
Syntax 411
Subparameter definition 411
Default 411
Overrides. 411
Relationship to other parameters 411
Examples of the CCSID parameter 412

CLASS parameter 412
Syntax. 412
Subparameter definition 413
Defaults 413
Overrides 413
Relationship to other control statements . . . 413
Example of the CLASS parameter 413

COND parameter 413
Syntax. 414
Subparameter definition 414
Overrides 414
Summary of COND parameters 415
Examples of the COND parameter 415

DSENQSHR parameter 415
Syntax. 415
Subparameter definition 416
Defaults 416
Overrides 416
Relationship to other control statements . . . 416
Examples of the DSENQSHR parameter . . . 416

GROUP parameter 417
Syntax. 418
Subparameter definition 418
Defaults 418
Example of the GROUP parameter 418

JESLOG parameter 418
Syntax. 418
Subparameter definition 418

x z/OS V2R1.0 MVS JCL Reference

||
||
||
||
||
||
||

Defaults 419
Examples of the JESLOG parameter 419

JOBRC parameter 420
Syntax. 420
Subparameter definition 420
Defaults 420
Overrides 420
Relationship to other control statements . . . 420
Examples of the JOBRC parameter 420

LINES parameter 421
Syntax. 421
Subparameter definition 421
Defaults 421
Overrides 422
Relationship to other parameters 422
Relationship to other control statements . . . 422
Examples of the LINES parameter 422

MEMLIMIT parameter 422
Syntax. 423
Subparameter definition 423
Defaults 423
Overrides 423
Relationship to the REGION parameter. . . . 423
Considerations when using the MEMLIMIT
parameter 423
Examples of the MEMLIMIT parameter . . . 423

MSGCLASS parameter 424
Syntax. 424
Subparameter definition 424
Defaults 424
Significance of output classes 424
Examples of the MSGCLASS parameter . . . 425

MSGLEVEL parameter 425
Syntax. 426
Subparameter definition 426
Defaults 426
Examples of the MSGLEVEL parameter . . . 427

NOTIFY parameter 427
Syntax. 427
Subparameter definition for JES2 systems . . . 427
Subparameter definition for JES3 systems . . . 428
Receiving notification of job completion . . . 428
Examples of the NOTIFY parameter 428

PAGES parameter 429
Syntax. 429
Subparameter definition 429
Defaults 429
Overrides 430
Relationship to other parameters 430
Relationship to other control statements . . . 430
Examples of the PAGES parameter 430

PASSWORD parameter 430
Syntax. 431
Subparameter definition 431
Relationship to other parameters 432
Examples of the PASSWORD parameter . . . 432

PERFORM parameter. 432
Syntax. 432
Subparameter definition 433
Defaults 433
Overrides 433

Examples of the PERFORM parameter 433
Programmer’s name parameter 434

Syntax. 434
Parameter definition 434
Examples of the programmer’s name parameter 434

PRTY parameter 435
Syntax. 436
Subparameter definition 436
Defaults 436
Example of the PRTY parameter 436

RD parameter 436
Syntax. 437
Subparameter definition 437
Defaults 438
Overrides 438
Relationship to other control statements . . . 439
Examples of the RD parameter 439

REGION parameter 439
Syntax. 440
Subparameter definition 440
Defaults 440
Overrides 441
Relationship to the JOB ADDRSPC parameter 441
Relationship to the MEMLIMIT parameter. . . 441
Considerations when using the REGION
parameter 441
Examples of the REGION parameter 441

RESTART parameter 441
Syntax. 442
Subparameter definition 442
Relationship to other control statements . . . 443
Cautions when coding the RESTART parameter 443
Generation data sets in restarted jobs 443
Examples of the RESTART parameter 443

SECLABEL parameter 444
Syntax. 445
Subparameter definition 445
Defaults 445
Relationship to other parameters 445
Example of the SECLABEL parameter 445

SCHENV parameter 445
Syntax. 446
Subparameter definition 446
Defaults 446
Relationship to other control statements . . . 446
Example of the SCHENV parameter 446

SYSAFF parameter 446
Syntax. 447
Subparameter definition 447
Defaults 448
Relationship to other control statements . . . 448
Examples of the SYSAFF parameter 448

SYSTEM parameter 448
Syntax. 449
Subparameter definition 449
Relationship to other control statements . . . 449
Examples of the SYSTEM parameter. 449

TIME parameter 450
Syntax. 450
Subparameter definition 450
Defaults 451

Contents xi

Overrides 451
Examples of the TIME parameter 451
Examples of the TIME parameter on JOB and
EXEC statements 452

TYPRUN parameter 453
Syntax. 453
Subparameter definition 453
Relationship to other control statements . . . 454
Example of the TYPRUN parameter 454

UJOBCORR parameter 455
Syntax. 455
Subparameter definition 455
Examples of the UJOBCORR parameter . . . 456

USER parameter 456
Syntax. 457
Subparameter definition 457
Defaults 457
Relationship to other parameters 457
Example of the USER parameter 457

Chapter 22. Null Statement 459
Description 459

Syntax. 459
Location in the JCL 459
Example of the null statement 459

Chapter 23. OUTPUT JCL statement 461
Description 461

Syntax. 461
Name field 461
Operation field 461
Parameter field 462
Comments field 470
Location in the JCL 470
Overrides 471
Relationship to sysout DD statement 471
Relationship to the JES2 /*OUTPUT statement 472
Relationship to the JES3 //*FORMAT statement 472

ADDRESS parameter 472
Syntax. 472
Subparameter definition 472
Defaults 473
Overrides 473
Examples of the ADDRESS parameter 473

AFPPARMS parameter 474
Syntax. 474
Parameter definition 474
Defaults 474
Overrides 474
Relationship to other control statements . . . 474
Example of the AFPPARM keyword 474

AFPSTATS parameter. 474
Syntax. 475
Parameter definition 475
Defaults 475
Overrides 475
Relationship to other control statements . . . 475
Example of the AFPSTATS keyword 475

BUILDING parameter 476
Syntax. 476

Subparameter definition 476
Defaults 476
Overrides 476
Example of the BUILDING parameter 476

BURST parameter 477
Syntax. 477
Subparameter definition 477
Defaults 477
Overrides 477
Example of the BURST parameter 477

CHARS parameter. 478
Syntax. 478
Subparameter definition 478
Defaults 479
Overrides 479
Requesting a high-density dump 479
Example of the CHARS parameter 479

CKPTLINE parameter 479
Syntax. 480
Subparameter definition 480
Defaults 480
Example of the CKPTLINE parameter 480

CKPTPAGE parameter 480
Syntax. 480
Subparameter definition 481
Defaults 481
Relationship to other parameters 481
Example of the CKPTPAGE parameter 481

CKPTSEC parameter 481
Syntax. 481
Subparameter definition 481
Defaults 481
Relationship to other parameters 482
Example of the CKPTSEC parameter 482

CLASS parameter 482
Syntax. 482
Subparameter definition 482
Overrides 482
Held Classes in a JES2 system 482
Held Classes in a JES3 system 483
Significance of output classes 483
Examples of the CLASS parameter 483

COLORMAP parameter 484
Syntax. 484
Subparameter definition 484
Example of the COLORMAP parameter . . . 484

COMPACT parameter 484
Syntax. 485
Subparameter definition 485
Defaults 485
Overrides 485
Example of the COMPACT parameter 485

COMSETUP parameter 485
Syntax. 485
Subparameter definition 485
Example of the COMSETUP parameter 486

CONTROL parameter 486
Syntax. 486
Subparameter definition 486
Defaults 486
Example of the CONTROL parameter 486

xii z/OS V2R1.0 MVS JCL Reference

COPIES parameter 487
Syntax. 487
Subparameter definition 487
Defaults 487
Overrides 488
Relationship to other parameters 488
Relationship to other control statements . . . 488
Examples of the COPIES parameter 488

COPYCNT parameter 489
Syntax. 489
Subparameter definition 489
Defaults 489
Overrides 489
Relationship to other parameters 489
Relationship to other control statements . . . 489
Examples of the COPYCNT parameter 489

DATACK parameter 490
Syntax. 490
Subparameter definition 490
Defaults 491
Relationship to other parameters 491
Example of the DATACK parameter 491

DDNAME parameter 491
Syntax. 491
Subparameter definition 491
Example of the DDNAME parameter 491

DEFAULT parameter 492
Syntax. 492
Subparameter definition 492
Defaults 492
Location in the JCL 492
References to default OUTPUT JCL statements 492
Example of the DEFAULT parameter 493

DEPT parameter 494
Syntax. 494
Subparameter definition 494
Defaults 494
Overrides 494
Example of the DEPT parameter 495

DEST parameter 495
Syntax. 495
Subparameter definition for JES2 systems . . . 495
Subparameter definition for JES3 systems . . . 497
Defaults 497
Overrides 498
Relationship to other parameters 498
Examples of the DEST parameter 498

DPAGELBL parameter 498
Syntax. 499
Subparameter definition 499
Defaults 499
Relationship to other parameters 499
Example of the DPAGELBL parameter 499

DUPLEX parameter 500
Syntax. 500
Subparameter definition 500
Relationship to other keywords on this
statement. 500
Example of the DUPLEX parameter 500

FCB parameter 500
Syntax. 501

Subparameter definition 501
Defaults 501
Overrides 502
Relationship to other parameters 502
Requesting a high-density dump 502
Example of the FCB parameter 502

FLASH parameter 502
Syntax. 503
Subparameter definition 503
Defaults 503
Overrides 503
Relationship to other parameters 503
Verification of forms overlay frame 504
Printing without flashing 504
Example of the FLASH parameter 504

FORMDEF parameter 504
Syntax. 505
Subparameter definition 505
Overrides 505
Example of the FORMDEF parameter 505

FORMLEN parameter 505
Syntax. 505
Subparameter definition 505
Relationship to other control statements . . . 506
Examples of the FORMLEN parameter 506

FORMS parameter. 506
Syntax. 506
Subparameter definition 506
Defaults 507
Overrides 507
Example of the FORMS parameter 507

FSSDATA parameter 507
Syntax. 507
Subparameter definition 507
Defaults 508
Overrides 508
Relationship to other keywords on this
statement. 508
Relationship to other system functions 508
Examples of the FSSDATA parameter 508

GROUPID parameter 509
Syntax. 510
Subparameter definition 510
Relationship to other control statements . . . 510
Examples of the GROUPID parameter 510

INDEX parameter 511
Syntax 511
Subparameter definition 511
Defaults 511
Relationship to other parameters 511
Example of the INDEX parameter 511

INTRAY parameter 512
Syntax. 512
Subparameter definition 512
Relationship to other keywords on this
statement. 512
Example of the INTRAY parameter 512

JESDS parameter 512
Syntax. 513
Subparameter definition 513
Overrides 513

Contents xiii

Location in the JCL 513
Destination for the system data sets 513
JES2 processing with JESDS 513
JES3 processing with JESDS 514
Example of the JESDS parameter 514

LINDEX parameter 514
Syntax. 514
Subparameter definition 514
Defaults 515
Relationship to other parameters 515
Example of the LINDEX parameter 515

LINECT parameter 515
Syntax. 515
Subparameter definition 515
Defaults 515
Example of the LINECT parameter 515

MAILBCC parameter 516
Syntax. 516
Subparameter definition 516
Defaults 516
Overrides 516
Relationship to other system functions 516
Examples of the MAILBCC parameter 516

MAILCC parameter 517
Syntax. 517
Subparameter definition 517
Defaults 517
Overrides 517
Relationship to other system functions 517
Examples of the MAILCC parameter 517

MAILFILE parameter. 517
Syntax. 518
Subparameter definition 518
Defaults 518
Overrides 518
Relationship to other system functions 518
Example of the MAILFILE parameter 518

MAILFROM parameter 518
Syntax. 518
Subparameter definition 519
Defaults 519
Overrides 519
Relationship to other system functions 519
Example of the MAILFROM parameter. . . . 519

MAILTO parameter 519
Syntax. 519
Subparameter definition 519
Defaults 519
Overrides 520
Relationship to other system functions 520
Example of the MAILTO parameter 520

MERGE parameter 520
Syntax. 520
Subparameter definition 520
Defaults 520
Example of the MERGE parameter 520

MODIFY parameter 521
Syntax. 521
Subparameter definition 521
Defaults 522
Overrides 522

Relationship to other parameters 522
Example of the MODIFY parameter 522

NAME parameter 522
Syntax. 522
Subparameter definition 522
Defaults 523
Overrides 523
Example of the NAME parameter 523

NOTIFY parameter 523
Syntax. 524
Subparameter definitions 524
Defaults 524
Examples of the NOTIFY parameter 524

OFFSETXB parameter 524
Syntax. 524
Subparameter definition 524
Relationship to other keywords on this
statement. 525
Example of the OFFSETXB parameter 525

OFFSETXF parameter 525
OFFSETYB parameter 525
OFFSETYF parameter 525
OUTBIN parameter 525

Syntax. 525
Subparameter definition 526
Defaults 526
Overrides 526
Relationship to other system functions 526
Example of the OUTBIN parameter 526

OUTDISP parameter 526
Syntax. 526
Subparameter definitions 527
Defaults 527
Overrides 527
Relationship to other control statements . . . 528
Examples of the OUTDISP parameter 528

OVERLAYB parameter 528
Syntax. 529
Subparameter definition 529
Relationship to other keywords on this
statement. 529
Example of the OVERLAYB parameter 529

OVERLAYF parameter 529
OVFL parameter 529

Syntax. 529
Subparameter definition 529
Defaults 529
Example of the OVFL parameter 530

PAGEDEF parameter 530
Syntax. 530
Subparameter definition 531
Overrides 531
Example of the PAGEDEF parameter 531

PIMSG parameter 531
Syntax. 532
Subparameter definition 532
Defaults 532
Examples of the PIMSG parameter 532

PORTNO parameter 533
Syntax. 533
Subparameter definition 533

xiv z/OS V2R1.0 MVS JCL Reference

Relationship to other system functions 533
Example of the PORTNO parameter 533

PRMODE parameter 533
Syntax. 533
Subparameter definition 533
Defaults 534
Printing a line-mode data set using PSF . . . 534
Example of the PRMODE parameter 534

PRTATTRS parameter 534
Syntax. 534
Parameter definition 535
Defaults 535
Overrides 535
Relationship to other keywords on this
statement. 535
Relationship to other control statements . . . 535
Example of the PRTATTRS parameter 535

PRTERROR parameter 535
Syntax. 535
Subparameter definition 535
Relationship to other control statements . . . 536
Examples of the PRTERROR parameter. . . . 536

PRTOPTNS parameter 536
Syntax. 536
Subparameter definition 537
Relationship to other system functions 537
Example of the PRTOPTNS parameter 537

PRTQUEUE parameter 537
Syntax. 537
Subparameter definition 537
Relationship to other system functions 537
Example of the PRTQUEUE parameter 537

PRTY parameter 537
Syntax. 538
Subparameter definition 538
Defaults 538
Overrides 538
Example of the PRTY parameter 538

REPLYTO parameter 538
Syntax. 538
Subparameter definition 538
Defaults 539
Overrides 539
Relationship to other system functions 539
Example of the REPLYTO parameter 539

RESFMT parameter 539
Syntax. 539
Subparameter definition 539
Relationship to other control statements . . . 539
Example of the RESFMT parameter 539

RETAINS and RETAINF parameters 539
Syntax. 540
Subparameter definition 540
Relationship to other control statements . . . 540
Relationship to other system functions 540
Examples of the RETAIN keywords 540

RETRYL and RETRYT parameters. 541
Syntax. 541
Subparameter definition 541
Relationship to other control statements . . . 541
Relationship to other system functions 541

Examples of the RETRY keywords 542
ROOM parameter 542

Syntax. 542
Subparameter definition 542
Defaults 542
Overrides 543
Example of the ROOM parameter 543

SYSAREA parameter 543
Syntax. 543
Subparameter definition 543
Defaults 544
Relationship to other parameters 544
Example of the SYSAREA parameter 544

THRESHLD parameter 544
Syntax. 544
Subparameter definition 544
Defaults 544
Example of the THRESHLD parameter 545

TITLE parameter 545
Syntax. 545
Subparameter definition 545
Example of the TITLE parameter 545

TRC parameter 546
Syntax. 546
Subparameter definition 546
Defaults 546
Relationship to other parameters 546
Example of the TRC parameter 546

UCS parameter 547
Syntax. 547
Subparameter definition 547
Defaults 547
Overrides 548
Using special characters sets 548
Example of the UCS parameter 549

USERDATA parameter 549
Syntax. 549
Subparameter definition 549
Defaults 549
Overrides 549
Relationship to other keywords on this
statement. 550
Relationship to other control statements . . . 550
Relationship to other system functions 550
Examples of the USERDATA parameter . . . 550

USERLIB parameter 552
Syntax. 552
Subparameter definitions 552
Defaults 553
Overrides 553
Requirements for USERLIB libraries 553
Examples of the USERLIB parameter 553

USERPATH parameter 553
Syntax. 554
Subparameter definitions 554
Defaults 554
Overrides 554
Relationship to other system functions 554
Examples of the USERPATH parameter. . . . 554

WRITER parameter 555
Syntax. 555

Contents xv

Subparameter definition 555
Defaults 555
Overrides 555
Relationship to other parameters 555
Starting an external writer 555
Examples of the WRITER parameter. 555

Chapter 24. PEND statement 557
Description 557

Syntax. 557
Name field 557
Operation field 557
Comments field 557
Location in the JCL 557
Examples of the PEND statement. 557

Chapter 25. PROC statement 559
Description 559

Syntax. 559
Name field 559
Operation field 560
Parameter field 560
Comments field 560
Overrides 560
Location in the JCL 560
Examples of the PROC statement. 560

Chapter 26. SET statement 561
Description 561

Syntax. 561
Name field 562
Operation field 562
Parameter field 562
Comments field 562
Overrides 563
Location in the JCL 563
Relationship to other control statements . . . 563
Considerations for using the SET statement . . 563
Examples of the SET statement 564

Chapter 27. XMIT JCL statement . . . 567
Description 568

Syntax. 568
Name field 568
Operation field 568
Parameter field 568
Comments field 568
Location in the JCL 568
Error on XMIT JCL statement 569
Examples of the XMIT JCL statement 569

DEST parameter 570
Syntax. 570
Subparameter definition 570
Examples of the DEST parameter 570

DLM parameter 571
Syntax. 571
Subparameter definition 571
Default 571
Invalid delimiters 571
Examples of the DLM parameter 571

SUBCHARS parameter 572
Syntax. 572
Subparameter definition 572
Default 573
Invalid substitute 573
Examples of the SUBCHARS parameter . . . 573

Chapter 28. JES2 control statements 575
Description 575

Considerations for started tasks 575
Considerations for an APPC scheduling
environment. 575
Location in the JCL 575
Internal reader 575

JES2 command statement 575
Syntax. 576
Parameter definition 576
Location in the JCL 577
Examples of the command statement 577

/*JOBPARM statement 577
Syntax. 578
Parameter definition 578
Overrides 582
Location in the JCL 582
Execution node 582
Examples of the /*JOBPARM statement . . . 583

/*MESSAGE statement 583
Syntax. 583
Relationship to the /*ROUTE XEQ statement 583
Location in the JCL 583
Example of the /*MESSAGE statement 584

/*NETACCT statement 584
Syntax. 584
Parameter definition 584
Defaults 584
Overrides 584
Location in the JCL 584
Example of the /*NETACCT statement 584

/*NOTIFY statement 585
Syntax. 585
Parameter definition 585
Overrides 585
Location in the JCL 586
Examples of the NOTIFY statement 586

/*OUTPUT statement 586
Syntax. 587
Parameter definition 588
Overrides 594
Relationship to other control statements . . . 594
Location in the JCL 594
Example of the /*OUTPUT statement 594

/*PRIORITY statement 595
Syntax. 595
Parameter definition 595
Overrides 595
Relationship to other control statements . . . 595
Location in the JCL 595
Example of the PRIORITY statement 596

/*ROUTE statement 596
Syntax. 596
Parameter definition 596

xvi z/OS V2R1.0 MVS JCL Reference

Location in the JCL 598
Processing of /*ROUTE statements 598
Multiple /*ROUTE statements. 598
Examples of the ROUTE statement 598

/*SETUP statement 599
Syntax. 599
Parameter definition 599
Location in the JCL 600
Example of the /*SETUP statement 600

/*SIGNOFF statement 600
Syntax. 600
Location in the JCL 600
Example of the /*SIGNOFF statement 600

/*SIGNON statement. 601
Syntax. 601
Parameter definition 601
Location in the JCL 602
Examples of the /*SIGNON statement 602

/*XEQ statement 603
Syntax. 603
Parameter definition 603
Location in the JCL 604
Multiple /*XEQ statements 604
Example of the XEQ statement 604

/*XMIT statement 604
Syntax. 605
Parameter definition 605
Defaults 606
Location in the JCL 606
Examples of the XMIT statement 606

Chapter 29. JES3 control statements 607
Description 607

Considerations for an APPC scheduling
environment. 607
Considerations for started tasks 607
Location in the JCL 607
Internal reader 607
Examples of JES3 control statements. 607

JES3 command statement 608
Syntax. 608
Parameter definition 609
Location in the JCL 610
Examples of the command statement 610

//*DATASET statement 610
Syntax 611
Parameter definition 611
Location in the JCL 612
Example of the //*DATASET statement . . . 612

//*ENDDATASET statement 612
Syntax. 612
Location in the JCL 612
Example of the //*ENDDATASET statement 612

//*ENDPROCESS statement 613
Syntax. 613
Location in the JCL 613
Example of the //*ENDPROCESS statement 613

//*FORMAT PR statement 613
Syntax. 614
Parameter definition 615

Relationship to sysout DD and OUTPUT JCL
statements 622
Relationship to //*PROCESS statement . . . 622
Location in the JCL 622
Examples of the //*FORMAT PR statement . . 622

//*FORMAT PU statement 623
Syntax. 624
Parameter definition 624
Relationship to sysout DD and OUTPUT JCL
statements 627
Relationship to //*PROCESS statement . . . 627
Location in the JCL 627
Examples of the //*FORMAT PU statement . . 628

//*MAIN statement 628
Syntax. 629
Parameter definition 630
Location in the JCL 642
Examples of the //*MAIN statement 642

//*NET statement 643
Syntax. 643
Parameter definition 644
Location in the JCL 647
Examples of the //*NET statement 647

//*NETACCT statement. 647
Syntax. 647
Parameter definition 647
Defaults 648
Location in the JCL 648
Example of the //*NETACCT statement . . . 648

//*OPERATOR statement 648
Syntax. 648
Location in the JCL 648
Example of the //*OPERATOR statement . . . 649

//**PAUSE statement 649
Syntax. 649
Location in the JCL 649
Example of the //**PAUSE statement 649

//*PROCESS statement 649
Syntax. 650
Parameter definition 650
Location in the JCL 651
Examples of the //*PROCESS statement . . . 651

//*ROUTE XEQ statement 652
Syntax. 652
Parameter definition 652
Location in the JCL 653
JOB Statement after //*ROUTE XEQ 653
Example of the //*ROUTE XEQ statement . . 653

/*SIGNOFF statement 654
Syntax. 654
Location in the JCL 654
Example of the /*SIGNOFF statement 654

/*SIGNON statement. 654
Syntax. 655
Parameter definition 655
Location in the JCL 656
Example of the /*SIGNON statement 656

Appendix. Accessibility 657
Accessibility features 657
Using assistive technologies 657

Contents xvii

Keyboard navigation of the user interface 657
Dotted decimal syntax diagrams 657

Notices 661
Policy for unsupported hardware. 662

Minimum supported hardware 663
Trademarks 663

Index 665

xviii z/OS V2R1.0 MVS JCL Reference

Figures

1. Operators on IF/THEN/ELSE/ENDIF
Statement Construct 377

2. Example //*ROUTE XEQ statement 654

© Copyright IBM Corp. 1988, 2013 xix

xx z/OS V2R1.0 MVS JCL Reference

Tables

1. MVS Job Control Language (JCL) Statements 1
2. JES2 Job Entry Control Language (JECL)

Statements 2
3. JES3 Job Entry Control Language (JECL)

Statements 3
4. Tasks for Entering Jobs 6
5. Tasks for Processing Jobs 8
6. Tasks for Requesting Data Set Resources . . . 8
7. Tasks for Requesting Sysout Data Set

Resources 10
8. JCL Statement Fields 14
9. Notation used to show syntax 19

10. Character Sets. 21
11. Special Characters Used in Syntax 21
12. Special Characters that Do Not Require

Enclosing Apostrophes 22
13. Summary of Rules 2 through 6 for Symbols in

Nested Procedures 52
14. Identification of Statements in Job Log . . . 57
15. Positional parameters 85
16. Keyword parameters 86

17. Summary of Disposition Processing 170
18. Special Character Sets for the 1403, 3203

Model 5, and 3211 Printers 291
19. Positional parameters 334
20. Keyword parameters 335
21. Bypassing or Execution of Current Step Based

on COND Parameter 347
22. Effect of EVEN and ONLY Subparameters on

Step Execution 348
23. SYMLIST keyword parameter on the EXPORT

statement 372
24. JOB statement keyword parameters 399
25. Continuation or Termination of the Job Based

on the COND Parameter 415
26. JOBCLASS attribute for DSENQSHR 416
27. Keyword parameters 462
28. Job- and Step-Level OUTPUT JCL Statements

in the JCL. 471
29. Special Character Sets for the 1403, 3203

Model 5, and 3211 Printers 547
30. DSPs for JES3 //*PROCESS Statements 650

© Copyright IBM Corp. 1988, 2013 xxi

|
||

xxii z/OS V2R1.0 MVS JCL Reference

About this document

This document describes the job control tasks needed to enter jobs into the z/OS®

operating system, control the system's processing of jobs, and request the resources
needed to run jobs. The document also contains a chapter that describes "started
tasks" and how to set them up. To perform job control or started tasks,
programmers code "job control statements." This document describes how to code
these statements, which include:
v Job control language (JCL) statements
v Job entry control language (JECL) statements, which encompass:

– Job entry subsystem 2 (JES2) control statements
– Job entry subsystem 3 (JES3) control statements

This document is designed as a reference document, to be used while coding the
statements. It contains some introductory material. Full explanations of the job
control tasks are presented in a companion document, z/OS MVS JCL User's Guide,
SA23-1386.

Who should use this document
This document is needed by system and application programmers who enter
programs into the operating system. Those using this document should understand
the concepts of job management and data management.

Where to find more information
Where necessary, this document references information in other documents, using
shortened versions of the document title. For complete titles and order numbers of
the documents for all products that are part of z/OS, see z/OS Information Roadmap.

You might also need the following information:

Short Title Used in This Document Title Order Number

SNA Sync Point Services Architecture Systems Network Architecture Sync Point Services
Architecture Reference

SC31-8134

Related information
To have complete JCL information, you need the following document:
v z/OS MVS JCL User's Guide, SA23-1386

Where necessary, this document references information in other documents, using
shortened versions of the document title. For complete titles and order numbers of
the documents for all products that are part of z/OS, see z/OS Information Roadmap.
The following tables list the short titles, titles, and order numbers for documents
related to non-OS/390 products that this document references.

© Copyright IBM Corp. 1988, 2013 xxiii

Programs

Short Title Used in This Document Title Order Number

PSF for z/OS: Customization PSF for z/OS: Customization S550-0427

PSF for z/OS: User's Guide PSF for z/OS: User's Guide S550-0435

Hardware

Short Title Used in This document Title Order Number

2821 Component Description IBM 2821 Control Unit Component Description GA24-3312

3540 Programmer's Reference OS/VS2 IBM 3540 Programmer's Reference GC24-5111

Forms Design Reference Guide for the 3800 Forms Design Reference Guide for the IBM 3800
Printing Subsystem

GA26-1633

xxiv z/OS V2R1.0 MVS JCL Reference

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS JCL Reference
SA23-1385-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1988, 2013 xxv

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xxvi z/OS V2R1.0 MVS JCL Reference

Summary of changes

Changes made to z/OS V2R1 as updated December 2013

New

The MAXGENS parameter on the DD statement specifies the maximum number of
generations for members in a Version 2 PDSE. For details, refer to “MAXGENS
parameter” on page 228.

Changed

The REFDD parameter on the DD statement now copies the maximum number of
generations for members in a Version 2 PDSE (MAXGENS). For details, refer to
“REFDD parameter” on page 256.

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1988, 2013 xxvii

xxviii z/OS V2R1.0 MVS JCL Reference

Chapter 1. Job control statements

This chapter lists, in Table 1, all but one of the statements in the MVS™ Job Control
Language (JCL), and in Table 2 on page 2, all of the Job Entry Control Language
(JECL) statements for the JES2 and JES3 subsystems, together with the purpose of
each statement. Later chapters describe each statement in detail. (The PRINTDEV
JCL statement, for use by the person starting the Print Services Facility™, is
documented in the manual PSF for z/OS: Customization.)

JCL statements
Table 1. MVS Job Control Language (JCL) Statements

Statement Name Purpose

// command JCL command Enters an MVS system operator
command through the input stream. The
command statement is used primarily by
the operator. Use the COMMAND
statement instead of the JCL command
statement.

// COMMAND command Specifies an MVS or JES command that
the system issues when the JCL is
converted. Use the COMMAND
statement instead of the JCL command
statement.

//* comment comment Contains comments. The comment
statement is used primarily to document
a program and its resource requirements.

// CNTL control Marks the beginning of one or more
program control statements.

// DD data definition Identifies and describes a data set.

/* delimiter Indicates the end of data placed in the
input stream.

Note: A user can designate any two
characters to be the delimiter.

// ENDCNTL end control Marks the end of one or more program
control statements.

// EXEC execute Marks the beginning of a job step;
assigns a name to the step; identifies the
program or the cataloged or in-stream
procedure to be executed in this step.

// IF/THEN/ELSE/
ENDIF

IF/THEN/ELSE/
ENDIF statement
construct

Specifies conditional execution of job
steps within a job.

// INCLUDE include Identifies a member of a partitioned data
set (PDS) or partitioned data set extended
(PDSE) that contains JCL statements to
include in the job stream.

© Copyright IBM Corp. 1988, 2013 1

Table 1. MVS Job Control Language (JCL) Statements (continued)

Statement Name Purpose

// JCLLIB JCL library Identifies the libraries that the system
will search for:

v INCLUDE groups

v Procedures named in EXEC statements.

// JOB job Marks the beginning of a job; assigns a
name to the job.

// null Marks the end of a job.

// OUTPUT output JCL Specifies the processing options that the
job entry subsystem is to use for printing
a sysout data set.

// PEND procedure end Marks the end of an in-stream or
cataloged procedure.

// PROC procedure Marks the beginning of an in-stream
procedure and may mark the beginning
of a cataloged procedure; assigns default
values to parameters defined in the
procedure.

// SET set Defines and assigns initial values to
symbolic parameters used when
processing JCL statements. Changes or
nullifies the values assigned to symbolic
parameters.

// XMIT transmit Transmits input stream records from one
node to another.

JECL statements
Table 2. JES2 Job Entry Control Language (JECL) Statements

JES2 JECL Control Statement Purpose

/*$command Enters JES2 operator commands through the
input stream.

/*JOBPARM Specifies certain job-related parameters at
input time.

/*MESSAGE Sends messages to the operator via the
operator console.

/*NETACCT Specifies an account number for a network
job.

/*NOTIFY Specifies the destination of notification
messages.

/*OUTPUT Specifies processing options for sysout data
set(s).

/*PRIORITY Assigns a job queue selection priority.

/*ROUTE Specifies the output destination or the
execution node for the job.

/*SETUP Requests mounting of volumes needed for
the job.

/*SIGNOFF Ends a remote job stream processing session.

Statements

2 z/OS V2R1.0 MVS JCL Reference

Table 2. JES2 Job Entry Control Language (JECL) Statements (continued)

JES2 JECL Control Statement Purpose

/*SIGNON Begins a remote job stream processing
session.

/*XEQ Specifies the execution node for a job.

/*XMIT Indicates a job or data stream to be
transmitted to another JES2 node or eligible
non-JES2 node.

Table 3. JES3 Job Entry Control Language (JECL) Statements

JES3 JECL Control Statement Purpose

//**command Enters JES3 operator commands, except
*DUMP and *RETURN, through the input
stream.

//*DATASET Begins an input data set in the input stream.

//*ENDDATASET Ends the input data set that began with a
//*dataset statement.

//*ENDPROCESS Ends a series of //*PROCESS statements.

//*FORMAT Specifies the processing options for a sysout
or JES3-managed print or punch data set.

//*MAIN Defines selected processing parameters for a
job.

//*NET Identifies relationships between predecessor
and successor jobs in a dependent job
control net.

//*NETACCT Specifies an account number for a network
job.

//*OPERATOR Sends messages to the operator.

//*PAUSE Halts the input reader.

//*PROCESS Identifies a nonstandard job.

//*ROUTE Specifies the execution node for the job.

/*SIGNOFF Ends a remote job stream processing session.

/*SIGNON Begins a remote job stream processing
session.

Statements

Chapter 1. Job control statements 3

Statements

4 z/OS V2R1.0 MVS JCL Reference

Chapter 2. Job Control Tasks

For your program to execute on the computer and perform the work you designed
it to do, your program must be processed by your operating system.

Your operating system consists of an MVS base control program (BCP) with a job
entry subsystem (JES2 or JES3) and DFSMSdfp installed with it.

For the operating system to process a program, programmers must perform certain
job control tasks. These tasks are performed through the job control statements,
which consist of:
v JCL statements
v JES2 control statements
v JES3 control statements

Entering Jobs
Job Steps: You enter a program into the operating system as a job step. A job step
consists of the job control statements that request and control execution of a
program and request the resources needed to run the program. A job step is
identified by an EXEC statement. The job step can also contain data needed by the
program. The operating system distinguishes job control statements from data by
the contents of the records.

Jobs: A job is a collection of related job steps. A job is identified by a JOB
statement.

Input Streams: Jobs placed in a series and entered through one input device form
an input stream. The operating system reads an input stream into the computer
from an input/output (I/O) device or an internal reader. The input device can be a
card reader, a magnetic tape device, a terminal, or a direct access device. An
internal reader is a buffer that is read from a program into the system as though it
were an input stream.

Cataloged and In-Stream Procedures: You often use the same set of job control
statements repeatedly with little or no change, for example, to compile, assemble,
link-edit, and execute a program. To save time and prevent errors, you can prepare
sets of job control statements and place, or catalog, them in a partitioned data set
(PDS) or partitioned data set extended (PDSE) known as a procedure library. The
data set attributes of a procedure library should match SYS1.PROCLIB (record
length of 80 and record format of FB). Such a set of job control statements in the
system procedure library, SYS1.PROCLIB (or an installation-defined procedure
library), is called a cataloged procedure.

To test a procedure before placing it in the catalog, place it in an input stream and
execute it; a procedure in an input stream is called an in-stream procedure. The
maximum number of in-stream procedures you can code in any job is 15.

Steps in a Job: A job can be simple or complex; it can consist of one step or of
many steps that call many in-stream and cataloged procedures. A job can consist of
up to 255 job steps, including all steps in any procedures that the job calls.
Specification of a greater number of steps produces a JCL error.

© Copyright IBM Corp. 1988, 2013 5

Processing Jobs
The operating system performs many job control tasks automatically. You can
influence the way your job is processed by the JCL and JES2 or JES3 parameters
you code. For example, the job entry subsystem selects jobs for execution, but you
can speed up or delay selection of your job by the parameters you code.

Requesting Resources
Data Set Resources: To execute a program, you must request the data sets needed
to supply data to the program and to receive output records from the program.

Sysout Data Set Resources: A sysout data set is a system-handled output data set.
This data set is placed temporarily on direct access storage. Later, at the
convenience of the system, the system prints it, punches it, or sends it to a
specified location. Because sysout data sets are processed by the system, the
programmer can specify many parameters to control that processing.

Task Charts
The following charts list the job control tasks, which are described in the z/OS
MVS JCL User's Guide, in four groups:
v Entering jobs in Table 4
v Processing jobs in Table 5 on page 8
v Requesting data set resources in Table 6 on page 8
v Requesting sysout data set resources in Table 7 on page 10

For each task, the charts list the parameters and statements that can be used to
perform it. In many cases, the same task can be performed using different
parameters on different statements. Where a parameter can appear on both a JOB
and EXEC statement, it applies to the entire job when coded on the JOB statement
but only to a step when coded on an EXEC statement.

The system is designed to enable users to perform many types of job control in
many ways. To allow this flexibility, only two job entry tasks are required:
v Identification: The job must be identified in the jobname field of a JOB statement.
v Execution: The program or procedure to be executed must be named in a PGM

or PROC parameter on an EXEC statement.

Therefore, the following statements are the minimum needed to perform a job
control task:

//jobname JOB
// EXEC {PGM=program-name }

{PROC=procedure-name}
{procedure-name}

Table 4. Tasks for Entering Jobs
TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS

JCL Statements JES2 Statements JES3 Statements

JOB EXEC Other JCL

Identification

of job jobname field null statement (JES3 only)

of step stepname field

of procedure PROC PEND

Tasks

6 z/OS V2R1.0 MVS JCL Reference

Table 4. Tasks for Entering Jobs (continued)
TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS

JCL Statements JES2 Statements JES3 Statements

JOB EXEC Other JCL

of INCLUDE group INCLUDE

of account accounting
information or pano
in JOB JES2
accounting
information

ACCT /*NETACCT //*NETACCT

of programmer programmer's name
and room in JOB JES2
accounting
information USER

ROOM on
/*JOBPARM

PNAME, BLDG,
DEPT, ROOM, and
USERID on
//*NETACCT

Execution

of program PGM

of procedure PROC

when restarting and
with checkpointing

RESTART RD RD SYSCHK DD RESTART on
/*JOBPARM

FAILURE and
JOURNAL on
//*MAIN

deadline or periodic DEADLINE on
//*MAIN

when dependent on
other jobs

//*NET

at remote node XMIT JCL /*ROUTE XEQ
/*XEQ /*XMIT

//*ROUTE XEQ

Job Input Control

by holding job
entrance

TYPRUN CLASS HOLD, UPDATE, or
CLASS on //*MAIN
//*NET

by holding local input
reader

//*PAUSE

by copying input
stream

TYPRUN CLASS

from remote work
station

/*SIGNON
/*SIGNOFF

/*SIGNON
/*SIGNOFF

Communication

from JCL to system COMMAND Command /*$command //**command

from JCL to operator /*MESSAGE //*OPERATOR

from JCL to
programmer

Comment field unless
no parameter field

Comment field //*comment, also
comment field on all
statements but null

Comment field on
//*ENDPROCESS
and //*PAUSE

from JCL to program PARM

from system to
operator

WARNING on BYTES,
CARDS, LINES, and
PAGES

FETCH on //*MAIN
WARNING on
BYTES, CARDS,
LINES, and PAGES
on //*MAIN

from system to userid
-of job completion -of
print completion

NOTIFY
NOTIFY on OUTPUT JCL
statement

/*NOTIFY ACMAIN on
//*MAIN with JOB
NOTIFY

from TSO/E userid to
system

USER on //*MAIN

from functional
subsystem to
programmer

PIMSG on OUTPUT JCL

through job log MSGCLASS
MSGLEVEL log in
JOB JES2 accounting
information

JESDS on OUTPUT JCL NOLOG on
/*JOBPARM

Protection

through RACF GROUP PASSWORD
SECLABEL USER

Tasks

Chapter 2. Job Control Tasks 7

Table 4. Tasks for Entering Jobs (continued)
TASKS FOR
ENTERING JOBS

STATEMENTS AND PARAMETERS

JCL Statements JES2 Statements JES3 Statements

JOB EXEC Other JCL

Resource Control

of program library JOBLIB DD, STEPLIB DD,
DD defining PDS or PDSE
member

of procedure library JCLLIB PROCLIB on
/*JOBPARM

PROC and UPDATE
on //*MAIN

of INCLUDE group JCLLIB PROCLIB on
/*JOBPARM

PROC and UPDATE
on //*MAIN

of address space REGION ADDRSPC REGION ADDRSPC LREGION on
//*MAIN

of processor SYSAFF on
/*JOBPARM

SYSTEM on
//*MAIN

of spool partition SPART and
TRKGRPS on
//*MAIN

Table 5. Tasks for Processing Jobs
TASKS FOR
PROCESSING JOBS

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2 Statements JES3 Statements

JOB EXEC Other JCL

Processing Control

by conditional
execution

COND

CANCEL on
BYTES, CARDS,
LINES, and
PAGES

COND IF/THEN/ELSE/ ENDIF
statement construct

CANCEL on BYTES,
CARDS, LINES, and
PAGES on
/*JOBPARM

CANCEL on BYTES,
CARDS, LINES, and
PAGES on //*MAIN

by timing execution TIME or time in JOB
JES2 accounting
information

TIME TIME on
/*JOBPARM

for testing:

1. by altering usual
processing

2. by dumping after
error

TYPRUN CLASS
DUMP on BYTES,
CARDS, LINES, and
PAGES

PGM=IEFBR14

PGM=JCLTEST
PGM=JSTTEST
(JES3 only)

SYSMDUMP DD
SYSUDUMP DD
SYSABEND DD

To format dump on
3800 Printing
Subsystem,
FCB=STD3 and
CHARS=DUMP
on dump DD

//*PROCESS
//*ENDPROCESS
DUMP in BYTES,
CARDS, LINES, and
PAGES on //*MAIN

Performance Control

by job class
assignment

CLASS CLASS on //*MAIN

by selection priority PRTY /*PRIORITY

by performance group
assignment

PERFORM PERFORM

by I/O-to-processing
ratio

IORATE on
//*MAIN

Table 6. Tasks for Requesting Data Set Resources
TASKS FOR
REQUESTING DATA
SET RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2 Statements JES3 Statements

DD OUTPUT JCL Other JCL

Identification

of data set DSNAME UPDATE on
//*MAIN

Tasks

8 z/OS V2R1.0 MVS JCL Reference

Table 6. Tasks for Requesting Data Set Resources (continued)
TASKS FOR
REQUESTING DATA
SET RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2 Statements JES3 Statements

DD OUTPUT JCL Other JCL

of in-stream data set * or DATA SYSIN DD
DLM

/* or xx delimiter //*DATASET
//*ENDDATASET

of data set on 3540
Diskette
Input/Output Unit

DSID

through label label-type on LABEL

by location on tape data-set- sequence-
number on LABEL

from or to terminal TERM

Description

of status DISP

of data attributes - by
modeling

DCB
AMP
DATACLAS
KEYLEN
DSNTYPE
KEYOFF
LRECL
RECFM
RECORG

LIKE
REFDD

of data for ISO/ANSI
Version 4 tapes

CCSID

of migration and
backup

MGMTCLAS

Protection

through RACF PROTECT
SECMODEL

for ISO/ANSI/FIPS
Version 3 tapes and
ISO/ANSI Version 4
tapes

ACCODE

by passwords PASSWORD and
NOPWREAD on
LABEL

of access to BSAM
and BDAM data sets

IN and OUT on
LABEL

Allocation

of device UNIT STORCLAS CLASS on JOB (JES3 only) SETUP and CLASS
on //*MAIN

of tape or direct
access volume

VOLUME STORCLAS EXPDTCHK and
RINGCHK on
//*MAIN

of direct access space SPACE AVGREC
DATACLAS

of virtual I/O UNIT
DSNAME=
temporary
data set

with deferred volume
mounting

DEFER on UNIT

with volume
pre-mounting

/*SETUP

dynamic DYNAMNBR on EXEC

Processing Control

by suppressing
processing

DUMMY NULLFILE
on DSNAME

Tasks

Chapter 2. Job Control Tasks 9

Table 6. Tasks for Requesting Data Set Resources (continued)
TASKS FOR
REQUESTING DATA
SET RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2 Statements JES3 Statements

DD OUTPUT JCL Other JCL

by postponing
specification

DDNAME

with checkpointing CHKPT SYSCKEOV
DD SYSCHK DD

RESTART on JOB RD on
EXEC

by subsystem SUBSYS CNTL CNTL ENDCNTL

End Processing

unallocation FREE

disposition of data set DISP

RETPD
EXPDT

OUTDISP on
/*OUTPUT

release of unused
direct access space

RLSE on SPACE

disposition of volume RETAIN and
PRIVATE on
VOLUME

Table 7. Tasks for Requesting Sysout Data Set Resources
TASKS FOR
REQUESTING DATA
SET RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2 Statements JES3 Statements

DD OUTPUT JCL Other JCL

Identification

as a sysout data set SYSOUT

name (last qualifier) DSNAME

of output class class on SYSOUT CLASS MSGCLASS on JOB with
SYSOUT=* or CLASS=*
and SYSOUT=(,)

of data set on 3540
Diskette Input/Output
Unit

DSID

Description

of data attributes DCB

Protection

of printed output DPAGELBL SYSAREA

Performance Control

by queue selection PRTY

Processing Control

with additional
parameters

OUTPUT code-name
on SYSOUT

DEFAULT

by segmenting SEGMENT

with other data sets class on SYSOUT THRESHLD (JES3 only)
GROUPID (JES2 only)

by external writer writer-name on
SYSOUT

WRITER

by mode PRMODE

by holding HOLD class on
SYSOUT

CLASS OUTDISP

by suppressing output DUMMY class on
SYSOUT

OUTDISP=PURGE on
OUTPUT

with checkpointing CKPTLINE CKPTPAGE
CKPTSEC

CKPLNS and
CKPPGS on
/*OUTPUT

Tasks

10 z/OS V2R1.0 MVS JCL Reference

Table 7. Tasks for Requesting Sysout Data Set Resources (continued)
TASKS FOR
REQUESTING DATA
SET RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2 Statements JES3 Statements

DD OUTPUT JCL Other JCL

by Print Services
Facility (PSF)

AFPPARMS
AFPSTATS
COLORMAP
COMSETUP
DUPLEX
FORMDEF
FORMLEN
INTRAY
OFFSETXB
OFFSETXF
OFFSETYB
OFFSETYF
OVERLAYB
OVERLAYF
PAGEDEF
PRTERROR
RESFMT
USERLIB
USERPATH

by Infoprint Server FSSDATA
MAILBCC
MAILCC
MAILFILE
MAILFROM
MAILTO
PORTNO
PRTATTRSPRTOPTNS
PRTQUEUE
REPLYTO
RETAINF
RETAINS
RETRYL
RETRYT

End Processing

unallocation FREE
SPIN

Destination Control

to local or remote
device or to another
node

DEST class on
SYSOUT

DEST
COMPACT

/*ROUTE PRINT
/*ROUTE PUNCH

ORG on //*MAIN

to another processor ACMAIN on
//*MAIN

to internal reader INTRDR as
writer-name on
SYSOUT

/*EOF
/*DEL
/*PURGE
/*SCAN

to terminal TERM

to assist in sysout
distribution

ADDRESS
BUILDING
DEPT
NAME
ROOM
TITLE

ROOM on
/*OUTPUT

Output Formatting

to any printer COPIES FCB
form-name on
SYSOUT UCS

COPIES
FCB
FORMS
LINECT
(JES2 only)
UCS
CONTROL

forms, copies, and linect
on JOB JES2 accounting
information

COPIES, FORMS,
and LINECT on
/*JOBPARM
COPIES, FCB, and
FORMS on
/*OUTPUT

COPIES and FORMS
on //*FORMAT PR

Tasks

Chapter 2. Job Control Tasks 11

Table 7. Tasks for Requesting Sysout Data Set Resources (continued)
TASKS FOR
REQUESTING DATA
SET RESOURCES

STATEMENTS AND PARAMETERS FOR TASK

JCL Statements JES2 Statements JES3 Statements

DD OUTPUT JCL Other JCL

to an AFP printer in
addition to most of
printer parameters

BURST
CHARS
FLASH
MODIFY
DCB=
OPTCD=J

BURST CHARS FLASH
MODIFY TRC

BURST on
/*JOBPARM

CHARS, FLASH,
and BURST on
/*OUTPUT

CHARS and FLASH
on //*FORMAT PR

to 3211 Printer with
indexing feature

INDEX (JES2 LINDEX
only)

to punch COPIES FCB
form-name on
SYSOUT
DCB=FUNC=I

COPIES
FCB
FORMS

of dumps on 3800
Printing Subsystem

CHARS=DUMP
FCB=STD3

CHARS=DUMP
FCB=STD3

Output Limiting

OUTLIM lines and cards
on JOB JES2
accounting
information

BYTES, CARDS,
LINES, and PAGES
on JOB

BYTES, CARDS,
LINES, and PAGES
on /*JOBPARM

BYTES, CARDS,
LINES, and PAGES
on //*MAIN

USERDATA Specifications

Installation
specifications

USERDATA

Tasks

12 z/OS V2R1.0 MVS JCL Reference

Chapter 3. Format of statements

This topic describes the fields in JCL, JES2, and JES3 statements. It ends with the
conventions for continuing statements.

JCL statement fields
A JCL statement consists of one or more 80-byte records. Each record is comparable
to an 80-column punched-card image. Each JCL statement is logically divided into
the following five fields. All five fields do not appear on every statement; see
Table 8 on page 14 for the fields that can appear on each statement.

Identifier field
The identifier field indicates to the system that a statement is a JCL statement
rather than data. The identifier field consists of the following:
v Columns 1 and 2 of all JCL statements, except the delimiter statement,

contain //
v Columns 1 and 2 of the delimiter statement contain either /* or two other

characters designated in a DLM parameter to be the delimiter
v Columns 1, 2, and 3 of a JCL comment statement contain //*

Name field
The name field identifies a particular statement so that other statements and
the system can refer to it. For JCL statements, code the name as follows:
v The name must begin in column 3.
v The name is 1 through 8 alphanumeric or national ($, #, @) characters. See

Table 10 on page 21 for the character sets.
v The first character must be an alphabetic or national ($, #, @).
v The name must be followed by at least one blank.

Operation field
The operation field specifies the type of statement, or, for the command
statement, the command. Code the operation field as follows:
v The operation field consists of the characters in the syntax box for the

statement.
v The operation follows the name field.
v The operation must be preceded and followed by at least one blank.

Parameter, or operand field
The parameter field, also sometimes referred to as the operand field, contains
parameters separated by commas. Code the parameter field as follows:
v The parameter field follows the operation field.
v The parameter field must be preceded by at least one blank.

See “Parameter field” on page 15 for details on coding the parameter field.

Comments field
The comments field contains any information you deem helpful when you
code the control statement. Code the comments field as follows:
v The comments field follows the parameter field.
v The comments field must be preceded by at least one blank.

© Copyright IBM Corp. 1988, 2013 13

|
|

You can code comments after the parameter field even though you continue
the parameter field on a subsequent statement; see “Continuing JCL
statements” on page 16.

For most statements, if you do not code any parameters, do not code any
comments.

Table 8. JCL Statement Fields

Statement Fields

JCL Command // command [parameter] [comments]

COMMAND //[name] COMMAND ‘command command-operand’ [comments]

Comment //* comments

CNTL //label CNTL [* comments]

DD //[ddname] DD [parameter [comments]]
//[ddname] DD

Delimiter /* [comments]
xx [comments]

ENDCNTL //[label] ENDCNTL [comments]

EXEC //[stepname] EXEC parameter [comments]

IF/THEN/ELSE/ENDIF //name IF [relational expression] THEN [comments]
//name ELSE [comments]
//name ENDIF [comments]

INCLUDE //[name] INCLUDE parameter [comments]

JCLLIB //[name] JCLLIB parameter [comments]

JOB //jobname JOB [parameter [comments]]
//jobname JOB

Null //

OUTPUT JCL //name OUTPUT parameter [comments]

PEND //[name] PEND [comments]

PROC (cataloged) //[name] PROC [parameter [comments]]
//[name] PROC

PROC (in-stream) //name PROC [parameter [comments]]
//name PROC

SET //[name] SET parameter [comments]

XMIT //[name] XMIT parameter[,parameter] [comments]

Location of fields on statements: Code the identifier field beginning in column 1
and the name field immediately after the identifier, with no intervening blanks.
Code the operation, parameter, and comments fields in free form. Free form means
that the fields need not begin in a particular column. Between fields leave at least
one blank; the blank serves as the delimiter between fields.

Do not code fields, except on the comment statement, past column 71. Columns
73-80 are ignored by z/OS and are typically used for sequence numbers. If the
total length of the fields would exceed 71 columns, continue the fields onto one or
more following statements. Continuing fields is described under “Continuing JCL
statements” on page 16. The comment statement can be coded through column 80.

Use keywords only for parameters or subparameters: Do not use parameter or
subparameter keywords from any JCL, JES2, or JES3 statements as symbolic
parameters, names, or labels.

Format: Fields

14 z/OS V2R1.0 MVS JCL Reference

Parameter field
The parameter field consists of two types of parameters: positional parameters and
keyword parameters. All positional parameters must precede all keyword
parameters. Keyword parameters follow the positional parameters.

Commas: Use commas to separate positional parameters, keyword parameters, and
subparameters in the parameter field.

Positional Parameters: A positional parameter consists of:
v Characters that appear in uppercase in the syntax and must be coded as shown
v Variable information, or
v A combination.

For example, DATA on a DD statement, programmer's-name on a JOB statement,
and PGM=program-name on an EXEC statement.

Code positional parameters first in the parameter field in the order shown in the
syntax. If you omit a positional parameter and code a following positional
parameter, code a comma to indicate the omitted parameter. Do not code the
replacing comma if:
v The omitted positional parameter is the last positional parameter.
v All following positional parameters are also omitted.
v Only keyword parameters follow.
v All positional parameters are omitted.

Keyword parameters: A keyword consists of characters that appear in uppercase in
the syntax and must be coded as shown followed by an equals sign followed by
either characters that must be coded as shown or variable information. For
example, RD=R and MSGCLASS=class-name on the JOB statement.

Code any of the keyword parameters for a statement in any order in the parameter
field after the positional parameters. Because of this positional independence, never
code a comma to indicate the absence of a keyword parameter.

Multiple subparameters: A positional parameter or the variable information in a
keyword parameter sometimes consists of more than one item, called a
subparameter list. A subparameter list can consist of both positional and keyword
subparameters. These subparameters follow the same rules as positional and
keyword parameters.

When a parameter contains more than one subparameter, separate the
subparameters by commas and enclose the subparameter list in parentheses or, if
indicated in the syntax, by apostrophes. If the list is a single keyword
subparameter or a single positional subparameter with no omitted preceding
subparameters, omit the parentheses or apostrophes.

Null positional subparameters: You are allowed to specify null (that is, omitted)
positional subparameters except where the Syntax section of a particular parameter
states otherwise. (For example, null positional subparameters are not allowed on a
COND parameter of an EXEC statement or on an AMP parameter of a DD
statement.) You specify a null positional subparameter by following the coding
rules listed previously for an omitted positional parameter.

Format: Fields

Chapter 3. Format of statements 15

JES2 control statement fields
The rules for coding JES2 control statements are the same as the rules for JCL
statements, with the following additions:
v Columns 1 and 2 always contain the characters /*. Columns 73-80 are ignored

by z/OS and are typically used for sequence numbers.
v Do not code comments on any JES2 statements. Where comments are needed,

code a JCL comment statement.
v If you code the same parameter on the same statement more than once, JES2

uses the value in the last parameter.

When coding a JES2 control statement more than once, be aware of the following
JES2 actions:
v If the same parameter appears on more than one statement, JES2 uses the value

coded on the last statement.
v If the statements contain different parameters, JES2 uses all parameters

combined.

JES3 control statement fields
The rules for coding JES3 control statements are the same as the rules for JCL
statements, with the following additions:
v Columns 1, 2, and 3 generally contain the characters //* (slash-slash-asterisk).

Some JES3 control statements may contain, and certain other JES3 control
statements must contain only a single slash-asterisk (/*) in columns 1 and 2.

v Columns 3 and 4 must not be blank.
v To code a comment on a JES3 control statement, code a blank after the control

statement, and end the comment before column 72. Columns 73-80 are ignored
by z/OS and are typically used for sequence numbers.

Continuing statements
You can continue some JCL statements, as described in the following sections.

Continuing JCL statements
When the total length of the fields on a control statement exceeds 71 columns,
continue the fields onto one or more records. Each line is a record.

The following are JCL statements that you cannot continue. While you cannot
continue these statements, you can code as many separate statements as you need.
v JCL Command statement
v Comment statement
v Delimiter statement
v Null statement

For all other JCL statements, you can continue the parameter field or the comments
field on the JCL statement. If you continue both the parameter field and the
comments field on the same record, the system ignores the indication to continue
the comment. How you continue a parameter field depends on whether the
parameter is enclosed in apostrophes.

Format: Fields

16 z/OS V2R1.0 MVS JCL Reference

|
|

|

Continuing the parameter field
1. Interrupt the field after a complete parameter or subparameter, including the

comma that follows it, at or before column 71.
2. Code // in columns 1 and 2 of the following statement.
3. Code a blank character in column 3 of the following statement. If column 3

contains anything but a blank or an asterisk, the system assumes the following
statement is a new statement. The system issues an error message indicating
that no continuation is found and fails the job.

4. Continue the interrupted parameter or field beginning in any column from 4
through 16.

Continuing parameter fields enclosed in apostrophes
To continue a parameter that is enclosed in apostrophes:
1. Extend the parameter to column 71. Do not code an apostrophe in column 71 of

a JCL statement that is continued. The system interprets the apostrophe in
column 71 as the final character in the statement and ignores the continuation.

2. Code // in columns 1 and 2 of the following statement.
3. Continue the parameter in column 16 of the following statement even if this

splits the parameter. Trailing blanks or commas within the apostrophes do not
indicate a continued statement; the system treats them as part of the parameter.

The following example shows the specification of a long file name in the PARM
field:
//STEP1 EXEC PGM=IEFBR14,PARM=(PARM1,’/DIR1/DIR2
// /DIR3/DIR4/DIR5/DIR6/DIR7/DIR8/DIR9/DIR10/DIR11/DIR12/DI
// R13/FILENM’)

Continuing the comments field
Include comments by following an interrupted parameter field with at least one
blank. To continue a comment:
1. Interrupt the comment at a convenient place before column 72, up to and

including column 71.
2. Code a nonblank character in column 72.
3. Code // in columns 1 and 2 of the following statement.
4. Code a blank character in column 3 of the following statement.
5. Continue the comments field beginning in any column after column 3.

You can use JCL comment statements as an alternative way to imbed comments in
the JCL stream.

Examples of continued statements
Example 1
//DD1 DD DSNAME=SWITCH.LEVEL18.GROUP12,UNIT=3390,
// VOLUME=335023,SPACE=(TRK,(80,15)),DISP=(,PASS)

Example 1 shows continuation of a DD statement. The DD statement is continued
from the first card image to the second card image. The comma on the first line
indicates that continuation is expected.

Example 2
//DS1 DD DSNAME=INDS,DISP=OLD,CHKPT=EOV, MY INPUT DATA SET
// UNIT=SYSSQ,VOLUME=SER=(TAPE01,TAPE02,TAPE03)

Format: Continuing Statements

Chapter 3. Format of statements 17

Example 2 shows continuation of a DD statement with a comment on the first
statement. The DD statement is continued from the first card image to the second
card image. The comma followed by a blank on the first line indicates that
continuation is expected. The comment on the first card image is not continued to
the next card image.

Example 3
//STP4 EXEC PROC=BILLING,COND.PAID=((20,LT),EVEN),
// COND.LATE=(60,GT,FIND),
// COND.BILL=((20,GE),(30,LT,CHGE)) THIS STATEMENT CALLS X
// THE BILLING PROCEDURE AND SPECIFIES RETURN CODE TESTS X
// FOR THREE PROCEDURE STEPS.

Example 3 shows continuation of an EXEC statement with a comment at the end
that also is continued on multiple lines. The EXEC statement is continued from the
first card image to the second card image. The comma followed by a blank on the
first line indicates that continuation is expected. Continuation from the second card
to the third uses the same logic. The comment on the third card image is continued
to the next card image via an X in column 72. The comment on fourth card image
is continued to the fifth card image via an X in column 72.

Example 4
//S1 EXEC PGM=IEFBR14,PARM=’THIS IS A LONG PARAMETER WITHIN APOST
// ROPHES, CONTINUED IN COLUMN 16 OF THE NEXT RECORD’

Example 4 shows continuation of a parameter field when a parameter is enclosed
in apostrophes. The parameter field is continued from column 71 of the first card
image to column 16 of the second.

Continuing JES2 control statements
The only JES2 control statement that you can continue is the /*OUTPUT statement.
For all other JES2 control statements, code the statement as many times as needed.

Continuing JES3 control statements
Continue JES3 statements, except the command statement or //*NETACCT
statement, by:
1. Coding a comma as the last character of the first statement.
2. Coding //* in columns 1 through 3 of the continuation statement.
3. Resuming the code in column 4 of the continuation statement.

On the JES3 //*NET statement, each parameter must appear entirely on one
statement; a subparameter cannot be continued after a comma, except for the
RELEASE parameter. To continue the RELEASE parameter, end the statement with
the comma following a jobname and continue the next statement with the next
jobname. The left parenthesis appears at the beginning of the jobname list and the
right parenthesis appears at the end of the list. For example:

//*NET NETID=EXP1,RELEASE=(JOB35,JOB27Z,MYJOB,
//*WRITJB,JOBABC)

If the parameters on a //*NETACCT statement cannot fit on one statement, code
more than one //*NETACCT statement.

Format: Continuing Statements

18 z/OS V2R1.0 MVS JCL Reference

Chapter 4. Syntax of parameters

Syntax rules define how to code the fields and parameters on job control
statements. The syntax indicates:
v What the system requires.
v What is optional for the specific purpose or process you are requesting.
v How the parameters are to appear.

The syntax rules apply to all job control statements: JCL statements, JES2 control
statements, and JES3 control statements.

Note: You must follow the syntax rules in coding job control statements to achieve
specific results. If you do not follow the rules, you may get error messages or
unpredictable results. IBM does not support the use of statements or parameters to
achieve results other than those stated in this publication.

Notation used to show syntax
The syntax for job control statements and their parameters appear in the
description for each statement. The notation used in this publication for the syntax
is shown in Table 9.

Table 9. Notation used to show syntax

Notation Meaning Examples

Uppercase letters, words,
and characters

Code uppercase letters, words, and the
following characters exactly as they
appear in the syntax.

& ampersand

* asterisk

, comma

= equal sign

() parentheses

. period

/ slash

Lowercase letters, words,
and symbols

Lowercase letters, words, and symbols
in the syntax represent variables.
Substitute specific information for
them.

Syntax: on JOB statement

CLASS=jobclass

Coded:

CLASS=A

| (vertical bar) A vertical bar indicates an exclusive
OR. Never code | on a control
statement. It is used between choices
within braces or brackets; it indicates
that you code only one of the items
within the braces or brackets.

Syntax: on DD DCB parameter BFALN={F|D}

Coded:
BFALN=F

or
BFALN=D

© Copyright IBM Corp. 1988, 2013 19

Table 9. Notation used to show syntax (continued)

Notation Meaning Examples

{ } (braces) Braces surround required, related items
and indicate that you must code one of
the enclosed items. Never code { or }
on a control statement.

Syntax: on DD SPACE parameter

{TRK }
{CYL }
{blklgth}
{reclgth}

Coded:
TRK or
CYL or
960

[] (brackets) Brackets surround an optional item or
items and indicate that you can code
one or none of the enclosed items.
Never code [or] on a control
statement.

Syntax: on DD UNIT parameter

[,DEFER]

Coded:
,DEFER

or
omitted

Syntax: on DD LABEL parameter

[,RETPD=nnnn]
[,EXPDT= {yyddd }]
[{yyyy/ddd}]

Coded:
,RETPD=nnnn

or
,EXPDT=yyddd

or
,EXPDT=yyyy/ddd

or
omitted

{ , } or [,] One of the items in braces or brackets
can be a comma. Code the comma
when you do not code any of the other
items in the braces or brackets but you
are coding a following part of the
parameter.

Syntax: on DD UCS parameter UCS=(character-set-
code[,FOLD|,] [,VERIFY])

v Coded:UCS=(character-set-code)

v UCS=(character-set-code,FOLD)

v UCS=(character-set-code,FOLD, VERIFY)

v UCS=(character-set-code,,VERIFY)

Note that the comma is not coded if both FOLD and VERIFY
are omitted, but must appear if FOLD is omitted and
VERIFY follows.

__ (underline) An underline indicates the default that
the system uses when you do not code
a subparameter.

Syntax: on JOB or EXEC statement
ADDRSPC={VIRT|REAL}

Coded:
ADDRSPC omitted means
ADDRSPC=VIRT

... (ellipsis) An ellipsis follows an item that you
can code more than once. Never code
... on a control statement.

Syntax: on DD statement
COND=((code,operator)[,(code,operator)]....)

Coded:
Can repeat ,(code,operator)
Thus:
COND=((12,GE),(8,EQ),(4,EQ))

Syntax: Notation

20 z/OS V2R1.0 MVS JCL Reference

Table 9. Notation used to show syntax (continued)

Notation Meaning Examples

.. (two consecutive
periods)

Two consecutive periods indicate that a
parameter consists of a symbolic
parameter followed by a period and
then by other code, so that only part of
the parameter is variable.

Coded: &DEPT..NYC

Meaning:
If &DEPT is D27:
D27.NYC is the value

Character sets
To code job control statements, use characters from the character sets in Table 10.
Table 11 lists the special characters that have syntactical functions in job control
statements.

Table 10. Character Sets

Character set Contents Details

Alphanumeric Alphabetic
Numeric

Capital A through Z
0 through 9

National
(See note)

“At” sign
Dollar sign
Pound sign

@ (Characters that can be
$ represented by hexadecimal
values X'7C', X'5B', and
X'7B')

Special

Comma
Period
Slash
Apostrophe
Left parenthesis
Right parenthesis
Asterisk
Ampersand
Plus sign
Hyphen
Equal sign
Blank

,
.
/
'
(
)
*
&
+
-
=

EBCDIC text EBCDIC printable character set Characters that can be represented
by hexadecimal X'40' through X'FE'

Note: The system recognizes the following hexadecimal representations of the U.S.
National characters; @ as X'7C'; $ as X'5B'; and # as X'7B'. In countries other than the U.S.,
the U.S. National characters represented on terminal keyboards might generate a different
hexadecimal representation and cause an error. For example, in some countries the $
character may generate a X'4A'.

Table 11. Special Characters Used in Syntax

Character Syntactical function

, To separate parameters and subparameters

= To separate a keyword from its value, for example, BURST=YES

(�) To enclose subparameter list or the member name of a PDS or PDSE

& To identify a symbolic parameter, for example, &LIB

&& To identify a temporary data set name, for example, &&TEMPDS, and, to
identify an in-stream or sysout data set name, for example, &&PAYOUT

Syntax: Notation

Chapter 4. Syntax of parameters 21

Table 11. Special Characters Used in Syntax (continued)

Character Syntactical function

. To separate parts of a qualified data set name, for example, A.B.C., or
parts of certain parameters or subparameters, for example,
nodename.userid

* To refer to an earlier statement, for example, OUTPUT=*.name, or, in
certain statements, to indicate special functions: //label CNTL *

//ddname DD * RESTART=* on the JOB statement

' To enclose specified parameter values which contain special characters

(blank) To delimit fields

Special characters in parameters: The syntax or parameter description indicates if
the variable that you code can contain special characters or not. Parameters and
subparameters that can contain special characters not used for syntactical functions
usually must be enclosed in apostrophes, for example, ACCT='123+456'. Code each
apostrophe that is part of the parameter or subparameter as two consecutive
apostrophes, for example, code O'NEIL as 'O''NEIL'.

Table 12 lists the parameters that can contain certain special characters without
requiring enclosing apostrophes.

Ampersands are used in JCL to indicate the beginning of a symbolic parameter
(see “Using system symbols and JCL symbols” on page 38). If a parameter contains
an ampersand and you do not want the system to interpret the ampersand as a
symbolic parameter, code the ampersand as two consecutive ampersands. For
example, code
//S1 EXEC PGM=IEFBR14,ACCT=’&&ABC’
//DD1 DD DSN=&&TEST,UNIT=SYSDA,SPACE=(TRK,(1,1))

The system treats double ampersands as a single character. IBM recommends that
you use apostrophes to enclose parameters that contain ampersands (other than a
DSNAME parameter representing a temporary data set) to further reduce the
possibility of error.

Table 12. Special Characters that Do Not Require Enclosing Apostrophes

Statement and parameter
or subparameter

Special characters not needing enclosing
apostrophes Examples

JOB accounting information Hyphens (-) //JOBA JOB D58-D04

JOB programmer's-name Hyphens (-), leading periods, or
embedded periods. Note that a trailing
period requires enclosing apostrophes.

//JOBB JOB ,S-M-TU
//JOBC JOB ,.ABC
//JOBD JOB ,P.F.M
//JOBE JOB ,'A.B.C.'

EXEC ACCT Hyphens (-) or plus zero (+0, an
overpunch)

//S1 EXEC PGM=A,ACCT=D58-LOC
//S2 EXEC PGM=B,ACCT=D04+0

DD DSNAME Hyphens (-) DSNAME=A-B-C

Periods to indicate a qualified data set
name

DSNAME=A.B.C

Double ampersands to identify a
temporary data set name, and to identify
an in-stream or sysout data set name

DSNAME=&&TEMPDS

DSNAME=&&PAYOUT

Syntax: Character Sets

22 z/OS V2R1.0 MVS JCL Reference

Table 12. Special Characters that Do Not Require Enclosing Apostrophes (continued)

Statement and parameter
or subparameter

Special characters not needing enclosing
apostrophes Examples

Parentheses to enclose the member name
of a partitioned data set (PDS) or
partitioned data set extended (PDSE) or
the generation number of a generation
data set

DSNAME=PDS1(MEMA)
DSNAME=ISDS(PRIME)
DSNAME=GDS(+1)

Plus (+) or minus (-) sign to identify a
generation of a generation data group

DSNAME=GDS(-2)

DD VOLUME=SER Hyphens (-) VOLUME=SER=PUB-RD

DD UNIT device-type Hyphens (-) UNIT=SYSDA

Syntax notes
JCL positional parameters and keywords can have at most two levels of
subparameters. Therefore, when parentheses are used to delimit a list of
subparameters, a maximum of two levels of parenthesis nesting is permitted. This
restriction applies even if the parentheses are empty.

Backward references
Many parameters in job control statements can use a backward reference to fill in
information. A backward reference is a reference to an earlier statement in the job
or in a cataloged or in-stream procedure called by a job step. A backward reference
is in the form:
v *.name or *.ddname where name or ddname is the name field of the referenced

statement.
v *.stepname.name or *.stepname.ddname where the referenced statement, name

or ddname, is in an earlier step, stepname, in the same job.
v *.stepname.procstepname.name or *.stepname.procstepname.ddname where

this job step or an earlier job step, stepname, calls a procedure; the procedure
contains procedure step, procstepname, which contains the referenced statement,
name or ddname.

If stepname is specified without a procstepname, it identifies an EXEC statement
that contains a PGM parameter, not one that invokes a procedure. Similarly, if
stepname.procstepname is coded, procstepname identifies an EXEC statement
containing the PGM parameter in the procedure invoked by stepname.

The backward reference lets you copy previously coded information or refer to an
earlier statement. The following parameters can make backward references:
v DD CNTL refers to earlier CNTL statement
v DD DCB refers to earlier DD statement to copy its DCB parameter
v DD DSNAME refers to earlier DD statement to copy its DSNAME parameter,

whether or not the data set is a partitioned data set, and whether or not the data
set is a temporary data set

v DD OUTPUT refers to earlier OUTPUT JCL statement
v DD REFDD refers to earlier DD statement to copy its data set attributes

Syntax: Character Sets

Chapter 4. Syntax of parameters 23

v DD VOLUME=REF refers to earlier DD statement to use the same volume(s).
The LABEL label type subparameter is also copied from the referenced DD
statement.

v EXEC PGM refers to an earlier DD statement that defines the program to be
executed as a member of a partitioned data set

The following statements cannot be referenced:
v DD * statement in DCB, DSNAME, or VOLUME parameter
v DD DATA statement in DCB, DSNAME, or VOLUME parameter
v DD DUMMY statement in VOLUME or UNIT parameter. The referring DD

statement acquires a dummy status.
v DD DYNAM statement
v DD statement containing FREE=CLOSE in VOLUME or UNIT parameters
v Nested procedure statements
v Sysout DD statement
v DD statement that is the target of a DDNAME= reference.
v A DD statement containing a PATH parameter

Examples of backward references
Example 1:
//JOB1 JOB ...
//STEPA EXEC ...
//DD1 DD DSNAME=REPORT

.

.
//DD4 DD DSNAME=*.DD1

The referring and referenced DD statements are in the same step.

Example 2:
//JOB2 JOB ...
//STEP1 EXEC ...
//DDA DD DSNAME=D58.POK.PUBS01

.

.
//STEP2 EXEC ...
//DDB DD DSNAME=*.STEP1.DDA

The referring and referenced DD statements are in different steps in the same job.

Example 3: Cataloged procedure PROC1 contains:
//PS1 EXEC ...

.

.
//PSTEP1 EXEC ...
//DS1 DD DSNAME=DATA1
//PSTEP2 EXEC ...
//DS2 DD DSNAME=DATA2

.

The job contains:
//JOB5 JOB ...
//CALLER EXEC PROC=PROC1

.

Syntax: Backward References

24 z/OS V2R1.0 MVS JCL Reference

//REF1 DD DSNAME=*.CALLER.PSTEP2.DS2
//NEXT EXEC ...
//REF2 DD DSNAME=*.CALLER.PSTEP1.DS1

.

DD statement REF1 in the calling step refers to DD statement DS2 in procedure
step PSTEP2. DD statement REF2 in a step after the calling step refers to DD
statement DS1 in procedure step PSTEP1. Note that the entire procedure is
processed when the calling EXEC statement is processed; therefore, all DD
statements in the procedure are earlier than all DD statements in the calling step.

Syntax: Backward References

Chapter 4. Syntax of parameters 25

26 z/OS V2R1.0 MVS JCL Reference

Chapter 5. Procedures and symbols

This section describes how to use procedures, including nested procedures. It also
explains how to use JCL symbols and system symbols.

Cataloged and in-stream procedures
For jobs that you run frequently or types of jobs that use the same job control,
prepare sets of job control statements, called procedures.

In-stream procedures
When you place a procedure in the job input stream, it is called an in-stream
procedure.

An in-stream procedure must begin with a PROC statement, end with a PEND
statement, and include only the following other JCL statements: CNTL, comment,
DD, ENDCNTL, EXEC, IF/THEN/ELSE/ENDIF, INCLUDE, OUTPUT JCL, and
SET. You must observe the following restrictions regarding in-stream procedures:
v Do not place any JCL statements (other than the ones listed here) or any JES2 or

JES3 control statements in the procedure.
v Do not define one in-stream procedure within another, that is, do not use nested

in-stream procedures. Refer to “Nested procedures” on page 35 for information
on methods for nesting procedures.

v Do not use an in-stream procedure if the procedure will be run as a started job
under the MASTER subsystem, that is, includes a JOB statement and is started
via a START command such as S membername,SUB=MSTR.

Cataloged procedures
A procedure that you catalog in a library is called a cataloged procedure.

A cataloged procedure may consist of these JCL statements: CNTL, command, DD,
ENDCNTL, EXEC, IF/THEN/ELSE/ENDIF, INCLUDE, OUTPUT JCL, and SET.
Optionally, a cataloged procedure can begin with a PROC statement and end with
a PEND statement. If coded, PROC must be the first statement in the procedure.

Cataloging a procedure
The library containing cataloged procedures is a partitioned data set (PDS) or a
partitioned data set extended (PDSE). The system procedure library is
SYS1.PROCLIB. The installation can have many more procedure libraries with
different names. You can also have procedures in a private library. The name of a
cataloged procedure is its member name or alias in the library.

When a cataloged procedure is called, the calling step receives a copy of the
procedure; therefore, a cataloged procedure can be used simultaneously by more
than one job.

If you are modifying a cataloged procedure, do not run any jobs that use the
procedure during modification.

In a JES3 system, you can specify UPDATE on the JES3 //*MAIN statement to
update a procedure library.

© Copyright IBM Corp. 1988, 2013 27

Using a procedure
To execute a procedure, call it on an EXEC statement in an in-stream job. Specify
the name of the procedure in the PROC parameter of the EXEC statement. The step
uses the JCL statements in the procedure as if the JCL statements appeared in the
input stream immediately following the EXEC statement. If necessary, you can
modify the procedure for the current execution of the job step.

When you call a procedure, the system retrieves it using the following search
order:
1. From the input stream

If the called procedure is an in-stream procedure, the system retrieves it from
the job input stream. You must place the in-stream procedure before the EXEC
statement that calls it.

2. From a private library

If the called procedure is cataloged in a private library, the system retrieves it
from the private library that you specify on the JCLLIB statement that appears
earlier in the job stream.

3. From the system library (in a non-APPC scheduling environment)

If the called procedure is cataloged in a system library, the subsystem retrieves
it as follows:
v In JES2, from the library name on the PROCLIB= parameter on a JES2

/*JOBPARM statement. See “/*JOBPARM statement” on page 577 for more
information.

v In JES3, from the library name on the PROC= parameter of the JES3
//*MAIN statement. See “//*MAIN statement” on page 628 for more
information.

v In MSTR, the data set specified by the IEFPDSI DD statement in the
currently active master JCL is searched for procedures. The default master
JCL specifies SYS1.PROCLIB.

Testing a procedure
Before putting a procedure into a system procedure library, you should test it.
There are two ways to test a procedure:
v Place a PROC statement before the procedure and a PEND statement after it and

place it in a job input stream. For the test, call this in-stream procedure with an
EXEC statement that appears later in the same job.

v Put a procedure to be tested in a private library, identify the library on a JCLLIB
statement, and call the procedure with an EXEC statement.

After testing a procedure, the type of environment in which you are running the
job determines where you can catalog it.
v In an APPC scheduling environment: Catalog the procedure in a private library,

and define the library with a JCLLIB statement.
v In a non-APPC scheduling environment: Catalog the procedure in the system

procedure library SYS1.PROCLIB, an installation-defined procedure library, or a
private library. Cataloging the procedure in the system procedure library allows
anyone to use the procedure by calling it with an EXEC statement.

Cataloged and in-stream procedures are not checked for correct syntax until an
EXEC statement that calls the procedure is checked for syntax. Therefore, a
procedure can be tested only if an EXEC statement calls it.

Procedures

28 z/OS V2R1.0 MVS JCL Reference

Modifying procedures
There are two ways you can modify a procedure:
v Using system symbols and JCL symbols
v Using overrides.

Using system symbols and JCL symbols, you can design your procedures to be
easily modified. If the procedure does not contain required system symbols and
JCL symbols, you can override the statement.

For its current execution, you can override an in-stream or cataloged procedure by:
v Overriding, nullifying, or adding EXEC statement parameters
v Overriding, nullifying, or adding parameters to DD or OUTPUT JCL statements
v Adding DD or OUTPUT JCL statements

Overriding a parameter modifies only that parameter; the system uses all other
parameters on the original statement. For example, if you override the data set
name on a DD statement that includes a UNIT and VOL=SER parameter, the
system will still use the UNIT and VOL=SER parameters.

Invalid parameters in a procedure cannot be corrected through overrides. Before
processing overrides, the system scans the original procedure statements for errors
and issues error messages.

Modifying EXEC statement parameters
All keyword parameters on the calling EXEC statement affect the execution of the
procedure, as follows:

All procedure statements
If a keyword parameter is to override the parameter or be added to every EXEC
statement in the procedure, code the parameter in the usual way. For example, the
ACCT parameter applies to all steps:
//STEP1 EXEC PROC=RPT,ACCT=5670

Note: A PARM parameter without a procstepname qualifier applies only to the
first procedure step. A TIME parameter without a procstepname qualifier applies
to the entire procedure and nullifies any TIME parameters on procedure step EXEC
statements.

If the keyword parameter is to nullify the parameter on every EXEC statement in
the procedure, code it without a value following the equal sign. For example, the
ACCT parameter is nullified in all steps:
//STEP2 EXEC PROC=RPT,ACCT=

A single procedure statement
If the keyword parameter is to override the parameter or be added to only one
EXEC statement in the procedure, code .procstepname immediately following the
keyword. The procstepname is the name field of the procedure EXEC statement
containing the keyword parameter to be overridden. For example, the ACCT
parameter applies to only step PSTEPWED:
//STEP1 EXEC PROC=RPT,ACCT.PSTEPWED=5670

If the keyword parameter is to nullify the parameter on only one EXEC statement
in the procedure, code it with the procstepname. For example:

Modifying Procedures

Chapter 5. Procedures and symbols 29

//STEP2 EXEC PROC=RPT,ACCT.PSTEPTUE=

The override, nullification, or addition applies only to the current execution of the
job step; the procedure itself is not changed.

Rules for modifying EXEC parameters
The following rules apply for modifying EXEC parameters:
v You cannot modify a PGM parameter.
v The calling EXEC statement can contain changes for more than one parameter

and for the same parameter in more than one step in a called procedure. (If you
code multiple overrides for any parameter in the same step, only the last
specification will be effective.)

v Modifying parameters should appear in the following order:
– Parameters without a procstepname qualifier.
– All parameters modifying the first step, then the second step, then the third

step, and so forth.
v You do not need to code the parameters for each step in the same order as they

appear on the procedure EXEC statement.
v You must code an entire overriding parameter even if you are changing only

part of it.
v You can use a different parameter to override the parameter in a procedure

statement, if the two parameters are mutually exclusive. The override operation
automatically nullifies the procedure parameter. This is an exception to the
general rule that the only way to override a parameter is to specify it explicitly.
For example, if the EXEC statement in a procedure contains a PARM=
specification and you override it with a PARMDD= specification, the value
specified by PARM= is nullified and the value specified by PARMDD= is
substituted.

Modifying OUTPUT JCL and DD statements
OUTPUT JCL and DD statements that follow the calling EXEC statement
v Override, nullify, or add parameters to OUTPUT JCL and DD statements in the

procedure, or
v Are added to the procedure.

These changes affect only the current execution of the job step; the procedure itself
is not changed. When an OUTPUT JCL statement is modified, the sysout data set
is processed according to the parameters as modified by the overriding statement.

In a procedure, to ensure that OUTPUT JCL and DD statements are overridden
correctly by modifying statements, place the OUTPUT JCL statements before the
DD statements in each step of the procedure.

Location in the JCL
Place modifying OUTPUT JCL and DD statements in the following order, after the
EXEC statement that calls the procedure:
v For each procedure step in the invoked procedure:

1. Overriding statements can appear in any order when they explicitly specify
the step that is being overridden. Added statements can appear in any order
when they specify the step explicitly.

2. Overriding and added statements that do not explicitly specify the step are
applied to the step named in the previous overriding or added OUTPUT JCL

Modifying Procedures

30 z/OS V2R1.0 MVS JCL Reference

or DD statement. If no previous override statement named a step, then they
are applied to the first step in the procedure.

v For all procedure steps in the invoked procedure, place the modifying
statements for each procedure step in the same order in which the procedure
steps are specified.

Coding an overriding OUTPUT JCL or DD statement
To override, nullify, or add parameters to a procedure OUTPUT JCL or DD
statement, code in the name field of the overriding OUTPUT JCL or DD statement
the name of the procedure step containing the overridden statement, followed by a
period, followed by the name of the procedure OUTPUT JCL statement or the
ddname of the procedure DD statement.
//pstepname.name OUTPUT parameters

//pstepname.ddname DD parameters

Rules for modifying OUTPUT JCL or DD parameters
The override operation merges the parameters from an overriding statement with
those in the overridden statement. Follow these rules in coding overriding
statements:
v You can code more than one change on an overriding statement.
v You can code modifying parameters in any order on an overriding statement.
v Code an entire overriding parameter even when changing only part of that

parameter.
v If you code a parameter on an overriding statement that is not on the procedure

statement, the override operation adds it to the procedure statement.
v Nullify a parameter by not coding a value after the equal sign. Omitting the

value causes the system to treat the keyword as if it had been removed from the
procedure statement. This is the only way to nullify keywords that do not
permit a null parameter value.

v If you add a parameter that is mutually exclusive with a parameter on a
procedure statement, the override operation automatically nullifies the procedure
parameter. This is the only exception to the rule that the only way to override a
parameter is to specify it explicitly.
Example: If a DD statement within a procedure reads:

//ddname DD DSN=FRED,DISP=SHARE,UNIT=TAPE,VOL=SER=111111

and you wish to modify that DD statement to read in
data set GEORGE, which is cataloged to a DASD volume,
it is NOT sufficient to specify:

//stepname.ddname DD DSN=GEORGE

Instead you must specify:

//stepname.ddname DD DSN=GEORGE,UNIT=,VOL=

This nullifies the UNIT and VOLUME information, allowing
the system to retrieve that information from the catalog.
(An overriding DD statement without those parameters would
cause the system to find data set GEORGE on tape volume
serial 111111.)

Additional rules for modifying DD parameters
The following additional rules apply for modifying DD parameters:
v To nullify all parameters but the DCB parameter, code DUMMY on the

overriding DD statement.

Modifying Procedures

Chapter 5. Procedures and symbols 31

v Special rules apply when overriding a DCB parameter:
– Code only the keyword subparameters to be changed; the other DCB

subparameters remain unchanged.
– If a positional subparameter is needed, code it, regardless of whether it

appears in the overridden DCB parameter. If a positional subparameter is not
needed or is to be nullified, omit it from the overriding DCB parameter.

– To nullify the entire DCB parameter, nullify each subparameter appearing in
the overridden DCB parameter.

v To nullify a DUMMY parameter on the procedure statement, code one of the
following on the overriding statement:
– A DSNAME parameter with a name other than NULLFILE
– A SYSOUT parameter
– A * or DATA parameter
– A SUBSYS parameter.

Adding an OUTPUT JCL or DD statement
To add OUTPUT JCL or DD statements to a procedure step, code in the name field
of the added OUTPUT JCL or DD statement the name of the procedure step,
followed by a period, followed by a name or ddname. The name must not appear
on any procedure statement.
//pstepname.name OUTPUT parameters

//pstepname.ddname DD parameters

If you omit the procedure step name, the statement is added to the step named in
the previous OUTPUT JCL or DD statement that named a step. If no previous
statements named steps, the statement is added to the first step in the procedure.

Added OUTPUT JCL and DD statements can contain symbols. If the statement is
being added to the last procedure step, any symbols it contains must appear
elsewhere in the procedure.

Supplying in-stream data for a procedure
To supply a procedure step with data from the input stream, code a DD * or DD
DATA statement in the calling step after the last overriding and added DD
statement. The name field of this statement must contain the name of the
procedure step, followed by a period, followed by a ddname. The ddname can be
of your choosing or predefined in the procedure. If it is predefined, it appears in a
DDNAME parameter on a procedure DD statement. For example:

//PROCSTP1.ANYNAME DD *
//PROCSTP2.PREDEFN DD DATA

Embedding in-stream data in a procedure
In JES2 and JES3, you can embed in-stream data directly within in-stream or
cataloged procedure code. For example, in JES2:
//HELLO PROC
//STEPA EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD SYSOUT=A
//SYSUT1 DD DATA
HELLO WORLD
/*
// PEND

Modifying Procedures

32 z/OS V2R1.0 MVS JCL Reference

Rules for modifying DD statements in concatenated data sets
v To override the first DD statement in a concatenation, code only one overriding

DD statement.
v To override any following DD statements in the concatenation, code an

overriding DD statement for each concatenated DD statement.
v The overriding DD statements must be in the same order as the concatenated

DD statements.
v Code a ddname on only the first overriding DD statement. Leave the ddname

field blank on the following statements.
v To leave a concatenated statement unchanged, code its corresponding overriding

DD statement with a blank operand (or parameter) field.

Examples of procedures
Example 1
In the input stream:

//JOBA JOB ACCT23,’G. HILL’
//STEPA EXEC PROC=REP
//PSTEP1.INDS DD *

.
(data)
.

/*

In SYS1.PROCLIB member REP:

// PROC
//PSTEP1 EXEC PGM=WRIT22
//OUTDS DD SYSOUT=A

In this example, the EXEC statement STEPA calls the cataloged procedure named
REP and supplies in-stream data. The procedure executes a program named
WRIT22. The output from the program will appear in the sysout class A data set.

Example 2
In the input stream:

//JOB1 JOB ,’H.H. MORRILL’
//ADD1 OUTPUT COPIES=2
//STEPA EXEC PROC=P
//PS1.OUTA OUTPUT CONTROL=DOUBLE,COPIES=5
//PS1.DSB DD OUTPUT=*.ADD1
//PS1.DSE DD *

.
(data)
.

/*
//PS2.OUTB OUTPUT DEFAULT=YES,DEST=STL

In SYS1.PROCLIB member P:

//PS1 EXEC PGM=R15
//OUTA OUTPUT CONTROL=PROGRAM
//DSA DD SYSOUT=C,OUTPUT=*.OUTA
//DSB DD SYSOUT=D,OUTPUT=*.OUTA
//PS2 EXEC PGM=T48
//DSC DD SYSOUT=A

In this example, added statements are:

Modifying Procedures

Chapter 5. Procedures and symbols 33

v ADD1, which is an OUTPUT JCL statement added at the job level.
v PS1.DSE, which is an in-stream data set added to procedure step PS1.
v PS2.OUTB, which is a default OUTPUT JCL statement added to procedure step

PS2.

Overriding statements are:
v PS1.OUTA, which changes the CONTROL parameter and adds a COPIES

parameter to OUTPUT statement OUTA in procedure step PS1.
v PS1.DSB, which changes the OUTPUT parameter on DD statement DSB in

procedure step PS1.

Example 3
//JOBB JOB ACCT23,’G. HILL’
//STEPB EXEC PROC=WRIT35,COND.PSTEP3=(4,GT,PSTEP1),RD=R
//PSTEP1.DD1 DD VOLUME=SER=,UNIT=SYSDA,DISP=(NEW,CATLG)
//PSTEP1.INDS DD *

.

.
(data)
.

/*
//PSTEP2.DD3 DD DISP=(OLD,KEEP)
//PSTEP3.DD5 DD DUMMY
//PSTEP3.DD6 DD DSNAME=A.B.C
//PSTEP3.DD8 DD EXPDT=

In SYS1.PROCLIB member WRIT35:

// PROC
//PSTEP1 EXEC PGM=WT1,TIME=(,50)
//DD1 DD DSNAME=DATA1,DISP=(NEW,DELETE),SPACE=(TRK,(10,2)),
// UNIT=3390,VOL=SER=1095
//DD2 DD DSNAME=&&WORK,UNIT=SYSDA,SPACE=(CYL,(10,1)),
// DISP=(,PASS)
//PSTEP2 EXEC PGM=WT2,TIME=(,30)
//DD3 DD DSNAME=*.PSTEP1.DD2,DISP=(OLD,DELETE)
//PSTEP3 EXEC PGM=UPDT,TIME=(,45),RD=RNC
//DD4 DD SYSOUT=*
//DD5 DD DSNAME=DATA3,UNIT=3390,DISP=OLD,
// VOLUME=SER=335006
//DD6 DD DSNAME=QOUT,UNIT=3390
//DD7 DD SYSOUT=H
//DD8 DD DSNAME=A.B,DISP=(NEW,CATLG,DELETE),
// SPACE=(TRK,(1)),EXPDT=92365,UNIT=SYSDA

In this example, EXEC statement STEPB calls the cataloged procedure WRIT35. The
COND parameter is added to the EXEC statement for PSTEP3. The RD parameter
is added to the EXEC statements for PSTEP1 and PSTEP2, and overrides the RD
parameter on the EXEC statement for PSTEP3.

In-stream DD statement PSTEP1.DD1 modifies DD statement DD1 in PSTEP1; it
nullifies the VOLUME=SER parameter and overrides the UNIT and DISP
parameters. Note that the parameters are not in the same order in the overriding
and overridden statements.

In-stream DD statement PSTEP1.INDS is added to PSTEP1, supplying in-stream
data to be read by program WT1.

Modifying Procedures

34 z/OS V2R1.0 MVS JCL Reference

In-stream DD statement PSTEP2.DD3 modifies DD statement DD3 in PSTEP2; it
overrides the DISP parameter. Note that the entire parameter is coded, even
though only the second subparameter is being changed.

In-stream DD statement PSTEP3.DD5 nullifies DD statement DD5 in PSTEP3.
However, DD statement DD5 will be checked for correct syntax.

In-stream DD statement PSTEP3.DD6 modifies DD statement DD6 in PSTEP3; it
overrides the DSNAME parameter.

In-stream DD statement PSTEP3.DD8 modifies DD statement DD8 in PSTEP3; it
nullifies the EXPDT parameter. Note that the EXPDT keyword cannot have a null
value. Therefore, you cannot nullify EXPDT by setting it to a substitution text in
the procedure DD and then nullifying the symbol on the invoking EXEC statement.
EXPDT can only be nullified by not coding a value for it on the overriding DD
statement.

Note that procedure DD statements DD2, DD4, and DD7 were not modified.

Nested procedures
Cataloged and in-stream procedures can invoke other procedures (up to 15 levels
of nesting). In a procedure, an EXEC statement can invoke another procedure,
which can contain an EXEC statement to invoke another procedure, and so on.

Note that an in-stream procedure cannot be defined within another procedure. The
sequence PROC, PROC, PEND, PEND is not valid.

Nesting procedures
The following example shows how procedures can be nested:

Procedure C:
//C PROC
//CS1 EXEC PGM=GHI

.
// PEND

Procedure B:
//B PROC
//BS1 EXEC PROC=C

.
//BS2 EXEC PGM=DEF

.
// PEND

Procedure A:
//A PROC
//AS1 EXEC PROC=B

.
//AS2 EXEC PGM=ABC

.
// PEND

Job Stream:
//JOB1 JOB
//STEP1 EXEC PROC=A

.
//STEP2 EXEC PGM=JKL

.

.

Modifying Procedures

Chapter 5. Procedures and symbols 35

The following statements are equivalent to the nested procedures shown above and
show the levels of nesting (scoping) for the procedures.

//JOB1 JOB Level 0
//CS1 EXEC PGM=GHI Level 3

.
//BS2 EXEC PGM=DEF Level 2

.
//AS2 EXEC PGM=ABC Level 1

.
//STEP2 EXEC PGM=JKL Level 0

.

.

Modifying nested procedures
The rules for modifying OUTPUT JCL and DD statements described in “Modifying
OUTPUT JCL and DD statements” on page 30 apply to nested procedures.

In addition, the following rules apply to modifying statements in nested
procedures.
1. Procedure and step names referenced by other statements in the job should be

unique within the job.
2. Modifying or additional JCL statements must appear in the job stream

following the EXEC statement for the procedure they are to modify and prior
to the next EXEC statement.

3. Modifying or additional JCL statements apply to one level of nesting only. You
can use statements to modify statements in a procedure only for the level of
nesting at which the EXEC statement for that procedure appears.

4. Modifying or additional JCL statements cannot themselves be modified. Do not
modify statements that are overrides or additions to a procedure.

5. Modifying or additional JCL statements can only have procstepname.name or
procstepname.ddname in their name field. Do not specify backward references
to nested procedures, such as procstepname.procstepname.ddname DD
parameters.

These rules are illustrated in the examples in this topic.

Examples of modifying nested procedures
Example 1: The following example shows overrides and additions to DD
statements.

Procedure C:
//C PROC
//CS1 EXEC PGM=CCC
//CS1DD1 DD DSNAME=A.B.C,DISP=SHR
//CS1DD2 DD SYSOUT=A
// PEND

Procedure B:
//B PROC
//BS1 EXEC PROC=C
//CS1.CS1DD1 DD DSNAME=X.Y.Z This statement is a valid
//* override of procedure C, stepCS1
//* for DD CS1DD1
//*
//CS1.CS1DD3 DD SYSOUT=A This statement is a valid
//* addition to procedure C, step CS1
//BS2 EXEC PGM=BBB
//BS2DD1 DD DSNAME=E,DISP=SHR
// PEND

Nested Procedures

36 z/OS V2R1.0 MVS JCL Reference

Procedure A:
//A PROC
//AS1 EXEC PROC=B
//BS2.BS2DD2 DD DSNAME=G,DISP=SHR This statement is a valid
//* addition to procedure B, step BS2
//AS2 EXEC PGM=AAA
//AS2DD1 DD DSNAME=E,DISP=SHR
// PEND

Job Stream:
//JOB1 JOB
//STEP1 EXEC PROC=A
//AS2.AS2DD2 DD DSNAME=G,DISP=SHR This statement is a valid
//* addition to procedure A, step AS2
//STEP2 EXEC PGM=IEFBR14

.

The following statements are equivalent to the nested procedures shown above.
//JOB1 JOB
//CS1 EXEC PGM=CCC
//CS1DD1 DD DSNAME=X.Y.Z,DISP=SHR
//*
//CS1DD2 DD SYSOUT=A
//CS1DD3 DD SYSOUT=A
//*
//BS2 EXEC PGM=BBB
//BS2DD1 DD DSNAME=E,DISP=SHR
//BS2DD2 DD DSNAME=G,DISP=SHR
//*
//AS2 EXEC PGM=AAA
//AS2DD1 DD DSNAME=E,DISP=SHR
//AS2DD2 DD DSNAME=G,DISP=SHR
//STEP2 EXEC PGM=IEFBR14

Example 2: The following example shows nested procedures and invalid overrides
of DD statement parameters that result in JCL errors. The example refers to the
rules that appear in “Modifying nested procedures” on page 36.
Procedure C:

//C PROC
//CS1 EXEC PGM=CCC
//CS1DD1 DD DSN=A.B.C,DISP=SHR
//CS1DD2 DD SYSOUT=A
// PEND

Procedure B:
//B PROC
//BS1 EXEC PROC=C
//CS1.CS1DD1 DD DSNAME=X.Y.Z
//CS1.CS1DD3 DD SYSOUT=A
//BS2 EXEC PGM=BBB
//BS2DD1 DD DSN=E,DISP=SHR
// PEND

Procedure A:
//A PROC
//AS1 EXEC PROC=B
//BS1.CS1.CS1DD1 DD DSN=X.Y.Z This statement is an invalid
//* override of procedure B, step BS1,
//* DD CS1.CS1DD1 (rules 4 and 5)
//*
//BS1.CS1.CS1DD3 DD SYSOUT=A This statement is an invalid
//* override of procedure B, step BS1,
//* DD CS1.CS1DD3 (rules 4 and 5)
//*

Nested Procedures

Chapter 5. Procedures and symbols 37

//BS1.BS1DD1 DD DSN=G,DISP=SHR This statement is an invalid
//* addition to procedure B, step BS1
//* (rule 3)
//AS2 EXEC PGM=AAA
//AS2DD1 DD DSN=E,DISP=SHR
// PEND

Job Stream:
//JOB1 JOB
//STEP1 EXEC PROC=A
//AS1.BS1.CS1.CS1DD1 DD DSN=X This statement is an invalid
//* override of procedure A, step AS1,
//* DD BS1.CS1.CS1DD1 (rules 3 and 5)
//STEP2 EXEC PGM=IEFBR14

Using system symbols and JCL symbols
System symbols and JCL symbols are character strings that represent variable
information in JCL. They allow you to modify JCL statements in a job easily. A
symbol-defining string is limited to eight characters, not including the identifying
ampersand (&) character.

This section:
v Describes system symbols and JCL symbols and the differences between them
v Explains how to define JCL symbols
v Shows how to code system symbols and JCL symbols.

What are system symbols?
System symbols represent values that are unique to each system. The system
replaces system symbols with its own values when it processes started task JCL
and batch job JCL (jobs and procedures read from a procedure library), and TSO
logons. A started task is a task resulting from JCL that is processed immediately as
a result of a START command. Batch job JCL is scheduled by JES2 or JES3 and is
run based on system resources and other controls. For additional information
about started tasks, see “Using symbols in started task JCL” on page 66. For
additional information about batch job JCL, see “Using symbols in batch JCL” on
page 56.

The following rules govern the use of system symbols:
v To use system symbols in batch JCL, you must first specify SYSSYM=ALLOW

on the class definition, and assign the batch job to that class.
v You can use system symbols in started task JCL and batch job JCL (for both jobs

and procedures), and in TSO logon procedures.
v Within started task JCL and batch job JCL, you can use system symbols

wherever you use JCL symbols (described under “What are JCL symbols?” on
page 39).

v

Note the following differences between system symbols and JCL symbols:
v Substitution texts for system symbols are either fixed for the life of an IPL (static

system symbols) or determined by the system (dynamic system symbols).
v Substitution texts for JCL symbols can be controlled through input job stream

modifications to their definitions.

Nested Procedures

38 z/OS V2R1.0 MVS JCL Reference

Before you use system symbols in JCL, see z/OS MVS Initialization and Tuning
Reference for a complete list of symbols and for details about how they work. Then
read the rest of this section for specific information about using system symbols in
started task JCL.

Displaying static system symbols
If you are authorized to do so, you can enter the DISPLAY SYMBOLS command to
display the static system symbols and associated substitution texts that are in effect
for a member. The output from DISPLAY SYMBOLS shows you the system
symbols that you can specify. See the description of DISPLAY SYMBOLS in z/OS
MVS System Commands for the command syntax.

Using system symbols in started task JCL
The general rules and recommendations for using system symbols (which are
described in z/OS MVS Initialization and Tuning Reference) apply to started task JCL.
The following are exceptions to those general rules and recommendations:
v Normally, you can specify an optional period at the end of system symbols. In

started task JCL, you must follow the rules for JCL symbols when placing a
period at the end of system symbols. See “Using symbols before fixed code” on
page 48 for details.

v Although dynamic system symbols are supported in started task JCL, IBM does
not recommend that you code them in started task JCL. The system substitutes
text for dynamic system symbols at conversion time, which means that the
system could assign different substitution texts to the same dynamic system
symbol within the same job.
For example, the resolved substitution text for the &JOBNAME dynamic system
symbol is the name of the job assigned to the address space in which the JCL is
converted, not the name of the JCL job being processed.

For further information about specifying system symbols in started task JCL,
including examples, see “Using symbols in started task JCL” on page 66.

What are JCL symbols?
JCL symbols differ from system symbols in that you must define them in started
task JCL before you can use them in that JCL. The JCL symbols that you define are
valid only for the current job. Conversely, there is no need to define system
symbols; they are either defined to MVS or defined by your installation, and you
can use them in any set of started task JCL.

The rules for coding JCL symbols are the same as for coding system symbols. You
can code system symbols anywhere in started task JCL that you code JCL symbols.

This section explains how to define, nullify, and use JCL symbols in JCL.

Defining and nullifying JCL symbols
When you code JCL symbols, you must define or nullify them in your JCL each
time a job runs; otherwise, the system does not substitute text for JCL symbols.

The maximum length of any substitution text that you can assign to a JCL symbol
is 255 characters.

To define or nullify a JCL symbol, code the substitution text on one or more of the
following:

System Symbols and JCL Symbols

Chapter 5. Procedures and symbols 39

1. The EXEC statement that calls procedures: Use the EXEC statement to define
substitution texts on statements in the called procedures. The substitution texts
you assign override the default substitution texts assigned on the PROC
statement. For example:

//STEP1 EXEC PROC=SEARCH,PARM1=’MYDS1.PGM’

The system uses a JCL symbol defined on the EXEC statement for any
procedures that it invokes. A JCL symbol defined on an EXEC statement is not
in effect for subsequent job steps in the same level of procedure nesting. See
“Using symbols in nested procedures” on page 51 for more information.
If you specify duplicate JCL symbols on an EXEC statement, the system uses
the first substitution text as the default.

2. The PROC statement that begins a procedure: The PROC statement must
begin in-stream procedures and can begin cataloged procedures. Use the PROC
statement to define default substitution texts for JCL symbols in the procedure
(you can override the defaults on the EXEC statement). If you do not define or
nullify the substitution text for a JCL symbol on the EXEC statement, the
system uses the default substitution text. For example:

//PROC1 PROC PARM2=OLD,PARM3=111222

If you specify duplicate JCL symbols on a PROC statement, the system uses the
first substitution text as the default.
Assign only one substitution text to each JCL symbol used in a procedure.

3. The SET statement that defines and nullifies: JCL symbols Code the SET
statement in the JCL before the first use of the JCL symbol. Use the SET
statement to define JCL symbols that are used on:
v JCL statements in the JCL stream
v Statements in a procedure (when the EXEC statement that calls the procedure

and the PROC statement for the procedure do not also define JCL symbols).
For example:

//LEVEL1 SET PARM2=NEW,PARM3=DELETE

If you define duplicate JCL symbols on a SET statement, the system assigns the
last substitution text to the JCL symbol.

Note: The substitution text specified on the SET statement is assigned to the
JCL symbol regardless of the logic of the construct. This is because the SET
statement is not executed conditionally (such as in the THEN and ELSE clauses
of an IF/THEN/ELSE/ENDIF statement construct).

If the SET statement defines a value for a JCL symbol but that symbol is not coded
in the JCL, there is no JCL error. Otherwise:
v All JCL symbols for which values are defined must be coded in the JCL.
v All JCL symbols coded in the JCL must have defined values.

Syntax of JCL symbol definitions: To define a substitution text to a JCL symbol,
code:
JCL_symbol_name=substitution_text

Rules for defining JCL symbols:

v Define a substitution text that is 1-255 characters long.
v Enclose within apostrophes substitution texts that do not fit on a single line.

Continue values that do not fit on a single line as described in “Continuing JCL
statements that contain symbols” on page 46.

v Do not specify the ampersand that identifies the JCL symbol in the procedure.

System Symbols and JCL Symbols

40 z/OS V2R1.0 MVS JCL Reference

v Define JCL symbols on EXEC, PROC, or SET statements, as described in
“Defining and nullifying JCL symbols” on page 39. For example, if the JCL
symbol &NUMBER appears on one or more DD statements in a procedure, and
you want to substitute the text 3390 for &NUMBER, code one or more of the
following:

//SET1 SET NUMBER=3390

//STEP1 EXEC PROC=PROC1,NUMBER=3390

//PROC1 PROC NUMBER=3390

v Do not specify JCL symbols within other JCL symbols. The results can be
unpredictable, especially if the imbedded JCL symbol is not previously defined.

Defining names for JCL symbols: IBM recommends that your installation define
standard names for frequently used JCL symbols and enforce the use of those
names. For example, if your installation frequently assigns department numbers in
procedures, define the &DEPT JCL symbol and use it consistently. If your
installation plans to provide a standard set of JCL symbols, ensure that all system
and application programmers know about those JCL symbols.

You can define names for JCL symbols that are the same as system symbol names.
When a JCL symbol has the same name as a system symbol, the substitution text
for the JCL symbol overrides the substitution text for the system symbol. For
example, if JCL defines a symbol with the name &SYSNAME, which is also the
name of a system symbol, the system uses the substitution text that is defined in
the JCL.

Defining default substitution texts to JCL symbols: The substitution texts that you
define to JCL symbols on the PROC statement serve as defaults. You should assign
default values to all JCL symbols in a procedure. The system uses the default
values on the PROC statement when no calling EXEC statement or SET statement
overrides them.

Using special characters in substitution texts: If a substitution text contains certain
special characters, enclose the substitution text in apostrophes (for example,
LOC='O''HARE'). The enclosing apostrophes are not considered to be part of the
substitution text. See Table 11 on page 21 for a list of special characters.

If the substitution text contains multiple ampersands and is not enclosed in
apostrophes, the system treats each pair of ampersands as a single character.

If the special characters include apostrophes, code each apostrophe as two
consecutive apostrophes. You must code four consecutive apostrophes in
substitution texts that are to be substituted into a parameter that is enclosed in
apostrophes. For example:

// SET LOC=’O’’’’HARE’
//S1 EXEC PGM=IEFBR14,PARM=’&LOC’

produces the following equivalent JCL, which is processed correctly:
//S1 EXEC PGM=IEFBR14,PARM=’O’’HARE’

However, if you code the following:
// SET LOC=’O’’HARE’
//S1 EXEC PGM=IEFBR14,PARM=’&LOC’

The equivalent JCL is:

System Symbols and JCL Symbols

Chapter 5. Procedures and symbols 41

//S1 EXEC PGM=IEFBR14,PARM=’O’HARE’

The system fails this statement because the apostrophes resulting from the
substitution are unbalanced.

When you want to code a JCL symbolic that consists of two parameters separated
by a comma, you may have to enclose the JCL symbolic in triple apostrophes. For
example:

//JOB1 EXEC PROC1
//PROC1 PROC WORK=’’’1000,500’’’
//STEP1 EXEC PROC2,WORK=&WORK

The substitution JCL would be:
//STEP1 EXEC PROC2,WORK=’1000,500’

If the substitution text begins and ends with matched parentheses, do not enclose
the value in apostrophes. The parentheses are considered part of the substitution
text. For example:

//TPROC PROC DISP=(NEW,PASS)

If the substitution text within the parentheses contains apostrophes, the
apostrophes are considered part of the substitution text. The system does not
remove them.

Syntax for nullifying JCL symbols: To nullify a JCL symbol, code:
JCL_symbol_name=

v Do not code the ampersand that identifies the JCL symbol in the procedure.
v Do not code a substitution text after the equal sign.
v Do not code literal blanks (for example, VALUE=' ').

For example, if the JCL symbol &NUMBER appears in one or more DD statements
in a procedure, code one or more of the following to nullify UNIT=&NUMBER:

//SET2 SET NUMBER=

//CALLER EXEC PROC=ABC,NUMBER=,ACCT=DID58

//ABC PROC NUMBER=,LOC=POK

When nullifying JCL symbols, keep the following in mind:
v When you nullify a JCL symbol, delimiters, such as leading or trailing commas,

are not nullified. In some cases, the remaining comma is required; in others it
causes a syntax error.

v Do not nullify JCL symbols that appear on JCL keywords that do not accept
NULL values. The syntax descriptions of the individual keywords specify
whether the keywords allow NULL values.

v If you use an EXEC statement to nullify a JCL symbol, and a PROC statement
specifies a default substitution text for the JCL symbol, the JCL symbol is
nullified.

The following sections explain special considerations to make when JCL symbols
are positional and not positional.

When a JCL Symbol is Positional: When a JCL symbol is a positional parameter, and
another parameter follows it, code a comma to omit the positional parameter. Code

System Symbols and JCL Symbols

42 z/OS V2R1.0 MVS JCL Reference

commas both before and after the JCL symbol; the required commas remain after
the JCL symbol is nullified. For example, &NUMBER for the unit count:

UNIT=(3390,&NUMBER,DEFER)

When &NUMBER is nullified, the parameter correctly becomes:
UNIT=(3390,,DEFER)

When a JCL Symbol is Not Positional: When a JCL symbol is not a positional
parameter, do not code a comma to omit the parameter. Do not code a comma
before the JCL symbol; no commas remain after the JCL symbol is nullified. For
example, serial numbers in the VOLUME=SER parameter:

VOLUME=SER=(&FIRST&SECOND)

If either of the JCL symbols is nullified, a leading or trailing comma does not
remain. If you nullify &FIRST and assign 222222 for &SECOND, the parameter
correctly becomes:

VOLUME=SER=(222222)

If you nullify &SECOND and define 111111 to &FIRST, the parameter correctly
becomes:

VOLUME=SER=(111111)

Code a comma when it is required in a substitution text. Enclose the comma in
apostrophes (because it is a special character). For example:

//CALLER EXEC PROC=ABC,FIRST=111111,SECOND=’,222222’

Coding symbols in JCL
JCL symbols and system symbols can represent parameters, subparameters, or
values in procedures or in the parameter field of statements; those that vary each
time a job runs are good candidates to be coded as symbols.

You can code JCL symbols in:
v JCL statements in the input job stream, submitted either in batch mode or from a

TSO session (but not in the job stream read in response to a START command)
v Statements in cataloged or in-stream procedures (which do not include started

task JCL)
v DD statements that are added to a procedure (something that is possible, but not

practical for a started task procedure).

You can code system symbols in started task JCL and batch job JCL (jobs and
procedures), which can be read only from a procedure library. Therefore, you can
code system symbols only in statements in cataloged procedures.

Symbolic parameters are not permitted in place of the ''*'' or ''DATA'' positional
parameters on SYSIN type DD statements. SYSIN DD statements do not
necessarily have SYSIN as the ddname. See “SYSIN DD statement” on page 326 for
a description of the SYSIN DD statement.

For example, if the data set name on a DD statement in an INCLUDE group can
vary each time the INCLUDE group is imbedded in the JCL, you can code the
DSNAME parameter as a system symbol on the DD statement:

DSNAME=&DAY

System Symbols and JCL Symbols

Chapter 5. Procedures and symbols 43

If a job step is charged to different account numbers each time the procedure is
executed, code the ACCT parameter on the EXEC statement as one or more system
symbols or JCL symbols:

ACCT=&ALLNOS
ACCT=&FIRST&SECOND&THIRD

v For information about using symbols in nested procedures, see “Using symbols
in nested procedures” on page 51.

v For information about using symbols in started task JCL, see “Using symbols in
started task JCL” on page 66.

v For information about using symbols in batch job JCL, see “Using symbols in
batch JCL” on page 56.

Rules for coding symbols in JCL
Follow these rules when coding symbols in JCL:
1. Do not code EXEC statement parameter and subparameter keywords as names

for JCL symbols.
Example: Do not code ®ION=200K or REGION=®ION; correctly code
REGION=&SIZE.

2. Do not code DD or JOB statement keywords as JCL symbols in procedures or
jobs that are started by a START command from the operator console. This rule
includes the following obsolete keywords:
v AFF
v SEP
v SPLIT
v SUBALLOC
This rule also includes DCB subparameters. For example, do not use the
following DCB subparameters as symbol values:
v BFALN
v LRECL
For a complete list of DCB subparameters, see “DCB subparameters” on page
140.

3. When coding a JCL symbol that has the same name as a system symbol, keep
in mind that the substitution text for the JCL symbol overrides the substitution
text for the system symbol with the same name.

4. Do not use symbols to change the identifier field, name field, or operation field
of a JCL statement.

In addition to the preceding rules for coding symbols in JCL, you also need the
general rules for coding system symbols. See the coding system symbols
information in z/OS MVS Initialization and Tuning Reference.

Note:

1. JCL supports substringing of system symbols but not JCL symbols. You can use
substringing to specify a subset of characters in substitution text. For an
explanation of substringing symbols, see the substringing symbols information
in the general rules for coding symbols in z/OS MVS Initialization and Tuning
Reference

2. You can also use double ampersand notation in your JCL code. See z/OS MVS
Initialization and Tuning Reference for further information.

For instance, suppose you want to enter a substringed symbol as a parameter of an
EXEC statement of a started task. By using a double ampersand you can force

System Symbols and JCL Symbols

44 z/OS V2R1.0 MVS JCL Reference

MVS to defer processing the statement until after the JCL is executed and the
program is running. For example, given a value of '05' for SYSCLONE, the
statement could read:
//Step1 EXEC PGM=MVSCMD,PARM=’F RMF,S III,MEMBER(3&&SYSCLONE(2:1))’

The MVS converter will change that to:
//Step1 EXEC PGM=MVSCMD,PARM=’F RMF,S III,MEMBER(3&SYSCLONE(2:1))’

which is the JCL that gets executed. Your MVSCMD program would then take
what is in the PARM on its EXEC statement and issue it as an MVS command:
F RMF,S III,MEMBER(3&SYSCLONE(2:1))

which the command symbolic substitution routine then processes and changes to:
F RMF,S III,MEMBER(35)

Determining equivalent JCL
When you submit JCL that specifies symbols, the system responds as if you had
coded the equivalent JCL (without symbols) produced by the following sequence
of operations:
1. Determine the substitution texts. The system:

v Does not consider apostrophes that enclose symbols as part of their
substitution texts.

v Considers parentheses that enclose symbols as part of their substitution texts.
v Compresses two-to-one the double apostrophes within symbols.
v Compresses two-to-one the double ampersands in symbols that are not

enclosed in apostrophes.
v Does not compress double ampersands within symbols that are enclosed in

apostrophes.
2. Substitute all symbols.

v Resolution of all symbols might determine the processing of subsequent
statements. For example, a JCLLIB or INCLUDE statement might contain
symbols that determine which statements are used in the job.

v Symbols on JCL records are treated as if they were resolved simultaneously.

The following example shows a procedure that defines JCL symbols:
//EXAMPLE PROC SYM1=’What’’’’s up, Doc?’,SYM2=(DEF),SYM3=&&&&TEMP1,
// SYM4=’&&TEMP2’,SYM5=&&TEMP3,TEMP3=TEMPNAME,
// SYM6=&TEMP3
//S1 EXEC PGM=WTO,PARM=’&SYM1’,ACCT=&SYM2
//DD1 DD DSN=&SYM3,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD2 DD DSN=&SYM4,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD3 DD DSN=&SYM5,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD4 DD DSN=&SYM6,UNIT=SYSDA,SPACE=(TRK,(1,1))
// PEND

The PROC statement assigns the following substitution texts to the JCL symbols:
SYM1 What’’s up, Doc?
SYM2 (DEF)
SYM3 &&TEMP1
SYM4 &&TEMP2
SYM5 &TEMP3
TEMP3 TEMPNAME
SYM6 &TEMP3

System Symbols and JCL Symbols

Chapter 5. Procedures and symbols 45

The equivalent JCL produced by the substitution, when the procedure is expanded,
is:

//S1 EXEC PGM=WTO,PARM=’What’’s up, Doc?’,ACCT=(DEF)
//DD1 DD DSN=&&TEMP1,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD2 DD DSN=&&TEMP2,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD3 DD DSN=&TEMP3,UNIT=SYSDA,SPACE=(TRK,(1,1))
//DD4 DD DSN=&TEMP3,UNIT=SYSDA,SPACE=(TRK,(1,1))

Note the following in the example:
v SYM1 requires four apostrophes in its original definition because it is substituted

into a parameter enclosed in apostrophes. The system compresses the
apostrophes in the symbol definition when the value of the symbol is
determined, and again when the EXEC PARM parameter is processed. The
parameter passed to the WTO program is:
What’s up, Doc?

v The single ampersand produced by SYM5 in the DSN parameter of DD3 cannot be
interpreted as the start of a new JCL symbol, since substitution is performed
only once for a given statement. All symbols are treated as if they were resolved
simultaneously. If the symbol TEMP3 defined on the PROC statement is not
used elsewhere in the procedure, a JCL error results.

v The symbol TEMP3 cannot be used to assign a value for the symbol SYM6 on
the same statement. Because all symbolic parameters are resolved
simultaneously, the value assigned to SYM6 cannot depend on another symbol
defined at the same time. The system assigns the value &TEMP3, not
&&TEMP2, to SYM6. Again, if the symbol TEMP3 is not used elsewhere in the
procedure, a JCL error will result.

Continuing JCL statements that contain symbols
The system evaluates continuations of JCL statements that contain symbols as
follows:
1. The system substitutes all symbols on an 80-character record.
2. The system determines if the record continues to another record. If symbolic

substitution produces a null record (a line that is blank except for slashes in
columns 1 and 2) as the continuation record, the substitution is not valid.

For example, consider the following JCL:
//SET1 SET VAL1=’ABC,’,VAL2=DEF,NULLSYM=’’
//S1 EXEC PGM=IEFBR14,PARM=&VAL1
// TIME=30
//S2 EXEC PGM=IEFBR14,PARM=&VAL2
// TIME=30
//S3 EXEC PGM=IEFBR14,PARM=&VAL1
// &NULLSYM

The JCL records that define step S1 form a valid continuation; the JCL symbol
VAL1 introduces a comma, and the continuation is correctly coded.

Steps S2 and S3 are not valid. In step S2, the first record does not end in a comma
after substitution of VAL2. In step S3, the record containing NULLSYM evaluates to a
null record after symbolic substitution.

It may be that the number and length of symbols form a parameter that does not
fit within the limits imposed by an 80-character record. (In reality the limit is 68
characters, because columns 1, 2, and 3 must contain respectively a slash, slash,
and blank, and column 72 must be blank.) Two techniques for handling this
situation are: (1) defining shorter symbols to substitute for the longer ones, or (2)

System Symbols and JCL Symbols

46 z/OS V2R1.0 MVS JCL Reference

|

dividing the series of symbols so as to form two parameters, which would allow
you to place a comma after the first and move the second to a continuation record.

Coding symbols in comments
The system does not process symbols in comment statements or in comment fields
of JCL statements. Comments on JCL statements that contain symbols are
evaluated as follows:
v In the original submitted JCL, the system recognizes the beginning of the

comment field when it encounters the blank character at the end of the
parameter field. For purposes of symbolic substitution, the system disregards
text occurring after this blank.

v After performing symbolic substitution, the system re-evaluates the resulting
equivalent JCL to determine where the parameter field ends. The system
recognizes the beginning of the comment field in the substituted JCL when it
encounters the blank character at the end of the (potentially modified) parameter
field. The system disregards text occurring after this blank in subsequent
processing.

Example:
// SET QUOTE=’’’’
//S1 EXEC PGM=IEFBR14,PARM="E.ABC DEF"E
//DD1 DD DUMMY

The equivalent JCL produced by substitution is
//S1 EXEC PGM=IEFBR14,PARM=’ABC DEF"E
//DD1 DD DUMMY

DEF"E is considered a comment because it follows the blank that ends the
parameter field, so the second instance of "E will not be replaced during
symbolic substitution. Because the first "E symbol resolves to a single
quotation mark, the system expects to either find another single quotation at the
end of a subparameter list, or find a continuation to the next line. The EXEC
statement receives an error message indicating that the system did not receive an
expected continuation.

Example:
// SET CONT=’ ’,T=’(30,0)’
//S1 EXEC PGM=IEFBR14&CONT,PARM=’ABC DEF’,TIME=&T

The equivalent JCL is:
//S1 EXEC PGM=IEFBR14 PARM=’ABC DEF’,TIME=(30,0)

The text (30,0) is substituted for the symbol &T. However, because substitution
introduced a blank character after the program name parameter, all text following
the blank is considered to be a comment. Thus the system does not process the
PARM and TIME parameters.

Coding symbols in apostrophes
You can code symbols in apostrophes on the following keywords:
v The DD statement AMP parameter
v The DD statement PATH parameter
v The DD statement SUBSYS parameter
v The EXEC statement ACCT parameter
v The EXEC statement PARM parameter.

System Symbols and JCL Symbols

Chapter 5. Procedures and symbols 47

When you specify these parameters, the system regards a string beginning with an
ampersand (&) inside the apostrophes as a symbol when the following conditions
are true:
v The character following the ampersand is not another ampersand.
v The characters following the ampersand are ended by a character that is not

alphabetic, numeric, or national. The ending character must be not more than 9
characters after the ampersand. The symbol cannot be more than 8 characters
long.

v The string of characters delimited by the & (ampersand) character and the
ending character is:
– Defined as a symbol on a PROC, EXEC, or SET statement
– A system symbol.

The system treats a string beginning with an ampersand but not meeting these
criteria as a literal sequence of characters. Thus the system does not substitute text
for symbols and does not issue error messages.

In the following example, &XXX is a JCL symbol that is defined in the STEP2
EXEC statement. &INPUT is not a symbol because it is not defined.

//TPROC PROC
//STEP1 EXEC PGM=IEFBR14,PARM=’&INPUT&XXX’
// PEND
//STEP2 EXEC TPROC,XXX=VALUE

The ending character for &XXX is the apostrophe.

The result of the example is:
//EXEC PGM=IEFBR14,PARM=’&INPUTVALUE’

On parameters that are not in the list, the system correctly resolves a symbol that
is enclosed in apostrophes when the symbol is immediately preceded by a symbol
that is not enclosed in apostrophes. For example, both A and B are substituted
correctly in:

//DD1 DD &A’&B’,DISP=OLD

A symbol within apostrophes cannot be broken at column 71 and continued to the
next line. For example, the following JCL statement is incorrect:
// SET SYMBOL=VALUE
//S1 EXEC PGM=IEFBR14,TIME=(30,0),REGION=4K,PARM=’Print &SYMB
// OL’

The JCL symbol SYMBOL is not substituted because it must be coded on a single
JCL record. A JCL error may result.

Using symbols before fixed code
A period is required after a symbol when the code that follows the symbol is fixed
and begins with:
v An alphanumeric or national character ($, #, @)
v A period.
v A left parenthesis, when it is at the start of the designation of a relative

generation of a generation data group (GDG) that does not contain a plus or
minus sign.

System Symbols and JCL Symbols

48 z/OS V2R1.0 MVS JCL Reference

The system recognizes the period as a delimiter. The period does not appear after
you assign a substitution text to a symbol or nullify a symbol.

For example, if the first part of a data set name varies and the last does not, as in
MONDATA, TUESDATA, and so forth, code:
DSNAME=&DAY.DATA

When coding a system symbol in a data set name with a relative generation
number, you must place a period between the system symbol and the generation
number if the following conditions are met:
v The system symbol immediately precedes the generation number.
v The generation number is not preceded by a plus or minus sigh.

For example, if &SYSNAME resolves to SY1, type DSNAME=PROD.&SYSNAME.
(0) if the desired data set name is PROD.SY1(0). If a plus or minus sign is
included, the period is optional: DSNAME=PROD.&SYSNAME.(+0) and
DSNAME=PROD.&SYSNAME(+0) are both acceptable.

Code two consecutive periods (..) if a period follows a symbol. For example, code
&DEPT..POK when the desired value is D58.POK and DEPT=D58 is the value
assignment.

Using symbols as positional parameters
When a symbol is a positional parameter followed by other parameters in the
statement, follow the symbol with a period instead of a comma. For example:

//DS1 DD &POSPARM.DSNAME=ATLAS,DISP=OLD

If &POSPARM is nullified, the statement appears as:
//DS1 DD DSNAME=ATLAS,DISP=OLD

When assigning a substitution text to &POSPARM, include the comma:
POSPARM=’DUMMY,’

Using two or more symbols in succession
Code two or more symbols in succession without including a comma. For example:

PARM=&DECK&CODE

If the substitution text is to contain a comma, include the comma in the
substitution text.

Using multiple symbols
The same symbol can appear more than once in a job. You can assign different
substitution texts to the same symbol on different statements.

The same symbol can appear more than once in a procedure, as long as its
substitution text is the same throughout the procedure. For example, &DEPT can
appear several times in a procedure, if the department number is always to be the
same.

Using the SYSUID system symbol
As long as you observe the rules listed in "Rules for Coding Symbols in JCL," you
can code the SYSUID system symbol anywhere in your JCL where you would code
a user ID except on the keywords and statements listed in the topic “Restrictions on
coding SYSUID” on page 50. The system replaces &SYSUID with the user ID
under whose authority the job will run, which is normally one of the following:

System Symbols and JCL Symbols

Chapter 5. Procedures and symbols 49

v The USER parameter from the JOB statement, if specified, or
v The user ID from which the job was submitted.

Note: If userid propagation does not occur, (for example a security product is not
active or the submitting userid is not allowed to propagate), SYSUID will be null.
A security product is considered "not active" in OS/390® if it has been disabled. If
RACF® is running in a fail soft mode, the security product is considered "active."

Note: If RACF is active and the job is running with a user ID not defined to
RACF, the system provides substitute characters for &SYSUID and may fail the job
because of this JCL error. The same results may occur if &SYSUID is not resolved
to a valid user when RACF is not active.

You can, for example, use &SYSUID as a generic qualifier in a data set name
specified in a transaction program profile that will be invoked by a transaction
program. Code SYSUID on the DSNAME parameter as the high-level qualifier of
the data set name:

//DD1 DD DSNAME=&SYSUID..PROFILE,DISP=(NEW,KEEP)

The system replaces the symbol with the userid of the transaction program
invoker. If userid ROGERS invokes the transaction program, the system will create
the data set name ROGERS.PROFILE.

Restrictions on coding SYSUID
Do not code &SYSUID on the following keywords and statements:
v Job statement USER, GROUP, PASSWORD, and SECLABEL parameters when a

security product like RACF is active.
v The XMIT JCL statement; coding &SYSUID on XMIT causes a JCL error and the

job is flushed.
v JES2 or JES3 control statements.
v Job statement accounting information and programmer name fields.

In an APPC scheduling environment:
v Avoid coding &SYSUID on the DD statement SUBSYS parameter; symbol

substitution is unpredictable on SUBSYS.
v Avoid coding &SYSUID on the JOB statement NOTIFY parameter; if the user ID

specified through the Allocate service is longer than 7 characters, the Allocate
request will fail.

Avoid using &SYSUID as an unqualified data set name. Depending on the other
statements in the transaction program profile, the system might interpret the data
set name as a temporary data set name.

Examples of defining and coding symbols in JCL
Example 1:
//JOBA JOB ...
//INSTREAM PROC LOC=POK
//PSTEP EXEC PGM=WRITER
//DSA DD SYSOUT=A,DEST=&LOC
// PEND
//CALLER EXEC PROC=INSTREAM,LOC=NYC
//

System Symbols and JCL Symbols

50 z/OS V2R1.0 MVS JCL Reference

In this example of an in-stream procedure, the &LOC symbol has a default value
of POK on the PROC statement; then it is assigned an execution value of NYC on
the calling EXEC statement.

Example 2:
//JOBB JOB ...
//INSTREAM PROC LOC=POK,NUMBER=3390
//PSTEP EXEC ...
//PIN DD DSNAME=REPORT,DISP=(OLD,KEEP),UNIT=&NUMBER
//POUT DD SYSOUT=A,DEST=&LOC
// PEND
//CALLER EXEC PROC=INSTREAM,NUMBER=,LOC=STL
//PSTEP.INDATA DD *

.
(data)
.

/*

This code nullifies the &NUMBER JCL symbol. The calling EXEC statement
assignment of STL for the &LOC symbol overrides the PROC statement
assignment of POK.

Example 3: This example illustrates execution of an in-stream procedure to test
symbols before placing the procedure in a procedure library. The in-stream
procedure named TESTPROC is:
//TESTPROC PROC A=IMB406,B=ABLE,C=3390,D=WXYZ1,
// E=OLD,F=TRK,G=’10,10,1’
//STEP EXEC PGM=&A
//DD1 DD DSNAME=&B,UNIT=&C,VOLUME=SER=&D,DISP=&E,
// SPACE=(&F,(&G))
// PEND

To execute this in-stream procedure and override &A with IEFBR14, &B with
BAKER, and &E with (NEW, KEEP) but leave the other parameters the same, call
the in-stream procedure with:
//CALLER1 EXEC PROC=TESTPROC,A=IEFBR14,B=BAKER,E=(NEW,KEEP)

Note that the value (NEW,KEEP) does not require apostrophes because it contains
a matched pair of parentheses. See Table 12 on page 22 for more information.

After symbolic substitution, the statements are:
//STEP EXEC PGM=IEFBR14
//DD1 DD DSNAME=BAKER,UNIT=3390,VOLUME=SER=WXYZ1,
// DISP=(NEW,KEEP),SPACE=(TRK,(10,10,1))

Example 4: To execute the in-stream procedure in the previous example and change
DD1 to resemble a temporary scratch space, code the following statement:
//CALLER2 EXEC PROC=TESTPROC,A=IEFBR14,B=,C=3390,D=,E=

After symbolic substitution, the statements are:
//STEP EXEC PGM=IEFBR14
//DD1 DD DSNAME=,UNIT=3390,VOLUME=SER=,DISP=,SPACE=(TRK,(10,10,1))

Using symbols in nested procedures
The general rules described in “Using system symbols and JCL symbols” on page
38 also apply to symbols in nested procedures, along with the following rules:

System Symbols and JCL Symbols

Chapter 5. Procedures and symbols 51

1. Within a nested procedure, assign only one substitution text per symbol. You
can use the same symbol in other nested procedures and assign it different
values.

2. If you assign or nullify the value for a symbol on an EXEC statement that calls
a nested procedure, the substitution text that you specify on the EXEC
statement is used in the procedure. The EXEC statement overrides any default
value you specify on the PROC statement of the nested procedure.

3. When the EXEC statement that calls the nested procedure does not assign a
substitution text to the symbol, the system uses the default substitution text
specified on a PROC statement.
One way to provide an override value for a symbolic in a nested procedure is
to design the procedure so that it requires no assignment of default symbolic
parameter values. If the PROC statement of the inner procedure contains no
default value, the system uses the value specified on the EXEC statement of the
outer procedure. For example:

//TESTJCL PROC
//STEP1 EXEC TESTJCL1
// PEND
//TESTJCL1 PROC
//STEP2 EXEC PGM=IEFBR14,PARM=&PVAL
//SYSUDUMP DD SYSOUT=A
// PEND
//RUNIT EXEC TESTJCL,PVAL=EXEC0

4. If you assign or nullify a substitution text for a symbol on a SET statement, the
substitution text that you specify on the SET statement is used in all
subsequent statements, procedures, and nested procedures. However, if the
calling EXEC statement or the PROC statement of the procedure assigns or
nullifies the symbol, it only applies to subsequent statements within that PROC
and subsequent nested procedures within that procedure.

5. If you do not assign or nullify a value for a JCL symbol in a nested procedure,
the value used for the JCL symbol in this procedure is obtained from the
procedure in which this procedure is nested.

6. If a JCL symbol is not assigned a substitution text or is not nullified, it is an
undefined JCL symbol which might cause errors in the JCL.

Table 13 shows rules 2 through 6 in a summary table, which is the order in which
the value for a symbol is resolved.

Table 13. Summary of Rules 2 through 6 for Symbols in Nested Procedures

Value Used

Where the symbol is defined

EXEC

(Rule 2)

PROC
Not EXEC

(Rule 3)

SET
Not PROC
Not EXEC

(Rule 4)

Nested Value
Not SET
Not PROC
Not EXEC
(Rule 5)

None

(Rule 6)

EXEC Value X

PROC Value X

SET Value X

Nested Value X

Undefined X

Examples of coding symbols in nested procedures
Example 1: The following example defines symbols A, B, and C with multiple
assignments in nested procedures:

System Symbols and JCL Symbols

52 z/OS V2R1.0 MVS JCL Reference

Current value of symbol:
//MYJOB JOB ... Level 0:
//SET1 SET A=123,B=456 A=123,B=456,C=undefined

.
//PROC1 PROC A=234,C=GHI
//PSTEP1 EXEC PROC=PROC2,A=ABC,B=DEF
//PSTEP2 EXEC PGM=IEFBR14
// PEND

.
//PROC2 PROC
//P2STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=&A..&B,DISP=SHR
//SYSUT2 DD SYSOUT=A,DCB=LRECL=&C
// PEND

.
//STEP1 EXEC PROC=PROC1,A=,C=789 Level 1:

. A=,B=456,C=789
++PROC1 PROC A=234,C=GHI
++PSTEP1 EXEC PROC=PROC2,A=ABC,B=DEF Level 2:

. A=ABC,B=DEF,C=789
++PROC2 PROC
++P2STEP1 EXEC PGM=IEBGENER
++SYSPRINT DD SYSOUT=A
++SYSUT1 DD DSN=ABC.DEF,DISP=SHR
++SYSUT2 DD SYSOUT=A,DCB=LRECL=789
++ PEND

.
++PSTEP2 EXEC PGM=IEFBR14 Level 1:

. A=,B=456,C=789
++ PEND
//BARNEY EXEC PGM=IEFBR14 Level 0:
//... . A=123,B=456,C=undefined

The processing of symbols in MYJOB is:
v When the SET statement SET1 is processed, symbols A and B are defined and

initialized to the values 123 and 456, respectively. (The C symbol C is not yet
defined.) The level of nesting (scoping) is 0.

v EXEC statement STEP1 references in-stream procedure PROC1. The symbols are
changed as follows: A is nullified, B remains 456 from SET statement SET1, and
C is defined and assigned the substitution text 789. The level of nesting
(scoping) is now 1.
PROC statement PROC1 defines the default values for the symbols A and C as
A=234 and C=GHI. However, these values are overridden by the values on the
EXEC statement STEP1 as: A=, and C=789.B remains 456 from SET statement
SET1. The level of nesting is still 1.

v EXEC statement PSTEP1 is processed. The substitution texts for the symbols are
updated again as: A=ABC and B=DEF. (C remains 789 from EXEC statement
STEP1.) The substitution texts are passed to procedure PROC2 referenced by
EXEC statement PSTEP1. The level of nesting is now 2.

v The statements in procedure PROC2 are processed. The values used to resolve
the symbols on DD statements SYSUT1 and SYSUT2 are those from level 2,
namely A=ABC, B=DEF, C=789. The level of nesting returns to level 1.

v EXEC statement PSTEP2 in PROC1 is processed. This statement does not change
the values of the symbols. However, because the expansion of PROC2 is
complete, the values of the symbols return to the level 1 values held prior to
procedure PROC2, which are A=, B=456, and C=789. The level of nesting returns
to level 0.

System Symbols and JCL Symbols

Chapter 5. Procedures and symbols 53

v EXEC statement BARNEY is at level 0 and the substitution texts for symbols are
restored to their original values: A=123,B=456, and C=undefined. The
substitution texts, defined by SET statement SET1, are retained throughout this
level of nesting (level 0).

Example 2: To illustrate the scope of symbolics in the case of nested procedures,
consider the following example, where PROC1 calls PROC2:

//JOB2 JOB ...
//PROC1 PROC WORK=’’’1000,500’’’
//S1 EXEC PROC2,WORK=&WORK
//S2 EXEC PROC2,WORK=&WORK
// PEND
//PROC2 PROC WORK=’’’500,250’’’,LABEL=DUMMY
//P1 EXEC PGM=IEFBR14
//DD1 DD UNIT=SYSDA,SPACE=(TRK,(&WORK)),DSN=&LABEL
// PEND
//J1 EXEC PROC1,WORK=’’’500,250’’’,LABEL=UNUSED
//J2 EXEC PROC1

In the prior example, the symbolic LABEL is defined as UNUSED in EXEC
statement J1, which calls PROC1. The symbolic LABEL is not used in PROC1 but is
used in PROC2, which is called by PROC1 and therefore is in the scope of the
original definition of the symbolic.

Using symbols in JES2 in-stream data
For programming flexibility and efficiency, symbolic substitution is supported for
data that is contained within JES2 in-stream data sets. Unlike symbolic substitution
in the JCL stream of a job, which is performed by the JCL converter during
processing of JCL statements, in-stream symbolic substitution is performed by JES2
when an in-stream data set is read.

The three types of symbols that can be used for JES2 in-stream substitution are JCL
Symbols, JES Symbols and System Symbols:

JCL symbols
By default, JCL Symbols are only available to the job at the converter phase
and are lost by the time the job runs. However, by using the EXPORT and
SET JCL statements, JCL symbols can be made available to the job
execution phase.

Any JCL symbols that are inherited from a submitting job through the
internal reader SYMLIST facility are implicitly exported. Exported JCL
Symbols can be accessed during the job execution phase using the JCL
Symbol Service (IEFSJSYM) or the JES Symbol Service (IAZSYMBL).

The JCL Symbol Service (IEFSJSYM) is documented in z/OS MVS
Programming: Authorized Assembler Services Reference EDT-IXG.

JES symbols
JES Symbols are dynamic symbols that can be managed and manipulated
using the JES Symbol Service (IAZSYMBL). The JES Symbol Service is
documented in z/OS JES Application Programming.

System symbols
System Symbols are specific to the MVS system. Refer to “Using system
symbols and JCL symbols” on page 38 and the ASASYMBM service in
z/OS MVS Programming: Assembler Services Reference ABE-HSP). System
symbols are defined in the IEASYMxx member of SYS1.PARMLIB, and
are described in z/OS MVS Initialization and Tuning Reference.

System Symbols and JCL Symbols

54 z/OS V2R1.0 MVS JCL Reference

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

The type of symbol substitution used for the in-stream data is controlled by the
SYMBOLS keyword coded on the DD statement that defines the in-stream data set.
Without the SYMBOLS keyword, JES does not perform symbol substitution for the
in-stream data set and the application interprets the data exactly as it is entered in
the data set.

The SYMBOLS keyword can be defined as follows:

SYMBOLS=JCLONLY
Names of JCL symbols and JES symbols found in the in-stream data set are
replaced with their values.

SYMBOLS=EXECSYS
Substitution follows the SYMBOLS=JCLONLY rule. In addition, system
symbols defined on the system during job execution can be used in the
in-stream data.

SYMBOLS=CNVTSYS
Substitution follows the SYMBOLS=EXECSYS rule, with the exception that
system symbols used for substitution are taken not from the system where
the job is executing, but from the system where the job has undergone JCL
conversion.

The symbols will have values that they had at the time of JCL conversion.

The syntax rules for using symbols in in-stream data include those described
previously for using symbols in JCL. One important difference is the handling of
blanks in the input data. When symbols are substituted in JCL statements, there is
no special treatment of blanks—as symbols are substituted, the resulting string
expands or contracts depending on whether the symbol value is longer or shorter
than the symbol expression (symbol name with a leading ampersand character and
optional period at the end of the symbol name). When symbols are substituted in
in-stream data, the system attempts to maintain the position of non-blank
characters. This is achieved by adding or removing blanks between non-blank
character sequences. At least one blank is always preserved to maintain syntactical
validity of the data. The resulting string never contracts and only expands if there
are not enough blanks to remove to maintain data positioning. Refer to “Defining
and nullifying JCL symbols” on page 39 for additional information.

JCL symbol service (IEFSJSYM)
The JCL Symbol Service (IEFSJSYM) gives applications read-only access to JCL
symbols that are made available to the job execution phase. The specific JCL
symbols that are made available at the job execution phase are defined by the
EXPORT SYMLIST statement. The JCL Symbol Service is documented in z/OS MVS
Programming: Authorized Assembler Services Reference EDT-IXG.

JES symbol service (IAZSYMBL)
The JES Symbol Service (IAZSYMBL) manages JES symbols, which can be used to
pass data between applications that are running in the same job step, to create JCL
symbols for submitted jobs, and to pass information between applications and JES.
The JES Symbol Service is documented in z/OS JES Application Programming.

System Symbols and JCL Symbols

Chapter 5. Procedures and symbols 55

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

Using symbols in batch JCL
You can code both system symbols and JCL symbols in batch JCL for both jobs and
procedures. This information provides examples of how to code system symbols
and JCL symbols in batch JCL. For details on how to code system symbols in JCL,
and how to define and code JCL symbols in JCL, see “Using system symbols and
JCL symbols” on page 38.

Because a batch job can be routed to another system for execution, the symbol
values that are resolved when the job is initially converted must also resolve
correctly when the job is executed. Therefore, use one of the following methods to
use system symbols in batch JCL:
v Use the SYSTEM= keyword (or your JES2 or JES3 JECL equivalent) to ensure

that the batch job executes on a system where the resolved symbol values are
valid.

v Only use symbols that have the same value on every system in your JES
complex. For example, you can define a system symbol for the location of your
JES complex: thereafter, any batch job that uses that symbol can run on a system
in your JES complex.

System Symbols and JCL Symbols

56 z/OS V2R1.0 MVS JCL Reference

Chapter 6. Job control statements on the output listing

Use the JOB statement MSGLEVEL parameter to request that job control statements
be printed in the job log output listing. Code MSGLEVEL=(1,1) to receive the
maximum amount of information, in the following order:
v JES messages and job statistics.
v All job control statements in the input stream and procedures.
v Messages about job control statements.
v JES and operator messages about the job's processing: allocation of devices and

volumes, execution and termination of job steps and the job, and disposition of
data sets.

Statements in listing: To identify the source and type of each statement, the system
prints certain characters in columns 1 and 2 or 1, 2, and 3 of the listing. These
identifying characters are explained in Table 14. The listing shows all procedure
statements as they appear in the cataloged procedure; the listing does not show
parameter substitutions and overrides on the statement itself.

Symbolic parameters: The job log listing shows the symbolic parameters in
procedure statements. The values assigned to the parameters are given in IEF653I
messages. These messages appear immediately after each statement that contains
symbolic parameters.

EXEC overriding parameters: A procedure EXEC statement appears in the job log
listing exactly as it appears in the procedure. Overridden parameters must be
shown by the program being executed:
v For the EXEC statement that executes the assembler program, the Diagnostic

Cross Reference and Assembler Summary produced by the assembler program
shows the overriding parameters.

v For the EXEC statement that executes the linkage editor, the linkage editor
listing shows the overriding parameters.

Table 14. Identification of Statements in Job Log

Columns 1, 2,
and 3 Source and type of statement

Job control statements in the input stream

// JCL statement

//* Job control statement that is not a JCL comment statement but one that the
system considers to contain only comments

//* JES2 statement

//* JES3 statement

/* Certain JES3 control statements

//* JCL comment statement

Cataloged procedure statements

XX DD statement that was not overridden and all other JCL statements,
except the JCL comment statement. Each statement appears in the listing
exactly as it appears in the procedure.

© Copyright IBM Corp. 1988, 2013 57

Table 14. Identification of Statements in Job Log (continued)

Columns 1, 2,
and 3 Source and type of statement

X/ DD statement that was overridden (preceded by the overriding DD
statement)

XX* Job control statement that is not a JCL comment statement but one that the
system considers to contain only comments

XX* JCL comment statement

In-stream procedure statements

++ DD statement that was not overridden and all other JCL statements,
except the JCL comment statement. Each statement appears in the listing
exactly as it appears in the procedure.

+/ DD statement that was overridden (preceded by the overriding DD
statement)

++* Job control statement that is not a JCL comment statement but one that the
system considers to contain only comments

++* JCL comment statement

Job Log

58 z/OS V2R1.0 MVS JCL Reference

Chapter 7. Started tasks

This topic describes the decisions your system programmer needs to make in order
for your installation to use started tasks, and the steps that users with operator
authority will perform to use started tasks.

Determining whether to use a started task
When you determine where and when you want specific JCL to run, you will
consider using batch jobs or started tasks. Batch jobs are scheduled by a job entry
subsystem (JES2 or JES3) and are scheduled to run based on the resources they
require and their availability, or based on controls that you place on the batch
system. Controlling where and when a batch job runs is more complex than using
a started task.

A started task is a set of JCL that is run immediately as the result of a START
command. Started tasks are generally used for critical applications. An advantage
offered by started tasks are control over where and when the JCL is run. For
example, you could have the JCL started at each IPL of the system.

For more information about system symbols and JCL symbols, see “Using symbols
in started task JCL” on page 66.

Determining the source JCL for the started task
If you decide to use a started task, you must then determine what the source JCL
will be and where the JCL will be located. The source JCL can be a JOB (located in
a member of a data set defined in the IEFJOBS or IEFPDSI concatenation of master
JCL) or a procedure (located in a subsystem procedure library, for example,
SYS1.PROCLIB). In the latter case, the system will process only the JCL associated
with the first JOB statement in the procedure; it will bypass the second and
subsequent jobs.

For information about master JCL considerations to support started tasks, see z/OS
MVS Initialization and Tuning Reference.

Before determining whether you will use a job or a procedure as source JCL for a
given started task, you need to understand the advantages of each. After you have
identified whether the source JCL will be a job or a procedure, then determine the
system services that the started task will require. (See “Determining system
services for a started task” on page 63.)

In most cases, you will use a procedure unless you need greater control of your
started task. For example, EREP formats the logrec data set information; you may
not need to change the way this currently works. The best candidates for
procedures are started tasks that require minimal maintenance.

The major advantage of using a job as the source JCL for a started task is the
control provided over certain aspects of the started task, such as:
v Ability to specify accounting data

For example, to determine which resources are being used by individual users.
v Ability to pass parameters to the started task

© Copyright IBM Corp. 1988, 2013 59

For example, using SYSIN data, you can pass data to programs in the started
task.

v Control of output
For example, many installations purge all output from started tasks because of
the volume of output. With the output control allowed within a job, you can
specify to receive output only if something abnormal occurs with the started
task.

Started tasks are initiated by the START command which identifies the member
that contains the source JCL for the task. (See z/OS MVS System Commands for
information on the START command.) “START command processing when the
member is a procedure” and “START command processing when the member is a
job” describe how the system processes the START command (depending on
whether the source JCL is a job or a procedure) and the JCL that results.

Note the following restriction: If you are running a started task you cannot
override the PARM= parameter on the START command. However, you can
circumvent this restriction as follows:
v Make the PARM= a symbolic in the EXEC statement where it is pertinent.

Example:
//JOB1 JOB parameters
//STEP1 EXEC PGM=programname,PARM=&PARM1

v Then, on the START command, change the value of the symbolic. Example:
START JOB1,,PARM1=parameters

START command processing when the member is a procedure
During START command processing, if the member specified does not start with a
JOB statement, the system creates a JOB statement and EXEC statement that will
invoke the procedure of the same name as the member.

For example, the member INIT exists in SYS1.PROCLIB as follows:
//IEFPROC EXEC PGM=IEFIIC

JES2 automatically issues the command S INIT.INIT,,,JES2,SUB=JES2 and the
following JCL is created:
//INIT JOB MSGLEVEL=1
//INIT EXEC INIT

START command processing when the member is a job
If a JOB statement is the first statement in the member, the system uses the JCL
provided in the member. For example, given the following JOB statement and JCL
in the INIT member:
//INIT JOB ’accounting_info’,MSGLEVEL=1
//JESDS OUTPUT JESDS=ALL,OUTDISP=(PURGE,WRITE)
//INIT EXEC INIT
//DD1 DD DSN=SYSTEM.ACCOUNT.DATA,DISP=SHR
//*

JES2 automatically issues the command S INIT.INIT,,,JES2,SUB=JES2 and the
preceding JCL is invoked, starting the MVS initiator by calling the INIT procedure.
The S INIT.INIT,,,JES2,SUB=JES2 command now uses the source JCL and invokes
the same procedure.

Started Tasks

60 z/OS V2R1.0 MVS JCL Reference

Review current started tasks
Some of your existing started tasks may offer you greater benefits if the source JCL
were a job. Review existing started tasks and identify the ones that should be a job
by comparing their needs with the support provided (for example, output or
accounting).

When you have identified that the source JCL will be a job, determine which
method you will use to convert existing procedures, and determine whether the
system services that the started task will require have changed. (See “Determining
system services for a started task” on page 63.)

Convert procedures to jobs (optional)
You may decide to convert some of your existing started task procedures to jobs.
Before doing so, you should understand how the started task JCL and processing
will change.

If the following command is issued for a started task procedure:
S DUMPCHK,SG=ALL,JDATE=93119,DAY=THURSDAY

and the procedure being started is:
//DUMPCHK PROC SG=ALL,JDATE=,DAY=
//DUMPCHK EXEC PGM=DMPCHKO,REGION=5M,PARM=’/&SG,&JDATE,&DAY’
//STEPLIB DD DSN=JCR.PGM.LOAD,DISP=SHR
//CDS DD DSN=DATAMGT.CDS,DISP=SHR
// DD DSN=DATAMGT.CDS.CLEAR,DISP=SHR
// DD DSN=DATAMGT.CDS.Y43DUMPS,DISP=SHR
//LOG DD DSN=SYS1.TSODUMP.LOG,DISP=SHR
//SYSPRINT DD SYSOUT=*

MVS creates the following JCL to invoke this procedure:
//DUMPCHK JOB MSGLEVEL=1
//STARTING EXEC DUMPCHK,SG=ALL,JDATE=93119,DAY=THURSDAY

To convert an existing procedure to a job, remove the PROC and PEND statements
and add a JOB statement and any other JCL you plan to use.

To invoke as existing procedure, you can choose one of the following alternatives.
v “Alternative 1 - Add the member and JCL to the IEFJOBS-Defined data set”
v “Alternative 2 - Add the job JCL to the existing procedure” on page 62
v “Alternative 3 - Add the member and invoke a procedure in another DD

concatenation” on page 62

Note: It is important to note that if system symbols are used on the PROC
statement, they cannot be overridden by the START command system symbols.

Alternative 1 - Add the member and JCL to the IEFJOBS-Defined
data set
If you plan to define an IEFJOBS concatenation in MSTJCLxx with a data set of
SYS1.STCJOBS, create a DUMPCHK member in SYS1.STCJOBS. Place the job in
this member and add an EXEC statement that will run the existing procedure. For
example:
//DUMPCHK JOB ’accounting_info’,MSGLEVEL=(1,1)
// EXEC DUMPCHK

Started Tasks

Chapter 7. Started tasks 61

When the START command is issued, MVS inserts a JCL SET statement after the
JOB statement, resulting in the following JCL:
//DUMPCHK JOB ’accounting_info’,MSGLEVEL=(1,1)
// SET SG=ALL,JDATE=93119,DAY=THURSDAY
// EXEC DUMPCHK

Alternative 2 - Add the job JCL to the existing procedure
If you do not plan to define an IEFJOBS concatenation in MSTJCLxx and the
procedure DUMPCHK is already defined in SYS1.PROCLIB or one of the other
data sets in the IEFPDSI concatenation of MSTJCLxx, use a JOB statement in the
DUMPCHK member that formerly contained only the procedure, along with an
EXEC statement that will run the existing procedure, and convert the existing
procedure to an in-stream procedure by adding PROC and PEND statements, if
they are not already present. For example:
//DUMPCHK JOB ’accounting_info’,MSGLEVEL=(1,1)
//DUMPCHK PROC
//DUMPCHK EXEC PGM=DMPCHKO,REGION=5M,PARM=’/&SG,&JDATE,&DAY’
//STEPLIB DD DSN=JCR.PGM.LOAD,DISP=SHR
//CDS DD DSN=DATAMGT.CDS,DISP=SHR
// DD DSN=DATAMGT.CDS.CLEAR,DISP=SHR
// DD DSN=DATAMGT.CDS.Y43DUMPS,DISP=SHR
//LOG DD DSN=SYS1.TSODUMP.LOG,DISP=SHR
//SYSPRINT DD SYSOUT=*
// PEND
// EXEC DUMPCHK

When the START command is issued, MVS inserts a JCL SET statement after the
JOB statement, resulting in the following JCL:
//DUMPCHK JOB ’accounting_info’,MSGLEVEL=(1,1)
// SET SG=ALL,JDATE=93119,DAY=THURSDAY
//DUMPCHK PROC
//DUMPCHK EXEC PGM=DMPCHKO,REGION=5M,PARM=’/&SG,&JDATE,&DAY’
//STEPLIB DD DSN=JCR.PGM.LOAD,DISP=SHR
//CDS DD DSN=DATAMGT.CDS,DISP=SHR
// DD DSN=DATAMGT.CDS.CLEAR,DISP=SHR
// DD DSN=DATAMGT.CDS.Y43DUMPS,DISP=SHR
//LOG DD DSN=SYS1.TSODUMP.LOG,DISP=SHR
//SYSPRINT DD SYSOUT=*
// PEND
// EXEC DUMPCHK

Note: This alternative will not work for converting procedures to jobs when the
job will run under the MASTER subsystem (SUB=MSTR either explicitly specified
on the START command or defaulted to).

Alternative 3 - Add the member and invoke a procedure in
another DD concatenation
If you do not plan to define an IEFJOBS concatenation in MSTJCLxx and the
procedure DUMPCHK is not in any of the data sets in the IEFPDSI concatenation
of MSTJCLxx, create a member to contain the job and add that member to one of
the data sets in the IEFPDSI concatenation and place the EXEC statement that will
run the existing procedure (contained in the JES PROCLIB) in the JCL. The existing
procedure will be invoked just as it was in the past. For example:
//DUMPCHK JOB ’accounting_info’,MSGLEVEL=(1,1)
// EXEC DUMPCHK

When the START command is issued, MVS inserts a JCL SET statement after the
JOB statement, resulting in the following JCL:

Started Tasks

62 z/OS V2R1.0 MVS JCL Reference

//DUMPCHK JOB ’accounting_info’,MSGLEVEL=(1,1)
// SET SG=ALL,JDATE=93119,DAY=THURSDAY
// EXEC DUMPCHK

Note: This alternative will not work for converting procedures to jobs when the
job will run under the MASTER subsystem (SUB=MSTR either explicitly specified
on the START command or defaulted to).

Determining system services for a started task
Before you begin to code the JCL for a started task, you should determine under
which subsystem the JCL will run, and the changes the master JCL will require.

Deciding under which subsystem a started task should run
To decide under which subsystem your started task should run, determine what
services the task requires and what support the primary (job entry) subsystem, the
master subsystem, and other subsystems provide.

Inform the system programmer responsible for the master JCL of your decision.
Then code the name of the subsystem on the START command's SUB= keyword.

Without a SUB= keyword on the START command, the operating system will
create the started task under the primary job entry subsystem (JES2 or JES3) unless
the task itself is a subsystem, that is, it is either defined
v in the member IEFSSNxx of SYS1.PARMLIB, or
v dynamically by the SETSSI command or IEFSSI macro.

(A subsystem, unless requested to start under the primary JES subsystem by
setting flag SSCTUPSS in the SSCVT, starts under the master subsystem, MSTR.)

A started task, regardless of the subsystem under which it runs, is demand-selected
and runs in its own address space. Several considerations apply:
v The task can be a multi-step procedure or a job.
v It may not use operating system restart facilities. (The system does not support

step restarts or checkpoint restarts for started tasks.)
v The JCL for the started task may contain the following statements:

– COMMAND
– ELSE
– ENDIF
– IF/THEN
– INCLUDE
– SET

v The system defines the system symbolic parameter &SYSUID. If the member
name that is the target of the START command matches an entry in the started
procedures table, &SYSUID contains the corresponding userid from that table.
Otherwise, &SYSUID contains a null string. For information on the started
procedures table, see z/OS Security Server RACF System Programmer's Guide.

Running a started task under a job entry subsystem
These additional considerations apply to a started task running under a job entry
subsystem (JES):

Started Tasks

Chapter 7. Started tasks 63

v The JCL for the started task may contain commands and JES2 JECL statements.
It may not use JES3 JECL.

v In JES3, the JCL may contain a JCLLIB statement, and the started task may have
a SYSIN data set, but these are permitted only if the JCL being started is a
complete job. For example, the following will work in JES3:

//STC JOB
// JCLLIB ORDER=...
//STEP1 EXEC PGM=...
//MYDATA DD *
These are the times that try men’s souls.
/*
//

v In JES2, the JCL may contain a JCLLIB statement, and the started task may have
a SYSIN data set. For example, the following will work in JES2:
//HELLO PROC
//STEPA EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD SYSOUT=A
//SYSUT1 DD DATA
HELLO WORLD
/*
// PEND

v The started task may have SYSOUT data sets.
v JES exits get control (to validate and modify the task).

Running a started task under the master subsystem
These additional considerations apply to a started task that runs under the master
subsystem:
v Any started task that can operate under the master subsystem can also run

under the primary JES subsystem.
v A started task running under the master subsystem (SUB=MSTR) may choose to

use JES services. To do so, the task must issue a Request Job ID call to the JES.
(See z/OS MVS Using the Subsystem Interface for additional information about the
Request Job ID call.)

v The started task may include JES statements and commands with the //
COMMAND statement. Note, however, that if JES is not running, the system
may queue or purge these statements.

v The JCL may not include a JCLLIB statement.
v The JCL may include PROC and PEND statements if the JCL is a procedure, but

not if it is a job.
v The started task may not have SYSIN data sets.
v The system will initially allocate only data sets that are cataloged in the master

catalog or a user catalog. Catalogs must reside on online volumes.
v You may dynamically allocate data sets that are not cataloged in the master

catalog to a task running under the master subsystem during execution.
v You may dynamically allocate SYSOUT data sets after successfully completing a

Request Job ID SSI call.
v JES exits do not get control during startup processing of a started task. If,

however, the started task issues a Request Job ID SSI call, JES exits will get
control for the minimal JCL used to construct the JES job structure.

v SMF exits, such as IEFUJV, get control with the subsystem shown as SYS.
v SRM determines performance characteristics based on the master subsystem.

Started Tasks

64 z/OS V2R1.0 MVS JCL Reference

v You may not specify JES3-managed devices in the procedure; JES3 cannot
manage devices for tasks that run under the master subsystem.

v You must code a TIME= value on the EXEC statement of the procedure (such as
TIME=NOLIMIT), or else specify the program as a system task in the program
properties table (PPT). Otherwise, the task will end abnormally with a time-out
condition.

v You must specify the region size that will be used if REGION is not specified in
the JCL.

Running a started task that uses catalogs
A catalog describes data set attributes and indicates the volumes on which a data
set is located. Catalogs are allocated by the catalog address space (CAS), a system
address space for the DFSMSdfp catalog function.

For a started task to use data sets cataloged in a catalog, either of the following
must occur:
v You start the started task after the CAS is fully active, or
v The started task is one of the following:

– Not a subsystem
– A subsystem that is used to start another task
– A subsystem that is started under the primary JES subsystem

If neither of those conditions is met and the task attempts to obtain catalog
information, the system ends the started task abnormally. To avoid this potential
abend, either specify unit and volume information in your JCL for each data set
cataloged in a catalog, or catalog the data sets in the master catalog.

Set Up the master JCL
Before adding or changing a started task, contact the system programmer who
controls the master JCL. With that person, identify and define the data sets to
which you will need access, and what you intend to change. For information on
setting up the master JCL, the system programmer can see z/OS MVS Initialization
and Tuning Reference.

Coding the JCL
When you have determined what the started task source JCL will be, where it will
run, and have set up the necessary support for it, you are ready to code the JCL
for the started task.

This section explains how to:
v Name the PDS member that contains the JCL
v Code a JOB statement for a started task
v Use symbols in started task JCL.

Naming the JCL member
The name specified on the START command is used to search for the JCL for the
started task.

The system first searches the data sets specified in the IEFJOBS DD of the Master
JCL, looking for a member with the specified name and which begins with a JOB
statement. If one is found, that JCL is submitted. Any procedures within the JCL

Started Tasks

Chapter 7. Started tasks 65

are expanded using the data sets appropriate for the subsystem under which the
job will be run (for example, SUB=MSTR, SUB=JES2 or SUB=JES3).

If a member with a JOB statement is not found in the IEFJOBS DD statement of the
Master JCL, the system searches the data sets specified in the IEFPDSI DD of the
Master JCL, looking for a member with the specified name and which begins with
a JOB statement. If one is found, that JCL is submitted. Any procedures within the
JCL are expanded using the data sets appropriate for the subsystem under which
the job will be run (for example, SUB=MSTR, SUB=JES2 or SUB=JES3).

If a member with a JOB statement is not found in the IEFPDSI DD statement of the
Master JCL, the system builds a JOB statement and searches the data sets specified
in the procedure libraries appropriate for the subsystem under which the job will
be run (for example, SUB=MSTR, SUB=JES2 or SUB=JES3), looking for a member
with the specified name. If one is found, that JCL is appended to the JOB
statement which was constructed and the JCL is submitted. Any procedures within
the JCL are expanded using the data sets appropriate for the subsystem under
which the job will be run (for example, SUB=MSTR, SUB=JES2 or SUB=JES3).

The following should be taken into consideration when naming members to be
placed in the IEFJOBS data sets.
v Do not use the member name IEESYSAS. This name is reserved by the system

for use in starting system address spaces. The IEESYSAS procedure is shipped in
SYS1.PROCLIB.

v Be careful when using member names that are already in use in SYS1.PROCLIB
and any other data sets specified in the IEFPDSI DD of the Master JCL. Doing so
will cause the IEFJOBS data set member to override the existing JCL.

Coding the JOB statement for the started task
If you choose to code a started task with a JOB statement, the rules are slightly
different than the rules for other jobs:
v The statement must start with //

v The jobname is 1 through 8 non-blank characters
v If a name is not valid, a JCL error results.
v The jobname must be followed by at least 1 blank.
v JOB must follow the blank(s) after the jobname.
v JOB must be followed by at least 1 blank.

Using symbols in started task JCL
You can code both system symbols and JCL symbols in started task JCL for both
jobs and procedures. This section provides examples of how to code system
symbols and JCL symbols in started task JCL. For details on how to code system
symbols in JCL, and how to define and code JCL symbols in JCL, see “Using
system symbols and JCL symbols” on page 38.

Note: You can also use system symbols in batch JCL.

Example: using system symbols
Suppose you want to start a task whose source JCL is in the DUMPCHK member
of a partitioned data set. You can specify system symbols for the task in one of the
following two ways:

On the START command:
Suppose you enter the following command to start the DUMPCHK task:

Started Tasks

66 z/OS V2R1.0 MVS JCL Reference

START DUMPCHK,SG=ALL,JDATE=93119,DAY=THURSDAY,SUB=CICS&SYSNAME

If the substitution text for the &SYSNAME system symbol is SYS1 on the
system that processes the START command, the system substitutes the text
SYS1 for the &SYSNAME system symbol. The equivalent source JCL is:
//DUMPCHK JOB MSGLEVEL=1
//STARTING EXEC DUMPCHK,SG=ALL,JDATE=93119,DAY=THURSDAY,SUB=CICSSYS1

In the source JCL:
You can also specify system symbols in the source JCL for started tasks. Keep
in mind that system symbols in the source JCL are resolved during JCL
processing, rather than command processing.

For example, suppose you code the following JCL in the DUMPCHK
procedure:
//DUMPCHK PROC
//S1 EXEC PGM=DUMPPROG,PARM=CICS&SYSNAME

As in the previous example for the START command, if the substitution text
for the &SYSNAME system symbol is SYS1 on the system that processes the
JCL, the system substitutes the text SYS1 for the &SYSNAME system symbol.
The equivalent JCL is:
//DUMPCHK PROC
//S1 EXEC PGM=DUMPPROG,PARM=CICSSYS1

The DUMPCHK procedure can also include system symbols on other
statements. For example, you might specify system symbols in DD statements
that must specify data sets with unique names on different systems.

Suppose that two systems, named SYS1 and SYS2, are to process a DUMPCHK
procedure that contains the following statement:
//LOG DD DSN=&SYSNAME..LOG,DISP=......

When each system processes the statement, the following data set names result:
SYS1.LOG on system SYS1
SYS2.LOG on system SYS2

You can include a substring of a system symbol on a JCL statement. For
example, you might specify system symbols in DD statements that must
specify data sets with unique names on different systems, but only have two
characters to use. Suppose that two systems, named SYS1 and SYS2, are to
process a procedure that contains the following statement:
//DD1 DD DSN=SYS1.PARMLIB.SYSTEM&SYSNAME(-2:2).,DISP=....

When each system processes the statement, the following data set names result:
SYS1.PARMLIB.SYSTEMS1 on system SYS1
SYS1.PARMLIB.SYSTEMS2 on system SYS2

Example: using JCL symbols
Suppose that processing for some JCL is charged to multiple departments, all with
different accounting numbers, and the JCL is to reflect the number of the
department to be charged for the processing.

Code a symbol in the source JCL to represent the different account numbers:
ACCT=&ACCTNO

Assume that the source JCL is a started task named TEST. There are three
departments (A, B, and C) with three accounting codes (ACODE, BCODE, and

Started Tasks

Chapter 7. Started tasks 67

CCODE) respectively. You can have each department indicate its accounting code
on the START command. For example, when department A enters the following
command:
START TEST,ACCTNO=ACODE

The system places the ACODE value in the ACCTNO field.

You can also use symbols to set default values that can later be overridden (as
needed).

For example, if the procedure TEST has the following JCL coded:
ACCT=&ACCTNO

you can set the value of ACCT to ACODE by including the following JCL on the
PROC statement of procedure TEST:
ACCTNO=ACODE

ACODE is provided as the default value.

If another value is provided on the START command (for example, START TEST,
ACCT=BCODE), the new value (BCODE) overrides the default (ACODE) provided
in the JCL, but only for this instance of the started task. If the START command is
entered again without a value, the default will again be provided.

Note: This example modifies the step-level accounting data defined by the EXEC
statement ACCT parameter. The START command JOBACCT parameter can be
used to specify job-level accounting data.

Using symbols on certain JCL statements
You might need to specify symbols within JCL for each invocation of a started
task. Consider the following statements for possible use of symbols:
v DD statements
v EXEC statements.

If DD statement keywords (or the positional parameters for UNIT and VOL=SER)
are specified on a START command, the following DD statement is added to the
JCL processed by the system:
//IEFPROC.IEFRDER DD keyword=value...

The added JCL either adds a DD statement (if an IEFRDER statement is not
specified in the source JCL) or modifies an existing IEFRDER DD statement in the
source JCL. The DD statement override allows you to determine the characteristics
for one DD statement when you issue the START command.

The DD statement keyword parameters can be any keyword that is valid on the
MVS JCL DD statement. The IEFRDER DD statement contains all of the DD
keywords specified on the START command. For example:
START ABLE.LOAD,DSNAME=MY.LOADLIB,DISP=SHR

creates the following DD statement:
//IEFPROC.IEFRDER DD DSNAME=MY.LOADLIB,DISP=SHR

Note: If you are overriding a dataset name in the cataloged procedure and the
name of the data set is 44 characters long, use DSN=name. If you specify
DSNAME=name, the START procedure stops and returns a JCL error.

Started Tasks

68 z/OS V2R1.0 MVS JCL Reference

Also, DD statement keywords can be specified on the START command for
positional parameters on the DD statement in the procedure. For example:
START CICS.CICS,333,U30PAK

is the same as:
START CICS.CICS,UNIT=333,VOL=SER=U30PAK

Using JCL statement keywords and symbols to override JCL
You can use JCL statement keywords and symbols to override existing JCL.

JOB statement keyword parameters are those keywords defined for the MVS JCL
JOB statement. These keywords will add to or override the specification of the JOB
statement keywords. The EXEC statement keyword parameters are those keywords
defined for the MVS JCL EXEC statement. The treatment of these keywords
depends on whether the target of the START command is a job or a procedure. See
the following table. EXEC keywords that are also JOB keywords, such as TIME and
REGION, are treated as JOB keywords.

In this next example, assume ABC is a procedure, not a job. The following START
command creates a REGION=200K parameter on the JOB statement and a
DYNAMNBR=2 parameter on the EXEC statement:

START ABC.DEF,REGION=200K,DYNAMNBR=2

The result of the command is the following JCL:
//ABC JOB REGION=200K,MSGLEVEL=1
//DEF EXEC ABC,DYNAMNBR=2

You can use symbols to override other symbols that are specified in the procedure
to be started. For example, the following command starts customer information
control system (CICS®) with a 20K region:
START CICS,A=20K

A=20K overrides A=10K on the following PROC statement:
//CICS PROC A=10K
// EXEC PGM=XYZ,REGION=&A

The command results in the following JCL:
//CICS JOB MSGLEVEL=1
//STARTING EXEC CICS,A=20K

Note: Select names for symbols carefully; see “Coding symbols in JCL” on page 43
for rules to use when coding and naming symbols.

The following table describes the actions that result from specifying various
keywords and symbols on the START command:

Source JCL Keyword Result

JOB JOB Overrides or added to source JOB statement

JOB EXEC Placed on SET statement as a symbol

JOB DD Overrides, or added to, source IEFRDER DD
statement

Procedure Other (see note
1)

Placed on SET statement as a symbol

Procedure JOB Overrides, or added to, source JOB statement

Started Tasks

Chapter 7. Started tasks 69

Source JCL Keyword Result

Procedure EXEC Placed on EXEC memname statement overriding
keyword

Procedure DD Overrides, or added to, source IEFRDER DD
statement

JOB Other (see note
1)

Placed on EXEC memname statement as symbol

Note 1: Other does not include the START command reserved words SUB,
JOBNAME, and JOBACCT.

Naming a started task (source JCL is a job)
If you plan to run the started task more than once on the same system or on
different systems within a sysplex, consider using unique job names for each
instance of the started task. For example, you may want to name started tasks
according to the system tasks they support; you can name one set of jobs for CICS
terminal-owning regions (CICSTOR1, CICSTOR2) and another set for CICS
application-owning regions (CICSAOR1, CICSAOR2).

Note: You are not required to change the name of your started task; you probably
will not want to change the name of a started task that typically has only one
instance (OAM or LLA, for example).

There are four ways that you can name or identify a started task:
v JOBNAME parameter

Use the JOBNAME parameter on the START command to rename the started
task dynamically (see the description of START in z/OS MVS System Commands
for details).

v Membername
If you do not use the JOBNAME parameter on the START command and the
source JCL is a procedure, the system automatically assigns the membername as
the jobname.

v Source JCL
If you do not use the JOBNAME parameter on the START command and the
source JCL for the started task is a job, the jobname provided on the JOB
statement is assigned as the jobname.

v Identifier
If specified on the START command, and the started task runs in a system
address space that is created using common system address space procedure
IEESYSAS, the identifier is assigned to the started task.

Note: Given the capability to assign the jobname dynamically, it is
recommended that you use the JOBNAME parameter instead of the identifier.
Only operators can view the identifier for a started task, limiting automation
and identification by other users.

If you decide to change the names of started tasks, be sure to update other
applications to recognize the new names.

Started Tasks

70 z/OS V2R1.0 MVS JCL Reference

Setting up operator education for your started task
When you have set up the system support necessary and have coded the JCL,
educate the system operators about any overrides you want them to use on the
START command for your started task, and inform them of when they should use
the overrides. Also, educate them on how to display information about your
started task (using the DISPLAY command) as well as how to manage your started
task (using the MODIFY, STOP, CANCEL, RESET, and FORCE commands).

Started Tasks

Chapter 7. Started tasks 71

72 z/OS V2R1.0 MVS JCL Reference

Chapter 8. JCL command statement

Purpose: Use the JCL command statement to enter an MVS operator command
through the input stream on a JES2 or JES3 system.

However, the COMMAND statement is the preferred way within the job control
language to specify MVS and JES commands.

Note: To enter a JES2 command, use the JES2 command statement. To enter a JES3
command, use the JES3 command statement.Note also that the JCL Converter does
not identify every input command that is not valid, but relies also on MVS
command processing: see the following Example 3.

If an in-stream command is to be executed (see the explanation in the following
section "Defaults"), the system usually executes it as soon as it is read. Therefore,
the command will not be synchronized with the execution of any job or step in the
input stream. To synchronize a command with the job processing, tell the operator
the commands you want entered and when they should be issued, and let the
operator enter them from the console.

The system processes each command according to installation options for both the
input device from which the job was read, and the job class.

Considerations for an APPC Scheduling Environment: The command statement has
no function in an APPC scheduling environment. If you code the command
statement, the system will check it for syntax and ignore it.

References: For more information on MVS commands and for descriptions of their
parameters, see z/OS MVS System Commands.

Description

Syntax

// command [parameter] [comments]

The command statement consists of the characters // in columns 1 and 2 and three fields:
operation (command), parameter, and comments.

Do not continue a command statement.

Operation field
The operation field contains the MVS operator command and is coded as follows:
v Precede and follow the command with one or more blanks. It can begin in any

column.
v Code the command or a valid abbreviation for the command.

Parameter field
Code any required parameters. When more than one parameter is coded, separate
them with commas.

© Copyright IBM Corp. 1988, 2013 73

Comments field
The comments field follows the parameter field after at least one intervening blank.
The system removes the comments field from the command before processing the
command.

Location in the JCL
A command statement can appear anywhere after a JOB statement and before the
end of the job. If a command statement appears between jobs, it is ignored. A
command statement should not be placed before the first JOB statement in an
input stream.

If a command statement contains errors, it is not executed. If the erroneous
statement is between two jobs in the input stream, the system does not issue a
message to indicate that the command is not executed.

Defaults
Two ways to control command authority are through JES initialization parameters
and RACF. For information about controlling command authority through
initialization parameters see, Initialization and Tuning for the appropriate subsystem
at your installation. For information about controlling command authority using
RACF see, z/OS MVS Planning: Operations.

Examples of the command statement
Example 1
// DISPLAY TS,LIST

In response to this command statement, the system displays the number and
userid of all active time-sharing users of the system.

Example 2
// F NETVIEW,CLOSE IMMED

In response to this command statement, the system shuts down NETVIEW. The
system considers IMMED to be a comment due to the delimiting blank.

Example 3
// SETDANNO ABCDEFG

MVS will fail this command because no such command exists: IEE305I
SETDANNO COMMAND INVALID.

JCL Command Statement

74 z/OS V2R1.0 MVS JCL Reference

Chapter 9. COMMAND statement

Purpose: Use the COMMAND statement to specify a system or JES command that
the system issues when the submitted JCL is converted.

The COMMAND statement is the preferred way within the job control language to
specify commands, rather than using the JCL command statement, which is
described in Chapter 8, “JCL command statement,” on page 73. That is because the
COMMAND statement is in standard JCL statement format, is parsed and
processed using code common to the other JCL statements, and if necessary may
be continued across multiple records, that is, is not limited to 80 characters. Note
that some z/OS subsystems, including TSO, JES2, and JES3, offer additional ways
to enter system commands outside JCL, which may be preferable under certain
circumstances.

When the system encounters an in-stream command it issues message IEFC165I to
inform the operator. If the operator is requested to authorize running of commands
entered through the input stream, the system then issues message IEFC166D
asking for the operator to respond. The operator should respond REPLY id,'Y' if
the command displayed in message IEFC165I is to be run, and REPLY id,'N'
otherwise.

Because the system usually executes an in-stream command as soon as it is
converted, execution of the command will not be synchronized with the execution
of any job or job step in the input stream. To synchronize a command with job
processing, tell the operator the commands you want entered and when they
should be issued, and let the operator enter them from the console.

The system processes each command according to installation options for both the
input device from which the job was read, and the job class.

On a JES3 system, the system does not record in a job's JESMSGLG data set any
commands you enter with the COMMAND statement.

References: For more information on MVS and JES commands and for descriptions
of their parameters, see z/OS MVS System Commands, z/OS JES2 Commands, and
z/OS JES3 Commands.

Considerations for an APPC Scheduling Environment: The COMMAND statement
has no function in an APPC scheduling environment. If you code a COMMAND
statement, the system will check it for syntax and then ignore it.

Description

Syntax

//[name] COMMAND ’command command-operand’ [comments]

© Copyright IBM Corp. 1988, 2013 75

|

|
|

The COMMAND statement consists of the characters // in columns 1 and 2 and four
fields: name, operation (COMMAND), ‘command command-operand’, and comments.

Continuation onto Another Statement: To continue a COMMAND statement, end the
statement in column 71 and continue the statement in column 16 of the next statement. For
example:

(column 71)
|

// COMMAND ’START XYZ,PARM=’’ABC,DEF,GHI,JK’’,TIME=1440,REGION=4
// 096K’

|
(column 16)

Do not code an apostrophe in column 71; see “Continuing parameter fields enclosed in
apostrophes” on page 17 if you need more information.

Name field
A name is optional on a COMMAND statement. If used, code it as follows:
v The name should be unique within the job.
v The name must begin in column 3.
v The name is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The name must be followed by at least one blank.
v The name may be preceded by up to 8 alphanumeric or national characters, and

then separated by a period. Coding the name in this way should not be
confused with specifying an override, as can be done when coding DD
statements.

If a name is not coded, column 3 must be blank.

Operation field
The operation field consists of the characters COMMAND and must be preceded
and followed by at least one blank. It can begin in any column.

Parameter field
The parameter field specifies the name of the command, at least one blank, and
then operands for the command. The command and its operands must be
preceded by at least one blank, enclosed in apostrophes, and followed by at least
one blank. The maximum length of the command is 123 characters. If the
command operand contains an apostrophe, code it as two apostrophes. You can
specify any MVS command that can be issued from the operator’s console.

Comments field
The comments field follows the parameter field after at least one intervening blank.

Location in the JCL
A COMMAND statement can appear anywhere in the job after the JOB statement.

Defaults
Two ways to control command authority are through RACF and through JES
initialization parameters. For information about controlling command authority
using RACF, see z/OS MVS Planning: Operations. For information about controlling

COMMAND

76 z/OS V2R1.0 MVS JCL Reference

command authority through initialization parameters, see either z/OS JES2
Initialization and Tuning Reference or z/OS JES3 Initialization and Tuning Reference, as
appropriate for the subsystem at your installation.

Examples of the COMMAND statement
Example 1: The following shows an example COMMAND statement with the
START command.
// COMMAND ’S VTAM’ start VTAM

Example 2: The following is an example of a command that is continued with the
command operand in apostrophes.
// COMMAND ’SEND ’’This message will be sent to user SCOTTC
// when this job is converted’’,USER=(SCOTTC)’

The command statement must end in column 71 and be continued in column 16.

COMMAND

Chapter 9. COMMAND statement 77

78 z/OS V2R1.0 MVS JCL Reference

Chapter 10. Comment statement

Purpose: Use the comment statement to enter a comment on the output listing. The
comment statement is used primarily to document a job and its resource
requirements.

Description

Syntax

//*comments

The comment statement consists of the characters //* in columns 1, 2, and 3 and one field:
comments.

Code the comments in columns 4 through 80. The comments field does not need to be
preceded or followed by blanks. (In a JES3 system, do not use a JES3 keyword as the first
word in column 4 of the comment field, or the comment might be taken for a JES3
statement.)

Do not continue a comment statement using continuation conventions. Instead, code
additional comment statements.

Location in the JCL
Place a comment statement anywhere after the JOB statement. You can place a
comment statement between continuations of JCL statements.

Listing of comments statements
Use the MSGLEVEL parameter on the JOB statement to request that the job log
output listing contain all the JCL statements for your job.

See Table 14 on page 57 for the comment statement characters used in columns 1,
2, and 3.

Examples of the comment statement
//* THE COMMENT STATEMENT CANNOT BE CONTINUED,
//* BUT IF YOU HAVE A LOT TO SAY, YOU CAN FOLLOW A
//* COMMENT STATEMENT WITH MORE COMMENT
//* STATEMENTS.

© Copyright IBM Corp. 1988, 2013 79

Comment Statement

80 z/OS V2R1.0 MVS JCL Reference

Chapter 11. CNTL statement

Purpose: Use the CNTL statement to mark the beginning of program control
statements in the input stream. Program control statements specify control
information for a subsystem. The program control statements are ended by an
ENDCNTL statement and are called a CNTL/ENDCNTL group.

The DD statement that defines a data set to be processed by a subsystem must
refer to the CNTL statement in order for the subsystem to use the program control
statements in processing the data set.

References: The program control statements are documented in the publications for
the subsystems. For example, for information on program control statements for
the Print Services Facility (PSF) see PSF for z/OS: Customization.

Description

Syntax

//label CNTL [* comments]

The CNTL statement consists of the characters // in columns 1 and 2 and four fields: label,
operation (CNTL), parameter (*), and comments. The * parameter is required only when
comments follow.

Label field
Code a label on every CNTL statement, as follows:
v The label must begin in column 3.
v The label is 1 through 8 alphanumeric or national ($, #, @)characters.
v The first character must be alphabetic or national ($, #, @)
v The label must be followed by at least one blank.
v The label may be preceded by up to 8 alphanumeric or national characters, and

then separated by a period. Coding the label in this way should not be confused
with specifying an override, as can be done when coding DD statements.

Operation field
The operation field consists of the characters CNTL and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter field
The parameter field contains only an asterisk. When present, the asterisk must be
preceded and followed by at least one blank. The asterisk is required only when
the statement contains comments.

Comments field
The comments field follows the asterisk after at least one intervening blank.

© Copyright IBM Corp. 1988, 2013 81

Location in the JCL
A CNTL statement must appear before the DD statement that refers to it. The
CNTL and its referencing DD statement must be in the same job step or in the
same cataloged or in-stream procedure step. A CNTL statement can be in a
procedure and the referencing DD statement can be in the calling job step, but not
vice versa.

You can define CNTL/ENDCNTL groups at the job level and the step level. A
job-level CNTL/ENDCNTL group appears before the first EXEC statement of the
job. A step-level CNTL/ENDCNTL group appears within the same job step or
procedure step. If you code multiple step-level CNTL/ENDCNTL groups, the label
on each CNTL statement must be unique within that step. Likewise, multiple
job-level CNTL statements must also have unique labels. You can, however, use the
same name on a step-level CNTL label and a job-level CNTL label. In this case, the
step-level CNTL group overrides the job-level CNTL group.

Program control statements
Program control statements supply control information for a subsystem. A
subsystem can require one or more program control statements. The one or more
statements must be immediately preceded by a CNTL statement and immediately
followed by an ENDCNTL statement.

Do not code JCL statements within a program control group.

Program control statements in procedures
You can code symbolic parameters on program control statements in a cataloged or
in-stream procedure.

You can override parameters on program control statements in a procedure. Follow
the rules used for overriding DD statement parameters in a procedure. For more
information, see “Modifying OUTPUT JCL and DD statements” on page 30.

Example of the CNTL statement
//STEP1 EXEC PGM=PRINT
//ALPHA CNTL * PROGRAM CONTROL STATEMENT FOLLOWS
//PRGCNTL PRINTDEV BUFNO=20,PIMSG=YES,DATACK=BLOCK
//OMEGA ENDCNTL
//AGAR DD UNIT=AFP1,CNTL=*.ALPHA

The PSF subsystem uses the BUFNO, PIMSG, and DATACK options of the
PRINTDEV control statement to print the data set for DD statement AGAR on an
AFP printer. For information about the PRINTDEV statement, see PSF for z/OS:
Customization.

CNTL

82 z/OS V2R1.0 MVS JCL Reference

Chapter 12. DD statement

Purpose: Use the DD (data definition) statement to describe a data set and to
specify the input and output resources needed for the data set.

The parameters you can specify for data set definition are arranged alphabetically
in the following pages .

References: For information about the JES initialization parameters that provide
installation defaults, see z/OS JES2 Initialization and Tuning Reference and z/OS JES3
Initialization and Tuning Reference.

Description

Syntax

// [ddname] DD [positional-parameter][,keyword-parameter]...[comments]
[procstepname.ddname]

// [ddname] DD
[procstepname.ddname]

v The DD statement consists of the characters // in columns 1 and 2 and four fields: name, operation
(DD), parameter, and comments. Do not code comments if the parameter field is blank.

v A DD statement is required for each data set.

v The maximum number of DD statements per job step is 3273, based on the number of single DD
statements allowed for a TIOT (task input output table) control block size of 64K. This limit can be
different depending on the installation-defined TIOT size. The IBM-supplied default TIOT size is
32K. For information about changing the size of the TIOT, see the ALLOCxx parmlib member
information in z/OS MVS Initialization and Tuning Reference. For information about how dynamic
allocation might cause changes to the task input/output table (TIOT), see z/OS MVS Programming:
Authorized Assembler Services Guide.

In a JES3 system, the installation might further reduce the maximum number of DD statements per
job.

Name field
When specified, code a ddname as follows:
v Each ddname should be unique within the job step. If duplicate ddnames appear

in a job step, processing is as follows:
– In a JES2 system: The system performs device and space allocation and

disposition processing for both DD statements; however, it directs all
references to the first DD statement in the step.

– In a JES3 system: If both DD statements request JES3 or jointly-managed
devices, the system cancels the job during JES3 interpretation. If only one or
neither DD statement requests a JES3 or jointly-managed device, the system
performs device and space allocation processing for both DD statements;
however, it directs all references to the first DD statement in the step.

v The ddname must begin in column 3.
v The ddname is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The ddname must be followed by at least one blank.

© Copyright IBM Corp. 1988, 2013 83

Omitting the ddname: Do not code a ddname when the DD statement defines a
data set that is concatenated to the data set of the preceding DD statement. You
can code PATH or DSNAME in either or both of the DD statements if your
program uses BSAM, QSAM or BPAM.

Note: Prior to z/OS V1R7 you could define indexed sequential data sets using
DSORG=IS and a DD statement without a name.

Name field when overriding a procedure DD statement: Code the following in the
name field of a DD statement that is to override a procedure DD statement:
1. The name of the procedure step that contains the DD statement to be

overridden
2. Followed by a period
3. Followed by the ddname of the procedure DD statement that is to be

overridden.

Name field when adding a DD statement to a procedure: Code the following in the
name field of a DD statement that is to be added to a procedure:
1. The name of the procedure step to which the DD statement is to be added
2. Followed by a period
3. Followed by a ddname of your choosing.

For example:
//PROCSTP1.DDA DD parameters

Name field when adding a DD statement to a program: When you code a DD
statement with a ddname of procstepname.ddname within a program step, the
system:
1. Checks the syntax of both the procstepname qualifier and the ddname qualifier
2. Uses only the ddname qualifier as the statement ddname
3. Adds the DD statement to the program step that contains the statement
4. Issues an informational message because procstepname is coded outside of a

procedure.

Special ddnames: Use the following special ddnames only when you want to use
the facilities these names represent to the system. These facilities are explained in
Chapter 13, “Special DD statements,” on page 313.
JOBLIB
STEPLIB
SYSABEND
SYSCKEOV
SYSMDUMP
SYSUDUMP

Do not use the following ddnames. They are reserved for compatibility with the
prior releases of MVS.
JOBAT
STEPCAT

Do not use the following ddnames on a DD statement in a JES2 system. They have
special meaning to JES2.

DD

84 z/OS V2R1.0 MVS JCL Reference

JESJCLIN
JESJCL
JESMSGLG
JESYSMSG

The following ddnames have special meaning to JES3; do not use them on a DD
statement in a JES3 system.
JCBIN
JCBLOCK
JCBTAB
JESJCLIN
JESInnnn
JESJCL
JESMSGLG
JOURNAL
JST
JESYSMSG
JES3CATLG
J3JBINFO
J3SCINFO
J3STINFO
STCINRDR
TSOINRDR

Operation field
The operation field consists of the characters DD and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter field
A DD statement has two kinds of parameters: positional and keyword. All
parameters are optional.

Leave the parameter field blank only in the following cases:
v When SMS will provide the necessary DD description.
v When leaving a DD statement within a concatenation unchanged and overriding

parameters on subsequent DD statements within that concatenation.

Positional parameters: A DD statement can contain one positional parameter. If
coded, this positional parameter must precede all keyword parameters.

Table 15. Positional parameters

POSITIONAL
PARAMETERS VALUES PURPOSE

[*]
[DATA]

See section “* Parameter” on
page 101 or “DATA
parameter” on page 129

*: for data sets containing no
JCL DATA: for data sets
containing JCL

In a non-APPC scheduling
environment, begins an
in-stream data set.

DUMMY

See section “DUMMY
parameter” on page 188

Specifies no space allocation,
no disposition processing,
and, for BSAM and QSAM,
no I/O.

DYNAM

See section “DYNAM
parameter” on page 191

(Parameter is supported to
provide compatibility with
previous systems.)

DD

Chapter 12. DD statement 85

Keyword parameters: A DD statement can contain the following keyword
parameters. You can code any of the keyword parameters in any order in the
parameter field after a positional parameter, if coded.

Do not use DD statement keywords as symbolic parameters in procedures to be
started by a START command from the operator console.

Table 16. Keyword parameters

KEYWORD PARAMETERS VALUES PURPOSE

ACCODE=access-code

See section “ACCODE parameter” on page 104

For ISO/ANSI/FIPS Version 3 tapes,
access-code: 1 - 8 characters, first must be
upper case A - Z.

For ISO/ANSI Version 4 tapes,
access-code: 1 - 8 characters, first must be
upper case A - Z, number 0 - 9, or one of
these special characters: ! * " % & ' () + , -
. / : ; < = > ? _

Specifies or changes an
accessibility code for an
ISO/ANSI/FIPS Version 3
or ISO/ANSI Version 4 tape
output data set.

AMP=(subparameter)
AMP=(’subparameter[,subparameter]...’)

subparameters:

AMORG
BUFND=number
BUFNI=number
BUFSP=bytes
CROPS= {RCK}

{NCK}
{NRE}
{NRC}

FRLOG= {NONE}
{REDO}

OPTCD= {I }
{L }
{IL}

RECFM= {F }
{FB}
{V }
{VB}

STRNO=number
SYNAD=modulename
TRACE
ACCBIAS=[USER]

[SYSTEM]
[DO]
[DW]
[SO]
[SW]

SMBDFR= {Y | N}

SMBHWT= nn

SMBVSP= {nnK | nnM}

MSG=SMBBIAS
RMODE31=[ALL]

[BUFF]
[CB]
[None]

See section “AMP parameter” on page 105

see z/OS DFSMS Using Data Sets Completes information in
an access method control
block (ACB) for a VSAM
data set.

DD

86 z/OS V2R1.0 MVS JCL Reference

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

With SMS only:

AVGREC= {U}
{K}
{M}

See section “AVGREC parameter” on page 113

U: space specified in records
K: space specified in thousands

of records
M: space specified in millions

of records

Specifies a record request
and the quantity of primary
and secondary space
specified on the SPACE
parameter.

BLKSIZE= {value}
{valueK}
{valueM}
{valueG}

See section “BLKSIZE parameter” on page 114

value: the specified maximum length, in
bytes, of a block (The maximum is
depending on the device type.)

valueK: the specified maximum length, in
kilobytes, of a block (The maximum is
2097152K.)

valueM: the specified maximum length, in
megabytes, of a block (The maximum is
2048M.)

valueG: the specified maximum length, in
gigabytes, of a block (The maximum is
2G.)

Specifies the maximum
length of a block.

BLKSZLIM= {value}
{valueK}
{valueM}
{valueG}

See section “BLKSZLIM parameter” on page 116

value: 32,760 bytes - 2,147,483,648 bytes
(two gigabytes)

valueK: 32K - 2,097,152K (two gigabytes)

valueM: 1M - 2048M (two gigabytes)

valueG: 1G - 2G (two gigabytes)

Specifies an upper limit on
a data set's block size if
BLKSIZE is omitted from
all sources and the system
determines the block size
for the data set.

BURST= {YES}
{Y }
{NO }
{N }

See section “BURST parameter” on page 117

YES or Y: burster-trimmer-stacker
NO or N: continuous forms stacker

Directs output to a stacker
on a continuous-forms AFP
printer.

CCSID=nnnnn

See section “CCSID parameter” on page 119

nnnnn: 1 - 65535 Specifies the coded
character set identifier
indicating the character
code conversion performed
on reads from and writes to
tapes accessed in ISO/ANSI
Version 4 format.

CHARS= {table-name }
{(table-name[,table-name]...)}
{DUMP }
{(DUMP[,table-name]...) }

See section “CHARS parameter” on page 121

1 - 4 table-name subparameters:
1 - 4 alphanumeric or $, #, @
characters

DUMP: 204-character print lines
on 3800 model 1

Names coded fonts for
printing on an AFP printer.
Requests a high-density
dump on a SYSABEND or
SYSUDUMP DD statement.

CHKPT=EOV

See section “CHKPT parameter” on page 123

Requests a checkpoint at
each end-of-volume except
the last.

CNTL= {*.label }
{*.stepname.label }
{*.stepname.procstepname.label}

See section “CNTL parameter” on page 125

label: names CNTL statement
stepname: CNTL in named step
procstepname: step in named

procedure

Causes the system to
execute statements
following an earlier CNTL
statement.

COPIES= {nnn }
{(nnn,(group-value[,group-value]...))}
{(,(group-value[,group-value]...)) }

See section “COPIES parameter” on page 126

nnn (JES2): 1 - 255
nnn (JES3): 0 - 255
1 - 8 group-values (JES2): 1 - 255
1 - 8 group values (JES3): 1 - 254

Specifies number of copies
printed. For an AFP printer,
can instead specify number
of copies of each page
printed before the next
page is printed.

DD

Chapter 12. DD statement 87

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

With SMS only:

DATACLAS=data-class-name

See section “DATACLAS parameter” on page 132

data-class-name: installation-defined name
of a data class

Specifies the data class for a
new data set.

DCB=(subparameter[,subparameter]...)

DCB= ({dsname })
({*.ddname })
({*.stepname.ddname })
({*.stepname.procstepname.ddname})
([,subparameter]...)

See section “DCB parameter” on page 135

subparameter: see tables in DCB
parameter description

*.ddname: copy DCB parameter from
named cataloged data set

dsname: copy DCB information from
named earlier DD statement

stepname: DD in named step

procstepname: step in named procedure

Completes information in
data control block (DCB).

DDNAME=ddname

See section “DDNAME parameter” on page 150

ddname: names later DD statement Postpones defining the data
set until later in same step:
on a DD statement in the
calling step or in a
procedure called by the
step.

DEST=destination

destination (JES2):
LOCAL
name
Nnnnnn
NnRmmmmm to NnnnnnRm
(node,remote)
Rnnnnn or RMnnnnn or RMTnnnnn
Unnnnn
(node,userid)

destination (JES3):
ANYLOCAL
device-name
device-number
group-name
nodename
(node,userid)

See section “DEST parameter” on page 155

LOCAL or ANYLOCAL: local device

name: named local or remote device

Nnnnnn: node (1 - 32,767)

NnRmm: node (1 - 32,767) and remote
work station (1 - 32,767); 6 digits
maximum for n and m combined

Rnnnnn or RMnnnnn or RMTnnnnn:
remote terminal (1 - 32,767)

Unnnnn: local terminal (1 - 32,767)

(node,userid): node (1 - 8 alphanumeric or
$, #, @ characters) and TSO/E userid (1 - 7
alphanumeric or $, #, @ characters) or VM
userid (1 - 8 alphanumeric or $, #, @
characters)

device-number: 3-digit or 4-digit
hexadecimal number (/ required before
4-digit number)

device-name: local device (1 - 8
alphanumeric or $, #, @ characters)

group-name: 1 or more local devices or
remote stations (1 - 8 alphanumeric or $,
#, @ characters)

nodename: node (1 - 8 alpha- numeric or
$, #, @ characters)

Sends a sysout data set to
the specified destination.

DD

88 z/OS V2R1.0 MVS JCL Reference

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

DISP=[status]
DISP=([status][,normal-termination-disp]

[,abnormal-termination-disp])

See section “DISP parameter” on page 159

status: NEW, OLD, SHR (for shared),
MOD (for data set to be modified)

normal-termination-disp: DELETE, KEEP,
PASS, CATLG, or UNCATLG

abnormal-termination-disp: DELETE,
KEEP, CATLG, or UNCATLG

Describes the status of the
data set and tells the
system to do the following
with the data set after
normal or abnormal
termination of the step or
job: delete or keep it on its
volume(s), pass it to a later
step, or add it to or remove
it from the catalog.

DLM=delimiter

See section “DLM parameter” on page 172

delimiter: 2 characters In a non-APPC scheduling
environment, terminates an
in-stream data set.

DSID= {id }
{(id,[V])}

See section “DSID Parameter” on page 174

id: 1 - 8 characters
V: label was verified (only on a

SYSIN DD statement)

Identifies a data set on a
diskette of a 3540 Diskette
Input/Output Unit.

{DSNAME} = {dsname }
{DSN } {dsname(member-name) }

{dsname(generation-number) }
{&&dsname(member-name) }
{*.ddname }
{*.stepname.ddname }
{*.stepname.procstepname.ddname}
{NULLFILE }

See section “DSNAME parameter” on page 176

unqualified dsname: 1 - 8 alphanumeric or
$, #, @ characters, -, +0

qualified dsname: multiple names joined
by periods

member-name: member in PDS or PDSE

generation-number: 0 or signed integer

stepname: DD in named step

procstepname: step in named procedure

NULLFILE: dummy data set

Names the data set.

DSNTYPE= {BASIC}
{LARGE}
{EXTREQ}
{EXTPREF}
{LIBRARY}
{(LIBRARY,1)}
{(LIBRARY,2)}
{HFS }
{PDS }
{PIPE }

See section “DSNTYPE parameter” on page 184

BASIC: basic format data set
LARGE: large format data set
EXTREQ: extended format data set
EXTPREF: extended format data set

(preferred)
LIBRARY: partitioned data

set extended (PDSE), with
optional version number

HFS: hierarchical file system
(HFS) data set

PDS: partitioned data set
PIPE: FIFO special file

Specifies the type of data
set.

EATTR=[OPT|NO]

See section “EATTR parameter” on page 192

OPT: Extended attributes are optional

NO: No extended attributes

Indicate whether the data
set can support extended
attributes (format 8 and 9
DSCBs) or not.

EXPDT= {yyddd }
{yyyy/ddd}

See section “EXPDT parameter” on page 193

yyddd: expiration date (yy: 2-digit year,
ddd: day 001-366)

yyyy/ddd: expiration date (yyyy: 4-digit
year, ddd: day 001-366)

Specifies an expiration date
for the data set.

FCB= {fcb-name }
{(fcb-name [,ALIGN]) }

[,VERIFY]

See section “FCB parameter” on page 195

fcb-name: 1 - 4 alphanumeric or
$, #, @ characters

ALIGN: operator check forms
alignment

VERIFY: operator verify FCB image

Specifies FCB image,
carriage control tape for
1403 Printer, or
data-protection image for
3525 Card Punch.

DD

Chapter 12. DD statement 89

|
||
|

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

FILEDATA= {BINARY}
{TEXT }
{RECORD}

See section “FILEDATA parameter” on page 198

BINARY: byte-stream file
TEXT: delimited by the

EBCDIC newline character
RECORD: the data consist of records

with prefixes.

Specifies the content type of
a z/OS UNIX file.

FLASH= {overlay-name }
{(overlay-name[,count])}
{NONE }

See section “FLASH parameter” on page 199

overlay-name: forms overlay frame
(1 - 4 alphanumeric or $, #,
@ characters)

count: copies with overlay (0 - 255)
NONE: suppresses flashing

For printing on a 3800
Printing Subsystem,
indicates that the data set is
to be printed with the
named forms overlay and
can specify how many
copies are to be flashed.

FREE= {END }
{CLOSE}

See section “FREE parameter” on page 201

END: unallocate at end of last step
CLOSE: unallocate when data set is closed

Specifies when to unallocate
the resources for this data
set.

HOLD= {YES}
{Y }
{NO }
{N }

See section “HOLD parameter” on page 206

YES or Y: holds this sysout data set

NO or N: allows normal processing for
this sysout data set’s output class

Tells the system to hold this
sysout data set until
released by the operator.

KEYLEN=bytes

See section “KEYLEN parameter” on page 213

bytes: number of bytes (1-255 for
key-sequenced (KS), 0-255 for sequential
(PS) or partitioned (PO))

Specifies the length of the
keys in the data set.

With SMS only:

KEYOFF=offset-to-key

See section “KEYOFF parameter” on page 214

offset-to-key: position of key (0 to
difference of LRECL and KEYLEN minus
1)

Specifies the offset of the
first byte of the record key.

LABEL= ([data-set-seq-no][,label-type] [,PASSWORD]) [,IN] [,RETPD=nnnn])
[,NOPWREAD]) [,OUT] [,EXPDT= {yyddd }]
[,]) [,] [{yyyy/ddd}]

See section “LABEL parameter” on page 216

DD

90 z/OS V2R1.0 MVS JCL Reference

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

data-set-seq-no: data set position on tape
volume (1 - 4 decimal digits)

label-type: SL: IBM® standard labels SUL:
IBM standard and user labels AL:
ISO/ANSI Version 1 and ISO/ANSI/FIPS
Version 3 labels AUL: user labels and
ISO/ANSI Version 1 and ISO/ANSI/FIPS
Version 3 labels NSL: nonstandard labels
NL: no labels BLP: bypass label processing
LTM: leading tapemark

PASSWORD: password required to access
data set

NOPWREAD: password required to
change or delete data set

IN: only read BSAM data set opened for
INOUT or BDAM data set opened for
UPDAT

OUT: only write to BSAM data set opened
for OUTIN or OUTINX

RETPD=nnnn: retention period (nnnn: 1 -
4 decimal digits)

EXPDT=yyddd: expiration date (yy:
2-digit year, ddd: day 001 - 366)

EXPDT=yyyy/ddd: expiration date (yyyy:
4-digit year, ddd: day 001 - 366)

Specifies information about
a data set’s label, password,
opening, expiration date,
and, for a tape data set,
relative position on the
volume.

LGSTREAM=name

See section “LGSTREAM parameter” on page 222

name: the name of the prefix that the
system logger uses for the forward
recovery log stream

Specifies the prefix of the
name of the log stream for
an SMS-managed VSAM
data set.

With SMS only:

LIKE=data-set-name

See section “LIKE parameter” on page 224

data-set-name: dsname of model data set Specifies the attributes of a
new data set.

LRECL=(bytes)

See section “LRECL parameter” on page 226

bytes: length in bytes (1-32,760 for PS or
PO, 1-32,761 for KS, ES, or RR)

Specifies the length of the
records in the data set.

MAXGENS=maximum-generations

See section “MAXGENS parameter” on page 228

maximum-generations: 0 - 2000000000 Specifies the maximum
number of generations for
members in a Version 2
PDSE. Requires APAR
OA42358.

With SMS only:

MGMTCLAS=data-class-name

See section “MGMTCLAS parameter” on page 228

data-class-name: installation- defined
name of a data class

Specifies the management
class for a new data set.

MODIFY= {module-name }
{(module-name[,trc])}

See section “MODIFY parameter” on page 230

module-name: 1 - 4 alphanumeric or $, #,
@ characters

trc: table-name in CHARS parameter (0 for
first, 1 for second, 2 for third, and 3 for
fourth table-name)

Specifies a
copy-modification module
in SYS1.IMAGELIB to be
used by JES to print the
data set on a 3800 Printing
Subsystem.

OUTLIM=number

See section “OUTLIM parameter” on page 232

number: 1 - 16777215 logical records
maximum

Limits the logical records in
this sysout data set.

DD

Chapter 12. DD statement 91

|

|

||
|
|
|
|

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

OUTPUT= {reference }
{(reference[,reference]...)}

reference:

v *.name

v *.stepname.name

v *.stepname.procstepname.name

See section “OUTPUT parameter” on page 233

name: names earlier OUTPUT JCL
statement

stepname: OUTPUT JCL in named
step

procstepname: step in named
procedure

Associates this sysout data
set with one or more
OUTPUT JCL statements.

PATH=pathname

See section “PATH parameter” on page 237

pathname: pathname for a file Specifies the name of a
UNIX File.

PATHDISP=(normal-termination-disposition,
abnormal-termination-disposition)

See section “PATHDISP parameter” on page 240

normal-termination-disposition:
KEEP, DELETE

abnormal-termination-disposition:
KEEP, DELETE

Tells the system to keep or
delete the file after the job
step ends.

PATHMODE=file-access-attribute
PATHMODE=(file-access-attribute

[,file-access-attribute]...)

See section “PATHMODE parameter” on page 241

file-access-attribute for file owner class:
SIRUSR, SIWUSR, SIXUSR, SIRWXU

file-access-attribute for file group class:
SIRGRP, SIWGRP, SIXGRP, SIRWXG

file-access-attribute for file other class:
SIROTH, SIWOTH, SIXOTH, SIRWXO

file-access-attribute to set process IDs:
SISUID, SISGID

Specifies file access
attributes when creating a
UNIX File.

PATHOPTS=file-option
PATHOPTS=(file-option[,file-option]...)

See section “PATHOPTS parameter” on page 245

file-option for access group: ORDONLY,
OWRONLY, ORDWR

file-option for status group: OAPPEND,
OCREAT, OEXCL, ONOCTTY,
ONONBLOCK, OSYNC, OTRUNC

Specifies access and status
for a file.

PROTECT=YES

See section “PROTECT parameter” on page 249

Requests that RACF create
a discrete profile to protect
a data set on direct access
or a tape volume.

DD

92 z/OS V2R1.0 MVS JCL Reference

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

Coding RECFM for BDAM Access Method:

RECFM= {U }
{V }
{VS }
{VBS}
{F }
{FT }

Coding RECFM for BPAM Access Method:

RECFM= {U } [A]
{UT } [M]
{V }
{VB }
{VS }
{VT }
{VBS }
{VBT }
{VBST}
{F }
{FB }
{FT }
{FBT }

Coding RECFM for BSAM, EXCP, and QSAM Access
Methods:

RECFM= {U } [A]
{UT } [M]
{F }
{FB }
{FS }
{FT }
{FBS }
{FBT }
{V }
{VB }
{VS }
{VT }
{VBS }
{VBT }
{VBST}

For BSAM, EXCP, and QSAM using ISO/ANSI/FIPS
data sets on tape:

RECFM= {D } [A]
{DB }
{DS }
{DBS}
{U }
{F }
{FB }

See section “RECFM parameter” on page 251

Record format is:
F: fixed length
B: blocked
S: spanned
V: variable length
U: undefined length
T: track-overflow feature
D: variable-length ISO/ANSI tape

records
Control characters are:

A: ISO/ANSI code
M: machine code

Specifies the format and
characteristics of the
records in a data set.

With SMS only:

RECORG= {KS}
{ES}
{RR}
{LS}

See section “RECORG parameter” on page 254

Organization of records:
KS: key-sequenced
ES: entry-sequenced
RR: relative record
LS: linear space

Specifies the organization of
the records in a VSAM data
set.

With SMS only:

REFDD= {*.ddname }
{*.stepname.ddname }
{*.stepname.procstepname.ddname}

See section “REFDD parameter” on page 256

Referenced DD statement:

ddname: unqualified name

stepname: qualified by step name

procstepname: step in procedure

Specifies the attributes of a
new data set by referring to
a previous DD statement.

DD

Chapter 12. DD statement 93

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

RETPD=nnnn

See section “RETPD parameter” on page 258

nnnn: number of days (0-9999) Specifies the retention
period for a new data set.

RLS= {NRI}
{CR }
{CRE }

See section “RLS parameter” on page 260

NRI: can read uncommitted changes CR:
can read only committed changes CRE:
ensures that records read by a unit of
recovery are not changed by other units of
recovery until the reading unit of recovery
issues a syncpoint.

Specifies the record-level
sharing protocol to be used
with a VSAM data set.

With SMS only:

SECMODEL=(profile-name[,GENERIC])

See section “SECMODEL parameter” on page 262

profile-name: name of model profile
GENERIC: model is generic profile

Specifies a RACF profile to
be used for a new data set.

SEGMENT=page-count

See section “SEGMENT parameter” on page 263

page-count: number of pages of a sysout
data set

Specifies the number of
pages produced for the
current segment of the
sysout data set before the
data set is spun-off for
output processing. (JES2
only)

For system assignment of space:

SPACE=({TRK, } (primary-qty [,second-qty] [,directory]) [,RLSE] [,CONTIG] [,ROUND])
{CYL, } [,] [,] [,MXIG]
{blklgth,} [,ALX]
{reclgth,} [,]

To request specific tracks:

SPACE=
(ABSTR, (primary-qty,address [,directory]))

To request directory blocks (with SMS only):

SPACE=(,(,,directory))

See section “SPACE parameter” on page 264

DD

94 z/OS V2R1.0 MVS JCL Reference

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

TRK: allocation in tracks

CYL: allocation in cylinders

blklgth: allocation in average blocks, 1 -
65535

reclgth: allocation in average records
(SMS)

primary-qty: number of tracks, cylinders
or blocks to be allocated

second-qty: additional tracks or cylinders
to be allocated, if more are needed

directory: number of 256-byte records for
PDS directory

RLSE: release unused space when data set
is closed

CONTIG: contiguous primary allocation

MXIG: allocation in largest available space

ALX: allocation of up to 5 separate
contiguous primary quantities

ROUND: allocation by block length
rounded to integral cylinders

ABSTR: allocation at the specified address

address: track number of first track to be
allocated

Requests space for a new
data set on direct access
storage.

SPIN= {UNALLOC} (JES2 only)
{NO }

See section “SPIN parameter” on page 273

UNALLOC (JES2 only): the data set is
available for printing immediately upon
unallocation. UNALLOC is supported on
JES2 only. NO: the data set is available for
printing at the end of the job

Specifies that the output for
a sysout data set is
available for printing
immediately upon
unallocation or at the end
of the job.

With SMS only:

STORCLAS=storage-class-name

See section “STORCLAS parameter” on page 275

storage-class-name: installation- defined
name of a storage class

Specifies the storage class
for a new data set.

SUBSYS= (subsystem-name)
([,subsystem-parameter]...)

See section “SUBSYS parameter” on page 277

subsystem-name: identifies the
subsystem

subsystem-parameter: specifies
information for the subsystem

Requests a subsystem to
process this data set.

SYSOUT=class
SYSOUT=([class] [,writer-name] [,form-name])

[,INTRDR] [,code-name]
[,]

SYSOUT=*
SYSOUT=(,)

See section “SYSOUT parameter” on page 283

class: A - Z, 0 - 9

writer-name: 1 - 8 alphanumeric or $, #, @
characters

form-name: 1 - 4 alphanumeric or $, #, @
characters

code-name: 1 - 4 alphanumeric or $, #, @
characters (JES2 only)

*: same output class as MSGCLASS
parameter on JOB statement

Defines this data set as a
sysout data set and (1)
assigns it to an output class,
(2) requests external writer
to process it, (3) identifies
print or punch forms, and
(4) refers to the code-name
of a JES2 /*OUTPUT
statement.

DD

Chapter 12. DD statement 95

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

TERM=TS

See section “TERM parameter” on page 288

The TERM parameter has
no function in an APPC
scheduling environment. In
a foreground job,indicates
that this data set is coming
from or going to a TSO/E
userid. In a batch job,
indicates that this DD
statement begins an
in-stream data set.

UCS= {character-set-code }
{(character-set-code [,FOLD] [,VERIFY])}
{ [,] }

See section “UCS parameter” on page 290

character-set-code: 1 - 4 alpha- numeric or
$, #, @ characters

FOLD: operator load chain or train in fold
mode

VERIFY: operator verify UCS image

Specifies universal character
set, print train, or font for
an AFP printer.

UNIT= ([ddd] [,unit-count][,DEFER])
[/ddd] [,P]
[/dddd] [,]
[device-type]
[group-name]

UNIT=AFF=ddname

See section “UNIT parameter” on page 293

device-number: 3-digit or 4-digit
hexadecimal number (/ required before
4-digit number and optional before 3-digit
number)

device-type: machine type and model

group-name: 1 - 8 alphanumeric or $, #, @
characters

unit-count: 1 - 59

P: allocate same number of devices as
volumes for parallel mount

DEFER: defers mounting until open

SMSHONOR: indicates that the system
should honor the device number or
group-name for a SMS-managed tape
library request

AFF=ddname: requests allocation of same
devices as for DD statement ddname

Requests allocation to a
specific device, a type or
group of devices, or the
same device(s) as another
data set. Also can specify
how many devices and
deferred mounting.

{VOLUME}=([PRIVATE] [,RETAIN] [,volume-seq-no][,volume-count][,][SER=(serial-number[,serial-number]...)])
{VOL } [,] [,] [REF=dsname]

[REF=*.ddname]
[REF=*.stepname.ddname]
[REF=*.stepname.procstepname.ddname]
[REF=*.procstepname.ddname]

See section “VOLUME parameter” on page 300

DD

96 z/OS V2R1.0 MVS JCL Reference

Table 16. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

PRIVATE: requests a private volume

RETAIN: requests private tape volume
remain mounted and unwound or
requests public tape volume be retained at
device

volume-seq-no: begins processing with
volume 1 - 255 of existing multivolume
data set

volume-count: maximum volumes for
output data set (1 - 255)

serial-number subparameters (1 - 255):
volume serial numbers (1 - 6
alphanumeric, $, #, @, or special
characters)

REF: copy volume serial numbers from
another data set or earlier DD statement,
or copy storage class for SMS-managed
data sets

dsname: from cataloged or passed data set

ddname: from named earlier DD
statement

stepname: DD in named step

procstepname: step in named procedure

Identifies the volume(s) on
which a data set resides or
will reside.

Comments field
The comments field follows the parameter field after at least one intervening blank.
If you do not code any parameters on a DD statement, do not code any comments.

Location in the JCL
Most DD statements define data sets to be used in a job step, in a cataloged
procedure step, or in an in-stream procedure step; these appear after the EXEC
statement for the step. Some DD statements define data sets for the job, for
example, the JOBLIB DD statement; these appear after the JOB statement and
before the first EXEC statement.

When overriding or adding to procedures: Place DD statements that override,
nullify, or add parameters immediately following the EXEC statement that calls the
procedure. Place overriding and nullifying DD statements first, followed by all
added DD statements. Last in the calling step are any DD * or DD DATA
statements with their in-stream data.

To override more than one DD statement in a procedure, place the overriding DD
statements in the same order as the overridden DD statements in the procedure.

Concatenating data sets
When data sets are concatenated, the application program can treat them as if they
were one logical data set. In general, most of the logical attributes of the first DD
statement apply to all of them. You can concatenate input data sets for the
duration of a job step. Each of the concatenated data sets can reside on a different

DD

Chapter 12. DD statement 97

volume. For details on concatenating data sets, see z/OS DFSMS Using Data Sets.
Note that you cannot concatenate output data sets.

Two types of concatenation

Partitioned concatenation: This is any combination of the following:
v Partitioned data set (PDS).
v Partitioned data set extended (PDSE).
v z/OS UNIX directory. Code the PATH keyword.

In general, do not code a member name in these cases. If you code a member
name on the first DD statement, it causes the system to position to that member
first unless the application program overrides it. The application program uses
BPAM to read.

Sequential concatenation: There are two types of sequential concatenation:
v Like. The same logical record length (LRECL) value and record format apply to

all the data sets. The block size (BLKSIZE) values and device characteristics
might differ.

v Unlike. Any of data set characteristics might differ. The application program
must have logic to support this capability.

The DD statements are for any combination of sequential disk or tape data sets,
members of PDSs and PDSEs, spooled input stream ("sysin") data sets, z/OS UNIX
files, a TSO terminal (TERM=TS) and unit record (such as virtual card reader)
devices. The application program uses BSAM, QSAM or EXCP to read.

Coding a concatenation
To concatenate data sets, omit the ddnames from all the DD statements except the
first in the sequence. The data sets are processed in the same sequence as the DD
statements defining them.

Devices for concatenated data sets
Concatenated data sets can reside on different devices and different types of
devices. (This may require internal DCB modifications, see z/OS DFSMS Using Data
Sets.)

Block sizes for concatenated data sets
Concatenated data sets can have different block sizes. In a few cases, the data set
with the largest block size must appear first in the concatenation. (Note that you
can state a value equal to the largest block size for BLKSIZE on the first DD
statement, regardless of what the actual block size of this data set is.) Certain data
sets can be concatenated in any order of block size; these are:
v Partitioned data sets (PDSs), and partitioned data sets extended (PDSEs) without

member names coded on the DD statements.
v Sequential data sets that are DASD-resident, tape-resident, or in-stream, and are

accessed by QSAM and use system-created buffers.
v Sequential data sets that are DASD-resident or in-stream, and are accessed by

BSAM.

For these data sets, the BLKSIZE obtained is the largest in the concatenation. Note
that this block size can cause invalid attribute combinations when combined with
the attributes obtained from the first data set in the concatenation.

DD

98 z/OS V2R1.0 MVS JCL Reference

If you do not specify a block size, the system can, under certain conditions,
determine an optimum block size. For detailed information about
system-determined block size, see z/OS DFSMS Using Data Sets.

Logical record lengths for concatenated data sets
Concatenated data sets with format-V records can have different logical record
lengths as long as the data set with the largest logical record length appears first in
the concatenation. (Note that you can state a value equal to the largest logical
record length for LRECL on the first DD statement, regardless of what the actual
logical record length of this data set is.)

References to concatenated data sets
If you make a backward reference to a concatenation (using *.), the system obtains
information only from the first data set defined in the sequence of DD statements.

If you make a forward reference to a concatenation (using the DDNAME
parameter), the forward reference resolves to the first data set in the concatenation.
If there are no DD statements between the forward reference and the
concatenation, the rest of the data sets in the concatenation are appended to the
first data set in the concatenation. The following example illustrates this.
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DDNAME=INPUT
//INPUT DD DSN=TSTDATA1,DISP=SHR
// DD DSN=TSTDATA2,DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY

In this example, SYSUT1 will resolve to the first data set, TSTDATA1, defined by
the DDNAME forward reference INPUT. TSTDATA2, the second data set in the
DDNAME forward reference INPUT, will be appended to SYSUT1 as well.
IEBGENER will recognize TSTDATA1 and TSTDATA2 as input.

If there are any DD statements between the forward reference and the
concatenation, the rest of the data sets in the concatenation are appended to the
last DD statement preceding the concatenation. For example:
//STEP1 EXEC PGM=IEBGENER
//SYSUT1 DD DDNAME=INPUT
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD SYSOUT=*
//INPUT DD DSN=TSTDATA1,DISP=SHR
// DD DSN=TSTDATA2,DISP=SHR
//SYSIN DD DUMMY

In the preceding example, SYSUT1 will resolve to the first data set, TSTDATA1,
defined in the DDNAME forward reference INPUT. TSTDATA2 will be appended
to SYSUT2, the last DD statement preceding the concatenation. In this example,
IEBGENER will recognize only TSTDATA1 as input.

If a concatenated DD is added to a procedure, the remaining concatenated data
sets will be concatenated to the last DD in the step named in an override or
addition (or to the first step if no step was named in an override or addition). Note
that this may result in these concatenated DDs being added to an unexpected DD.
The following example illustrates this.
//TPROC PROC
//S1 EXEC PGM=IEFBR14
//DD1 DD DDNAME=INPUT
//DD2 DD DSN=MYDSN2,DISP=SHR

DD

Chapter 12. DD statement 99

//DD3 DD DSN=MYDSN3,DISP=SHR
//S2 EXEC PGM=IEFBR14
//DDA DD DDNAME=INPUT
//DDB DD DSN=MINE2,DISP=SHR
//DDC DD DSN=MINE3,DISP=SHR
// PEND
//STEP1 EXEC TPROC
//INPUT DD DSN=MYDSN1,DISP=SHR
// DD DSN=MYDSN4,DISP=SHR
//S2.INPUT DD DSN=MINE1,DISP=SHR
// DD DSN=MINE4,DISP=SHR

In this example, the result of the DDNAME forward reference INPUT is:
v In step S1, DD1 resolves to data set MYDSN1 and data set MYDSN4 is

concatenated to data set MYDSN3.
v In step S2, DDA resolves to data set MINE1 and data set MINE4 is concatenated

to data set MINE3.

Do not concatenate data sets after a DUMMY data set
If you define a data set using the DUMMY parameter, do not concatenate other
data sets after it. When the processing program asks to read a dummy data set, the
system takes an end-of-data set exit immediately and ignores any data set that
might be concatenated after the dummy.

Do not code other statements between concatenated DD
statements
Do not code other types of statements between two or more concatenated data
definition (DD) statements. (Comments are the only exception; you can code them
between DD statements.) For example, do not code a SET statement as follows:
//DD1 DD DSN=A
// DD DSN=B
// SET ...
//* Wrong!!! SET statement not allowed (this comment IS allowed)
// DD DSN=C

Examples of DD statements and ddnames
Example 1
//MYDS DD DSNAME=REPORT
//A DD DSNAME=FILE

Example 2
//INPUT DD DSNAME=FGLIB,DISP=(OLD,PASS)
// DD DSNAME=GROUP2,DISP=SHR

In this example, because the ddname is missing from the second DD statement, the
system concatenates the data sets defined in these statements.

Example 3
//PAYROLL.DAY DD DSNAME=DESK,DISP=SHR

In this example, if procedure step PAYROLL contains a DD statement named DAY,
this statement overrides parameters on DD statement DAY. If the step does not
contain DD statement DAY, the system adds this statement to procedure step
PAYROLL for the duration of the job step.

Example 4

DD

100 z/OS V2R1.0 MVS JCL Reference

//STEPSIX.DD4 DD DSNAME=TEXT,DISP=(NEW,PASS)
// DD DSNAME=ART,DISP=SHR

In this example, the second data set is concatenated to the first, and both are
added to procedure step STEPSIX. The ddname is omitted from the second DD
statement in order to concatenate data set ART to data set TEXT.

Because the system does not allow you to write to a concatenation of data, you
need another data set with DISP=OLD in order to read from TEXT. Write to the
new DD name before reading from DD4.

* Parameter
Parameter Type

Positional, optional

Purpose

Use the * (asterisk) parameter to begin an in-stream data set. The data records
immediately follow the DD * statement; the records may be in any code such as
EBCDIC. The data records end when one of the following is found:
v /* in the input stream
v // to indicate another JCL statement
v The two-character delimiter specified by a DLM parameter on this DD statement
v The input stream runs out of records

Use a DATA parameter instead of the * parameter if any of the data records start
with //.

Considerations for an APPC Scheduling Environment

The * parameter has no function in an APPC scheduling environment. If you code
*, the system will check it for syntax and otherwise ignore it.

Syntax
//ddname DD *[,parameter]... [comments]

Defaults
When you do not code BLKSIZE and LRECL, JES uses installation defaults
specified at initialization.

Note: If the input stream is from NJE (network job entry), JES uses the size
specified at the sending node.

Relationship to other parameters
You can specify the following DD parameters with the DD * and DD DATA
parameters. All other parameters are either ignored or result in a JCL error.
DCB=BLKSIZE DCB=BUFNO DCB=DIAGNS DCB=LRECL DLM DSID
LIKE RECL REFDD DCB=MODE=C DSNAME VOLUME=SER

Restrictions when coding LRECL: If you code LRECL with the * parameter, you
cannot submit a data set to JES3 with a record length greater than 80 bytes.

DD

Chapter 12. DD statement 101

|

You cannot use the TSO/E SUBMIT command to submit a data set to JES2 or JES3
with a record length greater than 80 bytes.

Note: In-stream data within a cataloged procedure is also limited to 80 bytes.

You can submit a data set to JES2 or JES3 with a record length greater than 80
bytes by submitting the following JCL:
//SUBMIT JOB ...
//S1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD SYSOUT=(,INTRDR)
//SYSUT1 DD DSN=IBMUSER.LONGDATA.JCL,DISP=SHR

In this example, IBMUSER.LONGDATA.JCL contains the data with a record length
greater than 80 bytes.

In a JES3 system, the record length limit is the size of the installation-defined spool
buffer, minus 46. (For example, if the buffer size is 4084, the record length limit is
4038.) JES3 fails any job that exceeds this limit.

If the records longer than 80 bytes include JCL to be transmitted to a remote
system using JES3 // XMIT or //*ROUTE XEQ, or JES2 /*ROUTE XEQ or /*XMIT with
JES3 in the network, the records are truncated to 80 bytes.

For JES3 SNA RJP input:

v The only parameters you can specify for JES3 systems network architecture
(SNA) remote job processing (RJP) input devices are BLKSIZE and LRECL.

v Code DCB=LRECL=nnn, where nnn is 1 to 255 when SYSIN data records are
greater than 80 bytes. (The default LRECL is 80 bytes.)

For 3540 diskette input/output units: VOLUME=SER, BUFNO, and DSID on a DD
* statement are ignored except when they are detected by a diskette reader as a
request for an associated data set. See 3540 Programmer's Reference. On a DD * or
DD DATA statement processed by a diskette reader, you can specify DSID and
VOLUME=SER parameters to indicate that a diskette data set is to be merged into
the input stream following the DD statement.

Relationship to other control statements
Do not refer to an earlier DD * statement in DCB, DSNAME, or VOLUME
parameters on following DD statements.

Location in the JCL
A DD * statement begins an in-stream data set.

In-stream Data for Cataloged or In-stream Procedures: A cataloged procedure can
contain a DD * statement.

An in-stream procedure can contain a DD * statement.

When you call an in-stream procedure, you can add input stream data to an
in-stream procedure step by placing one or more DD * or DD DATA statements in
the calling step. You can alternatively include in-stream data directly within the
in-stream or cataloged procedure.

DD: *

102 z/OS V2R1.0 MVS JCL Reference

Multiple In-Stream Data Sets for a Step: You can code more than one DD * or DD
DATA statement in a job step in order to include several distinct groups of data for
the application program. Precede each group with a DD * or DD DATA statement
and follow each group with a delimiter statement.

Omitted Data Delimiters: If you omit a DD statement before the input data, the
system provides a DD * statement with the ddname of SYSIN. If you omit a
delimiter statement after input data, the system ends the data when it reads a JCL
statement or runs out of records.

Unread records
If the processing program does not read all the data in an in-stream data set, the
system skips the remaining data without abnormally terminating the step.

Examples of the * parameter
Example 1
//INPUT1 DD *

.

.
data
.

//INPUT2 DD *
.
.
data
.

/*

This example defines two groups of data in the input stream.

Example 2
//INPUT3 DD *,DSNAME=&&INP3

.
data
.

/*

This example defines an in-stream data set with INP3 as the last qualifier of the
system-generated data set name. A name such as
userid.jobname.jobid.Ddsnumber.INP3 is generated.

Example 3
//STEP2 EXEC PROC=FRESH
//SETUP.WORK DD UNIT=3400-6,LABEL=(,NSL)
//SETUP.INPUT1 DD *

.

.
data
.

/*
//PRINT.FRM DD UNIT=180
//PRINT.INP DD *

.

.
data
.

/*

DD: *

Chapter 12. DD statement 103

|

This example defines two groups of data in the input stream. The input data
defined by DD statement SETUP.INPUT1 is to be used by the cataloged procedure
step named SETUP. The input data defined by DD statement PRINT.INP is to be
used by the cataloged procedure step named PRINT.

ACCODE parameter
Parameter Type

Keyword, optional

Purpose

Use the ACCODE parameter to specify or change an accessibility code for an
ISO/ANSI/FIPS Version 3 or ISO/ANSI Version 4 tape output data set. An
installation-written file-access exit routine verifies the code after the code is written
to tape. If the code is authorized, the job step’s program can use the data set; if
not, the system issues messages and may abnormally terminate the job step.

A data set protected by an accessibility code should reside only on a volume
protected by RACF or a volume accessibility code. The volume should not contain
any unprotected data sets.

Note: ACCODE is supported only for ISO/ANSI/FIPS Version 3 and ISO/ANSI
Version 4 tape data sets. ACCODE is ignored for all label types except AL and
AUL label tapes.

References

For more information on ISO/ANSI/FIPS Version 3 and ISO/ANSI Version 4 tape
data sets, see z/OS DFSMS Using Magnetic Tapes. Also z/OS DFSMS Access Method
Services Commands.

Syntax

ACCODE=access-code

Subparameter definition
access-code

Specifies an accessibility code. The access code is 1 through 8 characters. In
ISO/ANSI/FIPS Version 3 the first character must be an upper case letter from
A through Z. In ISO/ANSI Version 4 the first character must be an upper case
letter from A to Z, number from 0 to 9, or one of the special characters ! * " % '
() + , - . / : ; < = > ? and _ .

Enclose the ACCODE in apostrophes if you specify special characters. For
example, ACCODE='AB/CD'. Specify two apostrophes if you include an
apostrophe as a special character. For example, to specify DAY'SEND, use
ACCODE='DAY''SEND'.

Note: ISO/ANSI/FIPS Version 3 and ISO/ANSI Version 4 use only the first
character as the accessibility code; the installation can use the other seven
characters. If the first character is other than those allowed, the installation
does not give control to the file-access exit routine.

DD: *

104 z/OS V2R1.0 MVS JCL Reference

Defaults
If you do not specify an accessibility code on a DD statement that defines an
ISO/ANSI/FIPS Version 3 or ISO/ANSI Version 4 tape data set, the system writes
an ASCII blank character (X'20') in the tape label. A blank authorizes unlimited
access to the tape's data sets unless access is limited by RACF data set protection.

If the installation does not supply a file-access exit routine, the system prevents
access to any ISO/ANSI/FIPS Version 3 or ISO/ANSI Version 4 tape volume.

Overrides
If PASSWORD or NOPWREAD is coded on the DD statement LABEL parameter,
password access overrides the ACCODE parameter.

Example of the ACCODE parameter
//TAPE DD UNIT=3390,VOLUME=SER=T49850,DSNAME=TAPEDS,
// LABEL=(,AL),ACCODE=Z

In this example, the DD statement ACCODE parameter specifies an accessibility
code of Z for tape volume T49850. The volume has ISO/ANSI/FIPS Version 3 or
ISO/ANSI Version 4 labels. The data set TAPEDS is first on the tape.

AMP parameter
Parameter type

Keyword, optional

Purpose

Use the AMP parameter to complete information for a VSAM data set.

AMP is supported only for VSAM data sets.

Note: With SMS, you can create new VSAM data sets with JCL DD statements. See
the DATACLAS parameter and the RECORG parameter.

References

For more information about VSAM data sets, see z/OS DFSMS Using Data Sets,
z/OS DFSMS Macro Instructions for Data Sets, and z/OS MVS JCL User's Guide.

Syntax
AMP=(subparameter)

AMP=(’subparameter[,subparameter]...’)

AMP=’subparameter[,subparameter]...’

The subparameters are:

AMORG

BUFND=number

BUFNI=number

DD: ACCODE

Chapter 12. DD statement 105

BUFSP=number

CROPS= [NCK]
[NRC]
[NRE]
[RCK]

FRLOG= {NONE}
{REDO}

OPTCD= {I }
{L }
{IL}

RECFM= [F]
[FB]
[V]
[VB]

STRNO=number

SYNAD=module

TRACE=(subparameter[,subparameter]...)

ACCBIAS=[USER]
[SYSTEM]
[DO]
[DW]
[SO]
[SW]

SMBDFR= {Y | N}

SMBHWT= nn

SMBVSP= {nnK | nnM}

MSG=SMBBIAS
RMODE31=[ALL]

[BUFF]
[CB]
[None]

Parentheses: Parentheses are required only when you are continuing the statement.

Multiple subparameters: When a parameter contains more than one subparameter,
separate the subparameters by commas and enclose the subparameter list in
apostrophes inside the parentheses. For example, AMP=('AMORG,STRNO=4').

Null Positional subparameters: Null positions in the AMP parameter are invalid.

Special characters: When a parameter contains only one subparameter and that
subparameter contains special characters, enclose the subparameter in apostrophes
inside the parentheses. For example, AMP=('STRNO=4').

Note: Do not enclose a subparameter in a subparameter list in apostrophes.

If you code a symbolic parameter on the AMP parameter, you can code the
symbolic parameter in apostrophes.

DD: AMP

106 z/OS V2R1.0 MVS JCL Reference

Subparameter definition
AMORG

Indicates that the DD statement describes a VSAM data set. Code AMORG
when data set access is through an ISAM interface program and the DD
statement contains VOLUME and UNIT parameters.

It is unnecessary to code AMP=AMORG for a data set that is SMS-managed.
An SMS data set is cataloged at allocation; all information pertaining to the
data set creation (such as RECORG) must be fully defined at allocation to
ensure the success of the job.

BUFND=number
Specifies the number of I/O buffers that VSAM is to use for data records. The
minimum is 1 plus the STRNO subparameter number. This value overrides the
BUFND value specified in the ACB or GENCB macro, or provides a value if
one is not specified. If you omit STRNO, BUFND must be at least 2.

If you omit BUFND from AMP and from the ACB macro instruction, the
system uses the STRNO number plus 1.

BUFNI=number
Specifies the number of I/O buffers that VSAM is to use for index records.
This value overrides the BUFNI value specified in the ACB or GENCB macro,
or provides a value if one is not specified. If you omit BUFNI from AMP and
from the ACB macro instruction, VSAM uses as many index buffers as the
STRNO subparameter number; if you omit both BUFNI and STRNO, VSAM
uses 1 index buffer.

If data access is through the ISAM interface program, specify for the BUFNI
number 1 more than the STRNO number, or specify 2 if you omit STRNO, to
simulate having the highest level of an ISAM index resident. Specify a BUFNI
number 2 or more greater than the STRNO number to simulate having
intermediate levels of the index resident.

BUFSP=number
Specifies the maximum number of bytes for the data and index buffers in the
user area. This value overrides the BUFSP value specified in the ACB or
GENCB macro, or provides a value if one is not specified.

If BUFSP specifies fewer bytes than the BUFFERSPACE parameter of the access
method services DEFINE command, the BUFFERSPACE number overrides the
BUFSP number.

CROPS=NCK
CROPS=NRC
CROPS=NRE
CROPS=RCK

Requests a checkpoint/restart option. For more information, see z/OS
DFSMSdfp Checkpoint/Restart.

NCK
Requests no data set post-checkpoint modification tests.

Continuation onto another statement: Enclose the subparameter list in only one set of
parentheses. Enclose all the subparameters on each statement in apostrophes. End each
statement with a comma after a complete subparameter. For example:

//DS1 DD DSNAME=VSAMDATA,AMP=(’BUFSP=200,OPTCD=IL,RECFM=FB’,
// ’STRNO=6’)

DD: AMP

Chapter 12. DD statement 107

NRC
Requests neither a data-erase test nor data set post-checkpoint modification
tests.

NRE
Requests no data-erase test.

RCK
Requests a data-erase test and data set post-checkpoint modification tests.
If the CROPS subparameter is omitted, RCK is the default.

If you request an inappropriate option, such as the data-erase test for an input
data set, the system ignores the option.

FRLOG=NONE
FRLOG=REDO

Specifies if VSAM batch logging will be performed for your VSAM data set.

NONE
Disables the VSAM batch logging function for your VSAM data set.
Changes made by applications will not be written to the MVS log stream
indicated on the LOGSTREAMID parameter.

REDO
Enables the VSAM batch logging function for you VSAM data set. Changes
made by applications will be written to the MVS log stream indicated on
the LOGSTREAMID parameter.

Note:

1. If FRLOG=REDO is specified, the LOGSTREAMID parameter must be
specified for the VSAM data set(s). If LOGSTREAMID is not specified,
IEC161I is issued.

2. There is no default JCL value for FRLOG. If FRLOG is omitted, the catalog
value will be used.

OPTCD=I
OPTCD=L
OPTCD=IL

Indicates how the ISAM interface program is to process records that the step’s
processing program flags for deletion.

I Requests, when the data control block (DCB) contains OPTCD=L, that the
ISAM interface program is not to write into the data set records marked
for deletion by the processing program.

If AMP=('OPTCD=I') is specified without OPTCD=L in the DCB, the
system ignores deletion flags on records.

L Requests that the ISAM interface program is to keep in the data set records
marked for deletion by the processing program.

If records marked for deletion are to be kept but OPTCD=L is not in the
DCB, AMP=('OPTCD=L') is required.

Note: This parameter has the same meaning and restrictions for the ISAM
interface as it has for ISAM. While it was not required in the ISAM job
control language, you should code it in the AMP parameter.

IL Requests that the ISAM interface program is not to write into the data set

DD: AMP

108 z/OS V2R1.0 MVS JCL Reference

records marked for deletion by the processing program. If the processing
program had read the record for update, the ISAM interface program
deletes the record from the data set.

AMP=('OPTCD=IL') has the same effect as AMP=('OPTCD=I') coded with
OPTCD=L in the DCB.

RECFM=F
RECFM=FB
RECFM=V
RECFM=VB

For data sets with SMS, see the DD RECFM parameter described in .

Identifies the ISAM record format used by the processing program. You must
code this RECFM subparameter when the record format is not specified in the
DCB.

Note: This parameter has the same meaning and restrictions for the ISAM
interface as it has for ISAM. While it was not required in the ISAM job control
language, you should code it in the AMP parameter.

All VSAM requests are for unblocked records. If the processing program
requests blocked records, the ISAM interface program sets the overflow-record
indicator for each record to indicate that each is being passed to the program
unblocked.

F Indicates fixed-length records.

FB Indicates blocked fixed-length records.

V Indicates variable-length records. If no RECFM is specified in the AMP
parameter or in the DCB, V is the default.

VB Indicates blocked variable-length records.

STRNO=number
Indicates the number of request parameter lists the processing program uses
concurrently. The number must at least equal the number of BISAM and
QISAM requests that the program can issue concurrently. If the program
creates subtasks, add together the number of requests for each subtask plus 1
for each subtask that sequentially processes the data set. This value overrides
the STRNO value specified in the ACB or GENCB macro, or provides a value
if one is not specified.

SYNAD=module
Names a SYNAD exit routine. The ISAM interface program is to load and exit
to this routine if a physical or logical error occurs when the processing
program is gaining access to the data set.

The SYNAD parameter overrides a SYNAD exit routine specified in the EXLST
or GENCB macro instruction that generates the exit list. The address of the
intended exit list is specified in the access method control block that links this
DD statement to the processing program. If no SYNAD exit is specified, the
system ignores the AMP SYNAD parameter.

TRACE=(subparameter[,subparameter]...)
Indicates that the generalized trace facility (GTF) executes with your job to
gather information about the opening, closing, and end-of-volume processing
for the data set defined on this DD statement. You can use the interactive
problem control system to print the trace output; see z/OS MVS IPCS User's
Guide.

DD: AMP

Chapter 12. DD statement 109

The TRACE subparameters are: HOOK, ECODE, KEY, PARM1, and PARM2.
See z/OS DFSMS Using Data Sets for full information on the TRACE
subparameter and the VSAM trace facility, which you use to obtain diagnostic
information during VSAM processing.

ACCBIAS=USER
ACCBIAS=SYSTEM
ACCBIAS=DO
ACCBIAS=DW
ACCBIAS=SO
ACCBIAS=SW

Specify one of these six values to override record access bias in the data class
in order to use System-Managed Buffering (SMB) without changing the data
class. See z/OS DFSMS Using Data Sets for details on System-Managed
Buffering.

USER
Obtain buffers the same way the system would without SMB. This is the
default if you code no specification for the ACCBIAS subparameter.

SYSTEM
Force SMB and let the system determine the buffering technique based on
the ACB MACRF and storage class specification.

Note: USER and SYSTEM are the only values you may use to specify
record access bias in the data class.

DO SMB with direct optimization.

DW SMB weighted for direct processing.

This option provides the capability to use hiperspace.

SO SMB with sequential optimization.

SW SMB weighted for sequential processing.

SMBDFR=Y or SMBDFR=N
With direct optimization, use this subparameter to instruct VSAM whether to
defer writing of changed buffers to the medium until either the data set is
closed or the buffers are required for some other request. See z/OS DFSMS
Using Data Sets for further details on using SMBDFR.

SMBHWT=nn
Specify a requirement for hiperspace where nn is an integer from 0 to 99. Use
this parameter with direct optimization. The default value is 0, which means
that the system does not obtain any hiperspace.

SMBVSP=nnK or SMBVSP=nnM
Specify the amount of virtual buffer space to acquire for direct optimized
processing when opening the data set, where nn is 1 to 2048000 kilobytes or 1
to 2048 megabytes.

MSG=SMBBIAS
When you specify MSG = SMBBIAS, the system issues message IEC161I to
indicate which access bias SMB has chosen. If SYSTEM is specified in
ACCBIAS or Record Access Bias, then the system will choose an access bias for
SMB, otherwise it will use what the user specified in ACCBIAS. The possible
values in the message are DO, DW, SO, SW, CO, CR or ??, where ’??’ means
OPEN could not determine which one of the six bias values was used to create
the initial control block structure. The default is no message.

DD: AMP

110 z/OS V2R1.0 MVS JCL Reference

RMODE31=ALL
RMODE31=BUFF
RMODE31=CB
RMODE31=NONE

Designate the residency for buffers and control blocks.

This subparameter allows you to specify whether or not to allocate the buffers
and control blocks in 31-bit addressable storage. You can use this field
independently of SMB. With SMB the default location is in 31-bit addressable
storage ("above the 16-megabyte line"). Without SMB, the default is in 24-bit
addressable storage ("below the line").

The values you may specify for RMODE31 are:

ALL —Control blocks and buffers above the line.

BUFF —Buffers (only) above the line.

CB —Control blocks (only) above the line.

NONE
—Control blocks and buffers below the line.

When you do not specify ACCBIAS, or when you specify ACCBIAS=USER, if
you specify nothing for RMODE31 in either the JCL or the ACB, the system
obtains the buffers and control blocks in virtual storage with a 24-bit address.

When ACCBIAS=SYSTEM, if you specify nothing for RMODE31 in either the
JCL or the ACB, the system obtains the buffers in storage with an address
greater than 16 million bytes.

When you specify CB or NONE for RMODE31, the system obtains the buffers
in 24-bit addressable storage.

When you specify BUFF or NONE for RMODE31, the system obtains the
control blocks in 24-bit addressable storage.

If your program runs in 24-bit mode and you use locate mode processing for
the VSAM data set, you must obtain the buffers and control blocks in 24-bit
addressable storage.

Note: If your program runs with local or global shared resources (LSR/GSR)
and uses journaling (JRNAD) or user processing (UPAD) exit routines, the exits
must run in 31-bit mode if you obtained the control blocks above the line.

This capability to allocate above the line is necessary when either or both of
the following conditions exists:
v The number of data sets open to a job is quite large.
v The number of buffers is such as to cause a storage shortage if kept in 24-bit

addressable storage.

You may specify RMODE31 only with the JCL DD AMP parameter or in the
ACB. The RMODE31 subparameter of AMP overrides any RMODE31 values
specified in the ACB.

The RMODE31 subparameter is available for all data set types.

Relationship to other parameters
Do not code the following parameters with the AMP parameter.

*
BURST

DD: AMP

Chapter 12. DD statement 111

CHARS
COPIES
DATA
DCB

DDNAME
DYNAM
FCB
FLASH
FREE
MODIFY

QNAME
RECFM
SUBSYS
SYSOUT
TERM
UCS

Invalid ddnames: The following ddnames are invalid for VSAM data sets:

JOBLIB

STEPLIB

SYSABEND

SYSCHK

SYSCKEOV

SYSMDUMP

SYSUDUMP

Invalid DSNAMEs: When you code the AMP parameter, the DSNAME must not
contain parentheses, a minus (hyphen), or a plus (+) sign. The forms of DSNAME
valid for ISAM, partitioned access method (PAM), and generation data groups
(GDG) are invalid with VSAM data sets.

Buffer requirements
For a key-sequenced data set, the total minimum buffer requirement is three: two
data buffers and one index buffer. For an entry-sequenced data set, two data
buffers are required.

If the number of buffers specified in the BUFND and BUFNI subparameters causes
the virtual storage requirements to exceed the BUFSP space, the number of buffers
is reduced to fit in the BUFSP space.

If BUFSP specifies more space than required by BUFND and BUFNI, the number of
buffers is increased to fill the BUFSP space.

Examples of the AMP parameter
Example 1

DD: AMP

112 z/OS V2R1.0 MVS JCL Reference

//VSAMDS1 DD DSNAME=DSM.CLASS,DISP=SHR,AMP=(’BUFSP=200,BUFND=2’,
// ’BUFNI=3,STRNO=4,SYNAD=ERROR’)

In this example, the DD statement defines the size of the user area for data and
index buffers, specifies the number of data and index buffers, specifies the number
of requests that require concurrent data set positioning, and specifies an error exit
routine named ERROR.

Example 2
//VSAMDS2 DD DSNAME=DSM.CLASS,DISP=SHR,AMP=(’BUFSP=23456,BUFND=5’,
// ’BUFNI=10,STRNO=6,SYNAD=ERROR2,CROPS=NCK’,
// ’TRACE=(PARM1=F00203000010,KEY=ABCDEF)’)

In this example, the DD statement defines the values for BUFSP, BUFNI, STRNO,
and SYNAD, as in the previous example. It also specifies that a data set
post-checkpoint modification test is not to be performed when restarting at a
checkpoint and that GTF is to provide a trace of specified data areas.

AVGREC parameter
Parameter type

Keyword, optional — use this parameter only with SMS

Purpose

Use the AVGREC parameter when you define a new data set to specify that:
v The units of allocation requested for storage space are records.
v The primary and secondary space quantity specified on the SPACE parameter

represents units, thousands, or millions of records.

When you use AVGREC with the SPACE parameter, the first subparameter
(reclgth) on the SPACE parameter must specify the average record length of the
records.

Code the AVGREC parameter when you want to (1) specify records as the units of
allocation or (2) override the space allocation defined in the data class for the data
set.

If SMS is not installed or is not active, the system checks the syntax and then
otherwise ignores the AVGREC parameter.

Syntax
AVGREC= {U}

{K}
{M}

Subparameter definition
U Specifies a record request and that the primary and secondary space quantity

specified on the SPACE parameter represents the number of records in units
(multiplier of 1).

K Specifies a record request and that the primary and secondary space quantity
specified on the SPACE parameter represents the number of records in
thousands (multiplier of 1024).

DD: AMP

Chapter 12. DD statement 113

M Specifies a record request and that the primary and secondary space quantity
specified on the SPACE parameter represents the number of records in millions
(multiplier of 1048576).

Overrides
AVGREC overrides the space allocation defined in the DATACLAS parameter for
the data set. See “Overrides” on page 134 section under the Dataclass keyword.

Relationship to other parameters
Do not code AVGREC with the TRK, CYL, or ABSTR subparameters of the SPACE
parameter.

Do not code the following DD parameters with the AVGREC parameter.

*

DATA

DDNAME

DYNAM

QNAME

Examples of the AVGREC parameter
Example 1
//SMSDS3 DD DSNAME=MYDS3.PGM,DATACLAS=DCLAS03,DISP=(NEW,KEEP),
// SPACE=(128,(5,2)),AVGREC=K

In the example, the space allocation defined in the DCLAS03 data class is
overridden by the SPACE and AVGREC parameters, which indicate an average
record length of 128 bytes, a primary quantity of 5K (5,120) records, and a
secondary quantity of 2K (2,048) records.

Example 2
//SMSDS3A DD DSNAME=MYDS3.PGM,DATACLAS=DCLAS03A,DISP=(NEW,KEEP),
// AVGREC=K

In the example, the space allocation defined in the DCLAS03A data class is
overridden by the AVGREC parameter, which indicates that the primary and
secondary quantity represents thousands of records.

BLKSIZE parameter
Parameter type

Keyword, optional

Purpose

Code the BLKSIZE parameter to specify the maximum length of a block.

DD: AVGREC

114 z/OS V2R1.0 MVS JCL Reference

Syntax
BLKSIZE= {value}

{valueK}
{valueM}
{valueG}

Subparameter definition
value

Specifies the maximum length, in bytes, of a block.

The number of bytes that you specify for BLKSIZE depends on the device
type, the record format for the data set and other programs that will read or
write the data set. The maximum value that you can code is 2,147,483,648
(coded without the commas) or 2G. When your program uses the data set, the
OPEN function may impose a smaller limit. The maximum allowed by OPEN
is:
v 2,147,483,648 for dummy data sets. Note that you cannot actually get a

buffer that large.
v 2,147,483,647 for tape that does not have ISO/ANSI Version 3 or Version 4

labels. When writing with BSAM and QSAM, the system imposes a limit
that depends on the tape subsystem model. Currently the maximum for
certain models is 256K. See z/OS DFSMS Using Data Sets for more details
about block size limits for specific models. OPEN allows EXCP programs to
have higher limits that depend on the hardware.

v 2048 for tape that has ISO/ANSI Version 3 labels, where the minimum value
for BLKSIZE is 18 bytes. To allow a block size greater than 2048, use
installation exit routine IFG0193G, described in z/OS DFSMS Installation
Exits.Version 4 labels do not have this restriction.

v 32,760 for DASD, ISO/ANSI Version 4 tape labels, and other data sets.

valueK
Specifies the maximum length, in kilobytes, of a block. (1 kilobyte = 1024
bytes.) The maximum is 2097152. If you code 2097152K, the block size is the
maximum: 2,147,483,648 bytes.

valueM
Specifies the maximum length, in megabytes, of a block. (1 megabyte = 1024
kilobytes.) The maximum is 2048. If you code 2048M, the block size is the
maximum: 2,147,483,648 bytes.

valueG
Specifies the maximum length, in gigabytes, of a block. (1 gigabyte = 1024
megabytes.) The maximum is 2G. If you code 2G, the block size assigned is the
maximum: 2,147,483,648 bytes.

Defaults
If you do not code BLKSIZE, the system can, under certain conditions, determine
an optimum block size. For detailed information about system-determined block
size, see z/OS DFSMS Using Data Sets.

Overrides
If you code a non-zero value for the BLKSIZE subparameter on a DCB or DCBE
macro instruction or on a DD statement that defines an existing data set with
standard labels, the DCB or DCBE BLKSIZE overrides the block size specified in
the label.

DD: BLKSIZE

Chapter 12. DD statement 115

Relationship to other control statements
Do not code the BLKSIZE parameter with the DCB subparameter BUFSIZE.

If you code BLKSIZE it will have no effect on EXCP processing unless the
application takes special steps to use it. (For information about EXCP processing
see z/OS DFSMSdfp Advanced Services.)

Coexistence considerations
Not all programs and operating systems prior to z/OS can read blocks longer than
32,760 bytes. For example, Version 2 Release 10 is the first release of OS/390 that
can read such long blocks using standard access methods.

Examples of the BLKSIZE parameter
//DD1B DD DSNAME=EVER,DISP=(NEW,KEEP),UNIT=3380,
// RECFM=FB,LRECL=326,BLKSIZE=23472,
// SPACE=(23472,(200,40))

DD statement DD1B defines a new data set named EVER on a 3380. The DD
keywords RECFM, LRECL, and BLKSIZE contain the information necessary to
complete the data control block.
//DD2B DD DSNAME=NEVER,DISP=(NEW,KEEP),UNIT=3590,
// RECFM=FB,LRECL=256,BLKSIZE=204K

DD statement DD2B defines a new data set named NEVER on a 3590. The DD
keywords RECFM, LRECL, and BLKSIZE contain the information necessary to
complete the data control block. The block size, which in this example is 204 x
1024 = 208,896 bytes, must be divisible by the logical record length, and each
program that reads or writes this data set must be capable of handling block sizes
this large.

BLKSZLIM parameter
Keyword, optional

Purpose

Use the BLKSZLIM parameter to specify an upper limit on a data set's block size if
BLKSIZE is omitted from all sources and the system determines the block size for
the data set. If a BLKSIZE value is available from any source (such as the DD
statement, data set label, or the program), then the block size limit has no effect.
The BLKSZLIM parameter is useful mainly when writing new magnetic tape data
sets with programs that can handle blocks longer than 32,760 bytes. Currently the
maximum block size supported on any tape is 256 KB. You can safely code a larger
value for BLKSZLIM. The BLKSZLIM value does not have to be a multiple of the
LRECL value. For more information, see z/OS DFSMS Using Data Sets.

Syntax

BLKSZLIM= {value}
{valueK}
{valueM}
{valueG}

DD: BLKSIZE

116 z/OS V2R1.0 MVS JCL Reference

Subparameter definition
value

Specifies in bytes an upper limit on a data sets's block size if BLKSIZE is
omitted from all sources and the system determines the block size for the data
set. The maximum value is 2,147,483,648 bytes (two gigabytes). The minimum
value is 32K (32,768 bytes). The minimum value is 32K (32,760 bytes).

valueK
Specifies the block size limit in kilobytes (units of 1024). The maximum value
is 2,097,152K (two gigabytes). The minimum value is 32K.

valueM
Specifies the block size limit in megabytes (units of 1024K). The maximum
value is 2048M (two gigabytes). The minimum value is 1M.

valueG
Specifies the block size limit in gigabytes (units of 1024M). The maximum
allowable value is 2G (two gigabytes). The minimum value is 1G.

Defaults
If you omit BLKSZLIM, the system determines the block size from one of the
following sources, starting with the first:
1. Data class
2. DEVSUPxx value
3. 32,768

Relationship to other parameters
The system ignores BLKSZLIM when you specify BLKSIZE.

Example of the BLKSZLIM parameter
//DD1BB DD DSNAME=EVER,DISP=(NEW,KEEP),UNIT=3390,
// RECFM=FB,LRECL=326,BLKSZLIM=32760,
// SPACE=(23472,(200,40))

DD statement DD1B defines a new data set named EVER on a 3390 DASD. The
DD keywords RECFM and LRECL contain the information necessary to complete
the data control block. BLKSZLIM places an upper limit on the block size to be
determined by the system.
//DD2B DD DSNAME=NEVER,DISP=(NEW,KEEP),UNIT=3590,
// RECFM=FB,LRECL=80,BLKSZLIM=40K

DD statement DD2B defines a new data set named NEVER on a 3590 TAPE device.
The DD keywords RECFM and LRECL contain the information necessary to
complete the data control block. BLKSZLIM places an upper limit on the block size
to be determined by the system.

BURST parameter
Keyword, optional

Purpose

Use the BURST parameter to specify that the output for this sysout data set
printed on a continuous-forms AFP printer is to go to:

DD: BLKSZLIM

Chapter 12. DD statement 117

v The burster-trimmer-stacker, to be burst into separate sheets.
v The continuous forms stacker, to be left in continuous fanfold.

If the specified stacker is different from the last stacker used, or if a stacker was
not previously requested, JES issues a message to the operator to thread the paper
into the required stacker.

Note: BURST applies only for an output data set printed on an AFP printer
equipped with a burster-trimmer-stacker.

Syntax
BURST= {YES}

{Y }
{NO }
{N }

Subparameter definition
YES

Requests that the printed output is to be burst into separate sheets. This
subparameter can also be coded as Y.

NO
Requests that the printed output is to be in a continuous fanfold. This
subparameter can also be coded as N.

Defaults
If you do not code a BURST parameter, but you code a DD SYSOUT parameter
and the sysout data set is printed on an AFP printer that has a
burster-trimmer-stacker, JES uses an installation default specified at initialization.

If you do not code a BURST parameter or a DD SYSOUT parameter, the default is
NO.

Overrides
A BURST parameter on a sysout DD statement overrides an OUTPUT JCL BURST
parameter.

Relationship to other parameters
Do not code the following parameters with the BURST parameter.

* DISP PROTECT
AMP DSID QNAME
DATA DYNAM VOLUME
DDNAME LABEL

Relationship to other control statements
The burster-trimmer-stacker can also be requested using the following:
v The BURST parameter on the OUTPUT JCL statement.
v The STACKER parameter on the JES3 //*FORMAT PR statement.
v The BURST parameter on the JES2 /*OUTPUT statement.

DD: BURST

118 z/OS V2R1.0 MVS JCL Reference

Example of the BURST parameter
//RECORD DD SYSOUT=A,BURST=Y

In this example, the DD statement requests that JES send the output to the
burster-trimmer-stacker of the AFP printer. The stacker separates the printed
output into separate sheets instead of stacking it in a continuous fanfold.

CCSID parameter
Parameter type

Keyword, optional

Purpose

You can request the access method to convert data between the coded character set
identifier (CCSID) specified on the JOB or EXEC statement and the CCSID
specified on the DD statement. Data conversion is supported on access to
ISO/ANSI Version 4 tapes using access methods BSAM or QSAM, but not using
EXCP.

ISO/ANSI tapes are identified by the LABEL=(,AL) or LABEL=(,AUL) keyword.
The CCSID parameter does not apply to ISO/ANSI Version 1 or ISO/ANSI/FIPS
Version 3 tapes or to tapes with labels other than AL or AUL. See z/OS DFSMS
Using Data Setsfor selecting ISO/ANSI Version 4 tapes. It also contains a list of
supported CCSIDs.

The CCSID value of 65535 has a special meaning: it suppresses conversion.

When CCSID is not specified at the JOB, EXEC, or DD levels, data passed to
BSAM and QSAM is converted to 7-bit ASCII when writing to ISO/ANSI tapes.
This might result in data loss on conversion. On READ operations the CCSID (if
recorded) on the tape header label is used for conversion.

The CCSID is recorded in the tape header label if conversion is not defaulted.

Syntax

CCSID= nnnnn

Subparameter definition
nnnnn

The CCSID as a decimal number from 1 through 65535.

Default
367.

Relationship to other parameters
Do not code the following parameters with the CCSID parameter:

* DDNAME QNAME
BURST DYNAM SYSOUT

DD: BURST

Chapter 12. DD statement 119

CHARS FCB TERM
COPIES FLASH UCS
DATA MODIFY

Examples of the CCSID parameter
Example 1

//JOB1 JOB (123456)
//S1 EXEC PGM=MYPGM
//DD1 DD DSN=A,DISP=NEW,UNIT=3590,
// VOL=SER=T00001,LABEL=AL

In this example, the data on the new ISO/ANSI tape is converted from EBCDIC to
7-bit ASCII because CCSID was not specified at the JOB, EXEC, or DD levels. If the
data passed to the access methods contain graphic or special characters there could
be data loss on conversion to 7-bit ASCII. This is the default operation for
ISO/ANSI/FIPS Version 3 and ISO/ANSI Version 4 tapes.

Example 2
//JOB2 JOB (123456)
//S1 EXEC PGM=MYPGM
//DD1 DD DSN=A,DISP=OLD,UNIT=3590,
// VOL=SER=T00001,LABEL=AL

In this example the data on the ISO/ANSI tape is converted from 7-bit ASCII
(default) to EBCDIC. This is the default operation for ISO/ANSI/FIPS Version 3
and ISO/ANSI Version 4 tapes.

Example 3
//JOB3 JOB (123456)
//S1 EXEC PGM=MYPGM
//DD1 DD DSN=A,DISP=NEW,UNIT=3590,
// CCSID=65535,VOL=SER=T00003,LABEL=AL

In this example the data written to the ISO/ANSI Version 4 tape is not converted
(CCSID=65535).

Example 4
//JOB4 JOB (123456)
//S1 EXEC PGM=MYPGM
//DD1 DD DSN=A,DISP=OLD,UNIT=3590,
// CCSID=65535,VOL=SER=T00004,LABEL=AL

In this example the user did not want any conversion (CCSID=65535) on data read
by the access methods.

Example 5
//JOB5 JOB (123456),CCSID=37
//S1 EXEC PGM=MYPGM1
//DD1 DD DSN=A,DISP=NEW,LABEL=(,AL),
// VOL=SER=T00005,UNIT=3590,CCSID=437

In this example the user wants conversion from a CCSID of 37 (CECP: USA,
Canada, Netherlands, Portugal, Brazil, Australia, New Zealand) to 437 (Base
PC-data) for data written using BSAM or QSAM for ISO/ANSI Version 4 tape. The
CCSID of 437 is recorded on the tape header label.

DD: CCSID

120 z/OS V2R1.0 MVS JCL Reference

Example 6
//JOB6 JOB (123456),CCSID=37
//S1 EXEC PGM=MYPGM2
//DD1 DD DSN=A,DISP=OLD,UNIT=3590,
// VOL=SER=T00006,CCSID=437

In this example the user wants data conversion from a CCSID of 437 to a CCSID of
37 for data read by the access method. Note that the CCSID does not have to be
specified if it is recorded in the label.

Example 7
//JOB7 JOB (123456),CCSID=37
//S1 EXEC PGM=MYPGM
//DD1 DD DSN=A,DISP=OLD,UNIT=3590,
// VOL=SER=T00007

In this example the ISO/ANSI labeled tape had a recorded CCSID of 437 and a
CCSID was not specified on the DD statement. Data read from this tape by the
access method is converted from a CCSID of 437 to a CCSID of 37.

Example 8
//JOB8 JOB (123456),CCSID=37
//S1 EXEC PGM=MYPGM1
//DD1 DD DSN=A,DISP=NEW,LABEL=(,AL),UNIT=3590,
// VOL=SER=T00008,CCSID=437
//S2 EXEC PGM=MYPGM2,CCSID=65535
//DD1 DD DSN=B,DISP=NEW,LABEL=(,AL),UNIT=3590,
// VOL=SER=T00009

This example illustrates overriding the CCSID specified on the JOB statement by
the specification on the EXEC statement.

In this example, in step S1 the user wants conversion from a CCSID of 37 to 437
for data written using BSAM or QSAM for the ISO/ANSI Version 4 tape.

In step S2 the JOB level CCSID of 37 is overridden by the EXEC level CCSID of
65535. Since a CCSID of 65535 prevents conversion, the data written to tape is not
converted. A CCSID of 65535 is recorded in the tape header label because no
CCSID was specified on the DD statement.

CHARS parameter
Parameter type

Keyword, optional

Purpose

Use the CHARS parameter to specify the name of one or more coded fonts for
printing this sysout data set on an AFP printer.

Note: CHARS applies only for an output data set that is either printed on an AFP
printer or processed by Infoprint Server.

References

DD: CCSID

Chapter 12. DD statement 121

For more information on coded font names, see IBM AFP Fonts: Font Summary for
AFP Font Collection.

Syntax

CHARS= {font-name }
{(font-name[,font-name]...)}
{DUMP }
{(DUMP[,font-name]...) }

v You can omit the parentheses if you code only one font-name or only DUMP.

v Null positions in the CHARS parameter are invalid. For example, you cannot code
CHARS=(,font-name) or CHARS=(font-name,,font-name).

Subparameter definition
font-name

Names a coded font or character-arrangement table. Each font-name is 1
through 4 alphanumeric or national ($, #, @) characters. Code from one to four
names.

DUMP
Requests a high-density dump of 204-character print lines from a 3800. If more
than one font-name is coded, DUMP must be first.

Note: Use DUMP on a SYSABEND or SYSUDUMP DD statement.

Defaults
If you do not code the DD CHARS parameter, JES uses the following, in order:
1. The CHARS parameter on an OUTPUT JCL statement, if referenced by the DD

statement.
2. The DD UCS parameter value, if coded.
3. The UCS parameter on an OUTPUT JCL statement, if referenced.

If no character-arrangement table is specified on the DD or OUTPUT JCL
statements, JES uses an installation default specified at initialization.

Overrides
A CHARS parameters on a sysout DD statement overrides the OUTPUT JCL
CHARS parameter.

For a data set scheduled to the Print Services Facility (PSF), PSF uses the following
parameters, in override order, to select the font list:
1. Font list in the library member specified by an OUTPUT JCL PAGEDEF

parameter.
2. DD CHARS parameter.
3. OUTPUT JCL CHARS parameter.
4. DD UCS parameter.
5. OUTPUT JCL UCS parameter.
6. JES installation default for the device.
7. Font list on the PAGEDEF parameter in the PSF-cataloged procedure.

DD: CHARS

122 z/OS V2R1.0 MVS JCL Reference

See “PAGEDEF parameter” on page 530 for more information.

Relationship to other parameters
Do not code the following parameters with the CHARS parameter.

* DISP PROTECT
AMP DSID QNAME
DATA DYNAM VOLUME
DDNAME LABEL

Relationship to other control statements
CHARS can also be coded on the following:
v The OUTPUT JCL statement.
v The JES3 //*FORMAT PR statement.
v The JES2 /*OUTPUT statement.

Requesting a high-density dump
You can request a high-density dump on the 3800 through two parameters on the
DD statement for the dump data set or on an OUTPUT JCL statement referenced
by the dump DD statement:
v FCB=STD3. This parameter produces dump output at 8 lines per inch.
v CHARS=DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same
statement or one on each statement.

Examples of the CHARS parameter
Example 1
//DD1 DD SYSOUT=A,CHARS=(GT10,GB12)

In this example, the CHARS parameter specifies two fonts to be used when
printing the data set: GT10 and GB12.

Example 2
//SYSABEND DD UNIT=3800,CHARS=DUMP,FCB=STD3

The CHARS parameter on this SYSABEND DD statement specifies a high-density
dump with 204 characters per line. The FCB parameter requests the dump output
at 8 lines per inch.

Note: This example pertains only to 3800 printers.

CHKPT parameter
Parameter type

Keyword, optional

Purpose

Use the CHKPT parameter to request that a checkpoint be written when each
end-of-volume is reached on the multivolume data set defined by this DD

DD: CHARS

Chapter 12. DD statement 123

statement. Checkpoints are written for all volumes except the last. Checkpoints can
be requested for input or output data sets.

Note: CHKPT is supported only for multivolume QSAM or BSAM data sets.
CHKPT is ignored for single-volume QSAM or BSAM data sets or for ISAM,
BDAM, BPAM, or VSAM data sets. CHKPT is not supported for partitioned data
sets extended (PDSEs).

References

For more information, see z/OS DFSMSdfp Checkpoint/Restart.

Syntax

CHKPT=EOV

Subparameter definition
EOV

Requests a checkpoint at each end-of-volume.

Overrides
v The RD parameter values of NC and RNC on the JOB or EXEC statements

override the CHKPT parameter.
v The CHKPT parameter overrides cataloged procedure values or START

command values for checkpoints at end-of-volume.

Relationship to other parameters
Do not code the following parameters with the CHKPT parameter.

* DYNAM
DATA QNAME
DDNAME SYSOUT

Relationship to the SYSCKEOV DD statement
If you specify CHKPT, you must also provide a SYSCKEOV DD statement in the
job or step.

Checkpointing concatenated data sets
For concatenated BSAM or QSAM data sets, CHKPT must be coded on each DD
statement in the concatenation, if checkpointing is desired for each data set in the
concatenation.

Examples of the CHKPT parameter
Example 1
//DS1 DD DSNAME=INDS,DISP=OLD,CHKPT=EOV,
// UNIT=SYSSQ,VOLUME=SER=(TAPE01,TAPE02,TAPE03)

DD: CHKPT

124 z/OS V2R1.0 MVS JCL Reference

In this example, the DD statement defines data set INDS, a multivolume QSAM or
BSAM data set for which a checkpoint is to be written twice: once when
end-of-volume is reached on TAPE01 and once when end-of-volume is reached on
TAPE02.

Example 2
//DS2 DD DSNAME=OUTDS,DISP=(NEW,KEEP),
// CHKPT=EOV,UNIT=SYSDA,VOLUME=(,,,8)

In this example, OUTDS is a multivolume data set that is being created. The data
set requires eight volumes. Seven checkpoints will be written: when the
end-of-volume is reached on volumes one through seven.

CNTL parameter
Parameter type

Keyword, optional

Purpose

Use the CNTL parameter to reference a CNTL statement that appears earlier in the
job. The reference causes the subsystem to execute the program control statements
within the referenced CNTL/ENDCNTL group.

The system searches for an earlier CNTL statement with a label that matches the
label in the CNTL parameter. If the system finds no match, the system issues an
error message.

Syntax

CNTL= {*.label }
{*.stepname.label }
{*.stepname.procstepname.label}

Subparameter definition
*.label

Identifies an earlier CNTL statement, named label. The system searches for the
CNTL statement first earlier in this step, then before the first EXEC statement
of the job.

*.stepname.label
Identifies an earlier CNTL statement, named label, that appears in an earlier
step, stepname, in the same job.

*.stepname.procstepname.label
Identifies a CNTL statement, named label, in a cataloged or in-stream
procedure. Stepname is the name of the job step that calls the procedure;
procstepname is the name of the procedure step that contains the CNTL
statement named label.

Examples of the CNTL parameter
Example 1
//MONDAY DD CNTL=*.WKLYPGM

DD: CHKPT

Chapter 12. DD statement 125

In this example, the DD statement requests that the system use the program
control statements following the CNTL statement named WKLYPGM and located
earlier in this step or preceding the first step.

Example 2
//TUESDAY DD CNTL=*.SECOND.BLOCKS

In this example, the DD statement requests that the system use the program
control statements following the CNTL statement named BLOCKS and located in a
preceding step named SECOND.

Example 3
//WEDNES DD CNTL=*.THIRD.PROCTWO.CANETTI

In this example, the DD statement requests that the system use the program
control statements following the CNTL statement named CANETTI and located in
the procedure step PROCTWO of the procedure called in the preceding job step
THIRD.

COPIES parameter
Parameter type

Keyword, optional

Purpose

Use the COPIES parameter to specify how many copies of this sysout data set are
to be printed. The printed output is in page sequence for each copy.

For printing on an AFP printer, this parameter can instead specify how many
copies of each page are to be printed before the next page is printed.

Note: For more information about the subparameters supported for AFP printers,
see PSF for z/OS: User's Guide.

Syntax

COPIES= {nnn }
{(nnn,(group-value[,group-value]...))}
{(,(group-value[,group-value]...)) }

v You can omit the parentheses if you code only COPIES=nnn.

v The following are not valid:

– A null group-value, for example, COPIES=(5,(,)) or COPIES=(5,)

– A zero group-value, for example, COPIES=(5,(1,0,4))

– A null within a list of group-values, for example, COPIES=(5,(1,,4))

Subparameter definition
nnn

A number (from 1 through 255 in a JES2 system, from 0 through 255 in a JES3
system) that specifies how many copies of the data set are to be printed.

DD: CNTL

126 z/OS V2R1.0 MVS JCL Reference

For a data set printed on an AFP printer, JES ignores nnn if any group-values
are specified.

group-value
Specifies how many copies of each page are to be printed before the next page
is printed. Each group-value is a number from 1 through 255 in a JES2 system
and from 1 through 254 in a JES3 system. You can code a maximum of eight
group-values. Their sum must not exceed 255 or 254. The total copies of each
page equals the sum of the group-values.

Defaults
On any of the following statements, if you do not code a COPIES parameter, code
it incorrectly, or code COPIES=0, the system uses the DD COPIES parameter
default of 1.
v DD statement
v OUTPUT JCL statement
v For JES2, the /*OUTPUT statement

Note: In JES3 a copy count of zero in the OUTPUT JCL statement will give you a
copy count of zero, not one.

Overrides
A COPIES parameter on a sysout DD statement overrides an OUTPUT JCL
COPIES parameter.

If this DD statement references an OUTPUT JCL statement and that OUTPUT JCL
statement contains a FORMDEF parameter, which specifies a library member, the
COPYGROUP parameter on a FORMDEF statement in that member overrides any
group-value subparameters on the OUTPUT JCL COPIES parameter or the sysout
DD COPIES parameter. For more information, see “FORMDEF parameter” on page
504.

Relationship to Other Parameters
Do not code the following parameters with the COPIES parameter.

* DDNAME LABEL
AMP DISP QNAME
DATA DYNAM VOLUME

Relationship to FLASH Parameter: If this DD statement or a referenced OUTPUT
JCL statement also contains a FLASH parameter, JES prints with the forms overlay
the number of copies specified in one of the following:
v COPIES=nnn, if the FLASH count is larger than nnn. For example, if COPIES=10

and FLASH=(LTHD,12) JES prints 10 copies, all with the forms overlay.
v The sum of the group-values specified in the COPIES parameter, if the FLASH

count is larger than the sum. For example, if COPIES=(,(2,3,4)) and
FLASH=(LTHD,12) JES prints nine copies in groups, all with the forms overlay.

v The count subparameter in the FLASH parameter, if the FLASH count is smaller
than nnn or the sum from the COPIES parameter. For example, if COPIES=10
and FLASH=(LTHD,7) JES prints seven copies with the forms overlay and three
copies without.

DD: COPIES

Chapter 12. DD statement 127

Restriction When Coding UNIT Parameter: The COPIES parameter is normally
coded with the SYSOUT parameter. If, however, both COPIES and UNIT appear on
a DD statement, JES handles the COPIES parameter as follows:
v nnn defaults to 1.
v Only the first group-value is used, if group-values are specified and printing is

on a 3800.

Relationship to other control statements
The number of copies can also be specified on the COPIES parameter of the
following:
v The OUTPUT JCL statement.
v The JES2 /*OUTPUT statement.
v The JES3 //*FORMAT PR statement.
v The JES3 //*FORMAT PU statement.

For JES2, if you request copies of the entire job on the JES2 /*JOBPARM COPIES
parameter and also copies of the data set on the DD COPIES or OUTPUT JCL
COPIES parameter, and if this is a sysout data set, JES2 prints the number of
copies equal to the product of the two requests.

Using OUTPUT JCL COPIES by nullifying DD copies
If both a DD statement and a referenced OUTPUT JCL statement contain COPIES
parameters, the DD COPIES parameter normally overrides the OUTPUT JCL
COPIES parameter. For example, four copies are printed of sysout data set DDA:

//OTA OUTPUT COPIES=3
//DDA DD SYSOUT=A,OUTPUT=*.OTA,COPIES=4

However, if the DD COPIES is a null parameter, the OUTPUT JCL COPIES
parameter is used. For example, three copies are printed of sysout data set DDB:

//OTB OUTPUT COPIES=3
//DDB DD SYSOUT=A,OUTPUT=*.OTB,COPIES=

The following example shows a null COPIES parameter on an in-stream DD
statement that overrides a procedure DD statement. The null COPIES parameter on
DD statement PS.DDA nullifies the COPIES parameter on the procedure DD
statement DDA, thereby allowing the COPIES parameter on OUTPUT JCL
statement OT to be used. The system prints three copies of the DDA sysout data
set.

//JEX JOB ACCT34,’PAUL BENNETT’
//INSTR PROC
//PS EXEC PGM=ABC
//OT OUTPUT COPIES=3
//DDA DD SYSOUT=A,OUTPUT=*.OT,COPIES=2
// PEND
//STEP1 EXEC PROC=INSTR
//PS.DDA DD COPIES=
/*

Note: If a null COPIES parameter appears on a DD statement that either does not
reference an OUTPUT JCL statement or references an OUTPUT JCL statement that
does not contain a COPIES parameter, the system uses a default of 1.

Examples of the COPIES parameter
Example 1
//RECORD1 DD SYSOUT=A,COPIES=32

DD: COPIES

128 z/OS V2R1.0 MVS JCL Reference

This example requests 32 copies of the data set defined by DD statement
RECORD1 when printing on an impact printer or an AFP printer.

Example 2
//RECORD2 DD SYSOUT=A,COPIES=(0,(1,2))

In this example, when printing on an AFP printer, three copies of the data set are
printed in two groups. The first group contains one copy of each page. The second
group contains two copies of each page. When printing on an impact printer, one
copy (the default for nnn) is printed.

Example 3
//RECORD3 DD SYSOUT=A,COPIES=(8,(1,3,2))

In this example, when printing on an AFP printer, six copies of the data set are
printed in three groups. The first group contains one copy of each page, the second
group contains three copies of each page, and the last group contains two copies of
each page. When the output device is not an AFP printer, the system prints eight
collated copies.

Example 4
//RECORD4 DD UNIT=AFP1,COPIES=(1,(2,3))

Because the UNIT parameter is coded and the device is an AFP printer, the system
prints only the first group-value: two copies of each page.

DATA parameter
Parameter type

Positional, optional

Purpose

Use the DATA parameter to begin an in-stream data set that may contain
statements with // in columns 1 and 2. The data records immediately follow the
DD DATA statement; the records may be in any code, such as EBCDIC. The data
records end when:
v An EBCDIC /* or the two-character delimiter specified by a DLM parameter on

this DD statement is found in the input stream, or
v The input stream runs out of records.

Note that, unlike a DD * statement, the data is not ended by the // that indicates
another JCL statement.

Considerations for an APPC scheduling environment

The DATA parameter has no function in an APPC scheduling environment. If you
code DATA, the system will check it for syntax and ignore it.

Syntax

//ddname DD DATA[,parameter]... [comments]

DD: COPIES

Chapter 12. DD statement 129

|

Defaults
When you do not code BLKSIZE and LRECL, JES uses installation defaults
specified at initialization.

Relationship to other parameters
The following DD parameters may be specified with the DD * and DD DATA
parameters. All other parameters are either ignored or result in a JCL error.

DCB=BLKSIZE DSNAME
DCB=BUFNO LIKE
DCB=LRECL LRECL
DCB=DIAGNS REFDD
DCB=MODE=C VOLUME=SER
DLM DSID

For JES3, when using the DCB=MODE=C subparameter with the DATA parameter,
DCB=MODE=C must be the only parameter specified with the DATA parameter.

You cannot use the TSO/E SUBMIT command to submit a data set to JES2 or JES3
with a record length of greater than 80 bytes. The records are truncated to 80 bytes.

Note: In-stream data within a cataloged procedure is also limited to 80 bytes per
record.

You can submit a data set to JES2 or JES3 with a record length of greater than 80
bytes by submitting JCL like the following. In this example JCL,
IBMUSER.LONGDATA.JCL contains the data with a record length of greater than
80 bytes. In a JES3 system, the record length is limited to the installation-defined
spool buffer size minus 46. (For example, if the buffer size is defined as 4084, the
record length limit is 4038.) JES3 input service fails any job that exceeds this limit.

If the records longer than 80 bytes include JCL to be transmitted to a remote
system using JES3 // XMIT or //*ROUTE XEQ, or JES2 /*ROUTE XEQ or
/*XMIT with JES3 in the network, the records are truncated to 80 bytes.
//SUBMIT JOB ...
//S1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD SYSOUT=(,INTRDR)
//SYSUT1 DD DSN=IBMUSER.LONGDATA.JCL,DISP=SHR

JES3 will honor the BUFNO specification for SYSIN data sets. Values between 0
and 255 are accepted. When 0 or 1 is specified, a default of 2 is used. When 255 is
specified, it is reduced to 254.

For JES3 SNA RJP input:

v The only parameters you can specify for JES3 systems network architecture
(SNA) remote job processing (RJP) input devices are BLKSIZE and LRECL.

v Code DCB=LRECL=nnn, where nnn is 1 to 255 when SYSIN data records are
greater than 80 bytes. (The default LRECL is 80 bytes.)

For 3540 diskette input/output units: VOLUME=SER, BUFNO, and DSID on a DD
DATA statement are ignored except when they are detected by a diskette reader as
a request for an associated data set. See 3540 Programmer's Reference. On a DD * or
DD DATA statement processed by a diskette reader, you can specify DSID and

DD: DATA

130 z/OS V2R1.0 MVS JCL Reference

VOLUME=SER parameters to indicate that a diskette data set is to be merged into
the input stream following the DD statement.

Relationship to other control statements
Do not refer to an earlier DD DATA statement in DCB, DSNAME, or VOLUME
parameters on following DD statements.

Location in the JCL
A DD DATA statement begins an in-stream data set.

In-stream Data for Cataloged or In-stream Procedures: A cataloged procedure can
contain a DD DATA statement.

An in-stream procedure can contain a DD DATA statement.

When you call an in-stream procedure, you can add input stream data to an
in-stream procedure step by placing one or more DD * or DD DATA statements in
the calling step. You can alternatively include in-stream data directly within the
in-stream or cataloged procedure.

Multiple in-stream data sets for a step: You can code more than one DD * or DD
DATA statement in a job step in order to include several distinct groups of data for
the processing program. Precede each group with a DD * or DD DATA statement
and follow each group with a delimiter statement.

Omitted data delimiters: If you omit a DD statement before input data, the system
provides a DD * statement with the ddname of SYSIN and ends the data when it
reads a JCL statement or runs out of records. If you omit a delimiter after input
data, the system ends the data when it reads a JCL statement or runs out of
records.

Unread records
If the processing program does not read all the data in an in-stream data set, the
system skips the remaining data without abnormally terminating the step.

Examples of the DATA parameter
Example 1:
//GROUP1 DD DATA

.

.
data
.

/*
//GROUP2 DD DATA

.

.
data
.

/*

This example defines two groups of data in the input stream.

Example 2:

DD: DATA

Chapter 12. DD statement 131

|

|

//GROUP3 DD DATA,DSNAME=&&GRP3
.
.
data
.

/*

This example defines an in-stream data set with GRP3 as the last qualifier of the
system-generated data set name. A name such as
userid.jobname.jobid.Ddsnumber.GRP3 is generated.

Example 3:
//STEP2 EXEC PROC=UPDATE
//PREP.DD4 DD DSNAME=A.B.C,UNIT=3390,VOLUME=SER=D88230,
// SPACE=(TRK,(10,5)),DISP=(,CATLG,DELETE)
//PREP.IN1 DD DATA

.

.
data
.

/*
//ADD.IN2 DD *

.

.
data
.

/*

This example defines two groups of data in the input stream. The input defined by
DD statement PREP.IN1 is to be used by the cataloged procedure step named
PREP. This data contains job control statements. The input data defined by DD
statement ADD.IN2 is to be used by the cataloged procedure step named ADD.
Because this data is defined by a DD * statement, it must not contain job control
statements.

DATACLAS parameter
Parameter type

Keyword, optional

This parameter is useful only if SMS is running. Without SMS, use the DCB
parameter (described on section “DCB parameter” on page 135) or the AMP
parameter (described on section “AMP parameter” on page 105). If you use a data
class for your new data set, SMS must be running but your data set does not have
to be SMS-managed.

Purpose

Use the DATACLAS parameter to specify a data class for a new data set. The
storage administrator at your installation defines the names of the data classes you
can code on the DATACLAS parameter.

If SMS is not installed or is not active, the system syntax checks and then ignores
the DATACLAS parameter.

SMS ignores the DATACLAS parameter if you specify it for (1) an existing data set
or (2) a data set that SMS does not support.

DD: DATA

132 z/OS V2R1.0 MVS JCL Reference

You can use the DATACLAS parameter for both VSAM data sets and physical
sequential (PS) or partitioned (PO) data sets.

A data class defines the following data set allocation attributes:
v Data set organization

– Record organization (RECORG) or
– Record format (RECFM)

v Record length (LRECL)
v Key length (KEYLEN)
v Key offset (KEYOFF)
v Type, PDS, PDSE, basic format, extended format, large format, or HFS

(DSNTYPE)
v Space allocation (AVGREC and SPACE)
v Retention period (RETPD) or expiration date (EXPDT)
v Volume-count (VOLUME)
v Compaction
v Media interchange type
v Space constraint relief
v Block size limit
v For VSAM data sets (IMBED or REPLICATE, CISIZE, FREESPACE,

SHAREOPTIONS, REUSE, INITIAL LOAD, SPANNED/NONSPANNED, BWO
(backup while open), and LOGGING OPTIONS)

Note

The volume-count on the VOLUME parameter in the data class specifies the
maximum number of SMS-managed volumes that a data set can span. The
maximum volume-count allowed by data class is 255. For SMS-managed DASD
data set, the maximum volumes that a data set can span is 59, a greater than 59
volume-count in data class will be overridden with 59. The volume-count is
ignored for data sets to which no storage class is assigned.

For tape data sets, only the following attributes apply:
v EXPDT
v LRECL
v RECFM
v RETPD
v VOLUME COUNT

References

See z/OS DFSMS Using the Interactive Storage Management Facility for information
on how to use ISMF to view your installation-defined data classes.

Syntax

DATACLAS=data-class-name

DD: DATACLAS

Chapter 12. DD statement 133

Subparameter definition
data-class-name

Specifies the name of a data class to be used for allocating the data set.

The name, one to eight characters, is defined by the storage administrator at
your installation.

Defaults
If you do not specify DATACLAS for a new data set and the storage administrator
has provided an installation-written automatic class selection (ACS) routine, the
ACS routine may select a data class for the data set. Check with your storage
administrator to determine if an ACS routine will select a data class for the new
data set, in which case you do not need to specify DATACLAS.

When RECORG is not specified, data sets associated with a data class, either by
JCL or assigned by an ACS routine, will have DSORG defaulted to either physical
sequential or a partitioned organization.

Overrides
Normally, JCL specifications override data class specifications. However, the
OVERRIDE SPACE attribute in the SMS data class allows you to specify whether
the space attributes that are specified in the data class override corresponding
attributes in the JCL. This exception applies to SPACE on the DD statements and
also to dynamic allocation and IDCAMS DEFINE CLUSTER control statements.
The OVERRIDE SPACE attribute value in the SMS data class can be YES or NO;
the default is NO.

When OVERRIDE SPACE takes the default value 'NO', explicit specification of
SPACE on the DD statement overrides both the SPACE and the AVGREC values
specified in the data class.

An ACS routine can override the data class that you specify on the DATACLAS
parameter.

Attributes obtained with the LIKE and REFDD parameters override the
corresponding attributes in the DATACLAS parameter except when the data class
assigned specifies 'YES' for the OVERRIDE SPACE attribute.

When OVERRIDE SPACE data class attribute takes the value 'YES', the JCL SPACE
parameters are replaced with the data class SPACE related attributes.

For Non-VSAM data sets, the following data class attributes are used to override
the JCL space specifications:
v AVGREC
v AVGVAL
v Primary quantity
v Secondary quantity
v Directory blocks (specify 0 for PS , non-zero for PO)

For VSAM data sets , the following data class attributes are used to override user
specifications:
v AVGREC
v AVGVAL

DD: DATACLAS

134 z/OS V2R1.0 MVS JCL Reference

|
|
|
|
|
|
|

v Primary quantity
v Secondary quantity
v Cisize Data
v %Freespace CI
v %Freespace CA

However, depending on the Recfm, Cisize data, %freespace values can be ignored.

Relationship to other parameters
Do not code the following DD parameters with the DATACLAS parameter.
*
DATA
DDNAME
DYNAM
QNAME

Examples of the DATACLAS parameter
Example 1
//SMSDS1 DD DSNAME=MYDS1.PGM,DATACLAS=DCLAS01,DISP=(NEW,KEEP)

In the example, the attributes in the data class named DCLAS01 are used by SMS
to handle the data set. Note that installation-written ACS routines may select a
management class and storage class and can override the specified data class.

Example 2
//SMSDS2 DD DSNAME=MYDS2.PGM,DATACLAS=DCLAS02,DISP=(NEW,KEEP),
// LRECL=256,EXPDT=1996/033

In the example, the logical record length of 256 and the expiration date of February
2, 1996, override the corresponding attributes defined in the data class for the data
set. Note that installation-written ACS routines may select a management class and
storage class and can override the specified data class.

DCB parameter
Parameter Type

Keyword, optional

Purpose

Use the DCB parameter to complete during execution the data set information in
the data control block (DCB).

The data control block is constructed by the DCB macro instruction in assembler
language programs or by file definition statements or language-defined defaults in
programs in other languages.

Note:

1. With SMS, you do not need to use the DCB parameter to specify data set
attributes. See the DATACLAS parameter (described on section “DATACLAS
parameter” on page 132), the LIKE parameter (described on section “LIKE
parameter” on page 224), and the REFDD parameter (described on section
“REFDD parameter” on page 256).

DD: DATACLAS

Chapter 12. DD statement 135

2. For JES3 SNA RJP, code DCB=LRECL=nnn; where nnn is 1 to 255 when SYSIN
data records are greater than 80 bytes. (The default LRECL is 80 bytes.)

3. Cross checking of DCB subparameters is done when the data set is opened, not
when it is allocated. It is therefore possible to create a data set which may not
be usable. This may then result in the issuance of a system completion code
(ABEND) or unpredictable results when the data set is opened.

References

For more information on constructing the data control block, see z/OS DFSMS
Using Data Sets.

Syntax

[DCB=(subparameter[,subparameter]...)]

[DCB= ({dsname }[,subparameter]...)]
[({*.ddname })]
[({*.stepname.ddname })]
[({*.stepname.procstepname.ddname})]

Parentheses: You can omit the parentheses if you code:

v Only one keyword subparameter.

v Only a data set name, dsname, without any subparameters.

v Only a backward reference without any subparameters. A backward reference is a
reference to an earlier DD statement in the job or in a cataloged or in-stream procedure
called by a job step. A backward reference is in the form *.ddname or
*.stepname.ddname or *.stepname.procstepname.ddname.

For example, DCB=RECFM=FB or DCB=WKDATA or DCB=*.STEP3.DD2

Multiple subparameters: When the parameter contains more than one subparameter,
separate the subparameters by commas and enclose the subparameter list in parentheses.
For example, DCB=(RECFM=FB,LRECL=133,BLKSIZE=399) or DCB=(*.DD1,BUFNO=4)

Continuation onto another statement: Enclose the subparameter list in only one set of
parentheses. End each statement with a comma after a complete subparameter. For
example:

//INPUT DD DSNAME=WKDATA,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,
// BUFL=800,BUFNO=4)

Alternate syntax for DCB keyword subparameters: All of the DCB keyword
subparameters can be specified without the need to code DCB=. For example, the
following DD statement:

//DDEX DD DSNAME=WKDATA,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),DISP=MOD

can also be specified as:
//DDEX DD DSNAME=WKDATA,RECFM=FB,LRECL=80,BLKSIZE=800,DISP=MOD

Note that KEYLEN, LRECL, and RECFM are described as DD parameters.

Note:

v If the BUFMAX subparameter is coded with or without the DCB parameter, it
can have a null value only when coded on a DD which either:
– Overrides a DD in a procedure

DD: DCB

136 z/OS V2R1.0 MVS JCL Reference

– Is added to a procedure.

Subparameter definition
subparameter

(With SMS, see the DD DATACLAS parameter.)

Specifies a DCB keyword subparameter needed to complete the data control
block.

An alphabetic summary of the DCB keyword subparameters follows this
parameter description.

You must supply DCB information through the DCB subparameters if your
processing program, the data set label, or your language’s defined values do
not complete the data control block.

dsname
(With SMS, see the DD LIKE parameter.)

Names a cataloged data set. The system is to copy DCB information from the
data set’s label. The data set must reside on a direct access volume, and the
volume must be mounted before the job step is executed.

If dsname represents a VSAM data set, and you are allocating a new data set,
you must also supply the RECORG parameter. You can specify RECORG
explicitly (through the RECORG parameter), or implicitly, through the
DATACLAS or LIKE parameters.

A hyphen is a valid character in a catalogued data set name. A data set name
that contains a hyphen must be enclosed in apostrophes if it is used as a DCB
subparameter.

The dsname cannot contain special characters, except for periods used in
qualifying the name. Do not specify a generation data group (GDG) base
name, a GDG relative generation member name, or a member name of a
non-GDG data set.

The system copies the following DCB information from the data set label:

DSORG (used in a backward reference)
RECFM
OPTCD
BLKSIZE
LRECL
KEYLEN
RKP

If you do not specify the expiration date of the cataloged data set, the system
copies it from the data set label. The system also copies the system code.

If you code any DCB subparameters after the dsname, these subparameters
override the corresponding subparameters in the data set label. The system
copies from the referenced label only those subparameters not specified on the
referencing DD statement.

*.ddname
*.stepname.ddname
*.stepname.procstepname.ddname

(With SMS, see the DD REFDD parameter or the DD LIKE parameter to select
a comparable refer back function.)

DD: DCB

Chapter 12. DD statement 137

Specify a backward reference to an earlier DD statement. The system is to copy
DCB information from the DCB parameter specified on that DD statement. The
DCB parameter of the referenced DD statement must contain subparameters,
and it cannot name a cataloged data set or refer to another DD statement.

*.ddname specifies the ddname of an earlier DD statement in the same step.
*.stepname.ddname specifies the ddname of a DD statement in an earlier step,
stepname, in the same job. *.stepname.procstepname.ddname specifies the
ddname of a DD statement in a cataloged or in-stream procedure called by an
earlier job step. Stepname is the name of the job step that calls the procedure,
and procstepname is the name of the procedure step that contains the DD
statement.

If you code any DCB subparameters after the reference, these subparameters
override the corresponding subparameters on the referenced DD statement.
The system copies from the referenced DD statement only those subparameters
not specified on the referencing DD statement.

Do not reference a DD * or a DD DATA statement.

Note: The system also copies the UCS and FCB parameters from the
referenced DD statement, unless you override them in the referencing DD
statement.

Completing the data control block
The system obtains data control block information from the following sources, in
override order:
v The processing program, that is, the DCB macro instruction in assembler

language programs or file definition statements or language-defined defaults in
programs in other languages.

v The DCB subparameter of the DD statement.
v The data set label.

Therefore, if you supply information for the same DCB field in your processing
program and on a DD statement, the system ignores the DD DCB subparameter. If
a DD statement and the data set label supply information for the same DCB field,
the system ignores the data set label information.

Note: When concatenated data sets are involved, the DCB is completed based on
the type of data set and how the processing program uses the data set. See z/OS
DFSMS Using Data Sets for more information.

Relationship to other parameters
See the descriptions of the individual DCB subparameters for the DD parameters
and DCB subparameters that should not be coded with a specific DCB
subparameter.

Do not code the following parameters with the DCB parameter.
AMP
DYNAM

With the DDNAME parameter, code only the BLKSIZE, BUFNO, and DIAGNS
DCB subparameters.

With the QNAME parameter, code only the BLKSIZE, LRECL, OPTCD, and
RECFM DCB subparameters.

DD: DCB

138 z/OS V2R1.0 MVS JCL Reference

The DD parameter KEYLEN and DCB subparameters KEYLEN, MODE, PRTSP,
STACK, and TRTCH apply to specific device types. If you specify one of these
subparameters on a DD statement for a device different from the type to which it
applies, the system interprets the value incorrectly.

With the SPACE parameter, the value specified for BLKSIZE directly affects the
amount of space obtained for data sets allocated in records, and for data sets
allocated in blocks where the block length (blklgth) is zero.

For 3540 Diskette Input/Output Units: The VOLUME=SER, DCB=BUFNO, and
DSID parameters on a DD * or DD DATA statement are ignored except when they
are detected by a diskette reader as a request for an associated data set. See 3540
Programmer's Reference.

Examples of the DCB parameter
Example 1
//DD1 DD DSNAME=ALP,DISP=(,KEEP),VOLUME=SER=44321,
// UNIT=3400-6,DCB=(RECFM=FB,LRECL=240,BLKSIZE=960,
// DEN=1,TRTCH=C)

DD statement DD1 defines a new data set named ALP. The DCB parameter
contains the information necessary to complete the data control block.

Example 2
//DD1A DD DSNAME=EVER,DISP=(NEW,KEEP),UNIT=3380,
// DCB=(RECFM=FB,LRECL=326,BLKSIZE=23472),
// SPACE=(23472,(200,40))

DD statement DD1A defines a new data set named EVER on a 3380. The DCB
parameter contains the information necessary to complete the data control block.
//DD1B DD DSNAME=EVER,DISP=(NEW,KEEP),UNIT=3380,
// RECFM=FB,LRECL=326,
// SPACE=(23472,(200,40))

DD statement DD1B is the same as the DD1A statement except that it shows the
alternate syntax for the DCB keyword subparameters. Also, because BLKSIZE is
omitted, the system will select an optimum block size for the data.

Example 3
//DD2 DD DSNAME=BAL,DISP=OLD,DCB=(RECFM=F,LRECL=80,
// BLKSIZE=80)
//DD3 DD DSNAME=CNANN,DISP=(,CATLG,DELETE),UNIT=3400-6,
// LABEL=(,NL),VOLUME=SER=663488,DCB=*.DD2

DD statement DD3 defines a new data set named CNANN and requests that the
system copy the DCB subparameters from DD statement DD2, which is in the
same job step.

Example 4
//DD4 DD DSNAME=JST,DISP=(NEW,KEEP),UNIT=SYSDA,
// SPACE=(CYL,(12,2)),DCB=(A.B.C,KEYLEN=8)

DD statement DD4 defines a new data set named JST and requests that the system
copy the DCB information from the data set label of the cataloged data set named
A.B.C. If the data set label contains a key length specification, it is overridden by
the KEYLEN coded on this DD statement.

DD: DCB

Chapter 12. DD statement 139

Example 5
//DD5 DD DSNAME=SMAE,DISP=OLD,
// DCB=(*.STEP1.PROCSTP5.DD8,BUFNO=5)

DD statement DD5 defines an existing, cataloged data set named SMAE and
requests that the system copy DCB subparameters from DD statement DD8, which
is contained in the procedure step named PROCSTP5. The cataloged procedure is
called by EXEC statement STEP1. Any of the DCB subparameters coded on DD
statement DD8 are ignored if they are specified in the program. If the DCB BUFNO
subparameter is not specified in the program, five buffers are assigned.

DCB subparameters

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

BFALN X X X X X BFALN={F|D}

Specifies that each buffer starts either on a word boundary that is not also a
doubleword boundary or on a doubleword boundary. If both BFALN and BFTEK
are specified, they must be specified from the same source.

Default: D (doubleword)

Note: Do not code the BFALN subparameter with DCB subparameter GNCP, or
with DD parameters DDNAME or QNAME.

DD: DCB

140 z/OS V2R1.0 MVS JCL Reference

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

BFTEK X X X X BDAM and BSAM: BFTEK=R

R Specifies that the data set is being created for or contains variable-length
spanned records. Do not specify R for a PDSE.

BTAM: BFTEK=D

D Specifies that dynamic buffering is to be used in the processing
program; if dynamic buffering is specified, a buffer pool also must be
defined.

QSAM: BFTEK={S|A}

S Specifies simple buffering (default). Simple buffering may be coded at
any time for QSAM files.

A Specifies locate mode logical record interface for spanned records.
QSAM obtains a logical record area and assembles the physical record
segments of a spanned record into that logical record area. This forms a
complete logical record before pointing the user to it.

v This parameter value may be specified only for RECFM=VS or
RECFM=VBS files; if specified without RECFM=VS|VBS, the
specification is ignored.

v Locate mode must be used together with this parameter value.

Note: If you use locate mode on a RECFM=VS|VBS file and
BFTEK=A is not specified, the results may include processing the
segments of a spanned record as separate records, issuance of system
completion (abend) code X'002' with reason code X'04', or other
unpredictable results.

v If you specify BFTEK=A with move mode, a system completion
(abend) code X'013' with reason code X'5C' is issued.

For information about the locate and move modes in the DCB subparameters
BFTEK and VBS, see z/OS DFSMS Macro Instructions for Data Sets.

If you specify both BFALN and BFTEK, you must specify them from the same
source.

Note: Do not code the BFTEK subparameter with DCB subparameter GNCP, or
with DD parameters DDNAME or QNAME.

Note: For compatibility purposes with previous operating systems, the system
accepts BFTEK=E.

DD: DCB

Chapter 12. DD statement 141

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

BLKSIZE X X X X X X BLKSIZE={value|valueK|valueM|valueG}

Specifies the maximum length, in bytes, of a block.

value Specifies the maximum length of a block. The number you specify for
BLKSIZE depends on the device type and the record format for the data
set. The maximum is 32,760 for DASD data sets and 2,147,483,648 for
tape, except for data sets on magnetic tape with ISO/ANSI/FIPS labels,
where the minimum value for BLKSIZE is 18 bytes and the maximum is
2048 bytes. (To allow a value greater than 2048, use installation exit
routine IFG0193G, described in z/OS DFSMS Installation Exits.)

valueK Specifies the maximum length, in kilobytes, of a block. (1 kilobyte =
1024 bytes.) The maximum is 2097152. If 2097152K is coded, the block
size assigned will be the maximum: 2,147,483,648.

valueM Specifies the maximum length, in megabytes, of a block. (1 megabyte =
1024 kilobytes.) The maximum is 2048. If 2048M is coded, the block size
assigned will be the maximum: 2,147,483,648.

valueG Specifies the maximum length, in gigabytes, of a block. (1 gigabyte =
1024 megabytes.) The maximum is 2G. If 2G is coded, the block size
assigned will be the maximum: 2,147,483,648.

If you code the BLKSIZE subparameter in the DCB macro instruction or on a DD
statement that defines an existing data set with standard labels, the DCB BLKSIZE
overrides the block size specified in the label. BLKSIZE can be coded but will have
no effect on EXCP processing.

The number you specify for BLKSIZE directly affects the amount of space obtained
for data sets allocated in records, and for data sets allocated in blocks where the
block length (blklgth) is zero.

Default: If you do not code BLKSIZE, the system can, under certain conditions,
determine an optimum block size for the data. For detailed information about
system-determined block size, see z/OS DFSMS Using Data Sets.

Note: Do not code the BLKSIZE subparameter with the BUFSIZE subparameter.

BUFIN X BUFIN=buffers

Specifies the number of buffers to be assigned initially for receiving operations for
each line in the line group. The combined BUFIN and BUFOUT values must not be
greater than the number of buffers in the buffer pool for this line group (not
including those for disk activity only).

Default: 1

Note: Do not code the BUFIN subparameter with DCB subparameter BUFNO, or
DD parameters DDNAME, QNAME.

BUFL X X X X X X BUFL=bytes

Specifies the length, in bytes, of each buffer in the buffer pool. The maximum is
32,760.

Note: Do not code the BUFL subparameter with DD parameter DDNAME.

BUFMAX X BUFMAX=buffers

Specifies the maximum number of buffers to be allocated to a line at one time.
Number must be 2 through 15 and must be equal to or greater than the larger of
the numbers specified by the BUFIN and BUFOUT subparameters.

Default: 2

Note: Do not code the BUFMAX subparameter with DCB subparameter NCP, or
DD parameters DDNAME, QNAME.

DD: DCB

142 z/OS V2R1.0 MVS JCL Reference

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

BUFNO X X X X X X BUFNO=buffers

Specifies the number of buffers to be assigned to the DCB. The maximum normally
is 255, but can be less because of the size of the region.

Note: Do not code the BUFNO subparameter with DCB subparameters BUFIN,
BUFOUT, or DD parameter QNAME.

BUFOFF X X BUFOFF={n|L}

n Specifies the length, in bytes, of the block prefix used with an ASCII
tape data set. For input, n can be 0 through 99. For output, n must be 0
for writing an output data set with fixed-length or undefined-length
records.

L Specifies that the block prefix is 4 bytes and contains the block length.
BUFOFF=L is valid only with RECFM=D. For output, only BUFOFF=L
is valid.

Note: Do not code the BUFOFF subparameter with DD parameters DDNAME,
QNAME.

BUFOUT X BUFOUT=buffers

Specifies the number of buffers to be assigned initially for sending operations for
each line in the line group. The combined number of BUFIN and BUFOUT values
must not be greater than the number of buffers in the buffer pool for this line
group (not including those for disk activity only) and cannot exceed 15.

Default: 2

Note: Do not code the BUFOUT subparameter with DCB subparameter BUFNO, or
DD parameter DDNAME.

BUFSIZE X BUFSIZE=bytes

Specifies the length, in bytes, of each of the buffers to be used for all lines in a
particular line group. Length must be 31 through 65535 bytes.

Note: Do not code the BUFSIZE subparameter with DCB subparameter BLKSIZE,
or DD parameters DDNAME, QNAME.

CPRI X CPRI={R|E|S}

Specifies the relative transmission priority assigned to the lines in this line group.

R Specifies that processor receiving has priority over processor sending.

E Specifies that receiving and sending have equal priority.

S Specifies that processor sending has priority over processor receiving.

Note: Do not code the CPRI subparameter with DCB subparameter THRESH, or
DD parameters DDNAME, OUTLIM, QNAME.

CYLOFL CYLOFL=tracks

Specifies the number of tracks on each cylinder to hold the records that overflow
from other tracks on that cylinder. The maximum is 99. Specify CYLOFL only when
OPTCD=Y.

Note: Do not code the CYLOFL subparameter with DCB subparameter RESERVE,
or DD parameters DDNAME, FCB, QNAME, UCS.

DD: DCB

Chapter 12. DD statement 143

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

DEN X X X DEN={1|2|3|4}

Specifies the magnetic density, in number of bits-per-inch, used to write a magnetic
tape data set.

DEN 7-track tape 9-track tape
1 556 -
2 800 800 (NRZI)
3 - 1600 (PE)
4 - 6250 (GCR)

NRZI Non-return-to-zero inverted recording mode.

PE Phase encoded recording mode.

GCR Group coded recording mode.

Default: 800 bpi assumed for 7-track tape and 9-track without dual density.

1600 bpi assumed for 9-track with dual density or phase-encoded
drives.

6250 bpi assumed for 9-track with 6250/1600 bpi dual density or group
coded recording tape.

Note: Do not code the DEN subparameter with DD parameters DDNAME,
QNAME.

DIAGNS X X X X X X X DIAGNS=TRACE

Specifies the OPEN/CLOSE/EOV trace option, which gives a module-by-module
trace of OPEN/CLOSE/EOV’s work area and the DCB. If the generalized trace
facility (GTF) is not running and tracing user events, DIAGNS is ignored. See z/OS
DFSMSdfp Diagnosis for more information.

DSORG X X X X X X X X DSORG=organization

Specifies the organization of the data set and indicates whether the data set
contains any location-dependent information that would make the data set
unmovable.

Note: Do not code the DSORG subparameter with DD parameters DDNAME,
QNAME, RECORG.

Organization | Access Method
___________________________________ _ _____________________
PS Physical sequential data set | BSAM,EXCP,QSAM,
PSU Physical sequential data set | BSAM,QSAM,EXCP

that contains |
location-dependent information |

DA Direct access data set | BDAM,EXCP
DAU Direct access data set that | BDAM,EXCP

contains location-dependent |
information |

PO Partitioned data set |BPAM,EXCP
(PDS or PDSE) |

POU Partitioned data set (PDS) that| BPAM,EXCP
contains location-dependent |
information |

CX Communications line group | BTAM
GS Graphic data control block | GAM

DD: DCB

144 z/OS V2R1.0 MVS JCL Reference

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

EROPT X X EROPT=x

BTAM: Requests the BTAM on-line terminal test option. x=T

QSAM: Specifies the option to be executed if an error occurs in reading or
writing a record.

x=ACC System is to accept the block causing the error.

x=SKP System is to skip the block causing the error.

x=ABE System is to cause abnormal end of task.

Default ABE

Note: Do not code the EROPT subparameter with DD parameters DDNAME,
QNAME.

FUNC X X FUNC={I|R|P|W|D|X|T}

Specifies the type of data set to be opened for a 3505 Card Reader or 3525 Card
Punch. Unpredictable results will occur if coded for other than a 3505 or 3525.

I Data set is for punching and printing cards.

R Data set is for reading cards.

P Data set is for punching cards.

W Data set is for printing.

D Protected data set is for punching.

X Data set is for both punching and printing.

T Two-line print option.

The only valid combinations of these values are:

I WT RWT RPWXT PWX
R RP PW RPWD RPWX
P RPD PWXT RWX RWX
W RW RPW RWXT

Default: P, for output data set. R, for input data set.

Note: Do not code the FUNC subparameter with the data-set-sequence number of
the DD LABEL parameter, or DD parameters DDNAME, QNAME.

GNCP X GNCP=n

Specifies the maximum number of I/O macro instructions that the program will
issue before a WAIT macro instruction.

Note: Do not code the GNCP subparameter with DCB subparameters BFALN,
BFTEK, or DD parameters DDNAME, QNAME.

INTVL X INTVL={n|0}

Specifies the interval, in seconds, between passes through an invitation list.

Default: 0

Note: Do not code the INTVL subparameter with DD parameters DDNAME, FCB,
QNAME, UCS.

IPLTXID X IPLTXID=member

Specifies the name of the partitioned data set (PDS) member that you want loaded
into a 3704/3705 Communications Controller. The DCB IPLTXID subparameter
overrides IPLTXID in the TERMINAL macro representing the NCP.

Note: Do not code the IPLTXID subparameter with DD parameters DDNAME,
DSNAME, QNAME.

DD: DCB

Chapter 12. DD statement 145

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

KEYLEN X X X X X KEYLEN=bytes

The KEYLEN keyword subparameter is described on the DD KEYLEN parameter,
section “KEYLEN parameter” on page 213.

LIMCT X LIMCT={blocks|tracks}

Specifies how many blocks (if relative block addressing is used) or how many
tracks (if relative track addressing is used) are to be searched for a free block or
available space. This kind of search occurs only when DCB OPTCD=E is also
specified; otherwise, LIMCT is ignored. If the LIMCT number equals or exceeds the
number of blocks or tracks in the data set, the entire data set is searched.

Note: Do not code the LIMCT subparameter with DD parameters DDNAME,
QNAME.

LRECL X X X X X LRECL=bytes

The LRECL keyword subparameter is described on the DD LRECL parameter,
section “LRECL parameter” on page 226.

MODE X X X MODE= {C [O]}
{E [R]}

Specifies the mode of operation to be used with a card reader, a card punch, or a
card read-punch.

C Card image (column binary) mode

E EBCDIC mode

O Optional mark read mode

R Read column eliminate mode

If you specify R, you must also specify either C or E. Do not code the MODE
subparameter for data entered through the input stream except in a JES3 system.

Do not code MODE=C for JES2 or JES3 output.

Default: E

Note: Do not code the MODE subparameter with DCB subparameters KEYLEN,
PRTSP, TRTCH, or DD parameters DDNAME, KEYLEN, QNAME.

NCP X X NCP=n

Specifies the maximum number of READ or WRITE macro instructions that may be
issued before a CHECK macro instruction is issued to test for completion of the
I/O operation. The maximum number is 255 for BSAM and BPAM, but may
actually be smaller depending on the size of the address space. If chained
scheduling is used, the number should be greater than 1.

Default: 1

Note: Do not code the NCP subparameter with DCB subparameter BUFMAX, or
DD parameters DDNAME, QNAME.

NTM NTM=tracks

Specifies the number of tracks to be used for a cylinder index. When the specified
number of tracks has been filled, a master index is created. The DCB NTM is
needed only when the DCB OPTCB=M. If you specify OPTCD=M but omit NTM,
the master index option is ignored.

Note: Do not code the NTM subparameter with DCB subparameter PCI, or DD
parameters DDNAME, QNAME.

DD: DCB

146 z/OS V2R1.0 MVS JCL Reference

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

OPTCD X X X X X X Specifies the optional services to be performed by the control program. All optional
services must be requested in one source, that is, in the data set label of an existing
data set, in the DCB macro, or in the DD DCB parameter. However, the processing
program can modify the DCB OPTCD field. Code the characters in any order;
when coding more than one, do not code commas between the characters.

Note: Do not code the OPTCD subparameter with DD parameter DDNAME.

BDAM: OPTCD= {A}[E][F][W]
{R}

A indicates that the actual device addresses are to be specified in READ
and WRITE macro instructions.

R indicates that relative block addresses are to be specified in READ and
WRITE macro instructions.

E indicates that an extended search (more than one track) is to be
performed for a block of available space. LIMCT must also be coded.
Do not code LIMCT=0 because it will cause an abnormal termination
when a READ or WRITE macro instruction is executed.

F indicates that feedback can be requested in READ and WRITE macro
instructions and the device is to be identified in the same form as it was
presented to the control program.

W requests a validity check for write operations on direct access devices.

OPTCD (continued) BPAM: OPTCD= {C|W|CW}

C has no effect.

W requests a validity check for write operations.

BSAM and QSAM: OPTCD= {B }
{T }
{U[C] }
{C[T][B][U] }
{H[Z][B] }
{J[C][U] }
{W[C][T][B][U]}
{Z[C][T][B][U]}
{Q[C][T][B] }
{Z }

B requests that the end-of-volume (EOV) routine disregard the end-of-file
(EOF) recognition for magnetic tape. For an input data set on a
standard-labeled (SL or AL) tape, the EOV routine treats EOF labels as
EOV labels until the volume serial list is exhausted. This option allows
SL or AL tapes to be read out of volume sequence or to be concatenated
to another tape with the same data set name using one DD statement.
See "Data Sets that Span Libraries" in z/OS MVS JCL User's Guide for a
description of allocation processing for multi-volume data sets created
in different tape libraries.

C requests chained scheduling.

H requests hopper empty exit for optical readers or bypass of DOS
checkpoint records.

J for a data set to be printed on an AFP printer, instructs the system that
the logical record for each output data line contains a table reference
character (TRC). The TRC identifies which character arrangement table
in the CHARS parameter is to be used to print the line. Before
specifying OPTCD=J, see PSF for z/OS: User's Guide.

DD: DCB

Chapter 12. DD statement 147

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

OPTCD (continued) BSAM and QSAM (continued):

Q indicates that all the user data in the data set is in ASCII. BSAM or
QSAM converts the records from ASCII to EBCDIC when reading and
converts the records from EBCDIC to ASCII when writing. The data set
must reside on magnetic tape and must not contain IBM standard
labels. The record format (RECFM) must not be V but can be D. If the
label type is ISO/ANSI/FIPS, specified as LABEL=(,AL), the system
forces OPTCD=Q.

T requests user totaling facility. T cannot be specified for a SYSIN or
sysout data set.

U for 1403 or 3211 Printers with the Universal Character Set (UCS) feature
and for the 3800, permits data checks and allows analysis by an
appropriate error analysis routine. If U is omitted, data checks are not
recognized as errors.

W requests a validity check for write operations on direct access devices.
Requests "tape write immediate" mode on a cartridge tape device such
as the IBM 3490 Magnetic Tape Subsystem.

Z for magnetic tape reel input, requests that the control program shorten
its normal error recovery procedure. When specified, a data check is
considered permanent after five unsuccessful attempts to read a record.

OPTCD=Z is ignored if chained scheduling or a tape cartridge is used. For a PDSE,
all options except OPTCD=J are ignored.

EXCP: OPTCD=Z

Z for magnetic tape reel input, requests that the control program shorten
its normal error recovery procedure. When specified, a data check is
considered permanent after five unsuccessful attempts to read a record.
OPTCD=Z has no effect on a tape cartridge.

PCI X {([N][,N])}
PCI= {([R][,R])}

{([A][,A])}
{([X][,X])}

Specifies (1) whether or not a program-controlled interruption (PCI) is to be used to
control the allocation and freeing of buffers and (2) how these operations are to be
performed. The first operand applies to receiving operations and the second to
sending operations.

N specifies that no PCIs are taken while filling buffers during receiving
operations or emptying buffers during sending operations.

R specifies that after the first buffer is filled or emptied, a PCI occurs
during the filling or emptying of each succeeding buffer. The completed
buffer is freed, but no new buffer is allocated to take its place.

A specifies that after the first buffer is filled or emptied, a PCI occurs
during the filling or emptying of the next buffer. The first buffer is
freed, and a buffer is allocated to take its place.

X specifies that after a buffer is filled or emptied, a PCI occurs during the
filling or emptying of the next buffer. The first buffer is not freed, but a
new buffer is allocated.

You can omit the parentheses if you code only the first operand.

Default: (A,A)

Note: Do not code the PCI subparameter with DCB subparameter NTM, or DD
parameters DDNAME, QNAME.

DD: DCB

148 z/OS V2R1.0 MVS JCL Reference

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

PRTSP X X X PRTSP={0|1|2|3}

Specifies the line spacing for an online printer. PRTSP is valid only for an online
printer and only if the RECFM is not A or M. PRTSP=2 is ignored if specified with
the DD SYSOUT parameter. 0 - spacing is suppressed, 1 - single, 2 - double, 3 -
triple spacing

JES2 ignores PRTSP for sysout data sets.

Default: 1

Note: Do not code the PRTSP subparameter with DCB subparameters KEYLEN,
MODE, STACK, TRTCH, or DD parameters DDNAME, KEYLEN, QNAME.

RECFM X X X X X X RECFM=format

The RECFM keyword subparameter is described on the DD RECFM parameter,
section “RECFM parameter” on page 251.

RESERVE X RESERVE=(bytes1,bytes2)

Specifies the number of bytes (0 through 255) to be reserved in a buffer for
insertion of data by the DATETIME and SEQUENCE macros.

bytes1 indicates the number of bytes to be reserved in the first buffer that
receives an incoming message.

bytes2 indicates the number of bytes to be reserved in all the buffers following
the first buffer in a multiple-buffer header situation.

Default: (0,0)

Note: Do not code the RESERVE subparameter with DCB subparameters CYLOFL,
RKP, or DD parameters DDNAME, KEYOFF, QNAME, UCS.

RKP X RKP=number

With SMS, use the DD KEYOFF or DATACLAS parameter. Specifies the position of
the first byte of the record key in each logical record. The first byte of a logical
record is position 0.

If RKP=0 is specified for blocked fixed-length records, the key begins in the first
byte of each record. OPTCD=L must not be specified.

If RKP=0 is specified for unblocked fixed-length records, the key is not written in
the data field. OPTCD=L can be specified.

For variable-length records, the relative key position must be 4 or greater, if
OPTCD=L is not specified; the relative key position must be 5 or greater, if
OPTCD=L is specified.

For EXCP processing, RKP can be coded but is ignored.

Default: 0

Note: Do not code the RKP subparameter with DCB subparameter RESERVE, or
DD parameters DDNAME, FCB, KEYOFF, UCS.

STACK X X X STACK={1|2}

Specifies which stacker bin is to receive a card.

Default: 1

Note: Do not code the STACK subparameter with DCB subparameters KEYLEN,
PRTSP, TRTCH, or DD parameters DDNAME, KEYLEN, QNAME.

DD: DCB

Chapter 12. DD statement 149

DCB subparameters

Access method

Description of subparameters

B
D
A
M

B
P
A
M

B
S
A
M

B
T
A
M

E
X
C
P

G
A
M

Q
S
A
M

T
C
A
M

THRESH X THRESH=nn

Specifies the percentage of the nonreusable disk message queue records that are to
be used before a flush closedown occurs.

Default: Closedown occurs when 95 percent of the records have been used.

Note: Do not code the THRESH subparameter with DCB subparameter CPRI, or
DD parameters DDNAME, OUTLIM, QNAME.

TRTCH X X X TRTCH={C|E|T|ET} {COMP|NOCOMP}

With C, E, T, or ET: specifies the recording technique for 7-track tape.

C specifies data conversion, odd parity, and no translation.

E specifies no data conversion, even parity, and no translation.

T specifies no data conversion, odd parity, and that BCD to EBCDIC
translation is required when reading and EBCDIC to BCD translation
when writing.

ET specifies no data conversion, even parity, and that BCD to EBCDIC
translation is required when reading and EBCDIC to BCD translation
when writing.

Default: no conversion, odd parity, and no translation.

With COMP or NOCOMP: specifies data compaction or no data compaction on a
tape device enabled for compaction. Data compaction is not supported with
ISO/ANSI labels.

COMP specifies data compaction.

NOCOMP
specifies no data compaction

Defaults: On an IBM standard label tape, data sets after the first data set have the
same compaction value (COMP or NOCOMP) as the first data set. The system
ignores any compaction specified on data sets after the first. The system takes the
compaction value from the first source that specifies it. The following sources can
specify compaction:

1. TRTCH subparameter.

2. Data class, as set by the storage administrator. The tape, however, does not have
to be system-managed.

3. DEVSUPxx member of SYS1.PARMLIB.

4. The hardware model. For the IBM 3480, the default is NOCOMP. For the IBM
3490, the default is COMP.

See z/OS MVS JCL User's Guide for information about using IEFBR14 and the
TRTCH subparameter.

Note: Do not code the TRTCH subparameter with DCB subparameters KEYLEN,
MODE, PRTSP, STACK, or DD parameters DDNAME, KEYLEN, QNAME.

Note: TRTCH is not applicable for DASD data sets. If specified, it will be ignored.

DDNAME parameter
Parameter type: Keyword, optional

Purpose: Use the DDNAME parameter to postpone defining a data set until later
in the same job step. A DDNAME parameter on a DD statement in a cataloged or
in-stream procedure allows you to postpone defining the data set until a job step
calls the procedure; the data set must be defined in the calling job step.

DD: DCB

150 z/OS V2R1.0 MVS JCL Reference

Syntax

DDNAME=ddname

v The DDNAME parameter can have a null value only when coded on a DD which either:

– Overrides a DD in a procedure

– Is added to a procedure.

Subparameter definition
ddname

Refers to a later DD statement that defines the data set. ddname must match
the ddname of the referenced DD statement.

A job step or procedure step can contain up to five outstanding, unresolved
DD parameters in a step at one time. Each DDNAME parameter must refer to
a different DD statement.

Overrides
If any DCB subparameter appears on both DD statements, the DCB subparameter
on the referenced DD statement overrides the DCB subparameter on the DD
statement that contains DDNAME.

Relationship to other parameters
The only DD parameters you can code with the DDNAME parameter are:
DCB=BLKSIZE
DCB=BUFNO
DCB=DIAGNS
LIKE
REFDD

Do not code the DDNAME parameter on a DD statement with a ddname of
JOBLIB.

Location in the JCL
Place a DD statement containing a DDNAME parameter in a job step or in a
cataloged or in-stream procedure. The referenced DD statement must be later in
the same job step, must be in the calling job step, or must be in a cataloged or
in-stream procedure called by the job step.

Do not use the name of a DDNAME statement more than once within the same
step.

Location of DD statements for concatenated data sets: To concatenate data sets to
a data set defined with a DDNAME parameter, the unnamed DD statements must
follow the DD statement that contains the DDNAME parameter, not the referenced
DD statement that defines the data set.

Errors in location of referenced DD statement: The system treats a DDNAME
parameter as though it were a DUMMY parameter and issues a warning message
in the following cases:
v If the job step or called procedure does not contain the referenced DD statement.
v If the referenced DD statement appears earlier in the job step.

DD: DDNAME

Chapter 12. DD statement 151

Location of DD statement requesting unit affinity: To use the same device, a DD
statement can request unit affinity to an earlier DD statement by specifying
UNIT=AFF=ddname. If a DD statement requests unit affinity to a DD statement
containing a DDNAME parameter, the DD statement requesting unit affinity must
be placed after the referenced DD statement. If the DD statement requesting unit
affinity appears before, the system treats the DD statement requesting unit affinity
as a DUMMY DD statement.

//STEP EXEC PGM=TKM
//DD1 DD DDNAME=DD4
//DD2 DD DSNAME=A,DISP=OLD

.

.
//DD4 DD DSNAME=B,DISP=OLD
//DD5 DD UNIT=AFF=DD1

DD1 postpones defining the data set until DD4. DD5 requests unit affinity to DD1.
Because DD1 has been defined when DD5 is processed, the system assigns DD5 to
the same device as DD1.

Instead of specifying UNIT=AFF=ddname, both DD statements can specify the
same devices in their UNIT parameters or the same volume serials in their
VOLUME parameters.

Referenced DD statement
If the DDNAME parameter appears in a procedure with multiple steps, the
ddname on the referenced DD statement takes the form stepname.ddname. For
example, if procedure step STEPCP1 contains:

//INDATA DD DDNAME=DD1

The referenced DD statement in the calling job step is:
//STEPCP1.DD1 DD *

Parameters not permitted on the referenced DD statement: The referenced DD
statement must not contain a DYNAM or PATH parameter.

A DD statement that contains a DDNAME parameter must not override a
procedure sysout DD statement that contains an OUTPUT parameter if the
referenced DD statement also contains an OUTPUT parameter.

References to Concatenated Data Sets: If you make a forward reference to a
concatenation, the forward reference resolves to the first data set in the
concatenation. If there are no DD statements between the forward reference and
the concatenation, the rest of the data sets in the concatenation are appended to the
first data set in the concatenation. The following example illustrates this.
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DDNAME=INPUT
//INPUT DD DSN=TSTDATA1,DISP=SHR
// DD DSN=TSTDATA2,DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY

In this example, SYSUT1 will resolve to the first data set TSTDATA1, defined by
the DDNAME forward reference INPUT. TSTDATA2, the second data set in the
DDNAME forward reference INPUT, will be appended to SYSUT1 as well.
IEBGENER will recognize TSTDATA1 and TSTDATA2 as input.

DD: DDNAME

152 z/OS V2R1.0 MVS JCL Reference

If there are any DD statements between the forward reference and the
concatenation, the rest of the data sets in the concatenation are appended to the
last DD statement preceding the concatenation. For example:
//STEP1 EXEC PGM=IEBGENER
//SYSUT1 DD DDNAME=INPUT
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD SYSOUT=*
//INPUT DD DSN=TSTDATA1,DISP=SHR
// DD DSN=TSTDATA2,DISP=SHR
//SYSIN DD DUMMY

In the preceding example, SYSUT1 will resolve to the first data set, TSTDATA1,
defined in the DDNAME forward reference INPUT. TSTDATA2 will be appended
to SYSUT2, the last DD statement preceding the concatenation. In that example
IEBGENER will only recognize TSTDATA1 as input.

If a concatenated DD is added to a procedure, the remaining concatenated data
sets will be concatenated to the last DD in the step named in an override or
addition (or to the first step if no step was named in an override or addition). Note
that this may result in these concatenated DDs being added to an unexpected DD.
The following example illustrates this.
//TPROC PROC
//S1 EXEC PGM=IEFBR14
//DD1 DD DDNAME=INPUT
//DD2 DD DSN=MYDSN2,DISP=SHR
//DD3 DD DSN=MYDSN3,DISP=SHR
//S2 EXEC PGM=IEFBR14
//DDA DD DDNAME=INPUT
//DDB DD DSN=MINE2,DISP=SHR
//DDC DD DSN=MINE3,DISP=SHR
// PEND
//STEP1 EXEC TPROC
//INPUT DD DSN=MYDSN1,DISP=SHR
// DD DSN=MYDSN4,DISP=SHR
//S2.INPUT DD DSN=MINE1,DISP=SHR
// DD DSN=MINE4,DISP=SHR

In the preceding example, the result of the DDNAME forward reference INPUT is:
v In step S1, DD1 resolves to data set MYDSN1 and data set MYDSN4 is

concatenated to data set MYDSN3.
v In step S2, DDA resolves to data set MINE1 and data set MINE4 is concatenated

to data set MINE3.

Attention: The system always issues a warning message IEF694I, even if all data
sets in the concatenation are used.

Backward references
A backward reference is a reference to an earlier DD statement in the job or in a
cataloged or in-stream procedure called by a job step. A backward reference is in
the form *.ddname or *.stepname.ddname or *.stepname.procstepname.ddname.
The ddname in the reference is the ddname of the earlier DD statement. If the
earlier DD statement contains a DDNAME parameter, the reference is to the
ddname in the name field of the earlier statement, not to the ddname in the
DDNAME parameter.

DD: DDNAME

Chapter 12. DD statement 153

The DD statement referenced in a DDNAME parameter cannot refer to a DD
statement between the statement containing the DDNAME parameter and itself.
For example:
//SHOW EXEC PGM=ABLE
//DD1 DD DDNAME=INPUT
//DD2 DD DSNAME=TEMPSPAC,SPACE=(TRK,1),UNIT=SYSDA
//DD3 DD DSNAME=INCOPY,VOLUME=REF=*.DD1,
// DISP=(,KEEP),SPACE=(TRK,(5,2))
//DD4 DD DSNAME=OUTLIST,DISP=OLD
//DD5 DD DSNAME=MESSAGE,DISP=OLD,UNIT=3390,VOLUME=SER=333333
//INPUT DD DSNAME=NEWLIST,DISP=(OLD,KEEP),VOLUME=SER=333333,
// UNIT=3390

The DDNAME parameter on DD1 refers to DD statement INPUT. The VOLUME
parameter of DD3 specifies a backward reference to DD1, which is the name field
ddname.

DD statement INPUT identifies the volume 333333 in its VOLUME=SER=333333
parameter. DD statement INPUT cannot use a backward reference to the VOLUME
parameter on DD5 because DD5 is between the referring DD1 and the referenced
INPUT.

Examples of the DDNAME parameter
Example 1: The following procedure step is the only step in a cataloged procedure
named CROWE:
//PROCSTEP EXEC PGM=RECPGM
//DD1 DD DDNAME=WKREC
//POD DD DSNAME=OLDREC,DISP=OLD

DD statement DD1 is intended for weekly records in the input stream; these
records are processed by this step. Because the * and DATA parameters cannot be
used in cataloged procedures, the DDNAME parameter is coded to postpone
defining the data set until the procedure is called by a job step. The step that calls
the procedure is:
//STEPA EXEC PROC=CROWE
//WKREC DD *

.

.
data
.

/*

Example 2: When the procedure contains multiple steps, use the form
stepname.ddname for the ddname of the referenced DD statement. For example,
the following procedure steps appear in a cataloged procedure named PRICE:
//STEP1 EXEC PGM=SUGAR
//DD1 DD DDNAME=QUOTES

.

.

.
//STEP2 EXEC PGM=MOLASS
//DD2 DD DSNAME=WEEKB,DISP=OLD

.

.

.

The step that calls the procedure is:

DD: DDNAME

154 z/OS V2R1.0 MVS JCL Reference

//STEPA EXEC PROC=PRICE
//STEP1.QUOTES DD *

.

.
data
.

/*

Example 3: When the referenced DD statement is to be a concatenation, the
procedure must already contain the concatenation. (Such as when the referencing
DD statement is to contain in-stream data.) For example, the following procedure
step appears in cataloged procedure NEWONE.
//NEWONE PROC
//STEP1 EXEC PGM=TRYIT
//DD1 DD DDNAME=INSTUFF
// DD DSN=OLDSTUFF,DISP=OLD

.

.

The step that calls the procedure is:
//STEPA EXEC PROC=NEWONE
//STEP1.INSTUFF DD *

.
data
.

/*

The instream data (DDNAME=INSTUFF) is inserted before OLDSTUFF in the
concatenation.

Example 4: In the following example we create a DD concatenation in a procedure
using multiple DDNAME forward references, INPUT1—INPUT5. In the example,
INPUT1 resolves to data set FIRST, INPUT2 resolves to data set SECOND, and
INPUT3 resolves to data set THIRD. INPUT4 and INPUT5 resolve to DUMMY.
//ABC PROC
//SI EXEC PGM=IEFBR14
//DD1 DD DDNAME=INPUT1
// DD DDNAME=INPUT2
// DD DDNAME=INPUT3
// DD DDNAME=INPUT4
// DD DDNAME=INPUT5
//STEP1 EXEC ABC
//INPUT1 DD DSN=FIRST,DISP=SHR
//INPUT2 DD DSN=SECOND,DISP=SHR
//INPUT3 DD DSN=THIRD,DISP=SHR

DEST parameter
Parameter type

Keyword, optional

Purpose

Use the DEST parameter to specify a destination for a sysout data set. The DEST
parameter can send a sysout data set to a remote or local terminal, a node, a node
and remote workstation, a local device or group of devices, or a node and userid.

DD: DDNAME

Chapter 12. DD statement 155

Note: Code the DEST parameter only on a DD statement with a SYSOUT
parameter. Otherwise, the system checks the DEST parameter for syntax, then
ignores it.

For more information about USERID and WRITER ID, see z/OS MVS JCL User's
Guide.

Syntax

DEST=destination

The destination subparameter for JES2 is one of the following:

LOCAL|ANYLOCAL
name
Nnnnnn
NnRmmmmm
NnnRmmmm
NnnnRmmm
NnnnnRmm
NnnnnnRm
(node,remote)
Rmmmmm
RMmmmmm
RMTmmmmm
Unnnnn
(node,userid)
userid

The destination subparameter for JES3 is one of the following:

ANYLOCAL
device-name
device-number
group-name
nodename
(nodename,userid)
(nodename,devicename)

Subparameter definition for JES2 systems
LOCAL|ANYLOCAL

Indicates the local node on a local device.

name
Identifies a destination by a symbolic name which is defined by the installation
during JES2 initialization. The name can be, for example, a local device, remote
device, or a userid. The name is 1 through 8 alphanumeric or national ($, #, @)
characters.

Nnnnnn
Identifies a node. nnnnn is 1 through 5 decimal numbers from 1 through
32,767.

NnRmmmmm
NnnRmmmm
NnnnRmmm
NnnnnRmm
NnnnnRm
(node,remote)

Identifies a node and a remote work station connected to the node. The node

DD: DEST

156 z/OS V2R1.0 MVS JCL Reference

number, indicated in the format by n, is 1 through 5 decimal numbers from 1
through 32,767. The remote work station number, indicated in the format by m,
is 1 through 5 decimal numbers from 1 through 32,767. Do not code leading
zeros in n or m. The maximum number of digits for n and m combined cannot
exceed six.

Note: NnnR0 is equivalent to LOCAL specified at node Nn.

Rmmmmm
RMmmmmm
RMTmmmmm

Identifies a remote workstation. mmmmm is 1 through 5 decimal numbers
from 1 through 32,767. Note that with remote pooling, the installation may
translate this route code to another route code.

If you send a job to execute at a remote node and the job has a ROUTE PRINT
RMTmmmm statement, JES2 returns the output to RMTmmmm at the node of
origin. For JES2 to print the output at RMTmmmm at the executing node, code
DEST=NnnnRmmm on an OUTPUT JCL statement or sysout DD statement.

Note: R0 indicates any local device.

Unnnnn
Identifies a local terminal with special routing. nnnnn is 1 through 5 decimal
numbers from 1 through 32,767.

If you send a job to execute and the job has a ROUTE PRINT Unnnnn
statement, JES2 returns the output to Unnnnn at the node of origin.

(node,userid)
Identifies a node and a TSO/E or VM userid at that node. The node is a
symbolic name defined by the installation during initialization; node is 1
through 8 alphanumeric or national ($, #, @) characters. The userid must be
defined at the node; userid for TSO/E is 1 through 7 alphanumeric or national
($, #, @) characters and for VM is 1 through 8 alphanumeric or national ($, #,
@) characters. The userid can also be a destination name defined in a JES2
DESTID initialization statement.

DEST=(node) is valid with a writer-name subparameter in the SYSOUT
parameter; however, DEST=(node,userid) is not valid. Therefore, you can code
SYSOUT=(A,writer-name),DEST=(node), but not SYSOUT=(A,writer-
name),DEST=(node,userid).

Note: You can code DEST=(nodename,Unnnnn) here; this syntax is a valid
subset of DEST=(node,userid).

userid
Identifies a userid at the local node. Userid for TSO/E is 1 through 7
alphanumeric or national ($, #, @) characters. The userid can also be a
destination name definded in a JES2 DESTID initialization statement.

Note: JES2 initialization statements determine whether or not the node name is
required when coding a userid. See your system programmer for information
regarding how routings will be interpreted by JES2.

Subparameter definition for JES3 systems
ANYLOCAL

Indicates any local device that is attached to the global processor.

DD: DEST

Chapter 12. DD statement 157

device-name
Identifies a local device by a symbolic name defined by the installation during
JES3 initialization. device-name is 1 through 8 alphanumeric or national ($, #,
@) characters.

device-number
Identifies a specific device by a 3-digit or 4-digit hexadecimal number. Precede
a 4-digit number with a slash (/). A 3-digit number can be specified with or
without a slash.

group-name
Identifies a group of local devices, an individual remote station, or a group of
remote stations by a symbolic name defined by the installation during JES3
initialization. group-name is 1 through 8 alphanumeric or national ($, #, @)
characters.

nodename
Identifies a node by a symbolic name defined by the installation during JES3
initialization. nodename is 1 through 8 alphanumeric or national ($, #, @)
characters. If the nodename you specify is the same as the node you are
working on, JES3 treats the output as though you specified ANYLOCAL.

(nodename,userid)
Identifies a nodename and a TSO/E or VM userid at that nodename. The
nodename is a symbolic name defined by the installation during initialization;
node is 1 through 8 alphanumeric or national ($, #, @) characters. The userid
must be defined at the nodename; userid for TSO/E is 1 through 7
alphanumeric or national ($, #, @) characters and for VM is 1 through 8
alphanumeric or national ($, #, @) characters.

A userid requires a nodename; therefore, code DEST=(nodename,userid). You
cannot code a userid without a node.

DEST=(nodename) is valid with a writer-name subparameter in the SYSOUT
parameter: however, DEST=(nodename,userid) is not valid. Therefore, you can
code SYSOUT=(A,writer-name),DEST=(nodename).

(nodename,devicename)
Identifies a node by a symbolic name defined by the installation during JES3
initialization. nodename and devicename are each 1 through 8 alphanumeric or
national ($, #, @) characters. devicename identifies a device by a symbolic
name defined to that node by the installation during JES3 initialization.
devicename is 1 through 8 alphanumeric or national ($, #, @) characters.

Use this form of the DEST parameter to override the ORG parameter.

Defaults
If you do not code a DEST parameter, JES directs the sysout data set to the default
destination for the input device from which the job was submitted.

In a JES3 system, if you do not code a DEST parameter, the default destination is
the submitting location. For jobs submitted through TSO/E and routed to NJE for
execution, the default is the node from which the job was submitted, and the
destination ANYLOCAL.

If a specified destination is invalid, the job fails.

DD: DEST

158 z/OS V2R1.0 MVS JCL Reference

If you've coded the ORG parameter but did not explicitly code a primary
destination, the default primary destination is the node specified in the ORG
parameter, not the submitting node.

Overrides
The DEST parameter on the sysout DD statement overrides an OUTPUT JCL DEST
parameter.

Relationship to other parameters
Code the DEST parameter only on a DD statement with the SYSOUT parameter.

Relationship to other control statements
You can also code an output destination using:
v The OUTPUT JCL statement.
v The JES2 /*OUTPUT and /*ROUTE control statements.
v The JES3 //*MAIN, //*FORMAT PR, and //*FORMAT PU control statements.

Because DEST=(node,userid) cannot be coded on JES2 or JES3 control statements,
you must code it, if needed, on a DD or OUTPUT JCL statement.

Example of the DEST parameter
//JOB01 JOB ,’MAE BIRD’,MSGCLASS=B
//STEP1 EXEC PGM=INTEREST
//DEBIT DD SYSOUT=A
//CALIF DD SYSOUT=A,DEST=R555
//FLOR DD SYSOUT=A,DEST=(BOCA,’9212U28’)

In this example, the system sends the sysout data set defined by DD statement
DEBIT to the work station that submitted the job, the data set defined by DD
statement CALIF to the remote terminal 555, and the data set defined by DD
statement FLOR to VM userid 9212U28 at node BOCA.

DISP parameter
Parameter Type

Keyword, optional

Purpose

Use the DISP parameter to describe the status of a data set to the system and tell
the system what to do with the data set after termination of the step or job. You
can specify one disposition for normal termination and another for abnormal
termination. Note that if an abend occurs within a step, the step itself may
terminate normally or abnormally, depending on whether an ESTAE (or ESPIE
routine) intercepts the abend and requests that processing continue. Normal
termination of a step is indicated by the presence of message IEF142I; abnormal
termination of a step is indicated by the presence of message IEF472I.

Note: Disposition of the data set is controlled solely by the DISP parameter;
disposition of the volume(s) on which the data set resides is a function of the
volume status when the volume is demounted. If the UNIT parameter specifies a
device, such as a printer or telecommunications device, that does not involve a
data set, do not code the DISP parameter.

DD: DEST

Chapter 12. DD statement 159

If the system obtains unit and volume information for an OLD, MOD, or SHR
status, the data set is treated as if it exists, whether or not it is physically on the
device.

When any step of a job requests exclusive control of a data set, with an exception
of when the job is allowed to downgrade ENQs via the DSENQSHR specification,
the system converts all requests for shared control of that data set within that job
(DISP=SHR) to requests for exclusive control. One of two methods can be used to
request exclusive control:
v DISP=NEW, DISP=MOD, or DISP=OLD on a JCL request.
v DISP=NEW, DISP=MOD, or DISP=OLD on a dynamic allocation request,

including dynamic allocation requests that result from the use of certain utility
control statements. For example, utility control statements that delete/scratch a
data set will result in exclusive use of that data set.

If a dynamic allocation requests exclusive control of a data set then all subsequent
DISP=SHR JCL references to that data set within that job will be upgraded to
exclusive control. The job will retain exclusive control of that data set until the end
of the last step of that job which references that data set in its JCL. For example:
//STEP1 EXEC PGM=anypgm1
//DD1 DD DSN=A.B.C,DISP=SHR
//STEP2 EXEC PGM=IDCAMS

DELETE A.B.C
DEFINE A.B.C

//STEP3 EXEC PGM=anypgm3
//DD3 DD DSN=A.B.C,DISP=SHR
//STEP4 EXEC PGM=anypgm4

Before the start of STEP1, the job will request shared control of data set A.B.C. In
STEP2, the DELETE/DEFINE of data set A.B.C will cause the shared control from
STEP1 to be upgraded to exclusive control. In STEP3, control of data set A.B.C will
remain exclusive, since it is not possible to downgrade an ENQ from EXCL to SHR
in the case that a dynamic allocation upgrades the ENQ. At the end of STEP3,
control of data set A.B.C will be released. The ENQ on data set A.B.C will therefore
not be held at all during STEP4. If, however, the job also contained a STEP5 which
requested use of data set A.B.C, then exclusive control of that data set would
continue to be held by the job all the way through both STEP4 and STEP5.

DISP and ENQ: Before starting the first step of a job, the initiator requests control
of all of the data sets in that job by issuing an ENQ for each of them, using the
value specified for DISP to determine the kind of ENQ issued. The initiator issues
the ENQ for each data set at the highest level required for that data set by any step
of the job. For example, if all steps of the job request shared control of a specific
data set (DISP=SHR) then the ENQ for that data set is requested as SHR. If, on the
other hand, any step of the job requests exclusive control of a specific data set
(DISP=NEW, DISP=MOD, or DISP=OLD), then the ENQ for that data set is
requested EXCL.

If the job is allowed to downgrade ENQs, then ENQs will be downgraded from
exclusive control to shared control at the last step for which the data set is
referenced EXCL. The downgrade will not occur if the ENQ has been upgraded by
a dynamic allocation request in the current or a previous step.

If the job is not allowed to downgrade ENQs, then ENQs cannot be downgraded
from EXCL to SHR. If one step needs the ENQ EXCL and a following step only
needs it SHR, the ENQ is still held as EXCL.

DD: DISP

160 z/OS V2R1.0 MVS JCL Reference

In both cases, the ENQ is held until the end of the last step which references that
data set, at which point the ENQ is released entirely.

DISP and ENQ for generation data sets: The way the initator issues an ENQ to
control generation data sets can be different than with other data sets. The initiator
only issues the ENQ for the GDG base name for a generation data set that is
referenced by either:
v Their relative GDG names (for example, DSN=TEST.GDG.DATASET(0)).
v As GDG ALLs (for example, DSN=TEST.GDG.DATASET)

For example, the initiator issues the ENQ for the GDG base name,
TEST.GDG.DATASET for the generation data sets shown in the previous list.
Generation data sets referenced by either their relative GDG names or as GDG
ALLs are processed this way because the initiator does not know which specific
absolute generation names will be required. This is because the conversion from
relative generation name to absolute generation name is done during the allocation
for the step referencing the data set. The ENQ for the specific, absolute, generation
(G0000V00) data set name or names is issued at the start of the step requesting the
relative GDG or GDG ALL.

Note that the initiator does not issue an ENQ for the GDG base name for a
generation data set that is referenced by its absolute GDG name. Instead it issues
an ENQ for that specific G0000V00 data set name.

References

For information about tape data set processing, see z/OS DFSMS Using Magnetic
Tapes.

Syntax

{DISP=[status] }
{DISP=([status][,normal-termination-disp][,abnormal-termination-disp])}

DISP= ([NEW] [,DELETE] [,DELETE])
[OLD] [,KEEP] [,KEEP]
[SHR] [,PASS] [,CATLG]
[MOD] [,CATLG] [,UNCATLG]
[,] [,UNCATLG]

[,]

v You can omit the parentheses if you code only the status subparameter.

v If you omit the status subparameter but code subparameters for normal or abnormal
termination disposition, you must code a comma to indicate the absence of NEW. For
example, DISP=(,KEEP) or DISP=(,CATLG,DELETE).

v If you omit the second subparameter but code the third, you must code a comma to
indicate the absence of the second subparameter. For example, DISP=(OLD,,DELETE) or
DISP=(,,KEEP).

Subparameter definition

Status subparameter
NEW

Indicates that a new data set is to be created in this step.

DD: DISP

Chapter 12. DD statement 161

Note: Initialize a new data set to ensure that it is empty.

OLD
Indicates that the data set exists before this step and that this step requires
exclusive (unshared) use of the data set.

If you specify DISP=OLD for an output tape data set and (1) the data set is not
protected by RACF or a password or (2) the data set has no expiration date,
the system does not verify the data set name in the header label.

SHR
Indicates that the data set exists before this step and that other jobs can share
it, that is, use it at the same time. This subparameter can also be coded as
SHARE.

If you specify DISP=SHR for an output tape data set and (1) the data set is not
protected by RACF or a password or (2) the data set has no expiration date,
the system does not verify the data set name in the header label.

MOD
Indicates one of the following:
v The data set exists and records are to be added to the end of it. The data set

must be sequential.
v A new data set is to be created.

In either case, MOD specifies exclusive (unshared) use of the data set.

When the data set is opened, the read/write mechanism is positioned after the
last sequential record for an existing data set or at the beginning for a new
data set. For subsequent OPENs within the same step, the read/write
mechanism is positioned after the last sequential record.

Note: You cannot specify DISP=MOD to extend an ISO/ANSI/FIPS Version 3
tape data set unless the ISO/ANSI/FIPS Version 3 label validation installation
exit allows the extension. For information on using ISO/ANSI/FIPS Version 3
installation exits, see z/OS DFSMS Using Magnetic Tapes.

If the system cannot find volume information for the data set on the DD
statement, in the catalog, or passed with the data set from a previous step, the
system assumes that the data set is being created in this job step. For a new
data set, MOD causes the read/write mechanism to be positioned at the
beginning of the data set.

To use DISP=MOD to create a new data set, code one of the following:
v No VOLUME=SER or VOLUME=REF parameter on the DD statement. The

data set must not be cataloged or passed from another job step.
v A VOLUME=REF parameter that refers to a DD statement that makes a

nonspecific volume request. (A nonspecific volume request is a DD
statement for a new data set that can be assigned to any volume or
volumes.) If it is tape, the referenced DD must not be opened before the DD
with VOL=REF. If it is opened later, it will get a different tape volume. If it
is tape and the referenced DD is in a different step it must not be opened
before the DD with VOL=REF. If the referenced DD is for a nonspecific
volume in the same step then the DD with VOL=REF will always be
nonspecific regardless of the order of OPENs in the step. For DASD, one of
the following must also be true:
– The DSNAME parameters in the two DD statements must be different.
– The two DD statements must request different areas of the same ISAM

data set.

DD: DISP

162 z/OS V2R1.0 MVS JCL Reference

v In the case of tape, if you do not specify an explicit volume serial number
on the DD statement, then you cannot specify a file sequence number
greater than 1 and the system requests the operator to mount a "scratch"
tape.
For a new generation of a generation data group (GDG) data set (where (+n)
is greater than 0), you may code VOLUME=REF or VOLUME=SER.
For an SMS-managed data set the system ignores the volume.

After the system chooses a volume for a new data set, if the system finds
another data set with the same name on that volume, the system will try to
allocate a different volume. However, SMS-managed data sets require unique
data set names. If a new data set is chosen to be SMS-managed and an existing
SMS-managed data set has the same name, the request fails.

In a JES3 system, if you code DISP=MOD for a multivolume data set and any
of the volumes are JES3-managed, JES3 will not execute the job until all
volumes, including scratch volumes being added, are allocated. Such a job will
wait on the queue until all volumes are allocated.

To use DISP=MOD to extend an existing data set, code one of the following:
v If the data set is cataloged, do not code a VOLUME=SER or a

VOLUME=REF parameter on the DD statement, but code DISP=MOD or
DISP=(MOD,KEEP) to make sure that the catalog will be updated with any
new volume serial numbers.

v If the data set did not exist at the beginning of the job, but was passed from
a prior step and not cataloged, it will be deleted at step termination.
However, if you want to keep the data set, you can code
DISP=(MOD,KEEP).

v For tape data sets, code the following:
– If the data set is cataloged, code a volume count if the data set will

extend past 20 volumes.
– If the data set is not cataloged, code a volume count if the data set will

extend past 5 volumes.

Normal termination disposition subparameter
DELETE

Indicates that the data set is no longer needed if this step terminates normally.

For a DASD data set, DELETE means that the space occupied by that data set
is available for use by other data sets. The system will physically erase the
data set itself only if the erase option of a security product, such as RACF, is in
effect for this data set. If the erase option is not in effect, the data will remain
on the DASD until overwritten by another data set. For information on how to
set the erase option, see the documentation for the security product.

For a tape data set, DELETE does not physically erase the data from the tape
volume. The data will remain on the tape until overwritten by another data
set. If the tape volume is a public volume, specifying DELETE allows the
system to reuse the tape volume for other data sets that require a public
volume; the system may overwrite the data set.

Note: DELETE requests are always treated as requiring exclusive serialization,
preventing other jobs using the data set until it is deleted. This occurs even
when DISP=(SHR,DELETE) is coded. As such, data sets with
DISP=(SHR,DELETE) will not have its control changed, even when
DSENQSHR=ALLOW is specified on the JOB card or in the JOBCLASS.

DD: DISP

Chapter 12. DD statement 163

Existing data sets:
v If you set a retention period on the DD RETPD parameter, an existing data

set is deleted only if its retention period is passed; otherwise the data set is
kept.

v If you set an expiration date on the DD EXPDT parameter, an existing data
set is deleted if the expiration date has passed.
If the storage administrator specified OVRD_EXPDT(YES) in the IGDSMSxx
member of SYS1.PARMLIB, you can override the expiration date or retention
period for SMS-managed data sets by specifying DELETE on the DD DISP
parameter. In that case, the data set will be deleted whether or not the
expiration date or the retention period has passed. See z/OS MVS
Initialization and Tuning Reference for information on the IGDSMSxx parmlib
member.

New data sets:

A new data set is deleted at the end of the step even though a retention period
or expiration date is also specified. See the DD EXPDT or RETPD parameters.

If the system retrieves volume information from the catalog because the DD
statement does not specify VOLUME=SER or VOLUME=REF, then DELETE
implies UNCATLG: the system deletes the data set and removes its catalog
entry.

KEEP
Indicates that the data set is to be kept on the volume if this step terminates
normally.

Without SMS, only KEEP is valid for VSAM data sets. VSAM data sets should
not be passed, cataloged, uncataloged, or deleted.

With SMS, all dispositions are valid for VSAM data sets; however, UNCATLG
is ignored.

For new SMS-managed data sets, KEEP implies CATLG.

PASS
Indicates that the data set is to be passed for use by a subsequent step in the
same job.

With SMS, the system replaces PASS with KEEP for existing VSAM data sets.
When you refer to the data set later in the job, the system obtains data set
information from the catalog.

Note:

1. A data set can be passed only within a job.
2. If you specify DISP=(NEW,PASS) but, at the end of the job, one or more

data sets were not received by any job step, then the maximum number of
DD statements you can specify decreases by one. (The size of the TIOT
controls how many DD statements are allowed per job step.) For example,
if the current limit is 1635 DD statements, you can specify
DISP=(NEW,PASS), and up to 1634 DD statements.

3. Coding PASS does not ensure that the operator will not unload the volume
or that the system will not demount it to accommodate another job step
allocation. Either can occur when the device on which the volume is
mounted is not allocated to the job step that specified PASS or, for
unlabeled tapes, when the volume requires verification. If the system does
demount a volume for which RETAIN was requested, it will do so by
issuing message IEF234E R (retain) for that volume. When the system

DD: DISP

164 z/OS V2R1.0 MVS JCL Reference

reaches the next step requiring that volume, it will request the operator to
remount the volume on an available device of the appropriate type.

CATLG
Indicates that, if the step terminates normally, the system is to place an entry
pointing to the data set in the catalog. Note that the data set is kept.

An unopened tape data set is cataloged, unless the volume request is
nonspecific or unless the data set is allocated to a dual-density tape drive but
no density is specified. A nonspecific volume request is a DD statement for a
new data set that can be assigned to any volume or volumes.

For information about the rules for cataloged data set names, see z/OS DFSMS
Access Method Services Commands.

UNCATLG
Indicates that, if the step terminates normally, the system is to delete (1) the
entry pointing to the data set in the catalog and (2) unneeded indexes, except
for the highest level entry. Note that the data set is kept.

With SMS, UNCATLG is ignored for SMS-managed data sets and VSAM data
sets (KEEP is implied).

By default, if the system retrieves volume information from the catalog,
UNCATLG is processed. If not, the UNCATLG request is rejected and
UNCATLG is treated as KEEP. Volume information is not retrieved from the
catalog when VOLUME=REF or VOLUME=SER is specified on the DD
statement, or for new data sets. However, if the ALLOCxx Parmlib setting for
SYSTEM VERIFY_UNCAT is TRACK, MSGTRACK, or LOGTRACK, the
UNCATLG request is honored and the data set is uncataloged regardless of
whether or not the volume information in the catalog matches the volume
information that is used for the dataset.

Abnormal termination (conditional) disposition subparameter
DELETE

Indicates that the data set’s space on the volume is to be released if this step
terminates abnormally. The space can be used for other data sets; the data set
is not erased from the space.

Note: DELETE requests are always treated as requiring exclusive serialization,
preventing other jobs using the data set until it is deleted. This occurs even
when DISP=(SHR,DELETE) is coded. As such, data sets with
DISP=(SHR,DELETE) will not have its control changed, even when
DSENQSHR=ALLOW is specified on the JOB card or in the JOBCLASS.

Existing data sets:
v If you set a retention period on the DD RETPD parameter, an existing data

set is deleted only if its retention period is passed; otherwise the data set is
kept.

v If you set an expiration date on the DD EXPDT parameter, an existing data
set is deleted if the expiration date has passed.
You can override the expiration date or retention period for SMS-managed
DASD data sets using the OVRD_EXPDT(YES) parameter in the IGDSMSxx
SYS1.PARMLIB member. In that case, the data set will be deleted whether or
not the data set has expired or the retention period has passed. See z/OS
MVS Initialization and Tuning Reference for information on the IGDSMSxx
parmlib member.

New data sets:

DD: DISP

Chapter 12. DD statement 165

A new data set is deleted at the end of the step even though a retention period
or expiration date is also specified. See the DD EXPDT or RETPD parameters.

If the system retrieves volume information from the catalog because the DD
statement does not specify VOLUME=SER or VOLUME=REF, then DELETE
implies UNCATLG: the system deletes the data set and removes its catalog
entry.

For a cataloged, passed data set, the catalog is not updated.

KEEP
Indicates that the data set is to be kept on the volume if this step terminates
abnormally.

Without SMS, only KEEP is valid for VSAM data sets. VSAM data sets should
not be passed, cataloged, uncataloged, or deleted.

With SMS, all dispositions are valid for VSAM data sets; however, UNCATLG
is ignored.

For new SMS-managed data sets, KEEP implies CATLG.

CATLG
Indicates that, if the step terminates abnormally, the system is to place an entry
pointing to the data set in the catalog. Note that the data set is kept.

An unopened tape data set is cataloged, unless the volume request is
nonspecific or unless the data set is allocated to a dual-density tape drive but
no density is specified.

For a cataloged, passed data set, the catalog is not updated. A passed, not
received data set is not cataloged if the data set name has a first-level qualifier
of a catalog name or alias.

UNCATLG
Indicates that, if this step terminates abnormally, the system is to delete (1) the
entry pointing to the data set in the catalog and (2) unneeded indexes, except
for the highest level entry. Note that the data set is kept.

For a cataloged, passed data set, the catalog is not updated.

With SMS, UNCATLG is ignored for SMS-managed data sets and VSAM data
sets (KEEP is implied).

By default, if the system retrieves volume information from the catalog,
UNCATLG is processed. If not, the UNCATLG request is rejected and
UNCATLG is treated as KEEP. Volume information is not retrieved from the
catalog when VOLUME=REF or VOLUME=SER is specified on the DD
statement, or for new data sets. However, if the ALLOCxx Parmlib setting for
SYSTEM VERIFY_UNCAT is TRACK, MSGTRACK, or LOGTRACK, the
UNCATLG request is honored and the data set is uncataloged regardless of
whether or not the volume information in the catalog matches the volume
information that is used for the dataset.

Defaults
v If you omit the status subparameter, the default is NEW.
v If you omit the normal termination disposition subparameter, the default is

DELETE for a NEW data set or KEEP for an existing data set.
v If you omit the abnormal termination disposition subparameter, the default is

the disposition specified or implied by the second subparameter. However, if the

DD: DISP

166 z/OS V2R1.0 MVS JCL Reference

second subparameter specified PASS, the default abnormal termination
disposition is DELETE for a NEW data set or KEEP for an existing data set.

v If you omit the DISP parameter, the default is a NEW data set with a disposition
of DELETE for both normal and abnormal termination disposition. Thus, you
can omit the DISP parameter for a data set that is created and deleted during a
step.

Relationship to other parameters
Do not code the following parameters with the DISP parameter.
*
BURST
CHARS
COPIES
DATA
DDNAME
DYNAM
FLASH
MODIFY
QNAME
SYSOUT

Disposition of QSAM data sets
Do not code DISP=MOD if the data control block (DCB) specifies RECFM=FBS and
the data set is processed by QSAM. If you do and a block is shorter than the
specified block size, QSAM assumes that the short block is the last block and starts
end-of-file processing. By this action, QSAM can embed short blocks in your data
set and so affect the number of records per track.

Disposition of generation data sets
See Topic "VSAM Data Sets" in z/OS MVS JCL User's Guide for additional
information about disposition processing for generation data sets.

Disposition of temporary data sets
Specify a normal termination disposition of PASS or DELETE for a temporary data
set or for a data set with a system-generated name, that is, when a DSNAME
parameter is omitted from the DD statement.

For a temporary data set name, the system ignores any abnormal termination
disposition specified in the third subparameter and always PASSes the data set to
subsequent steps.

Disposition of partitioned data sets (PDSs and PDSEs)
When you specify DISP=MOD or DISP=NEW for a partitioned data set (PDS) or
partitioned data set extended (PDSE), and you also specify a member name in the
DSNAME parameter, the member name must not already exist. If the member
name already exists, the system terminates the job.

When you specify DISP=OLD for a PDS or a PDSE, and you also specify a
member name in the DSNAME parameter, the data set must already exist. If the
member name already exists and the data set is opened for output, the system
replaces the existing member with the new member. If the member name does not
already exist and the data set is opened for output, the system adds the member to
the data set.

DD: DISP

Chapter 12. DD statement 167

When you specify DISP=MOD for a PDS or a PDSE, and you do not specify a
member name, the system positions the read/write mechanism at the end of the
data set. The system does not make an automatic entry into the directory.

When you specify DISP=MOD for a PDS or a PDSE, and you do specify a member
name, the system positions the read/write mechanism at the end of the data set. If
the member name already exists, the system terminates the job.

When you specify DISP=SHR for a partitioned data set extended (PDSE) and also
specify a member name, then:
v If the member name exists, the member can have one writer or be shared by

multiple readers, or
v If the member name does not exist, the member can be added to the data set.

Thus, multiple jobs can access different members of the data set and add new
members to the data set concurrently — but concurrent update access to a
specific member (or update and read by other jobs) is not valid.

Adding a volume to a cataloged data set
If you want to add a volume to a cataloged data set and have it properly cataloged
after it is kept or passed, code the volume count subparameter of the VOLUME
parameter to make the system use the values in the system catalog to process the
data set. The following DD statement shows how to keep and extend a cataloged
data set using the system catalog. Assume that this data set was created with a
volume count of 2.

//DDEX2 DD DSNAME=OPER.DATA,DISP=(MOD,KEEP),
// VOLUME=(,,,3),UNIT=(,P)

The VOLUME parameter references the system catalog for volume information
about the data set and increases the maximum number of volumes for
OPER.DATA. Because the UNIT parameter requests parallel mounting, the system
must allocate the same number of units as the number of volumes in the VOLUME
parameter; in this case, 3.

The following is an example of the messages in the job log after the job completes.
IEF285I OPER.DATA KEPT
IEF285I VOL SER NOS= 333001,333002,333003.
IEF285I OPER.DATA RECATALOGED
IEF285I VOL SER NOS= 333001,333002,333003.

Non-SMS-managed data sets: If you do not reference the catalog when adding a
volume to a cataloged data set, the system does not update the catalog with the
newly referenced volumes.

DISP=MOD for a multivolume data set

Minimizing tape mounts
When you code DISP=MOD and the volume information is for a multivolume data
set, normally the first volume(s) will be mounted on the devices(s) allocated. Then,
if the data set is opened for output, OPEN starts with the last volume. If the
number of tape volumes is more than the number of allocated devices, the system
asks the operator to demount the first volume(s) and mount the last. To have the
last tape volume mounted without first mounting and then demounting the earlier
volume(s), code VOLUME=REF or DEFER in the UNIT parameter, or a volume
sequence number in the VOLUME parameter.

DD: DISP

168 z/OS V2R1.0 MVS JCL Reference

Determining the last volume
If a data set that is not a striped data set resides on multiple volumes, you can
code a volume sequence number to specify the volume on which reading or
writing is to begin. If you do not code a volume sequence number and the data set
is not striped, the system must identify the volume that contains the logical end of
the data. Data might not have been written on all the volumes. After the system
identifies the last volume, it positions the read/write mechanism on that volume.

In DASD and tape data set labels there is an indicator on the last volume
containing user data. When you do not specify a volume sequence number, the
system looks in the data set label for the indicator that identifies the last volume,
and then selects the volume on which to begin writing as follows:

In the DD: DISP section “How the System Determines the Last Volume”,
SMS-managed DASD and Non-SMS-managed DASD processing are described
separately. The Non-SMS-managed DASD description can be deleted. The
SMS-managed DASD subtitle can be changed to be merely DASD.

DASD: The system tests the data set label on the first volume in the list. If the
label indicates it contains the end of the data set, the system selects that volume.
Otherwise, it checks each subsequent volume until it finds one that has a
last-volume indicator. (To begin writing, the system will not select later volumes
that might also have the last-volume indicator by virtue of having previously
contained parts of the data set.)

Tape: See the information on Minimizing Tape Mounts.

Extending on a volume other than the last
When you code DISP=MOD for a multivolume data set, use the volume count and
volume sequence number subparameters of the VOLUME parameter if you want
to keep the system from positioning the read/write mechanism after the last record
on the last volume. For example:

//DDEX1 DD DSNAME=OPER.DATA,DISP=(MOD,KEEP),VOLUME=(,,1,2)

The volume sequence number of 1 specifies that you want to use the first volume,
and the volume count of 2 specifies that the data set requires two volumes.

Effect of DCB=dsname parameter
If the DCB parameter refers to a cataloged data set, the system obtains the volume
sequence number from the label of the data set, unless the volume sequence
number is coded on the DD statement.

Thus, for the following DD statement, even though DISP=MOD is specified, the
system positions the read/write mechanism after the last record on the volume
specified in the volume sequence number in the label; this volume may or may not
be the last volume.

//DD1 DD DSNAME=MULTI1,DISP=MOD,DCB=CATDD

To control which volume is processed, code a volume sequence number.
//DD2 DD DSNAME=MULTI2,DISP=MOD,DCB=CATDD,VOLUME=(,,2)

DD: DISP

Chapter 12. DD statement 169

Summary of disposition processing
Table 17. Summary of Disposition Processing

DISP subparameters: Disposition (if data set was allocated):

Status Normal
termination
disposition

Abnormal
termination
disposition

At normal end
of step

At abnormal end of step At End of Job

Step
abnormally
terminated

If later
allocation

failed in step

NEW
permanent
data set
or MOD
treated
as new

none

none

deleted deleted

deleted
KEEP kept kept

DELETE deleted deleted

CATLG cataloged cataloged

PASS passed passed passed deleted

PASS

DELETE
KEEP

CATLG
UNCATLG

passed passed passed

If all steps
terminated
normally:
deleted
If a step
terminated
abnormally:

third
subparameter
disposition

DELETE
KEEP

CATLG
UNCATLG

KEEP second
subparameter

disposition

kept

deletedDELETE deleted

CATLG cataloged

NEW
temporary
data set

none DELETE
KEEP

CATLG
UNCATLG

deleted

deleted deletedDELETE

PASS passed deleted

NEW
data set in
step to be
automatically
restarted

DELETE
KEEP
PASS

CATLG
UNCATLG

DELETE
KEEP

CATLG
UNCATLG

deleted

NEW
data set in
step to be
restarted at
checkpoint

DELETE
KEEP
PASS

CATLG
UNCATLG

DELETE
KEEP

CATLG
UNCATLG

kept, if being
used when
checkpoint
was taken

OLD or SHR
or MOD
treated
as old

none

none

kept kept
kept

KEEP

DELETE deleted deleted

CATLG cataloged or, if
new volumes
were added,
recataloged

cataloged or, if
new volumes
were added,
recataloged

UNCATLG uncataloged uncataloged

PASS passed passed passed kept

DD: DISP

170 z/OS V2R1.0 MVS JCL Reference

Table 17. Summary of Disposition Processing (continued)

DISP subparameters: Disposition (if data set was allocated):

Status Normal
termination
disposition

Abnormal
termination
disposition

At normal end
of step

At abnormal end of step At End of Job

Step
abnormally
terminated

If later
allocation

failed in step

OLD or SHR
or MOD
treated
as old
(continued)

PASS DELETE
KEEP

CATLG
UNCATLG

passed passed passed If all steps
terminated
normally: kept,
if originally
old; deleted, if
originally new
If a step
terminated
abnormally:
third
subparameter
disposition

DELETE
KEEP

CATLG
UNCATLG

KEEP second
parameter
disposition

kept kept, if step
was receiving
originally
old data set;
deleted, if
step was
receiving
originally
new data set

DELETE deleted

CATLG cataloged or, if
new volumes
were added,
recataloged

UNCATLG uncataloged

OLD
permanent
data set
passed to
this job step

none none deleted, if
data set was

originally
new; kept, if
originally old

deleted, if
data set was

originally
new; kept, if
originally old

OLD
data set in
step to be
automatically
restarted

DELETE
KEEP
PASS

CATLG
UNCATLG

DELETE
KEEP

CATLG
UNCATLG

kept

OLD
data set in
step to be
restarted at
checkpoint

DELETE
KEEP
PASS

CATLG
UNCATLG

DELETE
KEEP

CATLG
UNCATLG

kept, if being
used when
checkpoint
was taken

Examples of the DISP parameter
Example 1
//DD2 DD DSNAME=FIX,UNIT=3420-1,VOLUME=SER=44889,
// DISP=(OLD,,DELETE)

DD statement DD2 defines an existing data set and implies by the omitted second
subparameter that the data set is to be kept if the step terminates normally. The
statement requests that the system delete the data set if the step terminates
abnormally.

Example 2

DD: DISP

Chapter 12. DD statement 171

//STEPA EXEC PGM=FILL
//DD1 DD DSNAME=SWITCH.LEVEL18.GROUP12,UNIT=3390,
// VOLUME=SER=LOCAT3,SPACE=(TRK,(80,15)),DISP=(,PASS)
//STEPB EXEC PGM=CHAR
//DD2 DD DSNAME=XTRA,DISP=OLD
//DD3 DD DSNAME=*.STEPA.DD1,DISP=(OLD,PASS,DELETE)
//STEPC EXEC PGM=TERM
//DD4 DD DSNAME=*.STEPB.DD3,DISP=(OLD,CATLG,DELETE)

DD statement DD1 defines a new data set and requests that the data set be passed.
If STEPA abnormally terminates, the data set is deleted because it is a new data
set, the second subparameter is PASS, and an abnormal termination disposition is
not coded.

DD statement DD3 in STEPB receives this passed data set and requests that the
data set be passed. If STEPB abnormally terminates, the data set is deleted because
of the third subparameter of DELETE.

DD statement DD4 in STEPC receives the passed data set and requests that the
data set be cataloged at the end of the step. If STEPC abnormally terminates, the
data set is deleted because of the abnormal termination disposition of DELETE.

DD statement DD2 defines an old data set named XTRA. When STEPB terminates,
normally or abnormally, this data set is kept.

Example 3
//SMSDD5 DD DSNAME=MYDS5.PGM,DATACLAS=DCLAS05,STORCLAS=SCLAS05,
// DISP=(NEW,KEEP)

DD statement SMSDD5 defines a new SMS-managed data set and requests that the
data set be kept (which implies that it be cataloged).

Example 4
//SMSDD7 DD DSNAME=MYDS7.PGM,DISP=(OLD,UNCATLG)

DD statement SMSDD7 defines an existing SMS-managed data set (the data set
had been assigned a storage class when it was created) and requests that the data
set be uncataloged. However, the data set is kept because UNCATLG is ignored for
SMS-managed data sets.

DLM parameter
Parameter Type

Keyword, optional

Purpose

Use the DLM parameter to specify a delimiter to terminate this in-stream data set.
When the DLM parameter assigns a different delimiter, the in-stream data records
can include standard delimiters, such as /* and //, in the data.

In a JES2 system, when the DLM delimiter appears on a DD * statement, either
the assigned delimiter or // ends the input data set. When the DLM delimiter
appears on a DD DATA statement, only the assigned delimiter ends the input data
set.

DD: DISP

172 z/OS V2R1.0 MVS JCL Reference

In a JES3 system, when the DLM delimiter appears on either a DD * or DD DATA
statement, only the assigned delimiter ends the input data set.

Note: When the DLM delimiter overrides any implied delimiter, you must
terminate the data with the DLM characters. Otherwise, the system keeps reading
until the reader is empty.

Except for the JES2 /*SIGNON and /*SIGNOFF statements, the system does not
recognize JES2 and JES3 statements in an input stream between the DLM
parameter and the delimiter it assigns. The JES2 /*SIGNON and /*SIGNOFF
statements are processed by the remote work station regardless of any DLM
delimiter.

Considerations for an APPC Scheduling Environment

The DLM parameter has no function in an APPC scheduling environment. If you
code DLM, the system will check it for syntax and ignore it.

Syntax

DLM=delimiter

v If the specified delimiter contains any special characters, enclose it in apostrophes. In
this case, a special character is any character that is neither alphanumeric nor national ($,
#, @).

Failing to code enclosing apostrophes produces unpredictable results.

v If the delimiter contains an ampersand or an apostrophe, code each ampersand or
apostrophe as two consecutive ampersands or apostrophes. Each pair of consecutive
ampersands or apostrophes counts as one character.

v The DLM parameter can have a null value only when coded on a DD which either:

– Overrides a DD in a procedure

– Is added to a procedure.

Subparameter definition
delimiter

Specifies two characters that indicate the end of this data set in the input
stream.

Default
If you do not specify a DLM parameter, the default is the /* delimiter statement.

If the system finds an error on the DD statement before the DLM parameter, it
does not recognize the value assigned as a delimiter. The system reads records
until it reads a record beginning with /* or //.

Relationship to other parameters
Code the DLM parameter only on a DD statement with the * or DATA parameter.

The DLM parameter has meaning only on statements defining data in the input
stream, that is, DD * and DD DATA statements. If DLM is specified on any other
statement, a JCL error message is issued.

DD: DLM

Chapter 12. DD statement 173

Invalid delimiters
If the delimiter is not two characters:
v For JES2, the delimiter is not recognized. The in-stream data set is terminated

when a record starting with // or /* is read. The system fails the job due to the
invalid delimiter.

v For JES3, if an incorrect number of characters is coded, JES3 terminates the job.

Example of the DLM parameter
//DD1 DD *,DLM=AA

.

.
data
.

AA

The DLM parameter assigns the characters AA as the delimiter for the data defined
in the input stream by DD statement DD1. For JES2, the characters // would also
serve as valid delimiters since a DD * statement was used. JES3 accepts only the
characters specified for the DLM parameter as a terminator for DD * or DD DATA.

DSID Parameter
Parameter type

Keyword, optional

Purpose

Use the DSID parameter to specify the data set identifier of an input or output
data set on a diskette of the 3540 Diskette Input/Output Unit.

An input data set is read from a 3540 diskette by a diskette reader program, and
an output data set is written on a 3540 diskette by a diskette writer, which is an
external writer.

To read a data set from a 3540 diskette, the DD statement must contain:
v A DSID parameter.
v An * or DATA parameter, to begin the input stream data set.

To write a data set on a 3540 diskette, the DD statement must contain:
v A DSID parameter.
v A SYSOUT parameter that specifies the output class that the diskette writer

processes and the name of the diskette writer.

Also, a system command, from the operator or in the input stream, must start the
diskette writer before this DD statement is processed.

Note: The system ignores the DSID parameter on a DD *, DD DATA, or a DD
statement with the SYSOUT parameter, except when a diskette reader or writer
processes the JCL.

References

DD: DLM

174 z/OS V2R1.0 MVS JCL Reference

For more information about associated data sets, see 3540 Programmer's Reference.
For information about external writers, see z/OS JES2 Initialization and Tuning Guide
or z/OS JES3 Initialization and Tuning Guide.

Syntax

DSID= {id }
{(id,[V])}

v You can omit the parentheses if you code only an id.

v Null positions in the DSID parameter are invalid.

Subparameter definition
id

Specifies the data set identifier. The id is 1 through 8 characters. The characters
must be alphanumeric, national ($, #, @), a hyphen, or a left bracket. The first
character must be alphabetic or national ($, #, @).

V Indicates that the data set label must have been previously verified on a 3741
Data Station/Workstation. This subparameter is required only on a SYSIN DD
statement.

Relationship to other parameters
Do not code the following parameters with the DSID parameter.
BURST
CHARS
DDNAME
DYNAM
FLASH
MODIFY
MVSGP
QNAME

For 3540 diskette input/output units: A DSID parameter on a DD *, DD DATA, or
sysout DD statement is ignored except when detected by a diskette reader as a
request for an associated data set. See 3540 Programmer's Reference.

On a DD * or DD DATA statement processed by a diskette reader, you can specify
DSID, VOLUME=SER, BUFNO, and LRECL to indicate that a diskette data set is to
be merged into the input stream following the DD statement.

Example of the DSID parameter
//JOB1 JOB ,,MSGLEVEL=(1,1)
//STEP EXEC PGM=AION
//SYSIN DD *,DSID=(ABLE,V),VOLUME=SER=123456,
// DCB=LRECL=80
//SYSPRINT DD SYSOUT=E,DCB=LRECL=128,DSID=BAKER

In this example, the SYSIN DD statement indicates that the input is on diskette
123456 in data set ABLE and must have been verified. The output will be written
on a diskette in data set BAKER.

DD: DSID

Chapter 12. DD statement 175

DSNAME parameter
Parameter Type

Keyword, optional

Purpose

Use the DSNAME parameter to specify the name of a data set. For a new data set,
the specified name is assigned to the data set; for an existing data set, the system
uses the name to locate the data set.

References

Data sets are described in z/OS DFSMS Using Data Sets.

The names of all data sets that are to be cataloged or SMS-managed must conform
to the rules for cataloged data set names. For information about the rules for
cataloged data set names, refer to z/OS DFSMS Using Data Sets.

Syntax

{DSNAME} =name
{DSN }

name for permanent data set:

dsname
dsname(member)
dsname(generation)

name for temporary data set:

&&dsname
&&dsname(member)

name for in-stream or sysout data set:

&&dsname

name copied from earlier DD statement:

*.ddname
*.stepname.ddname
*.stepname.procstepname.ddname

name for dummy data set:

NULLFILE

DD: DSNAME

176 z/OS V2R1.0 MVS JCL Reference

v You can abbreviate DSNAME as DSN.

v Avoid starting a data set name with JES or SYS1. The system uses these characters for
system data sets.

v If the data set name begins with a blank character, the system assigns the data set with a
unique temporary data set name, and ignores the name specified on the DSNAME
parameter

v The system ignores blank characters at the end of a data set name.

v Blanks can be included in a data set name if the name is enclosed in apostrophes, such
as DSNAME='AB CD'. However, do not code blanks in the name for an in-stream or
sysout data set; for example, SYSOUT=P,DSNAME='&&AB CD' is not valid.

v If the data set is to be managed through SMS, you cannot enclose the data set name in
apostrophes. However, the following exception applies: You can enclose the data set
name on the DSNAME parameter in apostrophes if the data set is to be assigned to, or
already resides on, an SMS-managed mountable tape volume.

v Any data set name enclosed in apostrophes on the DSNAME parameter will be treated
as an unqualified name. Data sets with an unqualified name cannot be cataloged.

v The system does not check data set names enclosed in apostrophes for valid characters
or valid length. When SMS is not installed or active incorrect characters or length result
in data set allocation, but the data set is not cataloged. When SMS is active, it will fail
the job for incorrect characters or length.

Non-significant special characters: When a data set name contains special characters that
are not significant to the system, other than hyphens, enclose it in apostrophes. For
example, DSNAME='DS/29'.

Code each apostrophe that is part of the data set name as two consecutive apostrophes. For
example, code DAYS'END as DSNAME='DAYS''END'.

The system ignores blank characters at the end of a data set name, even if the data set
name is enclosed in apostrophes.

Significant special characters: The following special characters are significant to the
system. Do not enclose them in apostrophes.

v Periods to indicate a qualified data set name. However, you must enclose in apostrophes
a period immediately before a right parenthesis, immediately after a left parenthesis, or
immediately before a comma; for example, DSNAME='(.ABC)' and DSNAME='(ABC.)'
and DSNAME='A.B.C.'.

v Double ampersands to identify a temporary data set name. Note that if you use
apostrophes, DSNAME='&&AB' and DSNAME='&AB' refer to the same data set.

v Double ampersands to identify an in-stream or sysout data set name.

v Parentheses to enclose the member name of a partitioned data set (PDS) or partitioned
data set extended (PDSE), or the generation number of a generation data set.

v Plus (+) or minus (-) sign to identify a generation of a generation data group.

v The asterisk to indicate a backward reference.

On a DD statement in a cataloged or in-stream procedure, if the data set name is a
symbolic parameter, do not enclose it in apostrophes. If it is enclosed in apostrophes, the
system performs correct substitution only if the symbolic parameter enclosed in
apostrophes is preceded by a symbolic parameter not enclosed in apostrophes.

The data set name should not contain the 44 special characters (X'04') created by the 12-4-9
multiple punch or any operation that converts the value of characters to X'04'.

Subparameter definition
The data set names you specify on DSNAME are described in the following topics:
v Data Set Name for Permanent Data Set

DD: DSNAME

Chapter 12. DD statement 177

v Data Set Name for Temporary Data Set
v Data Set Name for In-Stream or Sysout Data Set
v Data Set Name Copied from Earlier DD Statement
v Data Set Name for Dummy Data Set

Data set name for permanent data set
Assign a permanent data set either an unqualified or a qualified name:

Unqualified name
1 through 8 alphanumeric or national ($, #, @) characters, a hyphen, or a character
X'C0'. The first character must be alphabetic or national ($, #, @). For example,
DSNAME=ALPHA is an unqualified data set name.

For the characters allowed in ISO/ANSI/FIPS tape data set names, see information
about label definition and organization in z/OS DFSMS Using Magnetic Tapes.

Qualified name
Multiple unqualified names joined by periods. Each qualifier is coded like an
unqualified name; therefore, the name must contain a period after every 8
characters or fewer. For example, DSNAME=ALPHA.PGM is a qualified data set
name. The maximum length of a qualified data set name is:
v 44 characters, including periods.
v For a generation data group, 35 characters, including periods.
v For an output tape data set, 17 characters, including periods. If longer than 17

characters, only the rightmost 17 characters, excluding trailing blanks, are
written to the tape header label. For more information, see z/OS DFSMS Using
Magnetic Tapes .

Name for RACF-protected data set
The OS/390 Security Server, which includes RACF, expects the data set name to
have a high-level qualifier that is defined to RACF. See the z/OS Security Server
RACF Security Administrator's Guide for details. RACF uses the entire data set
name, from 1 through 44 characters, when protecting a tape data set.

Cataloged data set name
For information about the rules for cataloged data set names, see z/OS DFSMS
Access Method Services Commands.

dsname
Specifies a data set name.

dsname(member)
Specifies the name of the permanent partitioned data set (PDS) or the
partitioned data set extended (PDSE), and the name of a member within that
data set. If the member does not exist and DISP=OLD or DISP=SHR is
specified, the allocation will succeed, but the job will fail when the data set is
opened for input. If the member does not exist and the data set is opened for
output, the system will add the member to the data set.

member
1 to 8 alphanumeric or national characters, or a character X'C0'. The first
character must be alphabetic, national, +, or -. If the first character is + or -,
the member is a part of a generation data group.

dsname(generation)
Specifies the name of a generation data group (GDG) and the generation
number (zero or a signed integer) of a generation data set within the GDG.

DD: DSNAME

178 z/OS V2R1.0 MVS JCL Reference

Note: A VSAM data set cannot be a generation data set.

generation

v The first character of a relative generation number is +, -, or 0.
v All characters of a relative generation number that follow the +, -, or 0

must be numeric (0 through 9).
v The numeric portion (not + or -) of a relative generation number must

be expressed in 1 to 3 numeric characters. For example, +100, -002, +4,
-09, 000.

v A relative generation number cannot exceed 255.

To retrieve all generations of a generation data group, omit the generation
number.

Data set name for temporary data set
A temporary data set is a data set that you create and delete within a job. (For
information about coding data set names with the DD *, DATA, and SYSOUT
parameters, see "Data Set Name for In-Stream or Sysout Data Set.")

Note: SMS manages a temporary data set if you specify a storage class (with the
DD STORCLAS parameter) or if an installation-written automatic class selection
(ACS) routine selects a storage class for the temporary data set.

When you define a temporary data set, you can code the DSNAME parameter or
omit it; in either case, the system generates a qualified name for the temporary
data set.

When you use DSNAME for a temporary data set, code the name as two
ampersands (&&) followed by a character string 1 to 8 characters in length:
v The first character following the ampersands must be alphabetic or national.
v The remaining characters must be alphanumeric or national.

The format of the qualified name the system generates depends on whether or not
you specified a data set name on the DSNAME parameter:
v All temporary data set names begin as follows:

SYSyyddd.Thhmmss.RA000.jjobname

where:

yy indicates the year

ddd indicates the Julian day

hh indicates the hour

mm indicates the minute

ss indicates the second

jjobname
indicates the name of the job

Date fields and time fields in the system-generated name reflect:
– For JCL allocations, when the job was processed by the Interpreter. (For JES2

this is when an initiator selects the job for execution. For JES3 this is at CI
time.)

– For dynamic allocations, when the dynamic allocation request was issued.

DD: DSNAME

Chapter 12. DD statement 179

v If you do not specify a data set name, or TEMPDSFORMAT(UNIQUE) is in
effect, the full format of the temporary data set name is:
SYSyyddd.Thhmmss.RA000.jjobname.Rggnnnnn

where:

gg 01, or, in a sysplex:
– for JCL allocations, the system identifier of the system that interpreted

the job.
– for dynamic allocations, the system identifier of the system on which

the job executed.

nnnnn
a number that is unique within a system

v If you do specify a data set name and TEMPDSFORMAT(INCLUDELABEL) is in
effect, the full format of the temporary data set name is:
SYSyyddd.Thhmmss.RA000.jjobname.dsetname.Hgg

where:

dsetname
the 1 to 8 character DSNAME coded following the two ampersands
(&&)

gg 01, or, in a sysplex:
– for JCL allocations, the system identifier of the system which

interpreted the job.
– for dynamic allocations, the system identifier of the system on which

the job executed.

If you use DSNAME, note that the system-generated qualified name for the
temporary data set will not be unique under the following conditions:
v Multiple tasks or APPC transactions having identical jobnames execute at exactly

the same time, and
v The tasks or transactions contain DD statements with identical temporary data

set names.

To ensure that a temporary data set name is unique, do not code a temporary data
set name. Allow the system to assign one.

Only the job that creates a temporary data set has access to it to read and write
data and to scratch the data set.

Note:

1. In general, the system treats a single ampersand (&) followed by a character
string of 1 to 8 characters as a symbolic parameter. (See “Using system symbols
and JCL symbols” on page 38.) However, if you code a data set name as a
symbolic parameter (by coding DSNAME=&xxxxxxxx), and do not assign a
value to or nullify the symbolic parameter, the system will process it as a
temporary data set name.

2. The SYSTEM TEMPDSFORMAT(UNIQUE|INCLUDELABEL) option in the
parmlib member ALLOCxx enables allocation to use a more unique format for
the data set name when DSN=&&mydsn is specified. The unique data set name
allows jobs with the same data set names specified to run at the same time,
without requiring the JCL programmer to remove the DSN=&&mydsn or to
add data set name referback syntax. The system setting for this option may
affect the data set name generated for a temporary data set.

DD: DSNAME

180 z/OS V2R1.0 MVS JCL Reference

&&dsname
Specifies the name of a temporary data set.

&&dsname(member)
Specifies the name of a temporary partitioned data set (PDS) or partitioned
data set extended (PDSE) and a member within that data set.

member
1 - 8 alphanumeric or national characters, or a character X'C0'. The first
character must be alphabetic or national.

Data set name for in-stream or sysout data set
Use the DSNAME parameter to assign a data set name to an in-stream data set
(defined with the DD * or DD DATA parameter) and to a sysout data set (defined
with the DD SYSOUT parameter). When defining an in-stream or sysout data set,
you can code the DSNAME parameter or omit it; if omitted, the system generates a
name for the data set.

The data set name for in-stream and sysout data sets consists of two ampersands
(&&) followed by one through eight 8 alphanumeric or national ($, #, @,)
characters, a hyphen, or a character X'C0'. The first character following the
ampersands must be alphabetic or national ($, #, @).

The system generates a qualified name for the in-stream or sysout data set. The
qualified name contains:
v The userid of the job
v The jobname
v The jobid
v A system-assigned identifier
v The data set name from the DSNAME parameter (if DSNAME is coded), or a

question mark (?) if DSNAME is not coded.

The format of the name is:
userid.jobname.jobid.Ddsnumber.name

where name is the dsname or a question mark (?).

When the system checks a user's authority to access a SYSOUT data set, the check
is made against the JESSPOOL class using the fully qualified name, preceded by
the node name and a period:

nodename.userid.jobname.jobid.Ddsnumber.name

Profiles of this format may be defined in your security system to allow other users
access to your SYSOUT data sets. A profile is not necessary for you to access your
own data sets.

Note: A single ampersand before a data set name in a cataloged or in-stream
procedure signifies a symbolic parameter. However, if no value is assigned to the
name on either the EXEC statement that calls the procedure, a PROC statement in
the procedure, or a previous SET statement, the system treats the name as the last
qualifier of the data set name for an in-stream or sysout data set.

&&dsname
Specifies the last qualifier of the system-generated data set name for an
in-stream or sysout data set.

DD: DSNAME

Chapter 12. DD statement 181

Data set name copied from earlier dd statement
A backward reference is a reference to an earlier statement in the job or in a
cataloged or in-stream procedure called by this or an earlier job step. A backward
reference can be coded in the DSNAME parameter to copy a data set name from
an earlier DD statement.

When copying the data set name, the system also copies the following from the
DD statement:
v Whether or not the data set is a PDS or a PDSE.
v Whether or not the data set is a temporary data set.

*.ddname
Asks the system to copy the data set name from earlier DD statement ddname.

*.stepname.ddname
Asks the system to copy the data set name from DD statement, ddname, in an
earlier step, stepname, in the same job.

*.stepname.procstepname.ddname
Asks the system to copy the data set name from a DD statement in a cataloged
or in-stream procedure. Stepname is the name of this job step or an earlier job
step that calls the procedure, procstepname is the name of the procedure step
that contains the DD statement, and ddname is the name of the DD statement.

Data set name for dummy data set
NULLFILE

Specifies a dummy data set. NULLFILE has the same effect as coding the DD
DUMMY parameter. NULLFILE must be coded as a single-word parameter.
For instance, IBM does not support the use of NULLFILE to obtain a dummy
data set for these (or other) formats:
v When followed by a member name
v As a qualifier in a qualified data set name
v As a temporary data set name.

Relationship to other parameters
Do not code the following parameters with the DSNAME parameter.
DDNAME
DYNAM
QNAME

Do not code the DCB IPLTXID subparameter with the DSNAME parameter.

Reserved Data Set Names: Do not code the following data set names on the
DSNAME parameter with the *, DATA, or SYSOUT parameter (an in-stream or
sysout data set); the names are reserved for system use.
JESJCL
JESJCLIN
JESMSGLG
JESYSMSG

With DD AMP parameter: When you code an AMP parameter for a VSAM data
set, do not code a DSNAME:
v That contains parentheses, a minus (hyphen), or a plus (+) sign.
v That is in the form for ISAM.
v That is in the form for PAM (partitioned access method).

DD: DSNAME

182 z/OS V2R1.0 MVS JCL Reference

v That names a generation data group.

With DD DISP parameter: You can create a permanent data set by specifying a
qualified or unqualified data set name, the disposition must be other than
DELETE.

The following example illustrates how to create a permanent data set:
//REPORT DD DSN=DEHART.APAR.REPORT,SPACE=(CYL,(5,5)),
// DISP=(NEW,CATLG),UNIT=SYSALLDA,
// DCB=(LRECL=121,RECFM=FBA,BLKSIZE=1210)

You can create a temporary data set by specifying a:
v &&dsname or by omitting the DSNAME parameter
v Qualified or unqualified data set name and specifying, either explicitly or

implicitly, DISP=(NEW,DELETE).

The following two examples illustrate how to create a temporary data set:
//MYDD1 DD DSN=TEMP1,UNIT=3480,DISP=(,DELETE),SPACE=(TRK,(1,1))

//DD2 DD UNIT=SYSALLDA,SPACE=(TRK,1),DISP=(NEW,PASS)

Note: When you code a disposition of CATLG for a data set, do not code a
DSNAME name in apostrophes.

Examples of the DSNAME parameter
Example 1
//DD1 DD DSNAME=ALPHA,DISP=(,KEEP),
// UNIT=3390,VOLUME=SER=389984

DD statement DD1 defines a new data set and names it ALPHA. DD statements in
later job steps or jobs may retrieve this data set by specifying ALPHA in the
DSNAME parameter, unit information in the UNIT parameter, and volume
information in the VOLUME parameter.

Example 2
//DDSMS1 DD DSNAME=ALPHA.PGM,DISP=(NEW,KEEP),DATACLAS=DCLAS1,
// MGMTCLAS=MCLAS1,STORCLAS=SCLAS1

DD statement DDSMS1 defines a new SMS-managed data set and names it
ALPHA.PGM. DD statements in later job steps or jobs may retrieve this data set by
specifying ALPHA.PGM in the DSNAME parameter.

Example 3
//DD2 DD DSNAME=LIB1(PROG12),DISP=(OLD,KEEP),UNIT=3390
// VOLUME=SER=882234

DD statement DD2 retrieves member PROG12 from the partitioned data set named
LIB1.

Example 4
//DDIN DD DATA,DSNAME=&&PAYIN1

.
data
.

/*

DD: DSNAME

Chapter 12. DD statement 183

DD statement DDIN defines PAYIN1 as the last qualifier of the system-generated
data set name for the in-stream data set. This generates a data set name such as
userid.jobname.jobid.Ddsnumber.PAYIN1.

Example 5
//DDOUT DD DSNAME=&&PAYOUT1,SYSOUT=P

DD statement DDOUT defines PAYOUT1 as the last qualifier of the
system-generated data set name for the sysout data set. This generates a data set
name such as userid.jobname.jobid.Ddsnumber.PAYOUT1.

Example 6
//DD3 DD DSNAME=&&WORK,UNIT=3390

DD statement DD3 defines a temporary data set. Because the data set is deleted at
the end of the job step, the DSNAME parameter can be omitted. The following
example shows why a temporary data set should be named.

DSNTYPE parameter
Parameter Type

Keyword, optional

Purpose

Use the DSNTYPE parameter to specify:
v A new partitioned data set (PDS)
v A new partitioned data set extended (PDSE), which is also called a library, and

an optional version level for the new PDSE
v A new hierarchical file system (HFS) data set
v A first-in first-out (FIFO) special file, which is also called a named pipe

v A new basic format data set
v A new large format data set
v A new extended format data set and an optional version level for the new

sequential data set.

Also use the DSNTYPE parameter to override the DSNTYPE attribute defined in
the data class of the new data set.

Serialization of the data set can exist at both the data set (library) level and the
member level. If you specify DISP=SHR on the DD statement for a PDSE, sharing
of the data set applies to the data set and the individual member specified.
Multiple jobs can access different members of the data set and create new members
of the data set concurrently. However, concurrent update access to a specific
member (or update and read by other jobs) is not allowed. Dispositions of
DISP=OLD, NEW, or MOD result in exclusive use of the entire data set. A PDSE
can be created through the BPAM, BSAM, and QSAM access methods.

If SMS is not active, the system checks the syntax and then ignores the DSNTYPE
parameter.

DD: DSNAME

184 z/OS V2R1.0 MVS JCL Reference

An HFS data set is a data set used by z/OS UNIX System Services (z/OS UNIX)
programs. It contains a mountable file system. It is a partitioned format data set,
similar to a PDSE.

A FIFO special file is a type of file with the property that data written to such a
file is read on a first-in-first-out basis. A FIFO special file defined in a DD
statement provides a connection filled with data among programs. One or more
programs can write data into the file; one or more programs can read the data.

References

For information on partitioned data sets and PDSEs, see z/OS DFSMS Using Data
Sets. For information on HFS data sets and FIFO special files, see z/OS UNIX
System Services Planning and the z/OS UNIX System Services User's Guide.

Syntax

DSNTYPE= {LIBRARY}
{(LIBRARY,1)}
{(LIBRARY,2)}
{HFS }
{PDS }
{PIPE }
{EXTREQ }
{EXTPREF}
{LARGE }
{BASIC }

Subparameter definition
LIBRARY

Specifies a partitioned data set extended (PDSE). A PDSE can contain data and
program object members. LIBRARY uses the PDSE_VERSION parameter in
IGDSMSxx or its default to determine which version of PDSE to allocate.

(LIBRARY,1)
Specifies a version 1 partitioned data set extended (PDSE). A PDSE version 1
can contain data and program object members.

(LIBRARY,2)
Specifies a version 2 partitioned data set extended (PDSE). A PDSE version 2
can contain data and program object members. Version 2 offers more efficient
directory usage.

HFS
Specifies an HFS data set. Specify HFS only when the DD statement also
specifies a DSNAME parameter.

PDS
Specifies a partitioned data set (PDS). A PDS can contain data and load
module members.

PIPE
Specifies a FIFO special file. Specify PIPE only when the DD statement also
specifies a PATH parameter.

EXTREQ | (EXTREQ,1) | (EXTREQ,2)
Specifies for the data set to be extended format if the data set is VSAM or
sequential, or if DSORG is omitted from all sources. (EXTREQ,1) specifies a
version 1 extended format data set. (EXTREQ,2) specifies a version 2 extended

DD: DSNTYPE

Chapter 12. DD statement 185

format data set. If the data set is not striped and has multiple volumes, the
system uses FlashCopy for the data set. EXTREQ specifies for the system to
select version 1 or 2 based on the PS_EXT_VERSION parameter in the
IGDSMSxx member of SYS1.PARMLIB. The default value for
PS_EXT_VERSION is 1.

EXTPREF | (EXTPREF,1) | (EXTPREF,2)
Specifies for the data set to be extended format if the data set is VSAM or
sequential, or if DSORG is omitted from all sources. If extended format is not
possible, the system selects basic format. (EXTPREF,1) specifies a version 1
extended format data set. (EXTREQ,2) specifies a version 2 extended format
data set. If DFSMSdss is used to copy a version 1 extended format data set that
is not striped and has multiple volumes, the system cannot use FlashCopy for
the data set. If the extended format data set is version 2 and FlashCopy is
available, the system can use FlashCopy. EXTPREF specifies for the system to
select version 1 or 2 based on the PS_EXT_VERSION parameter in the
IGDSMSxx member of SYS1.PARMLIB. The default value for
PS_EXT_VERSION is 1.

LARGE
The system will select large format if the data set is sequential (DSORG=PS or
PSU) or DSORG is omitted from all sources and the data set is not VSAM.

BASIC
The system will select basic format if the data set is sequential (DSORG=PS or
PSU) or DSORG is omitted from all sources and the data set is not VSAM.

Defaults
If you do not specify DSNTYPE, the type of data set is determined by other data
set attributes, the data class for the data set, or an installation default.

DSNTYPE cannot default to HFS or PIPE. You must explicitly specify these
attributes.

Overrides
DSNTYPE overrides the DSNTYPE attribute in the DATACLAS parameter for the
data set. See “Overrides” on page 134.

DSNTYPE on the DD statement overrides:
v The DSNTYPE for the data set referenced by LIKE
v The DD statement that is referenced by REFDD

The source of the DSNTYPE value is the DD statement or dynamic allocation, the
data class, the data set referenced by the LIKE= parameter or the DD statement
referenced by the REFDD= parameter. If the resulting DSNTYPE value is HFS or
PIPE, conflicting parameters are overridden. If the DSNTYPE value is not HFS or
PIPE, other parameters are not overridden.

If the new data set is sequential and on DASD, then a DSNTYPE value of BASIC,
LARGE, EXTPREF or EXTREQ is effective. If the new data set is partitioned (by
DSORG=PO or a directory size on the SPACE parameter), then a value of
LIBRARY or PDS is effective. If you did not specify DSORG=PO or a directory size
on SPACE, you will get a PDS or PDSE only if you set the
HONOR_DSNTYPE_PDSE(YES) parameter in the IGDSMSxx member in
SYS1.PARMLIB. The default value for this parameter is
HONOR_DSNTYPE_PDSE(NO).

DD: DSNTYPE

186 z/OS V2R1.0 MVS JCL Reference

Relationship to other parameters
Do not code the following DD parameters with the DSNTYPE parameter.
*
AMP
DATA
DDNAME
DYNAM
QNAME

You can only code the RECORG DD parameter with the DSNTYPE=EXTREQ or
DSNTYPE=EXTPREF parameter. This is because RECORG is used to define VSAM
data sets and all other DSNTYPE specifications imply other (non-VSAM) formats.

Examples of the DSNTYPE parameter
Example 1
//NEWPDSE DD DSNAME=FILEA.ABC(REC1),DISP=(NEW,KEEP)

In the example, the NEWPDSE DD statement defines member REC1 in the new
PDSE named FILEA.ABC. Note that installation-written ACS routines select the
data class (which specifies LIBRARY for DSNTYPE), management class, and
storage class for the data set.

Example 2
//NEWA DD DSNAME=REPORT.ONE(WEEK1),DISP=(NEW,KEEP),
// DATACLAS=DCLAS09,DSNTYPE=LIBRARY

In the example, the NEWA DD statement defines member WEEK1 in the new
PDSE named REPORT.ONE. DSNTYPE=LIBRARY overrides the DSNTYPE
attribute in data class DCLAS09 but uses other data set attributes in DCLAS09. A
version 1 or version 2 PDSE will be created based on the PDSE_VERSION
specification or omission in the IGDSMSxx parmlib member. Note that
installation-written ACS routines select the management class and storage class for
the data set.

Example 3
//NEWB DD DSNAME=REPORT.ONE(WEEK2),DISP=SHR,
// DATACLAS=DCLAS09,DSNTYPE=LIBRARY

In the example, the NEWB DD statement adds a new member named WEEK2 to
the existing PDSE named REPORT.ONE. DSNTYPE=LIBRARY overrides the
DSNTYPE attribute in data class DCLAS09 but uses other data set attributes in
DCLAS09. Other jobs can be concurrently processing existing members of PDSE
named REPORT. Note that installation-written ACS routines select the management
class and storage class for the data set.

Example 4
//NEWC DD DSNAME=REPORT.THREE(WEEK3),DISP=(NEW,KEEP),
// DATACLAS=DCLAS09,DSNTYPE=(LIBRARY,2)

In the example, the NEWC DD statement defines member WEEK3 in the new
PDSE named REPORT.THREE. DSNTYPE=(LIBRARY,2) overrides the DSNTYPE
attribute in data class DCLAS09 but uses other data set attributes in DCLAS09. The
"2" as the second DSNTYPE value causes the new PDSE to be in the version 2

DD: DSNTYPE

Chapter 12. DD statement 187

format, which can produce performance benefits in some environments. Note that
installation-written ACS routines select the management class and storage class for
the data set.

Example 5
//FILESYS DD DSNAME=OPENDS.USRJOE,DATACLAS=DCLAS05,DISP=(NEW,KEEP),
// DSNTYPE=HFS,SPACE=(CYL,(100,100,1))

The FILESYS DD statement creates an HFS data set to contain an HFS file system.
The DCLAS05 in DATACLAS specifies allocation characteristics. The number of
directory blocks must be specified to indicate that this is an HFS data set but the
value has no effect on allocation.

Example 6
//PIPE DD PATH=’/u/payroll/buffer’,DSNTYPE=PIPE,
// PATHOPTS=(OWRONLY,OEXCL,OCREAT),PATHMODE=(SIWUSR,SIRGRP),
// PATHDISP=(KEEP,DELETE)

The PIPE DD statement creates a file named /u/payroll/buffer for use as a FIFO
special file. The PATHOPTS parameter specifies that the user intends that the
program open the FIFO special file for writing. The PATHMODE parameter
specifies that the file owner can write in the FIFO special file and that users in the
file group class can read from the FIFO special file. The PATHDISP parameter
requests that the file be kept when the program ends normally and deleted when it
ends abnormally.

Pathnames are case-sensitive. If you are specifying a pathname containing a special
character, including a lowercase character, enclose it in apostrophes. For more
information, refer to “PATH parameter” on page 237.

Example 7
//SYSUT2 DD UNIT=SYSDA,DSNAME=BIGPROJ.BIGDATA,DSNTYPE=LARGE,
// SPACE=(TRK,(80000,40000))

The SYSUT2 DD statement creates a single-volume data set that contains more
than 65535 tracks. Space units such as cylinders, megabytes, or average record size
can be used instead of counting tracks. A data class (DATACLAS) with a
DSNTYPE value of LARGE can be coded instead of DSNTYPE=LARGE. While
SMS is running, you can use a data class for a new data set that will not be
SMS-managed.

DUMMY parameter
Parameter type

Positional, optional

Purpose

Use the DUMMY parameter to specify that:
v No device or external storage space is to be allocated to the data set.
v No disposition processing is to be performed on the data set.
v For BSAM and QSAM, no input or output operations are to be performed on the

data set.

DD: DSNTYPE

188 z/OS V2R1.0 MVS JCL Reference

One use of the DUMMY parameter is in testing a program. When testing is
finished and you want input or output operations performed on the data set,
replace the DD DUMMY statement with a DD statement that fully defines the data
set.

Another use of the DUMMY parameter is in a cataloged or in-stream procedure.
Code on the DD DUMMY statement all the required parameters. When the
procedure is called, nullify the effects of the DUMMY parameter by coding on the
DD statement that overrides the DD DUMMY statement a DSNAME parameter
that matches the DSNAME parameter on the DD DUMMY statement. For example,
procedure step PS contains the following:

//DS1 DD DUMMY,DSNAME=A,DISP=OLD

Nullify the DUMMY parameter by coding:
//JS EXEC PROC=PROC1
//PS.DS1 DD DSNAME=A

Syntax

//ddname DD DUMMY[,parameter]...

All parameters coded on a DD DUMMY statement must be syntactically correct. The
system checks their syntax.

Parameters on DD DUMMY statements
v Code the DUMMY parameter by itself or follow it with all the parameters you

would normally code when defining a data set, except the DDNAME parameter.
v Code the DCB parameter, if needed. If the program does not supply all the data

control block information, make sure that the DCB parameter supplies the
missing information.

v Code AMP=AMORG if you are using VSAM's ISAM interface.
v If you code either VOLUME=REF=dsname or DCB=dsname with DUMMY, the

referenced dsname must be cataloged or passed; otherwise, the job is terminated.
v Because no I/O is performed to the dummy data set, the system checks the

SPACE and DISP parameters, if coded, for syntax, then ignores them. If you
code UNIT with DUMMY, the system will ignore it if the specified unit name is
syntactically correct and defined to the system. Otherwise the system terminates
the job.

Relationship to other parameters
Do not code the following parameters with the DUMMY parameter.
*
DATA
DDNAME
DYNAM
QNAME

Relationship to other control statements
Backward references: If a later DD statement in a job refers to a DD DUMMY
statement when requesting unit affinity (UNIT=AFF=ddname) or volume affinity
(VOLUME=REF=*.stepname.ddname), the system assigns a dummy status to the
later DD statement.

DD: DUMMY

Chapter 12. DD statement 189

Overriding a procedure DD statement: Coding DUMMY on a DD statement that
overrides a DD statement in a procedure does not nullify symbolic parameters on
the overridden DD statement. You must assign values to, or nullify, symbolic
parameters on the overridden DD statement as described in “Using system
symbols and JCL symbols” on page 38.

If the overriding DD statement contains a DSNAME parameter other than
NULLFILE, a PATH parameter other than /dev/null, or a SUBSYS, SYSOUT, *, or
DATA parameter, the system nullifies a DUMMY parameter on the overridden DD
statement.

Note: If you code SYSOUT= on an overriding statement, without specifying a
subparameter value, the system does not nullify the DUMMY parameter. You must
code a subparameter value for SYSOUT to nullify the DUMMY parameter.

Data sets concatenated to dummy data sets: The system treats data sets
concatenated to a DUMMY data set as dummy data sets in that I/O operations are
bypassed. However, the system performs disposition processing and allocates
devices and storage for any concatenated data sets.

Relationship to access methods
Use one of the following access methods with the DUMMY parameter:
v Basic sequential access method (BSAM)
v Virtual storage access method (VSAM)
v Queued sequential access method (QSAM)
v BDAM load mode (BSAM with MACRF=WL in the data control block)

If you use any other access method, the job is terminated.

Note: The ISAM/VSAM interface does not support the DUMMY parameter. For
more information on the ISAM/VSAM interface, see z/OS DFSMS Using Data Sets.

Examples of the DUMMY parameter
Example 1
//OUTDD1 DD DUMMY,DSNAME=X.X.Z,UNIT=3390,
// SPACE=(TRK,(10,2)),DISP=(,CATLG)

DD statement OUTDD1 defines a dummy data set. The other parameters coded on
the statement are checked for syntax but not used.

Example 2
//IN1 DD DUMMY,DCB=(BLKSIZE=800,LRECL=400,RECFM=FB)

DD statement IN1 defines a dummy data set. The DCB parameter supplies data
control block information not supplied in the program. Without it, the step might
be abnormally terminated.

Example 3
//IN2 DD DUMMY,DSNAME=ELLN,DISP=OLD,VOLUME=SER=11257,UNIT=3390

When calling a cataloged procedure that contains DD statement IN2 in procedure
step STEP4, you can nullify the effects of the DUMMY parameter by coding:
//STEP4.IN2 DD DSNAME=ELLN

DD: DUMMY

190 z/OS V2R1.0 MVS JCL Reference

Example 4
//TAB DD DSNAME=APP.LEV12,DISP=OLD

If you call a cataloged procedure that contains DD statement TAB in procedure
step STEP1, you can make this DD statement define a dummy data set by coding:
//STEP1.TAB DD DUMMY

Example 5
//MSGS DD SYSOUT=A

If you call a cataloged procedure that contains the DD statement MSGS in
procedure step LOCK, you can make this DD statement define a dummy data set
by coding:
//LOCK.MSGS DD DUMMY

DYNAM parameter
Parameter type

Positional, optional

Purpose

Use the DYNAM parameter to increase by one the control value for dynamically
allocated resources held for reuse. Even when DYNAM is not coded, the system
normally holds resources in anticipation of reuse. The DYNAM parameter is
supported to provide compatibility with older systems.

A DD DYNAM statement is a dummy request.

Syntax

//ddname DD DYNAM [comments]

Relationship to other parameters
Do not code any parameters with the DYNAM parameter.

Do not code on a DD DYNAM statement a ddname that is meaningful to the
system; for example, JOBLIB, SYSCHK.

Relationship to other control statements
v Do not refer to a DD DYNAM statement in a DDNAME parameter.
v To nullify the DYNAM parameter on a DD statement in a cataloged or in-stream

procedure, code a SYSOUT or DSNAME parameter in the overriding DD
statement. DSNAME=NULLFILE does not nullify a DYNAM parameter.

v Do not code a backward reference to a DD DYNAM statement.
v Do not code the DYNAM parameter on the first DD statement for a

concatenation.

Example of the DYNAM parameter
//INPUT DD DYNAM

DD: DUMMY

Chapter 12. DD statement 191

This DD statement increases by one the control value for dynamically allocated
resources held for reuse.

EATTR parameter
Parameter type

Keyword, optional

Purpose

Use the EATTR parameter to indicate whether the data set can support extended
attributes (format 8 and 9 DSCBs) or not. To create such data sets, you can include
extended address volumes (EAVs) in specific storage groups or specify an EAV on
the request or direct the Allocation to an esoteric containing EAV devices.

By definition, a data set with extended attributes can reside in the extended
address space (EAS) on an extended address volume (EAV). This parameter can be
specified for non-VSAM data sets as well as for VSAM data sets.

The EATTR value has no affect for DISP=OLD processing, even for programs that
might open a data set for OUTPUT, INOUT, or OUTIN processing. The value on
the EATTR parameter is used for requests when the data set is newly created.

Syntax

EATTR=[OPT|NO]

Subparameter definition
EATTR = OPT

Extended attributes are optional. The data set can have extended attributes and
reside in EAS. This is the default value for VSAM data sets.

EATTR = NO
No extended attributes. The data set cannot have extended attributes (format 8
and 9 DSCBs) or reside in EAS. This is the default value for non-VSAM data
sets.

Examples of the EATTR parameter
//DD2 DD DSNAME=PDS12,DISP=(,KEEP),UNIT=SYSALLDA,
// VOLUME=SER=25143,SPACE=(CYL,(10000,,100),,CONTIG),
// EATTR=OPT

The DD statement defines a new partitioned data set. The system allocates 10000
cylinders to the data set, of which one hundred 256-byte records are for a directory.
When the CONTIG subparameter is coded, the system allocates 10 contiguous
cylinders on the volume. EATTR=OPT indicates that the data set might be created
with extended attributes. With this option, the data set can reside in the extended
address space (EAS) of the volume.

DD: DYNAM

192 z/OS V2R1.0 MVS JCL Reference

EXPDT parameter
Parameter type

Keyword, optional

Purpose

Use the EXPDT parameter to specify the expiration date for a new data set. On
and after the expiration date, the data set can be deleted or written over by
another data set.

Note: You may specify a past date; this would not be an error condition.

If the DD statement contains DISP=(NEW,DELETE) or the DISP parameter is
omitted and defaults to NEW and DELETE, the system deletes the data set when
the step terminates, either normally or abnormally, even if you have specified an
expiration date.

Do not specify EXPDT for a temporary data set.

The EXPDT parameter achieves the same result as the RETPD parameter.

Code the EXPDT parameter when you want to specify an expiration date for the
data set, or, with SMS, override the expiration date defined in the data class for the
data set.

Syntax

EXPDT= {yyddd }
{yyyy/ddd}

The EXPDT parameter can have a null value only when coded on a DD statement that is
either added to a procedure or overrides a DD statement in a procedure.

Subparameter definition
EXPDT=yyddd
EXPDT=yyyy/ddd

Specifies an expiration date for the data set.

yyddd
This form of the expiration date specifies a two-digit year number yy (from
00 through 99) and a three-digit day number ddd (from 001 through 365 for
a non-leap year date, from 001 through 366 for a leap year date). For
example, code February 2, 1999 as EXPDT=99033, and code December 31,
1996 as EXPDT=96366.

Note: For expiration dates of January 1, 2000 and later, you MUST use the
form EXPDT=yyyy/ddd.

Note: Expiration dates of 99365 and 99366 are considered “never-scratch”
dates. Data sets with these expiration dates are not deleted or written over.

yyyy/ddd
This form of the expiration date specifies a four-digit year number yyyy
(from 1900 through 2155) and a three-digit day number ddd (from 001

DD: EXPDT

Chapter 12. DD statement 193

through 365 for a non-leap year date, from 001 through 366 for a leap year
date). For example, code February 2, 1999 as EXPDT=1999/033, and code
December 31, 2000 as EXPDT=2000/366.

Note: Expiration dates of 1999/365 and 1999/366 are considered
“never-scratch” dates. Data sets with these expiration dates are not deleted
or written over.

You may specify the years from 1900. However, if you specify the current date
or an earlier date, the data set is immediately eligible for replacement.

Overrides
With SMS, EXPDT overrides the expiration date defined in the DATACLAS
parameter for the data set. See “Overrides” on page 134.

With SMS, both the expiration date specified on EXPDT and defined in the data
class for an SMS-managed data set can be limited by a maximum expiration date
defined in the management class for the data set.

Relationship to other parameters
Do not code the following DD parameters with the EXPDT parameter.
*
DATA
DDNAME
DYNAM
RETPD
SYSOUT

Deleting a data set before its expiration date
To delete a data set (and make the space occupied by the data set available for
reallocation) before the expiration date has passed, use one of the following
methods:
v For data sets cataloged in an integrated catalog facility catalog, use the DELETE

command, as described in z/OS DFSMS Access Method Services Commands.
v For data sets not cataloged in an integrated catalog facility catalog, use the

IEHPROGM utility, as described in z/OS DFSMSdfp Utilities.
v Use the SCRATCH macro with the OVRD parameter, as described in z/OS

DFSMSdfp Advanced Services. If the data set is SMS-managed, this also uncatalogs
the data set.

v If the storage administrator specified OVRD_EXPDT(YES) in the IGDSMSxx
member of SYS1.PARMLIB, you can override the expiration date for
SMS-managed DASD data sets by specifying DELETE on the DD DISP
parameter. The system will delete the data set whether or not it has expired. See
z/OS MVS Initialization and Tuning Reference for information about the IGDSMSxx
parmlib member.

Examples of the EXPDT parameter
Example 1
//DD7 DD DSNAME=TOM1,DISP=(NEW,KEEP),EXPDT=2006/033,
// UNIT=SYSDA,SPACE=(TRK,(1,1)),VOLUME=SER=663344

In this example, the data set is not eligible for being deleted or written over until
February 2, 2006.

DD: EXPDT

194 z/OS V2R1.0 MVS JCL Reference

Example 2
//SMSDS2 DD DSNAME=MYDS2.PGM,DATACLAS=DCLAS02,DISP=(NEW,KEEP),
// EXPDT=2001/033

In this example, the expiration date of February 2, 2001 overrides the expiration
date defined in the data class for the data set.

FCB parameter
Parameter type

Keyword, optional

Purpose

Use the FCB parameter to specify:
v The forms control buffer (FCB) image JES is to use to guide printing of this

sysout data set by a 1403 Printer, 3211 Printer, 3203 Printer Model 5, 3800
Printing Subsystem, 4245 Printer, 4248 Printer, or by a printer supported by
systems network architecture (SNA) remote job entry (RJE).

v The carriage control tape JES is to use to control printing of this sysout data set
by a 1403 Printer or by a printer supported by SNA RJE.

v The data-protection image JES is to use to control output of this sysout data set
by a 3525 Card Punch.

v The name of a page definition to be used by PSF in formatting a print data set.

The FCB image specifies how many lines are to be printed per inch and the length
of the form. JES loads the image into the printer’s forms control buffer. The FCB
image is stored in SYS1.IMAGELIB. IBM provides three standard FCB images:
v STD1, which specifies 6 lines per inch on an 8.5-inch-long form. (3211 and 3203-2

only)
v STD2, which specifies 6 lines per inch on an 11-inch-long form. (3211 and 3203-2

only)
v STD3, which specifies 8 lines per inch for a dump on an 11-inch form. (3800

only)

References

For more information on the forms control buffer, see z/OS DFSMSdfp Advanced
Services or PSF for z/OS: User's Guide.

Syntax

FCB= {fcb-name }
{(fcb-name[,ALIGN|,VERIFY])}

v You can omit the parentheses if you code only the fcb-name.

v Code the fcb-name as STD1 or STD2 only to request the IBM-supplied images.

v Code the fcb-name as STD3 for a high-density dump.

v Null positions in the FCB parameter are invalid.

DD: EXPDT

Chapter 12. DD statement 195

Subparameter definition
fcb-name

Identifies the FCB image. The name is 1 through 4 alphanumeric or national ($,
#, @) characters and is the last characters of a SYS1.IMAGELIB member name:
v FCB2xxxx member for a 3211, a 3203 model 5, or a printer supported by

SNA.
v FCB3xxxx member for a 3800.
v FCB4xxxx member for a 4248.

ALIGN
Requests that the system ask the operator to check the alignment of the printer
forms before the data set is printed.

Note:

v ALIGN is ignored for a sysout data set.
v ALIGN is ignored for a data set printed on an AFP printer. AFP printers do

not use the ALIGN subparameter.

VERIFY
Requests that the system ask the operator to verify that the image displayed on
the printer is for the desired FCB image. The operator can also take this
opportunity to align the printer forms.

Note: VERIFY is ignored for a sysout data set.

Defaults
If you do not code the FCB parameter, the system checks the FCB image in the
printer’s forms control buffer; if it is a default image, as indicated by its first byte,
JES uses it. If it is not a default image, JES loads the FCB image that is the
installation default specified at JES initialization.

Overrides
An FCB parameter on a sysout DD statement overrides an OUTPUT JCL FCB
parameter.

If both an FCB parameter and a PAGEDEF parameter are coded in your JCL, PSF
ignores the FCB parameter. For more information, see PSF for z/OS: User's Guide.

Relationship to other parameters
Do not code the following parameters with the FCB parameter.
*
AMP
DATA
DDNAME
DYNAM
KEYOFF
PROTECT
QNAME

Do not code the following DCB subparameters with the FCB parameter.
CYLOFL
RKP
INTVL

DD: FCB

196 z/OS V2R1.0 MVS JCL Reference

For output to the 3525, do not code the SYSOUT parameter and the FCB
parameter; the system ignores the FCB parameter.

Relationship to other control statements
You can also code the FCB parameter on the following:
v The OUTPUT JCL statement.
v The JES2 /*OUTPUT statement.
v The JES3 //*FORMAT PR statement.

Defining an FCB image for a work station
When a work station uses a peripheral data set information record (PDIR), the FCB
image is defined in the work station. The DD statement FCB fcb-name
subparameter must match the FCB name defined in the PDIR work station.

When a work station does not use a PDIR, add an FCB member to
SYS1.IMAGELIB. At setup time, JES3 translates the FCB into a set vertical format
(SVF).

Requesting a high-density dump
You can request a high-density dump on the 3800 through two parameters on the
DD statement for the dump data set or on an OUTPUT JCL statement referenced
by the dump DD statement:
v FCB=STD3. This parameter produces dump output at 8 lines per inch.
v CHARS=DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same
statement or one on each statement.

Examples of the FCB parameter
Example 1
//DD1 DD UNIT=3211,FCB=(IMG1,VERIFY)

In this example, the DD statement defines an output data set to be printed by a
3211. The FCB parameter requests that the data set be printed under control of the
FCB2IMG1 member in SYS1.IMAGELIB. Because VERIFY is coded, the system
displays the FCB image on the printer before printing the data set.

Example 2
//DD2 DD SYSOUT=A,FCB=IMG2

This sysout DD statement specifies output class A. If output class A routes output
to a printer having the forms control buffer feature, JES loads the FCB image IMG2
into the forms control buffer. If the printer does not have the forms control buffer
feature, the operator receives a message to mount the carriage control tape IMG2
on the printer.

Example 3
//OUTDDS DD UNIT=3211,FCB=(6,ALIGN)

In this example, the DD statement defines an output data set to be printed by a
3211. The FCB parameter requests that the data set be printed under control of the

DD: FCB

Chapter 12. DD statement 197

FCB image named 6. Because ALIGN is coded, the system issues a message to the
operator requesting that the alignment of the printer forms be checked before the
data set is printed.

Example 4
//PUNCH DD UNIT=3525,FCB=DP2

In this example, the DD statement requests output on a 3525. Therefore, the FCB
parameter defines the data protection image to be used for the 3525.

Example 5
//SYSUDUMP DD SYSOUT=A,FCB=STD3

In this example, the DD statement requests that the 3800 print a dump at 8 lines
per inch.

FILEDATA parameter
Parameter type

Keyword, optional

Purpose

Use the FILEDATA keyword to describe the content type of a z/OS UNIX file so
that the system can determine how to process the file.

References

For more information on network file protocols, see z/OS Network File System Guide
and Reference.

Syntax

FILEDATA= {BINARY}
{TEXT }
{RECORD}

Subparameter definition
BINARY

The file described by the DD statement is a byte-stream file and does not
contain record delimiters. The access method does not insert or delete record
delimiters, <newline> character X'15'.

TEXT
When you copy MVS data sets to text files in the z/OS UNIX file system, a
<newline> character X'15' is appended to the end of each record.

RECORD
Indicates that the data consists of records with prefixes. The record prefix
contains the length of the record that follows. On output, the access method
inserts a record prefix at the beginning of each record. On input, the access
method uses the record prefix to determine the length of each record. The
access method does not return the prefix as part of the record. Code

DD: FCB

198 z/OS V2R1.0 MVS JCL Reference

FILEDATA=RECORD when you cannot code FILEDATA=TEXT because your
data might contain bytes that are considered delimiters.

Note:
The record prefix for FILEDATA=RECORD is mapped by the IGGRPFX macro.
This is different from the record descriptor word (RDW) that is in z/OS
physical sequential format-V data sets.

Defaults
If you do not code the FILEDATA parameter, the system assigns a default value of
BINARY.

Overrides
The FILEDATA parameter does not override the specification of any other JCL
keyword or system parameter.

Relationship to other parameters
You can code the FILEDATA parameter only on a DD statement that contains a
PATH parameter.

You can code the following parameters with the FILEDATA parameter.

BLKSIZE LRECL PATHMODE
BUFNO NCP PATHOPTS
DSNTYPE PATH RECFM
DUMMY PATHDISP TERM

Example of the FILEDATA parameter
//DD1 DD PATH=’/u/d89pek1/new’,FILEDATA=TEXT,
// PATHMODE=(SIRWXU,SISUID),PATHOPTS=(ORDONLY,OCREAT)

In this example, the DD statement identifies a hierarchical file and informs the
system that this file contains records delimited by the newline character.

FLASH parameter
Parameter type

Keyword, optional

Purpose

Use the FLASH parameter to identify the forms overlay to be used in printing this
sysout data set on a 3800 Printing Subsystem and, optionally, to specify the
number of copies on which the forms overlay is to be printed.

Note: FLASH applies only for a data set printed on a 3800.

References

For information on forms overlays, see the Forms Design Reference Guide for the
3800.

DD: FILEDATA

Chapter 12. DD statement 199

Syntax

{overlay-name }
FLASH= {(overlay-name[,count])}

{NONE }

The count subparameter is optional. If you omit it, you can omit the parentheses. However,
if you omit it, you must not code it as a null; for example, FLASH=(ABCD,) is invalid.

Subparameter definition
overlay-name

Identifies the forms overlay frame that the operator is to insert into the printer
before printing begins. The name is 1 through 4 alphanumeric or national ($, #,
@) characters.

count
Specifies the number, 0 through 255, of copies that JES is to flash with the
overlay, beginning with the first copy printed. Code a count of 0 to flash all
copies.

NONE
Suppresses flashing for this sysout data set.

If FLASH=NONE is on a DD statement in a job to be executed at a remote
node, JES3 sets the overlay-name to zero before sending the job to the node.

Defaults
If you do not code a FLASH parameter and an installation default was not
specified at JES2 or JES3 initialization, forms are not flashed.

If you specify an overlay-name without specifying a count or with a count of 0, all
copies are flashed. That is, the default for count is 255.

Overrides
A FLASH parameter on a sysout DD statement overrides an OUTPUT JCL FLASH
parameter.

Note: A null first subparameter is invalid in a FLASH parameter on a DD
statement, but is permitted on an OUTPUT JCL statement.

Relationship to other parameters
Do not code the following parameters with the FLASH parameter.

* DISP PROTECT
AMP DSID QNAME
DATA DYNAM VOLUME
DDNAME LABEL

Relationship to COPIES parameter: If this DD statement or a referenced OUTPUT
JCL statement also contains a COPIES parameter, JES prints with the forms overlay
the number of copies specified in one of the following:
v COPIES=nnn, if the FLASH count is larger than nnn. For example, if COPIES=10

and FLASH=(LTHD,12) JES prints 10 copies, all with the forms overlay.

DD: FLASH

200 z/OS V2R1.0 MVS JCL Reference

v The sum of the group-values specified in the COPIES parameter, if the FLASH
count is larger than the sum. For example, if COPIES=(,(2,3,4)) and
FLASH=(LTHD,12) JES prints nine copies in groups, all with the forms overlay.

v The count subparameter in the FLASH parameter, if the FLASH count is smaller
than nnn or the sum from the COPIES parameter. For example, if COPIES=10
and FLASH=(LTHD,7) JES prints seven copies with the forms overlay and three
copies without.

Relationship to other control statements
FLASH can also be coded on the following:
v The OUTPUT JCL statement.
v The JES3 //*FORMAT PR statement.
v The JES2 /*OUTPUT statement.

Verification of forms overlay frame
Before printing starts, the system requests the operator to load the specified forms
overlay frame in the printer. A frame must be loaded, but the system cannot verify
that it is the correct frame.

Printing without flashing
To print without flashing, specify one of the following:
v FLASH=NONE on the DD or OUTPUT JCL statement.
v Omit the FLASH parameter on all of the statements for the data set and on all

JES initialization statements.
v For a sysout data set, omit the FLASH parameter on the DD statement and

specify FLASH=(,0) on a referenced OUTPUT JCL statement.

Example of the FLASH parameter
//DD1 DD SYSOUT=A,COPIES=10,FLASH=(ABCD,5)

In this example, JES issues a message to the operator requesting that the
forms-overlay frame named ABCD be inserted into the printer. Then JES prints the
first five copies of the data set with the forms-overlay and the last five copies
without.

FREE parameter
Parameter type

Keyword, optional

Purpose

Use the FREE parameter to specify when the system is to unallocate the resources
used for this DD statement’s data set. The resources can be devices, volumes, or
exclusive use of a data set.

Note: Specifying FREE will not release the enqueue on the data set until the last
step that requires the data set completes processing.

DD: FLASH

Chapter 12. DD statement 201

Syntax

FREE= {END }
{CLOSE}

Subparameter definition
END

Requests that the system unallocate the data set at the end of the last step that
references the data set.

CLOSE
Requests that the system unallocate the data set when it is closed.

Defaults
If no FREE parameter is specified, the default is END. Also, if the FREE parameter
is incorrectly coded, the system substitutes END and issues a warning message.

Overrides
FREE=CLOSE is ignored when:
v The data set is a member of a concatenated group.
v The task using the data set abnormally terminates.

If you specify FREE=CLOSE and the job step abnormally terminates before the
data set is closed, the system uses the abnormal termination disposition from the
DISP parameter to process the data set. If a recovery routine, such as an ESTAE
routine, gets control and closes the data set, then the system uses the normal
termination disposition.
If the job step abnormally terminates after the data set is closed, then the system
has already processed the data set using the normal termination disposition.

v The data set is referenced by another DD statement in the same or subsequent
step.

v The data set is a VSAM data set.
v The DDname on the DD statement is JOBLIB or STEPLIB.

Relationship to other parameters
Do not code the following parameters with the FREE parameter.

*
AMP
DATA

DDNAME
DYNAM
KEYOFF

QNAME
RECORG
RLS

If the DD statement specifies FREE=END and a DISP subparameter of PASS, the
data set is not unallocated until the end of the job or until used for a later DD
statement with a disposition of other than PASS.

Do not specify FREE=CLOSE on a DD statement with a ddname of JOBLIB or
STEPLIB; CLOSE is ignored.

If you specify SPIN=NO with FREE=CLOSE, the sysout data set will be
unallocated, but not printed until the end of the job.

DD: FREE

202 z/OS V2R1.0 MVS JCL Reference

When you specify SPIN=UNALLOC with FREE=CLOSE, the sysout data set is
available for printing immediately when you explicitly close or dynamically
unallocate the data set. If you do not explicitly close or dynamically unallocate the
data set, it will be available for printing at the end of the step.

If you specify SPIN=UNALLOC with FREE=END, the sysout data set is
unallocated at the end of the step, and is made available for printing then. If you
dynamically unallocate the sysout data set, the system makes it available for
printing immediately.

If you specify SPIN=NO with FREE=END, the system makes the sysout data set
available for printing at the end of the job, regardless of when the data set is
unallocated or closed.

Relationship to other control statements
If a DD statement requests unit affinity in a UNIT=AFF parameter or volume
affinity in a VOLUME=REF parameter with an earlier DD statement, do not code
FREE=CLOSE on the earlier statement.

If you code FREE=CLOSE on a sysout DD statement that references an OUTPUT
JCL statement containing a GROUPID parameter, JES2 will not group the data sets
into one output group. Instead, JES2 produces one copy of the sysout data set for
each OUTPUT JCL statement that the DD statement references.

Relationship to the CLOSE macro instruction
When FREE=CLOSE is specified for a data set that is opened and closed more than
once during a job step:
v The data set is unallocated after it is closed if the assembler CLOSE macro

instruction specifies DISP, REWIND, or FREE. If the data set is reopened after
the system has unallocated it, the job step abnormally terminates, unless the
data set is dynamically allocated in the interval.

The data set is not unallocated until the end of the job if the assembler CLOSE
macro instruction specifies LEAVE or REREAD. Then the data set can be reopened.

Examples of the FREE parameter
Example 1
//EA33 DD SYSOUT=D,FREE=CLOSE

In this example, the FREE=CLOSE parameter makes JES unallocate this output
class D data set when it is closed, rather than at the end of the job step. JES
schedules the data set for printing.

Example 2
//EA33 DD DSNAME=SYBIL,DISP=OLD,FREE=CLOSE

In this example, the FREE=CLOSE parameter makes JES unallocate the data set,
dequeue it, and make it available to other jobs as soon as it is closed.

Example 3
//STEP1 EXEC PGM=ABLE1
//DD1 DD DSNAME=A,DISP=(,PASS),FREE=END
//STEP2 EXEC PGM=ABLE2
//DD2 DD DSNAME=A,DISP=(OLD,CATLG),FREE=END

DD: FREE

Chapter 12. DD statement 203

In this example, data set A is passed by STEP1 to STEP2. FREE=END on DD
statement DD1 is ignored because the disposition is PASS. FREE=END on DD
statement DD2 causes data set A to be unallocated at the end of STEP2, when it is
also cataloged.

Example 4
//STEP1 EXEC PGM=BAKER1
//DD DD DSNAME=A,DISP=(NEW,PASS),FREE=END
//STEP2 EXEC PGM=BAKER2

In this example, data set A is a new data set. Because PASS is specified,
FREE=END is ignored and the data set remains allocated.

FREEVOL parameter
Parameter type: Keyword, optional

Purpose: Use the FREEVOL parameter to specify whether to allow other jobs to
read freed volumes of a multivolume tape file as the volume is dismounted by the
job.

Note: When multiple DD statements in JOB1 specify one or more of the same
volume serial numbers, and also FREEVOL=EOV, it becomes possible for JOB2 to
obtain the ENQ on the volume serial number and begin processing as soon as
JOB1 releases the ENQ. This results in JOB1 abending when attempting to process
a subsequent DD with the same volume serial number, because the volume is no
longer available to JOB1. In addition, FREEVOL=EOV has no effect on the
allocation requirement that all specified volume serial numbers be available for
enqueue; if any are not available, allocation issues IEF235D and waits for volume
availability or for the job to be cancelled.

Syntax

FREEVOL={EOV | END}

Subparameter definition
EOV

Requests that when reading a multivolume data set, the system finish reading
the current volume and then dequeue the volume serial number and demount
the volume. This makes the volume immediately available to another job in
another system. An attempt by the same task to reprocess the volume using
the same JCL DD statement will result in an abnormal end.

END
Requests that volumes be dequeued at the end of the job step.

Defaults
If no FREEVOL parameter is specified, the default is END. Also, if the FREEVOL
parameter is incorrectly coded, the system substitutes END and issues a warning
message.

Overrides
FREEVOL=EOV is not honored when the tape volume disposition is not REQIND
(for example, if the tape disposition is RETAIN or CLOSE with the LEAVE option).

DD: FREE

204 z/OS V2R1.0 MVS JCL Reference

Relationship to other parameters
Do not code the FREEVOL parameters with PATH related keywords, such as the
following:

PATH PATHOPTS
PATHMODE PATHDISP
FILEDATA

Relationship to other control statements
None

GDGORDER parameter
Parameter type: Keyword, optional

Purpose: Use the GDGORDER parameter for a DD that specifies the base name of
a GDG data set (a GDG-all request). This keyword specifies the order in which the
individual generation data sets (GDSs) will be concatenated.

Syntax

GDGORDER=USECATLG | LIFO | FIFO

Subparameter definition
USECATLG

The GDS concatenation is ordered as specified in the GDG data set catalog
entry.

LIFO
The GDS concatenation is ordered with the newest GDS defined first and the
oldest GDS last.

FIFO
The GDS concatenation is ordered with the oldest GDS defined first and the
newest GDS last.

Defaults
USECATLG is the default value. When the GDGORDER keyword is not specified,
the concatenation order from the catalog definition of the GDG data set is used.
However, the default setting in the catalog entry for a GDG base data set definition
is LIFO, to match the setting for releases prior to z/OS V2.1.

Example of the GDGORDER parameter
Example 1: The following example GDG has a base name D24PP1.SMF.DATA and
three generation data sets:
D24PP1.SMF.DATA.G0001V00
D24PP1.SMF.DATA.G0002V00
D24PP1.SMF.DATA.G0003V00

The following DD statement overrides the default LIFO specification and creates a
FIFO data set concatenation to be read by the job step program:
//SMFDATA DD DSN=D24PP1.SMF.DATA,DISP=SHR,GDGORDER=FIFO

DD: FREEVOL

Chapter 12. DD statement 205

Data is read from the data sets in the specified order.

The following concatenation is used:
//SMFDATA DD DSN=D24PP1.SMF.DATA(-2),DISP=SHR
// DD DSN=D24PP1.SMF.DATA(-1),DISP=SHR
// DD DSN=D24PP1.SMF.DATA(0),DISP=SHR

The concatenation is resolved as the following code:
//SMFDATA DD DSN=D24PP1.SMF.DATA.G0001V00,DISP=SHR
// DD DSN=D24PP1.SMF.DATA.G0002V00,DISP=SHR
// DD DSN=D24PP1.SMF.DATA.G0003V00,DISP=SHR

HOLD parameter
Parameter type

Keyword, optional

Purpose

Use the HOLD parameter to tell the system to hold a sysout data set until it is
released by the system operator. When the data set is ready for processing, notify
the system operator to release it via a TSO/E NOTIFY parameter, a JES2
/*MESSAGE statement, or a JES3 //*OPERATOR statement.

A TSO/E user can specify HOLD=YES to retrieve a sysout data set and display it
on a terminal. For JES3, the TSO/E user can process only work on the hold queue.

Note:

1. HOLD is supported only for sysout data sets. If HOLD appears on a DD
statement that does not contain a SYSOUT parameter, it is ignored.

2. HOLD allows the sysout data set to be the internal reader. If the sysout data set
is the internal reader, the job being submitted will be held.

3. In a JES2 system, SYSOUT held by specifying HOLD=YES may be selected via
a SAPI (Sysout Application Process Interface) application. JES3 systems are not
allowed to select the held SYSOUT via SAPI until the hold is released via
operator command.

Syntax

HOLD= {YES}
{Y }
{NO }
{N }

Subparameter definition
YES

Requests that the system hold the sysout data set until the data set is released
by the system operator. You can also code this subparameter as Y.
NJE Notes:
v In a JES2 NJE environment, the system does not hold the data set until it

reaches its ultimate destination node.

DD: GDGORDER

206 z/OS V2R1.0 MVS JCL Reference

v If the destination node is a JES3 node, the system may still not hold the data
set if the class of output being transmitted is not defined as a hold class.
If the sending node is JES3, the system holds the output data set at that
node on the BDT queue (when transmitting to an SNA-attached node) or the
WTR queue (when transmitting to a BSC-attached node) if all of the
following are true:
– The "// DD SYSOUT=" JCL statement does not contain a

DEST=(node,userid) parameter.
– The SYSOUT= parameter does not contain the WRITER-NAME

subparameter and the output class is not defined as a hold class.
– No WRITER= parameter is coded on the OUTPUT JCL statement.
Example 1.
The following job executes on NODE1 and results in the SYSUT2 output
data set being held on the BDT queue on NODE1. (NODE5 is attached to
NODE1 via SNA and output class A is not defined as a hold class.)
//S1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT1 DD DSN=SYS1.PROCLIB(JES3),DISP=SHR
//SYSUT2 DD SYSOUT=A,HOLD=YES,DEST=NODES

Example 2.
The following job executes on NODE1 and results in the SYSUT2 output
data set being held on the WTR queue on NODE1. (NODE5 is attached to
NODE1 via BSC and output class A is not defined as a hold class.)
//S1 EXEC PGM=IEBGENER
//O1 OUTPUT CLASS=A,DEST=NODE2.MYWRITR
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT1 DD DSN=SYS1.PROCLIB(JES3),DISP=SHR
//SYSUT2 DD SYSOUT=(,),HOLD=YES,OUTPUT=(*.O1)

NO
Requests that the output data set not be held. You can also code this
subparameter as N.

Defaults
None.

If you do not specify the HOLD parameter, or if the value specified on the HOLD
parameter is incorrectly coded, the output data set will be held or not held based
on how your installation specified the SYSOUT class. Examples of incorrect values
on the hold parameter include:
v 'HOLD=' without a value specified
v A value for HOLD other than YES, Y, NO, or N

Overrides
HOLD=NO is overridden by the unallocation verb of dynamic allocation or the
TSO/E FREE command.

Either HOLD=YES or HOLD=NO on the DD statement overrides the sysout data
set disposition specified on the OUTDISP parameter of the OUTPUT JCL
statement.

DD: HOLD

Chapter 12. DD statement 207

Relationship to other parameters
Code the HOLD parameter only on a DD statement with the SYSOUT parameter.

For JES3, be aware that if the SYSOUT is associated with an output descriptor that
is defined by the OUTPUT JCL statement, then the output characteristics are
merged for SYSOUT on the HOLD queue.

JES3 ignores HOLD=YES when
v DEST=(node,userid) is coded on the SYSOUT= DD statement. Example 1 shows

this case. (JES3 does not ignore the HOLD=YES when DEST= is coded on the
OUTPUT DD statement. Example 2 shows this case.) or

v the sysout data set is placed on the hold queue, for example, if
SYSOUT=(,writer-name) is coded.

Ignored but permitted DD parameter: If you specify the SUBSYS DD parameter,
the system checks it for syntax and then ignores it.

Relationship to other control statements
Code a NOTIFY parameter on the JOB statement to ask the system to send a
message to your TSO/E userid when job processing is complete.

JES2 users can use the /*NOTIFY control statement to direct job notification
messages and to override a JOB NOTIFY parameter.

Examples of the HOLD parameter

Example 1
//JOB01 JOB ,’HAROLD DUQUETTE’,MSGLEVEL=1
//STEP1 EXEC PGM=MJCOSCO
//DD1 DD SYSOUT=B,DEST=RMT6,HOLD=YES

In this example, sysout data set DD1 from JOB01 is held on a queue until the
TSO/E user at RMT6 asks the system operator to release the data set.

Example 2
//$JOBxx JOB ,’OSWALD CHALMERS’,MSGLEVEL=1
//OUT1 OUTPUT DEST=NODE2.printer,CLASS=A,...
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=A.DATA.SET
//SYSUT2 DD SYSOUT=(,),OUTPUT=(*.OUT1),HOLD=YES

In this example, if the job is submitted on NODE1, JES3 does not ignore the
HOLD=YES. The SYSOUT data set is held at NODE1 and is not transmitted to
NODE2 to be held there.

KEYLABL1 parameter
Parameter Type

Keyword, optional

Purpose

DD: HOLD

208 z/OS V2R1.0 MVS JCL Reference

Use the KEYLABL1 to specify the label for the key encrypting key used by the
Encryption Key Manager. The key encrypting key is used to encrypt the data
(encryption) key.

Code the KEYLABL1 parameter when you want to:
v Specify the label for the key encrypting key used by the Encryption Key

Manager, or
v Override the label for the key encrypting key defined in the data class of the

data set.

Specification of the key labels does not by itself enable encryption. Encryption
must be enabled by a data class that specifies an encryption format, for example
EEFMT2.

At least one of KEYLABL1 or KEYLABL2 must have a private key associated with
it.

For complete documentation on using tape encryption, see z/OS DFSMS Software
Support for IBM System Storage TS1140, TS1130, and TS1120 Tape Drives (3592).

Syntax

KEYLABL1=’mykeylabel1’

Subparameter definition
mykeylabel1

Specifies the KEYLABL1 for the key encrypting key used by the Encryption
Key Manager. The key label can be up to 64 characters in length.

Defaults
One or both key labels may be specified. If only one key label is specified,
specification of either of KEYLABL1 or KEYLABL2 is allowed; it does not have to
be specified as KEYLABL1.

If only one key label and encoding mechanism is specified, the same key label and
encoding mechanism is used for both the key label and the encoding parameters.

If no key label is specified, either through the DD statement or through data class,
externally specified key manager defaults will be used.

Overrides
Coding KEYLABL1 or KEYLABL2 overrides both labels for the key encrypting key
defined in the DATACLAS parameter for the data set. See “Overrides” on page
134.

Relationship to other parameters
If you specify the KEYLABL1 parameter on a DD statement, you must also code
the KEYENCD1 parameter.

Examples of the KEYLABL1 parameter
Using label encoding:

DD: KEYLABL1

Chapter 12. DD statement 209

//DD1 DD DSN=DSN5,DISP=(NEW,CATLG),STORCLAS=ATL,
// KEYLABL1=’LABELQ1.LABELQ2.LABELQ3’,KEYENCD1=L

Using hash encoding:
//DD1 DD DSN=DSN5,DISP=(NEW,CATLG),STORCLAS=ATL,
// KEYLABL1=’LABELQ1.LABELQ2.LABELQ3’,KEYENCD1=H

KEYLABL2 parameter
Parameter type

Keyword, optional

Purpose

Use the KEYLABL2 to specify the label for the key encrypting key used by the
Encryption Key Manager. The key encrypting key is used to encrypt the data
(encryption) key.

Code the KEYLABL2 parameter when you want to:
v Specify the label for the key encrypting key used by the Encryption Key

Manager, or
v Override the label for the key encrypting key defined in the data class of the

data set.

Specification of the key labels does not by itself enable encryption. Encryption
must be enabled by a data class that specifies an encryption format, for example
EEFMT2.

At least one of KEYLABL1 or KEYLABL2 must have a private key associated with
it.

For complete documentation on using tape encryption, see z/OS DFSMS Software
Support for IBM System Storage TS1140, TS1130, and TS1120 Tape Drives (3592).

Syntax

KEYLABL2=’mykeylabel2’

Subparameter definition
mykeylabel2

Specifies the KEYLABL2 for the key encrypting key used by the Encryption
Key Manager. The key label can be up to 64 characters in length.

Defaults
One or both key labels may be specified. If only one key label is specified,
specification of either KEYLABL1 or KEYLABL2 is allowed; it does not have to be
specified as KEYLABL1.

If only one key label and encoding mechanism is specified, the same key label and
encoding mechanism is used for both key label and encoding parameters.

DD: KEYLABL1

210 z/OS V2R1.0 MVS JCL Reference

If no key label is specified, either through the DD statement or through data class,
externally specified key manager defaults will be used.

Overrides
Coding KEYLABL1 or KEYLABL2 overrides both labels for the key encrypting key
defined in the DATACLAS parameter for the data set. See “Overrides” on page
134.

Relationship to other parameters
If you specify the KEYLABL2 parameter on a DD statement, you must also code
the KEYENCD2 parameter.

Examples of the KEYLABL2 parameter
Using label encoding:
//DD1 DD DSN=DSN5,DISP=(NEW,CATLG),STORCLAS=ATL,
// KEYLABL2=’LABELQ1.LABELQ2.LABELQ3’,KEYENCD2=L

Using hash encoding:
//DD1 DD DSN=DSN5,DISP=(NEW,CATLG),STORCLAS=ATL,
// KEYLABL2=’LABELQ1.LABELQ2.LABELQ3’,KEYENCD2=H

KEYENCD1 parameter
Parameter type

Keyword, optional

Purpose

Use the KEYENCD1 parameter to specify how the label for the key encrypting key
specified by the key label 1 is encoded by the Encryption Key Manager and stored
on the tape cartridge.

Code the KEYENCD1 parameter when you want to specify how the label for the
key encrypting key specified by the key label 1 is encoded by the Encryption Key
Manager and stored on the tape cartridge.

Specification of the key encoding does not by itself enable encryption. Encryption
must be enabled by a data class that specifies an encryption format, for example
EEFMT2.

For complete documentation on using tape encryption, see z/OS DFSMS Software
Support for IBM System Storage TS1140, TS1130, and TS1120 Tape Drives (3592).

Syntax

KEYENCD1=L|H

Subparameter definition
L Indicates that the key label 1 will be stored as part of the EEDK structure on

the tape cartridge.

DD: KEYLABL2

Chapter 12. DD statement 211

H Indicates that a hash of the public key referenced by key label 1 will be stored
on the cartridge rather than the key label.

Overrides
KEYENCD1 overrides the encoding mechanism of the label for the key encrypting
key defined in the DATACLAS parameter for the data set. See “Overrides” on page
134.

Relationship to other parameters
If you specify the KEYENCD1 parameter on a DD statement, you must also code
the KEYLABL1 parameter.

Example of the KEYENCD1 parameter
Using label encoding:
//DD1 DD DSN=DSN5,DISP=(NEW,CATLG),STORCLAS=ATL,
// KEYLABL1=’LABELQ1.LABELQ2.LABELQ3’,KEYENCD1=L

Using hash encoding:
//DD1 DD DSN=DSN5,DISP=(NEW,CATLG),STORCLAS=ATL,
// KEYLABL1=’LABELQ1.LABELQ2.LABELQ3’,KEYENCD1=H

KEYENCD2 parameter
Parameter type

Keyword, optional

Purpose

Use the KEYENCD2 parameter to specify how the label for the key encrypting key
specified by the key label 2 is encoded by the Encryption Key Manager and stored
on the tape cartridge.

Code the KEYENCD2 parameter when you want to specify how the label for the
key encrypting key specified by the key label 2 is encoded by the Encryption Key
Manager and stored on the tape cartridge.

Specification of the key encoding does not by itself enable encryption. Encryption
must be enabled by a data class that specifies an encryption format, for example
EEFMT2.

For complete documentation on using tape encryption, see z/OS DFSMS Software
Support for IBM System Storage TS1140, TS1130, and TS1120 Tape Drives (3592).

Syntax

KEYENCD2=L|H

Subparameter definition
L Indicates that the key label 2 will be stored as part of the EEDK structure on

the tape cartridge.

DD: KEYENCD1

212 z/OS V2R1.0 MVS JCL Reference

H Indicates that a hash of the public key referenced by the key label 2 will be
stored on the cartridge rather than the key label.

Overrides
KEYENCD2 overrides the encoding mechanism of the label for the key encrypting
key defined in the DATACLAS parameter for the data set. See “Overrides” on page
134.

Relationship to other parameters
If you specify the KEYENCD2 parameter on a DD statement, you must also code
the KEYLABL2 parameter.

Example of the KEYENCD2 parameter
Using label encoding:
//DD1 DD DSN=DSN5,DISP=(NEW,CATLG),STORCLAS=ATL,
// KEYLABL2=’LABELQ1.LABELQ2.LABELQ3’,KEYENCD2=L

Using hash encoding:
//DD1 DD DSN=DSN5,DISP=(NEW,CATLG),STORCLAS=ATL,
// KEYLABL2=’LABELQ1.LABELQ2.LABELQ3’,KEYENCD2=H)

KEYLEN parameter
Parameter type

Keyword, optional

Purpose

Use the KEYLEN parameter to specify the length of the keys used in a new data
set.

Code the KEYLEN parameter when you want to:
v Specify a key length for the data set or
v With SMS, override the key length defined in the data class of the data set.

The key length can be supplied from the data set label (or data class with SMS). If
a key length is not specified or supplied, input or output requests must not require
keys.

KEYLEN applies to data sets with the BDAM, BPAM, BSAM, EXCP, and QISAM
access methods, and, with SMS, to VSAM data sets.

Syntax

KEYLEN=bytes

Subparameter definition
bytes

Specifies the length, in bytes, of the keys used in the data set.

The number of bytes is:

DD: KEYENCD2

Chapter 12. DD statement 213

v 0 to 255 for non-VSAM data sets. The key length must be less than or equal
to the record length.

Note: Use only 0 for a member of a partitioned data set extended (PDSE).
Use 0 or 8 to perform input operations on the directory of a PDSE.

v 1 to 255 for VSAM key-sequenced (RECORG=KS) data sets. A key length
must be specified, either explicitly with the KEYLEN or LIKE parameter, or
in the data class for the data set. The key length must be less than the record
length.

Overrides
KEYLEN overrides the key length specified in the data set label, and with SMS,
KEYLEN overrides the key length defined in the DATACLAS parameter for the
data set. See “Overrides” on page 134.

Relationship to other parameters
Do not code the following DD parameters with the KEYLEN parameter.

* DCB=STACK
DATA DCB=TRTCH
DCB=KEYLEN DDNAME
DCB=MODE DYNAM
DCB=PRTSP

Examples of the KEYLEN parameter
Example 1
//DD4 DD DSNAME=JST,DISP=(NEW,KEEP),UNIT=3390,
// SPACE=(CYL,(12,2)),DCB=(A.B.C),KEYLEN=8

DD statement DD4 defines a new data set named JST and requests that the system
copy the DCB information from the data set label of the cataloged data set named
A.B.C. If the data set label contains a key length specification, it is overridden by
the KEYLEN coded on this DD statement.

Example 2
//SMSDS3 DD DSNAME=MYDS3.PGM,DATACLAS=VSAM1,DISP=(NEW,KEEP),
// KEYLEN=6

In the example, where the data class VSAM1 defines a key-sequenced VSAM data
set, the key length of 6 overrides the key length defined in the data class.

KEYOFF parameter
Parameter type

Keyword, optional–use this parameter only with SMS.

Without SMS, use the RKP subparameter of the DCB parameter described in “DCB
subparameters” on page 140.

Purpose

DD: KEYLEN

214 z/OS V2R1.0 MVS JCL Reference

Use the KEYOFF parameter to specify the key offset, the position of the first byte
of the record key in each logical record of a new VSAM data set. The first byte of a
logical record is position 0.

If SMS is not installed or is not active, the system syntax checks and then ignores
the KEYOFF parameter.

Code the KEYOFF parameter only for a VSAM key-sequenced data set
(RECORG=KS).

Code the KEYOFF parameter when you want to (1) specify a key offset for the
data set or (2) override the key offset defined in the data class of the data set.

References

See z/OS DFSMS Using Data Sets for information on VSAM key-sequenced data
sets.

Syntax

KEYOFF=offset-to-key

Subparameter definition
offset-to-key

Specifies the position (offset), in bytes, of the first byte of the key in each
record. The offset is 0 to the difference between the record length (LRECL) and
key length (KEYLEN), in the range 0 to 32,760.

Overrides
KEYOFF overrides the key offset defined in the DATACLAS parameter for the data
set. See “Overrides” on page 134.

Relationship to other parameters
Do not code the following DD parameters with the KEYOFF parameter.

*
DATA
DCB=RESERVE
DCB=RKP
DDNAME

DYNAM
FCB
FREE=CLOSE
UCS

Example of the KEYOFF parameter
//SMSDS3 DD DSNAME=MYDS3.PGM,DATACLAS=VSAM1,DISP=(NEW,KEEP),
// KEYOFF=2

In the example, the data class VSAM1 defines a key-sequenced VSAM data set.
The key offset of 2 overrides the key offset defined in the data class and specifies
that the first byte of the key is in the third position of each record.

DD: KEYOFF

Chapter 12. DD statement 215

LABEL parameter
Parameter type

Keyword, optional

Purpose

Use the LABEL parameter to specify for a tape or direct access data set:
v The type and contents of the label or labels for the data set.
v If a password is required to access the data set.
v If the system is to open the data set only for input or output.
v The expiration date or retention period for the data set.

Although subparameters RETPD and EXPDT are shown in the syntax of the
LABEL parameter, you should use the RETPD or EXPDT DD parameter to specify
a retention period or expiration date for the data set.

For a tape data set, this parameter can also specify the relative position of the data
set on the volume.

References

For details on tape labels, see z/OS DFSMS Using Magnetic Tapes. For details on
direct access labels, see z/OS DFSMS Using Data Sets. For information on protecting
a data set with a password, see z/OS DFSMSdfp Advanced Services.

Syntax

LABEL=([data-set-sequence-number][,label] [,PASSWORD][,IN][,RETPD=nnnn])
[,] [,NOPWREAD][,OUT][,EXPDT={yyddd }]

[,] [{yyyy/ddd}]

label is one of the following:
AL
AUL
BLP
LTM
NL
NSL
SL
SUL

DD: LABEL

216 z/OS V2R1.0 MVS JCL Reference

The first four subparameters are positional; the last subparameter is keyword. If you omit
any positional subparameters but code a following positional subparameter, indicate each
omitted subparameter by a comma. If the following subparameter is one of the keyword
subparameters (EXPDT or RETPD), you do not need commas to indicate omitted
subparameters. For example:

v LABEL=(0001,SUL,PASSWORD,IN)

v LABEL=(,SUL,PASSWORD)

v LABEL=(,SUL,,IN,EXPDT=97033)

v LABEL=(,,PASSWORD,EXPDT=1997/033)

v LABEL=(,SUL,EXPDT=1997/033)

v LABEL=(0001,,,IN)

v LABEL=(0001,EXPDT=1997/033)

If you specify only the data-set-sequence-number or only the retention period or only the
expiration date, you can omit the parentheses. For example, code LABEL=data-set-
sequence-number, LABEL=RETPD=nnnn, LABEL=EXPDT=yyddd, or
LABEL=EXPDT=yyyy/ddd.

Alternate syntax for RETPD and EXPDT: RETPD and EXPDT should be specified
as DD parameters rather than subparameters of the LABEL parameter. This allows
you to specify a retention period or expiration date without the need to code
LABEL.For example, code RETPD and EXPDT on the DD statement as:
v RETPD=366 or EXPDT=2006/033

See the DD RETPD parameter described in “RETPD parameter” on page 258, and
the DD EXPDT parameter described in “EXPDT parameter” on page 193.

Subparameter definition

Data-set-sequence-number
data-set-sequence-number

Identifies the relative position of a data set on a tape volume. Before z/OS
V1R5 the value of the data-set-sequence-number on the LABEL parameter was
limited to 9999. However, starting with z/OS V1R5, the system allows data set
sequence numbers up to 65535 for the following media:
v Standard label (SL) tapes, including standard user label tape (SUL) and

leading tape mark (LTM).
v Unlabled (NL) tapes.
v Bypass label processing (BLP)

For data set sequence numbers greater than 4 decimal digits, up to 65535, you
must use the OPEN macro instruction in your application as follows:
v For uncataloged data sets, update the data set sequence number in the JFCB

and use the OPEN,TYPE=J macro.
v For catalogued data sets, use the OPEN macro. The catalog provides the

data set sequence number.

If you do take advantage of data set sequence numbers above 4 decimal digits,
you should modify any non-IBM applications that print tape labels or access
the tape labels directly, because the data set sequence number in the SL label
might not be in EBCDIC format.. For additional information on data set
sequence numbers, see z/OS DFSMS Macro Instructions for Data Sets.

DD: LABEL

Chapter 12. DD statement 217

Omit this subparameter or code 0 or 1 to indicate the first data set on the tape
volume. Also omit this subparameter for the following:
v Cataloged data sets. The system obtains the data-set-sequence-number from

the catalog.
v A DD DSNAME parameter that requests all members of a generation data

group (GDG). The system retrieves the data-set-sequence-number from the
catalog.

v A data set passed from a preceding step. The system obtains the
data-set-sequence-number from the passing step.

Label
The system does not retain label type information for cataloged data sets; if the
label type is not coded in the LABEL parameter for a cataloged data set, the
system assumes SL.

For a data set on a direct access device, the system obtains the label type from the
DD statement; the label type is not obtained from any other source referred to in
the DD statement. Only two label types are valid for direct access devices: SL and
SUL.

SL
Indicates that a data set has IBM standard labels. If this subparameter is
omitted, SL is the default.

Code only SL or SUL for data sets on direct access devices.

If the LABEL parameter is coded on a SYSCKEOV DD statement, code
LABEL=(,SL).

SUL
Indicates that a data set has both IBM standard and user labels.

Code only SL or SUL for data sets on direct access devices.

Do not code SUL for partitioned or indexed sequential data sets.

AL
Indicates that a tape data set has ISO/ANSI Version 1 or ISO/ANSI/FIPS
Version 3 labels.

If you specify AL for a tape generation data set for output, the ending
.GnnnnVnn (where n=0 through 9) will not appear as part of the file identifier
(data set name field) of the HDR1 label. Instead, the data is placed in the
generation and version number fields of the HDR1 label.

AUL
Indicates that a tape data set has user labels and ISO/ANSI Version 1 or
ISO/ANSI/FIPS Version 3 labels.

NSL
Indicates that a tape data set has nonstandard labels.

Before you code NSL, ensure that your installation has created and installed
non-standard label processing routines, described in z/OS DFSMS Installation
Exits.

NL
Indicates that a tape data set has no labels.

When retrieving two or more data sets from several NL or BLP tape volumes,
concatenate the DD statements and repeat the LABEL parameter on each DD
statement.

DD: LABEL

218 z/OS V2R1.0 MVS JCL Reference

If you are processing ASCII data on unlabeled tapes, the data control block
must specify OPTCD=Q.

BLP
Requests that the system bypass label processing for a tape data set.

If the installation did not specify the BLP feature in the reader cataloged
procedure, BLP has the same effect as NL.

If you code BLP and the tape volume has labels, a tapemark delimits the data
set. To let the system position a tape with labels to the proper data set, code
the data-set-sequence-number subparameter; the number must reflect all labels
and data sets that precede the desired data set.

Do not specify BLP when the DD DSNAME parameter requests all members of
a generation data group (GDG); the system obtains the data-set-sequence-
number from the catalog. Therefore, coding BLP might result in incorrect tape
positioning.

When retrieving two or more data sets from several NL or BLP tape volumes,
or when retrieving a data set from several BLP tape volumes and those
volumes have labels, concatenate the DD statements and repeat the LABEL
parameter on each DD statement.

LTM
Indicates that the data set has a leading tapemark.

Note: You may use the LABEL parameter when allocating a system-managed tape
volume, but you cannot use the NSL or LTM subparameters. If the ACS routine
does not exclude these subparameters, the job will fail with JCL errors.

System-managed tape volumes must be IBM standard label or ANSI standard
tapes.

Password protection
For an SMS-managed data set (one with an assigned storage class), SMS sets the
password indicators in the VTOC and catalog but ignores the indicators and does
not use password protection for the data set. See the DD SECMODEL parameter
description in “SECMODEL parameter” on page 262.

Password protecting data sets requires the following:
v Data set names no longer than 17 characters. MVS retains in the tape label only

the rightmost 17 characters of the data set name. Consequently, longer names
could be identical in password checks.

v Volumes with IBM standard labels or ISO/ANSI/FIPS Version 3 labels.
v A password assigned in the PASSWORD data set. If a password is not assigned,

the system will abnormally terminate a job step when it attempts to open the
data set for output, if NOPWREAD is coded, or for input or output, if
PASSWORD is coded.

To create a password-protected data set following an existing password-protected
data set, code the password of the existing data set. The password must be the
same in both the existing and the new data set.

To password-protect a data set on a tape volume containing other data sets, you
must password-protect all the data sets on the volume and the passwords must be
the same for all data sets.

DD: LABEL

Chapter 12. DD statement 219

To password-protect an existing data set using PASSWORD or NOPWREAD, open
the data set for output the first time it is used during the job step.

PASSWORD
Indicates that a data set cannot be read, changed, deleted, or written to unless
the system operator or TSO/E user supplies the correct password.

NOPWREAD
Indicates that a data set cannot be changed, deleted, or written to unless the
system operator or TSO/E user supplies the correct password. No password is
necessary for reading the data set.

Input or output processing
IN

One of the following
v Indicates that a BSAM data set opened for INOUT or a BDAM data set

opened for UPDAT is to be read only. The IN subparameter overrides the
processing option in the assembler OPEN macro instruction. Any attempt by
the processing program to write in the data set makes the system give
control to the error analysis (SYNAD) routine.

v In a system-managed tape library environment LABEL=(,,,IN) indicates that
the allocated volume will be used for read-only purposes and that a
read-compatible device can be allocated. For example, if the volume was
written using 128-track recording technology on a 3590 Model B, a 3590
Model E or 3590 Model H device can also be allocated for this request. For
more information about read-compatibility in a system-managed tape library
environment and with other device types, see the tape device selection
information in z/OS DFSMS OAM Planning, Installation, and Storage
Administration Guide for Tape Libraries.

OUT
Indicates that a BSAM data set opened for OUTIN or OUTINX is to be written
in only. The OUT subparameter overrides the processing option in the
assembler OPEN macro instruction. Any attempt by the processing program to
read the data set makes the system give control to the error analysis (SYNAD)
routine.

Retention period or expiration date for data set
Avoid using the RETPD and EXPDT subparameters on the LABEL parameter to
specify a retention period or expiration date for the data set. Use the DD RETPD
parameter (“RETPD parameter” on page 258) or the DD EXPDT parameter
(“EXPDT parameter” on page 193), which allow you to specify a retention period
or expiration date without coding the LABEL parameter.

Defaults
v If no data-set-sequence-number subparameter is specified or if the number is

coded as 0 or 1, the default is the first data set on the tape volume, unless the
data set is passed or cataloged.

v If no label type subparameter is specified, the default is only IBM standard
labels (SL).

Relationship to other parameters
Do not code the following parameters with the LABEL parameter.

* DATA MODIFY

DD: LABEL

220 z/OS V2R1.0 MVS JCL Reference

BURST DDNAME QNAME
CHARS DYNAM SYSOUT
COPIES FLASH

Do not specify the LABEL parameter with the FUNC subparameter of the DCB
parameter. The results are unpredictable.

ISO/ANSI/FIPS Version 3 tape data sets can be protected by use of the ACCODE
parameter.

If you specify a LABEL parameter on a SYSCKEOV DD statement, code
LABEL=(,SL).

Relationship to other control statements
When a VOLUME=REF subparameter refers to an earlier DD statement to use the
same volume(s):
v For tape, the system copies the LABEL label type subparameter from the

referenced DD statement; the copied label type overrides the label type on the
referencing DD statement.

v For direct access, the system uses a LABEL=(,SL) or LABEL=(,SUL)
subparameter from the referencing DD statement. If the referencing DD
statement specifies any other label type, the system copies the LABEL label type
subparameter from the referenced DD statement; the copied label type overrides
the label type on the referencing DD statement.

v You do not need to provide a data set sequence number when the DD DSNAME
parameter references all the members of a GDG or a single member through a
relative generation number; the system obtains the data from the catalog. For all
other data set names, however, you must provide the data set sequence number
on the LABEL parameter.

Data conversion
AL or AUL in the LABEL parameter requests conversion between EBCDIC and
ASCII. You can also request conversion by specifying OPTCD=Q in the data
control block. If the tape is not labeled, LABEL=(,NL), you must specify OPTCD=Q
for conversion to occur.

Examples of the LABEL parameter
Example 1
//DD1 DD DSNAME=HERBI,DISP=(NEW,KEEP),UNIT=TAPE,
// VOLUME=SER=T2,LABEL=(3,NSL,RETPD=188)

DD statement DD1 defines a new data set. The LABEL parameter tells the system:
v This data set is to be the third data set on the tape volume.
v This tape volume has nonstandard labels.
v This data set is to be kept for 188 days.

Although LABEL=(3,NSL,RETPD=188) is valid, it is better practice to use the DD
RETPD parameter as follows:
//DD1 DD DSNAME=HERBI,DISP=(NEW,KEEP),UNIT=TAPE,
// VOLUME=SER=T2,LABEL=(3,NSL),RETPD=188

Example 2

DD: LABEL

Chapter 12. DD statement 221

//DD2 DD DSNAME=A.B.C,DISP=(,CATLG,DELETE),UNIT=3390,LABEL=(,NL)

DD statement DD2 defines a new data set, requests that the system catalog it, and
indicates that the data set has no labels. Each time this data set is used by a
program, the DD statement must include LABEL=(,NL).

Example 3
//DD3 DD DSNAME=SPECS,UNIT=3390,VOLUME=SER=10222,
// DISP=OLD,LABEL=4

DD statement DD3 indicates an existing data set. The LABEL parameter indicates
that the data set is fourth on the tape volume.

Example 4
//STEP1 EXEC PGM=FIV
//DDX DD DSNAME=CLEAR,DISP=(OLD,PASS),UNIT=3390,
// VOLUME=SER=1257,LABEL=(,NSL)
//STEP2 EXEC PGM=BOS
//DDY DD DSNAME=*.STEP1.DDX,DISP=OLD,LABEL=(,NSL)

DD statement DDX in STEP1 indicates an existing data set with nonstandard labels
and requests that the system pass the data set. DD statement DDY in STEP2
receives the data set. DDY contains the label type, because the system does not
obtain the label type through the backward reference in the DSNAME parameter.

Example 5
//DDZ DD DSNAME=CATDS,DISP=OLD,LABEL=(,SUL)

DD statement DDZ indicates an existing, cataloged data set on direct access. The
data set has IBM standard labels and user labels. The LABEL parameter is
required; otherwise, if the DD statement does not contain a LABEL parameter, the
system assumes that a direct access data set has SL labels.

Example 6
//DD7 DD DSNAME=TOM1,DISP=(NEW,KEEP),LABEL=EXPDT=2006/033,
// UNIT=3390,SPACE=(TRK,(1,1)),VOLUME=SER=663344

DD statement DD7 defines a new data set, requests the system to keep the data
set, and indicates that the data set cannot be deleted or written over until the
expiration date of February 2, 2006.

Although LABEL=EXPDT=2006/033 is valid, it is better practice to use the DD
EXPDT parameter as follows:
//DD7 DD DSNAME=TOM1,DISP=(NEW,KEEP),EXPDT=2006/033,
// UNIT=3390,SPACE=(TRK,(1,1)),VOLUME=SER=663344

LGSTREAM parameter
Parameter type

Keyword, optional

Purpose

DD: LABEL

222 z/OS V2R1.0 MVS JCL Reference

Use the LGSTREAM parameter to specify the prefix of the name of the log stream
for an SMS-managed VSAM data set. Use it only for allocating SMS-managed
VSAM data sets that will be accessed using record level sharing (RLS).

Syntax

LGSTREAM=name

The name, up to a maximum of twenty-six characters, consists of one or more
segments. Each segment may contain one to eight characters, which may be
alphabetic, numeric, or national ($, #, @) characters. Segments are joined by
periods, with periods being counted as characters towards the limit of twenty-six.
The first character of each segment must be non-numeric.

Subparameter definition
name

Specifies the name of the prefix the system logger uses for the forward
recovery log stream for recording changes made to the data set when accessed
in the RLS mode. The system logger adds other qualifiers to the end of the
LGSTREAM name to generate the data set name where it keeps the forward
recovery logs.

Defaults
If you do not code a LGSTREAM parameter the system will assign the value
specified in the SMS data class assigned to the data set, if applicable.

Overrides
The system ignores LGSTREAM specifications for non-SMS-managed and
non-VSAM data sets and for VSAM linear data sets.

The LGSTREAM name on a DD statement can override the LOGSTREAMID name
specified in the SMS data class.

Relationship to other parameters
Code a disposition of NEW or of MOD treated as NEW. (The system ignores the
LGSTREAM parameter for existing data sets.)

Do not code the following DD parameters with the LGSTREAM parameter.

* DLM QNAME
BURST DYNAM SEGMENT
CHARS FLASH SPIN
COPIES MODIFY SYSOUT
DATA OUTPUT TERM
DCB=DSORG PATHOPTS UCS
DCB=RECFM PATHMODE
DDNAME PATHDISP

Note: If you code the DSNTYPE parameter with the LGSTREAM parameter, the
DSNTYPE value must be EXTREQ or EXTPREF.

DD: LGSTREAM

Chapter 12. DD statement 223

Example of the LGSTREAM parameter
//FRED DD DSN=VSAM.DATASET,LGSTREAM=SSAB1234.NEW,RECORG=KS,
// KEYLEN=8,KEYOFF=0,DISP=(,KEEP)

In this example, the system will create an SMS-managed VSAM key-sequenced
data set if the storage administrator assigns a data class that provides other
parameters such as SPACE and LOG=ALL, and assigns a POOL storage group. The
system logger will use the name SSAB1234.NEW as the prefix to generate the data
set name where it will keep the forward recovery logs.

LIKE parameter
Parameter type

Keyword, optional — use this parameter only with SMS

Without SMS, use the DCB=dsname form of the DCB parameter described in
“Subparameter definition” on page 137.

Purpose

Use the LIKE parameter to specify the allocation attributes of a new data set by
copying the attributes of a model data set, which must be an existing cataloged
data set and reside on a direct access volume.

The following attributes are copied from the model data set to the new data set:
v Data set organization

– Record organization (RECORG) or
– Record format (RECFM)

v Record length (LRECL)
v Key length (KEYLEN)
v Key offset (KEYOFF)
v Type, PDS, PDSE, basic format, extended format, large format, or HFS

(DSNTYPE)
v Space allocation (AVGREC and SPACE)

Unless you explicitly code the SPACE parameter for the new data set, the system
determines the space to be allocated for the new data set by adding up the space
allocated in the first three extents of the model data set. Therefore, the space
allocated for the new data set will generally not match the space that was
specified for the model data set. Note that regardless of the units in which the
model data set was allocated, the new data set will be allocated in tracks. This
assumes that space was not specified on the JCL and is being picked up from
the model data set.
If a data class with OVERRIDE SPACE(YES) is explicitly specified on the JCL,
the SPACE attributes in the data class will take president over any other SPACE
attributes specified either through JCL or in the modeled data set. See
“DATACLAS parameter” on page 132 for more details.

Note: Directory quantity is picked up as part of the space allocation attribute
except when the model data set is a PDSE. When you create a PDS, the directory
blocks must be specified directly on the JCL by using the SPACE parameter.

DD: LGSTREAM

224 z/OS V2R1.0 MVS JCL Reference

There is no requirement that either the new data set or the model data set must be
SMS-managed. If the new data set is to reside on tape:
v The model data set must be a sequential DASD data set
v Only the record format (RECFM) and the record length (LRECL) attributes are

copied to the new data set.

For VSAM data set compression, the LIKE parameter copies existing data set
attributes. That is, LIKE processing on a model data set that is compressed will
pass the attribute to the new data set. This means that specifying compaction in
DATACLAS is not the only way compression can be achieved.

When you specify the LIKE parameter on a JCL DD statement, the SMS read-only
variable values that correspond to the attributes copied from the model data set
are not available as input to the ACS routines. For more information on SMS
read-only variables, see z/OS DFSMSdfp Storage Administration.

If SMS is not installed or is not active, the system syntax checks and then ignores
the LIKE parameter.

The retention period (RETPD) or expiration date (EXPDT) is not copied to the new
data set.

Note: Do not use the LIKE parameter to copy attributes from a temporary data set
(&&dsname), partitioned data set if a member name is included, and relative
generation number for a GDG.

Syntax

LIKE=data-set-name

Subparameter definition
data-set-name

Specifies the data set name (dsname) of the model data set whose attributes
are to be used as the attributes of the new data set.

Overrides
Any attributes obtained using the LIKE parameter override the corresponding
attributes in the DATACLAS parameter.

Any attributes you specify on the same DD statement with the following
parameters override the corresponding attributes obtained from the model data set.
v AVGREC (record request and space quantity)
v DSNTYPE (type, PDS, PDSE, basic format, extended format, large format, or

HFS)
v KEYLEN (key length)
v KEYOFF (key offset)
v LRECL (record length)
v RECORG (record organization) or RECFM (record format)
v SPACE (average record length, primary, secondary, and directory quantity)

DD: LIKE

Chapter 12. DD statement 225

Relationship to other parameters
Do not code the following DD parameters with the LIKE parameter.

DYNAM
REFDD
SYSOUT

Examples of the LIKE parameter
Example 1
//SMSDS6 DD DSNAME=MYDS6.PGM,LIKE=MYDSCAT.PGM,DISP=(NEW,KEEP)

In the example, the data set attributes used for MYDS6.PGM are obtained from the
cataloged model data set MYDSCAT.PGM.

Example 2
//SMSDS7 DD DSNAME=MYDS7.PGM,LIKE=MYDSCAT.PGM,DISP=(NEW,KEEP),
// LRECL=1024

In the example, the data set attributes used for MYDS7.PGM are obtained from the
cataloged model data set MYDSCAT.PGM. Also, the logical record length of 1024
overrides the logical record length obtained from the model data set.

LRECL parameter
Parameter type

Keyword, optional

Purpose

Use the LRECL parameter to specify the length of the records in a new data set.

Code the LRECL parameter when you want to
v Specify the logical record length for the data set, or
v With SMS, override the record length defined in the data class of the data set.

LRECL applies to data sets with the BPAM, BSAM, EXCP, QISAM, and QSAM
access methods, and with SMS, to VSAM data sets.

Syntax

LRECL=(bytes)

Subparameter definition
bytes

Specifies (1) the length, in bytes, for fixed length records or (2) the maximum
length, in bytes, for variable-length records.

The value of bytes is:
v 1 to 32,760 for non-VSAM data sets.

DD: LIKE

226 z/OS V2R1.0 MVS JCL Reference

v 1 to 32,761 for VSAM key-sequenced (KS), entry-sequenced (ES), or relative
record (RR) data sets. (LRECL does not apply to VSAM linear space,
RECORG=LS, data sets.)
For VSAM key-sequenced (KS) data sets, a record length must be specified,
either explicitly with the LRECL or LIKE parameter, or in the data class for
the data set. The record length must be greater than the key length.

Note: When RECFM is F or U, the length must not exceed DCB BLKSIZE. For
RECFM=D or V, the length must be a minimum of 5 and a maximum of
BLKSIZE minus 4 to account for the 4 byte record descriptor word (RDW)
preceding the data in every record. For RECFM=VS, the length can exceed
BLKSIZE. For unblocked records when DCB RKP=0, the length is for only the
data portion of the record. LRECL=0 is valid only for RECFM=U.

Additional syntax for LRECL=(bytes)
LRECL=nnnnnK

Specifies the length in kilobytes for variable-length spanned records in
ISO/ANSI/FIPS Version 3 tape data sets that are processed by the Data Facility
Product using the extended logical record interface (XLRI). nnnnn is from 1
through 16,383 and indicates multiples of 1024 bytes. The value in the DCB
macro must already be coded as LRECL=0K or LRECL=nnnnnK. If a K is
coded for any other type of data set, only the numeric value of LRECL is
recognized.

LRECL=X
For QSAM only, specifies that the logical record length exceeds 32,760 bytes for
variable-length spanned records. This option is not valid for ISO/ANSI/FIPS
Version 3 variable-length records.

Overrides
LRECL overrides the record length specified in the data set label, and with SMS,
LRECL overrides the record length defined in the DATACLAS parameter for the
data set. See “Overrides” on page 134.

Relationship to other parameters
Do not code the following DD parameters with the LRECL parameter.

DCB=LRECL
DDNAME
DYNAM

Examples of the LRECL parameter
Example 1
//DD1B DD DSNAME=EVER,DISP=(NEW,KEEP),UNIT=3380,
// RECFM=FB,LRECL=326,SPACE=(23472,(200,40))

In the example, the logical record length of 326 is used for the new data set EVER.

Example 2
//SMSDS2 DD DSNAME=MYDS2.PGM,DATACLAS=DCLAS02,DISP=(NEW,KEEP),
// LRECL=256

In the example, the logical record length of 256 overrides the logical record length
defined in the data class for the data set.

DD: LRECL

Chapter 12. DD statement 227

MAXGENS parameter
Parameter type

Keyword, optional

Purpose

Use the MAXGENS parameter to specify the maximum number of generations for
members in a Version 2 PDSE.

Use MAXGENS only with Version 2 PDSEs. This function requires APAR OA42358.

Syntax

MAXGENS=maximum-generations

Subparameter definition
maximum-generations

Specifies the maximum number of generations for members in a Version 2
PDSE.

The value is 0 to 2,000,000,000. The default is 0.

The value may be limited by MAXGENS_LIMIT in the IGDSMSxx member of
PARMLIB.

Relationship to other parameters
Do not code the MAXGENS parameter if DSNTYPE= (LIBRARY,2) is not in effect.

Examples of the MAXGENS parameter
Example 1 MAXGENS Parameter
//SAM00001 DD DISP=(NEW,CATLG),DSN=IBMUSER.TEST1.PDSE00,
// DSNTYPE=(LIBRARY,2),LRECL=800,BLKSIZE=8000,RECFM=FB,
// VOL=SER=338001,
// UNIT=SYSDA,SPACE=(CYL,(50,50,1)),MAXGENS=10

MGMTCLAS parameter
Parameter type

Keyword, optional

This parameter is useful only with SMS-managed data sets.

Without SMS, there are no DD parameters that provide this function.

Purpose

Use the MGMTCLAS parameter to specify a management class for a new
SMS-managed data set. The storage administrator at your installation defines the
names of the management classes you can code on the MGMTCLAS parameter.

DD: MAXGENS

228 z/OS V2R1.0 MVS JCL Reference

|

|

|

|

|
|

|

|

||
|
|

|

|
|
|

|

|
|

|

|

|

|

|
|
|
|

|

After the data set is allocated, the attributes in the management class control:
v Migration of the data set, including migration from primary storage to

DFSMShsm-owned storage to archival storage
v Backup of the data set, including frequency of backup, number of versions, and

retention criteria for backup versions
v Automatic deletion of data sets
v Automatic release of unused space in data sets

The Hierarchical Storage Manager (DFSMShsm) or a functionally equivalent
program performs these functions.

If SMS is not installed or is not active, the system syntax checks and then ignores
the MGMTCLAS parameter.

SMS ignores the MGMTCLAS parameter if you specify it for an existing data set.

The use of a management class can be protected by RACF.

References

See z/OS DFSMS Using the Interactive Storage Management Facility for information
on how to use ISMF to view your installation-defined management classes.

Syntax

MGMTCLAS=management-class-name

Subparameter definition
management-class-name

Specifies the name of a management class to be used for management of the
SMS-managed data set after the data set is allocated.

The name, one to eight alphanumeric or national ($ # @) characters, is defined
by the storage administrator at your installation.

Defaults
If you do not specify MGMTCLAS for a new data set and the storage
administrator has provided an installation-written automatic class selection (ACS)
routine, the ACS routine may select a management class for the data set. Check
with your storage administrator to determine if an ACS routine will select a
management class for the new data set, in which case you do not need to specify
MGMTCLAS.

Overrides
You cannot override management class attributes via JCL parameters. With SMS,
MGMTCLAS overrides the attributes defined in the DATACLAS parameter for the
data set. See “Overrides” on page 134.

The management class for a data set defines a maximum value for the expiration
date or retention period of the data set. This maximum limits the values that are
specified on the EXPDT or RETPD parameter, or defined in the data class for the
data set.

DD: MGMTCLAS

Chapter 12. DD statement 229

An ACS routine can override the management class that you specify on the
MGMTCLAS parameter.

Relationship to other parameters
Do not code the following DD parameters with the MGMTCLAS parameter.

* DYNAM DATA QNAME
DDNAME

Code MGMTCLAS only when you specify a storage class for the data set (via the
STORCLAS parameter) or an ACS routine selects a storage class.

Example of the MGMTCLAS parameter
//SMSDS1 DD DSNAME=MYDS1.PGM,DATACLAS=DCLAS1,STORCLAS=SCLAS1,
// MGMTCLAS=MCLAS01,DISP=(NEW,KEEP)

In the example, SMS uses the attributes in the management class named MCLAS01
to handle the migration and backup of the SMS-managed data set. Note that
installation-written ACS routines may override the specified management class,
storage class, and data class.

MODIFY parameter
Parameter type

Keyword, optional

Purpose

Use the MODIFY parameter to specify a copy-modification module that tells JES
how to print this sysout data set on a 3800 Printing Subsystem. The module can
specify the following:
v Legends.
v Column headings.
v Where and on which copies the data is to be printed.

The module is defined and stored in SYS1.IMAGELIB using the IEBIMAGE utility
program.

Note: MODIFY applies only for the 3800 Printing Subsystem Models 1 and 2 and
the 3800 Printing Subsystem Models 3, 6, and 8 in compatibility mode.

References

For more information on the copy modification module and the IEBIMAGE utility
program, see z/OS DFSMSdfp Utilities.

Syntax

MODIFY= {module-name }
{(module-name[,trc])}

DD: MGMTCLAS

230 z/OS V2R1.0 MVS JCL Reference

v You must code the module-name.

v The trc subparameter is optional. If you omit it, you can omit the parentheses. However,
if you omit it, you must not code it as a null; for example, MODIFY=(TAB1,) is invalid.

Subparameter definition
module-name

Identifies a copy-modification module in SYS1.IMAGELIB. The module-name
is 1 through 4 alphanumeric or national ($, #, @) characters.

trc
Identifies which table-name in the CHARS parameter is to be used. This table
reference character is 0 for the first table-name specified, 1 for the second, 2
for the third, or 3 for the fourth. The CHARS parameter is on the following, in
override order:
1. This DD statement.
2. A referenced OUTPUT JCL statement.
3. A statement in the library member specified on the OUTPUT JCL

PAGEDEF parameter.
4. A statement in the SYS1.IMAGELIB member obtained by default.
5. A JES3 initialization statement.

Defaults
If no MODIFY parameter is specified, JES3 uses an installation default specified at
initialization. JES2 provides no installation default at initialization.

If you do not specify trc or if the trc value is greater than the number of
table-names in the CHARS parameter, JES2 uses the first table named in the
CHARS parameter and JES3 uses the default character arrangement table.

Overrides
A MODIFY parameter on a sysout DD statement overrides an OUTPUT JCL
MODIFY parameter.

Note: A null first subparameter is invalid in a MODIFY parameter on a DD
statement, but is permitted on an OUTPUT JCL statement.

Relationship to other parameters
Do not code the following parameters with the MODIFY parameter.

* DISP PROTECT
AMP DSID QNAME
DATA DYNAM SUBSYS
DDNAME LABEL VOLUME

Relationship to other control statements
MODIFY can also be coded on the following:
v The OUTPUT JCL statement.
v The JES3 //*FORMAT PR statement.
v The JES2 /*OUTPUT statement.

DD: MODIFY

Chapter 12. DD statement 231

The second character of each logical record can be a TRC code, so that each record
can be printed in a different font. This way of specifying fonts is indicated by the
OUTPUT JCL TRC parameter.

Example of the MODIFY parameter
//DD1 DD UNIT=3800,MODIFY=(A,0),CHARS=(GS15,GS10)

In this example, the MODIFY parameter requests that the data in the
copy-modification module named A replace variable data in the data set to be
printed by the 3800. Module A defines which positions are to be replaced and
which copies are to be modified. The second subparameter in MODIFY specifies
that the first character arrangement table in the CHARS parameter, GS15, be used.

OUTLIM parameter
Parameter type

Keyword, optional

Purpose

Use the OUTLIM parameter to limit the number of logical records in the sysout
data set defined by this DD statement. When the limit is reached, the system exits
to the SYSOUT limit exit routine. If the installation supplies an installation-written
routine, the routine can determine whether to terminate the job or increase the
limit. If the installation does not supply a routine, the system terminates the job.

Note: OUTLIM is valid only on a DD statement with a SYSOUT parameter.

References

For more information on the SYSOUT limit exit routine, see z/OS MVS Installation
Exits .

Syntax

OUTLIM=number

Subparameter definition
number

Specifies the maximum number of logical records. The number is 1 through 8
decimal digits from 1 through 16777215.

Default
(1) If no OUTLIM parameter is specified or OUTLIM=0 is coded and (2) if output
is not limited by JES control statements, JES3 uses an installation default specified
at initialization; JES2 provides no installation default at initialization.

Relationship to other parameters
Code the OUTLIM parameter only on a DD statement with the SYSOUT
parameter.

DD: MODIFY

232 z/OS V2R1.0 MVS JCL Reference

Do not code the OUTLIM parameter with the DCB subparameters CPRI or
THRESH; these subparameters can alter the OUTLIM value.

On dump DD statements: On a SYSABEND or SYSUDUMP DD statement:
v JES3 ignores the OUTLIM parameter.
v JES2 limits the output as specified on the OUTLIM parameter.

Not only can JECL statement limit output, but the OUTLIM parameter is applied
independently of other limits.

Relationship to other control statements
Output can also be limited by the following:
v The LINES, BYTES, PAGES, or CARDS parameter of the JES2 /*JOBPARM

statement.
v The LINES, BYTES, PAGES, or CARDS parameter of the JES3 //*MAIN

statement.
v The LINES, BYTES, PAGES, or CARDS parameter of the JOB statement.

Example of the OUTLIM parameter
//OUTDD DD SYSOUT=F,OUTLIM=1000

The limit for the number of logical records is 1000.

OUTPUT parameter
Parameter type

Keyword, optional

Purpose

Use the OUTPUT parameter with the SYSOUT parameter to associate a sysout data
set explicitly with an OUTPUT JCL statement. JES processes the sysout data set
using the options from this DD statement combined with the options from the
referenced OUTPUT JCL statement.

When the OUTPUT parameter references more than one OUTPUT JCL statement,
the system produces separate output for each OUTPUT JCL statement.

Note: Code the OUTPUT parameter only on a DD statement with either a
SYSOUT or SUBSYS parameter. If you code the OUTPUT parameter without
SYSOUT, the system checks the OUTPUT parameter for syntax and ignores it,
unless you also code the SUBSYS parameter. If you code the SUBSYS parameter,
the system passes the OUTPUT parameter to the subsystem identified in the
SUBSYS parameter. The subsystem might support the OUTPUT parameter or
might ignore it. The Infoprint Server subsystem, for example, uses the OUTPUT
parameter to process a sysout data set. For more information about the Infoprint
Server subsystem, refer to z/OS Infoprint Server User's Guide.

DD: OUTLIM

Chapter 12. DD statement 233

Syntax

OUTPUT= {reference }
{(reference[,reference]...)}

A reference is one of the following:

*.name
*.stepname.name
*.stepname.procstepname.name

v You can omit the parentheses if you code only one reference.

v You must not code a null in an OUTPUT parameter. For example, OUTPUT=(,*.name) is
invalid.

v You can reference a maximum of 128 OUTPUT JCL statements on one OUTPUT
parameter.

v You can code references in any combination. For example, the following are valid:

//EXA DD SYSOUT=A,OUTPUT=(*.name,*.name,*.stepname.name)
//EXB DD SYSOUT=A,OUTPUT=(*.stepname.name,
// *.stepname.procstepname.name,*.name)

v You can code the references to OUTPUT JCL statements in any order.

Subparameter definition
*.name

Refers to an earlier OUTPUT JCL statement with name in its name field. The
system searches for the OUTPUT JCL statement first in the same step, then
before the first EXEC statement of the job.

*.stepname.name
Refers to an earlier OUTPUT JCL statement, name, in this step or an earlier
step, stepname, in the same job.

*.stepname.procstepname.name
Refers to an OUTPUT JCL statement in a cataloged or in-stream procedure.
Stepname is the name of this job step or an earlier job step that calls the
procedure, procstepname is the name of the procedure step that contains the
OUTPUT JCL statement, and name is the name field of the OUTPUT JCL
statement.

Defaults
If you do not code an OUTPUT parameter on a sysout DD statement, JES obtains
processing options for the sysout data set in the following order:
1. From each OUTPUT JCL statement containing DEFAULT=YES in the same step.
2. From each OUTPUT JCL statement containing DEFAULT=YES before the first

EXEC statement in the job, provided that the step contains no OUTPUT JCL
statements with DEFAULT=YES.

3. Only from the sysout DD statement, provided that neither the step nor job
contains any OUTPUT JCL statements with DEFAULT=YES.

If you do not specify a SYSOUT class on the DD statement, JES3 uses the
truncation value associated with the first referenced (or defaulted) OUTPUT
statement that does specify a class. If this DD statement specifies an OUTPUT
class, JES3 accepts that class and its associated truncation value.

DD: OUTPUT

234 z/OS V2R1.0 MVS JCL Reference

Overrides
When an OUTPUT JCL statement is used with the sysout DD statement to specify
processing, JES handles parameters as follows:
v If a parameter appears on the DD statement, JES uses the parameter.
v If a parameter appears only on the OUTPUT JCL statement, JES uses the

parameter.
v If the same parameter appears on both statements, JES uses the DD parameter.

JES uses the whole overriding parameter, ignoring the whole overridden
parameter. If a subparameter is left off the overriding parameter, the system does
not pick up that subparameter from the overridden parameter. For example:

//EXAMP2 OUTPUT FLASH=(ABCD,3)
//FVZ2 DD SYSOUT=F,OUTPUT=*.EXAMP2,FLASH=(EFGH)

Only EFGH is used. The system ignores all of the FLASH parameter on the
OUTPUT JCL statement, including the second parameter.

Relationship to other parameters
Code the OUTPUT parameter only on a DD statement with the SYSOUT or
SUBSYS parameter.

With INTRDR subparameter in SYSOUT parameter: Do not code an OUTPUT
parameter when the SYSOUT parameter specifies a JES2 internal reader by an
INTRDR parameter.

Null subparameters: A null first subparameter is invalid in a FLASH or MODIFY
parameter on a DD statement, but is permitted on an OUTPUT JCL statement. For
example, MODIFY=(,3) is valid only on an OUTPUT JCL statement.

SYSOUT third subparameter: You cannot reference a JES2 /*OUTPUT statement
using the third subparameter of the SYSOUT parameter if either of the following is
also coded:
v The OUTPUT parameter on the same DD statement.
v An OUTPUT JCL statement containing DEFAULT=YES in the same step or

before the EXEC statement of the job, when the DD statement does not contain
an OUTPUT parameter.

DEFAULT parameter on OUTPUT JCL statement: If you code DEFAULT=YES on
an OUTPUT JCL statement, you can still refer to that OUTPUT JCL statement in
the OUTPUT parameter of a sysout DD statement.

Location in the JCL
All referenced OUTPUT JCL statements must precede the DD statement that refers
to them. If the referencing DD statement appears in an in-stream or cataloged
procedure, the referenced OUTPUT JCL statement must precede the DD statement
in the procedure. A sysout DD statement in a procedure cannot refer to an
OUTPUT JCL statement in the calling step.

No match for OUTPUT name
If the system finds no match for the name coded in the OUTPUT parameter, the
system issues a JCL error message and fails the job.

DD: OUTPUT

Chapter 12. DD statement 235

Processing options in multiple references
A sysout DD statement can refer to more than one OUTPUT JCL statement, either
explicitly in an OUTPUT parameter containing more than one reference or
implicitly when several default OUTPUT JCL statements apply. The processing
options for a sysout data set come from one sysout DD statement and one
OUTPUT JCL statement. In multiple references, each combination of sysout DD
statement and one of the referenced OUTPUT JCL statements produces a separate
set of printed or punched output.

Processing options are not cumulative across a group of OUTPUT JCL statements.

Note that in JES3, when TYPE=DSISO and/or TRUNC=YES|NO are specified on
the SYSOUT initialization statement, and a sysout DD statement that does not
specify a class references multiple OUTPUT statements, the data set
DSISO/TRUNC characteristics are derived from the first class specification
encountered in the OUTPUT statements. If the DD statement does specify a class,
the DSISO/TRUNC characteristics are derived from that class.

Examples of the OUTPUT parameter
Example 1
//J1 JOB ,’MARY LUDWIG’
//JOUT OUTPUT CLASS=C,FORMS=RECP,INDEX=6
//STEP1 EXEC PGM=XYZ
//SOUT OUTPUT CLASS=H,BURST=YES,CHARS=GT12,FLASH=BLHD
//ALL DD SYSOUT=(,),OUTPUT=(*.JOUT,*.SOUT),COPIES=5
//IN DD *

.
(data)
.

/*

The OUTPUT parameter references two OUTPUT JCL statements. Therefore, the
system prints the single sysout data set twice:
v For DD ALL combined with OUTPUT JOUT, the sysout data set is printed in

class C. In the installation, output class C is printed on a 3211 Printer.
Combining the parameters from the DD and OUTPUT JCL statements, the
system prints 5 copies of the data set on form RECP and indents the left margin
5 spaces.

v For DD ALL combined with OUTPUT SOUT, the sysout data set is printed in
class H. In the installation, output class H is printed on a 3800 Printing
Subsystem. Combining the parameters from the DD and OUTPUT JCL
statements, the system prints 5 copies of the data set with the forms-overlay
frame named BLHD using character-arrangement table GT12 and bursts the
output.

Example 2
//J6 JOB ,’SUE THACKER’
//OUTA OUTPUT DEST=HQ
//STEP1 EXEC PGM=RDR
//OUTB OUTPUT CONTROL=DOUBLE
//DS1 DD SYSOUT=A,OUTPUT=(*.OUTA,*.OUTB)
//STEP2 EXEC PGM=WRT
//OUTC OUTPUT DEST=ID2742
//DS2 DD SYSOUT=A,OUTPUT=(*.OUTC,*.STEP1.OUTB)

The OUTPUT parameter on DS1 references:
v The job-level OUTPUT JCL statement OUTA to send the sysout data set to HQ.

DD: OUTPUT

236 z/OS V2R1.0 MVS JCL Reference

v The step-level OUTPUT JCL statement OUTB to print the sysout data set
double-spaced on the local 3800 Printing Subsystem used for output class A.

The OUTPUT parameter on DS2 references:
v OUTPUT JCL statement OUTB in the first step to print the sysout data set

double-spaced on the local 3800 Printing Subsystem used for output class A.
v OUTPUT JCL statement OUTC in the same step to send the sysout data set to

userid ID2742, which is attached to the local system.

Note: The references to OUTPUT JCL statements are in no particular order.

PATH parameter
Parameter type: Keyword, optional — use this parameter only with a UNIX file.

Purpose: Use the PATH parameter to specify the name of the UNIX file.

Reference: For information on UNIX files, see z/OS UNIX System Services User's
Guide.

Note: Allocation verifies the validity of the pathname. However, there is no ENQ
or locking of the pathname, so it is possible to modify a pathname component,
even in an asynchronous process. Doing this may cause errors in OPEN or
unexpected results with no errors reported.

Syntax

PATH=pathname

v Enclose the pathname value in single quotation marks if it contains a character other
than:

– Uppercase letters

– Numbers

– National characters

– Slash (/)

– Asterisk (*)

– Plus (+)

– Hyphen (-)

– Period (.)

– Ampersand (&)

v Enclose the pathname value in single quotation marks if you continue it on another
statement. For example:

//EXA DD PATH=’/u/payroll/directory171/DEPT64directory/accountingDIR/-
// personhoursfile’

See Chapter 3, “Format of statements,” on page 13 for the rules on continuing
parameters in apostrophes.

Subparameter definition
pathname

Identifies a file in a z/OS UNIX file system. The pathname consists of the
names of the directories from the root to the file being identified, and then the
name of the file.

DD: OUTPUT

Chapter 12. DD statement 237

Each directory or filename:
v Is preceded by a slash (/). The system treats any consecutive slashes as a

single slash.
v Can contain symbolic parameters.
v Has a length of 1 through 254 characters, not including the slash.
v Consists of printable characters from X'40' through X'FE'. These printable

characters include all the characters that can be used in a portable filename,
plus additional characters. For a portable filename, use only the portable
filename character set, which is listed in z/OS UNIX System Services User's
Guide. A filename can contain characters outside this range, but it cannot be
specified in JCL.

v Is subject to symbolic substitution. An ampersand (&) (X'50'), followed by a
character string that matches a valid symbolic parameter in the JCL, causes a
substitution to occur, based on the syntax rules for symbolic parameters.

v Is case-sensitive. Thus, /u/joe and /u/JOE and /u/Joe define three different
files.

The pathname:
v Has the form:

/name1/name2/name3/.../namen

v Begins with a slash.
v Has a length of 1 through 255 characters. The system checks the length after

substituting for any symbols and before compressing any consecutive
slashes.

Defaults
Defaults for a DD statement with a PATH parameter are:
v If the PATHDISP parameter is not specified, the normal and abnormal

disposition is KEEP.
v If the PATHOPTS parameter is not specified, the status is OLD.

Relationship to other parameters
Only the following JCL parameters can be used with the PATH parameter:

BLKSIZE
BUFNO
DSNTYPE=PIPE
DUMMY
FILEDATA
LRECL
NCP
PATHDISP
PATHMODE
PATHOPTS
RECFM
TERM

Do not code PATHDISP, PATHMODE, or PATHOPTS on a DD statement without a
PATH parameter.

Do not code a PATH parameter on the following DD statements:

DD: PATH

238 z/OS V2R1.0 MVS JCL Reference

JOBLIB
STEPLIB
SYSABEND
SYSMDUMP
SYSUDUMP

Coding the PATH parameter is useful only when the following is true:
v The program being run has been coded to recognize and process the PATH

specification. Programs designed to use such DD statements must either:
– Use dynamic allocation information retrieval to obtain the information

specified for PATH, PATHOPTS, and PATHMODE, and pass it to the open()
callable service. See z/OS UNIX System Services User's Guide for details on
using open().

– Use the C/370™ fopen(//dd:) function. fopen() handles the differences
between DD statements with PATH and DSN specified. See z/OS UNIX
System Services User's Guide for details on using fopen().

If:
v You specify either:

– OCREAT alone
or:

– Both OCREAT and OEXCL

on the PATHOPTS parameter,
And if:

v The file does not exist,

Then MVS performs an open() function. The options from PATHOPTS, the
pathname from the PATH parameter, and the options from PATHMODE (if
specified) are used in the open(). MVS uses the close() function to close the file
before the application program receives control.

For status group options other than OCREAT and OEXCL, the description in this
documentation assumes that the application passes the subparameters to the
open() function without modification. That is, this application uses dynamic
allocation information retrieval (the DYNALLOC macro) to retrieve the values
specified for PATHOPTS and passes the values to the open() function. The
application program can ignore or modify the information specified in the JCL.

Relationship to other statements
A PATH parameter other than /dev/null on a DD statement that overrides a
procedure statement nullifies the DUMMY parameter on the overridden statement.

Backward and forward references to a DD statement containing a PATH parameter
are not permitted. For backward references, the referring DD statement is treated
as an error. For forward references, the DD statement referred to is treated as an
error.

Dummy z/OS UNIX files
The following DD statements define a dummy z/OS UNIX file. The statements are
equivalent; for DUMMY3, the extra slashes (/) are compressed to single slashes.

DD: PATH

Chapter 12. DD statement 239

//DUMMY1 DD PATH=’/dev/null’
//DUMMY2 DD DUMMY,PATH=/ANYNAME
//DUMMY3 DD PATH=’//dev///null’

The system checks the syntax of pathnames specified with DUMMY. In the DD
statement DUMMY2, the pathname must be a valid name.

Example of the PATH parameter
//DD1 DD PATH=’/usr/applics/pay.time’,PATHOPTS=ORDONLY

The DD statement specifies the z/OS UNIX file pay.time that is listed in the
directory applics. The directory applics is listed in the directory usr. The
PATHOPTS parameter specifies that the program can only read the file.

The effects of the missing PATH parameters are:
v The file must already exist, because the statement does not specify

PATHOPTS=OCREAT.
v The system will keep the file for both normal and abnormal step terminations,

because the statement does not contain a PATHDISP parameter.
v The access permissions were set with a PATHMODE parameter when the file

was created.

PATHDISP parameter
Parameter type: Keyword, optional — use this parameter only with a UNIX file.

Purpose: Use the PATHDISP parameter to specify the disposition of a UNIX file
when the job step ends normally or abnormally.

Reference: For information on UNIX files, see z/OS UNIX System Services User's
Guide.

Syntax

PATHDISP={normal-termination-disposition }
={(normal-termination-disposition,abnormal-termination-disposition)}

PATHDISP=([KEEP][,KEEP])
=([DELETE][,DELETE])

A normal-termination-disposition or abnormal-termination-disposition is
one of the following:

KEEP
DELETE

v If you omit the normal-termination-disposition parameter, you must code a comma to
indicate its absence. For example: PATHDISP=(,DELETE)

v If you code only the normal-termination-disposition parameter, you may omit the
enclosing parentheses.

Subparameter definition
KEEP

Specifies that the file should be kept:

DD: PATH

240 z/OS V2R1.0 MVS JCL Reference

v When the step ends normally, KEEP is the first subparameter.
v When the step ends abnormally, KEEP is the second subparameter.

DELETE
Specifies that the file should be deleted:
v When the step ends normally, DELETE is the first subparameter.
v When the step ends abnormally, DELETE is the second subparameter.

Deleting a file deletes the name for the file. If the file has other names created
by link() functions, DELETE does not delete the file itself. The file persists
until all of its names are deleted.

Defaults
The system uses KEEP for both the normal and abnormal dispositions:
v If you do not code a value on the PATHDISP parameter — for example,

PATHDISP=(,)
v If you do not code a PATHDISP on a DD statement with a PATH parameter

If you code only a normal-termination-disp, such as PATHDISP=DELETE, the
abnormal disposition is the same as the normal disposition.

If you code only an abnormal-termination-disp, such as PATHDISP=(,DELETE), the
system uses KEEP for the normal disposition.

Relationship to other parameters
Code the PATHDISP parameter only on a DD statement that contains a PATH
parameter.

You can code the following parameters with the PATHDISP parameter:

BLKSIZE
BUFNO
DSNTYPE=PIPE
DUMMY
FILEDATA
LRECL
NCP
PATH
PATHMODE
PATHOPTS
RECFM
TERM

Example of the PATHDISP parameter
//DD1 DD PATH=’/usr/applics/pay.time’,PATHDISP=(KEEP,DELETE)

The DD statement identifies a file that already exists. The DD statement requests
that the system keep the file, if the step ends normally. If the step ends abnormally,
the system deletes the filename and, if no other names were set using link(),
deletes the file itself.

PATHMODE parameter
Parameter type: Keyword, optional — use this parameter only with a UNIX file.

DD: PATHDISP

Chapter 12. DD statement 241

Purpose: Use the PATHMODE parameter to specify the file access attributes when
the system is creating the UNIX file named on the PATH parameter. Creating the
file is specified by a PATHOPTS=OCREAT parameter.

Reference: For information on UNIX files, see the z/OS UNIX System Services User's
Guide.

Syntax

PATHMODE={file-access-attribute }
{(file-access-attribute[,file-access-attribute]...)}

A file-access-attribute is one of the following:

For file owner class: SIRUSR
SIWUSR
SIXUSR
SIRWXU

For file group class: SIRGRP
SIWGRP
SIXGRP
SIRWXG

For file other class: SIROTH
SIWOTH
SIXOTH
SIRWXO

To set user and group IDs: SISUID
SISGID

v You can specify up to 14 file-access-attributes.

v The file-access-attributes can be in any order.

v Duplicate file-access-attributes are treated as one specification.

v Do not code null positions. For example, do not code PATHMODE=(,file-access-attribute)
or PATHMODE=(file-access-attribute,,file-access-attribute).

Subparameter definition

For file owner class
The file owner class consists of the user who created the file or who currently
owns the file. The user is identified by an OMVS user ID (UID).

SIRUSR
Specifies permission for the file owner to read the file.

SIWUSR
Specifies permission for the file owner to write the file.

SIXUSR
Specifies permission for the file owner either:
v To search, if the file is a directory
v To execute the program in the file, for a file other than a directory

SIRWXU
Specifies permission for the file owner either:
v To read, write, and search, if the file is a directory
v To read, write, and execute, for a file other than a directory

DD: PATHMODE

242 z/OS V2R1.0 MVS JCL Reference

This value has the same effect as specifying all three parameters (SIRUSR,
SIWUSR, and SIXUSR).

For file group class
The file group class contains the users who are in the same group as the file. The
group is identified by an OMVS group ID (GID).

SIRGRP
Specifies permission for users in the file group class to read the file.

SIWGRP
Specifies permission for users in the file group class to write the file.

SIXGRP
Specifies permission for users in the file group class either:
v To search, if the file is a directory
v To execute the program in the file, for a file other than a directory

SIRWXG
Specifies permission for users in the file group class either:
v To read, write, and search, if the file is a directory
v To read, write, and execute, for a file other than a directory

This value has the same effect as specifying all three parameters (SIRGRP,
SIWGRP, and SIXGRP).

For file other class
The file other class consists of all users other than the file owner or the members
of the file's group who can access z/OS UNIX resources on the MVS system.

SIROTH
Specifies permission for users in the file other class to read the file.

SIWOTH
Specifies permission for users in the file other class to write the file.

SIXOTH
Specifies permission for users in the file other class either:
v To search, if the file is a directory
v To execute the program in the file, for a file other than a directory

SIRWXO
Specifies permission for users in the file other class either:
v To read, write, and search, if the file is a directory
v To read, write, and execute, for a file other than a directory

This value has the same effect as specifying all three parameters (SIROTH,
SIWOTH, and SIXOTH).

To set user and group IDs in a program
These controls allow users to run a program with the user ID of the file owner or
the group ID of the file owner of the program file. They control access
authorization a particular program is running. The file owner can set the controls
any time, not just in the DD statement.

Do not specify these controls in JCL, because they will be reset when the file is
written.

DD: PATHMODE

Chapter 12. DD statement 243

The system overrides the SISUID and SISGID parameters and sets the controls so
that no users can run the program when either:
v The DD statement creates the file
v A user writes in the file, thus changing the program

Then, for the program to be run, the file owner must reset the controls.

SISUID
Specifies that the system set the user ID of the process to be the same as the
user ID of the file owner when the file is run as a program.

SISGID
Specifies that the system set the group ID of the process to be the same as the
group ID of the file owner when the file is run as a program. The group ID is
taken from the directory in which the file resides.

Defaults
When creating a new z/OS UNIX file, if you do not code a PATHMODE on a DD
statement with a PATH parameter, the system sets the permissions to 0, which
prevents access by all users. If the z/OS UNIX file already exists, PATHMODE is
checked for syntax but ignored. The permission bits are left as they are set.

Relationship to other parameters
Code the PATHMODE parameter only on a DD statement that contains both a
PATH parameter and a PATHOPTS parameter with OCREAT.

If OCREAT is not on the statement, the PATHMODE parameter is checked for
syntax and then ignored.

You can code the following parameters with the PATHMODE parameter:

BLKSIZE
BUFNO
DSNTYPE=PIPE
DUMMY
FILEDATA
LRECL
NCP
PATH
PATHMODE
PATHOPTS
RECFM
TERM

If:
v You specify either:

– OCREAT alone
or:

– Both OCREAT and OEXCL

on the PATHOPTS parameter,
And if:

v The file does not exist,

DD: PATHMODE

244 z/OS V2R1.0 MVS JCL Reference

Then MVS performs an open() function. The options from PATHOPTS, the
pathname from the PATH parameter, and the options from PATHMODE (if
specified) are used in the open(). MVS uses the close() function to close the file
before the application program receives control.

For status group options other than OCREAT and OEXCL, the description in this
documentation assumes that the application passes the subparameters to the
open() function without modification. That is, this application uses dynamic
allocation information retrieval (the DYNALLOC macro) to retrieve the values
specified for PATHOPTS and passes the values to the open() function. The
application program can ignore or modify the information specified in the JCL.

Example of the PATHMODE parameter
//DD1 DD PATH=’/usr/applics/pay.time’,PATHDISP=(KEEP,DELETE),
// PATHOPTS=(OWRONLY,OCREAT,OEXCL),PATHMODE=(SIRWXU,SIRGRP)

The DD statement requests that the file named in the PATH parameter be created.
The PATHMODE parameter specifies that the file owner can read, write, and
search or execute the file and that users in the file group can read the file.

PATHOPTS parameter
Parameter type: Keyword, optional — use this parameter only with aUNIX file.

Purpose: Use the PATHOPTS parameter to specify the access and status for the
UNIX file named in the PATH parameter.

Reference: For information on UNIX files, see z/OS UNIX System Services User's
Guide.

Syntax

PATHOPTS={file-option }
{(file-option[,file-option]...)}

A file-option can be in the access or status group and is one of the following:

Access group: ORDONLY
OWRONLY
ORDWR

Status group: OAPPEND
OCREAT
OEXCL
ONOCTTY
ONONBLOCK
OSYNC
OTRUNC

DD: PATHMODE

Chapter 12. DD statement 245

v You can specify up to 7 file-options.

v The file-options can be in any order.

v Code only one file-option from the access group. If you specify more than one
file-option from the access group, the system uses ORDWR as the access.

v Code any combination of file-options from the status group.

v Duplicate file-options are treated as one specification.

v Do not code null positions. For example, do not code PATHOPTS=(,file-option) or
PATHOPTS=(file-option,,file-option).

Subparameter definition

Access group
ORDONLY

Specifies that the program should open the file for reading.

OWRONLY
Specifies that the program should open the file for writing.

ORDWR
Specifies that the program should open the file for reading and writing. Do not
use this option for a FIFO special file.

Status group
OAPPEND

Specifies that MVS sets the file offset to the end of the file before each write, so
that data is written at the end of the file.

OCREAT
Specifies that:
v If the file does not exist, the system is to create it. If a directory specified in

the pathname does not exist, one is not created, and the new file is not
created.

v If the file already exists and OEXCL was not specified, the system allows the
program to use the existing file.

v If the file already exists and OEXCL was specified, the system fails the
allocation and the job step.

OEXCL
Specifies that:
v If the file does not exist, the system is to create it.
v If the file already exists, the system fails the allocation and the job step.

The system ignores OEXCL if OCREAT is not also specified.

ONOCTTY
Specifies that if the PATH parameter identifies a terminal device, opening of
the file does not make the terminal device the controlling terminal for the
process.

ONONBLOCK
Specifies the following, depending on the type of file:
v For a FIFO special file:

– With ONONBLOCK specified and ORDONLY access: An open() function
for reading-only returns without delay.

DD: PATHOPTS

246 z/OS V2R1.0 MVS JCL Reference

– With ONONBLOCK not specified and ORDONLY access: An open()
function for reading-only blocks (waits) until a process opens the file for
writing.

– With ONONBLOCK specified and OWRONLY access: An open() function
for writing-only returns an error if no process currently has the file open
for reading.

– With ONONBLOCK not specified and OWRONLY access: An open()
function for writing-only blocks (waits) until a process opens the file for
reading.

v For a character special file that supports nonblocking open:
– If ONONBLOCK is specified: An open() function returns without

blocking (waiting) until the device is ready or available. Device response
depends on the type of device.

– If ONONBLOCK is not specified: An open() function blocks (waits) until
the device is ready or available.

Specification of ONONBLOCK has no effect on other file types.

OSYNC
Specifies that the system is to move data from buffer storage to permanent
storage before returning control from a callable service that performs a write.

OTRUNC
Specifies that the system is to truncate the file length to zero if all the
following are true:
v The file specified on the PATH parameter exists.
v The file is a regular file.
v The file successfully opened with ORDWR or OWRONLY.

The system does not change the mode and owner. OTRUNC has no effect on
FIFO special files or character special files.

Defaults
If you do not code a value on the PATHOPTS parameter or if you do not code a
PATHOPTS on a DD statement with a PATH parameter, the system assumes that
the pathname exists, searches for it, and issues a message if the pathname does not
exist.

If the file exists and you specify PATHOPTS without a file-option for the access
group, the allocation succeeds assuming ORDONLY. If the file does not exist and
you specify PATHOPTS without a file-option from the access group, the system
fails to open the file and issues a message.

Relationship to other parameters
Code the PATHOPTS parameter only on a DD statement that contains a PATH
parameter.

You can code the following parameters with the PATHOPTS parameter:

DD: PATHOPTS

Chapter 12. DD statement 247

BLKSIZE
BUFNO
DSNTYPE=PIPE
DUMMY
FILEDATA
LRECL
NCP
PATH
PATHMODE
PATHOPTS
RECFM
TERM

If:
v You specify either:

– OCREAT alone
or:

– Both OCREAT and OEXCL

on the PATHOPTS parameter,
And if:

v The file does not exist,

Then MVS performs an open() function. The options from PATHOPTS, the
pathname from the PATH parameter, and the options from PATHMODE (if
specified) are used in the open(). MVS uses the close() function to close the file
before the application program receives control.

For status group options other than OCREAT and OEXCL, the description in this
documentation assumes that the application passes the subparameters to the
open() function without modification. That is, this application uses dynamic
allocation information retrieval (the DYNALLOC macro) to retrieve the values
specified for PATHOPTS and passes the values to the open() function. The
application program can ignore or modify the information specified in the JCL.

File status
The MVS system uses the PATHOPTS parameter to determine the status for the
file, as follows:
v OLD status:

– PATHOPTS is not on the DD statement.
– PATHOPTS does not contain a file option.
– PATHOPTS does not contain OCREAT.

v MOD status: PATHOPTS contains OCREAT and OAPPEND, but not OEXCL.
v NEW status: PATHOPTS contains both OCREAT and OEXCL.

Note:

1. The DISP parameter cannot appear on a DD statement containing the PATH
parameter.

2. There is no direct correspondence between the various PATHOPTS settings and
the DISP status parameter.

DD: PATHOPTS

248 z/OS V2R1.0 MVS JCL Reference

Example of the PATHOPTS parameter
//DD1 DD PATH=’/usr/applics/pay.time’,PATHDISP=(KEEP,DELETE),
// PATHOPTS=(OWRONLY,OCREAT,OEXCL),PATHMODE=(SIRWXU,SIRGRP)

OCREAT in the PATHOPTS parameter specifies that the file named in the PATH
parameter be created. OWRONLY requests that the system open the file only for
writing. OEXCL specifies that, if the file already exists, the system will not create a
file and the job step will fail.

PROTECT parameter
Parameter Type

Keyword, optional

Use the PROTECT parameter only if RACF is installed and active.

With SMS, use the SECMODEL parameter to protect data sets; SECMODEL is
described in “SECMODEL parameter” on page 262.

Purpose

Use the PROTECT parameter to tell the z/OS Security Server, which includes
RACF, to protect:
v One data set on a direct access volume.
v One data set on a tape volume with one of the following types of labels:

– IBM standard labels, LABEL=(,SL) or LABEL=(,SUL)
– ISO/ANSI/FIPS Version 3 labels, LABEL=(,AL) or LABEL=(,AUL)
– Nonstandard labels, LABEL=(,NSL), if the installation provides support

v An entire tape volume with one of the following:
– IBM standard labels, LABEL=(,SL) or LABEL=(,SUL)
– ISO/ANSI/FIPS Version 3 labels, LABEL=(,AL) or LABEL=(,AUL)
– Nonstandard labels, LABEL=(,NSL), if the installation provides support
– No labels, LABEL=(,NL)
– Bypassed label processing, LABEL=(,BLP)
– Leading tapemarks, LABEL=(,LTM)

References

For more information on RACF, see http://www-03.ibm.com/systems/z/os/zos/
features/racf/.

Syntax

PROTECT= {YES}
{Y }

DD: PATHOPTS

Chapter 12. DD statement 249

http://www.ibm.com/systems/z/os/zos/features/racf/
http://www.ibm.com/systems/z/os/zos/features/racf/

Subparameter definition
YES

Requests RACF to protect a direct access data set, tape data set, or tape
volume. This parameter can also be coded as Y.

Overrides
With SMS, the DD SECMODEL parameter overrides the PROTECT=YES parameter.

Relationship to other parameters
Do not code the following parameters with the PROTECT parameter.

* DLM QNAME
BURST DYNAM SYSOUT
CHARS FCB TERM
DATA FLASH UCS
DDNAME MODIFY

DSNAME parameter for RACF-protected data sets: RACF expects the data set
name specified in the DSNAME parameter to have a high-level qualifier that is
defined to RACF. See the z/OS Security Server RACF Security Administrator's Guide
for details.

Requirements for protecting a tape data set
A DD statement that contains a PROTECT parameter to establish RACF protection
for a tape data set must:
v Specify or imply VOLUME=PRIVATE.
v Specify or imply DISP=NEW, DISP=OLD, or DISP=SHR; it must not specify or

imply DISP=MOD.
v Specify in the LABEL parameter a label type of:

– SL or SUL for IBM standard labels.
– AL or AUL for ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 tape labels.
– NSL for nonstandard labels. In this case, the NSL installation exit routine

must issue a RACDEF or RACROUTE TYPE=DEFINE macro instruction. See
z/OS Security Server RACROUTE Macro Reference for a description of these
macro instructions.

v If the data set is not the first on the volume, specify a data-set-sequence-number
in the LABEL parameter, which requires that the RACF TAPEDSN option be
active.

Requirements for protecting a tape volume
A DD statement that contains a PROTECT parameter to establish RACF protection
for a tape volume must:
v Specify or imply VOLUME=PRIVATE.
v Specify or imply DISP=NEW.
v Specify in the LABEL parameter a label type of:

– SL or SUL for IBM standard labels.
– AL or AUL for ISO/ANSI Version 1 or ISO/ANSI/FIPS Version 3 tape labels.
– NSL for nonstandard labels. In this case, the NSL installation exit routine

must issue a RACDEF or RACROUTE TYPE=DEFINE macro instruction.

DD: PROTECT

250 z/OS V2R1.0 MVS JCL Reference

– NL for no labels.
– BLP for bypass label processing.
– LTM for leading tapemark.

Note that RACF cannot fully protect unlabeled tapes because RACF cannot verify
the volume serial number directly; the operator must verify the volume serial
number when mounting the tape volume.

Requirements for protecting a direct access data set
A DD statement that contains a PROTECT parameter to establish RACF protection
for a direct access data set must:
v Name a permanent data set in the DSNAME parameter.
v Specify a status of DISP=NEW or MOD treated as NEW. RACF can establish

protection only when the data set is being created.

Examples of the PROTECT parameter
Example 1
//DASD DD DSNAME=USER37.MYDATA,DISP=(,CATLG),
// VOLUME=SER=333000,UNIT=3390,SPACE=(TRK,2),PROTECT=YES

This DD statement requests RACF protection for the new direct access data set
USER37.MYDATA.

Example 2
//TAPEVOL DD DSNAME=MHB1.TAPEDS,DISP=(NEW,KEEP),LABEL=(,NL),
// VOLUME=SER=T49850,UNIT=3390,PROTECT=YES

This DD statement requests RACF protection for tape volume T49850. Because a
specific tape volume is requested, it automatically has the PRIVATE attribute. The
volume has no labels.

Example 3
//TAPEDS DD DSNAME=INST7.NEWDS,DISP=(NEW,CATLG),LABEL=(2,SUL),
// VOLUME=SER=223344,UNIT=3390,PROTECT=YES

This DD statement requests RACF protection for INST7.NEWDS, which is the
second data set on tape volume 223344. Because a specific tape volume is
requested, it automatically has the PRIVATE attribute. The volume has IBM
standard and user labels; the RACF TAPEDSN option must be active.

RECFM parameter
Parameter type

Keyword, optional

Purpose

Use the RECFM parameter to specify the format and characteristics of the records
in a new data set. All the format and characteristics must be completely described
in one source, that is, in the data set label of an existing data set, in the DCB
macro, in the DD DCB parameter, or in the DD RECFM parameter. However, the
processing program can modify the RECFM field in the DCB.

DD: PROTECT

Chapter 12. DD statement 251

Code the RECFM parameter when you want to (1) specify the record format for
the data set or (2) with SMS, override the record format defined in the data class of
the data set.

The syntax of the RECFM parameter is described in the following topics:
v Coding RECFM for BDAM Access Method
v Coding RECFM for BPAM Access Method
v Coding RECFM for BSAM, EXCP, and QSAM Access Methods

Coding RECFM for BDAM access method
Syntax: BDAM access method:
RECFM= {U }

{V }
{VS }
{VBS}
{F }
{FT }

U indicates that the records are undefined length.

V indicates that the records are variable length.

VS indicates that the records are variable length and spanned.

VBS indicates that the records are variable length, blocked, and spanned, and
that the problem program must block and segment the records.

F indicates that the records are fixed length.

T indicates that the records may be written using the track-overflow feature.

Default: undefined-length, unblocked records.

Coding RECFM for BPAM access method
Syntax: BPAM Access Method
RECFM= {U } [A]

{UT } [M]
{V }
{VB }
{VS }
{VT }
{VBS }
{VBT }
{VBST}
{F }
{FB }
{FT }
{FBT }

A or M can be coded with any record format, such as: RECFM=FBA

A indicates that the records contain ISO/ANSI control characters.

B indicates that the records are blocked.

F indicates that the records are fixed length.

M indicates that the records contain machine code control characters.

T indicates that the records may be written using the track-overflow feature.

U indicates that the records are undefined length.

DD: RECFM

252 z/OS V2R1.0 MVS JCL Reference

V indicates that the records are variable length.

Default: U

Coding RECFM for BSAM, EXCP, and QSAM access methods
Syntax: BSAM, EXCP, and QSAM Access Methods
RECFM= {U } [A]

{UT } [M]
{F }
{FB }
{FS }
{FT }
{FBS }
{FBT }
{V }
{VB }
{VS }
{VT }
{VBS }
{VBT }
{VBST}

A or M can be coded with any record format, such as: RECFM=FBA

For BSAM, EXCP, and QSAM using ISO/ANSI/FIPS data sets on tape:
RECFM= {D } [A]

{DB }
{DS }
{DBS}
{U }
{F }
{FB }

A can be coded with any record format, such as: RECFM=FBA

A or M cannot be specified if the PRTSP subparameter is specified.

A indicates that the record contains ISO/ANSI device control characters.

B indicates that the records are blocked.

D indicates that the records are variable-length ISO/ANSI tape records.

F indicates that the records are fixed length.

M indicates that the records contain machine code control characters.

S (1) For fixed-length records, indicates that the records are written as
standard blocks, that is, no truncated blocks or unfilled tracks within the
data set, with the exception of the last block or track. (2) For
variable-length records, indicates that a record can span more than one
block.

T indicates that the records can be written using the track-overflow feature, if
required.

U indicates that the records are undefined length. U is invalid for an
ISO/ANSI/FIPS Version 3 tape data set.

V indicates that the records are variable length. V cannot be specified for (1)

DD: RECFM

Chapter 12. DD statement 253

a variable-length ISO/ANSI tape data set (specify D for this data set), (2) a
card reader data set, or (3) a 7-track tape unless the data conversion feature
(TRTCH=C) is used.

Default: U

Overrides
RECFM overrides the record format specified in the data set label, and with SMS,
RECFM overrides the record format defined in the DATACLAS parameter for the
data set. See “Overrides” on page 134. RECFM also overrides any contradictory
information from the LIKE data set, the REFDD DD statement and the data class.
Examples include RECORG, reuse, and initial load.

Relationship to other parameters
Do not code the following DD parameters with the RECFM parameter.

* DDNAME
AMP DYNAM
DATA RECORG
DCB=DSORG
DCB=RECFM

Examples of the RECFM parameter
Example 1
//DD1B DD DSNAME=EVER,DISP=(NEW,KEEP),UNIT=3380,
// RECFM=FB,LRECL=326,SPACE=(23472,(200,40))

In the example, the record format of fixed block (FB) is used for the new data set
EVER.

Example 2
//SMSDS6 DD DSNAME=MYDS6.PGM,DATACLAS=DCLAS06,DISP=(NEW,KEEP),
// RECFM=FB

In the example, the record format of fixed block (FB) overrides the record format
defined in the data class for the data set.

RECORG parameter
Parameter type: Keyword, optional — use this parameter only with SMS

Without SMS, see the AMP parameter described in “AMP parameter” on page 105.

Purpose: Use the RECORG parameter to specify the organization of the records in
a new VSAM data set.

Code the RECORG parameter when you want to (1) specify the record
organization for the data set or (2) override the record organization defined in the
data class of the data set.

If SMS is not installed or is not active, the system syntax checks and then ignores
the RECORG parameter.

DD: RECFM

254 z/OS V2R1.0 MVS JCL Reference

References: See z/OS DFSMS Using Data Sets for information on VSAM data sets.

Syntax

{KS}
RECORG= {ES}

{RR}
{LS}

Subparameter definition
KS

Specifies a VSAM key-sequenced data set.

ES
Specifies a VSAM entry-sequenced data set.

RR
Specifies a VSAM relative record data set.

LS
Specifies a VSAM linear space data set.

Defaults
If you do not specify RECORG, SMS assumes a physical sequential (PS) or
partitioned (PO) data set.

Overrides
The RECORG parameter overrides the record organization defined in the
DATACLAS parameter for the data set. See “Overrides” on page 134. RECORG
also overrides any contradictory information from the LIKE data set, the REFDD
DD statement and the data class. Examples include RECFM, BLKSIZE, and
DSNTYPE other than EXTPREF or EXTREQ.

Relationship to other parameters
Do not code the following DD parameters with the RECORG parameter.

*
DATA
DCB=DSORG
DCB=RECFM
FREE=CLOSE

DDNAME
DSNTYPE
DYNAM
RECFM

Example of the RECORG parameter
//SMSDS3 DD DSNAME=MYDS3.PGM,DATACLAS=VSAM1,DISP=(NEW,KEEP),
// RECORG=KS

In the example, the record organization of key-sequenced (KS) overrides the record
organization defined in the data class.

DD: RECORG

Chapter 12. DD statement 255

REFDD parameter
Parameter type

Keyword, optional — use this parameter only with SMS

Without SMS, use the DCB=*.ddname form of the DCB parameter described in
“Subparameter definition” on page 137.

Purpose

Use the REFDD parameter to specify attributes for a new data set by copying
attributes of a data set defined on an earlier DD statement in the same job.

The following attributes are copied to the new data set from (1) the attributes
specified on the referenced DD statement, and (2) for attributes not specified on
the referenced DD statement, from the data class of the data set specified by the
referenced DD statement:
v Data set organization

– Record organization (RECORG) or
– Record format (RECFM)

v Maximum number of generations for a version 2 PDSE (MAXGENS). This
requires APAR OA42358.

v Record length (LRECL)
v Key length (KEYLEN)
v Key offset (KEYOFF)
v DSNTYPE (type, PDS, PDSE, basic format, extended format, large format or

HFS)
For PDSE (LIBRARY) data sets, the VERSION attribute value is also copied.

v Space allocation (AVGREC and SPACE)
If a data class with OVERRIDE SPACE(YES) is explicitly specified on the JCL,
the SPACE attributes in the data class will take president over any other SPACE
attributes specified either through JCL or in the modeled data set. See
“DATACLAS parameter” on page 132 for more details.

Only RECFM and LRECL apply to tape data sets.

REFDD does not copy DCB attributes from the data set label. See the DD LIKE
parameter.

If SMS is not installed or is not active, the system checks the syntax and then
ignores the REFDD parameter.

The retention period (RETPD) or expiration date (EXPDT) is not copied to the new
data set.

Note: Do not use the REFDD parameter to copy attributes from a temporary data
set (&&dsname), partitioned data set if a member name is included, and relative
generation number for a GDG.

DD: REFDD

256 z/OS V2R1.0 MVS JCL Reference

|
|

Syntax

{*.ddname }
REFDD= {*.stepname.ddname }

{*.stepname.procstepname.ddname}

Subparameter definition
*.ddname
*.stepname.ddname
*.stepname.procstepname.ddname

Specify a backward reference to an earlier DD statement. The referenced DD
statement cannot name a cataloged data set or refer to another DD statement.

*.ddname
Specifies the ddname of an earlier DD statement in the same step.

*.stepname.ddname
Specifies the ddname of a DD statement in an earlier step, stepname, in the
same job.

*.stepname.procstepname.ddname
Specifies the ddname of a DD statement in a cataloged or in-stream
procedure called by an earlier job step. Stepname is the name of the job
step that calls the procedure and procstepname is the name of the
procedure step that contains the DD statement.

Do not reference a DD * or a DD DATA statement.

Overrides
Any attributes specified on the referenced DD statement override the
corresponding data class attributes of the referenced data set.

Any attributes you specify on the referencing DD statement with the following
parameters override the corresponding attributes obtained from the referenced DD
statement and the data class attributes of the referenced data set.
v RECORG (record organization) or RECFM (record format)
v LRECL (record length)
v KEYLEN (key length)
v KEYOFF (key offset)
v DSNTYPE (type, PDS, PDSE, basic format, extended format, large format, or

HFS)
v AVGREC (record request and space quantity)
v SPACE (average record length, primary, secondary, and directory quantity)
v MAXGENS (maximum number of generations for a version 2 PDSE)

Relationship to other parameters
Do not code the following DD parameters with the REFDD parameter.

DYNAM
LIKE

DD: REFDD

Chapter 12. DD statement 257

|

Examples of the REFDD parameter
Example 1
//SMSDS6 DD DSNAME=MYDS6.PGM,DATACLAS=DCLAS01,DISP=(NEW,KEEP),
// LRECL=512,RECFM=FB
//SMSDS7 DD DSNAME=MYDS7.PGM,REFDD=*.SMSDS6,DISP=(NEW,KEEP)

In the example, the data set attributes used for MYDS7.PGM are obtained from the
referenced data set MYDS6.PGM.

Example 2
//SMSDS6 DD DSNAME=MYDS6.PGM,DATACLAS=DCLAS01,DISP=(NEW,KEEP),
// LRECL=512,RECFM=FB
//SMSDS8 DD DSNAME=MYDS8.PGM,REFDD=*.SMSDS6,DISP=(NEW,KEEP),
// LRECL=1024

In the example, the data set attributes used for MYDS8.PGM are obtained from the
referenced data set MYDS6.PGM. Also, the logical record length of 1024 overrides
the logical record length obtained from the referenced data set.

RETPD parameter
Parameter type

Keyword, optional

Purpose

Use the RETPD parameter to specify the retention period for a new data set to
help reduce the chance of later accidental deletion. After the retention period, the
data set can be deleted or written over by another data set.

If the DD statement contains DISP=(NEW,DELETE) or the DISP parameter is
omitted to default to NEW and DELETE, the system deletes the data set when the
step terminates normally or abnormally, even though a retention period is also
specified.

Do not specify RETPD for a temporary data set.

The RETPD parameter achieves the same result as the EXPDT parameter.

Code the RETPD parameter when you want to (1) specify a retention period for
the data set or (2) with SMS, override the retention period defined in the data class
for the data set.

Syntax

RETPD=nnnn

v The RETPD parameter can have a null value only when coded on a DD which either:

– Overrides a DD in a procedure

– Is added to a procedure.

DD: REFDD

258 z/OS V2R1.0 MVS JCL Reference

Subparameter definition
nnnn

Specifies the retention period, in days, for the data set. The nnnn is one
through five decimal digits (0-93000).

Note: At releases z/OS 1.10 through z/OS 1.12, the system will accept RETPD
values up to 93000, however, when the value coded is above 9999, then 9999
will be used.

The system adds nnnn to the current date to produce an expiration date. For
SMS data sets, the system adds nnnn to the data set creation date to produce
an expiration date. The calculated expiration date uses 365-day years and
366-day leap years. However, if the produced expiration date exceeds
December 31, 2155, then the expiration date will be set to December 31, 2155.

Note: If you code RETPD and the calculated expiration date is December 31,
1999, the expiration date is set to January 1, 2000.

Overrides
With SMS, RETPD overrides the retention period defined in the DATACLAS
parameter for the data set. See “Overrides” on page 134.

With SMS, both the retention period specified on RETPD and defined in the data
class for an SMS-managed data set can be limited by a maximum retention period
defined in the management class for the data set.

Relationship to other parameters
Do not code the following DD parameters with the RETPD parameter.

* DYNAM
DATA EXPDT
DDNAME SYSOUT

Deleting a data set before its retention period passes
To delete a data set before the retention period has passed, use one of the
following:
v For data sets cataloged in an integrated catalog facility catalog, use the DELETE

command, as described in z/OS DFSMS Access Method Services Commands.
v For data sets not cataloged in an integrated catalog facility catalog, use the

IEHPROGM utility, as described in z/OS DFSMSdfp Utilities.
v For a non-VSAM data set, use the SCRATCH macro with the OVRD parameter,

as described in z/OS DFSMSdfp Advanced Services.
v The system operator can reply "u" to the IEC507D message prompt to delete

unexpired data sets.
v You can override the retention period for SMS-managed DASD data sets by

specifying OVRD_EXPDT(YES) in the IGDSMSxx SYS1.PARMLIB member and
specifying DELETE on the DD DISP statement. The data set will be deleted
whether or not the retention period has passed. See z/OS MVS Initialization and
Tuning Reference for information about the IGDSMSxx parmlib member.

Examples of the RETPD parameter
Example 1

DD: RETPD

Chapter 12. DD statement 259

//DD1 DD DSNAME=HERBI,DISP=(NEW,KEEP),UNIT=TAPE,
// VOLUME=SER=T2,LABEL=(3,NSL),RETPD=188

In the example, the data set is not eligible for being deleted or written over for 188
days.

Example 2
//SMSDS2 DD DSNAME=MYDS2.PGM,DATACLAS=DCLAS02,DISP=(NEW,KEEP),
// RETPD=732

In the example, the retention period of 732 days overrides the retention period
defined in the data class for the data set.

RLS parameter
Parameter type

Keyword, optional

Purpose

You can, on a system that includes MVS/DFSMS Version 1 Release 3 or higher, use
the RLS parameter to specify the level of record sharing, or sharing protocol, for a
VSAM data set containing records that must be shared. See z/OS DFSMS Using
Data Sets for a description of the sharing protocols and to determine whether your
application can run in a shared data environment without modification.

Note: RLS is most useful for an existing application. For a new or
heavily-modified application, you can request record-level sharing in application
code and do not need to specify RLS on the DD statement.

Syntax

RLS= {NRI}
{CR }
{CRE }

Subparameter definition
NRI

Specifies "no read integrity" (NRI). The application can read all records. Use
this subparameter if the application can read uncommitted changes made to a
data set by another application. NRI provides better performance than the CR
subparameter because it avoids the overhead of obtaining a lock when reading
a record from the data set.

CR
Specifies "consistent read" (CR). This subparameter requests VSAM to obtain a
SHARE lock on each record the application reads. This ensures the application
will not read uncommitted changes made to a data set by another application.
VSAM obtains the lock while processing a GET NUP request, and releases the
lock before completing the GET request. An application that processes a data
set allocated with RLS=CR may require modification if it tries to read changes
to the data set.

DD: RETPD

260 z/OS V2R1.0 MVS JCL Reference

CRE
Specifies "consistent read explicit" (CRE). This subparameter requests
serialization of the record access with update or erase of the record by
another unit of recovery. CRE read provides the application a means of
ensuring that records read by a unit of recovery are not changed by other
units of recovery until the reading unit of recovery issues a syncpoint.

For VSAM record-level sharing (RLS), CRE is valid only for an application
that supports commit and backout. With DFSMS Transactional VSAM
Services (DFSMStvs), if a batch (non-CICS) application specifies CRE as the
value of the JCL RLS keyword or specifies CRE through the ACB, the data
set is opened for DFSMStvs access.

After a batch application opens a data set for RLS access with the NRI or
CR subparameter, it is an error for the application to request CRE through
the RPL.

CRE does not inhibit update or erase of the record by the unit of recovery
that issued the CRE request. The consistent-read explicit GET request
obtains a SHARE lock on the record. The SHARE lock remains held until a
commit or backout request is processed.

CRE readers should issue frequent commits to reduce contention with
updaters. CRE read does not affect update locking rules. Deadlocks are
possible when a mixture of CRE read and update is used.

Overrides
Specifying RLS does not override any other JCL parameter. See z/OS DFSMS Using
Data Sets for a description of how to override the RLS value specified in the JCL.

Relationship to other parameters
Do not code any of the following DD parameters with the RLS parameter:

* (an asterisk)
AMP
BURST
CHARS
COPIES
DATA
DCB (see Note)
DDNAME
DLM

DSNTYPE
DYNAM
FLASH
FREE
MODIFY
OUTPUT
PATH
PATHOPTS
PATHMODE

PATHDISP
QNAME
SEGMENT
SPIN
SYSOUT
TERM
UCS

Note: You can code RLS with DCB as long as the only DCB subparameters you
specify are KEYLEN and LRECL.

Examples of the RLS parameter
Example 1
// EXEC PGM=BATCHPRG
//DD1 DD DSN=A,RLS=NRI,DISP=SHR

When the program BATCHPRG opens DD1, the data set is to be processed as a
shared resource. NRI specifies that an application can read uncommitted changes
made by other applications.

Example 2

DD: RLS

Chapter 12. DD statement 261

// EXEC PGM=BATCHPRG
//DD2 DD DSN=B,RLS=CR,DISP=SHR

When the program BATCHPRG opens DD2, the data set is to be processed as a
shared resource. CR specifies that an application can read only committed changes
made by other applications.

SECMODEL parameter
Parameter type: Keyword, optional — use this parameter only with SMS

Without SMS, use the DD PROTECT parameter described in .

Purpose: Use the SECMODEL parameter to specify the name of an existing RACF
data set profile that is copied to the discrete data set profile that RACF builds for
the new data set.

The following information from the RACF data set profile, which RACF uses to
control access to the data set, is copied to the discrete data set profile of the new
data set:
v OWNER - indicates the user or group assigned as the owner of the data set

profile.
v ID - indicates the access list of users or groups authorized to access the data set.
v UACC - indicates the universal access authority associated with the data set.
v AUDIT/GLOBALAUDIT - indicates which access attempts are logged.
v ERASE - indicates that the data set is to be erased when it is deleted (scratched).
v LEVEL - indicates the installation-defined level indicator.
v DATA - indicates installation-defined information.
v WARNING - indicates that an unauthorized access causes RACF to issue a

warning message but allow access to the data set.
v SECLEVEL - indicates the name of an installation-defined security level.

Use the SECMODEL parameter (1) when you want a different RACF data set
profile than the default profile selected by RACF or (2) when there is no default
profile.

If SMS is not installed or is not active, the system syntax checks and then ignores
the SECMODEL parameter.

References: For information about RACF, see z/OS Security Server RACF Command
Language Reference.

Syntax

SECMODEL=(profile-name[,GENERIC])

Subparameter definition
profile-name

Specifies the name of a RACF model profile, discrete data set profile, or
generic data set profile. The named profile is copied to the discrete data set
profile of the new data set.

DD: RLS

262 z/OS V2R1.0 MVS JCL Reference

If a generic data set profile is named, GENERIC must also be coded.

GENERIC
Identifies that the profile-name refers to a generic data set profile.

Overrides
The SECMODEL parameter overrides the PROTECT=YES parameter.

Relationship to other parameters
Do not code the following DD parameters with the SECMODEL parameter.

* DDNAME
DATA DYNAM

Examples of the SECMODEL parameter
Example 1
//SMSDS4 DD DSNAME=MYDS4.PGM,SECMODEL=(GROUP4.DEPT1.DATA),
// DISP=(NEW,KEEP)

In the example, RACF uses the previously defined model data set profile named
GROUP4.DEPT1.DATA to control access to the new data set.

Example 2
//SMSDS5 DD DSNAME=MYDS5.PGM,SECMODEL=(GROUP5.*,GENERIC),
// DISP=(NEW,KEEP)

In the example, RACF uses the previously defined generic data set profile named
GROUP5.* to control access to the new data set.

SEGMENT parameter
Parameter type: Keyword, optional

Purpose: In a JES2 system, use the SEGMENT parameter to allow part of a job’s
output to be printed while the job is still executing, or to allow multiple segments
of a job’s output to be printed simultaneously on multiple printers. With
SEGMENT, portions of a data set are spun, one segment at a time. You determine
the size of the portion with the SEGMENT parameter. SEGMENT allows you to
specify the number of pages produced for a sysout data set before the system
processes the segment of the data set. To count pages, JES2 uses the carriage
control characters in the data that skip to channel 1.

SEGMENT is supported by JES2 only. The SEGMENT parameter applies only to
line mode data sets with RECFM=A or RECFM=M. The system might suspend
segmentation if it reaches the threshold for segmentation allowed by JES2. For
more information on the segmentation threshold, see z/OS JES2 Initialization and
Tuning Reference.

Syntax

SEGMENT=page-count

DD: SECMODEL

Chapter 12. DD statement 263

Subparameter definition
page-count

Indicates the number of pages produced for the sysout data set for the current
segment. When the number is reached, the system spins-off the data segment
for output processing.

Overrides
The system spins the sysout regardless of SPIN, FREE, and OUTDISP
specifications.

Relationship to other parameters
Do not code the following parameters with the SEGMENT parameter.

* DDNAME EXPDT QNAME
AMP DISP LABEL RETPD
CHKPT DSNAME LIKE SUBSYS
DATA DYNAM PROTECT VOLUME

Page mode data is not counted for segmentation.

The system might suspend segmentation if it reaches the threshold for
segmentation allowed by JES.

Example of the segment parameter
//DD1 DD SYSOUT=A,SEGMENT=100

In this example, if the sysout data set produced 400 pages, then four separate
segments, 100 pages in each, are produced for output processing.

SPACE parameter
Parameter type: Keyword, optional

Note: With SMS, code the SPACE parameter when you want to
v Request space for a new data set, or
v Override the space allocation defined in the DATACLAS parameter for the data

set.

See the DATACLAS parameter (described in) and the AVGREC parameter
(described in).

Purpose: Use the SPACE parameter to request space for a new data set on a direct
access volume. You can request space in two ways:
v Tell the system how much space you want and let the system assign specific

tracks.
v Tell the system the specific tracks to be allocated to the data set.

Letting the system assign the specific tracks is most frequently used. You specify
only how space is to be measured — in tracks, cylinders, blocks, or records — and
how many of those tracks, cylinders, blocks, or records are required.

DD: SEGMENT

264 z/OS V2R1.0 MVS JCL Reference

The SPACE parameter has no meaning for tape volumes; however, if you assign a
data set to a device class that contains both direct access devices and tape devices,
for example, UNIT=SYSSQ, you should code the SPACE parameter.

If you code the SPACE parameter on a DD statement that defines an existing data
set, the SPACE value you specify temporarily overrides the SPACE value used to
create the data set. For example, a data set created with SPACE=(CYL,(5,1)) causes
5 cylinders to be allocated to the data set, and, if it needs more space, it can obtain
1 additional cylinder.

Suppose, though, that there is one particular job that specifies DISP=MOD and will
write many records to this data set. JCL for this job can define, for example,
SPACE=(CYL,(5,10)) to obtain an additional 10 cylinders instead of just 1 cylinder.
The override, however, is in effect only for the single step of the job which
specifies the overriding SPACE parameter. Any other job or step within the same
job that requires a secondary extent and does not have a SPACE parameter
override gets just the 1 additional cylinder specified in the JCL that created the
dataset.

Note:

v When creating VSAM data sets, be aware that there is no direct one-to-one
correspondence between ‘define cluster’ parameters and JCL keyword
parameters.

v The average value in the SPACE keyword is meant to be an average block
length value for space calculations and is not meant to represent an LRECL
value.

v The AVGREC keyword is only to be used as a multiplier in determining how
much space is to be allocated.

v When defining VIO data sets, be aware that a SPACE parameter in the JCL or
the SPACE value defined for a data class will override the system default space
value.

v The size of a data set is limited to 65,535 tracks per volume except for the
following types of data sets:
– Hierarchical File System (HFS)
– Extended format sequential
– Partitioned data set extended (PDSE)
– VSAM
– Large format

Syntax

For system assignment of space:

SPACE= ({TRK,}(primary-qty[,second-qty][,directory])[,RLSE][,CONTIG][,ROUND])
({CYL,} [,] [,][,MXIG]
({blklgth,} [,ALX]
({reclgth,} [,]

To request specific tracks:

SPACE= (ABSTR,(primary-qty,address [,directory])

To request only directory space:

SPACE=(,(,,directory))

DD: SPACE

Chapter 12. DD statement 265

v You can omit the parentheses around the primary quantity if you do not code secondary,
directory, or index quantities. For example,

SPACE=(TRK,20,RLSE,CONTIG) or SPACE=(TRK,20).

Note that if you omit these inner parentheses, you also omit the commas within them.

v All the subparameters are positional. Code a comma to indicate an omitted
subparameter if any others follow. Thus:

– If you code primary and directory quantities and omit a secondary quantity, code a
comma inside the inner parentheses to indicate the omission. For example,
SPACE=(TRK,(20,,2)).

– If you omit RLSE but code a following subparameter, code a comma to indicate the
omission. For example, SPACE=(TRK,(20,10),,CONTIG) or SPACE=(TRK,20,,CONTIG).

– If you omit CONTIG, MXIG, or ALX and ROUND follows, code a comma to indicate
the omission. For example, SPACE=(400,30,RLSE,,ROUND). If you also omit RLSE,
this example becomes SPACE=(400,30,,,ROUND).

Subparameter definition
The following DD: SPACE subparameters are supported:

System assignment of space
TRK

Requests that space be allocated in tracks.

CYL
Requests that space be allocated in cylinders.

blklgth — (only if AVGREC is not coded)
Specifies the average block length of the data, in bytes. The blklgth is a
decimal number from 0 through 65535. This parameter indicates that the
values specified for primary-qty and second-qty are block quantities, and
directs the system to compute the number of tracks to allocate using a block
length. The value specified for block size uses block length in this
computation, with the exception of the value zero. See primary-qty and
second-qty descriptions for how a zero block size is handled.

reclgth — (only if AVGREC is coded and SMS is active)
With SMS, specifies the average record length of the data, in bytes. The reclgth
is a decimal number from 0 through 65535. This parameter indicates that the
values specified for primary-qty and second-qty are record quantities, whose
average record length is reclgth. If you specify zero, no space will be allocated.

The system allocates DASD space in whole tracks. The number of tracks
required depends on how the records are blocked. The system uses one of the
following as the block length to compute the number of tracks to allocate, in
the order indicated:
1. The block size from the DCB parameter, if specified.
2. The system determined block size, if available.
3. A default value of 4096.

primary-qty

Syntax allows for values of 0-16777215. Actual allowances will vary depending
on physical and other environmental variables.

Specifies one of the following:
v For TRK, the number of tracks to be allocated.

DD: SPACE

266 z/OS V2R1.0 MVS JCL Reference

v For CYL, the number of cylinders to be allocated.
v For a block length, the number of data blocks in the data set.
v For a record length, the number of records in the new data set. Use the

AVGREC parameter to specify that the primary quantity represents units,
thousands, or millions of records.

Note: When you specify TRK or CYL for a partitioned data set (PDS or PDSE),
the primary quantity includes the space for the directory. When you specify a
block length or record length for a partitioned data set (PDS or PDSE), the
primary quantity does not include the directory space; the system assigns the
directory to space outside the primary space assignment.

If the data set does not have the space constraint relief option, one volume
must have enough available space for the primary quantity. If you request a
particular volume and it does not have enough space available for your
request, the system terminates the job step. In order for a data set to have the
space constraint relief option, it must be SMS-managed and the data class must
specify the option.

If you specify a blklgth of zero for the first subparameter, the system uses one
of the following as the block length to compute the number of tracks to
allocate, in the order indicated:
1. The block size from the DCB parameter, if specified
2. The block size determined from RECFM and LRECL on the DD statement

or data class, if available
3. A default value of 4096.

To request an entire volume, either code the ALX parameter or specify in the
primary quantity the number of tracks or cylinders on the volume minus the
number used by the volume table of contents (VTOC), volume label track,
VTOC index, and VVDS (if any). The volume must not contain other data sets.

second-qty

Syntax allows for values of 0-16777215. Actual allowances will vary depending
on physical and other environmental variables.

Specifies the number of additional tracks, cylinders, blocks, or records to be
allocated, if more space is needed. The system does not allocate additional
space until it is needed.

With SMS, use the AVGREC parameter to specify that the secondary quantity
represents units, thousands, or millions of records. The system computes the
number of tracks to allocate using a block length as indicated in the following
order:
1. The block size from the DCB parameter, if specified
2. The system determined block size, if available
3. A default value of 4096.

If the first subparameter specifies the average block length, the system
computes the number of tracks for the secondary quantity from the second-qty
number and one of the following, in order:
1. The blklgth subparameter of the SPACE parameter.
2. The saved average block length value specified when the data set was

created, if no SPACE parameter was specified for an existing data set.
3. The block length in the BLKSIZE field of the data control block.

DD: SPACE

Chapter 12. DD statement 267

When you specify a secondary quantity and the data set requires additional
space, the system allocates the specified quantity:
v In contiguous tracks or cylinders, if available.
v If not available:

– If the data set does not have the space constraint relief option, in up to
five extents.

– With the space constraint relief option, the system might have to allocate
more than five new extents. A data set has this option only if it is
SMS-managed and the data class specifies the option.

The system can allocate up to 123 extents for a data set on a volume if it is a
PDSE, an HFS data set, an extended format data set, or a VSAM data set in a
catalog. For other types of data sets the system can allocate up to 16 extents for
each data set on each volume. An extent is space that may or may not be
contiguous to other space allocated to the data set. The extents for a data set
include the primary quantity space and user-label space.

Note: BDAM data sets cannot be extended.

When your program has filled a sequential data set’s allocated space on a
volume, the system determines where the following data is written as follows:
v If the disposition of the data set is NEW or MOD and the limit on the

number of extents on a volume has not been reached, the system attempts to
allocate the secondary quantity on the same volume.

v If the disposition of the data set is OLD or SHR, the system examines the
next volume specified for the data set.
– If space has been allocated on the next volume for the data set, the next

volume is used for the data set.
– If space has not been allocated on the next volume for the data set,

secondary space is allocated on the next volume for the data set.
If there is not another volume specified for the data set, the system attempts
to allocate the secondary quantity on the current volume.
Note that your program should not write with a disposition of DISP=SHR
unless you take precautions to prevent other programs from writing at the
same time.

If the requested volumes have no more available space and if at least one
volume is demountable, the system asks the operator to mount scratch
(nonspecific) volumes until the secondary allocation is complete. If none of the
volumes are demountable, the system abnormally terminates the job step.

directory
Specifies the number of 256-byte records needed in the directory of a
partitioned data set (PDS). Syntax allows for values of 0-16777215.

Note:

1. When creating a partitioned data set (PDS), you must request space for a
directory.

2. When creating a partitioned data set extended (PDSE), the size of the
directory grows dynamically as needed. SMS uses the size requested for a
PDSE directory only if you later convert the PDSE to a PDS.

3. When creating a hierarchical file system (HFS) data set, you must specify
the number of directory blocks to indicate that this is an HFS data set, but
the value has no effect on allocation.

DD: SPACE

268 z/OS V2R1.0 MVS JCL Reference

The PDS directory must fit in the first extent of the data set. If the primary
quantity is too small for the directory, or if the system has allocated the
primary quantity over multiple extents and the first extent is too small for the
directory, then the allocation fails.

With SMS, you can specify the number of directory records on the SPACE
parameter without specifying any other subparameters. For example:

//DD12 DD DSNAME=PDS.EXMP,DATACLAS=DCLAS12,SPACE=(,(,,20)),
// DISP=(NEW,KEEP)

specifies 20 directory records for the data set. In this example, the number of
specified directory records (20) overrides the number of directory records
defined in the data class of the data set. (SMS uses all other space allocation
attributes defined in the data class of the data set.)

RLSE (Partial Release)
Requests that space allocated to an output data set, but not used, is to be
released when the data set is closed. This partial release parameter causes the
close function to release unused space only if the data set is open to allow
writing and the last operation was not a read or a POINT macro.

For a multi-volume sequential data set, RLSE releases unused space on the
current volume and any subsequent volumes when the data set is closed. This
is also valid if the data set is GUARANTEED SPACE.

If you specify RLSE and an abnormal termination occurs, the system does not
release unused space even though the data set is open.

RLSE is supported only for sequential, partitioned, and VSAM extended
format data sets.

Coding RLSE for primary allocation does not prohibit use of secondary
allocation. The secondary request for space is still in effect.

The system ignores a request to release unused space when closing a data set if
it cannot immediately obtain exclusive control of the data set. Circumstances
that would preclude obtaining exclusive control include:
v Another job is sharing the data set.
v Another task in the same multitasking job is processing an OPEN, CLOSE,

EOV, or FEOV request for any other data set.
v Another data control block is open for the data set.

The RLSE subparameter is ignored when TYPE=T is coded in the CLOSE
macro instruction.

When coding RLSE for an existing data set, code the unit of measurement and
primary quantity as they appeared in the original request. For example, if the
original request was:

SPACE=(TRK,(100,50))

you can release unused tracks when you retrieve the data set by coding:
SPACE=(TRK,(100),RLSE)

You can release space in the following additional ways other than by deleting
the data set:
v Partial release option in the management class
v DFSMShsm space management cycle
v PARTREL macro issued by an authorized program.

DD: SPACE

Chapter 12. DD statement 269

CONTIG
Requests that space allocated to the data set must be contiguous. This
subparameter affects only primary space allocation.

If CONTIG is specified and contiguous space is not available, the system
terminates the job step.

MXIG
Requests that space allocated to the data set must be (1) the largest area of
available contiguous space on the volume and (2) equal to or greater than the
primary quantity. This subparameter affects only primary space allocation.

Caution: IBM recommends that you use extreme care when coding this
parameter. Large amounts of storage could be allocated, depending on how
much free space is available at the time the request is made. If you code this
parameter, IBM recommends that you also code the RLSE parameter to release
any unused space.

ALX
Requests that space allocated to the data set is to be up to 5 of the largest areas
of available contiguous space on the volume, and each area must be equal to
or greater than the primary quantity. The system allocates fewer than 5 areas
only when 5 areas of sufficient size are not available. ALX affects only primary
space allocation.

For example, assume the following space extents (in tracks) are available: 910,
435, 201, 102, 14, 12, and 8.

If your job requests 14 tracks as its primary allocation, and ALX is in effect, the
job receives the following 5 extents: 910, 435, 201, 102, and 14.

However, if the job requests 15 tracks as its primary allocation, it would
receive 4 extents: 910, 435, 201, and 102. The job does not receive the 14-track
extent because it is less than the primary space allocation.

Caution: IBM recommends that you use extreme care when coding this
parameter. Large amounts of storage could be allocated, depending on how
much free space is available at the time the request is made. If you code this
parameter, IBM recommends that you also code the RLSE parameter to release
any unused space.

ROUND
When the first subparameter specifies the average block length, requests that
space allocated to the data set must be equal to an integral number of
cylinders. If the first subparameter specifies TRK, or CYL, the system ignores
ROUND.

Request for specific tracks
For an SMS-managed data set (one with an assigned storage class), do not code
ABSTR.

ABSTR
Requests that the data set be allocated at the specified location on the volume.

primary-qty
Specifies the number of tracks to be allocated to the data set.

The volume must have enough available space for the primary quantity. If it
does not, the system terminates the job step.

address
Specifies the track number of the first track to be allocated. Count the first

DD: SPACE

270 z/OS V2R1.0 MVS JCL Reference

track of the first cylinder on the volume as 0. Count through the tracks on each
cylinder until you reach the track on which you want the data set to start.

address
Specifies the track number of the first track to be allocated. Count the first
track of the first cylinder on the volume as 0. Count through the tracks on
each cylinder until you reach the track on which you want the data set to
start. The absolute track address must be a decimal number equal to or
less than 65535.

Note: Do not request track 0.

directory
Specifies the number of 256-byte records needed in the directory of a
partitioned data set.

Note: When creating a partitioned data set, you must request space for a
directory.

Overrides
With SMS, the SPACE parameter overrides the space allocation attributes defined
in the data class for the data set.

Explicit specification of SPACE on the DD statement overrides both the SPACE and
the AVGREC values specified in the data class.

One exception is if a data class with OVERRIDE SPACE(YES) specified is assigned
to the allocation. In this case, the space allocation attributes defined in the data
class will override what is specified on JCL even with explicit specification of
SPACE on the DD statement.

Relationship to other parameters
Do not code the following parameters with the SPACE parameter.

* DYNAM
DATA QNAME
DDNAME SUBSYS

With KEYLEN for block requests: If space is requested in blocks and the blocks
have keys, code the DD parameter KEYLEN (or the DCB subparameter KEYLEN)
on the DD statement and specify the key length.

SPACE for new data sets with SMS
With SMS, code the SPACE parameter with or without the AVGREC parameter
when you want to (1) request space for the data set or (2) override the space
allocation attributes defined in the data class for the data set.

Examples of the SPACE parameter
Example 1
//DD1 DD DSNAME=&&TEMP,UNIT=MIXED,SPACE=(CYL,10)

The DD statement defines a temporary data set. The UNIT parameter requests any
available tape or direct access volume; MIXED is the installation’s name for a
group of tape and direct access devices. If a tape volume is assigned, the SPACE

DD: SPACE

Chapter 12. DD statement 271

parameter is ignored; if a direct access volume is assigned, the SPACE parameter is
used to allocate space to the data set. The SPACE parameter specifies only the
required subparameters: the type of allocation and a primary quantity. It requests
that the system allocate 10 cylinders.

Example 2
//DD2 DD DSNAME=PDS12,DISP=(,KEEP),UNIT=3390,
// VOLUME=SER=25143,SPACE=(CYL,(10,,10),,CONTIG)

The DD statement defines a new partitioned data set. The system allocates 10
cylinders to the data set, of which ten 256-byte records are for a directory. Since the
CONTIG subparameter is coded, the system allocates 10 contiguous cylinders on
the volume.

Example 3
//REQUEST1 DD DSNAME=EXM,DISP=NEW,UNIT=3390,VOLUME=SER=606674,
// SPACE=(1024,75),DCB=KEYLEN=8
//REQUESTA DD DSNAME=EXQ,DISP=NEW,UNIT=3390,
// SPACE=(1024,75),DCB=KEYLEN=8

These DD statements request space in block lengths. The average block length of
the data is 1024 bytes. 75 blocks of data are expected as output. Each block is
preceded by a key eight bytes long. The system computes how many tracks are
needed, depending on the device requested in the UNIT parameter.

Example 4
//REQUEST2 DD DSNAME=PET,DISP=NEW,UNIT=3390,VOLUME=SER=606674,
// SPACE=(ABSTR,(5,1))

In this example, the SPACE parameter asks the system to allocate 5 tracks,
beginning on the second track of the volume.

Example 5
//DD3 DD DSNAME=MULTIVOL,UNIT=3390,DISP=(,CATLG),
// VOLUME=SER=(223344,223345),SPACE=(CYL,(554,554))

This example shows how to create a multivolume data set on two complete
volumes. The two volumes do not contain other data sets. A volume on 3350 Direct
Access Storage contains 555 cylinders. The unrequested cylinder contains the
volume table of contents (VTOC).

Example 6
//SMSDS3 DD DSNAME=MYDS3.PGM,DATACLAS=DCLAS03,DISP=(NEW,KEEP),
// SPACE=(128,(5,2)),AVGREC=K

In this example, the space allocation defined in the DCLAS03 data class is
overridden by the SPACE and AVGREC parameters, which indicate an average
record length of 128 bytes, a primary quantity of 5K (5,120) records, and a
secondary quantity of 2K (2,048) records.

DD: SPACE

272 z/OS V2R1.0 MVS JCL Reference

SPIN parameter
Parameter type

Keyword, optional

Purpose

Use the SPIN parameter to specify that the output for the SYSOUT data set is to be
made available for processing:
v Immediately upon unallocation; or
v At the end of the job.

If you specify the output to be immediately available upon unallocation, you can
also specify for the data set to be capable of being spun via operator command,
when the data set reaches a certain size, or when the data set has been active for a
specified time period.

Syntax

SPIN= {NO }
{UNALLOC }
{(UNALLOC,’hh:mm’) }
{(UNALLOC,’+hh:mm’) }
{(UNALLOC,nnn [K|M])}
{(UNALLOC,NOCMND) }
{(UNALLOC,CMNDONLY) }

Note: UNALLOC is supported on JES2 only.

Subparameter definition
NO Indicates that the system makes the sysout data set available for processing as

a part of the output at the end of the job, regardless of when the data set is
unallocated.

UNALLOC
JES2 only. Indicates that the system makes the data set available for processing
immediately when the data set is unallocated. If you dynamically unallocate
the sysout data set, either explicitly or by specifying FREE=CLOSE, the system
makes the data set available for processing immediately. If you do not
dynamically unallocate it, the sysout data set is unallocated at the end of the
step, and the system will make it available for processing then.

(UNALLOC,'hh:mm')
JES2 only. Indicates that the data set is to be spun at time 'hh:mm' each 24
hour period. hh is hours and has a range of 00 through 23. mm is minutes and
has a range of 00 through 59. Note that the time must be specified within
apostrophes.

(UNALLOC,'+hh:mm')
JES2 only. Indicates that the data set is to be spun every hh:mm' time interval,
where hh is hours and has a range of 00-23 and mm is minutes and has a
range of 00-59. The minimum interval that can be specified is 10 minutes
(mm). Hours hh must be specified even if zero. For example,

DD: SPIN

Chapter 12. DD statement 273

SPIN=(UNALLOC,'+00:20') specifies that the data set be spun at 20 minute
intervals. Note that the time interval must be specified within apostrophe
characters.

(UNALLOC,nnn[K|M])
JES2 only. Indicates that the data set is to be spun when it has the specified
number of lines, where nnn is lines. A minimum of 500 lines must be specified.
Specify the optional characters K for thousands of lines and M for millions of
lines.

(UNALLOC,NOCMND)
JES2 only. Indicates that the data set cannot be spun before it is unallocated.

(UNALLOC,CMNDONLY)
JES2 only. Indicates data set is only to be spun when an operator issues a
command to spin the data set.

Defaults
If you dynamically unallocate the SYSOUT data set, the default is that the data set
is immediately available for processing. If you unallocate the SYSOUT data set at
the end of the step, the default is that the data set is available for processing at the
end of the job.

If you specify SPIN=UNALLOC, the following defaults apply:
v A data set that is closed by the application program is available for processing

immediately.
v A data set that is closed as part of the end-of-step cleanup, such as for a

program abend, is available for processing at the end of the job.
v A data set can be spun as the result of an operator command. This is the same

processing as SPIN=(UNALLOC,CMNDONLY)

If you specify SPIN=NO the default is that the data set is available for processing
at the end of the job

Overrides
The SEGMENT parameter overrides the SPIN parameter.

The SPIN parameter overrides the FREE parameter for SYSOUT data sets.

Note: Another way for a program to control when the SYSOUT data set becomes
available for processing is to issue a SETPRT macro. For more information, see
z/OS DFSMS Macro Instructions for Data Sets.

Relationship to other parameters
Do not code the following parameters with the SPIN parameter.

* DDNAME LABEL RETPD
AMP DISP LIKE SUBSYS
CHKPT DYNAM PROTECT VOLUME
DATA EXPDT QNAME

Examples of the SPIN parameter
Example 1
//DD1 DD SYSOUT=A,FREE=CLOSE,SPIN=UNALLOC

DD: SPIN

274 z/OS V2R1.0 MVS JCL Reference

In this example, if you explicitly close or dynamically unallocate the SYSOUT data
set, the system makes it available for printing immediately. If you do not explicitly
close or dynamically unallocate the SYSOUT data set, the system makes it available
for printing at the end of the step. If a JES2 command is issued requesting a spin
operation ($TJnnn,SPIN or $TJnnn,SPIN,DD=ddname), the data set is made
available for printing immediately.

Example 2
//DD2 DD SYSOUT=A,FREE=CLOSE,SPIN=NO

In this example, the system makes the SYSOUT data set available for printing at
the end of the job, regardless of when it is unallocated or closed.

Example 3
//DD3 DD SYSOUT=A,FREE=END,SPIN=UNALLOC

If a JES2 command is issued requesting a spin operation ($TJnnn,SPIN or
$TJnnn,SPIN,DD=ddname), the data set is made available for printing immediately.

In this example, the SYSOUT data set is unallocated at the end of the step, and
made available for printing then. If you dynamically unallocate the SYSOUT data
set, the system makes it available for printing immediately.

Example 4
//DD4 DD SYSOUT=A,FREE=END,SPIN=NO

In this example, the system makes the SYSOUT data set available for printing at
the end of the job, regardless of whether the data set is unallocated or closed.

Example 5
//DD5 DD SYSOUT=A,SPIN=(UNALLOC,5K)

In this example, the system splits the data set into 5000 record segments and
makes the SYSOUT data set available for printing every 5000 records. Whatever
remains in the data set at the end of the STEP is available for printing at the end of
step.

STORCLAS parameter
Parameter type

Keyword, optional — this parameter is useful only with SMS-managed data sets.

Without SMS or for non-SMS-managed data sets, use the UNIT parameter
(described in) and the VOLUME parameter (described in).

Purpose

Use the STORCLAS parameter to specify a storage class for a new SMS-managed
data set. The storage administrator at your installation defines the names of the
storage classes you can code on the STORCLAS parameter.

The storage class contains the attributes that identify a storage service level to be
used by SMS for storage of the data set. It replaces the storage attributes that are
specified on the UNIT and VOLUME parameters for non-SMS-managed data sets.

DD: SPIN

Chapter 12. DD statement 275

An SMS-managed data set is defined as a data set that has a storage class
assigned. A storage class is assigned when either (1) you specify the STORCLAS
parameter or (2) an installation-written automatic class selection (ACS) routine
selects a storage class for a new data set.

If SMS is not installed or is not active, the system syntax checks and then ignores
the STORCLAS parameter.

SMS ignores the STORCLAS parameter if you specify it for an existing data set.

The use of a storage class can be protected by RACF.

References

See z/OS DFSMS Using the Interactive Storage Management Facility for information
on how to use ISMF to view your installation-defined storage classes.

Syntax

STORCLAS=storage-class-name

Subparameter definition
storage-class-name

Specifies the name of a storage class to be used for storage of the data set.

The name, one to eight characters, is defined by the storage administrator at
your installation.

Defaults
If you do not specify STORCLAS for a new data set and the storage administrator
has provided an installation-written automatic class selection (ACS) routine, the
ACS routine may select a storage class for the data set. Check with your storage
administrator to determine if an ACS routine will select a storage class for the new
data set, in which case you do not need to specify STORCLAS.

Overrides
No attributes in the storage class can be overridden by JCL parameters.

An ACS routine can override the storage class that you specify on the STORCLAS
parameter.

Relationship to other parameters
If the storage administrator has specified GUARANTEED_SPACE=YES in the
storage class, then volume serial numbers you specify on the VOLUME=SER
parameter override the volume serial numbers used by SMS. Otherwise, volume
serial numbers are ignored.

Note: The UNIT parameter, with a specific device number or esoteric device type
and the SMSHONOR keyword, can be used to trim the set of devices assigned to
the request through the storage class.

DD: STORCLAS

276 z/OS V2R1.0 MVS JCL Reference

Do not code the following DD parameters with the STORCLAS parameter.

* DYNAM UNIT=AFF
DATA QNAME VOLUME=REF
DDNAME

Examples of the STORCLAS parameter
Example 1
//SMSDS1 DD DSNAME=MYDS1.PGM,STORCLAS=SCLAS01,DISP=(NEW,KEEP)

In the example, SMS uses the attributes in the storage class named SCLAS01 for
the storage service level of the data set. Note that installation-written ACS routines
may select a management class and data class and can override the specified
storage class.

Example 2
//SMSDS2 DD DSNAME=MYDS2.PGM,STORCLAS=SCLAS02,DISP=(NEW,KEEP),
// VOLUME=SER=(223344,224444)

In the example, SMS uses the attributes in the storage class named SCLAS02 for
the storage service level of the data set. Also, if the storage administrator has
specified GUARANTEED_SPACE=YES in the storage class, VOLUME=SER can be
coded and the data set will reside on the specified volumes. (However, if space is
not available on the volumes, the job step fails.) Note that installation-written ACS
routines may select a management class and data class and can override the
specified storage class.

SUBSYS parameter
Parameter type

Keyword, optional

Purpose

Use the SUBSYS parameter to request a subsystem to process this data set and,
optionally, to specify parameters defined by the subsystem.

Do not use the SUBSYS parameter for an SMS-managed data set (one with an
assigned storage class).

In a loosely-coupled multiprocessing environment, the requested subsystem must
be defined on all processors that could interpret this DD statement. If
sub-parameters are supplied, or if the job is to execute on the system, the
subsystem must be ACTIVE.

Considerations for an APPC Scheduling Environment

In an APPC scheduling environment, avoid coding the system symbolic SYSUID
on the SUBSYS parameter. Symbolic substitution is inconsistent when you code
SYSUID as a subparameter of SUBSYS parameter.

References

DD: STORCLAS

Chapter 12. DD statement 277

For more information on the SUBSYS parameter and subsystem-defined
parameters, refer to the documentation for the requested subsystem.

Syntax

SUBSYS= {subsystem-name }
{(subsystem-name[,subsystem-subparameter]...)}

Single Subparameter: You can omit the parentheses if you code only the subsystem-name.

Number of Subparameters : If needed, you can code up to 254 subsystem-subparameters
on a JES2 system (the length of all parm-statements cannot exceed about 8 KB on a JES2
system), or up to 1020 bytes of data on a JES3 system.

Multiple Subparameters: When the parameter contains more than the subsystem-name,
separate the subparameters by commas and enclose the subparameter list in parentheses.
For example, SUBSYS=(XYZ,1724,DT25).

Positional Subparameters: If you omit a subparameter that the subsystem considers
positional, code a comma in its place.

Special Characters: When a subparameter contains special characters, enclose the
subparameter in apostrophes. For example, SUBSYS=(XYZ,1724,'KEY=Y').

Code each apostrophe that is part of a subparameter as two consecutive apostrophes. For
example, code O'Day as SUBSYS=(XYX,1724,'NAME=O''DAY').

If you code a symbolic parameter on the SUBSYS parameter, you can code the symbolic
parameter in apostrophes.

Continuation onto Another Statement: Enclose the subparameter list in only one set of
parentheses. End each statement with a comma after a complete subparameter. For
example:

//DS1 DD DSNAME=DATA1,SUBSYS=(XYZ,1724,’KEY=Y’,
// DT25,’NAME=O’’DAY’)

Note: The SUBSYS parameter can have a null value only when coded on a DD which
either:

v Overrides a DD in a procedure

v Is added to a procedure.

Subparameter definition
subsystem-name

Identifies the subsystem. The subsystem name is 1 through 4 alphanumeric or
national ($, #, @) characters; the first character must be alphabetic or national
($, #, @). The subsystem must be available in the installation.

subsystem-subparameter
Specifies information needed by the subsystem. A subparameter consists of
alphanumeric, national ($, #, @), or special characters.

Relationship to other parameters
Do not code the following DD parameters with the SUBSYS parameter:

* DDNAME QNAME
AMP DYNAM SEGMENT
DATA MODIFY SYSOUT

DD: SUBSYS

278 z/OS V2R1.0 MVS JCL Reference

The specified subsystem can define other parameters that you must not code with
the SUBSYS parameter:

Ignored but permitted DD parameters: If you specify any of the following DD
parameters, the system checks them for syntax and then ignores them:

HOLD UNIT

If you specify the SPACE parameter, the system checks its syntax and then ignores
it, but the subsystem designated on the SUBSYS parameter may use this
information when it allocates the DD.

DISP parameter: The system checks the DISP status subparameter for syntax, but
always indicates a status of MOD to the subsystem. If the DISP normal or
abnormal termination subparameter is CATLG or UNCATLG, the system allocates
the appropriate catalog to the subsystem.

DUMMY parameter: If DUMMY is specified with SUBSYS, the subsystem checks
the syntax of the subsystem subparameters. If they are acceptable, the system treats
the data set as a dummy data set.

When this statement overrides a procedure statement: If SUBSYS appears on a DD
statement that overrides a DD statement in a cataloged or in-stream procedure, the
following occurs:
v The system ignores a UNIT parameter, if specified, on the overridden DD

statement.
v The system nullifies a DUMMY parameter, if specified, on the overridden DD

statement.

Subsystem support for JCL parameters
The specified subsystem might not support all parameters on the DD and
OUTPUT JCL statements. Refer to the documentation for the subsystem to
determine the JCL parameters that the subsystem supports. For information about
the JCL parameters supported by the Infoprint Server subsystem, see z/OS Infoprint
Server User's Guide.

Examples of the SUBSYS parameter
Example 1
//DD1 DD DSNAME=ANYDS,DISP=OLD,SUBSYS=ABC

The DD statement asks subsystem ABC to process data set ANYDS.

Example 2
//DD1 DD DSNAME=ANYDS,DISP=OLD,SUBSYS=(XYZ2,
// ’KEYWORD=DATA VALUE1’)

The DD statement asks subsystem XYZ2 to process data set ANYDS. The system
passes the subparameter KEYWORD=DATA VALUE1 to the subsystem. The
parameter is enclosed in apostrophes because it contains an equal sign and a
blank, which are special characters.

Example 3
//DD1 DD DSNAME=ANYDS,DISP=OLD,SUBSYS=(XYZ2,IKJ2,
// ’NAME=’’MODULE1’’’,’DATE=4/11/86’)

DD: SUBSYS

Chapter 12. DD statement 279

The DD statement asks subsystem XYZ2 to process the data set ANYDS. The
system passes three subparameters to the subsystem: IKJ2, NAME='MODULE1'
and DATE=4/11/86. Note that the character string MODULE1 is passed to the
subsystem enclosed in apostrophes.

Example 4
//DD1 DD SUBSYS=(AOP1,’MyPrinter’)

The DD statement asks the Infoprint Server subsystem named AOP1 to process a
sysout data set. The system passes the subparameter MyPrinter to the Infoprint
Server subsystem. The subparameter is enclosed in apostrophes because it contains
lowercase letters. For more information about the Infoprint Server subsystem, the
printer subparameter, and other subparameters that the Infoprint Server subsystem
supports, see z/OS Infoprint Server User's Guide.

SYMBOLS parameter
Parameter type

Keyword, optional

Purpose

Use the SYMBOLS parameter to request JES to perform symbol substitution within
in-stream data.

Syntax

SYMBOLS=({JCLONLY|EXECSYS|CNVTSYS} [,logging-DDname])

Valid values: Specify one of three SYMBOLS= values:

JCLONLY
Substitute JCL symbols that have been made available by the EXPORT statement
and JES Symbols dynamically created by the IAZSYMBL JES symbol service,
which is described in z/OS JES Application Programming.

EXECSYS
Substitute symbols as described for JCLONLY. In addition, substitute system
symbols from the system where this job is executing.

CNVTSYS
Substitute symbols as described for JCLONLY. In addition, substitute system
symbols from the system where this job completed JCL conversion.

logging-DDname
Optional parameter that indicates a valid DD name for the data set to use for
logging results of the symbol substitution. Rules for DD names are described in
“DDNAME parameter” on page 150. Note that logging-DDname is ignored if it is
specified on the DD statement which describes a data set that is the target on the
PARMDD keyword (see “PARMDD parameter” on page 354).

Relationship to other parameters
Do not code the following DD parameters with the SYMBOLS parameter:

PATH PATHOPTS PATHMODE
PATHDISP RLS FILEDATA
LGSTREAM

DD: SUBSYS

280 z/OS V2R1.0 MVS JCL Reference

|

|

|

|

|
|

|

||

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|

|

Example of the SYMBOLS parameter
In the following example, a data set is deleted and then reallocated, and two JCL
symbols–DSNAME and VOLSER–are exported and used for symbol substitution in
the in-stream data sets:
//REALLOC JOB 1,TESTJOB,
// MSGLEVEL=(1,1),CLASS=A
//E1 EXPORT SYMLIST=(DSNAME)
//E2 EXPORT SYMLIST=(VOLSER)
//S1 SET DSNAME=HASP.TEST.MACLIB
//S2 SET VOLSER=J2COM1
//DEALLIB EXEC PGM=IDCAMS,REGION=300K
//DD1 DD UNIT=3390,DISP=OLD,VOL=SER=&VOLSER
//SYSPRINT DD SYSOUT=*
//SYSIN DD *,SYMBOLS=JCLONLY

DELETE &DSNAME
NONVSAM PURGE SCRATCH FILE(DEVICE)

//*
//REALLIB EXEC PGM=IKJEFT01,REGION=300K
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *,SYMBOLS=JCLONLY

ALLOCATE DSNAME(’&DSNAME.’)
UNIT(3390) VOLUME(&VOLSER.)
NEW CATALOG DSNTYPE(LIBRARY)
SPACE(65,15) DIR(56) TRACKS

SYMLIST parameter
Parameter type

Keyword, optional

Purpose

Use the SYMLIST parameter to list the symbols to pass to the internal reader
(INTRDR). The symbols must be defined at the time that a job is submitted to
INTRDR. Symbols can be JCL symbols made available to the job execution phase
using the EXPORT statement, and JES symbols dynamically created using the JES
Symbol service (IAZSYMBL). The special asterisk character (*) indicates that all JCL
and JES symbols that meet JCL requirements will be passed to the internal reader.

Syntax

SYMLIST= { (sym1,sym2,sym3,...) }
{ * }

DD: SYMBOLS

Chapter 12. DD statement 281

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|
|
|
|
|

|

||
|

Single subparameter: You can omit the parentheses if you are exporting only one symbol.

Length: The entire symbol string must not exceed 142 characters. The total character count:

v Includes any commas, which are considered part of the information.

v Excludes any enclosing parentheses or apostrophes, which are not considered part of the
information.

Multiple subparameters: When exporting more than one symbol, you must separate the
symbols by commas and enclose the information within parentheses or apostrophes. For
example, SYMLIST=(SYM86,SYM87) or SYMLIST='SYM86,SYM87'.

Code an apostrophe that is part of a symbol name as two consecutive apostrophes. For
example, code SYM89'90 as SYMLIST='SYM89''90'

Continuation onto another statement: Enclose the symbol name string in parentheses, and
end each statement with a comma after a complete subparameter. For example:

//EXPORT86 EXPORT SYMLIST=(SYM86,’SYM87/88’,’SYM=89’,
// ’SYM90’)

Relationship to other parameters
Do not code the following DD parameters with the SYMLIST parameter:

PATH PATHOPTS PATHMODE
PATHDISP RLS FILEDATA
LGSTREAM

Note: The SYMLIST parameter has an effect only on a DD statement for an
internal reader.

Example of the SYMLIST parameter
In the following example, FIRSTJOB submits SECJOB. The symbolic parameters
DSNAME and VOLSER are passed by the SYSUT2 SYMLIST parameter in
FIRSTJOB. These symbols are used in the SYSUT1 DD statement in SECJOB:
//FIRSTJOB JOB MSGLEVEL=(1,1),MSGCLASS=A,NOTIFY=IBMUSER
//MYEXPRT EXPORT SYMLIST=(DSNAME,VOLSER)
//MYSET1 SET DSNAME=HASP.TEST.MACLIB
//MYSET2 SET VOLSER=J2COM1
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD SYSOUT=(A,INTRDR),SYMLIST=(DSNAME,VOLSER)
//SYSIN DD DUMMY
//SYSUT1 DD DISP=SHR,DSN=TEST.JCL(SECJOB)

The previous job assumes that the following job is in the SECJOB member in the
TEST.JCL data set:
//SECJOB JOB MSGLEVEL=(1,1),MSGCLASS=A,NOTIFY=IBMUSER
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//* &DSNAME and &VOLSER from FIRSTJOB are used
//SYSUT1 DD DISP=SHR,DSN=&DSNAME,VOL=SER=&VOLSER.,
// UNIT=3390

DD: SYMLIST

282 z/OS V2R1.0 MVS JCL Reference

|

|

|

|
|

|
|
|

|
|

|
|

|
|
|

|

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

SYSOUT parameter
Parameter type

Keyword, optional

Purpose

Use the SYSOUT parameter to identify this data set as a system output data set,
usually called a sysout data set.

Do not use the SYSOUT parameter for an SMS-managed data set (one with an
assigned storage class).

The SYSOUT parameter also:
v Assigns this sysout data set to an output class. The attributes of each output

class are defined during JES initialization.
v Optionally requests an external writer to process the sysout data set rather than

JES. An external writer is an IBM- or installation-written program.
v Optionally identifies the forms on which the data set is to be printed or

punched.
v Optionally refers to a JES2 /*OUTPUT statement for processing parameters.

The sysout data set is processed according to the following processing options, in
override order:
1. The options specified on this sysout DD statement.
2. The options specified on a referenced OUTPUT JCL statement.
3. The options specified on a referenced JES2 /*OUTPUT statement or on a JES3

//*FORMAT statement.
4. The installation default options for the requested output class.

Note:

1. If a sysout data set has the same class as the JOB statement MSGCLASS
parameter, the job log appears on the same output listing as this sysout data
set.

2. An installation should maintain a list of available output classes and their
attributes. Some classes should be used for most printing and punching, but
others should be reserved for special processing. Each class is processed by an
output writer. The system operator starts the output writers for the commonly
used output classes. If you plan to specify a special output class, ask the
operator to start the output writer for that class. If the writer is not started
before the job produces the sysout data set, the data set is retained until the
writer is started.

3. If the automatic restart manager (ARM) restarts a job, JES discards all non-spin
sysout data sets created during the previous execution. (You can avoid losing
that output by adding SPIN=UNALLOC to the DD statement for the SYSOUT
data set.)

References

For information on output writers and external writers, see z/OS MVS Using the
Subsystem Interface.

DD: SYSOUT

Chapter 12. DD statement 283

|

Syntax

SYSOUT= { class }
{ * }
{ ([class] [,writer-name] [,form-name]) }

[,INTRDR] [,code-name]

SYSOUT=(,)

v You can omit the parentheses if you code only a class.

v All of the subparameters are positional. Code a comma to indicate an omitted
subparameter as follows:

– If you omit the class, code a comma to indicate the omission. For example, when
other subparameters follow, code SYSOUT=(,INTRDR,FM26). When other
subparameters do not follow, code a null class as SYSOUT=(,).

– If you omit a writer-name but code a form-name or code-name, code a comma to
indicate the omission. For example, SYSOUT=(A,,FM26).

– Omission of the third subparameter does not require a comma. For example,
SYSOUT=A or SYSOUT=(A,INTRDR).

Subparameter definition
class

Identifies the output class for the data set. The class is one character: A
through Z or 0 through 9, which you may optionally include in quotation
marks. The attributes of each output class are defined during JES initialization;
specify the class with the desired attributes.

The CLASS value specified on the DD statement when used with the INTRDR
option is the output class (MSGCLASS) of the job going through the internal
reader, assuming that the job (going through the internal reader) does not
specify MSGCLASS= on its job statement. If it does, the MSGCLASS from the
JOB statement overrides the class on the SYSOUT=(A,INTRDR).

* Requests the output class in the MSGCLASS parameter on the JOB statement.

In a JES2 system you can also use the dollar-sign ($) to request the output class
in the MSGCLASS parameter on the JOB statement.

(,)
Specifies a null class. A null class must be coded to use the CLASS parameter
on a referenced OUTPUT JCL statement.

Specifying SYSOUT=(,) nullifies the SYSOUT class, but designates the data set
as a sysout data set that JES will process.

Specifying SYSOUT=, nullifies the entire SYSOUT parameter, and causes the
system to process the data set as a normal non-subsystem data set. Because
there is no DSNAME parameter, the system treats the data set as a temporary
data set. To avoid allocation failures, you might need to supply UNIT or
SPACE information.

writer-name
Identifies the member name (1 to 8 alphanumeric characters) of an
installation-written program.

DD: SYSOUT

284 z/OS V2R1.0 MVS JCL Reference

|
|
|
|
|

An external writer is a started task used to process output. Because the
external writer is a started task, it has a userid associated with it. Process
output with an external writer by naming the writer on the DD statement that
defines the output:

//MYOUTPUT DD SYSOUT=(A,XTWTR)

In order for the writer to process that output, the writer’s userid must be in a
RACF access list. The access list permits the writer’s userid to the SYSOUT
data set. The writer’s userid is the userid specified in the started procedure
table for the writer task. If your installation's policy requires security labels, the
security label associated with the external writer must be equal to or greater
than the security label associated with the SYSOUT. For more information, see
your security administrator.

Do not code STDWTR as a writer-name. STDWTR is reserved for JES and used
as a parameter in the MVS operator’s MODIFY command.

In a JES3 system, do not code NJERDR as a writer-name. NJERDR is reserved
for JES3.

INTRDR
Tells JES that this sysout data set is to be sent to the internal reader as an input
job stream.

form-name
Identifies the print or punch forms. form-name is 1 through 4 alphanumeric or
national ($, #, @) characters.

code-name
Identifies an earlier JES2 /*OUTPUT statement from which JES2 is to obtain
processing characteristics. The code-name must be the same as the code
parameter on the JES2 /*OUTPUT statement.

Note:

v code-name is supported only on JES2 systems.
v Do not specify the code-name subparameter when the job or job step

contains a default OUTPUT JCL statement.

Defaults
In a JES2 system, if you do not specify a class on this DD statement or a referenced
OUTPUT JCL statement, JES2 assigns the sysout data set to the output class
defined by the MSGCLASS value of the JOB statement. See the override order
shown under "Purpose" for how this default is established.

If you do not code a writer-name subparameter on this DD statement or a
referenced OUTPUT JCL statement, the installation’s job entry subsystem processes
the sysout data set.

If you do not code a form-name subparameter on this DD statement or a
referenced OUTPUT JCL statement, JES uses an installation default specified at
initialization.

Overrides
The class subparameter of the DD statement SYSOUT parameter overrides an
OUTPUT JCL CLASS parameter. On the DD statement, you must code a null class
in order to use the OUTPUT JCL CLASS parameter; for example:

//OUTDS DD SYSOUT=(,),OUTPUT=*.OUT1

DD: SYSOUT

Chapter 12. DD statement 285

The writer-name subparameter of the DD statement SYSOUT parameter overrides
an OUTPUT JCL WRITER parameter.

The form-name subparameter of the DD statement SYSOUT parameter overrides
an OUTPUT JCL FORMS parameter. Note that the SYSOUT form-name
subparameter can be only four characters maximum while both the OUTPUT JCL
FORMS form-name and the JES initialization default form names can be eight
characters maximum.

Relationship to other parameters
Do not code the following DD parameters with the SYSOUT parameter.

* DDNAME LIKE
AMP DISP PROTECT
CHKPT DYNAM QNAME
DATA EXPDT RETPD
DATACLAS LABEL SUBSYS

VOLUME

Ignored Parameters: Because JES allocates sysout data sets, the UNIT and SPACE
parameters are ignored, if coded on a sysout DD statement.

Parameters on Procedure DD Statements that are Overridden: When an overriding
DD statement contains a SYSOUT parameter, the system ignores a UNIT parameter
on the overridden DD statement in the cataloged or in-stream procedure.

Naming a Sysout Data Set: Code the DSNAME parameter with the SYSOUT
parameter if you wish to assign the last qualifier of the system-generated name to
a sysout data set.

SYSOUT and DEST Subparameters: Do not code the SYSOUT writer-name
subparameter when coding a DEST userid subparameter. These subparameters are
mutually exclusive. You can code:

//VALID1 DD SYSOUT=D,DEST=(node,userid)
//VALID2 DD SYSOUT=(D,writer-name),DEST=(node)

With DCB Subparameters: JES2 ignores DCB=PRTSP=2 on a DD statement that
also contains a SYSOUT parameter.

For JES, it is not necessary to select a specific BLKSIZE on the DCB parameter for
performance reasons because the subsystem selects its own blocking.

INTRDR with OUTPUT Parameter: Do not code an OUTPUT parameter when the
writer-name subparameter is INTRDR.

Relationship to other control statements
A sysout DD statement can directly or indirectly reference an OUTPUT JCL
statement. The parameters on the referenced OUTPUT JCL statement combine with
the parameters on the sysout DD statement to control the processing of the sysout
data set. See “OUTPUT parameter” on page 233 and Chapter 23, “OUTPUT JCL
statement,” on page 461.

DD: SYSOUT

286 z/OS V2R1.0 MVS JCL Reference

SYSOUT cannot specify a code-name subparameter in a job or job step that
contains an OUTPUT JCL statement; in this case, JES2 treats the third
subparameter as a form-name, instead of a reference to a JES2 /*OUTPUT
statement.

Backward references: Do not refer to an earlier DD statement that contains a
SYSOUT parameter.

Starting an external writer when requested
When a statement supplying processing options for a sysout data set specifies an
external writer, the writer must be started before it can print or punch the data set.
The writer is started by a system command from the operator or in the input
stream. If the writer is not started before the job produces the sysout data set, the
data set is retained until the writer is started.

Held classes in a JES2 system
A sysout data set is held if the sysout DD statement contains HOLD=YES or the
OUTPUT JCL statement specifies OUTDISP=HOLD.

Held classes in a JES3 system
If CLASS specifies a class-name that is defined to JES3 as a held class for the
output service hold queue (Q=HOLD), all of the new output characteristics might
not be included in the data set on the writer queue when (1) the data set is moved
from the hold queue to the output service writer queue (Q=WTR), (2) the data set
includes an OUTPUT JCL statement, and (3) the NQ= or NCL= keyword is used.

For more information, see z/OS JES3 Initialization and Tuning Guide.

Significance of output classes
To print this sysout data set and the messages from your job on the same output
listing, code one of the following:
v The same output class in the DD SYSOUT parameter as in the JOB MSGCLASS

parameter.
v DD SYSOUT=* to default to the JOB MSGCLASS output class.
v DD SYSOUT=(,) to default to one of the following:

1. The CLASS parameter in an explicitly or implicitly referenced OUTPUT JCL
statement. In this case, the OUTPUT JCL CLASS parameter should specify
the same output class as the JOB MSGCLASS parameter.

2. The JOB MSGCLASS output class, if no OUTPUT JCL statement is referenced
or if the referenced OUTPUT JCL statement contains either CLASS= or
CLASS=*.

Examples of the SYSOUT parameter
Example 1:
//DD1 DD SYSOUT=P

In this example, the DD statement specifies that JES is to write the sysout data set
to the device handling class P output.

Example 2:
//DD2 DD DSNAME=&&PAYOUT1,SYSOUT=P

DD: SYSOUT

Chapter 12. DD statement 287

In this example, DD statement DD2 defines PAYOUT1 as the last qualifier of the
system-generated name for the sysout data set. The system generates a name such
as userid.jobname.jobid.Ddsnumber.PAYOUT1. The DD statement specifies that JES
is to write the data set to the device handling class P output.

Example 3:
//JOB50 JOB ,’C. BROWN’,MSGCLASS=C
//STEP1 EXEC PGM=SET
//DDX DD SYSOUT=C

In this example, DD statement DDX specifies that JES is to write the sysout data
set to the device handling class C output. Because the SYSOUT parameter and the
MSGCLASS parameter specify the same class, the messages from this job and the
sysout data set can be written to the same device.

Example 4:
//STEP1 EXEC PGM=ANS
//OT1 OUTPUT DEST=NYC
//OT2 OUTPUT DEST=LAX
//OT3 OUTPUT COPIES=5
//DSA DD SYSOUT=H,OUTPUT=(*.OT2,*.OT1,*.OT3)

In this example, the DD statement combines with the three referenced OUTPUT
JCL statements to create three separate sets of output:
1. DSA combines with OT1 to send the sysout data set to NYC.
2. DSA combines with OT2 to send the sysout data set to LAX.
3. DSA combines with OT3 to print five copies of the data set locally on the

printer used for output class H.

Note that the output references can be in any order.

Example 5:
//DD5 DD SYSOUT=(F,,2PRT)

In this example, the DD statement specifies that JES is to write the sysout data set
to the device handling class F output. The data set is to be printed or punched on
forms named 2PRT.

TERM parameter
Parameter type

Keyword, optional

Do not use the TERM parameter for an SMS-managed data set (one with an
assigned storage class).

Purpose

Use the TERM parameter to indicate to the system that a data set is coming from
or going to a terminal for a TSO/E user.

Considerations for an APPC scheduling environment

The TERM parameter has no function in an APPC scheduling environment. If you
code TERM, the system will check it for syntax and ignore it.

DD: SYSOUT

288 z/OS V2R1.0 MVS JCL Reference

Syntax

TERM=TS

Subparameter definition
TS

In a foreground job submitted by a TSO/E user, indicates that the input or
output data set is coming from or going to a TSO/E userid.

In a background or batch job, the system either:
v Ignores the TERM=TS parameter, when it appears with other parameters.
v Fails the TERM=TS parameter with an allocation error, when the parameter

appears by itself. (The system bypasses this error if SYSOUT=* is coded with
TERM=TS.)

Relationship to other parameters
Do not code the following DD parameters with the TERM parameter.

* DYNAM
AMP PROTECT
DATA QNAME
DDNAME

Code only the DCB and SYSOUT parameters with the TERM parameter. The
system ignores any other DD parameters.

Location in the JCL
To ensure that the system uses the desired OUTPUT JCL statement, code all
referenced OUTPUT JCL statements in the input stream before the DD statement
that refers to them. For example, if the referencing DD statement appears in an
in-stream or cataloged procedure, the referenced OUTPUT JCL statement should
precede the DD statement in the procedure.

In a foreground TSO/E job, a DD statement containing TERM=TS and a SYSOUT
parameter begins an in-stream data set.

When concatenating DD statements, the DD statement that contains TERM=TS
must be the last DD statement in a job step.

Examples of the TERM parameter
Example 1
//DD1 DD TERM=TS

In a foreground job submitted from a TSO/E userid, this DD statement defines a
data set coming from or going to the TSO/E userid.

Example 2
//DD1 DD TERM=TS,SYSOUT=*

DD: TERM

Chapter 12. DD statement 289

In a background or batch job, the system ignores TERM=TS and recognizes a
sysout data set. (An allocation error occurs if SYSOUT=* is not coded with
TERM=TS.)

Example 3
//DD3 DD UNIT=3400-5,DISP=(MOD,PASS),TERM=TS,LABEL=(,NL),
// DCB=(LRECL=80,BLKSIZE=80)

In a foreground job, the system ignores all of the parameters in this example
except TERM and DCB. In a batch job, the system ignores only the TERM
parameter.

UCS parameter
Parameter type

Keyword, optional

Purpose

Use the UCS (universal character set) parameter to identify:
v The UCS image JES is to use in printing this sysout data set.
v A print train (print chain or print band) JES is to use in printing this sysout data

set on an impact printer.
v A font for this sysout data set printed on an AFP printer in a JES2 system. In

this use, the UCS parameter acts like a CHARS parameter.

The UCS image specifies the special character set to be used. JES loads the image
into the printer’s buffer. The UCS image is stored in SYS1.IMAGELIB. IBM
provides the special character set codes in Table 18 on page 291.

References

For more information on the UCS parameter, see z/OS DFSMSdfp Advanced Services.

Syntax

UCS= {character-set-code }
{(character-set-code [,FOLD] [,VERIFY]) }

[,]

v You can omit the parentheses if you code only a character-set-code.

v All of the subparameters are positional. If you omit FOLD but code VERIFY, code a
comma to indicate the omission. For example, UCS=(AN,,VERIFY).

v Null positions in the UCS parameter are invalid.

Subparameter definition
character-set-code

Identifies a universal character set. The character-set-code is 1 through 4
alphanumeric or national ($, #, @) characters. See Table 18 on page 291 for IBM
standard special character set codes.

DD: TERM

290 z/OS V2R1.0 MVS JCL Reference

FOLD
Requests that the chain or train for the universal character set be loaded in fold
mode. Fold mode is described in 2821 Component Description. Fold mode is
most often used when upper- and lower-case data is to be printed only in
uppercase.

Note: JES2 and JES3 do not support the FOLD subparameter. For JES2, the
FOLD option is specified in the UCS image for JES2-controlled printers. See
z/OS DFSMSdfp Advanced Services.

VERIFY
Requests that, before the data set is printed, the operator verify visually that
the character set image is for the correct chain or train. The character set image
is displayed on the printer before the data set is printed.

Table 18. Special Character Sets for the 1403, 3203 Model 5, and 3211 Printers

1403
3203
Model 5 3211 Characteristics

AN AN A11 Arrangement A, standard EBCDIC character set, 48 characters

HN HN H11 Arrangement H, EBCDIC character set for FORTRAN and
COBOL, 48 characters

G11 ASCII character set

PCAN PCAN Preferred alphanumeric character set, arrangement A

PCHN PCHN Preferred alphanumeric character set, arrangement H

PN PN P11 PL/I alphanumeric character set

QN QN PL/I preferred alphanumeric character set for scientific
applications

QNC QNC PL/1 preferred alphanumeric character set for commercial
applications

RN RN Preferred character set for commercial applications of
FORTRAN and COBOL

SN SN Preferred character set for text printing

TN TN T11 Character set for text printing, 120 characters

XN High-speed alphanumeric character set for 1403, Model 2

YN High-speed preferred alphanumeric character set for 1403,
Model N1

Note: Where three values exist (for the 1403, 3211, and 3203 Model 5 printers), code any
one of them. JES selects the set corresponding to the device on which the data set is
printed. Not all of these character sets may be available at your installation. Also, an
installation can design character sets to meet special needs and assign a unique code to
them. Follow installation procedures for using character sets.

Defaults
If you do not code the UCS parameter, the system checks the UCS image in the
printer’s buffer; if it is a default image, as indicated by its first byte, JES uses it. If
it is not a default image, JES loads the UCS image that is the installation default
specified at JES initialization.

On an impact printer, if the chain or train does not contain a valid character set,
JES asks the operator to specify a character set and to mount the corresponding
chain or train.

DD: UCS

Chapter 12. DD statement 291

Overrides
For printing on a printer with the UCS feature, the UCS parameter on a sysout DD
statement overrides an OUTPUT JCL UCS parameter. For printing on a 3800 Model
1, a CHARS parameter on the sysout DD statement or the OUTPUT JCL statement
overrides all UCS parameters.

For a data set scheduled to the Print Services Facility (PSF), the PSF uses the
following parameters, in override order, to select the font list:
1. Font list in the library member specified by an OUTPUT JCL PAGEDEF

parameter.
2. DD CHARS parameter.
3. OUTPUT JCL CHARS parameter.
4. DD UCS parameter.
5. OUTPUT JCL UCS parameter.
6. JES installation default for the device.
7. Font list on the PAGEDEF parameter in the PSF cataloged procedure.

See “PAGEDEF parameter” on page 530 for more information.

Relationship to other parameters
Do not code the following DD parameters with the UCS parameter.

* DYNAM
AMP KEYOFF
DATA PROTECT
DDNAME QNAME

Do not code the UCS parameter with the DCB subparameters CYLOFL, INTVL,
RESERVE, and RKP.

The FOLD and VERIFY subparameters are meaningful only when you specify a
printing device directly on a DD statement, for example, UNIT=00E, thus
bypassing JES sysout processing.

Using special character sets
To use a special character set, SYS1.IMAGELIB must contain an image of the
character set, and the chain or train for the character set must be available. IBM
provides standard special character sets, and the installation may provide
user-designed special character sets.

Examples of the UCS parameter
Example 1
//DD1 DD UNIT=1403,UCS=(YN,,VERIFY)

In this example, the DD statement requests a 1403 Printer. The UCS parameter
requests the chain or train for special character set code YN. Because VERIFY is
coded, the system will display the character set image on the printer before the
data set is printed.

Example 2
//DD2 DD SYSOUT=G,UCS=PN

DD: UCS

292 z/OS V2R1.0 MVS JCL Reference

In this example, the DD statement requests the device for output class G. If the
device is a printer with the UCS feature, the system loads the UCS image for code
PN. If the device is an impact printer, the system asks the operator to mount the
chain or train for PN, if it is not already mounted. If the device is a 3800, the
system uses the UCS subparameter to select the character-arrangement table.
Otherwise, the system ignores the UCS parameter.

UNIT parameter
Parameter Type: Keyword, optional

Note: With SMS, you do not need to use the UNIT parameter to specify a device
for an SMS-managed data set. Use the STORCLAS parameter (described in) or let
an installation-written automatic class selection (ACS) routine select a storage class
for the data set.

Also with SMS, for a non-SMS-managed data set, if your storage administrator has
set a system default unit under SMS, you do not need to specify UNIT. Check with
your storage administrator.

Purpose: Use the UNIT parameter to ask the system to place the data set on:
v A specific device.
v A certain type or group of devices.
v The same device as another data set.

The UNIT parameter can also tell the system how many devices to assign and
request that the system defer mounting the volume until the data set is opened.

Syntax

{UNIT=([ddd] [,unit-count] [,DEFER][,SMSHONOR]) }
[/ddd] [,P] [,]
[/dddd] [,]
[device-type
[group-name

{UNIT=AFF=ddname }

v You can omit the parentheses if you code only the first subparameter.

v All of the subparameters are positional. If you omit unit-count or P but code DEFER,
code a comma to indicate the omission; one device is assigned to the data set. For
example, UNIT=(3490,,DEFER,).

v Device-type is mutually exclusive with SMSHONOR.

Subparameter definition
device-number

Identifies a specific device by a 3-digit or 4-digit hexadecimal number. Precede
a 4-digit number with a slash (/). A 3-digit number can be specified with or
without a slash.

Attention: Specify a device number only when necessary. When you specify a
device number, the system can assign only that specific device. If the device is
already being used, the job must be delayed or canceled. If the device number
is changed or logically moved, the allocation request will fail.

DD: UCS

Chapter 12. DD statement 293

However, for a permanently mounted direct access device, such as a 3390
Direct Access Storage, specifying a device type (UNIT=3390) and a volume
serial number in the VOLUME=SER parameter has the same result as
specifying a device number in the UNIT parameter.

In a JES3 system, if any DD UNIT parameter in a job specifies a device-number
for a device that is JES3-managed or jointly JES3/MVS managed, either the
JOB statement must contain a SYSTEM or SYSAFF parameter, or the JES3
//*MAIN statement must contain a SYSTEM parameter.

For an SMS-managed tape library request where SMSHONOR is not specified,
or an SMS-managed DASD request, the device number is ignored. For an
SMS-managed tape library request where SMSHONOR is specified, the system
attempts to allocate the specified device, provided it is in the storage group(s)
assigned to the request by SMS.

device-type
Requests a device by its generic name, which is an IBM-supplied name that
identifies a device by its machine type and model. For example, UNIT=3390.

When a device-type name contains a hyphen, do not enclose it in apostrophes,
for example, UNIT=3400-5.

Obtain the list of device types you can specify from your installation.

If you specify the device-type subparameter, SMS ignores it.

For a 3480 Magnetic Tape Subsystem in compatibility mode, code UNIT=3400-9
or a group-name.

group-name
Requests a group of devices by a symbolic name. The installation must have
assigned the name to the device(s) during system initialization or IBM must
have assigned the name. The group-name is 1 through 8 alphanumeric
characters.

For an SMS-managed tape library request where SMSHONOR is not specified,
or an SMS-managed DASD request, the group-name is ignored. For an
SMS-managed tape library request, if SMSHONOR is specified along with the
group-name, the system attempts to allocate to the subset of devices in the
group-name, provided that they are also selected by SMS.

Group names: A group-name can identify a single device or a group of
devices. A group can consist of devices of the same or different types. For
example, a group can contain two or more different types of direct access
storage devices (DASD) or two or more different types of tape devices, or even
a mixture of both direct access and tape devices. Note, however, that IBM does
not recommend that a group contain both direct access storage devices (DASD)
and tape devices.

Note: A group name is called an esoteric name in Hardware Configuration
Definition (HCD) terminology.

Allocation from groups: The system assigns a device from the group. If a
group consists of only one device, the system assigns that device. If the group
consists of more than one device type, the units requested are allocated from
the same device type. For example, if GPDA contains 3380 Disk Storage and
3390 Direct Access Storage devices, a request for two units would be allocated
to two 3380s or to two 3390s.

DD: UNIT

294 z/OS V2R1.0 MVS JCL Reference

Extending data set: If a data set that was created using the group-name
subparameter is to be extended, the system allocates additional devices of the
same type as the original devices. However, the additional devices may not
necessarily be from the same group.

SYSALLDA: IBM assigned group-names include SYSALLDA, which contains
all direct access devices defined to the system.

SYS3480R and SYS348XR: SYS3480R and SYS348XR are IBM-assigned group
names. SYS3480R contains 3480, 3480X, and 3490 Magnetic Tape Subsystems.
SYS348XR contains 3480X and 3490 Magnetic Tape Subsystems.

Use these group names to override the device type eligibility retrieved by the
system when referencing existing 3480- or 3480 XF-formatted data sets.
Specifically, use SYS3480R when you want to read 3480-formatted data sets
and use SYS348XR when you want to read 3480 XF-formatted data sets.

Note: LABEL=(n,,,IN) is the system-managed tape library equivalent of either
UNIT=SYS3480R or UNIT=SYS348XR.

unit-count
Specifies the number of devices for the data set. "Unit-count" is a decimal
number from 1 through 59.

Number of devices allocated: The system uses the unit-count to determine
how many devices to allocate. For tapes, the system uses the unit-count
subparameter to allocate the specified number of system-managed or
non-system-managed units. If you also specify P (for parallel mount) in the
UNIT parameter, and for SMS-managed DASD, the system uses the highest of
the following numbers to determine how many devices and volumes to
allocate:
v unit-count specified in the UNIT parameter
v volume-count specified in the VOLUME parameter
v number of volume serial numbers implicitly or explicitly specified

You may receive more devices than the unit-count requests if you specify
VOLUME=REF or a permanently resident or reserved volume. And, if two DD
statements in a step request the same volume and either DD statement
requests any other volume(s), the system assigns an additional device.

Unit count for received or VOLUME=REF data sets: The system assigns one
device when the DD statement receives a passed data set or refers in a
VOLUME=REF subparameter to a cataloged data set or earlier DD statement
for volume and unit information. Code a unit-count subparameter if the data
set needs more than one device.

Unit count when device number specified: When the first subparameter
requests a specific device, the unit count must be 1 or omitted. Only when the
device is a communication device can the unit count be higher than 1.

Unit count when SMSHONOR specified: When SMSHONOR is specified,
only the subset of devices that are selected by SMS and are within the
specified group-name are eligible. When a unit count is specified, the requested
number of devices are selected from the subset of devices. If the subset does
not contain enough devices to satisfy the requested unit count, the request
fails.

P Asks the system to allocate the same number of devices as requested in the
VOLUME volume-count or SER subparameter, whichever is higher. Thus, all
volumes for the data set are mounted in parallel.

DD: UNIT

Chapter 12. DD statement 295

If you specify the P subparameter for system-managed DASD, the system
ignores it. If you specify the P subparameter for system-managed tape libraries,
the system honors it.

DEFER
Asks the system to assign the data set to device(s) but requests that the
volume(s) not be mounted until the data set is opened. To defer mounting,
DEFER must be specified or implied for all DD statements that reference the
volume.

If you specify the DEFER subparameter for system-managed DASD, the system
ignores it. If you specify the DEFER subparameter for system-managed tape
libraries, the system honors it.

DEFER when data set is never opened: If you request deferred mounting of a
volume and the data set on that volume is never opened by the processing
program, the volume is never mounted during the job step.

Restrictions on DEFER: Do not code DEFER:
v For a new data set on direct access. The system ignores DEFER.
v On a SYSCKEOV DD statement.

SMSHONOR
Asks the system to honor the device number or group-name and allocate to the
device number or group-name specified in the case of an SMS tape library
request.

Use only device number or group-name (user-defined esoteric) when you use
SMSHONOR. The following subset of devices must be consistent with libraries
assigned to the storage class specified on the request or selected by ACS
routines of the installation :
1. subset of devices that are in the specified group name.
2. subset of devices that are with the specified device number, which are

selected by the storage class assigned to the request.

Note: If the device number or group-name does not intersect with the storage
class, the request fails.

If you specify the SMSHONOR subparameter on a non-SMS system, the
system ignores the keyword.

If you specify a group name in a JES3 environment, all devices in the group
must be of the same device type and from the same tape library. There are no
such restrictions in a non-JES3 environment.

AFF=ddname
Requests that the system allocate different data sets residing on different,
removable volumes to the same device during execution of the step. This
request is called unit affinity, where "ddname" is the ddname of an earlier DD
statement in the same step. Use unit affinity to reduce the number of devices
used in a job step; request that an existing data set be assigned to the same
device(s) as another existing data set.

If you specify the UNIT=AFF subparameter for system-managed DASD, the
system ignores it. If you specify the UNIT=AFF subparameter for
system-managed tape libraries, the system attempts to honor it.

Under certain conditions the system ignores unit affinity. See z/OS MVS JCL
User's Guide for more information.

DD: UNIT

296 z/OS V2R1.0 MVS JCL Reference

In a JES3 environment, UNIT=AFF=ddname may not be honored. See z/OS
MVS JCL User's Guide and z/OS HCD Planning for information about device
eligibility and unit affinity.

Restrictions on UNIT=AFF: Do not code UNIT=AFF=ddname:
v With DISP=NEW if the data set referenced in the AFF subparameter resides on a

direct access device. This restriction applies only to non-SMS-managed DASD. If
coded, the system terminates the job. If the referenced data set can be allocated
to either tape or DASD, the system allocates both requests to tape devices.

v On a DD * or DD DATA statement or on a DD statement containing a SUBSYS
parameter. The system ignores the UNIT=AFF and defaults the device to
SYSALLDA.

v When the DD statement referenced in the AFF subparameter contains
FREE=CLOSE.

v With the STORCLAS parameter.
v With an affinity specification to an earlier DD statement that requests SYS3480R

or SYS348XR on the group-name subparameter, unless volume affinity also
exists. Volume affinity exists when two DD statements both reference a data set
on the same volume. Do not also specify DISP=OLD or DISP=MOD; attempting
to write 3480 data to a 3490 drive, or 3490 data to a 3480 drive, will fail during
OPEN processing with ABEND 813-04 accompanied by message IEC149I.

Overrides
If you code SYSOUT and UNIT on the same statement, the SYSOUT parameter
overrides the UNIT parameter.

The system also obtains device information when the system obtains volume serial
information from:
v A VOLUME=REF=dsname reference to an earlier data set.
v A VOLUME=REF=ddname reference to an earlier DD statement.
v The volume(s) for a passed data set.
v The catalog for a cataloged data set.

However, you can override the retrieved device information if the device you
specify is a subset of the retrieved device information; otherwise the system
ignores the overriding device information. For example, if the retrieved unit
grouping is 3390, and the specified unit subparameter is 3390A (a subset of 3390),
then the system allocates from the devices contained in 3390A.

If you have 3490 Magnetic Tape Subsystem models A10 and A20 defined to your
system and you use one of the IBM-generated group names SYS3480R or
SYS348XR, the system overrides the device type retrieved from the catalog with a
device from the esoteric device group.

For more about how the system uses device information it retrieves from the
catalog, see the text about the relationship of the UNIT and VOLUME parameters
for non-SMS-managed data sets in z/OS MVS JCL User's Guide.

Note: LABEL=(n,,,IN) is the system-managed tape library equivalent of either
UNIT=SYS3480R or UNIT=SYS348XR.

DD: UNIT

Chapter 12. DD statement 297

You can mount 3480-formatted or 3480X-formatted (18-track formatted) tape
volumes, that are not extended, on a 3490 tape device (36-track write, 18-track or
36-track read).

Relationship to other parameters
Do not code the following DD parameters with the UNIT parameter.

* DYNAM
DATA QNAME
DDNAME

Do not code the UNIT DEFER subparameter on a SYSCKEOV DD statement.

To allocate a device, such as a printer or telecommunications device, that does not
involve a data set, do not code the DISP parameter.

See also "Restrictions on UNIT=AFF."

Relationship to other control statements
When SMSHONOR is specified, a device number or a group name must be
specified.

Location in the JCL
When a DD statement contains a UNIT=AFF=ddname parameter, the DD
statement referenced in the AFF subparameter must be defined earlier in the job
step; otherwise, the system treats the DD statement containing UNIT=AFF as a DD
DUMMY statement.

The following example illustrates a case where the system treats the DD statement
containing the UNIT=AFF as a DD DUMMY statement:

//STEP EXEC PGM=TKM
//DD1 DD DDNAME=DD5
//DD2 DD DSNAME=A,DISP=OLD
//DD3 DD DSNAME=C,DISP=SHR,UNIT=AFF=DD1
//DD5 DD DSNAME=B,DISP=SHR

DD3 requests unit affinity to DD1. Although DD1 occurs earlier in the job step
than DD3, it refers to DD5 that is located after DD3. Because DD1 is not
completely defined, the system treats DD3 as a dummy statement.

Examples of the UNIT parameter
Example 1:
//STEP2 EXEC PGM=POINT
//DDX DD DSNAME=EST,DISP=MOD,VOLUME=SER=(42569,42570),
// UNIT=(3480,2)
//DDY DD DSNAME=ERAS,DISP=OLD,UNIT=3480
//DDZ DD DSNAME=RECK,DISP=OLD,
// VOLUME=SER=(40653,13262),UNIT=AFF=DDX

DD statement DDX requests two 3480 tape devices, DD statement DDZ requests
the same two devices as DDX. Note that the operator will have to change volumes
on the two 3480 devices during execution of the job step.

DD statement DDY requests one 3480 tape device.

DD: UNIT

298 z/OS V2R1.0 MVS JCL Reference

Example 2:
//DD1 DD DSNAME=AAG3,DISP=(,KEEP),
// VOLUME=SER=13230,UNIT=3400-5

This DD statement defines a new data set and requests that the system assign any
3420 Magnetic Tape Unit that can operate in 6250 BPI NRZI nine-track format.

Example 3:
//DD2 DD DSNAME=X.Y.Z,DISP=OLD,UNIT=(,2)

This DD statement defines a cataloged data set and requests that the system assign
two devices to the data set. The system obtains the device type from the catalog.

Example 4:
//DD3 DD DSNAME=COLLECT,DISP=OLD,
// VOLUME=SER=1095,UNIT=(3490,,DEFER)

This DD statement defines an existing data set that resides on a tape volume and
requests that the system assign a 3490 tape device. Because DEFER is coded, the
volume will not be mounted until the data set is opened.

Example 5:
//STEPA DD DSNAME=FALL,DISP=OLD,UNIT=237

For this data set, the system retrieves the volume and device type from the catalog.
The UNIT parameter, by specifying device 237, overrides the catalog device type;
however, device 237 must be the same type as the device stated in the catalog.

Example 6: This example shows the use of the ALLOCxx UNITAFF default.

This example assumes the following environment:
v UNITAFF(3490) was specified in parmlib member ALLOC05, defining a 3490 as

the default unit-affinity-ignored unit name. This default is used when unit
affinity is ignored, the referenced DD is an SMS-managed request and the
referencing DD is a NEW non-SMS-managed request, and the system is unable
to obtain a unit from the primary DD in the unit affinity chain.

v The SMS ACS routines are defined so that:
– Data set L is to be redirected from tape to an SMS-managed DASD volume,

SD3.
– Data set M is not to be redirected and is, therefore, still intended to go to a

non-SMS managed tape volume.
//JOB2 JOB
//STEP1 EXEC
//DD11 DD DSN=L,DISP=(NEW),UNIT=3480,.....
//STEP2 EXEC
//DD21 DD DSN=L,DISP=OLD,......
//DD22 DD DSN=M,DISP=(NEW,CATLG),UNIT=AFF=DD21

In STEP1, DD11, data set L is created and cataloged on SD3, SMS-managed DASD
(redirected using SMS ACS routines).

In STEP2, DD21, data set L is an existing data set and is cataloged on SD3,
SMS-managed DASD. DD21 is both the referenced DD (referenced by the
UNIT=AFF on DD22) and the primary DD.

DD: UNIT

Chapter 12. DD statement 299

In STEP2, DD22 is the referencing DD, which requests unit affinity to DD21.
Because data set L is on SMS-managed DASD, the system cannot honor the unit
affinity for DD22 which is intended to go to tape. With the unit affinity ignored,
the system must determine a unit to be used for DD22.

The system is not able to rely on the unit information in the catalog for data set L,
because the catalog reflects a DASD unit (as a result of being redirected). Because
data set L was created in a prior step and there is no unit specified on DD21, the
system is not able to use the JCL for DD21 as a source of unit information. The
system will, therefore, use the unit-affinity-ignored unit name of 3490 for DD22.

Example 7:
//JOB7 JOB
//STEP1 EXEC
//DD01 DD DSN=A,DISP=SHR,UNIT=(/B5B8,,,SMSHONOR)
//DD02 DD DSN=B,DISP=SHR,UNIT=(MYTAPE,,DEFER,SMSHONOR)

To allocate to this Tape Library Request, the DD statement UNIT=(/
B5B8,,,SMSHONOR) requires to use the device number B5B8, which is in the list of
devices selected by SMS .

For this Tape Library Request, the DD statement
UNIT=(MYTAPE,,DEFER,SMSHONOR) requires the following devices:
v the devices that are in the esoteric MYTAPE.
v the devices that are in the list selected by SMS.

VOLUME parameter
Parameter type: Keyword, optional

Terminology: Data sets on system-managed tape volumes exhibit both SMS and
non-SMS characteristics. When necessary, data sets on a system-managed tape
volume are distinguished from system-managed DASD data sets. Otherwise, the
term system-managed data sets refers to both data sets on a system-managed tape
volume and system-managed DASD data sets.

To cause multiple data sets to be stacked on the same volume, see z/OS MVS JCL
User's Guide for recommendations and examples.

With SMS, consider the following:
v All volumes in a multi-volume data set should reside in the same

system-managed tape library and must belong to the same tape storage group. If
all of the volumes do not reside in the same tape library, the installation can
enter the volumes through the DFSMS installation exit, CBRUXVNL.

v You cannot make a specific volume reference to a scratch volume.
v You do not need to use the VOLUME parameter to specify volumes for new

data sets. See the DATACLAS parameter described in and the STORCLAS
parameter described in .

v You cannot override the volume count for an existing system-managed DASD
data set (but you can specify a volume count when you create a new
system-managed DASD data set).

v If the storage administrator has specified a system default unit name and you do
not code a UNIT name for non-system-managed data sets, then the system uses
the volumes associated with the default unit name. In this case, you do not need

DD: UNIT

300 z/OS V2R1.0 MVS JCL Reference

to code the VOLUME parameter. Check with your storage administrator to
determine whether a default unit name has been specified.

Purpose: Use the VOLUME parameter to identify the volume or volumes on which
a data set resides or will reside. You can request:
v A private volume
v Retention of the volume
v A specific volume by serial number
v The same volume that another data set uses

You can also specify which volume of a multivolume data set is to be processed
first and, for an output data set, the number of volumes required.

A nonspecific volume request is a DD statement for a new data set that can be
assigned to any volume or volumes. To make a nonspecific volume request for a
new data set, either:
v Omit the VOLUME parameter.
v Code a VOLUME parameter but omit a SER or REF subparameter.

Syntax

{VOLUME} = ([PRIVATE] [,RETAIN] [,volume-sequence-number] [,volume-count]
{VOL } [,] [,]

[SER=serial-number]
[SER=(serial-number[,serial-number]...)]

[,] [REF=dsname]
[REF=*.ddname]
[REF=*.stepname.ddname]
[REF=*.stepname.procstepname.ddname]

Single subparameter: You can omit the parentheses if you code only PRIVATE or only a
keyword subparameter. For example, VOLUME=PRIVATE or VOLUME=SER=222001 or
VOLUME=REF=DS1.

Null REF subparameter: The REF subparameter of the VOLUME parameter can have a
null value only when coded on a DD that either overrides a DD in a procedure or is added
to a procedure.

Null positional subparameters: Null positions in the VOLUME=SER parameter are
invalid.

DD: VOLUME

Chapter 12. DD statement 301

Subparameter definition
PRIVATE

Requests a private volume. Private means that:
v The system is not to allocate an output data set to the volume unless the

volume is specifically requested, such as in a VOLUME=SER subparameter.
v If tape, the volume is to be demounted after the data set is closed, unless

RETAIN is also coded or the DD DISP parameter specifies PASS.
v If a demountable direct access volume, the volume is to be demounted after

the data set is closed.

RETAIN
For a private tape volume, RETAIN requests that this volume is not to be
demounted or rewound after the data set is closed or at the end of the step.
For a public tape volume, RETAIN requests that this volume is to be retained
at the device if it is demounted during the job.

RETAIN has no effect on the handling of direct access volumes.

For JES3-managed tape devices, JES3 does not honor the RETAIN parameter
after reaching the end of the job. However, if RETAIN is coded and the tape

Positional subparameters: The first four subparameters are positional. The last
subparameter, SER or REF, is a keyword subparameter and must follow all positional
subparameters. Code a comma to indicate an omitted positional subparameter as follows:

v If you omit PRIVATE and code RETAIN, code a comma before RETAIN. For example,
VOLUME=(,RETAIN,2,3,SER=(222001,222002,222003)).

v Code a comma when RETAIN is omitted and the volume sequence number and volume
count subparameters follow. For example,
VOLUME=(PRIVATE,,2,3,SER=(222001,222002,222003)), and if PRIVATE is also omitted,
VOLUME=(,,2,3,SER=(222001,222002,222003)).

v Code a comma when the volume sequence number is omitted and the volume count
subparameter follows. For example, VOLUME=(,RETAIN,,3,SER=(222001,222002,222003)),
and VOLUME=(PRIVATE,,,3,SER=(222001,222002,222003)), and
VOLUME=(,,,3,SER=(222001,222002,222003)).

v Code a comma when the volume count is omitted, at least one other subparameter
precedes it, and a keyword subparameter follows. For example,
VOLUME=(,RETAIN,2,,SER=(222001,222002,222003)), and
VOLUME=(,,2,,SER=(222001,222002,222003)), and
VOLUME=(,RETAIN,REF=*.stepname.ddname)

Single SER subparameter: You can omit the parentheses in the SER subparameter if you
code only one serial number. For example, VOLUME=SER=222001.

Special characters: When a serial number in the SER subparameter contains special
characters, other than hyphens, enclose it in apostrophes. For example,
VOLUME=SER=(222001,222-02,'222/03').

When the dsname in the REF subparameter contains special characters, other than the
periods used in a qualified name, enclose it in apostrophes. For example,
VOLUME=REF='DS/284'.

Code each apostrophe that is part of the serial number or data set name as two consecutive
apostrophes. For example, VOLUME=SER='O''HARE' or VOLUME=REF='DS''371'.

DD: VOLUME

302 z/OS V2R1.0 MVS JCL Reference

volume is to be shared with a later step, JES3 designates the volume as
retained. JES3 also ignores the RETAIN parameter when issuing its
KEEP/RETAIN messages.

volume-sequence-number
Identifies the volume of an existing multivolume data set to be used to begin
processing the data set. The volume sequence number is a decimal number
from 1 through 255; the first volume is identified as 1. The volume sequence
number must be less than or equal to the number of volumes on which the
data set exists; otherwise, the job fails.

If the volume sequence number is not specified the system will process the
first volume.

For new data sets, the system ignores the volume sequence number.

volume-count
Specifies the maximum number of volumes that an output data set requires.
The volume count is a decimal number from 1 through 255. The total volume
count for all DD statements in one job step cannot exceed 4095.

Note: The system uses the unit count to determine how many devices to
allocate. However, if you also specify P (for parallel mount) in the UNIT
parameter, the system might use the value specified for the volume count to
determine how many devices and volumes to allocate. See the unit-count
description in “Subparameter definition” on page 293.

Volume count for tape data sets:

Code a volume count when a new data set will reside on 6 or more volumes.
If you omit the volume count or if you specify 1 through 5, the system allows
up to five volumes; if you specify 6 through 20, the system allows 20 volumes;
if you specify a count greater than 20, the system allows 5 plus a multiple of
15 volumes. You can override the maximum volume count in data class by
using the volume-count subparameter:
v The maximum volume count for an SMS-managed mountable tape data set

or a non-managed tape data set is 255.
v The maximum volume count for a non-VSAM or non-SMS-managed data set

is 255.
v The maximum volume count for a VSAM or SMS-managed data set is 59.
v SMS has an upper limit of 59 volsers being specified in the JCL. If more than

59 volsers are specified in the JCL, SMS processes the allocation as non-SMS
managed.

Volume count and serial numbers: When the volume count is greater than:
v The number of volume serials coded in the SER subparameter
v The number of volume serials the system retrieved from the catalog
v The number of volume serials the system retrieved from VOL=REF
v The number of volume serials the system retrieved from a passed data set,

the system assigns other volumes to the remaining devices. If the volume
count is smaller than the number of volume serials, the system ignores the
volume count.

If a data set may need more volumes than the number of volume serials
coded, specify a volume count equal to the total number of volumes that might

DD: VOLUME

Chapter 12. DD statement 303

be used. Requesting more volumes in the volume count will make sure that
the data set can be written on more volumes if it exceeds the requested
volumes.

If you do not code a volume count and volume serial number, the system can
extend an existing cataloged data set that resides on a removable volume up to
20 volumes.

Volume count for nonspecific requests: If the request is for a nonspecific,
public volume on a direct access device, the system ignores the volume count
and allocates the number of volumes in the UNIT count subparameter.

If the request is for a nonspecific, private volume, the system treats it like a
specific request if the volume count is more than one and allocates the number
of volumes in the volume count.

Volume count for system-managed DASD data sets: You cannot specify a
volume count for an existing system-managed DASD data set. (If you do, the
system will ignore it.) When you create a new system-managed DASD data set,
the volume count defined in the data class may be overridden by using the
volume-count subparameter. However, if the volume-count subparameter
specifies a value greater then 59, the system will set the volume count to a
maximum of 59. The maximum volume count for a VSAM or System-Managed
DASD data set is 59.

Volume count for system-managed tape data sets: If you specify a volume
count and DISP=PASS on a DD statement, the system will pass the volume
count to subsequent receiving steps within the job. This may cause the system
to allocate more devices than expected to the receiving DD. Coding UNIT=AFF
in the receiving step's DD will result in the optimum number of devices being
allocated to the receiving DD. For more information about the number of
devices allocated, refer to the z/OS MVS JCL User's Guide. When you create a
new system-managed TAPE data set, the volume count defined in the data
class may be overridden by using the volume-count subparameter. If you do
not provide a volume count parameter than the volume count specified in the
data class would be used.

SER=serial-number
SER=(serial-number[,serial-number]...)

Identifies by serial number the volume(s) on which the data set resides or will
reside. A volume serial number is 1 through 6 alphanumeric, national ($, #, @),
or special characters; enclose a serial number that contains special characters,
other than hyphens, in apostrophes. If the number is shorter than 6 characters,
it is padded with trailing blanks.

You can code a maximum of 255 volume serial numbers on a DD statement.
The maximum number of volume serial numbers for a VSAM or
SMS-managed data set is 59.

Do not specify duplicate volume serial numbers in a SER subparameter. Each
volume must have a unique volume serial number, regardless of whether it is a
tape or disk volume.

Do not code a volume serial number as SCRTCH, PRIVAT, or Lnnnnn (L with
five numbers); these are used in messages to ask the operator to mount a
volume. SCRTCH is used when the dataset being created on the non-specific
volume is temporary [DISP=(NEW,DELETE) or DSN=&&tempname]. PRIVAT
is used for all other cases of non-specific volumes. Lnnnnn is used as the
"volser" of an NL (unlabeled) tape.

DD: VOLUME

304 z/OS V2R1.0 MVS JCL Reference

Do not code a volume serial number as MIGRAT, which is used by the
Hierarchical Storage Manager DFSMShsm for migrated data sets. When using
some typewriter heads or printer chains, a volume serial number may be
unrecognizable if you code certain special characters.

For a permanently mounted direct access device, such as a 3390 Direct Access
Storage, specifying a volume serial number and UNIT=3390 has the same
result as specifying a device number in the UNIT parameter. For new
SMS-managed data sets: For an SMS-managed data set, code the SER
subparameter only if the storage administrator has specified
GUARANTEED_SPACE=YES in the storage class of the data set. In this case,
SMS uses the volumes you explicitly specify. If it is unable to do so, the
allocation fails. The volume serial numbers must be assigned to the same
storage group. If GUARANTEED_SPACE=YES is not in effect, SMS ignores any
volume serial numbers you specify for new SMS-managed data sets.

For SMS-managed library tape volumes: For SMS-managed Library Tape
volume, the Guaranteed Space storage class attribute is ignored and the system
will allocate to the specified volume.

For existing data sets:

v If you do not specify a volume serial number and you specify an
SMS-managed or cataloged data set: the system will allocate the data set to
the volume on which it resides.

v If you specify a non-SMS-managed volume serial number: the system will
allocate the data set on the volume specified, regardless of whether there is a
cataloged or SMS-managed data set of the same name elsewhere. If there is
no data set with the specified name on the volume specified, the allocation
request will complete but a later request to OPEN the DD will fail. The
request will fail.

v If you specify an SMS-managed volume serial number: the system will
find and allocate the data set to the volume on which it resides, even if that
is different from the volume specified. If there is no SMS-managed data set
with the specified name, the allocation request will fail.

v When multiple DD statements in the same step for the same
SMS-managed DASD data set are specified: if DISP=MOD is specified, or
the OPEN or OPENJ macro is issued with the EXTEND or OUTINX option,
a data integrity exposure occurs when the data set is extended on additional
volume(s). This new volume information is not available to the other DD
statements in the job step for the same data set. The data on the new
volume(s) will be overlayed if the data set is opened for output processing
using one of the other DD statements in the same job step and the data set
is again extended.
Recommendation: Have only one DD statement per step for a data set that
may need to extend to a new volume.

v When two data sets, one that is SMS-managed and one that is not, share
the same data set name:

– If you specify the non-SMS-managed volume, the system will allocate the
non-SMS-managed data set.

– If you do not specify the volume information, or you specify an SMS-
managed volume, the system will allocate the SMS-managed data set.

REF=dsname
REF=*.ddname
REF=*.stepname.ddname

DD: VOLUME

Chapter 12. DD statement 305

REF=*.stepname.procstepname.ddname
Tells the system to obtain volume serial numbers from another data set or an
earlier DD statement.

Note:

If the referencing data set is an existing relative generation data set (GDG data
set) and the VOL=REF specifies one of the three forms of REF=*.ddname, then
the VOL=REF is ignored and the volume serial numbers are taken from the
catalog entry for the named generation of the data set. For example:
// ddname2 DD DSN=TSOUSR2.TAPE.GDGNAME(0),DISP=SHR,VOL=REF=*.
stepname.ddname1

The volume serial numbers used would be for the current generation of
TSOUSR2.TAPE.GDGNAME, not for the data set referenced by
*.stepname.ddname1.

VOL=REF obtains ONLY the volume serial numbers from the referenced data
set or earlier DD statement. In particular it does not obtain the volume
sequence number, volume count, label type, or data set sequence number.

dsname
Names a cataloged or passed data set. The system assigns this data set to
the same volumes containing the cataloged or passed data set.

When dsname names a passed data set, the reference must appear on a DD
statement before the receiving DD statement. (After a passed data set is
received, the passed data set information is no longer available.)

When the dsname contains special characters, other than the periods used
in a qualified name, enclose it in apostrophes.

The dsname can be an alias name or a catalog name. The dsname cannot
be a generation data group (GDG) base name or a member name of a
non-GDG data set.

The dsname can be a GDG relative generation member, but since it
contains special characters (the parentheses) it must be enclosed in
apostrophes. It is important to be aware that while a GDG relative
generation name in the DSNAME parameter always resolves to the state of
the GDG index as of the beginning of the job, a GDG relative generation
name in the dsname sub-parameter of the VOLUME parameter always
resolves to the state of the GDG index as of the beginning of the step. For
example if, at the beginning of a job, the latest generation of a dataset was
G0007V00, and steps 1 and 2 of the job each created a new generation,
then the following JCL for step 3 of the job would be resolved as shown:
//STEP3 EXEC PGM=pgmname
//DD1 DD DSN=gdgname(0),
// DISP=SHR,
// VOL=REF=’gdgname(0)’

DSN=gdgname(0) would resolve to generation G0007V00, since that was
the zeroeth generation at the beginning of the job.

VOL=REF=gdgname(0) would resolve to generation G0009V00, since that
was the zeroeth generation at the beginning of the step.

By the same token,

DD: VOLUME

306 z/OS V2R1.0 MVS JCL Reference

//STEP3 EXEC PGM=pgmname
//DD1 DD DSN=gdgname(+3),
// DISP=NEW,
// VOL=REF=’gdgname(+2)’

DSN=gdgname(+3) would resolve to generation G0010V00, since that
would be the +3 generation at the beginning of the job.

VOL=REF=gdgname(+2) would resolve to generation G0011V00, since that
would be the +2 generation at the beginning of the step. Since G0011V00
would not yet exist, it would not be possible to refer to it as an existing
dataset, and so this JCL would fail.

*.ddname
Asks the system to obtain the volume serial numbers from earlier DD
statement ddname in the same job step.

*.stepname.ddname
Asks the system to obtain the volume serial numbers from DD statement,
ddname, in an earlier step, stepname, in the same job.

*.stepname.procstepname.ddname
Asks the system to obtain the volume serial numbers from a DD statement
in a cataloged or in-stream procedure. Stepname is the name of the job
step that calls the procedure, procstepname is the name of the procedure
step that contains the DD statement, and ddname is the name of the DD
statement.

Referenced data set not opened: When REF refers to a DD statement in a
previous step and the data set was not opened, the system allocates a device
that has the widest range of eligibility to meet both DD statement requests.
Thus, the system might allocate a device for which the referring data set is not
eligible. To prevent this problem for tape data sets, always code the DCB DEN
subparameter or the DCB TRTCH subparameter on a DD statement that you
plan to reference.

References to multivolume tape data sets: When REF refers to a data set
residing on more than one tape volume, the system allocates all volumes to the
referencing DD when it represents an OLD data set, that is, a data set that
existed prior to the current job step. For a NEW tape data set the system
allocates only the last volume of a referenced multivolume tape data set.

If an earlier job step extends the referenced data set to more volumes, or adds
or extends an earlier data set so that the referenced data set resides on a later
volume, the new volume information is available to the referencing DD
statement.

If the current job step extends the referenced data set to more volumes, or adds
or extends an earlier data set so that the referenced data set resides on a later
volume, the new volume information is available to the referencing DD
statement ONLY when the referenced data set is a new data set with no
volume serial numbers explicitly or implicitly specified, which means only if
the entire collection of data sets on the volumes was created in the current
step. In other words, if the current job step extends the referenced data set to
more volumes, or adds or extends an earlier data set so that the referenced
data set resides on a later volume, the new volume information is not available
to the referencing DD statement when either of the following conditions is
true:
v The data set that is referenced (directly or through a chain of references)

existed before the start of the step containing the reference.

DD: VOLUME

Chapter 12. DD statement 307

v The data set that is referenced (directly or through a chain of references) is a
new data set requested with specific volume serial numbers. However the
new volume will be resolved if one unit is allocated when writing multifile,
multivolume labelled data sets leaving the tape positioned at the end of each
data set created.

If the referenced data set already exists and has volume serial numbers
explicitly specified, then the last listed volume serial is used even if the earlier
data set actually exists on or is written to fewer volumes.

If the referenced data set is new and has specific volume serials, then the last
listed volume serial is used even if the data set is written with fewer volumes.

In either of these cases, the allocation of the referencing data set is likely to fail.

References to multivolume direct access data sets: When REF refers to a data
set that resides on more than one direct access volume, the system allocates all
of the volumes.

If a DD statement that is requesting a new data set has a unit count and
volume count greater than one but specifies no volume serial numbers, one
volume is allocated. If a second DD statement within the same step requests
the same data set, the same volume is allocated to it. If this job step extends
the data set to more volumes, this new volume information is not available to
the second DD statement.

Two or more DD statements in the same step can request the same data set.
However, if the data set is extended to additional volumes in that step, the
additional volume information is not available to the second or succeeding DD
statements within the step.

References to DD statements with UNIT group names: When REF refers to a
DD statement containing a UNIT group-name subparameter, the system
allocates a device of the same type actually used for the referenced data set,
but not necessarily a device in the referenced group-name.

References to VSAM data sets: When REF refers to a multivolume VSAM data
set, the system allocates a device of the same type as the first device type used
for the referenced VSAM data set.

References to SMS-managed data sets: When REF refers to an SMS-managed
data set, SMS manages the new data set using the storage class of the
referenced data set, if it is available, and applies these rules:
v If the reference is to a data set on one or more SMS-managed tape volumes,

then the two data sets must be assigned to the same storage group. If the
automatic class selection (ACS) routine does not assign the same storage
group to the referenced and referencing data sets, the allocation fails with
message IGD304I.

v For references to data sets on SMS-managed media other than tape, the two
data sets must be assigned to compatible types of storage groups. This
ensures the consistency for locate requests. For example, if the referenced
data set is on DASD, allocating the referencing data set to be allocated on
tape could result in potential locate request errors. If the ACS routine does
not assign compatible types of storage groups to both data sets, the
allocation fails with message IGD318I.

References to non-SMS-managed data sets: When REF refers to a
non-SMS-managed data set, the ACS routine receives control and can do one of
two things:
v Allow the allocation to proceed as a non-SMS-managed data set.

DD: VOLUME

308 z/OS V2R1.0 MVS JCL Reference

v Fail the allocation by exiting with a non-zero return code.

If the ACS routine attempts to make the referencing data set SMS-managed,
SMS fails the allocation with message IGD305I.

Do not refer to in-stream data sets: Do not refer to a DD *, DD DATA, or DD
SYSOUT statement. The system ignores the reference and defaults the device
name to SYSALLDA, which is the group name for all direct access devices
defined to the system.

References to DUMMY data sets: If ddname refers to a DD DUMMY
statement, the data set for this DD statement is also assigned a dummy status.

Label type picked up from referenced statement: When REF is coded, the
system also copies the LABEL label type subparameter from the referenced DD
statement.

Overrides
The volume sequence number overrides a DISP=MOD parameter. Thus, instead of
starting at the end of the data set on the last volume, according to the MOD
subparameter, processing of the data set begins with the volume indicated by the
volume sequence number.

Relationship to other parameters
Do not code the following parameters with the VOLUME parameter.

BURST DDNAME MODIFY
CHARS DYNAM QNAME
COPIES FLASH SYSOUT

Do not code VOLUME=REF with the STORCLAS parameter.

Other DD parameter picked up from referenced statement: When REF is coded, the
system also copies the LABEL label type subparameter from the referenced DD
statement.

For 3540 Diskette Input/Output Units: The VOLUME=SER, DCB=BUFNO, and
DSID parameters on a DD * or DD DATA statement are ignored except when they
are detected by a diskette reader as a request for an associated data set. See the
3540 Programmer's Reference.

VOLUME parameter in a JES3 system
When you do not code a volume serial number, code PRIVATE if you want JES3 to
manage the allocation. Otherwise, MVS manages the allocation.

RETAIN is ignored in a JES3 system.

VOLUME parameter for optical readers
For optical readers, if no volume serial number is specified, the system assumes
VOLUME=SER=OCRINP.

VOLUME parameter for nonspecific volume requests
A nonspecific volume request can appear on a DD statement for a new data set;
the data set is assigned to any volume or volumes. The nonspecific request is made

DD: VOLUME

Chapter 12. DD statement 309

through a VOLUME parameter that does not contain a SER or REF subparameter.
The parameter can contain the following subparameters:

VOLUME=(PRIVATE,RETAIN,,volume-count)

Note: The use of PRIVATE on nonspecific requests eligible to permanently resident
DASD devices is not recommended. Operator intervention is required to allow the
system to allocate such a request to a private volume.

VOLUME parameter for specific multi-volume tape requests
When allocating a specific, multi-volume tape data set, if the data set resides on
multiple tape volumes that are:
v System-managed, then all volumes should reside in the same system-managed

tape library and the same tape storage group. (If all of the volumes do not
reside in the same tape library, the installation can enter the volumes through
the DFSMS installation exit, CBRUXVNL.) These volumes must also be part of
the same SMS storage group.

v Non-system-managed, then all volumes must be outside of any system-managed
tape library.

Examples of the VOLUME parameter
Example 1
//DD1 DD DSNAME=DATA3,UNIT=SYSDA,DISP=OLD,
// VOLUME=(PRIVATE,SER=548863)

The DD statement requests an existing data set, which resides on the direct access
volume, serial number 548863. Since PRIVATE is coded, the system will not assign
to the volume another data set for which a nonspecific volume request is made
and will demount the volume at the end of the job.

Example 2
//DD2 DD DSNAME=QUET,DISP=(MOD,KEEP),UNIT=(3390,2),
// VOLUME=(,,,4,SER=(96341,96342))

The DD statement requests an existing data set, which resides on two volumes,
serial numbers 96341 and 96342. The VOLUME volume count subparameter
requests four volumes, if required. Thus, if more space is required, the system can
assign a third and fourth volume.

Example 3
//DD3 DD DSNAME=QOUT,UNIT=3390

The DD statement defines a data set that is created and deleted in the job step. By
omission of the VOLUME parameter, the statement makes a nonspecific volume
request, thereby asking the system to assign a suitable volume to the data set.

Example 4
//DD4 DD DSNAME=NEWDASD,DISP=(,CATLG,DELETE),UNIT=3390,
// VOLUME=SER=335006,SPACE=(CYL,(10,5))

This new data set is assigned to volume serial number 335006, which is a
permanently mounted volume on a particular 3350 Direct Access Storage. You can
obtain the same space on the same volume in another way: instead of specifying
the volume serial number and UNIT=3350, you can specify the device number of
the particular 3350 device in the UNIT parameter.

DD: VOLUME

310 z/OS V2R1.0 MVS JCL Reference

Example 5
//OUTDD DD DSNAME=TEST.TWO,DISP=(NEW,CATLG),
// VOLUME=(,,,3,SER=(333001,333002,333003)),
// SPACE=(TRK,(9,10)),UNIT=(3390,P)
//NEXT DD DSNAME=TEST.TWO,DISP=(OLD,DELETE)

DD statement OUTDD creates a multivolume data set and catalogs it. If the data
set does not require three volumes, it will reside on fewer volumes. DD statement
NEXT then deletes the data set.

If the data set resides on fewer volumes than the number of volumes on which it
is cataloged, the following messages appear in the job log when the system deletes
the data set:

IEF285I TEST.TWO DELETED
IEF285I VOL SER NOS=333001,333003.
IEF283I TEST.TWO NOT DELETED
IEF283I VOL SER NOS=333002 1.
IEF283I TEST.TWO UNCATALOGED
IEF283I VOL SER NOS=333001,333002,333003.

If the data set resides on all specified volumes, the following messages appear in
the job log when the system deletes the data set:

IEF285I TEST.TWO DELETED
IEF285I VOL SER NOS=333001,333002,333003.

Example 6
//SMSDS2 DD DSNAME=MYDS2.PGM,STORCLAS=SCLAS02,DISP=(NEW,KEEP),
// VOLUME=SER=(223344,224444)

For new system-managed DASD data sets or data sets on a system-managed tape
volume, the system uses the attributes in the storage class named SCLAS02 for the
storage service level of the data set. Also, if the storage administrator has specified
GUARANTEED_SPACE=YES in the storage class for DASD VOLUME=SER can be
coded and the data set will reside on the specified volumes. (However, if space is
not available on the volumes, the job step fails. Allocation also fails if the requested
volumes aren't in any of the possible storage groups for the data set. For tape
requests, the system always gets the tape request specified with a specific volume
serial.) Installation-written automatic class selection (ACS) routines select the data
class and management class.

Example 7
//STEP1 EXEC PGM=....
//DD1 DD DSN=OLD.SMS.DATASET,DISP=SHR
//DD2 DD DSN=FIRST,DISP=(NEW,CATLG,DELETE),VOL=REF=*.DD1

//STEP2 EXEC PGM=...
//DD3 DD DSN=SECOND,DISP=(NEW,CATLG,DELETE),VOL=REF=*.STEP1.DD1

DD1 in STEP1 identifies the original SMS-managed data set OLD.SMS.DATASET.
DD2 in STEP1 and DD3 in STEP2 each create an SMS-managed data set using the
attributes in the storage class associated with the original data set
OLD.SMS.DATASET in DD1.

DD: VOLUME

Chapter 12. DD statement 311

312 z/OS V2R1.0 MVS JCL Reference

Chapter 13. Special DD statements

Use special DD statements to specify private catalogs, private libraries, and data
sets for storage dumps and checkpoints. This chapter provides descriptions of
these special statements.

Description

Syntax

//ddname DD keyword-parameter[,keyword-parameter]... [comments]

Special ddnames
The special data sets are identified by the following ddnames:

JOBLIB
STEPLIB
SYSABEND
SYSCHK
SYSCKEOV
SYSIN
SYSMDUMP
SYSUDUMP

Except for SYSIN, code these ddnames only when you want the special data sets.

JOBLIB DD statement
Purpose: Use the JOBLIB DD statement to:
v Create a private library.
v Identify a private library that the system is to search for the program named in

each EXEC statement PGM parameter in the job. Only if the system does not
find the program in the private library, does it search the system libraries.

A private library is a partitioned data set or partitioned data set extended on a
direct access device. Each member is an executable, user-written program.

Syntax

//JOBLIB DD parameter[,parameter]... [comments]

Parameters on JOBLIB DD statements
When retrieving a cataloged library:

v Code the DSNAME parameter.

© Copyright IBM Corp. 1988, 2013 313

v Code the DISP parameter. The status subparameter must be OLD or SHR. The
disposition subparameters should indicate what you want done with the private
library after its use in the job.

v Do not code VOLUME or UNIT.

When retrieving a library that is not cataloged:

v Code the DSNAME parameter.
v Code the DISP parameter. The DISP parameter must be DISP=(OLD,PASS) or

DISP=(SHR,PASS). SHR indicates that the data set is old, but allows other jobs to
use the library.

v Code the UNIT parameter.
v Code the VOLUME parameter.

When creating a library:

v Code the DSNAME parameter to assign the library a name.
v Code the UNIT parameter. The library must be allocated to a direct access

device.
v Code a VOLUME parameter, unless a nonspecific request is to be made for any

volume.
v Code the SPACE parameter, allowing enough space for the entire library on one

direct access volume. Specify space for the PDS directory.
v Code a DISP parameter. The status is NEW. Code CATLG as the disposition, if

you intend to keep the library you are creating. Code PASS as the disposition, if
you wish the library to be available throughout the job, but deleted at job
termination. Note that you must code a disposition; otherwise, the system
assumes DELETE and deletes the library at the end of the first step.

Note: Do not use VSAM for a JOBLIB library.

When adding members to the library:

v In the DSNAME parameter, follow the library name with the name of the
program being added to the library. For example,
DSNAME=LIBRARY(PROGRAM).

v Code the status in the DISP parameter as MOD. If you cataloged the library
when you created it, do not code a disposition. Otherwise, code PASS or
CATLG.

v If the JOBLIB library is being created in the job, the JOBLIB DD DISP specified
CATLG, and the first step adds a member to it, supply unit and volume
information in the first step by coding: VOLUME=REF=*.JOBLIB. This parameter
is needed because the library is not actually cataloged until the first step
completes execution. Otherwise, unit and volume information should not be
supplied for a cataloged library.

v Do not code a SPACE parameter. The JOBLIB DD statement requests space for
the entire library.

Other parameters: Code the DCB parameter if complete data control block
information is not contained in the data set label. Do not specify FREE=CLOSE;
CLOSE is ignored.

Do not code a UNIT=AFF parameter on a JOBLIB statement where the object of
the affinity is the same JOBLIB statement. In other words, a JOBLIB statement
should not have an affinity back to itself.

JOBLIB DD

314 z/OS V2R1.0 MVS JCL Reference

Relationship to other control statements
Concatenating job libraries: To specify more than one private library for a job:
v Code a JOBLIB DD statement.
v Immediately follow this statement with DD statements that define other private

libraries. Omit a ddname from these subsequent DD statements.

The system searches the libraries for the program in the same order as the DD
statements.

Overriding a JOBLIB: If you want the system to ignore the JOBLIB for a particular
job step and the step does not require another private library, define the system
library on a STEPLIB DD statement. For example, specify:

//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR

For this particular job step, the system will search SYS1.LINKLIB, as specified on
the STEPLIB DD statement, for the program requested in the EXEC statement. The
system will not search the JOBLIB.

EXEC statement COND parameter: If COND=ONLY is specified on the EXEC
statement of a job step and a JOBLIB DD statement is being used, the system does
not pass the unit and volume information to any succeeding steps, and the system
must search the catalog for the JOBLIB data set’s unit and volume information.

Location in the JCL
v The JOBLIB DD statement must immediately follow the JOB statement and any

JES statements. There must be no intervening EXEC or other DD statements
between the JOBLIB DD statement and the JOB statement.

v If libraries are concatenated to the JOBLIB library, the concatenated DD
statements must immediately follow the JOBLIB DD statement.

v Do not include a JOBLIB DD statement in an in-stream or cataloged procedure.

Relationship of a JOBLIB to a STEPLIB
Use a STEPLIB DD statement to define a private library for one job step in a job. If
you include a STEPLIB DD statement for a job step and a JOBLIB DD statement
for the entire job, the system first searches the step library and then the system
library for the requested program. The system ignores the job library for a step
that has a STEPLIB DD statement.

Examples of the JOBLIB DD statement
Example 1:
//PAYROLL JOB JONES,CLASS=C
//JOBLIB DD DSNAME=PRIVATE.LIB4,DISP=(OLD,PASS)
//STEP1 EXEC PGM=SCAN
//STEP2 EXEC PGM=UPDATE
//DD1 DD DSNAME=*.JOBLIB,DISP=(OLD,PASS)

The private library requested on the JOBLIB DD statement is cataloged. The system
passes catalog information to subsequent job steps. The system searches for the
programs SCAN and UPDATE first in PRIVATE.LIB4, then in SYS1.LINKLIB. DD
statement DD1 refers to the private library requested in the JOBLIB DD statement.

Example 2:

JOBLIB DD

Chapter 13. Special DD statements 315

//PAYROLL JOB FOWLER,CLASS=L
//JOBLIB DD DSNAME=PRIV.DEPT58,DISP=(OLD,PASS),
// UNIT=3390,VOLUME=SER=D58PVL
//STEP EXEC PGM=DAY
//STEP2 EXEC PGM=BENEFITS
//DD1 DD DSNAME=*.JOBLIB,VOLUME=REF=*.JOBLIB,DISP=(OLD,PASS)

The private library requested on the JOBLIB DD statement is not cataloged;
therefore, unit and volume information is specified. The system searches for the
programs DAY and BENEFITS first in PRIV.DEPT58, then in SYS1.LINKLIB. DD
statement DD1 refers to the private library requested in the JOBLIB DD statement.

Example 3:
//TYPE JOB MSGLEVEL=(1,1)
//JOBLIB DD DSNAME=GROUP8.LEVEL5,DISP=(NEW,CATLG),
// UNIT=3390,VOLUME=SER=148562,SPACE=(CYL,(50,3,4))
//STEP1 EXEC PGM=DISC
//DDA DD DSNAME=GROUP8.LEVEL5(RATE),DISP=MOD,
// VOLUME=REF=*.JOBLIB
//STEP2 EXEC PGM=RATE

The private library requested on the JOBLIB DD statement does not exist yet;
therefore, the JOBLIB DD statement contains all the parameters required to define
the library. The library is created in STEP1, when DD statement DDA defines the
new member RATE for the library. Therefore, the system searches SYS1.LINKLIB
for the program named DISC. In STEP2, the system searches for the program
RATE first in GROUP8.LEVEL5.

Example 4:
//PAYROLL JOB BIRDSALL,TIME=1440
//JOBLIB DD DSNAME=KRG.LIB12,DISP=(OLD,PASS)
// DD DSNAME=GROUP31.TEST,DISP=(OLD,PASS)
// DD DSNAME=PGMSLIB,UNIT=3390,
// DISP=(OLD,PASS),VOLUME=SER=34568

The three DD statements concatenate the three private libraries. The system
searches the libraries for each program in this order:
v KRG.LIB12
v GROUP31.TEST
v PGMSLIB
v SYS1.LINKLIB

STEPLIB DD statement
Purpose: Use the STEPLIB DD statement to:
v Create a private library.
v Identify a private library that the system is to search for the program named in

the EXEC statement PGM parameter. If the system does not find the program in
the private library, only then does the system search the system libraries.

The private library is a partitioned data set (PDS) or partitioned data set extended
(PDSE) on a direct access device. Each member is an executable, user-written
program.

Subsequent job steps in the same job may refer to or receive a private library
defined on a STEPLIB DD statement. Also, you can place a STEPLIB DD statement
in an in-stream or cataloged procedure.

JOBLIB DD

316 z/OS V2R1.0 MVS JCL Reference

Syntax

//STEPLIB DD parameter[,parameter]... [comments]

Parameters on STEPLIB DD statements
When retrieving a cataloged library:

v Code the DSNAME parameter.
v Code the DISP parameter. The status subparameter must be OLD or SHR. The

disposition subparameters should indicate what you want done with the private
library after its use in the job step.

v Do not code VOLUME or UNIT.

When retrieving a library passed from a previous step: In the passing job step,
code a DISP disposition subparameter of PASS when a step library is to be used by
subsequent steps in the job.

In a receiving step:
v Code in the DSNAME parameter either the name of the step library or a

backward reference of the form *.stepname.STEPLIB. If the step library is
defined in a procedure, the backward reference must include the procedure step
name: *.stepname.procstepname.STEPLIB.

v Code the DISP parameter. The status subparameter must be OLD. The
disposition subparameters should indicate what you want done with the private
library after its use in the receiving step.

When retrieving a library that is neither cataloged nor passed:

v Code the DSNAME parameter.
v Code the DISP parameter. The status subparameter must be OLD or SHR. The

disposition subparameters should indicate what you want done with the private
library after its use in the job step.

v Code the UNIT parameter.
v Code the VOLUME parameter.

When creating a library:

v Code the DSNAME parameter to assign the library a name.
v Code the UNIT parameter. The library must be allocated to a direct access

device.
v Code a VOLUME parameter, unless a nonspecific request is to be made for any

volume.
v Code the SPACE parameter, allowing enough space for the entire library on one

direct access volume. Specify space for the PDS directory.
v Code a DISP parameter. The status is NEW. Code CATLG as the disposition, if

you intend to keep the library you are creating. Code PASS as the disposition, if
you wish the library to be available to a following step. Note that you must
code a disposition; otherwise, the system assumes DELETE and deletes the
library at the end of the step.

Note: Do not use VSAM for a STEPLIB library.

When adding members to the library:

STEPLIB DD

Chapter 13. Special DD statements 317

v In the DSNAME parameter, follow the library name with the name of the
program being added to the library. For example,
DSNAME=LIBRARY(PROGRAM).

v Code the status in the DISP parameter as MOD. If the library is cataloged, do
not code a disposition. Otherwise, code PASS or CATLG.

v If the library is cataloged, do not code unit and volume information. Otherwise,
code UNIT and VOLUME.

v Do not code a SPACE parameter. The STEPLIB DD statement requests space for
the entire library.

Other parameters: Code the DCB parameter if complete data control block
information is not contained in the data set label. Do not specify FREE=CLOSE;
CLOSE is ignored.

Relationship to other control statements
Concatenating step libraries: To specify more than one private library for a step:
v Code a STEPLIB DD statement.
v Immediately follow this statement with DD statements that define other private

libraries. Omit a ddname from these subsequent DD statements.

The system searches the libraries for the program in the same order as the DD
statements.

Overriding a JOBLIB: If you want the system to ignore the JOBLIB for a particular
job step and the step does not require another private library, define the system
library on a STEPLIB DD statement. For example, specify:

//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR

For this particular job step, the system will first search SYS1.LINKLIB, as specified
on the STEPLIB DD statement, for the program requested in the EXEC statement.
The system will not search the JOBLIB.

Location in the JCL
Place a STEPLIB DD statement in any position among the DD statements for a
step.

If libraries are concatenated to the STEPLIB library, the concatenated DD
statements must immediately follow the STEPLIB DD statement.

Relationship of a STEPLIB to a JOBLIB
Use a JOBLIB DD statement to define a private library that the system is to use for
an entire job. If you include a JOBLIB DD statement for the job and a STEPLIB DD
statement for an individual job step, the system first searches the step library and
then the system library for the program requested in the EXEC statement. The
system ignores the JOBLIB library for that step.

Examples of the STEPLIB DD statement
Example 1
//PAYROLL JOB BROWN,MSGLEVEL=1
//STEP1 EXEC PROC=LAB14
//STEP2 EXEC PGM=SPKCH

STEPLIB DD

318 z/OS V2R1.0 MVS JCL Reference

//STEPLIB DD DSNAME=PRIV.LIB5,DISP=(OLD,KEEP)
//STEP3 EXEC PGM=TIL80
//STEPLIB DD DSNAME=PRIV.LIB12,DISP=(OLD,KEEP)

The system searches PRIV.LIB5 for the program SPKCH and PRIV.LIB12 for TIL80.
The system catalogs both private libraries.

Example 2
//PAYROLL JOB BAKER,MSGLEVEL=1
//JOBLIB DD DSNAME=LIB5.GROUP4,DISP=(OLD,PASS)
//STEP1 EXEC PGM=SNZ12
//STEP2 EXEC PGM=SNAP10
//STEPLIB DD DSNAME=LIBRARYP,DISP=(OLD,PASS),
// UNIT=3390,VOLUME=SER=55566
//STEP3 EXEC PGM=A1530
//STEP4 EXEC PGM=SNAP11
//STEPLIB DD DSNAME=*.STEP2.STEPLIB,
// DISP=(OLD,KEEP)

The system searches LIBRARYP for program SNAP10; LIBRARYP is passed to
subsequent steps of this job. The STEPLIB DD statement in STEP4 refers to the
LIBRARYP library defined in STEP2; the system searches LIBRARYP for SNAP11.
Since a JOBLIB DD statement is included, the system searches for programs SNZ12
and A1530 first in LIB5.GROUP4, then in SYS1.LINKLIB.

Example 3
//PAYROLL JOB THORNTON,MSGLEVEL=1
//JOBLIB DD DSNAME=LIB5.GROUP4,DISP=(OLD,PASS)
//STEP1 EXEC PGM=SUM
//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD
//STEP2 EXEC PGM=VARY
//STEP3 EXEC PGM=CALC
//STEPLIB DD DSNAME=PRIV.WORK,DISP=(OLD,PASS)
// DD DSNAME=LIBRARYA,DISP=(OLD,KEEP),
// UNIT=3390,VOLUME=SER=44455
// DD DSNAME=LIB.DEPT88,DISP=(OLD,KEEP)
//STEP4 EXEC PGM=SHORE

For STEP2 and STEP4, the system searches the private library named
LIB5.GROUP4 defined in the JOBLIB DD statement first for programs VARY and
SHORE. For STEP1, the system searches SYS1.LINKLIB first for program SUM,
because the STEPLIB DD statement names the system library.

A concatenation of private libraries is defined in STEP3. The system searches for
the program named CALC in this order: PRIV.WORK, LIBRARYA, LIB.DEPT88,
SYS1.LINKLIB. If a later job step refers to the STEPLIB DD statement in STEP3, the
system will search for the program in the private library named PRIV.WORK and,
if it is not found there, in SYS1.LINKLIB; the concatenated libraries are not
searched.

SYSABEND, SYSMDUMP, and SYSUDUMP DD statements
Purpose: Use a SYSABEND, SYSMDUMP, or SYSUDUMP DD statement in a job
step to direct the system to produce a dump. The system produces the requested
dump:
v If the step terminates abnormally.
v If the step starts to terminate abnormally, but system recovery procedures enable

the step to terminate normally.

STEPLIB DD

Chapter 13. Special DD statements 319

The dump DD statements for requesting dumps are:

SYSABEND DD statement
Produces a dump of user and system areas; this dump contains all the areas
dumped in a SYSUDUMP, plus:
v The local system queue area (LSQA), including subpools 229, 230, and 249
v The input/output system (IOS) control blocks for the failing task.

The dump is formatted, so that it can be printed directly.

SYSMDUMP DD statement
Produces a dump of the system areas and the program’s address space. The
dump is unformatted and machine-readable. It must be processed by the
interactive problem control system (IPCS) and therefore should not be directed
to SYSOUT. z/OS R6 introduced system-determined BLKSIZE support for
SYSMDUMPs. If you wish to control the BLKSIZE for compatibility with tools
developed for earlier releases, add the following DCB attributes to your
SYSMDUMP DD statement.
DCB=RECFM=FB,LRECL=4160,BLKSIZE=4160

SYSUDUMP DD statement
Produces a dump of user areas. The dump is formatted, so that it can be
printed directly.

The dump contents are as described only when the installation uses the
IBM-supplied defaults for the dumps. The contents of these dumps can be set
during system initialization and/or can be changed for an individual dump in the
ABEND macro instruction, in a CHNGDUMP command, and by a SLIP command.
For details, see z/OS MVS Initialization and Tuning Guide.

Dumps are optional; use a dump DD statement only when you want to produce a
dump.

References: For information on how to interpret dumps, see z/OS MVS Diagnosis:
Tools and Service Aids.

Syntax

//SYSABEND DD parameter[,parameter]... [comments]
//SYSMDUMP DD parameter[,parameter]... [comments]
//SYSUDUMP DD parameter[,parameter]... [comments]

Location in the JCL
Do not place in the same job step two DD statements with the same dump
ddname.

Storing a dump
If you wish to store a dump instead of having it printed, code the following
parameters on the dump DD statement:
v The DSNAME parameter.
v The UNIT parameter.
v The VOLUME parameter. This parameter is optional and not recommended. The

system will select a volume.
v The DISP parameter. The data set’s status is NEW. Because you want to store the

data set, make the data set’s abnormal termination disposition KEEP or CATLG.

SYSABEND, SYSMDUMP, SYSUDUMP DD

320 z/OS V2R1.0 MVS JCL Reference

v The SPACE parameter, if the dump is written on direct access.

Tip: SYSABEND, SYSUDUMP, and SYSMDUMP can use extended format
sequential data sets to exploit striping, compression, or both. Striping speeds the
writing process and compression reduces the space consumed and speeds the I/O
bound dump process. Extended format sequential data set hold more than 64K
tracks per volume making it an attractive destination for dumps.
DSNAME=LARGE also allows data sets to use more than 64K tracks per volume.

Note: Do not use VSAM for dump data sets.

SYSMDUMP Requirements: The SYSMDUMP DD statement must specify a
magnetic tape unit or a direct access device. Do not direct SYSMDUMP to
SYSOUT.

With the exception of the following facility, the system processes dump data sets
according to the disposition to which they are allocated. To keep only the first
SYSMDUMP dump written to a dump data set, specify the following on the
SYSMDUMP DD statement:
v DSNAME=SYS1.SYSMDPxx, where xx is 00 through FF and indicates the specific

dump data set to be used. SYSMDPxx is a preallocated data set that must have
end-of-file (EOF) mark as its first record.

v DISP=SHR
v FREE=CLOSE for multiple job steps

Note: This restriction is not enforced. If SYSOUT is used, the resulting dump will
be unusable for diagnosis.

See z/OS MVS Diagnosis: Tools and Service Aids for a description of the
SYS1.SYSMDPxx naming convention and an explanation of how the system
manages the dump data sets.

Printing a dump
To print a dump for either a SYSABEND or SYSUDUMP DD statement, code one
of the following on the DD statement for the output data set:
v A UNIT parameter that specifies a printer.
v The SYSOUT parameter that specifies a print output class.

To print a dump for a SYSMDUMP DD statement, use the following program:

IPCS
This program is described in z/OS MVS IPCS User's Guide. When using IPCS,
the data set disposition affects the collection of events.

If you print the dump in a JES3 system on a 3800 Printing Subsystem, code
CHARS=DUMP for a dump with 204 characters per line and FCB=STD3 for 8 lines
per inch.

Overriding dump DD statements
To change the type of dump requested in a dump DD statement in a cataloged or
in-stream procedure, the ddname of the overriding DD statement in the calling
step must be different from the dump ddname of the procedure DD statement.

SYSABEND, SYSMDUMP, SYSUDUMP DD

Chapter 13. Special DD statements 321

Duplicate dump requests
You can code more than one dump request in a job step using DD statements that
have different ddnames. When you do this, the system uses the last dump DD
statement it encounters.

When the system finds dump DD statements with duplicate ddnames, processing
is as follows:
v In a JES2 system, the job fails with message IEA912I.
v In a JES3 system:

– If both DD statements request JES3- or jointly-managed devices, the job is
cancelled during JES3 interpretation.

– If only one or neither statement requests JES3- or jointly-managed devices, the
job fails with message IEA912I.

Examples of the SYSABEND, SYSMDUMP, and SYSUDUMP DD
statements

Example 1
//STEP2 EXEC PGM=A
//SYSUDUMP DD SYSOUT=A

The SYSUDUMP DD statement specifies that you want the dump routed to system
output class A.

Example 2
//SYSMDUMP DD DSNAME=DUMP,DISP=(NEW,KEEP),
// UNIT=3390,VOLUME=SER=147958

The SYSMDUMP DD statement specifies that the dump is to be stored on a tape.
Because the LABEL parameter is not coded, the tape must have IBM standard
labels.

Example 3
//STEP1 EXEC PGM=PROGRAM1
//SYSABEND DD DSNAME=DUMP,UNIT=3390,DISP=(,PASS,KEEP),
// VOLUME=SER=1234,SPACE=(TRK,(40,20))
//STEP2 EXEC PGM=PROGRAM2
//SYSABEND DD DSNAME=*.STEP1.SYSABEND,DISP=(OLD,DELETE,KEEP)

Both SYSABEND DD statements specify that the dump is to be stored. The space
request in STEP1 is ample and will not inhibit dumping due to insufficient space.
If STEP1 does not abnormally terminate but STEP2 does, the system writes the
dump for STEP2 in the space allocated in STEP1. In both steps, an abnormal
termination disposition of KEEP is specified so that the dump is stored if either of
the steps abnormally terminates. If both of the steps successfully execute, the
second DISP subparameter, DELETE, in STEP2 instructs the system to delete the
data set and free the space acquired for dumping.

Example 4
//STEP EXEC PGM=EXSYSM
//SYSMDUMP DD UNIT=3390,VOLUME=SER=123456,SPACE=(CYL,(0,1)),
// DISP=(NEW,DELETE,KEEP),DSNAME=MDUMP

The SYSMDUMP DD statement allocates dump data set MDUMP to a direct access
device.

SYSABEND, SYSMDUMP, SYSUDUMP DD

322 z/OS V2R1.0 MVS JCL Reference

Example 5
//JOB1 JOB
//STEP EXEC PGM=EXSYSMDP
//SYSMDUMP DD DSNAME=SYS1.SYSMDP00,DISP=SHR

//JOB2 JOB
//STEP EXEC PGM=EXSYSMDP
//SYSMDUMP DD DSNAME=SYS1.SYSMDP00,DISP=SHR

Only the SYSMDUMP dump written by the first job will be in data set
SYS1.SYSMDP00. All subsequent jobs receive message IEA849I, indicating that the
data set is full.

Note: When you specify a DSNAME of SYS1.SYSMDPxx with DISP=SHR, the
system writes the first SYSMDUMP dump on the data set. You must offload this
first SYSMDUMP dump and write an EOF mark at the beginning of the
SYS1.SYSMDPxx data set before subsequent dumps can be written to that data set.

SYSCHK DD statement
Purpose: Use the SYSCHK DD statement to define a checkpoint data set that the
system is to write during execution of a processing program. Use this statement
again when the step is restarted from a checkpoint written in the data set.

Note: If restart is to begin at a step, as indicated by the RD parameter on the
EXEC statement, do not use a SYSCHK DD statement.

References: For detailed information about the checkpoint/restart facilities, see
z/OS DFSMSdfp Checkpoint/Restart.

Syntax

//SYSCHK DD parameter[,parameter]... [comments]

Parameters on SYSCHK DD statements
When creating a checkpoint data set:

v Code a SPACE parameter, but do not request secondary space.
– The primary space request must be large enough to hold all checkpoints.

Although your program or the system can write checkpoints in secondary
space, the system cannot perform a restart from checkpoints in secondary
space.

– If you do not request secondary space and the primary space fills up, the job
abnormally terminates. You can successfully restart the job at the last
checkpoint; however, when the processing program or system writes the next
checkpoint the job abnormally terminates again.

– If you do request secondary space and the primary space fills up, the
processing program or the system writes one invalid checkpoint followed by
successful checkpoints. An attempt to restart from one of the checkpoints
following the invalid checkpoint results in abnormal termination.

v Code the RLSE subparameter of the SPACE parameter only if the processing
program opens the checkpoint data set and the checkpoint data set remains
open until the end of the program. If you specify RLSE, the system releases
unused space after the first CLOSE macro instruction.

SYSABEND, SYSMDUMP, SYSUDUMP DD

Chapter 13. Special DD statements 323

Do not code the RLSE subparameter:
– If the processing program opens the checkpoint data set before writing each

checkpoint and closes the checkpoint data set after writing each checkpoint.
The system releases all unused space while closing the data set after the first
checkpoint, leaving no space for additional checkpoints.

– If the system opens the checkpoint data set. The system opens and closes the
checkpoint data set before it writes the first checkpoint. With RLSE specified,
the system would release all space before the first checkpoint could be
written.

v Code the CONTIG subparameter of the SPACE parameter to request contiguous
space. The system otherwise provides additional primary space using extents. If
the extents are not contiguous, any checkpoints in these extents cannot be used
for a successful restart.

When retrieving a cataloged checkpoint data set:

v Code the DSNAME parameter.
v Code the DISP parameter to specify a status of OLD and a disposition of KEEP.
v Code the VOLUME parameter. If the checkpoint entry is on a tape volume other

than the first volume of the checkpoint data set, code the volume serial number
or volume sequence number to identify the correct volume. The serial number of
the volume on which a checkpoint entry was written appears in the console
message issued after the checkpoint entry is written.

v Code the UNIT parameter, if you coded the VOLUME parameter, because the
system will not look in the catalog for unit information.

When retrieving a checkpoint data set that is not cataloged:

v Code the DSNAME parameter. If the checkpoint data set is a partitioned data set
(PDS), do not code a member-name in the DSNAME parameter.

v Code the DISP parameter to specify a status of OLD and a disposition of KEEP.
v Code the VOLUME parameter. The serial number of the volume on which a

checkpoint entry was written appears in the console message issued after the
checkpoint entry is written.

v Code the UNIT parameter.

Other parameters:

v Code the LABEL parameter if the checkpoint data set does not have standard
labels.

v Code DCB=TRTCH=C if the checkpoint data set is on 7-track magnetic tape with
nonstandard labels or no labels.

v If the volume containing the checkpoint data set is to be mounted on a
JES3-managed device, do not code the DEFER subparameter of the UNIT
parameter on the SYSCHK DD statement.

Note: Do not use VSAM for a checkpoint data set, and do not use a partitioned
data set extended (PDSE) for a checkpoint data set.

Relationship to other control statements
Code the RESTART parameter on the JOB statement; without it, the system ignores
the SYSCHK DD statement.

SYSCHK DD

324 z/OS V2R1.0 MVS JCL Reference

Location in the JCL
v When writing checkpoints, place the SYSCHK DD statement after any JOBLIB

DD statements, if coded; otherwise, after the JOB statement.
v When restarting a job from a checkpoint, place the SYSCHK DD statement

immediately before the first EXEC statement of the resubmitted job.

Examples of the SYSCHK DD statement
Example 1
//JOB1 JOB RESTART=(STEP3,CK3)
//SYSCHK DD DSNAME=CHLIB,UNIT=3390,
// DISP=OLD,VOLUME=SER=456789
//STEP1 EXEC PGM=A

The checkpoint data set defined on the SYSCHK DD statement is not cataloged.

Example 2
//JOB2 JOB RESTART=(STEP2,NOTE2)
//JOBLIB DD DSNAME=PRIV.LIB3,DISP=(OLD,PASS)
//SYSCHK DD DSNAME=CHECKPTS,DISP=(OLD,KEEP),
// UNIT=3390,VOLUME=SER=438291
//STEP1 EXEC PGM=B

The checkpoint data set defined on the SYSCHK DD statement is not cataloged.
Note that the SYSCHK DD statement follows the JOBLIB DD statement.

SYSCKEOV DD statement
Purpose: Use the SYSCKEOV DD statement to define a checkpoint data set for
checkpoint records from the checkpoint at end-of-volume (EOV) facility. The
checkpoint at EOV facility is invoked by a DD CHKPT parameter.

References: For information on the DD CHKPT parameter, see “CHKPT parameter”
on page 123. For information on checkpoint/restart facilities, see z/OS DFSMSdfp
Checkpoint/Restart.

Syntax

//SYSCKEOV DD parameter[,parameter]... [comments]

Parameters on SYSCKEOV DD statements
When creating a checkpoint data set:

v Code a SPACE parameter, but do not request secondary space. The primary
space request must be large enough to hold all checkpoints; if not, the job
abnormally terminates.

v Do not code the RLSE subparameter of the SPACE parameter.
v Code the CONTIG subparameter of the SPACE parameter to request contiguous

space. The system otherwise provides additional primary space using extents.
v The SYSCKEOV DD statement must define a BSAM data set, but cannot define a

partitioned data set extended (PDSE).
v Code DISP=MOD to reduce loss of checkpoint data in case of a system failure

during checkpointing.

SYSCHK DD

Chapter 13. Special DD statements 325

Other parameters:

v Do not code on the SYSCKEOV DD statement the following:
– CHKPT=EOV parameter.
– DCB parameter. All DCB information is provided by the checkpoint at EOV

facility.
– DEFER subparameter of the UNIT parameter.

v If you code the LABEL parameter, you must specify LABEL=(,SL) for IBM
standard labels.

v If the SYSCKEOV data set resides on a direct access storage device, that device
cannot be shared with another processor.

Location in the JCL
If you code a CHKPT parameter on any DD statements in a job step, place a
SYSCKEOV DD statement in the DD statements for the step.

Example of the SYSCKEOV DD statement
//SYSCKEOV DD DSNAME=CKPTDS,UNIT=TAPE,DISP=MOD

This statement defines a checkpoint data set for checkpoint at EOV records.

SYSIN DD statement
Purpose: By convention, people often use a SYSIN DD statement to begin an
in-stream data set. In-stream data sets begin with a DD * or DD DATA statement;
these DD statements can have any valid ddname, including SYSIN. If you omit a
DD statement before input data, the system provides a DD * statement with the
ddname of SYSIN.

Syntax

//SYSIN DD parameter[,parameter]... [comments]

Parameters on SYSIN DD statements
The first parameter is an * or DATA, to signal that an in-stream data set follows
immediately.

Do not code a symbolic in place of (one that would resolve to) the * or DATA
positional parameter on a SYSIN type DD statement.

Location in the JCL
A SYSIN DD statement appears at the beginning of an in-stream data set.

Examples of SYSIN DD statements
//STEP1 EXEC PGM=READ
//SYSIN DD *

.

.
data
.

//OUT1 DD SYSOUT=A
//STEP2 EXEC PGM=WRITE

SYSCKEOV DD

326 z/OS V2R1.0 MVS JCL Reference

//SYSIN DD DATA,DLM=17
.
.
.

17

SYSIN DD

Chapter 13. Special DD statements 327

SYSIN DD

328 z/OS V2R1.0 MVS JCL Reference

Chapter 14. Delimiter statement

Purpose: Use the delimiter statement to indicate the end of data or transmittal
records in the input stream.

Considerations for an APPC scheduling environment: The delimiter statement has
no function in an APPC scheduling environment. If you code a delimiter
statement, the system will ignore it.

Description

Syntax

/* [comments]
xx [comments]

A delimiter statement consists of the characters /* or the two characters specified in a
DLM parameter in columns 1 and 2 and one field: comments.

Do not continue a delimiter statement.

Comments field
The comments field follows the delimiter characters.

For JES2, code any comments in columns 4 through 80. (A blank must follow the
delimiter characters.)

For JES3, text in columns 3 through 80 is a comment, except when the default
delimiter (/*) is used with an //XMIT statement causing the text starting in
column 3 to be recognized as a JECL statement (for example, /*ROUTE,
/*JOBPARM). This includes JES2 commands (/*$command) except that any
command prefix other than $ is considered a comment instead of a command.

To avoid ambiguity in these cases, IBM recommends that you either start
comments in column 4 or use a delimiter other than the default on the //XMIT
statement.

Relationship to the DLM parameter
The system recognizes a delimiter other than /* if a DLM parameter is coded on:
v A DD * or DD DATA statement that defines an in-stream data set.
v An XMIT JCL statement that precedes input stream records to be transmitted to

another node.
v A JES2 /*XMIT statement that precedes input stream records to be transmitted

to another node.

A delimiter statement is optional:
v If the data is preceded by a DD * statement without a DLM parameter.
v If transmitted records are preceded by an /*XMIT statement without a DLM

parameter.

© Copyright IBM Corp. 1988, 2013 329

Location in the JCL
A delimiter statement must appear:
v At the end of an in-stream data set that begins with a DD DATA statement.
v At the end of an in-stream data set that begins with a DD statement containing a

DLM parameter.
v At the end of records to be transmitted to another node when the records are

preceded by an /*XMIT statement containing a DLM parameter.
v At the end of records to be transmitted to another node when the records are

preceded by an XMIT JCL statement.

Examples of the delimiter statement
Example 1
//JOB54 JOB ,’C BROWN’,MSGLEVEL=(2,0)
//STEPA EXEC PGM=SERS
//DD1 DD *

.

.
data
.

/* END OF DATA FOR DATA SET DD1
//DD2 DD DATA,DLM=AA

.

.
data
.

AA END OF DATA FOR DATA SET DD2

Example 2
//JOB54 JOB ,’C BROWN’,MSGLEVEL=(2,0)
// XMIT DEST=NODEA,DLM=BB
//JOB55 JOB ,’C BROWN’,MSGLEVEL=(2,0)
//STEPA EXEC PGM=SERS
//DD1 DD *

.

.
data
.

/* END OF DATA FOR DATA SET DD1
//DD2 DD DATA,DLM=AA

.

.
data
.

AA END OF DATA FOR DATA SET DD2
BB END OF TRANSMITTED JOB

This example shows nested delimiter statements.

Delimiter Statement

330 z/OS V2R1.0 MVS JCL Reference

Chapter 15. ENDCNTL statement

Purpose: Use the ENDCNTL statement to mark the end of the program control
statements following a CNTL statement.

Description

Syntax

//[label] ENDCNTL [comments]

The ENDCNTL statement consists of the characters // in columns 1 and 2, and three
fields: label, operation (ENDCNTL), and comments.

Label field
Code a label on the ENDCNTL statement, as follows:
v Each label must be unique within the job.
v The label must begin in column 3.
v The label is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The label must be followed by at least one blank.

Operation field
The operation field consists of the characters ENDCNTL and must be preceded
and followed by at least one blank. It can begin in any column.

Comments field
The comments field follows the ENDCNTL after at least one intervening blank.

Location in the JCL
The ENDCNTL statement immediately follows the one or more program control
statements following a CNTL statement. Thus, the ENDCNTL statement can
appear in a job step or in a cataloged or in-stream procedure.

Example of the ENDCNTL statement
//STEP1 EXEC PGM=PRINT
//ABLE CNTL
//STATE1 PRINTDEV BUFNO=20,PIMSG=YES,DATACK=BLOCK
//BAKER ENDCNTL
//CALLER DD UNIT=3800-3,CNTL=*.ABLE

(For information about the PRINTDEV JCL statement see PSF for z/OS:
Customization.)

© Copyright IBM Corp. 1988, 2013 331

332 z/OS V2R1.0 MVS JCL Reference

Chapter 16. EXEC statement

Purpose: Use the EXEC (execute) statement to identify the program or cataloged or
in-stream procedure that this job step is to execute and to tell the system how to
process the job step. The EXEC statement marks the beginning of each step in a job
or a procedure.

A job can have a maximum of 255 job steps. This maximum includes all steps in
any procedures the EXEC statements call.

The parameters you can specify for step processing are arranged alphabetically.

References: For information about the JES initialization parameters that provide
installation defaults, see z/OS JES2 Initialization and Tuning Reference and z/OS JES3
Initialization and Tuning Reference.

Description

Syntax

//[stepname] EXEC positional-parm[,keyword-parm]...[,symbolic-parm=value]...
[comments]

The EXEC statement consists of the characters // in columns 1 and 2 and four fields:
name, operation (EXEC), parameter, and comments.

An EXEC statement is required for each job step.

Name field
A stepname is optional, but is needed for the following. When a stepname is
needed, it must be unique within the job, including stepnames in any procedures
called by the job. If stepnames are not unique within the job, results might be
unpredictable; but in most cases, references to non-unique stepnames will resolve
to the first occurrence of that stepname.
v Referring to the step in later job control statements.
v Overriding parameters on an EXEC statement or DD statement in a cataloged or

in-stream procedure step.
v Adding DD statements to a cataloged or in-stream procedure step. However, a

stepname is not required when adding to the first step in a procedure.
v Performing a step or checkpoint restart at or in the step.
v Identifying a step in a cataloged or in-stream procedure.

Code a stepname as follows:
v The stepname must begin in column 3.
v The stepname is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The stepname must be followed by at least one blank.

© Copyright IBM Corp. 1988, 2013 333

v The stepname may be preceded by up to 8 alphanumeric or national characters
and then separated by a period. If the stepname is coded in this way, the
characters up to and including the period are ignored.

Stepnames for started tasks
When JCL runs as a started task, the system assigns a stepname of ssssssss (when
the START command was S membername.ssssssss) or STARTING (when the START
command was S membername). Embedded procedures that refer back to the
invoking procedure, as on a COND parameter, need to specify the stepname the
system assigns.

Operation field
The operation field consists of the characters EXEC and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter field
An EXEC statement has two kinds of parameters: positional and keyword.

Do not use EXEC statement parameter keywords as symbolic parameters, names,
or labels.

Positional Parameters: An EXEC statement must contain one of the positional
parameters: PGM, PROC, or procedure name. This positional parameter must
precede all keyword parameters.

Table 19. Positional parameters

POSITIONAL PARAMETERS VALUES PURPOSE

PGM= {program-name }
{*.stepname.ddname }
{*.stepname.procstepname.ddname}
{JCLTEST }
{JSTTEST }

See section “PGM parameter” on page 358

program-name: 1 - 8 alphanumeric or
$, #, @ characters member containing
program

stepname: DD in named step

procstepname: step in named
procedure

JCLTEST and JSTTEST: scan for
syntax without executing the job
(JES3 only)

Names the program the
system is to execute or,
for JES3 only, requests
syntax check without
execution

{PROC=procedure-name}
{procedure-name }

See section “PROC and procedure name
parameters” on page 360

procedure-name: 1 - 8 alphanumeric
or $, #, @ characters

Names the cataloged or
in-stream procedure the
system is to call and
execute.

Keyword parameters: An EXEC statement can contain the following keyword
parameters. You can code any of the keyword parameters in any order in the
parameter field after the positional parameter.

EXEC

334 z/OS V2R1.0 MVS JCL Reference

Table 20. Keyword parameters

KEYWORD PARAMETERS VALUES PURPOSE

ACCT[.procstepname]=(accounting-information)

See section “ACCT parameter” on page 338

accounting-information: up to 142
characters

[.procstepname]: name of procedure
EXEC containing ACCT to be affected

Specifies accounting
information for the step

ADDRSPC[.procstepname]= {VIRT}
{REAL}

See section “ADDRSPC parameter” on page 340

VIRT: virtual (pageable) storage

REAL: central (nonpageable) storage
[.procstepname]: name of procedure
EXEC containing ADDRSPC to be
affected

Indicates the type of
storage required for the
step.

CCSID=nnnnn nnnnn: 1 - 65535 Specifies the coded
character set identifier
indicating the character
code conversion
performed on reads from
and writes to tapes
accessed in ISO/ANSI
Version 4 format.

COND[.procstepname]=
((code,operator[,stepname][.procstepname]))
([,(code,operator[,stepname][.procstepname])]...)
([,EVEN])
([,ONLY]

)

See section “COND parameter” on page 342

code: 0 - 4095

operator: GT Code from
GE chart on
EQ section

Table 21 on page 347
LT
LE
NE

EVEN: execute step even if preceding
step ended abnormally

ONLY: execute step only if preceding
step ended abnormally

stepname: step issuing return code

procstepname: step is in named
procedure

[.procstepname]: name of procedure
EXEC containing COND to be
affected

Specifies the return code
tests used to determine
if this step is to be
executed or bypassed.

DYNAMNBR[.procstepname]=n

See section “DYNAMNBR parameter” on page
350

n: 0 - 3273 minus number of DD
statements in step

[.procstepname]: name of procedure
EXEC containing DYNAMNBR to be
affected

Holds a number of data
set allocations for reuse
and sets the control
limit.

EXEC

Chapter 16. EXEC statement 335

Table 20. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

MEMLIMIT={nnnnnM}
{nnnnnG}
{nnnnnT}
{nnnnnP}
{NOLIMIT}

See section “MEMLIMIT parameter” on page 351

n: 0 - 99999 Specifies the limit on the
total number of usable
virtual pages above the
bar in a single address
space.

PARM[.procstepname]=subparameter
PARM[.procstepname]=(subparameter,subparameter)
PARM[.procstepname]=(’subparameter’,subparameter)
PARM[.procstepname]=’subparameter,subparameter’

See section “PARM parameter” on page 352

subparameter: up to 100 characters

[.procstepname]: name of procedure
EXEC containing PARM to be
affected

Passes variable
information to the
processing program.

PERFORM[.procstepname]=n

See section “PERFORM parameter” on page 356

n: 1 - 999

[.procstepname]: name of procedure
EXEC containing PERFORM to be
affected

In WLM compatibility
mode (not available on
z/OS V1R3 or later
systems), specifies the
step’s performance
group. In WLM goal
mode, PERFORM on the
EXEC statement is
ignored except for the
TSO logon procedure,
where it can be used to
classify the TSO user to
a service class or report
class.

RD[.procstepname]= {R }
{RNC}
{NR }
{NC }

See section “RD parameter” on page 361

R: restart, checkpoints allowed

RNC: restart, no checkpoints

NR: no restart, checkpoints allowed

NC: no restart, no checkpoints

[.procstepname]: name of procedure
EXEC containing RD to be affected

In a non-APPC
scheduling environment,
indicates whether the
operator should perform
automatic step restart, if
the step fails, and
controls whether
checkpoints are written
for CHKPT macros or
DD statement CHKPT
parameters.

REGION[.procstepname]={valueK}
{valueM}

See section “REGION parameter” on page 364

valueK: 1 - 7 digits from 1 - 2096128

valueM: 1 - 4 digits from 1 - 2047

[.procstepname]: name of procedure
EXEC containing REGION to be
affected

Specifies the amount of
space in kilobytes or
megabytes required by
the step.

EXEC

336 z/OS V2R1.0 MVS JCL Reference

Table 20. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

RLSTMOUT[.procstepname]={nnn}
{0 }

nnn: a value in seconds ranging from
0 to 9999.

0: this value means that the request
has no time out value.

Specifies the maximum
time in seconds that a
VSAM RLS or DFSMStvs
request is to wait for a
required lock before the
request is assumed to be
in deadlock.

TIME[.procstepname]= {([minutes][,seconds])}
{1440 }
{NOLIMIT }
{MAXIMUM }

See section “TIME parameter” on page 367

minutes: 1 - 357912

seconds: 1 - 59

[.procstepname]: name of procedure
EXEC containing TIME to be affected

NOLIMIT: specifies that the step can
use the processor for an unlimited
amount of time

MAXIMUM: specifies that the step
can use the processor for the
maximum amount of time

Specifies the maximum
time the step is to use
the processor and
requests messages giving
the time used.

Keyword parameters on an EXEC statement that calls a procedure: When an EXEC
statement positional parameter calls a cataloged or in-stream procedure, all of the
EXEC statement’s keyword parameters override matching EXEC keyword
parameters in the called procedure. If a keyword parameter is to override a
parameter on only one EXEC statement in the procedure, code .procstepname
immediately following the keyword:

keyword.procstepname=value

The procstepname is the name field on the procedure EXEC statement containing
the keyword parameter to be overridden. For example:

//STEP1 EXEC PROC=WKREPORT,ACCT.PSTEPWED=5670

The accounting information 5670 applies only to step PSTEPWED in the procedure
WKREPORT.

Symbolic parameters on an EXEC statement that calls procedures: An EXEC
statement can assign values to, or nullify, symbolic parameters. See “Using system
symbols and JCL symbols” on page 38 for more information about symbolic
parameters.

Comments field
The comments field follows the parameter field after at least one intervening blank.

Location in the JCL
An EXEC statement must be the first statement in each job step or cataloged or
in-stream procedure step.

Examples of EXEC statements
Example 1
//STEP4 EXEC PGM=DREC,PARM=’3018,NO’

EXEC

Chapter 16. EXEC statement 337

The EXEC statement named STEP4 invokes a program named DREC and passes
the value in the PARM parameter to DREC.

Example 2
// EXEC PGM=ENTRY,TIME=(2,30)

This EXEC statement, which does not have a stepname, invokes a program named
ENTRY and specifies the maximum processor time for execution of the step.

Example 3
//FOR EXEC PROC=PROC489,ACCT=DB1528,RD.PSTEP2=RNC,DEV=3390

The EXEC statement named FOR invokes a cataloged or in-stream procedure
named PROC489. The ACCT parameter applies to all steps in the procedure. The
RD parameter applies to only the step named PSTEP2. The DEV parameter assigns
the value 3350 to the symbolic parameter Device Support Bucket in a procedure
statement.

ACCT parameter
Parameter type

Keyword, optional

Purpose

Use the ACCT parameter to specify one or more subparameters of accounting
information that apply to this step. The system passes the accounting information
to the installation’s accounting routines.

References

For more information on how to add accounting routines, see z/OS MVS System
Management Facilities (SMF).

Syntax

ACCT[.procstepname]=(accounting-information)

EXEC

338 z/OS V2R1.0 MVS JCL Reference

Single subparameter: You can omit the parentheses if the accounting information consists
of only one subparameter.

Length: The entire accounting-information must not exceed 142 characters:

v Including any commas, which are considered part of the information.

v Excluding any enclosing parentheses or apostrophes, which are not considered part of
the information.

Multiple subparameters: When the accounting-information consists of more than one
subparameter, separate the subparameters by commas and enclose the information in
parentheses or apostrophes. For example, ACCT=(5438,GROUP6) or ACCT='5438,GROUP6'.

Special characters: When a subparameter contains special characters, other than hyphens
or plus zero (+0, an overpunch), enclose it in apostrophes and the information in
parentheses or enclose all of the information in apostrophes. For example,
ACCT=(387,'72/159') or ACCT='387,72/159'.

Code each apostrophe that is part of the accounting-information as two consecutive
apostrophes. For example, code DEPT'D58 as ACCT='DEPT''D58'

If you code a symbolic parameter on the ACCT parameter, you can code the symbolic
parameter in apostrophes.

Continuation onto another statement: Enclose the accounting-information in parentheses.
End each statement with a comma after a complete subparameter. For example:

//STEP1 EXEC PGM=WRITER,ACCT=(1417,J318,’D58/920’,’CHG=2’,
// ’33.95’)

Subparameter definition
accounting-information

Specifies one or more subparameters of accounting information, as defined by
the installation.

On an EXEC statement that calls a procedure
If an EXEC statement calls a cataloged or in-stream procedure, the ACCT
parameter overrides the ACCT parameter on or is added to:
v The EXEC statement named in the procstepname qualifier. The information

applies only to the named procedure step. The EXEC statement can have as
many ACCT.procstepname parameters as the procedure has steps; each ACCT
parameter must specify a unique procstepname.

v All EXEC statements in the procedure if procstepname is not coded. Then the
information applies to all steps in the called procedure.

Examples of the ACCT parameter
Example 1
//STEP1 EXEC PGM=JP5,ACCT=(LOCATION8,’CHGE+3’)

This EXEC statement executes program JP5 and specifies accounting information
for this job step.

Example 2
//STP3 EXEC PROC=LOOKUP,ACCT=(’/83468’)

EXEC: ACCT

Chapter 16. EXEC statement 339

This EXEC statement calls cataloged or in-stream procedure LOOKUP. The
accounting information applies to this job step, STP3, and to all the steps in
procedure LOOKUP.

Example 3
//STP4 EXEC PROC=BILLING,ACCT.PAID=56370,ACCT.LATE=56470,
// ACCT.BILL=’121+366’

This EXEC statement calls cataloged or in-stream procedure BILLING. The
statement specifies different accounting information for each of the procedure
steps: PAID, LATE, and BILL.

ADDRSPC parameter
Parameter type

Keyword, optional

Purpose

Use the ADDRSPC parameter to indicate to the system that the job step requires
virtual storage (which is pageable) or central storage (also called real storage,
which is nonpageable).

Syntax

ADDRSPC[.procstepname]= {VIRT}
{REAL}

Subparameter definition
VIRT

Requests virtual storage. The system can page the job step.

REAL
Requests central storage (also called real storage). The system cannot page the
job step and must place the job step in central storage.

Defaults
If no ADDRSPC parameter is specified, the default is VIRT.

Overrides
The JOB statement ADDRSPC parameter applies to all steps of the job and
overrides any EXEC statement ADDRSPC parameters.

Code EXEC statement ADDRSPC parameters when each job step requires different
types of storage. The system uses an EXEC statement ADDRSPC parameter only
when no ADDRSPC parameter is on the JOB statement and only during the job
step.

EXEC: ACCT

340 z/OS V2R1.0 MVS JCL Reference

Relationship to the EXEC REGION parameter
When ADDRSPC=REAL: Code a REGION parameter to specify how much central
storage the job needs. If you omit the REGION parameter, the system uses the
default.

When ADDRSPC=VIRT or ADDRSPC is omitted: Code a REGION parameter to
specify how much virtual storage the job needs. If you omit the REGION
parameter, the system uses the default.

On an EXEC statement that calls a procedure
If this EXEC statement calls a cataloged or in-stream procedure, the ADDRSPC
parameter overrides the ADDRSPC parameter on or is added to:
v The EXEC statement named in the procstepname qualifier. The parameter

applies only to the named procedure step. The EXEC statement can have as
many ADDRSPC.procstepname parameters as the procedure has steps; each
ADDRSPC parameter must specify a unique procstepname.

v All EXEC statements in the procedure if procstepname is not coded. Then the
parameter applies to all steps in the called procedure.

Examples of the ADDRSPC parameter
Example 1
//CAC1 EXEC PGM=A,ADDRSPC=VIRT

This EXEC statement executes program A and requests virtual (pageable) storage.
Because the REGION parameter is not specified, the storage available to this job
step is the installation default or the region size specified on the JOB statement.

Example 2
//CAC2 EXEC PROC=B,ADDRSPC=REAL,REGION=80K

This EXEC statement calls procedure B and requests central (nonpageable) storage.
The REGION parameter specifies 80K of storage.

CCSID parameter
Parameter type: Keyword, optional

Purpose: You can request the access method to convert data between the coded
character set identifier (CCSID) specified on the JOB or EXEC statement and the
CCSID specified on the DD statement. Data conversion is supported on access to
ISO/ANSI Version 4 tapes using access methods BSAM or QSAM, but not using
EXCP.

ISO/ANSI tapes are identified by the LABEL=(,AL) or LABEL=(,AUL) keyword.
The CCSID parameter does not apply to ISO/ANSI Version 1 or ISO/ANSI/FIPS
Version 3 tapes or to tapes with labels other than AL or AUL. See z/OS DFSMS
Using Data Setsfor selecting ISO/ANSI Version 4 tapes. It also contains a list of
supported CCSIDs.

The CCSID value of 65535 has a special meaning: it suppresses conversion.

When CCSID is not specified at the JOB, EXEC, or DD levels, data passed to
BSAM and QSAM is converted to 7-bit ASCII when writing to ISO/ANSI tapes.

EXEC: ADDRSPC

Chapter 16. EXEC statement 341

This might result in data loss on conversion. On READ operations the CCSID (if
recorded) on the tape header label is used for conversion.

The CCSID is recorded in the tape header label if conversion is not defaulted.

Syntax

CCSID= nnnnn

Subparameter definition
nnnnn

The CCSID as a decimal number from 1 through 65535.

Default
If no CCSID parameter is specified on the JOB statement, the default is 500.

Relationship to other parameters
Do not code the following parameters with the CCSID parameter:

* DDNAME QNAME
BURST DYNAM SYSOUT
CHARS FCB TERM
COPIES FLASH UCS
DATA MODIFY

Examples of the CCSID parameter
For examples of the CCSID parameter see “Examples of the CCSID parameter” on
page 120.

COND parameter
Parameter type

Keyword, optional

Purpose

Use the COND parameter to test return codes from previous job steps and
determine whether to bypass this job step. You can specify one or more tests on
the COND parameter, and you can test return codes from particular job steps or
from every job step that has completed processing. If any of the test conditions are
satisfied, the system evaluates the COND parameter as true and bypasses the job
step. If none of the test conditions specified on the COND parameter are satisfied,
the system evaluates the COND parameter as false and executes the job step.

The system performs the COND parameter tests against return codes from the
current execution of the job. If a test returns a previously bypassed step, the
system evaluates the test as false.

EXEC: CCSID

342 z/OS V2R1.0 MVS JCL Reference

Bypassing a step because of a return code test is not the same as abnormally
terminating the step. The system abnormally terminates a step following an error
so serious that it prevents successful execution. In contrast, bypassing of a step is
merely its omission.

If a step abnormally terminates, the system normally bypasses all following steps
in the job unless the step(s) are part of an IF/THEN/ELSE/ENDIF construct that
specifies the ABEND, ABENDCC, or ¬ABEND keywords, described in Chapter 18,
“IF/THEN/ELSE/ENDIF statement construct,” on page 375. Another way to make
the system execute a following step, for instance, to write a dump, is to code
EVEN or ONLY on that step’s EXEC statement. The EVEN or ONLY subparameters
are interpreted first. If they indicate that the step should be executed, then the
return code tests, if specified, are performed. If no return code tests were typed or
if none of the coded tests is satisfied, the system executes the step. Finally, steps
following a step that terminated abnormally might execute. This occurs if the step
that abended contained a recovery routine like ESPIE, ESTAE or FRR that
intercepted the abend and requested that normal termination occur.

Instead of coding a JOB statement COND parameter, code an EXEC statement
COND parameter when you want to:
v Specify different tests for each job step.
v Name a specific step whose return code the system is to test.
v Specify special conditions for executing a job step.
v Bypass only one step. When a step is bypassed because of a JOB COND

parameter, all following steps in the job are bypassed.

Note: Depending on the program invoked, a test showing that a return code from
a step is zero is not sufficient to verify that the step did not fail. The system can
fail a step (or job) even if the return code is zero. For example, this could happen
as a result of specifying CATLG_ERR FAILJOB(YES) and incurring a "post
execution error". To determine if a step failed due to a "post execution error", the
SMF type 30, sub-type 4 record for the job step can be examined. In this record, bit
SMF30SYE in the two-byte SMF30STI field will be on if the job failed due to a
"post execution error".

Syntax

COND[.procstepname] = (code,operator)
COND[.procstepname] = ((code,operator[,stepname][.procstepname])

[,(code,operator[,stepname][.procstepname])]... [,EVEN])
[,ONLY]

COND=EVEN
COND=ONLY

v One return code test is: (code,operator)

v You can omit the outer parentheses if you code only one return code test or only EVEN
or ONLY.

v Specify up to eight return code tests. However, if you code EVEN or ONLY, specify up
to seven return code tests.

v You can omit all return code tests and code only EVEN or ONLY.

v Place the EVEN or ONLY subparameters before, between, or after the return code tests.

v Null positional subparameters of the COND parameter are invalid.

EXEC: COND

Chapter 16. EXEC statement 343

Subparameter definition
code

Specifies a number that the system compares to the return codes from all
previous steps in the job or from specific steps. code is a decimal number from
0 through 4095.

Note: Specifying a decimal number greater than 4095 could result in invalid
return code testing or invalid return codes in messages.

operator
Specifies the type of comparison to be made to the return code. If the specified
test is true, the step is bypassed. Use Table 21 on page 347 to select the correct
operator. Operators and their meanings are:

Operator Meaning

GT Greater than

GE Greater than or equal to

EQ Equal to

LT Less than

LE Less than or equal to

NE Not equal to

stepname
Identifies the EXEC statement of a previous job step that issues the return code
to be used in the test. If the specified step is in a procedure, this step must be
in the same procedure. Otherwise, the specified step must not be in a
procedure; the specified step must contain a PGM keyword, rather than invoke
a procedure. Note that if stepnames are not unique within the job, such as
when the same procedure is executed multiple times, results might be
unpredictable; but in most cases, references to non-unique stepnames will
resolve to the first occurrence of that stepname.

If you omit stepname, the code you specify is compared to the return codes
from all previous steps. If the return code issued by any of those previous
steps causes the test condition to be satisfied, the system evaluates the COND
parameter as true and bypasses the job step.

If this step is invoked in JCL that runs as a started task, see “Stepnames for
started tasks” on page 334 for information about the stepname the system
assigns.

stepname.procstepname
Identifies a step in a cataloged or in-stream procedure called by an earlier job
step. Stepname identifies the EXEC statement of the calling job step;
procstepname identifies the EXEC statement of the procedure step that issues
the return code to be used in the test. The step identified by procstepname
must contain the PGM keyword, rather than invoke a procedure. Note that if
stepnames are not unique within the job, such as when the same procedure is
executed multiple times, results might be unpredictable; but in most cases,
references to non-unique stepnames will resolve to the first occurrence of that
stepname.

EVEN
Specifies that this job step is to be executed even if a preceding job step
abnormally terminated. When EVEN is coded, the system:

EXEC: COND

344 z/OS V2R1.0 MVS JCL Reference

v Does not test the return code of any steps that terminated abnormally.
v Does test the return code of any steps that terminated normally. If none of

the return code tests for these steps is satisfied, this job step is executed.

See “Considerations when using the COND parameter” on page 346 for
cautions related to the use of EVEN.

ONLY
Specifies that this job step is to be executed only if a preceding step
abnormally terminated. When ONLY is coded, the system:
v Does not test the return code of any steps that terminated abnormally.
v Does test the return code of any steps that terminated normally. If none of

the return code tests for these steps is satisfied, this job step is executed.

See “Considerations when using the COND parameter” on page 346 for
cautions related to the use of ONLY.

Overrides
If you code the COND parameter on the JOB statement and on one or more of the
job’s EXEC statements, and if a return code test on the JOB statement is satisfied,
the job terminates. In this case, the system does not process any subsequent EXEC
statement COND parameters.

If the tests on the JOB statement are not satisfied, the system then performs the
return code tests on the EXEC statement. If a return code test is satisfied, the step
is bypassed.

Location in the JCL
You can specify the COND parameter on any EXEC statement in the job. However,
the system evaluates a COND parameter on the first EXEC statement in a job as
false.

On an EXEC statement that calls a procedure
The COND parameter on an EXEC statement that calls a cataloged or in-stream
procedure (a calling EXEC statement) either overrides or is added to the called
EXEC statements.

The COND on the calling EXEC statement overrides the COND on the called
EXEC statement. If the called EXEC statement does not have COND coded on it,
the COND on the calling EXEC statement will be added to the called EXEC
statement.

If an EXEC statement calls a cataloged or in-stream procedure, the COND
parameter overrides the COND parameter on or is added to:
v The EXEC statement named in the procstepname qualifier, which is to the left of

the equals sign. The parameter applies only to the named procedure step. The
EXEC statement can have as many COND.procstepname parameters as the
procedure has steps; each COND parameter must specify a unique
procstepname.

v All EXEC statements in the procedure if procstepname is not coded. Then the
parameter applies to this job step and to all steps in the called procedure.

EXEC: COND

Chapter 16. EXEC statement 345

Considerations when using the COND parameter
Be aware of the following considerations when specifying COND parameters.
Some of these considerations relate to errors that prevent step execution, no matter
what is specified on the COND parameter, while others are related to the use of
the COND parameter.

Errors that prevent step execution, regardless of COND
specifications
Certain error conditions prevent the system from executing a step, regardless of
any requests specified through the COND parameter. These conditions are as
follows:

Abnormal termination by the system: After certain types of abnormal termination
by the system, remaining job steps are not executed, regardless of whether EVEN
or ONLY were specified. The completion codes associated with these types of
abnormal termination are:

122 Operator canceled job

222 Operator or TSO/E user canceled job

You might encounter other system completion codes for which remaining job steps
are not executed, regardless of whether EVEN or ONLY was specified. See z/OS
MVS System Codes for further information about specific system completion codes.

Backward references to data sets: If a step is bypassed because of its COND
parameter or if a step abnormally terminates, a data set that was to have been
created or cataloged in the step may not exist, may not be cataloged, or may be
incomplete. Thus, a job step should not refer to a data set being created or
cataloged in a step that could be bypassed or abnormally terminated. If the job
step does make such a reference, the system might not be able to execute the step.

When the program does not have control: For the system to act on the COND
parameter, the step must abnormally terminate while the program has control. If a
step abnormally terminates during scheduling, due to failures such as JCL errors or
the inability to allocate space, the system bypasses the remaining steps, no matter
what the COND parameter requests.

JES3 considerations
In both JES2 and JES3 systems, an EXEC COND parameter determines if a step is
executed or bypassed. However, JES3 processes all jobs as though each step will
execute; therefore, JES3 allocates devices for steps that are bypassed. JES3 will fail
jobs that delete a data set in one step and attempt to reference the deleted data set
in a later step, even if the step that deletes the data set is bypassed during
execution. JES3 does not support conditional JCL, although it does permit
conditional statements to be specified.

COND parameter on the first statement in a Job
The system evaluates a COND parameter on the first EXEC statement in a job as
false.

JOBLIB with COND=ONLY
If the job contains a JOBLIB DD statement and ONLY is specified in a job step, the
JOBLIB unit and volume information are not passed to the next step; when the
next step is executed, the system searches the catalog for the JOBLIB data set.

EXEC: COND

346 z/OS V2R1.0 MVS JCL Reference

When the JOB statement contains a RESTART parameter
When restarting a job, the restart step becomes, in effect, the first step in the job.
Therefore, the system evaluates a COND parameter on the restart step as false and
executes the step. Subsequent steps might be executed. When a COND parameter
on a step following the restarted step refers to a step that precedes the restarted
step, the system evaluates the COND parameter as false. If all other COND
parameters on that step are also false, the system executes the step. When the JOB
statement contains a RESTART parameter with a checkpoint id, the system
evaluates the COND parameter on the designated restart step as false and executes
the step.

Restarted step COND parameter processing

The restarted step does not call a procedure
and is not a step within a procedure.

The system evaluates any COND parameters on the restarted step as
false, and executes the step.

The restarted step calls a procedure and does
not contain a COND parameter.

The system evaluates any COND parameters on the first step to be
executed within the procedure at restart as false, and executes the
step. Subsequent steps containing COND parameters are processed
normally.

The restarted step is within a procedure, and
the step that called the procedure does not
contain a COND parameter.

The system evaluates any COND parameters on the first step to be
executed within the procedure at restart as false, and executes the
step. Subsequent steps containing COND parameters are processed
normally.

The restarted step calls a procedure, and the
restarted step contains a COND parameter
without a procstepname qualifier.

The system evaluates any COND parameters on the restarted step as
false, and executes the step. The system evaluates any COND
parameters on steps within the called procedure as false, regardless
of whether they were overridden or added from the COND
parameter on the step that called the procedure.

The restarted step is within a procedure, and
the step that called the procedure contains a
COND parameter without a procstepname
qualifier.

The system evaluates any COND parameters on the restarted step as
false, and executes the step. Any subsequent steps within the
procedure that contain COND parameters are processed normally.

The restarted step calls a procedure, and the
restarted step contains one or more COND
parameters with procstepname qualifiers.

The system evaluates any COND parameters on the first step to be
executed within the procedure at restart as false, and executes the
step. Subsequent steps that contain COND parameters are processed
normally. COND parameters on these subsequent steps are added or
overridden as specified in the calling step.

The restarted step is within a procedure, and
the step that called the procedure contains
one of more COND parameters with
procstepname qualifiers.

The system evaluates any COND parameters on the first step to be
executed within the procedure at restart as false, and executes the
step. Subsequent steps that contain COND parameters are processed
normally. COND parameters on these subsequent steps are added or
overridden as specified in the calling step.

Summary of COND parameters
Table 21. Bypassing or Execution of Current Step Based on COND Parameter

Test in COND parameter

Return Code (RC) from a previous step

Bypass current step Execute current step

COND=(code,GT) code <= RC code > RC

COND=(code,GE) code < RC code >= RC

COND=(code,EQ) code ^= RC code = RC

COND=(code,LT) code >= RC code < RC

COND=(code,LE) code RC code <= RC

EXEC: COND

Chapter 16. EXEC statement 347

Table 21. Bypassing or Execution of Current Step Based on COND Parameter (continued)

Test in COND parameter

Return Code (RC) from a previous step

Bypass current step Execute current step

COND=(code,NE) code = RC code ^= RC

Note: When the COND parameter does not name a previous step, the system tests all
previous steps. If any test is satisfied, the system bypasses the current step.

Table 22. Effect of EVEN and ONLY Subparameters on Step Execution

EVEN or ONLY
Specified?

Any Preceding
Abend?

Any Tests
Satisfied?

Current Step
Execute?

EVEN
EVEN
EVEN
EVEN

No
No
Yes
Yes

No
Yes
No
Yes

Yes
No
Yes
No

ONLY
ONLY
ONLY
ONLY

No
No
Yes
Yes

No
Yes
No
Yes

No
No
Yes
No

Neither
Neither
Neither
Neither

No
No
Yes
Yes

No
Yes
No
Yes

Yes
No
No
No

Examples of the COND parameter
Example 1:
//STEP6 EXEC PGM=DISKUTIL,COND=(4,GT,STEP3)

In this example, if the return code from STEP3 is 0 through 3, the system bypasses
STEP6. If the return code is 4 or greater, the system executes STEP6. Because
neither EVEN nor ONLY is specified, the system does not execute this step if a
preceding step abnormally terminates.

Example 2:
//TEST2 EXEC PGM=DUMPINT,COND=((16,GE),(90,LE,STEP1),ONLY)

The system executes this step ONLY if two conditions are met:
1. A preceding job step abnormally terminated.
2. No return code tests are satisfied.

Therefore, the system executes this step only when all three of the following are
true:
v A preceding job step abnormally terminated.
v The return codes from all preceding steps are 17 or greater.
v The return code from STEP1 is 89 or less.

The system bypasses this step if any one of the following is true:
v All preceding job steps terminated normally.
v The return code from any preceding step is 0 through 16.
v The return code from STEP1 is 90 or greater.

EXEC: COND

348 z/OS V2R1.0 MVS JCL Reference

Example 3:
//STEP1 EXEC PGM=CINDY

.

.
//STEP2 EXEC PGM=NEXT,COND=(4,EQ,STEP1)

.

.
//STEP3 EXEC PGM=LAST,COND=((8,LT,STEP1),(8,GT,STEP2))

.

In this example, if STEP1 returns a code of 4, STEP2 is bypassed. Before STEP3 is
executed, the system performs the first return code test. If 8 is less than the return
code from STEP1, STEP3 is bypassed; or, restated, if the STEP1 return code is less
than or equal to 8, STEP3 is executed. Because 4 is less than 8, STEP3 is executed.

The system does not perform the second return code test because STEP2 was
bypassed.

Example 4:
//STP4 EXEC PROC=BILLING,COND.PAID=((20,LT),EVEN),
// COND.LATE=(60,GT,FIND),
// COND.BILL=((20,GE),(30,LT,CHGE))

This statement calls cataloged or in-stream procedure BILLING. The statement
specifies different return code tests for each of the procedure steps: PAID, LATE,
and BILL. The system executes step PAID even if a preceding step abnormally
terminates unless the accompanying return code is satisfied.

Example 5: The procedure TEST exists in SYS1.PROCLIB:
//TEST PROC
//PROCSTP1 EXEC PGM=IEFBR14,COND=(0,NE)
//PROCSTP2 EXEC PGM=IEFBR14,COND=(0,NE)
//PROCSTP3 EXEC PGM=IEFBR14
//PROCSTP4 EXEC PGM=IEFBR14,COND=(4,LT)
// PEND

The job:
//JOB1 JOB...RESTART=JOBSTEP
//JOBSTEP EXEC PROC=TEST

JOB1 restarts at JOBSTEP. PROCSTP1 is the first step in the job because of the
RESTART specification, and the COND parameter test is not valid because no
previous steps have run. Therefore, the system evaluates the COND parameter for
PROCSTP1 as false, and PROCSTP1 runs. PROCSTP3 has no COND parameter.
The COND parameters for PROCSTP2 and PROCSTP4 are used.

The job:
//JOB1 JOB...RESTART=JOBSTEP.PROCSTP2
//JOBSTEP EXEC PROC=TEST,COND=(8,GT)

JOB1 restarts at PROCSTP2 as called by JOBSTEP. The COND parameter on
JOBSTEP does not specify a procstepname qualifier and therefore applies to all
steps in procedure TEST. The system evaluates the COND parameter for
PROCSTP2, the restart step, as false, and the step runs. However, the COND
parameter for steps PROCSTP3 and PROCSTP4 evaluates as true (because 8 is
greater than the return code of 0 provided by all previous steps in the job), and the
steps are bypassed.

EXEC: COND

Chapter 16. EXEC statement 349

The job:
//JOB1 JOB...RESTART=JOBSTEP.PROCSTP2
//JOBSTEP EXEC PROC=TEST,COND.PROCSTP4=(8,GT)

JOB1 restarts at PROCSTP2 as called by JOBSTEP. Because of the RESTART
specification, PROCSTP2 is the first step in the job. The system evaluates the
COND parameter for PROCSTP2 as false, and the step runs. PROCSTP3 has no
COND parameter. PROCSTP4 is overridden as specified on JOBSTEP.

DYNAMNBR parameter
Parameter type

Keyword, optional

Purpose

Use the DYNAMNBR parameter to tell the system to hold a number of resources
in anticipation of reuse. Code DYNAMNBR instead of several DD statements with
DYNAM parameters.

Syntax

DYNAMNBR[.procstepname]=n

Subparameter definition
n Specifies a value used to calculate the maximum number of data set allocations

that the system can hold in anticipation of reuse. Specify n as a decimal
number from 0 through 3273 minus the number of DD statements in the step.

Note that the limit of 3273 is based on the number of single unit DD
statements for a 64K TIOT (task input output table). This limit can be different
depending on the installation-defined TIOT size. 32K is the default TIOT size.
The limit for a 32K TIOT is 1635. (In a JES3 system, the installation might
further reduce the limit.)

Note: If you specify DISP=(NEW,PASS) but, at the end of the job, one or more
data sets were not received by any job step, then the maximum number of DD
statements you can specify decreases by one. For example, if the current limit
is 1635 DD statements, you can specify DISP=(NEW,PASS), and up to 1634 DD
statements. See the z/OS MVS Initialization and Tuning Reference, under
ALLOCxx, for more TIOT information.

The number of resources that the system actually holds in anticipation of reuse
equals n plus the number of DD statements in the step, including any DD
statements in a cataloged or in-stream procedure called by the step. The system
uses this sum of n plus the number of DD statements in the step to establish a
control limit. See the z/OS MVS JCL User's Guide for Dynamic Allocation and
Control Limit information. See the z/OS MVS Programming: Authorized
Assembler Services Guide for additional Control Limit information.

EXEC: COND

350 z/OS V2R1.0 MVS JCL Reference

Defaults
If no DYNAMNBR parameter is specified, the default is 0. If you code
DYNAMNBR incorrectly, the system uses the default of 0 and issues a JCL
warning message.

On an EXEC statement that calls a procedure
If this EXEC statement calls a cataloged or in-stream procedure, the DYNAMNBR
parameter overrides the DYNAMNBR parameter on or is added to:
v The EXEC statement named in the procstepname qualifier. The parameter

applies only to the named procedure step. The EXEC statement can have as
many DYNAMNBR.procstepname parameters as the procedure has steps; each
DYNAMNBR parameter must specify a unique procstepname.

v All EXEC statements in the procedure if procstepname is not coded. Then the
parameter applies to all steps in the called procedure.

Example of the DYNAMNBR parameter
//STEP1 EXEC PROC=ACCT,DYNAMNBR.CALC=12

For the procedure step CALC, this statement specifies that the system should hold
the following data set allocations for reuse: 12 plus the number of DD statements
following this EXEC statement and the number of DD statements in procedure
ACCT.

MEMLIMIT parameter
Parameter type

Keyword, optional

Purpose

Use the MEMLIMIT parameter to specify the limit on the total size of usable
virtual storage above the bar in a single address space.

Syntax

MEMLIMIT={nnnnnM}
{nnnnnG}
{nnnnnT}
{nnnnnP}
{NOLIMIT}

Subparameter definition
nnnnnM
nnnnnG
nnnnnT
nnnnnP

Specifies a value to be used as the limit on the total size of usable virtual
storage above the bar in a single address space. The value may be expressed in
megabytes (M), gigabytes (G), terabytes (T), or petabytes (P). nnnnn may be a
value from 0 to 99999, with a maximum value of 16384P.

EXEC: DYNAMNBR

Chapter 16. EXEC statement 351

NOLIMIT
Specifies that there is no limit on the virtual storage to be used above the bar.

Note: Unlike the REGION parameter, MEMLIMIT=0M (or equivalent in G, T,
or P) means that the step can not use virtual storage above the bar.

Defaults
If no MEMLIMIT parameter is specified, the default is the value defined to SMF,
except when REGION=0K/0M is specified, in which case the default is NOLIMIT.

Overrides
The JOB statement MEMLIMIT parameter applies to all steps of the job and
overrides any EXEC statement MEMLIMIT parameter.

If MEMLIMIT is not specified, SMF provides a default value. The IEFUSI
installation exit can override any JCL- or SMF-supplied value.

Relationship to the REGION parameter
A specification of REGION=0K/0M will result in a MEMLIMIT value being set to
NOLIMIT, when a MEMLIMIT value has not been specified on either the JOB or
EXEC statements, and IEFUSI has not been used to set the MEMLIMIT.

Considerations When Using the MEMLIMIT parameter
Specifying a REGION size that gives the job all the available storage, such as 0K or
any value greater than 16,384K, can cause storage problems if the IBM- or
installation-supplied routine IEALIMIT or IEFUSI is not used to establish a limiting
value.

Example of the MEMLIMIT parameter
//STEPA EXEC PGM=ADDER,MEMLIMIT=10000M

This job step specifies a limit of 10000 megabytes of usable virtual storage above
the bar, depending on other job and installation factors.

PARM parameter
Parameter type

Keyword, optional

Purpose

Use the PARM parameter to pass variable information to the processing program
executed by this job step. To use the information, the processing program must
contain instructions to retrieve the information.

References

For details on the format of the passed information and its retrieval, see z/OS MVS
Programming: Assembler Services Guide.

EXEC: MEMLIMIT

352 z/OS V2R1.0 MVS JCL Reference

Syntax

PARM[.procstepname]=subparameter
PARM[.procstepname]=(subparameter,subparameter)
PARM[.procstepname]=(’subparameter’,subparameter)
PARM[.procstepname]=’subparameter,subparameter’

Length: The length of the subparameters passed must not exceed 100 characters:

v Including any commas, which are passed to the processing program.

v Excluding any enclosing parentheses or apostrophes, which are not passed.

For example, PARM='P1,123,MT5' is received by the program as P1,123,MT5.

Commas: When you code more than one subparameter, separate the subparameters by
commas and enclose the subparameters in parentheses or apostrophes. For example,
PARM=(P1,123,MT5) or PARM='P1,123,MT5'.

Special characters and blanks: When a subparameter contains special characters or blanks,
enclose it in apostrophes and the other subparameters in parentheses, or enclose all the
subparameters in apostrophes. For example, PARM=(P50,'12+80') or PARM='P50,12+80'.

Code each apostrophe and ampersand that is part of the subparameter as two consecutive
apostrophes or ampersands. For example, code 3462&5 as PARM='3462&&5'.

However, if a subparameter contains a symbolic parameter, code a single ampersand. You
can code the symbolic parameter in apostrophes.

Continuation onto another statement: Enclose the subparameters in parentheses. End each
statement with a comma after a subparameter. For example:

//STEP1 EXEC PGM=WORK,PARM=(DECK,LIST,’LINECNT=80’,
// ’12+80’,NOMAP)

Do not code an apostrophe in column 71; see “Continuing parameter fields enclosed in
apostrophes” on page 17 if you need more information.

Subparameter definition
subparameter

Consists of the information to be passed to the processing program.

On an EXEC statement that calls a procedure
If an EXEC statement calls a cataloged or in-stream procedure, the PARM
parameter overrides the PARM parameter on or is added to:
v The EXEC statement named in the procstepname qualifier. The information

applies only to the named procedure step. The EXEC statement can have as
many PARM.procstepname parameters as the procedure has steps; each PARM
parameter must specify a unique procstepname.

v The first EXEC statement in the procedure if procstepname is not coded; the
system nullifies any PARM parameters on any following EXEC statements in
the procedure. The information applies to only the first step in the called
procedure.

Examples of the PARM parameter
Example 1
//RUN3 EXEC PGM=APG22,PARM=’P1,123,P2=5’

EXEC: PARM

Chapter 16. EXEC statement 353

The system passes P1,123,P2=5 to the processing program named APG22.

Example 2
// EXEC PROC=PROC81,PARM=MT5

The system passes MT5 to the first step of the procedure named PROC81. If
PROC81 contains more steps and their EXEC statements contain PARM
parameters, the system nullifies those PARM parameters.

Example 3
//STP6 EXEC PROC=ASMFCLG,PARM.LKED=(MAP,LET)

The system passes MAP,LET to the procedure step named LKED in procedure
ASMFCLG. If any other procedure steps in ASMFCLG contain a PARM parameter,
those PARM parameters remain in effect.

Example 4
//RUN4 EXEC PGM=IFOX00,PARM=(NOOBJECT,’LINECNT=50’, ’TRUNC(BIN)’,
// DECK)

The system passes NOOBJECT,LINECNT=50,TRUNC(BIN),DECK to processing
program IFOX00. Because the PARM parameter contains a list of more than one
subparameter, the information is enclosed in parentheses.

PARMDD parameter
Parameter type

Keyword, optional

Purpose

Use the PARMDD parameter in conjunction with a DD statement to pass variable
information to the processing program executed by this job step. To use the
information, the processing program must contain instructions to retrieve the
information.

Specifying the PARMDD keyword causes the job to be scheduled on systems that
are at or above the z/OS 2.1 level.

The DD statement can be a SYSIN DD (a DD coded as DD * or DD DATA) or it
can reference a data set, UNIX System Service file or DD statement in a previous
step (via DSN=*.stepname.ddname).

The PARMDD keyword is mutually exclusive with the PARM keyword.

References

For details on the format of the passed information and its retrieval, see z/OS MVS
Programming: Assembler Services Guide.

Syntax

//STEP1 EXEC PGM=pgm,PARMDD=ddname

EXEC: PARM

354 z/OS V2R1.0 MVS JCL Reference

Relationship to other control statements
The DD name specified on the PARMDD statement must exist on a DD statement
within the step.

Data set requirements
The data set that is associated with the DDname specified on the PARMDD
keyword must be a physical sequential (PS) data set. Other data set organizations
are rejected and the job is failed. When using PARMDD, you must comply with
the following support statements:
v Partitioned data set (PDS and PDSE) members provide the appearance of a

physical sequential (PS) data set and are supported.
v UNIX System Service files also provide the appearance of a physical sequential

(PS) data set and are supported.
v Other data sets that provide the appearance of a physical sequential (PS) data set

are not supported.

The data set can have a fixed (F), fixed-block (FB), variable (V) or variable-block
(VB) record format (RECFM). Spanned (S) and undefined (U) record formats are
rejected and the job is failed.

Record length requirements
The maximum supported record length (LRECL) is 32760 bytes. Fixed record
length data sets and in-stream data sets are examined to determine if their records
contain sequence numbers. If sequence numbers exist, they are assumed to consist
of 8 contiguous numeric characters occupying the last 8 bytes of the input record.
If a record is found to contain a sequence number, the length of the input record is
adjusted to remove the sequence number.

Parameter string requirements
A PARMDD parameter string can be formed by concatenating multiple data sets or
files, subject to the constraints of the BSAM like data set concatenation rules.

The parameter string that is passed to the job step program is formed by a simple
concatenation of each input record, up to a maximum of 32760 bytes. Blank records
and trailing blanks on each record are ignored during the concatenation process.
Input in excess of 32760 bytes (after any symbolic substitution, sequence number
removal, and trailing blank removal) results in an error message written to the job
log and the job being terminated. An input record can contain blank characters that
are to become part of the parameter string, but you must end any sequence of
blank characters on an input record with a non-blank character, or the blank
characters will be ignored.

After concatenation, the parameter string that is passed to the job step program is
examined for double ampersand character (&&) sequences. Double ampersands are
converted to single ampersands in the same way that double ampersands are
converted to single ampersands by PARM= processing.

When the PARMDD= parameter references an in-stream (SYSIN) data set, the DD
statement can use the SYMBOLS= parameter, and the data can contain symbols if
the symbol name is exported (See “SYMBOLS parameter” on page 280.) (Note that
substitution logging can be requested using the SYMBOLS parameter, but will be
ignored.) In the following example, the parameter string that is presented to the
program MYPGM is SBJ.DASD.LOAD:

EXEC: PARMDD

Chapter 16. EXEC statement 355

// EXPORT SYMLIST=SYMB1
// SET SYMB1=DASD
//STEP1 EXEC PGM=MYPGM,PARMDD=MYPARMS
//MYPARMS DD *,SYMBOLS=JCLONLY,DLM=$$
SBJ.&SYMB1..LOAD

If the job runs in a job class with the SYSSYM setting enabled, it can also use
system symbols within the SYSIN data set.

Parameter strings that contain ampersand (&) characters are examined for symbol
names. If there is no valid symbol name after the ampersand (&) character, the
string is left unchanged, with the following exception: parameter strings that
contain double ampersand characters (&&) within the string are converted to
single ampersand characters, as they are done for the PARM= parameter string.

Examples of the PARMDD parameter
Example 1
//STEP1 EXEC PGM=IEBCOPY,PARMDD=PARMIN
//PARMIN DD *,DLM=/*
LINECOUNT=75
/*

In the example, the PARMDD keyword specifies a DD name of PARMIN, which is
then coded on a DD statement that specifies a SYSIN (or in-stream) data set. The
DD DATA usage would be similar.

Example 2
//STEP1 EXEC PGM=MYPGM,PARMDD=MYPARMS
//MYPARMS DD DSN=SYS1.PARMLIB(MYPGMPRM)

In the example, the PARMDD keyword specifies a DD name of MYPARMS, which
is then coded on a DD statement that specifies a data set (in this case, a partitioned
data set member) that contains the program's parameter information.

Example 3
//STEP1 EXEC PGM=MYPGM,PARMDD=MYPARMS
//MYPARMS DD PATH=/SYSTEM/tmp/unixparm.txt

In the example, the PARMDD keyword specifies a DD name of MYPARMS, which
is then coded on a DD statement that specifies a UNIX System Service file that
contains the program's parameter information.

PERFORM parameter
Parameter type

Keyword, optional

Purpose

EXEC: PARMDD

356 z/OS V2R1.0 MVS JCL Reference

Use the PERFORM parameter in WLM compatibility mode to specify the
performance group for the job step. The installation-defined performance groups
determine the rate at which associated steps have access to the processor, storage,
and channels.

In WLM goal mode, any PERFORM parameter on an EXEC statement for a job or
a started procedure is ignored. However, for a TSO session, a PERFORM parameter
specified on the EXEC statement of the TSO logon procedure, or entered on the
TSO logon panel, can be used for classification of the session to a service class or
report class. For details on how to use workload management classification rules to
map a PERFORM value to a service class or report class, see z/OS MVS Planning:
Workload Management.

Syntax

PERFORM[.procstepname]=n

Subparameter definition
n The n is a number from 1 through 999.

In WLM compatibility mode, n identifies a performance group that has been
defined by your installation. The specified performance group should be
appropriate for your step type according to your installation’s rules.

Defaults
In WLM compatibility mode, if no PERFORM parameter is specified or if the
specified PERFORM number fails validity checks, the system uses an installation
default specified at initialization. If the installation did not specify a default, the
system uses a built-in default:

Default Use

1 For non-TSO/E job steps

2 For TSO/E sessions

See z/OS MVS Initialization and Tuning Guide for details.

Overrides
A JOB statement PERFORM parameter applies to all steps of the job and overrides
any EXEC statement PERFORM parameters.

Important

Beginning with z/OS V1R3, WLM compatibility mode is no longer available.
Accordingly, the information that pertains specifically to WLM compatibility mode is no
longer valid. It has been included for reference purposes, and for use on backlevel
systems.

EXEC: PERFORM

Chapter 16. EXEC statement 357

Code EXEC statement PERFORM parameters when each job step is to execute in a
different performance group. The system uses an EXEC PERFORM parameter only
when no PERFORM parameter is on the JOB statement and only during the job
step.

On an EXEC statement that calls a procedure
If an EXEC statement calls a cataloged or in-stream procedure, the PERFORM
parameter overrides the PERFORM parameter on or is added to:
v The EXEC statement named in the procstepname qualifier. The parameter

applies only to the named procedure step. The EXEC statement can have as
many PERFORM.procstepname parameters as the procedure has steps; each
PERFORM parameter must specify a unique procstepname.

v All EXEC statements in the procedure if procstepname is not coded. Then the
parameter applies to all steps in the called procedure.

Example of the PERFORM parameter
//STEPA EXEC PGM=ADDER,PERFORM=60

This job step will be run in performance group 60 if it passes validity checks. The
installation must have defined the significance of this performance group.

PGM parameter
Parameter type

Positional, optional

Purpose

Use the PGM parameter to name the program that the system is to execute. The
specified program must be a member of a partitioned data set (PDS) or partitioned
data set extended (PDSE) used as a system library, a private library, or a temporary
library.

Syntax

PGM= {program-name }
{*.stepname.ddname }
{*.stepname.procstepname.ddname}
{JCLTEST }
{JSTTEST }

The EXEC statement parameter field must begin with a PGM parameter or a PROC
parameter. These two parameters must not appear on the same EXEC statement.

Subparameter definition
program-name

Specifies the member name or alias of the program to be executed. The
program-name is 1 through 8 alphanumeric or national ($, #, @) characters; the
first character must be alphabetic or national.

Use this form of the parameter when the program resides in a system library,
such as SYS1.LINKLIB, or in a private library specified in the job by a JOBLIB
DD statement or in the step by a STEPLIB DD statement.

EXEC: PERFORM

358 z/OS V2R1.0 MVS JCL Reference

*.stepname.ddname
Refers to a DD statement that defines, as a member of a partitioned data set
(PDS) or a partitioned data set extended (PDSE), the program to be executed.
Stepname identifies the EXEC statement of the earlier job step that contains the
DD statement with ddname in its name field.

Use this form of the parameter when a previous job step creates a temporary
library to store a program until it is required.

When referring to a DD statement, the system does not honor requests for
special program properties as defined in the program properties table (PPT).
(See z/OS MVS Initialization and Tuning Reference.)

*.stepname.procstepname.ddname
Refers to a DD statement that defines, as a member of a partitioned data set
(PDS) or a partitioned data set extended (PDSE), the program to be executed.
The DD statement is in a cataloged or in-stream procedure that is called by an
earlier job step. Stepname identifies the EXEC statement of the calling job step;
procstepname identifies the EXEC statement of the procedure step that
contains the DD statement with ddname in its name field.

Use this form of the parameter when a previous job step calls a procedure that
creates a temporary library to store a program until it is required.

When referring to a DD statement, the system does not honor requests for
special program properties as defined in the program properties table (PPT).
(See z/OS MVS Initialization and Tuning Reference.)

JCLTEST (JES3 only)
JSTTEST (JES3 only)

Requests that the system scan the step’s job control statements for syntax
errors without executing the job or allocating devices. JCLTEST or JSTTEST
provides for a step the same function as provided by the JOB statement
TYPRUN=SCAN parameter for a job. See z/OS JES3 Commands for details.

Note: JCLTEST and JSTTEST are supported only in JES3 systems.

Examples of the PGM parameter
Example 1
//JOB8 JOB ,BOB,MSGLEVEL=(2,0)
//JOBLIB DD DSNAME=DEPT12.LIB4,DISP=(OLD,PASS)
//STEP1 EXEC PGM=USCAN

These statements indicate that the system is to search the private library
DEPT12.LIB4 for the member named USCAN, read the member into storage, and
execute the member.

Example 2
//PROCESS JOB ,MARY,MSGCLASS=A
//CREATE EXEC PGM=IEWL
//SYSLMOD DD DSNAME=&&PARTDS(PROG),UNIT=3390,DISP=(MOD,PASS),
// SPACE=(1024,(50,20,1))
//GO EXEC PGM=*.CREATE.SYSLMOD

The EXEC statement named GO contains a backward reference to DD statement
SYSLMOD, which defines a library created in the step named CREATE. Program
PROG is a member of the partitioned data set &&PARTDS, which is a temporary
data set. Step GO executes program PROG. The data set &&PARTDS is deleted at
the end of the job.

EXEC: PGM

Chapter 16. EXEC statement 359

Example 3
//JOBC JOB ,JOHN,MSGCLASS=H
//STEP2 EXEC PGM=UPDT
//DDA DD DSNAME=SYS1.LINKLIB(P40),DISP=OLD
//STEP3 EXEC PGM=*.STEP2.DDA

The EXEC statement named STEP3 contains a backward reference to DD statement
DDA, which defines system library SYS1.LINKLIB. Program P40 is a member of
SYS1.LINKLIB; STEP3 executes program P40.

PROC and procedure name parameters
Parameter type

Positional, optional

Purpose

Use the PROC parameter to specify that the system is to call and execute a
cataloged or in-stream procedure.

Syntax

{PROC=procedure-name}
{procedure-name }

v The EXEC statement parameter field must begin with a PGM parameter or a PROC
parameter. These two parameters must not appear on the same EXEC statement.

v You can omit PROC= and code only the procedure-name.

Subparameter definition
procedure-name

Identifies the procedure to be called and executed:
v The member name or alias of a cataloged procedure.
v The name on the PROC statement that begins an in-stream procedure. The

in-stream procedure must appear earlier in this job.

The procedure-name is 1 through 8 alphanumeric or national ($, #, @)
characters; the first character must be alphabetic or national.

Effect of PROC parameter on other parameters and following
statements

Because this EXEC statement calls a cataloged or in-stream procedure, the other
parameters on the statement are added to or override corresponding parameters on
the EXEC statements in the called procedure. See the descriptions of the other
parameters for details of their effects.

Any DD statements following this EXEC statement are added to the procedure, or
override or nullify corresponding DD statements in the procedure.

Examples of the PROC parameter
Example 1
//SP3 EXEC PROC=PAYWKRS

EXEC: PGM

360 z/OS V2R1.0 MVS JCL Reference

This statement calls the cataloged or in-stream procedure named PAYWKRS.

Example 2
//BK EXEC OPERATE

This statement calls the cataloged or in-stream procedure named OPERATE.

RD parameter
Parameter Type

Keyword, optional

Purpose

Use the RD (restart definition) parameter to:
v Specify that the system is to allow the operator the option of performing

automatic step or checkpoint restart if a job step abends with a restartable abend
code. (See the SCHEDxx parmlib member description in z/OS MVS Initialization
and Tuning Guide for information about restartable abends.)

v Allow JES to perform automatic step restart after a system failure even if the
journal option is not specified in the JES initialization parameters or JES control
statements.

v Suppress, partially or totally, the action of the assembler language CHKPT macro
instruction or the DD statement CHKPT parameter.

The system can perform automatic restart only if all of the following are true:
v The JOB or EXEC statement contains RD=R or RD=RNC.
v The step to be restarted abended with a restartable abend code.
v The operator authorizes a restart.

The system can perform automatic step restart for a job running during a system
failure as long as the job has a job journal.

A job journal is a sequential data set that contains job-related control blocks needed
for restart. If you use the automatic restart manager (ARM) to restart a job, you do
not need to save the journal because ARM does not use the job journal when
restarting jobs.

For JES2, specify a job journal by one of the following:
v JOURNAL=YES on the CLASS statement in the JES2 initialization parameters.
v RD=R or RD=RNC on either the JOB statement or any one EXEC statement in

the job.

For JES3, specify a job journal in one of the following:
v JOURNAL=YES on the CLASS statement in the JES3 initialization parameters.
v RD=R or RD=RNC on either the JOB statement or any one EXEC statement in

the job.
v JOURNAL=YES on a JES3 //*MAIN statement in the job.

References

EXEC: PROC and Procedure Name

Chapter 16. EXEC statement 361

For detailed information on deferred checkpoint restart, see z/OS DFSMSdfp
Checkpoint/Restart.

Considerations for an APPC scheduling environment

The RD parameter has no function in an APPC scheduling environment. If you
code RD, the system will check it for syntax and ignore it.

Syntax

RD[.procstepname]= {R }
{RNC}
{NR }
{NC }

Subparameter definition
R (Restart, Checkpoints Allowed)

Indicates that the operator can perform automatic step restart if the job step
fails.

RD=R does not suppress checkpoint restarts:
v If the processing program executed in a job step does not include a CHKPT

macro instruction, RD=R allows the system to restart execution at the
beginning of the abnormally terminated step.

v If the program includes a CHKPT macro instruction, RD=R allows the
system to restart execution at the beginning of the step, if the step
abnormally terminates before the CHKPT macro instruction is executed.

v If the step abnormally terminates after the CHKPT macro instruction is
executed, only checkpoint restart can occur. If you cancel the affects of the
CHKPT macro instruction before the system performs a checkpoint restart,
the request for automatic step restart is again in effect.

RNC (Restart, No Checkpoints)
Indicates that the operator can perform automatic step restart if the job step
fails.

RD=RNC suppresses automatic and deferred checkpoint restarts. It suppresses:
v Any CHKPT macro instruction in the processing program: That is, the

operator cannot perform an automatic checkpoint restart, and the system is
not to perform a deferred checkpoint restart if the job is resubmitted.

v The DD statement CHKPT parameter.
v The checkpoint at end-of-volume (EOV) facility.

NR (No Automatic Restart, Checkpoints Allowed)
Indicates that the operator cannot perform automatic step restart if the job
fails.

RD=NR suppresses automatic checkpoint restart but permits deferred
checkpoint restarts. It permits:
v A CHKPT macro instruction to establish a checkpoint.
v The job to be resubmitted for restart at the checkpoint. On the JOB statement

when resubmitting the job, specify the checkpoint in the RESTART
parameter.

EXEC: RD

362 z/OS V2R1.0 MVS JCL Reference

If you code RD=NR and the system fails, RD=NR does not prevent the job
from restarting.

NC (No Automatic Restart, No Checkpoints)
Indicates that the operator cannot perform automatic step restart if the job step
fails.

RD=NC suppresses automatic and deferred checkpoint restarts. It suppresses:
v Any CHKPT macro instruction in the processing program.
v The DD statement CHKPT parameter.
v The checkpoint at EOV facility.

Defaults
If you do not code the RD parameter, the system uses the installation default from
the job’s job class specified at initialization.

Overrides
v A JOB statement RD parameter applies to all steps of the job and overrides any

EXEC statement RD parameters.
When no RD parameter is on the JOB statement, the system uses an EXEC
statement RD parameter, but only during the job step. Code EXEC statement RD
parameters when you want to specify different restart types for each job step.

v A request by a CHKPT macro instruction for an automatic checkpoint restart
overrides a request by a JOB or EXEC statement RD=R parameter for automatic
step restart.

Relationship to other control statements
Code RD=NC or RD=RNC to suppress the action of the DD statement CHKPT
parameter.

On an EXEC statement that calls a procedure
If an EXEC statement calls a cataloged or in-stream procedure, the RD parameter is
added to or overrides the RD parameter on:
v The EXEC statement named in the procstepname qualifier. The information

applies only to the named procedure step. The EXEC statement can have as
many RD.procstepname parameters as the procedure has steps; each RD
parameter must specify a unique procstepname.

v All EXEC statements in the procedure if procstepname is not coded. Then the
parameter applies to all steps in the called procedure.

Examples of the RD parameter
Example 1
//STEP1 EXEC PGM=GIIM,RD=R

RD=R specifies that the operator can perform automatic step restart if the job step
fails.

Example 2
//NEST EXEC PGM=T18,RD=RNC

RD=RNC specifies that, if the step fails, the operator can perform automatic step
restart. RD=RNC suppresses automatic and deferred checkpoint restarts.

EXEC: RD

Chapter 16. EXEC statement 363

Example 3
//CARD EXEC PGM=WTE,RD=NR

RD=NR specifies that the operator cannot perform automatic step restart or
automatic checkpoint restart. However, a CHKPT macro instruction can establish
checkpoints to be used later for a deferred restart.

Example 4
//STP4 EXEC PROC=BILLING,RD.PAID=NC,RD.BILL=NR

This statement calls a cataloged or in-stream procedure BILLING. The statement
specifies different restart requests for each of the procedure steps: PAID and BILL.

REGION parameter
Parameter type

Keyword, optional

Purpose

Use the REGION parameter to specify the amount of central or virtual storage that
the step requires.

The amount of storage that you request must include the following:
v Storage for all programs in the step to execute.
v All additional storage that the programs in the step request with GETMAIN,

STORAGE, and CPOOL macro instructions.
v Enough unallocated storage for task initialization and termination. Task

initialization and termination can issue GETMAIN macro instructions for storage
in the user's address space.

Two installation exits, IEFUSI and IEALIMIT, can also affect the size of the user
address space assigned to the job step.

References

For more information on address space size, see "Resource Control of Address
Space" in z/OS MVS JCL User's Guide. For more information on region size with
checkpoint/restart jobs, see z/OS DFSMSdfp Checkpoint/Restart.

Syntax

REGION[.procstepname]= {valueK}
{valueM}

Subparameter definition
valueK

Specifies the required storage in kilobytes (1 kilobyte = 1024 bytes). The value
is 1 through 7 decimal numbers, from 1 through 2096128. Code a multiple of 4.
For example, code REGION=68K. If the value you code is not a multiple of 4,
the system will round it up to the next multiple of 4.

EXEC: RD

364 z/OS V2R1.0 MVS JCL Reference

valueM
Specifies the required storage in megabytes (1 megabyte = 1024 kilobytes). The
value is 1 through 4 decimal numbers, from 1 through 2047. For example,
REGION=3M.

value=0M or 0K
A value equal to 0K or 0M gives the step all the storage available below and
above 16 megabytes. The resulting size of the region below and above 16
megabytes depends on system options and what system software is installed.
When REGION=0K/0M is specified, the MEMLIMIT is set to NOLIMIT.

Note: This may cause storage problems. See the Considerations When Using
the REGION parameter section for more information.

Defaults
If no REGION parameter is specified, the system uses an installation default
specified at JES initialization.

If your installation does not change the IBM-supplied default limits in the
IEALIMIT or IEFUSI exit routine modules, then specifying various values for the
region size has the following results:
v A value equal to 0K or 0M — gives the job step all the storage available below

and above 16 megabytes. The resulting size of the region below and above 16
megabytes depends on system options and what system software is installed.
When REGION=0K/0M is specified, the MEMLIMIT is set to NOLIMIT.

Note: This may cause storage problems. See the Considerations When Using the
REGION parameter information for more information.

v A value greater than 0K or 0M and less than or equal to 16,384K or 16M —
establishes the size of the private area below 16 megabytes. If the region size
specified is not available below 16 megabytes, the job step abnormally ends with
an ABEND822. The extended region size is the default value of 32 megabytes.

v A value greater than 16,384K or 16M and less than or equal to 32,768K or 32M
— gives the job step all the storage available below 16 megabytes. The resulting
size of the region below 16 megabytes depends on system options and what
system software is installed. The extended region size is the default value of 32
megabytes.

v A value greater than 32,768K or 32M and less than or equal to 2,096,128K or
2047M — gives the job step all the storage available below 16 megabytes. The
resulting size of the region below 16 megabytes depends on system options and
what system software is installed. The extended region size is the specified
value. If the region size specified is not available above 16 megabytes, the job
step receives whatever storage is available above 16 megabytes, up to the
requested amount, and the resulting size of the region above 16 megabytes
depends on system options and what system software is installed.

Overrides
A JOB statement REGION parameter applies to all steps of the job and overrides
any EXEC statement REGION parameters.

When no REGION parameter is on the JOB statement, the system uses an EXEC
statement REGION parameter, but only during the job step. Code EXEC statement
REGION parameters when you want to specify a different region size for each job
step.

EXEC: REGION

Chapter 16. EXEC statement 365

Relationship to the EXEC ADDRSPC parameter
When ADDRSPC=REAL: Code a REGION parameter to specify how much central
storage (also called real storage) the step needs.

When ADDRSPC=VIRT or ADDRSPC is Omitted: Code a REGION parameter to
specify how much virtual storage the step needs.

On an EXEC statement that calls a procedure
If an EXEC statement calls a cataloged or in-stream procedure, the REGION
parameter is added to or overrides the REGION parameter on:
v The EXEC statement named in the procstepname qualifier. The information

applies only to the named procedure step. The EXEC statement can have as
many REGION.procstepname parameters as the procedure has steps; each
REGION parameter must specify a unique procstepname.

v All EXEC statements in the procedure if procstepname is not coded. Then the
parameter applies to all steps in the called procedure.

Relationship to the MEMLIMIT parameter
A specification of REGION=0K/0M will result in a MEMLIMIT value being set to
NOLIMIT, when a MEMLIMIT value has not been specified on either the JOB or
EXEC statements, and IEFUSI has not been used to set the MEMLIMIT.

Considerations when using the REGION parameter
Specifying a REGION size that gives the job all the available storage, such as 0K or
any value greater than 16,384K, can cause storage problems if the IBM- or
installation-supplied routine IEALIMIT or IEFUSI is not used to establish a limiting
value.

Examples of the REGION parameter
Example 1:
//MKBOYLE EXEC PROC=A,ADDRSPC=REAL,REGION=40K

The system assigns 40K bytes of central (real) storage to this job step.

Example 2:
//STP6 EXEC PGM=CONT,REGION=120K

The system assigns a region of 120K bytes. When the ADDRSPC parameter is not
specified, the system defaults to ADDRSPC=VIRT.

RLSTMOUT parameter
Parameter type

Keyword, optional

Purpose

Use the RLSTMOUT parameter to specify the maximum time in seconds that a
VSAM RLS or DFSMStvs request is to wait for a required lock before the request is
assumed to be in deadlock and ended with VSAM return code 8 and reason code
22(X'16'). Specify RLSTMOUT as a value in seconds in the range of 0 to 9999. A

EXEC: REGION

366 z/OS V2R1.0 MVS JCL Reference

value of 0 means that the VSAM RLS or DFSMStvs request has no timeout value;
the request waits as long as necessary to obtain the required lock.

VSAM RLS detects deadlocks within VSAM and DFSMStvs. It cannot detect
deadlocks across other resource managers, and uses the timeout value to determine
when such deadlocks might have occurred.

In addition to specifying RLSTMOUT on the JCL step level, you can also specify a
global timeout value in the IGDSMSxx member of SYS1.PARMLIB, or on the RPL
passed for each VSAM request. For a particular VSAM RLS or DFSMStvs request,
the value used for time out is in the following order:
1. The value specified in the RPL, if any
2. The value specified in JCL at the step level, if any
3. The value specified in the IGDSMSxx member of SYS1.PARMLIB, if any

CICS specifies the timeout value in the VSAM RPL. The value used is specified in
the CICS System Initialization Table or the transaction definition.

Syntax

//[stepname] EXEC
positional-parm[,RLSTMOUT={nnn|0}]

Defaults
If you do not code the RLSTMOUT parameter, the value defaults to the RPL value
or to the value specified in PARMLIB.

Examples of the RLSTMOUT parameter
Example 1
//STEP04 EXEC PGM=VALKYRIE,RLSTMOUT=0

RLSTMOUT specifies that the VSAM RLS or DFSMStvs request has no timeout
value. The request waits as long as necessary to obtain the required lock.

TIME parameter
Parameter type

Keyword, optional

Purpose

Use the TIME parameter to specify the maximum amount of time that a job step
may use the processor or to find out through messages how much processor time a
step used.

You can use the TIME parameter on an EXEC statement to increase or decrease the
amount of processor time available to a job step over the default value.

A step that exceeds its allotted time abnormally terminates and causes the job to
terminate, unless an installation exit routine extends the time for the job. The exit
routine IEFUTL is established through System Management Facilities (SMF).

EXEC: RLSTMOUT

Chapter 16. EXEC statement 367

References

See “TIME parameter” on page 450 (the TIME parameter on the JOB statement) or
z/OS MVS Installation Exits.

Syntax

TIME[.procstepname]= {([minutes][,seconds])}
{1440 }
{NOLIMIT }
{MAXIMUM }
{0 }

You can omit the parentheses if you code only 1440, 0, or the processor time in minutes.

Subparameter definition
minutes

Specifies the maximum number of minutes the step can use the processor.
Minutes must be a number from 0 through 357912 (248.55 days).

seconds
Specifies the maximum number of seconds that the step can use the processor,
in addition to any minutes that are specified. Seconds must be a number from
0 through 59.

1440 or NOLIMIT
Indicates that the step can use the processor for an unlimited amount of time.
("1440" literally means "24 hours.")

Also code TIME=1440 or TIME=NOLIMIT to specify that the system is to allow
this step to remain in a continuous wait state for more than the installation
time limit, which is established through SMF. "Continuous wait time" is
defined as time spent waiting while the application program is in control. For
example, the time required to recall a data set from HSM Migration Levels 1 or
2 and/or the time required to mount a tape is counted towards the job's
continuous wait time if the allocation of the data set was dynamic (that is,
issued while the program was running) while the time required for those
activities will not be counted towards the job's continuous wait time if the
allocation was static (that is, for a DD statement).

MAXIMUM
Indicates that the step can use the processor for the maximum amount of time.
Coding TIME=MAXIMUM allows the step to run for 357912 minutes.

0 Indicates that the step is to use the time remaining from the previous step. If
the step exceeds the remaining time available, the step abnormally terminates.

Defaults
Each job step has a time limit. If you do not specify a TIME parameter on the JOB
statement, the time limit for any job step is:
v The value you specify for the TIME parameter on its EXEC statement, or
v The default time limit (that is, the JES default job step time limit), if you do not

specify a TIME parameter on its EXEC statement.

EXEC: TIME

368 z/OS V2R1.0 MVS JCL Reference

Overrides
If you specify either MAXIMUM or a value in minutes or seconds other than 1440
for the JOB statement TIME parameter, the system can reduce the processor time
available to a job step. In those two cases, the system sets the time limit for the
step to the smaller of the two following values:
v The job time remaining after all previous job steps have completed.
v The time limit that was specified or the default time limit.

See “Defaults” on page 368 for an explanation of default time limits.

On an EXEC statement that calls a procedure
If an EXEC statement calls a cataloged or in-stream procedure, the TIME parameter
is added to or overrides the TIME parameter on:
v The EXEC statement named in the procstepname qualifier. The information

applies only to the named procedure step. The EXEC statement can have as
many TIME.procstepname parameters as the procedure has steps; each TIME
parameter must specify a unique procstepname.

If procstepname is not coded, the TIME parameter applies to the entire procedure
and nullifies any TIME parameters on EXEC statements in the procedure. For
example, suppose you specify TIME=5 on an EXEC statement that calls a
procedure. The first step in the procedure is allowed 5 minutes, the second step is
allowed 5 minutes minus the time used by the first step, the third step is allowed 5
minutes minus the time used by the first and second steps, and so forth, regardless
of any TIME parameter values on EXEC statements in the procedure.

TIME=1440 and TIME=NOLIMIT also nullify any TIME parameters on EXEC
statements in the procedure. Specifying TIME=1440 or TIME=NOLIMIT on the
calling EXEC statement allows the procedure to have unlimited processor time.

Examples of the TIME parameter
For examples of TIME coded on both the JOB and EXEC statements, see “Examples
of the TIME parameter on JOB and EXEC statements” on page 452.

Example 1
//STEP1 EXEC PGM=GRYS,TIME=(12,10)

This statement specifies that the maximum amount of time the step can use the
processor is 12 minutes, 10 seconds.

Example 2
//FOUR EXEC PGM=JPLUS,TIME=(,30)

This statement specifies that the maximum amount of time the step can use the
processor is 30 seconds.

Example 3
//INT EXEC PGM=CALC,TIME=5

This statement specifies that the maximum amount of time the step can use the
processor is 5 minutes.

Example 4
//LONG EXEC PGM=INVANL,TIME=NOLIMIT

EXEC: TIME

Chapter 16. EXEC statement 369

This statement specifies that the step can have unlimited use of the processor.
Therefore, the step can use the processor and can remain in a wait state for an
unspecified period of time, if not restricted by the JOB statement TIME parameter.

Example 5
//STP4 EXEC PROC=BILLING,TIME.PAID=(45,30),TIME.BILL=(112,59)

This statement calls cataloged or in-stream procedure BILLING. The statement
specifies different time limits for each of the procedure steps: PAID and BILL.

Example 6
//STP6 EXEC PGM=TIMECARD,TIME=MAXIMUM

This statement specifies that the step can use the processor for 357912 minutes, if
not restricted by the JOB statement TIME parameter.

Example 7
//TEST1 JOB MSGLEVEL=(1,1)
//STEP1 EXEC PGM=USES40,TIME=(,50)
//STEP2 EXEC PGM=USESREST,TIME=0

STEP1 can use the processor for 50 seconds. If STEP1 actually uses the processor
for only 40 seconds, STEP2 can use the processor for 10 seconds, because that is
the time remaining from the previous step.

Example 8
//TEST1 JOB MSGLEVEL=(1,1),TIME=(,50)
//STEP1 EXEC PGM=USES15,TIME=(,25)
//STEP2 EXEC PGM=USES30,TIME=(,40)
//STEP3 EXEC PGM=USESREST,TIME=0

STEP1 can use the processor for 25 seconds. If STEP1 actually uses the processor
for only 15 seconds, the time limit for STEP2 is the smaller of the following values:
v The job time remaining (35 seconds)
v The time limit specified on the EXEC statement for STEP2 (40 seconds).

In this case, the job time remaining is the smaller value, so STEP2 can use the
processor for 35 seconds. If STEP2, then, actually uses the processor for only 30
seconds, STEP3 can use the processor for 5 seconds, because that is the time
remaining from the previous step.

Example 9
//TEST2 JOB MSGLEVEL=(1,1),TIME=8,CLASS=5
//STEP1 EXEC PGM=USES4
//STEP2 EXEC PGM=USESREST

Assume that the default time limit for class 5 is 5 minutes. The time limit for
STEP1 is 5 minutes (the default). If STEP1 actually uses the processor for 4
minutes, the time limit for STEP2 is the smaller of the following values:
v The job time remaining (4 minutes)
v The default time limit (5 minutes).

In this case, the job time remaining is the smaller value, so STEP2 can use the
processor for 4 minutes.

EXEC: TIME

370 z/OS V2R1.0 MVS JCL Reference

Chapter 17. EXPORT statement

Purpose: Use the EXPORT statement to make specific JCL symbols available to the
job step program. Exported JCL symbols can be accessed during the job execution
phase using the JCL Symbol Service (IEFSJSYM) or the JES Symbol Service
(IAZSYMBL). Symbols must be set to a value subsequent to the EXPORT statement
for the symbol value to be exported.

Note: Do not use the EXPORT statement to override the symbol names on the
SYMLIST on an EXPORT statement that is inside a procedure.

References: IEFSJSYM is documented in z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG. IAZSYMBL is documented in z/OS JES
Application Programming.

Description
The following EXPORT statement syntax is required:

Syntax

//[label] EXPORT [parameter,...]...comments

The EXPORT statement consists of the characters // in columns 1 and 2 followed by a
label, operation (EXPORT), parameters, and optional comments.

Label field
The Label field is optional, but can be included for readability. When coded, the
following rules apply:
v The label must begin in column three.
v The label must be 1–8 alphanumeric and national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The label must be followed by at least one blank space.

Operation field
The operation field consists of the characters EXPORT and must be preceded and
followed by at least one blank space.

Parameter field
The EXPORT statement, as coded in the JCL, can only contain the SYMLIST
parameter. However, other versions of the EXPORT statement will be generated by
the system and will appear in the job log. The parameters that are seen on the
generated version of the EXPORT statement are not allowed to be coded in the job
stream JCL.

© Copyright IBM Corp. 1988, 2013 371

|

|

|
|
|
|
|

|
|

|
|
|

|
|

|

|

||

|
|
|

|

|
|

|

|

|

|

|

|
|

|

|
|
|
|
|

Table 23. SYMLIST keyword parameter on the EXPORT statement. The table describes the SYMLIST keyword
parameter on the EXPORT statement.

KEYWORD PARAMETERS VALUES PURPOSE

SYMLIST=(symbolic parameter,
symbolic parameter...)

Up to 128 comma-separated symbol
names. Enclosing parentheses or
apostrophes characters are required
when specifying multiple symbol
names.

Names the symbols to be
exported.

SYMLIST=* The asterisk character (*), which
specifies to export all symbol names.

Specifies to export all
symbols.

Comments field
The optional comments field must follow the list of symbol names or the asterisk
character and at least one intervening blank space.

Location in the JCL
An EXPORT statement can be located anywhere in the JCL after the JOB statement.

SYMLIST parameter
Parameter type: Keyword on EXPORT statement, required

Purpose: Use the SYMLIST parameter to list the JCL symbolic parameters to be
exported, and therefore made available to the job step program. Exported symbolic
parameters must be set to a value at a point in time in the job stream after the
EXPORT command, and prior to the execution of the job step program. Symbolic
parameters can be set to values in the JCL with the SET statement or through
PROC symbolic parameter processing. Exported symbolic parameter values can
also be passed into in-stream (sysin) data; see “Using symbols in JES2 in-stream
data” on page 54 for details.

Syntax

SYMLIST=(symbolic parameter,symbolic parameter...)

or

SYMLIST=*

Single subparameter: You can omit the parentheses if you are exporting only one symbol.

Length: The entire symbol string must not exceed 142 characters. The total character count:

v Includes any commas, which are considered part of the information.

v Excludes any enclosing parentheses or apostrophes, which are not considered part of the
information.

Multiple subparameters: When exporting more than one symbol, you must separate the
symbols by commas and enclose the information within parentheses or apostrophes. For
example, SYMLIST=(SYM86,SYM87) or SYMLIST='SYM86,SYM87'. Duplicate SYMLIST
parameters are accepted but ignored.

For details on coding a symbol name, refer to “Defining and nullifying JCL symbols” on
page 39.

EXPORT

372 z/OS V2R1.0 MVS JCL Reference

||
|

|||

|
|
|
|
|
|
|

|
|

||
|
|
|
|

|

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|

|

||

|

|

|

|

|

|
|

|
|
|
|

|
|
|

Subparameter definition
Symbolic parameters

Identifies one or more symbols to export.

Examples
1. In this example, the symbol parameters COUNTY, TOWN and STATE are set

by the SET statement. The EXPORT statement indicates that the symbolic
parameters COUNTY and STATE are to be made available to the MYPROG
program that is executed in STEP1:
//MYEXP EXPORT SYMLIST=(COUNTY,STATE)
//STEP1 SET COUNTY=DUTCHESS,TOWN=FISHKILL,STATE=NY
//STEP1 EXEC PGM=MYPROG

2. Exported symbolic parameters are resolved to the most recent value to which
they are set. In the following example, MYPROG1 in STEP1 will receive an
exported value of SYMVAL1 for SYM1. Subsequently, the program MYPROG1
in STEP2 will receive an exported value of NEWSYMVAL for SYM1. In STEP3,
the exported value for SYM3 will be null, because its value was not set prior to
MYPROG1 executing in STEP3. In STEP4 and STEP5, MYPROG1 will receive
the exported value of SYMVAL3 for SYM3.
The value of SYMVAL2, for symbol SYM2, is made available to all of the job
steps following the export statement labeled MYEXPR1. The value of
SYMVAL1, for symbol SYM1, is made available to STEP1. The updated value of
NEWSYMVAL, for symbol SYM1, is made available to STEP2 and the
remaining job steps:
//MYEXPR1 EXPORT SYMLIST=(SYM1,SYM2)
// SET SYM1=SYMVAL1,SYM2=SYMVAL2
//STEP1 EXEC PGM=MYPROG1
//STEP2 EXEC PGM=MYPROG1
// SET SYM1=NEWSYMVAL
//MYEXPR2 EXPORT SYMLIST=SYM3
//STEP3 EXEC PGM=MYPROG1
//STEP4 EXEC PGM=MYPROG1
// SET SYM3=SYMVAL3
//STEP5 EXEC PGM=MYPROG1

EXPORT: SYMLIST

Chapter 17. EXPORT statement 373

|

|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

EXPORT: SYMLIST

374 z/OS V2R1.0 MVS JCL Reference

Chapter 18. IF/THEN/ELSE/ENDIF statement construct

This topic describes the IF/THEN, ELSE, and ENDIF statements, collectively called
the IF/THEN/ELSE/ENDIF statement construct.

Purpose: Use the IF/THEN/ELSE/ENDIF statement construct to conditionally
execute job steps within a job.

The IF statement is always followed by a relational-expression and a THEN clause.
Optionally, an ELSE clause can follow the THEN clause. An ENDIF statement
always follows the ELSE clause, if present, or the THEN clause.
v The THEN clause specifies the job steps that the system processes when the

evaluation of the relational-expression for the IF statement is a true condition.
The system evaluates the relational-expression at execution time.

v The ELSE clause specifies the job steps that the system processes when the
evaluation of the relational-expression for the IF statement is a false condition.

v The ENDIF statement indicates the end of the IF/THEN/ELSE/ENDIF
statement construct, and must be coded for each construct.

You can nest IF/THEN/ELSE/ENDIF statement constructs up to a maximum of 15
levels. The steps that execute in a THEN clause and an ELSE clause can be another
IF/THEN/ELSE/ENDIF statement construct.

Description

Syntax

//[name] IF [(]relational-expression[)] THEN [comments]
.
. action when relational-expression is true
.

//[name] ELSE [comments]
.
. action when relational-expression is false
.

//[name] ENDIF [comments]

The IF statement consists of the characters // in columns 1 and 2 and the five fields: name,
operation (IF), the relational-expression, the characters THEN, and comments. The
relational-expression can be enclosed in parentheses.

The ELSE statement consists of the characters // in columns 1 and 2 and the three fields:
name, operation (ELSE), and comments.

The ENDIF statement consists of the characters // in columns 1 and 2 and the three fields:
name, operation (ENDIF), and comments.

Name field
A name is optional on IF/THEN, ELSE, and ENDIF statements. If used, code it as
follows:
v The name should be unique within the job.
v The name must begin in column 3.

© Copyright IBM Corp. 1988, 2013 375

v The name is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The name must be followed by at least one blank.
v The name may be preceded by up to 8 alphanumeric or national characters, and

then separated by a period. Coding the name in this way should not be
confused with specifying an override, as can be done when coding DD
statements.

If a name is not coded, column 3 must be blank.

Operation field
The operation field consists of the characters IF, ELSE, or ENDIF and must be
preceded and followed by at least one blank. It can begin in any column.

Relational-expression field
The relational-expression field follows the IF operation field after at least one
intervening blank and is followed by at least one blank before the characters
THEN. For example, to test that a return code is greater than 4, code:

// IF RC > 4 THEN

You can enclose the relational-expression in parentheses. For example:
// IF (RC > 4) THEN

A relational-expression indicates the condition that the system evaluates. The result
of the evaluation of the relational-expression always depends on two factors: the
operation specified, and the values of the operands or expressions that are
compared at execution time. The result of evaluating a relational-expression is
either true or false.

If you specify a stepname as part of a relational-expression, the system first
determines whether the step executed. If the step did not execute, the evaluation of
the relational-expression is false.

Continuing a relational expression

You can continue relational-expressions on the next JCL statement. Break the
relational-expression where a blank is valid on the current statement, and continue
the expression beginning in column 4 through 16 of the next statement. Do not put
comments on the statement that you are continuing. You can code comments after
you have completed the statement. For example:

//TESTCON IF (RC = 8 | RC = 10 | RC = 12 |
// RC = 14) THEN COMMENTS OK HERE

.

.

A relational-expression consists of:
v Comparison operators
v Logical operators
v NOT (¬) operators
v Relational-expression keywords
v Numeric values

IF/THEN/ELSE/ENDIF

376 z/OS V2R1.0 MVS JCL Reference

Priorities of operators
The operators that you can use in a relational-expression and their processing
priority are shown in Figure 1.

The system evaluates operators in the order indicated. Code operators with the
same priority in the order in which you want the system to evaluate them.

You can specify either the alphabetic characters or the special characters for an
operator. For example, GT and > have the same meaning. (RC GT 10) and (RC >
10) are the same.

Comparison operators
Use comparison operators in a relational-expression to compare a keyword with a
numeric value. The comparison results in a true or false condition.

For example, to test for a return code of 8, code:
//TESTA IF (RC = 8) THEN

In the example, if a return code is 8, the expression is true; otherwise, the
expression is false.

Blanks are not required to precede and follow special character comparison
operators (such as > or ¬=). However, it is good practice to use blanks so your
code is easier to read. Blanks are required to precede and follow alphabetic
comparison operators (such as GT or EQ). Precede and follow the special character
& with at least one blank so that it is not confused with symbolic parameters.

Logical operators
Use the & (AND) and | (OR) logical operators in a complex relational-expression
to indicate that the Boolean result of two or more relational-expressions is to be
evaluated.

You must precede and follow the & (AND) and | (OR) operators with at least one
blank.

Order of
Operator Operation Evaluation
-------- --------- ----------

NOT operator:

NOT or ¬ NOT first

Comparison operators:

GT or > Greater than second
LT or < Less than second
NG or ¬> Not greater than second
NL or ¬< Not less than second
EQ or = Equal to second
NE or ¬= Not equal to second
GE or >= Greater than or equal to second
LE or <= Less than or equal to second

Logical operators:

AND or & AND third
OR or | OR third

Figure 1. Operators on IF/THEN/ELSE/ENDIF Statement Construct

IF/THEN/ELSE/ENDIF

Chapter 18. IF/THEN/ELSE/ENDIF statement construct 377

The & (AND) operator indicates that all of the specified expressions must be true.
For example, to test that a return code is both greater than 8 and less than 24 (in
the range 9 through 23), code:

//TESTAND IF (RC > 8 & RC < 24) THEN

The | (OR) operator specifies that only one of the expressions need be true. For
example, to test that a return code is either equal to 8, equal to 10, or greater than
24, code:

//TESTOR IF (RC = 8 | RC = 10 | RC > 24) THEN

NOT operator
Use the ¬ (NOT) operator to reverse the testing of relational-expressions.

For example, the statements TESTNOTA and TESTNOTB make the same test. The
relational expression is true when the return code is between 0 and 8:

//TESTNOTA IF ¬(RC > 8) THEN
//TESTNOTB IF (RC <= 8) THEN

The statements TESTNOTC and TESTNOTD make the same test; the relational
expression is true when the return code is 0, 1, 2, 3, 4, 5, 6, 7, 9, or 10.

//TESTNOTC IF ¬(RC = 8 | RC > 10) THEN
//TESTNOTD IF (RC ¬= 8 & RC <= 10) THEN

Note that the use of the ¬ operator reverses both the logical and comparison
operators.

You do not need to code a blank between the ¬ operator and the expression it is
reversing.

Relational-expression keywords
The following keywords are the only keywords supported by IBM and
recommended for use in relational-expressions. Any other keywords, even if
accepted by the system, are not intended or supported keywords.

Keyword
Use

RC indicates a return code

ABEND
indicates an abend condition occurred

¬ABEND
indicates no abend condition occurred

ABENDCC
indicates a system or user completion code

RUN indicates that the specified step started execution

¬RUN indicates that the specified step did not start execution

Descriptions of the keywords follow:

RC
Indicates that the relational-expression tests a return code. Evaluate a return
code by coding RC, a comparison operator, and a numeric value. For example,
the expression (RC = 8) tests for a return code equal to 8, and (RC >= 10) tests
for a return code greater than or equal to 10.

IF/THEN/ELSE/ENDIF

378 z/OS V2R1.0 MVS JCL Reference

The return code must be within the range of 0 - 4095.

If you omit stepname, RC refers to the highest job step return code that
occurred during job processing prior to the time of evaluation. This applies
only to steps that execute. Any step that did not start execution, is cancelled, or
abnormally ends is not evaluated.

Note: At the start of execution, RC is initially set to zero.

stepname.RC
Indicates that the relational-expression tests a return code for a specific
step (stepname) of the job.

stepname.procstepname.RC
Indicates that the relational-expression tests a return code for a specific
step (stepname) and procedure step (procstepname) of the job.

ABEND
ABEND=TRUE

Indicates that the relational-expression tests for an abend condition that
occurred during processing of the job prior to the time of evaluation. The
statement IF ABEND THEN tests true when an abend occurred on any
previous job step.

If stepname is omitted, ABEND and ABEND=TRUE refer to all previous steps.

Certain types of abnormal termination by the system prevent the execution of
the THEN or ELSE clauses of an IF/THEN/ELSE/ENDIF statement construct,
regardless of any tests for abnormal termination conditions. See “Errors that
prevent execution, regardless of if statement tests” on page 383 for further
information.

stepname.ABEND
stepname.ABEND=TRUE

Indicates that the relational-expression tests for an abend that occurred on
a specific step (stepname) of the job.

stepname.procstepname.ABEND
stepname.procstepname.ABEND=TRUE

Indicates that the relational-expression tests for an abend that occurred on
a specific step (stepname) and procedure step (procstepname) of the job.

¬ABEND
ABEND=FALSE

Indicates that the relational-expression tests that an abend condition did not
occur during the processing of the job prior to the time of evaluation. The
statement IF ¬ABEND THEN tests true when no abend occurred on any
previous job step.

If stepname is omitted, ¬ABEND and ABEND=FALSE refer to all previous
steps.

Certain types of abnormal termination by the system prevent the execution of
the THEN or ELSE clauses of an IF/THEN/ELSE/ENDIF statement construct,
regardless of any tests for abnormal termination conditions. See “Errors that
prevent execution, regardless of if statement tests” on page 383 for further
information.

¬stepname.ABEND
stepname.ABEND=FALSE

Indicates that the relational-expression tests that no abend occurred on a
specific step (stepname) of the job.

IF/THEN/ELSE/ENDIF

Chapter 18. IF/THEN/ELSE/ENDIF statement construct 379

¬stepname.procstepname.ABEND
stepname.procstepname.ABEND=FALSE

Indicates that the relational-expression tests that no abend occurred on a
specific step (stepname) and procedure step (procstepname) of the job.

ABENDCC=Sxxx
ABENDCC=Uxxxx

Indicates that the relational-expression tests for a system abend completion
code (Sxxx) or user-defined abend completion code (Uxxxx). Specify S with a
hexadecimal value (3 characters) for system abend codes, and U with a
decimal value (4 digits) for user abend codes. For example, ABENDCC=S0C4
tests for system abend code 0C4, and ABENDCC=U0100 tests for user abend
code 0100.

If stepname is omitted, ABEND=Sxxx and ABENDCC=Uxxxx refer to the most
recent abend code that occurred during the execution of the job prior to the
time of evaluation.

Certain types of abnormal termination by the system prevent the execution of
the THEN or ELSE clauses of an IF/THEN/ELSE/ENDIF statement construct,
regardless of any tests for abnormal termination completion codes. See “Errors
that prevent execution, regardless of if statement tests” on page 383 for further
information.

stepname.ABENDCC=Sxxx
stepname.ABENDCC=Uxxxx

Indicates that the relational-expression tests the abend code for a specific
step (stepname) of the job.

stepname.procstepname.ABENDCC=Sxxx
stepname.procstepname.ABENDCC=Uxxxx

Indicates that the relational-expression tests the abend code for a specific
step (stepname) and procedure step (procstepname) of the job.

stepname.RUN
stepname.RUN=TRUE

Indicates that the relational expression tests that a specific job step (stepname)
started execution.

stepname.procstepname.RUN
stepname.procstepname.RUN=TRUE

Indicates that the relational expression tests that a specific job step (stepname)
and procedure step (procstepname) started execution.

¬stepname.RUN
stepname.RUN=FALSE

Indicates that the relational expression tests that a specific job step (stepname)
did not start execution.

¬stepname.procstepname.RUN
stepname.procstepname.RUN=FALSE

Indicates that the relational expression tests that a specific job step (stepname)
and procedure step (procstepname) did not start execution.

Specification of step names in relational expression keywords
If you specify stepname.keyword, where keyword is any of the relational
expression keywords, stepname must identify a step containing the EXEC PGM
keyword rather than one that invokes a procedure. If you specify
stepname.procstepname.keyword, procstepname must identify a step containing
the PGM keyword. In this case, stepname identifies the EXEC statement that
invokes the procedure in which procstepname appears. Note that if stepnames are

IF/THEN/ELSE/ENDIF

380 z/OS V2R1.0 MVS JCL Reference

not unique within the job, such as when the same procedure is executed multiple
times, results might be unpredictable; but in most cases, references to non-unique
stepnames will resolve to the first occurrence of that stepname.

When you specify a step name as part of a relational expression keyword, the
system tests whether the specified step started executing. If the step started
executing, the system performs the test indicated by the relational expression. If
the step did not start executing, the system evaluates that part of the expression as
false.

You must always specify a step name when using the RUN relational-expression
keywords to determine if a step or procedure step executed. For more information
about step names in relational expression keywords, see z/OS MVS JCL User's
Guide.

Use of parentheses with relational expressions
The system evaluates relational-expressions that are enclosed within parentheses
prior to expressions found outside of parentheses. Therefore, you can control the
way in which complex relational-expressions are evaluated.

For example, code the following to test that a return code is 0, 1, 2, or 3:
//TESTPAR IF (RC LT 4 & (RC LT 12 | RC = 16)) THEN

By keeping the same expressions but changing the position of the parentheses, you
can test that a return code is 0, 1, 2, 3 or 16:

//TESTPAR1 IF ((RC LT 4 & RC LT 12) | RC = 16) THEN

Comments field
The comments field follows THEN, ELSE, and ENDIF after at least one intervening
blank.

Location in the JCL
An IF/THEN/ELSE/ENDIF statement construct can appear anywhere in the job.
However, an IF statement specified before the first EXEC statement in a job is not
evaluated before the first step executes. If the IF statement applies to later steps in
the job, the statement will be evaluated when the system decides whether to
process the later steps.

Relationship to other parameters
When you specify both an IF/THEN/ELSE/ENDIF statement construct and a
COND parameter for an EXEC statement, the system executes the job step
represented by the EXEC statement only when both the IF/THEN/ELSE/ENDIF
statement construct and the COND parameter evaluate to execute.

Defaults
By default, job steps within the IF/THEN/ELSE/ENDIF statement construct do
not execute when
v An abend occurred, and
v the IF/THEN/ELSE/ENDIF structure containing the job steps does not specify

the ABEND, ABENDCC, or ¬ABEND keyword. If any of these keywords is
specified (with or without stepname or procstepname), the job steps do execute
despite the abend.

v The step's COND parameter, if any, does not specify an abend condition
(COND=EVEN or COND=ONLY).

IF/THEN/ELSE/ENDIF

Chapter 18. IF/THEN/ELSE/ENDIF statement construct 381

THEN and ELSE clauses
A THEN clause consists of the JCL statements between the IF/THEN statement
and, if specified, its matching ELSE statement; otherwise, its matching ENDIF
statement. If you do not specify any statements, it is a null THEN clause.

An ELSE clause consists of the JCL statements between the ELSE statement and its
matching ENDIF statement. If you do not specify any statements, it is a null ELSE
clause.

In an IF/THEN/ELSE/ENDIF statement construct, the THEN clause or the ELSE
clause must contain at least one EXEC statement to identify a job step.

The system executes the following statements conditionally, in either the THEN
clause or the ELSE clause of an IF/THEN/ELSE/ENDIF statement construct.
Execution of the statement depends on the evaluation of the relational-expression
at execution time:
v Nested IF/THEN/ELSE/ENDIF statement constructs
v EXEC statements
v DD (including DD * and DD DATA) statements
v STEPLIB DD statements
v SYSABEND, SYSMDUMP, and SYSUDUMP DD statements
v SYSCHK (step level) and SYSCKEOV DD statements
v SYSIN DD statements
v OUTPUT JCL statements
v CNTL and ENDCNTL statements

Do not place the following statements in a THEN or ELSE clause:
v JOB statement
v JCLLIB statement
v JOBLIB statement
v SYSCHK (job level) statement
v XMIT JCL statement

The system processes the following statements regardless of the logic of the
IF/THEN/ELSE/ENDIF statement construct. They can be placed in a THEN or
ELSE clause, but they are not executed conditionally.
v PROC and PEND statements
v JES2 and JES3 statements and commands
v JCL command statements
v Comment (//*) statements
v INCLUDE statements
v Delimiter (/*) statements
v Null statements
v SET statements

Considerations when using the IF/THEN/ELSE/ENDIF
construct

Be aware of the following considerations when using the IF/THEN/ELSE/ENDIF
statement construct:

IF/THEN/ELSE/ENDIF

382 z/OS V2R1.0 MVS JCL Reference

v The IF/THEN/ELSE/ENDIF statement construct does not conditionally control
the processing of JCL; rather, it conditionally controls the execution of job steps.

v The result of processing an IF/THEN/ELSE/ENDIF statement construct, once
determined, remains unchanged regardless of the outcome from running any
remaining steps in a job. The system does not reexamine the original condition
at any later job step termination, either normal or abnormal. See Example 9.

v The system allocates all DD statements defined to a step if the execution time
evaluation of the relational-expression determines that a step is to be executed.

v All data sets defined on DD statements in the job must be available at the time
the job is selected for execution.

v You can nest IF/THEN/ELSE/ENDIF statement constructs up to a maximum of
15 levels.

v You can specify symbolic parameters on IF/THEN/ELSE/ENDIF statements
provided that they resolve to one of the supported relational-expression
keywords. Any other symbolic parameters, even if accepted by the system, are
not intended or supported. Refer to “Relational-expression keywords” on page
378.

v An IF statement specified before the first EXEC statement in a job is not
evaluated before the first step executes. If the IF statement applies to later steps
in the job, the statement will be evaluated when the system decides whether to
process the later steps.

v When you specify an IF statement before the first EXEC statement in a job and
the job contains a JOBLIB DD statement, the maximum limit for the number of
steps in the job is 254 steps.

There are additional considerations related to errors that prevent execution of the
THEN or ELSE clause, no matter what is specified on the IF statement, and there
are special considerations related to restarted jobs.

Errors that prevent execution, regardless of if statement tests
Certain error conditions prevent the system from executing the THEN or ELSE
clauses of an IF/THEN/ELSE/ENDIF statement construct. When such an error
condition occurs, the system does not execute the THEN or ELSE clause, regardless
of any tests on the IF statement. These conditions are as follows:

Abnormal termination by the system: After certain types of abnormal termination
by the system, remaining job steps are not executed, regardless of any tests for
abnormal termination conditions. The completion codes associated with these types
of abnormal termination are:

122 Operator canceled job

222 Operator or TSO/E user canceled job

You might encounter other system completion codes for which the THEN or ELSE
clause is not executed, regardless of any tests for abnormal termination conditions.
See z/OS MVS System Codes for further information about specific system
completion codes.

When job time expires: The system abnormally terminates processing if a step has
exceeded the time limit for the job. The specification of the IF/THEN/ELSE/
ENDIF construct has no effect on this type of abnormal termination.

IF/THEN/ELSE/ENDIF

Chapter 18. IF/THEN/ELSE/ENDIF statement construct 383

When a referenced data set is not complete: When a job step that contains the
IF/THEN/ELSE/ENDIF statement construct references a data set that was to be
created or cataloged in a preceding step, the data set
v Will not exist if the step creating it was bypassed, or
v May be incomplete if the step creating it abnormally terminated.

As a result, the system may be unable to execute the step.

When the program does not have control: For the system to act on the
IF/THEN/ELSE/ENDIF statement construct, the step must abnormally terminate
while the program has control. If a step abnormally terminates during scheduling,
(due to failures such as JCL errors or the inability to allocate space), the system
bypasses the remaining steps. The steps specified by the IF/THEN/ELSE/ENDIF
statement construct do not execute.

Considerations for restarted jobs
There are four types of restarts:
v Automatic step restart
v Automatic checkpoint restart
v Deferred step restart
v Deferred checkpoint restart

Only the automatic restarts retain the information (step completion codes)
necessary to perform valid evaluations of any relational expressions based on prior
steps.

If you plan to use either type of deferred restart, you should keep certain points in
mind when coding the JCL for the job. Planning ahead in this manner can help
prevent the need to update the JCL when the job is submitted for restart. The
points to consider are the following:
v Relational expressions on IF/THEN statements that refer to a step preceding the

restarted step are evaluated as false.
v Relational expressions on IF/THEN statements on steps following the restarted

step can still refer to these following steps, but should also check to see whether
the referenced steps actually ran during this invocation. The default value for
relational expressions on IF/THEN statements is false, which, unlike COND,
will cause the system to skip steps. Adding a ¬STEP.RUN condition is
recommended. See “Example 7” on page 387 for an example of a statement
construct with a deferred checkpoint restart.

Examples of IF/THEN/ELSE/ENDIF statement constructs

Example 1
The following example shows the use of the alphabetic characters rather than
special characters for comparison operators.
//IFBAD IF (ABEND | STEP1.RC > 8) THEN

or
//IFBAD IF (ABEND OR STEP1.RC GT 8) THEN

.

.
//IFTEST2 IF (RC > 4 & RC < 8) THEN

or
//IFTEST2 IF (RC GT 4 AND RC LT 8) THEN

IF/THEN/ELSE/ENDIF

384 z/OS V2R1.0 MVS JCL Reference

Example 2
The following example shows a simple IF/THEN/ELSE/ENDIF statement
construct without an ELSE statement.
//JOBA JOB ...
//STEP1 EXEC PGM=RTN

.

.
//IFBAD IF (ABEND | STEP1.RC > 8) THEN
//TRUE EXEC PROC=ERROR
//IFBADEND ENDIF
//NEXTSTEP EXEC PROC=CONTINUE

The IF statement named IFBAD invokes procedure ERROR if either an abend has
occurred on a previous step of the job, or STEP1 has returned a return code that is
greater than 8. Otherwise, step TRUE is bypassed and the system processes step
NEXTSTEP.

Example 3
The following example shows a simple IF/THEN/ELSE/ENDIF statement
construct with a null ELSE clause.
//JOBB JOB ...
//STEP1 EXEC PGM=RTN

.

.
//IFBAD IF (ABEND | STEP1.RC > 8) THEN
//TRUE EXEC PROC=ERROR
// ELSE
//IFBADEND ENDIF
//NEXTSTEP EXEC PROC=CONTINUE

The IF statement named IFBAD invokes procedure ERROR if either an abend has
occurred on a previous step of the job, or STEP1 has returned a return code that is
greater than 8. Otherwise, the system bypasses step TRUE, and the null ELSE
clause passes to NEXTSTEP.

Example 4
The following example shows a simple IF/THEN/ELSE/ENDIF statement
construct with an ELSE clause.
//JOBC JOB ...
//STEP0 EXEC PGM=RTN1

.

.
//IFTEST2 IF (RC > 4 & RC < 8) THEN
//* *** WARNING CONDITION REPORTING GROUP ***
//STEP1 EXEC PGM=IEFBR14
//REPORT EXEC PROC=REPTRTN
//* *** WARNING CONDITION REPORTING GROUP END ***
// ELSE
//ERRORSTP EXEC PROC=ERRORTN
//ENDTEST2 ENDIF
//NEXTSTEP EXEC PROC=CONTINUE

Processing for this IF/THEN/ELSE/ENDIF statement construct is:
1. If the relational-expression for the IF/THEN statement construct named

IFTEST2 is true (the highest step return code for the job is greater than 4 and
less than 8 at the point when this statement is being processed), the system
processes the THEN clause. The system executes program IEFBR14 and
procedure REPTRTN on EXEC statements STEP1 and REPORT.

IF/THEN/ELSE/ENDIF

Chapter 18. IF/THEN/ELSE/ENDIF statement construct 385

2. Otherwise, the relational-expression for IFTEST2 is false and the system
processes the ELSE clause (procedure ERRORTN on EXEC statement
ERRORSTP).

3. Processing then continues with procedure CONTINUE on step NEXTSTEP.

Example 5
The following example shows nested IF/THEN/ELSE/ENDIF statement constructs
with ELSE clauses. The nested statements are indented so that they are easier to
read.
//JOBD JOB ...
//PROC1 PROC
//PSTEPONE EXEC PGM=...
//PSTEP11 EXEC PGM=...
//PSTEP12 EXEC PGM=...
// PEND
//PROC2 PROC
//PSTEPTWO EXEC PGM=...
// PEND
//EXP1 EXEC PROC=PROC1
//EXP2 EXEC PROC=PROC2
//IFTEST3 IF (RC > 12) THEN
//STEP1BAD IF (EXP1.PSTEP11.RC > 12 OR EXP1.PSTEP12.RC > 12) THEN
//STEP1ERR EXEC PGM=ERRTN,PARM=(EXP1)
// ELSE
//STEP2ERR EXEC PGM=ERRTN,PARM=(EXP2)
//END1BAD ENDIF
// ELSE
//NOPROB EXEC PROC=RUNOK
//ENDTEST3 ENDIF
//NEXTSTEP EXEC ...

Processing for the IF/THEN/ELSE/ENDIF construct named IFTEST3 is:
1. If the relational-expression for IFTEST3 is true (the highest step return code for

the job is greater than 12 at the point where this statement is being processed),
the system processes the THEN clause of IFTEST3. It evaluates the
relational-expression of the IF/THEN/ELSE/ENDIF construct named
STEP1BAD.

2. If the STEP1BAD relational-expression is true (the return code is greater than 12
for either of the two steps in procedure PROC1, which is invoked by step
EXP1), the system processes the THEN clause of STEP1BAD. Step STEP1ERR
invokes program ERRTN, passing EXP1 as a parameter.

3. If the STEP1BAD relational-expression is not true, the system processes the
ELSE clause for STEP1BAD. Step STEP2ERR invokes program ERRTN, passing
EXP2 as a parameter.

4. However, if the relational-expression for IFTEST3 is false, the system processes
the ELSE clause. Step NOPROB invokes procedure RUNOK.

5. Processing then continues with step NEXTSTEP.

Example 6
The following example shows two IF/THEN/ELSE/ENDIF statement constructs,
one of which is nested in the ELSE clause of the other. The nested statements are
indented so that they are easier to read.
//JOBE JOB ...
//PROC1 PROC
//PSTEPONE EXEC PGM=...
// PEND
//PROC2 PROC
//PSTEPTWO EXEC PGM=...
// PEND

IF/THEN/ELSE/ENDIF

386 z/OS V2R1.0 MVS JCL Reference

//EXP1 EXEC PROC=PROC1
//EXP2 EXEC PROC=PROC2
//IFTEST4 IF (EXP1.PSTEPONE.RC > 4) THEN
//STEP1ERR EXEC PGM=PROG1
// ELSE
//IFTEST5 IF (EXP2.PSTEPTWO.ABENDCC=U0012) THEN
//STEP2ERR EXEC PGM=PROG2
// ELSE
//NOERR EXEC PGM=PROG3
//ENDTEST5 ENDIF
//ENDTEST4 ENDIF
//NEXTSTEP EXEC ...

Processing for the IF/THEN/ELSE/ENDIF construct named IFTEST4 is:
1. If the relational-expression for IFTEST4 is true (the return code is greater than 4

for PSTEPONE in procedure PROC1, which is invoked by step EXP1), the
system processes the THEN clause of IFTEST4. EXEC statement STEP1ERR
invokes program PROG1. The system then passes control to ENDIF statement
ENDTEST4, and processing continues with step NEXTSTEP.

2. However, if the relational-expression for IFTEST4 is false (the return code is 4
or less for PSTEPONE in procedure PROC1, which is invoked by step EXP1),
the system processes the ELSE clause of IFTEST4. It evaluates the
IF/THEN/ELSE/ENDIF statement construct IFTEST5.
Processing for the IF/THEN/ELSE/ENDIF construct named IFTEST5 is:
a. If the relational-expression for IFTEST5 is true (the user-defined abend

completion code is 0012 from PSTEPTWO in procedure PROC2, which is
invoked by step EXP2), the system processes the THEN clause of IFTEST5.
EXEC statement STEP2ERR invokes program PROG2. The system then
passes control to ENDIF statement ENDTEST5, and then ENDTEST4.
Processing continues with EXEC statement NEXTSTEP.

b. However, if the relational-expression for IFTEST5 is false (that is, the
user-defined abend completion code is not 0012 from PSTEPTWO in
procedure PROC2, which is invoked by step EXP2), the system processes
the ELSE clause of IFTEST5. EXEC statement NOERR invokes program
PROG3. Processing then continues with step NEXTSTEP.

Example 7
The following example shows an IF/THEN/ELSE/ENDIF statement construct with
a deferred checkpoint restart.
//DEFER1 JOB RESTART=(STEP2,CHECK004)
//STEP1 EXEC PGM=IEFBR14
//IF1 IF STEP1.RC=0 | ¬STEP1.RUN THEN
//STEP2 EXEC PGM=DEBIT1
//STEP3 EXEC PGM=CREDIT1
//STEP4 EXEC PGM=SUMMARY1
// ELSE
//STEP5 EXEC PGM=DEBIT2
//STEP6 EXEC PGM=CREDIT2
//STEP7 EXEC PGM=SUMMARY2
// ENDIF

Processing for the IF/THEN/ELSE/ENDIF construct named IF1 is as follows:
1. The conditions on statement IF1 will be checked before executing STEP2.
2. STEP1.RC=0 tests false because STEP1 did not execute and cannot be correctly

evaluated.
3. ¬STEP1.RUN tests true; therefore, STEP2, STEP3, and STEP4 will execute and

STEP5, STEP6, and STEP7 will not execute.

IF/THEN/ELSE/ENDIF

Chapter 18. IF/THEN/ELSE/ENDIF statement construct 387

Note: Without the ¬STEP.RUN condition, STEP2, STEP3, and STEP4 would not
execute and STEP5, STEP6, and STEP7 would execute.

Example 8
The following example shows an IF/THEN/ELSE/ENDIF statement construct with
a deferred step restart.
//DEFER2 JOB RESTART=(STEP3)
//STEP1 EXEC PGM=IEFBR14
//IF1 IF STEP1.RC=0 | ¬STEP1.RUN THEN
//STEP2 EXEC PGM=DEBIT1
//STEP3 EXEC PGM=CREDIT1
//STEP4 EXEC PGM=SUMMARY1
// ELSE
//STEP5 EXEC PGM=DEBIT2
//STEP6 EXEC PGM=CREDIT2
//STEP7 EXEC PGM=SUMMARY2
// ENDIF

Processing for the IF/THEN/ELSE/ENDIF construct named IF1 is:
1. The conditions on statement IF1 will be checked before executing STEP3.
2. STEP1.RC=0 tests false because STEP1 did not execute and cannot be correctly

evaluated.
3. ¬STEP1.RUN tests true; therefore, STEP3 and STEP4 will execute and STEP5,

STEP6, and STEP7 will not execute.

Note: Without the ¬STEP1.RUN condition, STEP3 and STEP4 would not run, and
STEP5, STEP6, and STEP7 would run.

Example 9
The following example specifies that if STEP1 does not abend, the system is to run
STEP2 and STEP3. Otherwise it is to run STEP4.
//JOBF JOB ...
//STEP1 EXEC PGM=...
//IFTEST6 IF ¬ABEND THEN
//STEP2 EXEC PGM=...
//STEP3 EXEC PGM=...
// ELSE
//STEP4 EXEC PGM=...
// ENDIF

The determination of which steps to run is made when the IF/THEN/ELSE/
ENDIF statement construct is processed immediately after STEP1 executes. This
determination is not subject to change based on the results of running steps after
STEP1.

Thus, if STEP1 does not abend, even if STEP2 does, STEP3 (and not STEP4) still
runs. If, however, STEP1 does abend, STEP4 is the next step to run, as prescribed
by the ELSE clause.

IF/THEN/ELSE/ENDIF

388 z/OS V2R1.0 MVS JCL Reference

Chapter 19. INCLUDE statement

Purpose: Use the INCLUDE statement to:
v Identify the name of the member of a partitioned data set (PDS) or partitioned

data set extended (PDSE) that contains a set of JCL statements (such as DD and
OUTPUT JCL statements) called an INCLUDE group.

v Imbed the INCLUDE group in the JCL stream at the position of the INCLUDE
statement.

The INCLUDE group replaces the INCLUDE statement, and the system processes
the imbedded JCL statements as part of the JCL stream. The JCL statements, which
are subject to all JCL processing rules, must be complete statements; that is, you
cannot use an imbedded statement to continue the statement that precedes
INCLUDE.

Description

Syntax

//[name] INCLUDE MEMBER=name [comments]

The INCLUDE statement consists of the characters // in columns 1 and 2 and four fields:
name, operation (INCLUDE), keyword parameter (MEMBER), and comments.

Name field
A name is optional on an INCLUDE statement. If used, code it as follows:
v The name should be unique within the job.
v The name must begin in column 3.
v The name is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The name must be followed by at least one blank.
v The name may be preceded by up to 8 alphanumeric or national characters, and

then separated by a period. Coding the name in this way should not be
confused with specifying an override, as can be done when coding DD
statements.

If you do not code a name, column 3 must be blank.

Operation field
The operation field consists of the characters INCLUDE and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter field
The INCLUDE statement contains one keyword parameter:

© Copyright IBM Corp. 1988, 2013 389

MEMBER=name
Specifies the name of a member of a PDS or partitioned data set extended
(PDSE) that contains the set of JCL statements (called an INCLUDE group) to
be imbedded in the JCL stream.

The PDS or PDSE must be one of the following:
v A system procedure library (such as SYS1.PROCLIB), or
v An installation-defined procedure library, or
v A private library that you must specify on a JCLLIB statement appearing

earlier in the job.

Comments field
The comments field follows the parameter field after at least one intervening blank.

Location in the JCL
An INCLUDE statement:
v Can appear anywhere in the job after the JOB statement, with one exception: if

there is a JCLLIB statement, the INCLUDE statement must follow the JCLLIB
statement.

v Must follow a complete JCL statement.
v Can appear within an INCLUDE group. INCLUDE groups can contain

INCLUDE statements and can be nested up to a maximum of 15 levels of
nesting.

v Cannot appear in a CNTL/ENDCNTL group, which contains program control
statements delimited by the CNTL and ENDCNTL statements.

Considerations for using INCLUDE groups
System and private libraries can contain both procedures and INCLUDE groups.
The order in which the system searches system and private libraries for INCLUDE
groups is the same as the search order used for procedures (see “Using a
procedure” on page 28).

INCLUDE groups cannot contain the following JCL statements:
v JOB statements
v PROC and PEND statements
v JCLLIB statements
v JES2 and JES3 statements and commands

Do not define procedures in an INCLUDE group. However, you can put EXEC
statements that invoke procedures in an INCLUDE group.

You can use INCLUDE statements to imbed INCLUDE groups that contain DD
and OUTPUT JCL statements, which allows you to use the same data set
definitions for various jobs.

When the INCLUDE statement and the INCLUDE group contain symbolic
parameters, the system substitutes the values that are current at the time the
symbolic parameter is encountered. Values assigned to symbolic parameters in an
INCLUDE group (such as with the SET statement) are valid for use on subsequent
JCL statements.

INCLUDE

390 z/OS V2R1.0 MVS JCL Reference

Examples of the INCLUDE statement:
The following examples show INCLUDE statement usage:
1. The following INCLUDE group is defined in member SYSOUT2 of private

library CAMPBELL.SYSOUT.JCL.
//* THIS INCLUDE GROUP IS CATALOGED AS...
//* CAMPBELL.SYSOUT.JCL(SYSOUT2)
//SYSOUT2 DD SYSOUT=A
//OUT1 OUTPUT DEST=POK,COPIES=3
//OUT2 OUTPUT DEST=KINGSTON,COPIES=30
//OUT3 OUTPUT DEST=MCL,COPIES=10
//* END OF INCLUDE GROUP...
//* CAMPBELL.SYSOUT.JCL(SYSOUT2)

The system executes the following program:
//TESTJOB JOB ...
//LIBSRCH JCLLIB ORDER=CAMPBELL.SYSOUT.JCL
//STEP1 EXEC PGM=OUTRTN
//OUTPUT1 INCLUDE MEMBER=SYSOUT2
//STEP2 EXEC PGM=IEFBR14

The JCLLIB statement specifies that the system is to search private library
CAMPBELL.SYSOUT.JCL for the INCLUDE group SYSOUT2 before it searches
any system libraries.
After the system processes the INCLUDE statement, the JCL stream appears as:
//TESTJOB JOB ...
//LIBSRCH JCLLIB ORDER=CAMPBELL.SYSOUT.JCL
//STEP1 EXEC PGM=OUTRTN
//* THIS INCLUDE GROUP IS CATALOGED AS...
//* CAMPBELL.SYSOUT.JCL(SYSOUT2)
//SYSOUT2 DD SYSOUT=A
//OUT1 OUTPUT DEST=POK,COPIES=3
//OUT2 OUTPUT DEST=KINGSTON,COPIES=30
//OUT3 OUTPUT DEST=MCL,COPIES=10
//* END OF INCLUDE GROUP...
//* CAMPBELL.SYSOUT.JCL(SYSOUT2)
//STEP2 EXEC PGM=IEFBR14

The system imbeds the INCLUDE group in the JCL stream (replacing the
INCLUDE statement), and processes the included JCL statements with the JCL
stream.

2. The following example shows the use of the SET statement to assign values to
symbolic parameters in an INCLUDE group.
//* THIS INCLUDE GROUP IS CATALOGED AS...
//* LAMAN.SYSOUT.JCL(SYSOUT2)
//SYSOUT2 DD SYSOUT=A
//OUT1 OUTPUT DEST=POK,COPIES=3
//OUT2 OUTPUT DEST=&AA,COPIES=&NC
//OUT3 OUTPUT DEST=&BB,COPIES=10
//* END OF INCLUDE GROUP...
//* LAMAN.SYSOUT.JCL(SYSOUT2)

The following program is executed.
//JOBA JOB ...
//LIBS JCLLIB ORDER=LAMAN.SYSOUT.JCL
//SET1 SET AA=KINGSTON,BB=STL,NC=10
//STEP1 EXEC PGM=OUTRTN
//OUTPUT1 INCLUDE MEMBER=SYSOUT2
//STEP2 EXEC PGM=IEFBR14

The SET statement, which is easy to change for different jobs, assigns values to
the symbolic parameters in INCLUDE group SYSOUT2.
After the system processes the INCLUDE statement, it executes the JCL stream
as:

INCLUDE

Chapter 19. INCLUDE statement 391

//JOBA JOB ...
//LIBS JCLLIB ORDER=LAMAN.SYSOUT.JCL
//STEP1 EXEC PGM=OUTRTN
//* THIS INCLUDE GROUP IS CATALOGED AS...
//* LAMAN.SYSOUT.JCL(SYSOUT2)
//SYSOUT2 DD SYSOUT=A
//OUT1 OUTPUT DEST=POK,COPIES=3
//OUT2 OUTPUT DEST=KINGSTON,COPIES=10
//OUT3 OUTPUT DEST=STL,COPIES=10
//* END OF INCLUDE GROUP...
//* LAMAN.SYSOUT.JCL(SYSOUT2)
//STEP2 EXEC PGM=IEFBR14

The system imbeds the INCLUDE group in the JCL stream (replacing the
INCLUDE statement), and assigns the values to the symbolic parameters in the
INCLUDE group.

3. The following example shows a JES instream data set within an INCLUDE
statement:
//INCLUDE MEMBER=HELLO
//STEPA EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD SYSOUT=A
//SYSUT1 DD DATA
HELLO WORLD
/*

INCLUDE

392 z/OS V2R1.0 MVS JCL Reference

Chapter 20. JCLLIB statement

Purpose: Use the JCLLIB statement to:
v Identify the names of the private libraries that the system uses for the job. The

system searches the libraries for:
– Procedures named on any EXEC statements
– Groups of JCL statements (called INCLUDE groups) named on any INCLUDE

statements.
v Identify the names of the system procedure libraries and installation-defined

procedure libraries that the system uses for the job.
v Identify the order in which the libraries are to be searched. The system searches

the libraries in the order in which you specify them on the JCLLIB statement,
prior to searching any unspecified default system procedure libraries.

The JCLLIB statement allows you to code and use procedures and INCLUDE
groups in a private library without the need to use system procedure libraries.

You can code only one JCLLIB statement per job.

Considerations for an APPC scheduling environment: In an APPC environment, see
the information about scheduler JCL for TP profiles in z/OS MVS Planning:
APPC/MVS Management.

Considerations for JES3: In a JES3 environment, the system on which the job is
submitted and/or converted must have access to any libraries named on the
JCLLIB statement.

Description

Syntax

//[name] JCLLIB [keyword-parameter]... [comments]

The JCLLIB statement consists of the characters // in columns 1 and 2 and four fields:
name, operation (JCLLIB), keyword parameter and comments.

Name field
A name is optional on a JCLLIB statement. If used, code it as follows:
v The name must begin in column 3.
v The name is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The name must be followed by at least one blank.
v The name may be preceded by up to 8 aphanumeric or national characters, and

then separated by a period. Coding the name in this way should not be
confused with specifying an override, as can be done when coding DD
statements.

© Copyright IBM Corp. 1988, 2013 393

If a name is not coded, column 3 must be blank.

Operation field
The operation field consists of the characters JCLLIB and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter field
The JCLLIB statement includes the following parameters:

ORDER=(library[,library...])
Specifies the names of the libraries to be searched. The maximum number of
libraries that may be specified is 15. You can specify private libraries, system
procedure libraries, and installation-defined procedure libraries. The system
searches the libraries in the order in which you specify them, before it searches
any unspecified default system procedure libraries. The ORDER parameter can
be specified only once.

Do not specify a library that is a temporary data set (&&dsname), partitioned
data set if a member name is included, or relative generation number for a
GDG.

Note: GDGs are not supported.

If only one library is listed in the search order, the parentheses are optional.
For example:

//MYLIB JCLLIB ORDER=MY.PROC1

Library names can be enclosed in apostrophes, for example:
//MYLIB JCLLIB ORDER=(’MY.PROC1’,’MY.PROC2’)

You can continue the list of libraries to the following statement by breaking the
statement after a comma in the list, and continuing the list on the next
statement, beginning in any column from 4 to 16. For example:

//MYLIB JCLLIB ORDER=(MY.PROC1,MY.PROC2,
// MY.PROC3)

You can continue a parameter enclosed in quotation marks by breaking the
parameter in column 71 and continuing the parameter in column 16 of the next
statement.

column 71
|

//MYLIB JCLLIB ORDER=(’MY.PROC1’,’MY.PROC2’,’MY.PROC3’,’MY.PROC4’,’MY
// .PROC5’)

|
column 16

PROCLIB=ddname
Requests a JES2 procedure library by its DDname, as defined in the JES2
procedure used to initialize JES2 in the JES2 environment.

JES2 procedure libraries are defined by:
v DD statements in the JES2 procedure used to initialize JES2
v PROCLIB definitions in the JES2 initialization file (HASPPARM)
v PROCLIB definitions added by the $ADD PROCLIB command

Typically, JES2 procedure library DDnames in the JES2 procedure are in the
format PROCnn, where nn is either 00 or 1 or 2 decimal numbers 1-99.
However, you can use any valid DDname as long as the name matches the

JCLLIB

394 z/OS V2R1.0 MVS JCL Reference

DDname in the JES2 procedure or is specified in PROCLIB definitions. The
system retrieves called cataloged procedures from the requested JES2
procedure library.

If you omit the PROCLIB parameter, or the DDname cannot be found in the
procedure that started JES2, or the DDNAME cannot be found in any
PROCLIB definitions, JES2 uses the procedure library specified on the
PROC=nn parameter for one of the following JES2 initialization statements:

JOBCLASS(v)
for each job class.

JOBCLASS(STC)
for all started tasks.

JOBCLASS(TSU)
for all time-sharing tasks.

If the PROC=nn parameter is not defined on the appropriate initialization
statement, or if it is not valid, JES2 uses the default library, PROC00. See z/OS
JES2 Initialization and Tuning Guide. for information about creating the JES2
cataloged procedure and z/OS JES2 Initialization and Tuning Reference for
information about defining JES2 initialization statements.

Comments field
The comments field follows the parameter field after at least one intervening blank.

Location in the JCL
A JCLLIB statement:
v Must appear after the JOB statement and before the first EXEC statement in the

job.
v Must appear before any INCLUDE statement.
v Must not appear within an INCLUDE group.

Considerations for using the JCLLIB statement
You can specify only one JCLLIB statement in a job.

The system and private libraries that you specify on the JCLLIB statement can
contain both procedures and INCLUDE groups.

The private libraries that you specify on the JCLLIB statement must comply with
the following rules:
v The private library must be cataloged.
v The private library must be accessible to the job. The library must be

permanently resident and online.
v The JCLLIB data set cannot be a password-protected data set.
v The job must have read access to any system or private libraries specified on

JCLLIB.
v The private library must have the same data set attributes as a system library,

which are:
– Logical record length of 80 bytes (LRECL=80)
– Fixed length records (RECFM=F or RECFM=FB). If the JCLLIB data set is a

PDSE, the record format can only be RECFM=FB.

JCLLIB

Chapter 20. JCLLIB statement 395

– When multiple libraries are specified on the JCLLIB statement, these libraries
will be concatenated.

Examples of the JCLLIB statement

Note: For each example, assume that the system default procedure library includes
SYS1.PROCLIB only. If you do not specify the JCLLIB statement, then the system
searches only SYS1.PROCLIB. (“Using a procedure” on page 28 describes how the
system determines the default procedure library.)

Example 1:
//MYJOB1 JOB ...
//MYLIBS1 JCLLIB ORDER=CAMPBEL.PROCS.JCL
//S1 EXEC PROC=MYPROC1

.

.

The system searches the libraries for procedure MYPROC1 in the following order:
1. CAMPBEL.PROCS.JCL
2. SYS1.PROCLIB

Example 2:
//MYJOB2 JOB ...
//MYLIBS2 JCLLIB ORDER=(CAMPBEL.PROCS.JCL,PUCHKOF.PROCS.JCL,
// YUILL.PROCS.JCL,GARY.PROCS.JCL)
//S2 EXEC PROC=MYPROC2

.

.
//INC2 INCLUDE MEMBER=MYINC2

.

.

The system searches the libraries for procedure MYPROC2 and INCLUDE group
MYINC2 in the following order:
1. CAMPBEL.PROCS.JCL
2. PUCHKOF.PROCS.JCL
3. YUILL.PROCS.JCL
4. GARY.PROCS.JCL
5. SYS1.PROCLIB

Example 3: You can specify a system procedure library.
//MYJOB3 JOB ...
//MYLIBS3 JCLLIB ORDER=(SYS1.PROCLIB,CAMPBEL.PROCS.JCL)
//S3 EXEC PROC=MYPROC3

.

.

The system searches the libraries for procedure MYPROC3 in the following order:
1. SYS1.PROCLIB
2. CAMPBEL.PROCS.JCL
3. SYS1.PROCLIB (the system default procedure library is searched again)

JCLLIB

396 z/OS V2R1.0 MVS JCL Reference

Chapter 21. JOB statement

Purpose: Use the JOB statement to mark the beginning of a job and to tell the
system how to process the job. Also, when jobs are stacked in the input stream, the
JOB statement marks the end of the preceding job.

Note: The JOB statement can be specified in source JCL for started tasks. For more
information, refer to Chapter 7, “Started tasks,” on page 59.

The parameters you can specify for job processing are arranged alphabetically in
the following sections.

References: For information about the JES initialization parameters that provide
installation defaults, see z/OS JES2 Initialization and Tuning Reference and z/OS JES3
Initialization and Tuning Reference.

Description

Syntax

//jobname JOB positional-parameters[,keyword-parameter]... [comments]

//jobname JOB

The JOB statement consists of the characters // in columns 1 and 2 and four fields: name,
operation (JOB), parameter, and comments. Do not code comments if the parameter field is
blank.

A JOB statement is required for each job.

Name field
Code a jobname on every JOB statement, as follows:
v Each jobname must be unique.
v The jobname must begin in column 3.
v The jobname is 1 through 8 alphanumeric or national ($, #, @) characters. If your

system uses ANSI tapes, the jobname must contain only alphanumeric
characters; it must not contain national ($, #, @) characters.

v The first character must be alphabetic or national ($, #, @).
v The jobname must be followed by at least one blank.
v For the job types TSO logon and batch processing, the jobname must be unique,

otherwise:
– For TSO logon, duplicate jobnames fail. For example, if IBMUSER is logged

on, another attempt to logon as IBMUSER will fail.
– For batch processing, duplicate jobnames are delayed. For example, if job

BATCH01 is executing, then another job named BATCH01 will be delayed
until the original job has completed. However, in JES2 it depends on the
parameter DUPL_JOB=DELAY or NODELAY on JOBCLASS.

© Copyright IBM Corp. 1988, 2013 397

Operation field
The operation field consists of the characters JOB and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter field
A JOB statement has two kinds of parameters: positional and keyword. All
parameters are optional; however, your installation may require the accounting
information parameter and the programmer’s name parameter.

Note: The following parameters are not supported on the JOB statement for a
started task:
v CLASS *
v GROUP
v PASSWORD
v RD *
v RESTART
v SCHENV
v SYSTEM
v SYSAFF
v SECLABEL
v TYPRUN
v USER

An asterisk indicates that the parameter will be ignored. The other parameters
listed result in a JCL error and job failure.

If JES detects an error in any parameter on the JOB statement, the error causes a
JCL error and a job failure; the system flushes all subsequent JCL statements,
including any SYSOUT-specific DD statements directing output to any other class
or destination.

Positional Parameters: A JOB statement can contain two positional parameters.
They must precede all keyword parameters. You must code the accounting
parameter first, followed by the programmer’s name parameter.

POSITIONAL PARAMETERS VALUES PURPOSE

([account-number]
[,accounting-information]...)

See section “Accounting
information parameter” on page
403

account-number

,accounting-
information: up to 143
characters

Specifies an account number
and other accounting
information, formatted as
required by the installation.
This parameter may be
required by the installation.

programmer’s-name

See section “Programmer’s name
parameter” on page 434

programmer’s-name:
1 - 20 characters

Identifies the owner of the
job. This parameter may be
required by the installation.

Keyword Parameters: A JOB statement can contain the following keyword
parameters. You can code any of the keyword parameters in any order in the
parameter field after the positional parameters.

JOB

398 z/OS V2R1.0 MVS JCL Reference

Table 24. JOB statement keyword parameters

KEYWORD PARAMETERS VALUES PURPOSE

ADDRSPC= {VIRT}
{REAL}

See section “ADDRSPC parameter” on page 406

VIRT: virtual (pageable) storage

REAL: central (nonpageable) storage

Indicates the type of storage
required for the job.

BYTES={nnnnnn }
{([nnnnnn][,CANCEL]) }
{([nnnnnn][,DUMP]) }
{([nnnnnn][,WARNING])}

See section “BYTES parameter” on page 407

nnnnnn: 0 - 999999 Indicates the maximum
amount of output to be
printed for the job's sysout
data sets, in thousands of
bytes, and the action the
system is to take if the
maximum is exceeded.

CARDS={nnnnnnnn }
{([nnnnnnnn][,CANCEL]) }
{([nnnnnnnn][,DUMP]) }
{([nnnnnnnn][,WARNING])}

See section “CARDS parameter” on page 409

nnnnnnnn: 0 - 99999999 Indicates the maximum
amount of output, in cards,
to be punched for the job's
sysout data sets, and the
action the system is to take
if the maximum is
exceeded.

CCSID=nnnnn nnnnn: 1 - 65535 Specifies the coded
character set identifier
indicating the character
code conversion performed
on reads from and writes to
tapes accessed in ISO/ANSI
Version 4 format.

CLASS=jobclass

See section “CLASS parameter” on page 412

jobclass: 1-8 characters: A - Z, 0 - 9, and
some special characters: see
“Subparameter definition” on page 413.

In a non-APPC scheduling
environment, assigns the job
to a job class.

COND=((code,operator)[,(code,operator)]...)

See section “COND parameter” on page 413

code: 0 - 4095

operator: GT Code from
GE chart on
EQ section

Table 25 on page 415
LT
LE
NE

Specifies the return code
tests used to determine
whether a job will continue
processing or be terminated.

GROUP=group-name

See section “GROUP parameter” on page 417

group-name: 1 - 8 alphanumeric or
national characters ($, #, @)

In a non-APPC scheduling
environment, identifies a
group to which a
RACF-defined user is to be
connected.

JESLOG= {SPIN}
{NOSPIN}
{SUPPRESS}

See section “JESLOG parameter” on page 418

SPIN: JESLOG is spin-eligible. There is an
optional second operand that specifies the
time or the time interval.

NOSPIN: JESLOG will not be spun.

SUPPRESS: JESLOG will be suppressed.

Has meaning when the
subsystem is a version of
JES2 or JES3 that supports
this function. It specifies
whether the JESLOG data
set should be spin-eligible
and if it should be
automatically spun at a
particular time or time
interval.

JOB

Chapter 21. JOB statement 399

|
|
|

Table 24. JOB statement keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

JOBRC= {MAXRC}
{LASTRC}
{(STEP,stepname[.procstepname]}

See section “JOBRC parameter” on page 420

MAXRC: The job completion code is set to
the highest return code of any step in the
job, or if the completion of the job fails
because of an ABEND, the job completion
code is set to the last ABEND code; this is
the default parameter.

LASTRC : The job completion code is set
to the return code or ABEND code of the
last step that is executed in the job.

(STEP,stepname[.procstepname]): The job
completion code is set to the return code
or ABEND code of the step that is
indicated by the stepname.[.procstepname]
parameter. If this step does not exist, a
JCL error is generated. If this step does
not run, the processing is the same as if
MAXRC is specified.

stepname: the name of the job step.

procstepname]: the name of the job step
within the procedure.

Use the JOBRC parameter
to control how the job
completion code (presented
by JES2 or JES3) is set. By
default (when JOBRC is not
specified), the job
completion code is set to
the highest return code of
any step, or if the job's
execution fails because of
an ABEND, the job
completion code is set to
the last ABEND code;
however, this parameter can
be used to request that the
job completion code be set
to the return code of the
last executed step or a
particular step that more
accurately reflects the
success or failure of the job.

LINES={nnnnnn }
{([nnnnnn][,CANCEL]) }
{([nnnnnn][,DUMP]) }
{([nnnnnn][,WARNING])}

See section “LINES parameter” on page 421

nnnnnn: 0 - 999999 Indicates the maximum
amount of output to be
printed for the job's sysout
data sets, in thousands of
lines, and the action the
system is to take if the
maximum is exceeded.

MEMLIMIT={nnnnnM}
{nnnnnG}
{nnnnnT}
{nnnnnP}
{NOLIMIT}

See section “MEMLIMIT parameter” on page 422

nnnnn: 0 - 99999 Specifies the limit on the
total number of usable
virtual pages above the bar
for a single address space.

MSGCLASS=class

See section “MSGCLASS parameter” on page 424

class: A - Z, 0 - 9 In a non-APPC scheduling
environment, assigns the job
log to an output class.

MSGLEVEL=([statements][,messages])

See section “MSGLEVEL parameter” on page 425

statements:

0 Only JOB statement

1 All JCL and procedure
statements

2 Only JCL statements

messages:

0 Only JCL messages

1 JCL, JES, and operator messages

Indicates the job control
information to be printed in
the job log.

NOTIFY={nodename.userid}
{userid }

See section “NOTIFY parameter” on page 427

nodename: 1 - 8 alphanumeric or national
characters ($, #, @)

userid: 1 - 8 alphanumeric or national
characters ($, #, @), 1 - 7 alphanumeric or
national characters ($, #, @) when userid
specified without nodename

In a non-APPC scheduling
environment, requests that
the system send a message
to a userid when this
background job completes.

JOB

400 z/OS V2R1.0 MVS JCL Reference

Table 24. JOB statement keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

PAGES={nnnnnnnn }
{([nnnnnnnn][,CANCEL]) }
{([nnnnnnnn][,DUMP]) }
{([nnnnnnnn][,WARNING])}

See section “PAGES parameter” on page 429

nnnnnnnn: 0 - 99999999 Indicates the maximum
amount of output, in pages,
to print for the job's sysout
data sets, and the action the
system is to take if the
maximum is exceeded.

PASSWORD=(password[,new-password])

See section “PASSWORD parameter” on page 430

password or new-password: 1 - 8
alphanumeric or national characters ($, #,
@)

In a non-APPC scheduling
environment, identifies the
current RACF password or
specifies a new RACF
password.

PERFORM=n

See section “PERFORM parameter” on page 432

n: 1 - 999 In WLM compatibility
mode (not available on
z/OS V1R3 or later
systems), specifies the job’s
performance group.

In WLM goal mode, can be
used for classification of the
job to a service class or
report class.

PRTY=priority

See section “PRTY parameter” on page 435

priority (JES2): 0 - 15 priority (JES3): 0 - 14 In a non-APPC scheduling
environment, JES2: Assigns
the job’s queue selection
priority. JES3: Assigns the
job’s initiation or selection
priority in its job class.

RD= {R }
{RNC}
{NR }
{NC }

See section “RD parameter” on page 436

R: restart, checkpoints allowed
RNC: restart, no checkpoints
NR: no restart, checkpoints allowed
NC: no restart, no checkpoints

In a non-APPC scheduling
environment, indicates
whether the operator
should perform automatic
step restart, if the job fails,
and controls whether
checkpoints are written for
CHKPT macros or DD
statement CHKPT
parameters.

REGION= {valueK}
{valueM}

See section “REGION parameter” on page 439

valueK: 1 - 7 digits
from 1 - 2096128

valueM: 1 - 4 digits
from 1 - 2047

Specifies the amount of
space in kilobytes or
megabytes required by the
job.

RESTART= ({* } [,checkid])
{stepname }
{stepname.procstepname}

See section “RESTART parameter” on page 441

*: at first step
stepname: at named step
procstepname: step is in named

procedure
checkid: at checkpoint in first or

named step

In a non-APPC scheduling
environment, specifies
restart of a job at the
beginning of a step or from
a checkpoint within a step.

SECLABEL=seclabel-name

See section “SECLABEL parameter” on page 444

seclabel-name: 1 - 8 alphanumeric or $, #,
@, characters

In a non-APPC scheduling
environment, identifies the
security label of the job to
RACF.

SCHENV=schenv-name

See section “SCHENV parameter” on page 445

schenv-name: 1 - 16 alphanumeric or $, #,
@, _ characters

In a non-APPC scheduling
environment, identifies the
name of the WLM
scheduling environment
associated with this job.

JOB

Chapter 21. JOB statement 401

Table 24. JOB statement keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

SYSAFF={MemberName}
{(MemberName,MemberName,...,MemberName)}
{(-MemberName,MemberName,...,MemberName)}
{-MemberName}
{(MemberName,...,IND)}
{(-MemberName,...,IND)}
{ANY}
{(ANY,IND)}

Specifies 1-33 JES2 member and JES3
system names. Each is a 1-4 character
name. A value of * (asterisk character)
indicates the submitting system. A value
of IND indicates that the job must run on
a member in independent mode.

Specifies 1-33 JES2 members
and JES3 systems that are
eligible to process the job.

SYSTEM={SystemName}
{(SystemName,SystemName,...,SystemName)}
{(-SystemName,SystemName, ...,SystemName)}
{-SystemName}
{ANY}
{JGLOBAL}
{JLOCAL}}
{JLOCAL}

Specifies 1-32 system names. Each is a 1-8
character valid system name. A value of *
(asterisk character) indicates the
submitting system.

Specifies 1-32 systems that
are eligible to process the
job.

TIME= {([minutes][,seconds])}
{1440 }
{NOLIMIT }
{MAXIMUM }

See section “TIME parameter” on page 450

minutes: 1 - 357912

seconds: 1 - 59

1440: Specifies that the job can use the
processor for an unlimited amount of
time.

NOLIMIT: Specifies that the job can use
the processor for an unlimited amount of
time.

MAXIMUM: Specifies that the job can use
the processor for the maximum amount of
time, 357912 minutes.

Specifies the maximum time
the job is to use the
processor and requests
messages giving the time
used.

TYPRUN= {COPY }
{HOLD }
{JCLHOLD}
{SCAN }

See section “TYPRUN parameter” on page 453

COPY: copies job stream to sysout
data set (JES2 only)
HOLD: holds job
JCLHOLD: holds job before JCL
processing (JES2 only)
SCAN: scans JCL for syntax errors

In a non-APPC scheduling
environment, requests
special job processing.

USER=userid

See section “USER parameter” on page 456

userid: 1 - 7 alphanumeric or $, #, @
characters

In a non-APPC scheduling
environment, identifies the
job’s owner to RACF, SRM,
and other system
components.

Comments field
The comments field follows the parameter field after at least one intervening blank
space. If you do not code any parameters on a JOB statement, do not code any
comments. In a Started Job case, the comment can be parsed out of the job
statement as part of JCL merge processing between the JCL that was created by the
START command and any input JOB statement that was supplied (IEFJOBS or
IEFPDSI DD).

Location in the JCL
A JOB statement must be the first statement in each job. JOB statements never
appear in cataloged or in-stream procedures.

Examples of JOB statements
//ALPHA JOB 843,LINLEE,CLASS=F,MSGCLASS=A,MSGLEVEL=(1,1)
//LOS JOB ,’J M BUSKIRK’,TIME=(4,30),MSGCLASS=H,MSGLEVEL=(2,0)
//MART JOB 1863,RESTART=STEP4 THIS IS THE THIRD JOB STATEMENT.

JOB

402 z/OS V2R1.0 MVS JCL Reference

//TRY8 JOB
//RACF1 JOB ’D83,123’,USER=RAC01,GROUP=A27,PASSWORD=XYY
//RUN1 JOB ’D8306P,D83,B1062J12,S=C’,’JUDY PERLMAN’,MSGCLASS=R,
// MSGLEVEL=(1,1),CLASS=3,NOTIFY=D83JCS1,
// COND=(8,LT)

Accounting information parameter
Parameter type

Positional, required (according to installation procedures)

Purpose

Use the accounting information parameter to enter an account number and any
other accounting information that your installation requires.

References

For more information on how to add accounting routines, see z/OS MVS System
Management Facilities (SMF).

Syntax

([account-number][,accounting-information]...)

Location: Code the accounting information parameter first in the parameter field.

Omission: If you omit the accounting information parameter but you are coding a
programmer’s name parameter, code a comma to indicate the omitted parameter. If you
omit both positional parameters, do not code any commas before the first keyword
parameter.

Length: The entire accounting information parameter must not exceed 143 characters:

v Including any commas, which are considered part of the information.

v Excluding any enclosing parentheses, which are not considered part of the information.

Multiple subparameters: When the accounting information parameter consists of more
than one subparameter, separate the subparameters by commas and enclose the parameter
in parentheses or apostrophes. For example, (5438,GROUP6) or '5438,GROUP6'. If you use
apostrophes, all information inside the apostrophes is considered one field.

Special characters: When a subparameter contains special characters, other than hyphens,
enclose it in apostrophes and the entire parameter in parentheses or enclose all of the
parameter in apostrophes. For example, (12A75,'DEPT/D58',706) or '12A75,DEPT/D58,706'.
Code each apostrophe or ampersand that is part of the accounting information as two
consecutive apostrophes or ampersands. For example, code DEPT'D58 as
(12A75,'DEPT''D58',706) or '12A75,DEPT''D58,706'. Code 34&251 as '34&&251'.

Continuation onto another statement: Enclose the accounting information parameter in
parentheses. End each statement with a comma after a complete subparameter. For
example:

//JOB1 JOB (12A75,’DEPT/D58’,
// 706)

JOB

Chapter 21. JOB statement 403

Subparameter definition
account-number

Specifies an accounting number, as defined by the installation.

accounting-information
Specifies more information, as defined by the installation. For example, your
department and room numbers.

Relationship to other control statements
If you are to provide accounting information for an individual step within a job,
code an ACCT parameter on the EXEC statement for that step.

JES2 accounting information format
Except for the first subparameter, the JES2 accounting information shown in the
syntax can, alternatively, appear on the JES2 /*JOBPARM statement. If you code
the accounting information parameter in the JES2 format, JES2 can interpret and
use it.

References: For a discussion of the JES2 scan of the accounting information
parameter, see z/OS JES2 Initialization and Tuning Guide.

Syntax

(pano,room,time,lines,cards,forms,copies,log,linect)

Code a comma in place of each omitted subparameter when other subparameters follow.

Subparameter definition:

pano
Specifies the programmer’s accounting number. pano is 1 through 4
alphanumeric characters.

room
Specifies the programmer’s room number. room is 1 through 4 alphanumeric
characters.

time
Specifies the estimated execution time in minutes. time is 1 through 4 decimal
numbers. For example, code 30 for 30 minutes. If you omit a time
subparameter and a TIME parameter on the JES2 /*JOBPARM statement, JES2
uses an installation default specified at initialization. If job execution exceeds
the time, JES2 sends a message to the operator.

lines
Specifies the estimated line count, in thousands of lines, from this job’s sysout
data sets. lines is 1 through 4 decimal numbers. For example, code 5 for 5000
lines. If you omit lines, JES2 uses an installation default specified at
initialization.

cards
Specifies the estimated number of cards JES2 is to punch from this job’s sysout
data sets. cards is 1 through 4 decimal numbers. If you omit cards, JES2 uses
an installation default specified at initialization.

JOB: Accounting Information

404 z/OS V2R1.0 MVS JCL Reference

forms
Specifies the forms that JES2 is to use for printing this job’s sysout data sets.
forms is 1 through 4 alphanumeric characters. For example, code 5 for 5-part
forms. If you omit forms, JES2 uses an installation default specified at
initialization.

copies
Specifies the number of times JES2 is to print and/or punch this job’s sysout
data sets. copies is 1 through 3 decimal numbers not exceeding an
installation-specified limit. The maximum is 255. For example, code 2 for two
copies. If you omit copies, JES2 assumes one copy.

The copies subparameter is ignored and only one copy is produced if the
output class for the job log, as specified in the JOB MSGCLASS parameter, or
the output class of any of the job’s system output data sets is a held class.

log
Specifies whether or not JES2 is to print the job log. Code N to request no job
log. If you code any other character or omit this subparameter, JES2 prints the
job log. If your installation specified NOLOG for this job’s class during JES2
initialization, JES2 will not print a job log.

linect
Specifies the number of lines JES2 is to print per page for this job’s sysout data
sets. linect is 1 through 3 decimal numbers. When you send a data set across a
network, linect cannot exceed 254. When you print the data set locally, linect
cannot exceed 255. If you omit linect, JES2 uses an installation default specified
at initialization. If you code a zero, JES2 does not eject to a new page when the
number of lines exceeds the installation default.

Invalid subparameters: Your installation can initialize JES2 to do one of the
following if the accounting information contains subparameters that are invalid to
JES2:
v Ignore the invalid subparameters.
v Terminate the job. In this case, JES2 requires the first two subparameters: pano

and room.

Overrides: A parameter on any of the following statements overrides an equivalent
accounting information subparameter on the JOB statement:
v JOB statement
v JES2 /*JOBPARM statement
v JES2 /*OUTPUT statement
v OUTPUT JCL statement
v DD statement

Examples of the accounting information parameter
Example 1
//JOB43 JOB D548-8686

Example 2
//JOB44 JOB (D548-8686,’12/8/85’,PGMBIN)

Because this statement contains an account-number plus additional
accounting-information, parentheses are required.

JOB: Accounting Information

Chapter 21. JOB statement 405

Example 3
//JOB45 JOB (CFH1,2G14,15,,,,2)

This statement shows a JES2 accounting information parameter: programmer’s
accounting number, CFH1; room number, 2G14; estimated job time, 15 minutes;
and copies, 2. Parentheses are required. Standard values are assumed for the other
JES2 subparameters.

ADDRSPC parameter
Parameter type

Keyword, optional

Purpose

Use the ADDRSPC parameter to indicate to the system that the job requires virtual
storage (which is pageable) or central storage (also called real storage, which is
nonpageable).

Syntax

ADDRSPC= {VIRT}
{REAL}

Subparameter definition
VIRT

Requests virtual storage. The system can page the job.

REAL
Requests central storage (also called real storage). The system cannot page the
job and must place each step of the job in central storage.

Defaults
If no ADDRSPC parameter is specified, the default is VIRT.

Overrides
The JOB statement ADDRSPC parameter applies to all steps of the job and
overrides any EXEC statement ADDRSPC parameters.

Code EXEC statement ADDRSPC parameters when each job step requires different
types of storage. The system uses an EXEC statement ADDRSPC parameter only
when no ADDRSPC parameter is on the JOB statement and only during the job
step.

Relationship to the JOB REGION parameter
When ADDRSPC=REAL: Code a REGION parameter to specify how much central
storage (also called real storage) the job needs. If you omit the REGION parameter,
the system uses an installation default specified at JES initialization.

JOB: Accounting Information

406 z/OS V2R1.0 MVS JCL Reference

When ADDRSPC=VIRT or ADDRSPC is Omitted: Code a REGION parameter to
specify how much virtual storage the job needs. If you omit the REGION
parameter, the system uses an installation default specified at JES initialization.

Examples of the ADDRSPC parameter
Example 1
//PEH JOB ,BAKER,ADDRSPC=VIRT

The ADDRSPC parameter requests virtual (pageable) storage. The space available
to the job is the installation-specified default.

Example 2
//DEB JOB ,ERIC,ADDRSPC=REAL,REGION=100K

The ADDRSPC parameter requests central (nonpageable) storage. The REGION
parameter specifies 100K of storage for the job.

BYTES parameter
Parameter type: Keyword, optional

Purpose: Use the BYTES parameter to:
v Indicate the maximum amount of output, in thousands of bytes, to be printed

for this job's sysout data sets
v Specify the action that the system is to take if the maximum is exceeded. You

can indicate that the job is to be cancelled with or without a dump, or that the
job is to continue and the system is to notify the operator that the maximum
was exceeded.

Syntax

BYTES={nnnnnn }
{([nnnnnn][,CANCEL]) }
{([nnnnnn][,DUMP]) }
{([nnnnnn][,WARNING])}

Subparameter definition
nnnnnn

Indicates the maximum amount of output to be printed for this job, in
thousands of bytes. An nnnnnn value of 500 represents 500,000 bytes. The
value for nnnnnn is 0 through 999999.

In a JES2 system, a value of 0 for nnnnnn will produce an amount of output
that is based on the record blocking factor. When the system recognizes that
the 0 value has been exceeded, one of the following will get control:
v The CANCEL, DUMP, or WARNING option (if coded)
v The installation exit.

In a JES3 system, a value of 0 for nnnnnn will cause JES3 to use the system
default defined at initialization.

JOB: ADDRSPC

Chapter 21. JOB statement 407

CANCEL
Indicates that the system is to cancel the job without dumping storage when
the output for the job exceeds the maximum.

DUMP
Indicates that the system is to cancel the job when the output for the job
exceeds the maximum, and requests a storage dump.

WARNING
Indicates that the job is to continue, and the system is to send a message to the
operator, when the output for the job exceeds the maximum. The system issues
subsequent warning messages at an interval defined by the installation.

Defaults
If you do not code the BYTES parameter, the system uses the installation-defined
default value.

If you do not code nnnnnn, the system uses an installation-defined limit.

If you do not code CANCEL, DUMP, or WARNING, the system uses the
installation-defined default option.

Overrides
Specifying BYTES on the JOB statement overrides BYTES on the JES2 /*JOBPARM
statement, the JES3 //*MAIN statement, and the installation-defined default.

Relationship to other parameters
In addition to BYTES, the following parameters also limit the amount of output for
a job:
v CARDS
v LINES
v PAGES

If the job's output exceeds the limits defined by any of these parameters, the
system might cancel the job. When coding BYTES, determine whether the values
coded on these related parameters are sufficient to produce the output you require.

Relationship to other control statements
The OUTLIM parameter of the DD statement controls the number of logical
records in the sysout data set defined by that DD statement. If the sysout limit
defined on the BYTES parameter is exceeded before the limit defined on OUTLIM,
the system will take the action defined on BYTES. If the sysout limit defined on
the OUTLIM parameter is exceeded before the limit defined on BYTES, the system
exits to the sysout limit exit routine.

Examples of the BYTES parameter
Example 1
//JOB1 JOB (123456),’R F B’,BYTES=(500,CANCEL)

In this example, the job JOB1 will be cancelled when its output exceeds 500
thousand bytes. The system will not produce a storage dump.

Example 2

JOB: BYTES

408 z/OS V2R1.0 MVS JCL Reference

//JOB2 JOB (123456),’R F B’,BYTES=40

In this example, when the output for JOB2 exceeds 40 thousand bytes, the
installation default determines whether the job is
v Cancelled, and a dump is requested
v Cancelled, and no dump is requested
v Allowed to continue, with a warning message issued to the operator.

CARDS parameter
Parameter type: Keyword, optional

Purpose: Use the CARDS parameter to:
v Indicate the maximum amount of output, in cards, to be punched for this job's

sysout data sets
v Specify the action that the system is to take if the maximum is exceeded. You

can indicate that the job is to be cancelled with or without a dump, or that the
job is to continue and the system is to notify the operator that the maximum
was exceeded.

Syntax

CARDS={nnnnnnnn }
{([nnnnnnnn][,CANCEL]) }
{([nnnnnnnn][,DUMP]) }
{([nnnnnnnn][,WARNING])}

Subparameter definition
nnnnnnnn

Indicates the maximum number of sysout output cards to be punched for this
job. For JES2 systems, nnnnnnnn is a value from 0 to 99999999. For JES3
systems, nnnnnnnn is a value from 0 through 6500000. If you specify a value
greater than 6500000 in a JES3 system, it will be treated as 6500000.

In a JES2 system, a value of 0 for nnnnnnnn will produce an amount of output
that is based on the record blocking factor. When the system recognizes that
the 0 value has been exceeded, one of the following will get control:
v The CANCEL, DUMP, or WARNING option (if coded)
v The installation exit.

In a JES3 system, a value of 0 for nnnnnnnn will produce no output.

CANCEL
Indicates that the system is to cancel the job without dumping storage when
the output for the job exceeds the maximum.

DUMP
Indicates that the system is to cancel the job when the output for the job
exceeds the maximum, and requests a storage dump.

WARNING
Indicates that the job is to continue, and the system is to send a message to the
operator, when the output for the job exceeds the maximum. The system issues
subsequent warning messages at an interval defined by the installation.

JOB: BYTES

Chapter 21. JOB statement 409

Defaults
If you do not code the CARDS parameter, the system uses the installation-defined
default value.

If you do not code nnnnnnnn, the system uses an installation-defined limit.

If you do not code CANCEL, DUMP, or WARNING, the system uses the
installation-defined default option.

Overrides
Specifying CARDS on the JOB statement overrides CARDS on the JES2
/*JOBPARM statement, the JES3 //*MAIN statement, the JES2 accounting
subparameter for cards on the JOB statement, and the installation-defined default.

Relationship to other parameters
In addition to CARDS, the following JOB statement parameters also limit the
amount of output for a job.
v BYTES
v LINES
v PAGES

If the job's output exceeds the limits defined by any of these parameters, the
system might cancel the job. When coding CARDS, determine whether the values
coded on these related parameters are sufficient to produce the output you require.

Relationship to other control statements
The OUTLIM parameter of the DD statement controls the number of logical
records in the sysout data set defined by that DD statement. If the sysout limit
defined on the CARDS parameter is exceeded before the limit defined on OUTLIM,
the system will take the action defined on CARDS. If the sysout limit defined on
the OUTLIM parameter is exceeded before the limit defined on CARDS, the system
exits to the sysout limit exit routine.

Examples of the CARDS parameter
Example 1
//JOB1 JOB (123456),’R F B’,CARDS=(500,CANCEL)

In this example, the job JOB1 will be cancelled when its output exceeds 500 cards.
The system will not produce a storage dump.

Example 2
//JOB2 JOB (123456),’R F B’,CARDS=4000

In this example, when the output for JOB2 exceeds 4000 cards of output, the
installation default determines whether the job is
v Cancelled, and a dump is requested
v Cancelled, and no dump is requested
v Allowed to continue, with a warning message issued to the operator.

JOB: CARDS

410 z/OS V2R1.0 MVS JCL Reference

CCSID parameter
Parameter type

Keyword, optional

Purpose

You can request the access method to convert data between the coded character set
identifier (CCSID) specified on the JOB or EXEC statement and the CCSID
specified on the DD statement. Data conversion is supported on access to
ISO/ANSI Version 4 tapes using access methods BSAM or QSAM, but not using
EXCP.

ISO/ANSI tapes are identified by the LABEL=(,AL) or LABEL=(,AUL) keyword.
The CCSID parameter does not apply to ISO/ANSI Version 1 or ISO/ANSI/FIPS
Version 3 tapes or to tapes with labels other than AL or AUL. See z/OS DFSMS
Using Data Setsfor selecting ISO/ANSI Version 4 tapes. It also contains a list of
supported CCSIDs.

The CCSID value of 65535 has a special meaning: it suppresses conversion.

When CCSID is not specified at the JOB, EXEC, or DD levels, data passed to
BSAM and QSAM is converted to 7-bit ASCII when writing to ISO/ANSI tapes.
This might result in data loss on conversion. On READ operations the CCSID (if
recorded) on the tape header label is used for conversion.

The CCSID is recorded in the tape header label if conversion is not defaulted.

Syntax

CCSID= nnnnn

Subparameter definition
nnnnn

The CCSID as a decimal number from 1 through 65535.

Default
500.

Overrides
The CCSID parameter specified on the JOB statement can be overridden by
specifying the CCSID parameter on the EXEC statement.

Relationship to other parameters
Do not code the following parameters with the CCSID parameter:

* DDNAME QNAME
BURST DYNAM SYSOUT
CHARS FCB TERM
COPIES FLASH UCS
DATA MODIFY

JOB: CCSID

Chapter 21. JOB statement 411

Examples of the CCSID parameter
For examples of the CCSID parameter, see “CCSID parameter” on page 119.

CLASS parameter
Parameter type

Keyword, optional

Purpose

Use the CLASS parameter to assign the job to a class. The class you should request
depends on the characteristics of the job and your installation’s rules for assigning
classes.

Note: The CLASS parameter is ignored for a started task in a JES2 environment.
For a started task in a JES3 environment all class related attributes and functions
are ignored except device fencing, SPOOL partitioning, and track group allocation.
Refer to the z/OS JES3 Initialization and Tuning Guide for more information about
class attributes and functions.

In a JES2 system, the assigned job class can affect whether or how a job is
executed. A job class can be defined during JES2 initialization as:
v Held. The system holds any job assigned to this class until the operator releases

it.
v To be copied only. The system copies the input stream for the job directly to a

sysout data set and schedules the sysout data set for output processing. The
system does not execute the job or allocate devices.

v To be scanned for job control statement syntax errors. The system does not
execute the job or allocate devices.

In a JES2 system, there are a number of factors that determine the order in which a
particular job is selected for execution. Therefore, you cannot be assured that job
priority (based on the PRTY you assign a job), job class, or the order of job
submission will guarantee that the jobs will execute in a particular order. If you
need to submit jobs in a specific order, contact your JES2 system programmer for
advice based on how your system honors such requests. (z/OS JES2 Initialization
and Tuning Guide provides JES2 system programmer procedures concerning job
queuing and how to control job execution sequence.)

Considerations for an APPC scheduling environment

The CLASS parameter has no function in an APPC scheduling environment. If you
code CLASS, the system will check it for syntax and ignore it.

Syntax

CLASS=jobclass

v The CLASS parameter cannot have a null value.

JOB: CCSID

412 z/OS V2R1.0 MVS JCL Reference

Subparameter definition
jobclass

Identifies the class for the job. The jobclass value is 1-8 characters. The jobclass
must be a valid class specified at JES initialization.

Defaults
If you do not specify the CLASS keyword, JES uses the installation default
specified at initialization, as follows:
v In a JES2 system, the default is based on the source of the job: The system makes

the job’s class the same as the installation-specified default class for the
particular card reader, work station, or time-sharing user that submitted the job.

v In a JES3 system, the default is an installation-defined standard default class.

Overrides
A JES3 //*MAIN statement CLASS parameter overrides a JOB statement CLASS
parameter.

Relationship to other control statements
In JES3 systems, you can also code a CLASS parameter on a JES3 //*MAIN
statement.

Example of the CLASS parameter
//SETUP JOB 1249,SMITH,CLASS=M

This statement assigns the job to class M.

COND parameter
Parameter type

Keyword, optional

Purpose

Use the COND parameter to specify the return code tests the system uses to
determine whether a job will continue processing. Before and after each job step is
executed, the system performs the COND parameter tests against the return codes
from completed job steps. If none of these tests is satisfied, the system executes the
job step; if any test is satisfied, the system bypasses all remaining job steps and
terminates the job.

The tests are made against return codes from the current execution of the job. A
step bypassed because of an EXEC statement COND parameter does not produce a
return code.

Bypassing a step because of a return code test is not the same as abnormally
terminating the step. The system abnormally terminates a step following an error
so serious that it prevents successful execution. In contrast, bypassing of a step is
merely its omission.

Note: In both JES2 and JES3 systems, a JOB COND parameter determines if steps
are executed or bypassed. However, JES3 processes all jobs as though each step
will execute; therefore, JES3 allocates devices for steps that are bypassed.

JOB: CLASS

Chapter 21. JOB statement 413

Depending on the program invoked, a test showing that a return code from a step
is zero is not sufficient to verify that the step did not fail. The system can fail a
step (or job) even if the return code is zero. For example, this could happen as a
result of specifying CATLG_ERR FAILJOB(YES) and incurring a "post execution
error." To determine if a step failed due to a "post execution error", the SMF type
30, sub-type 4 record for the job step can be examined. In this record, bit
SMF30SYE in the two-byte SMF30STI field will be on if the job failed due to a
"post execution error."

Syntax

COND=(code,operator)
COND=((code,operator)[,(code,operator)]...)

v One return code test is: (code,operator)

v You can omit the outer parentheses if you code only one return code test.

v Specify up to eight return code tests for a job.

v The COND parameter cannot have a null value.

Subparameter definition
code

Specifies a number that the system compares to the return code from each job
step. code is a decimal number from 0 through 4095.

Note: Specifying a decimal number greater than 4095 could result in invalid
return code testing or invalid return codes in messages.

operator
Specifies the type of comparison to be made to the return code. If the specified
test is true, the system bypasses all remaining job steps. Use the chart on this
page to select the correct operator. Operators and their meanings are:

Operator Meaning

GT Greater than

GE Greater than or equal to

EQ Equal to

LT Less than

LE Less than or equal to

NE Not equal to

Overrides
If you code the COND parameter on the JOB statement and on one or more of the
job’s EXEC statements, and if a return code test on the JOB statement is satisfied,
the job terminates. In this case, the system ignores any EXEC statement COND
parameters.

If the tests on the JOB statement are not satisfied, the system then performs the
return code tests on the EXEC statement. If an EXEC return code test is satisfied,
the step is bypassed.

JOB: COND

414 z/OS V2R1.0 MVS JCL Reference

Summary of COND parameters
Table 25. Continuation or Termination of the Job Based on the COND Parameter

Test in the COND
parameter

Return Code (RC) from the just completed step

Continue job Terminate job

COND=(code,GT) RC >= code RC < code

COND=(code,GE) RC > code RC <= code

COND=(code,EQ) RC ¬= code RC = code

COND=(code,LT) RC <= code RC > code

COND=(code,LE) RC < code RC >= code

COND=(code,NE) RC = code RC ¬= code

Examples of the COND parameter
Example 1
//TYPE JOB (611,402),BOURNE,COND=(7,LT)

The COND parameter specifies that if 7 is less than the return code, the system
terminates the job. Any return code less than or equal to 7 allows the job to
continue.

Example 2
//TEST JOB 501,BAXTER,COND=((20,GE),(30,LT))

The COND parameter specifies that if 20 is greater than or equal to the return code
or if 30 is less than the return code, the system terminates the job. Any code of 21
through 30 allows the job to continue.

DSENQSHR parameter
Parameter type: Keyword, optional

Purpose: Indicates how the system will treat changes in data set disposition
between job steps.

When a step includes a DD with OLD, NEW or MOD on the DISP (disposition)
keyword, and a later step requests the same data set as SHR, this parameter
controls whether the system can change the serialization on the data set to shared
control, allowing other jobs to also share that data set.

Note: Only changes to SHR are honored. In addition, if the data set is requested as
OLD or MOD again later in the job, exclusive control will remain until only SHR
requests remain. This ensures that all updates to the data set are complete before
allowing other jobs to request the data.

Syntax

JOB ’programmer info’,DSENQSHR={DISALLOW|USEJC|ALLOW}

JOB: COND

Chapter 21. JOB statement 415

Subparameter definition
DISALLOW

The system is not allowed to change the serialization on the data set to shared
control.

USEJC
The system may change the serialization on the data set to shared control
when the DSENQSHR parameter value for the JES jobclass is AUTO. When the
DSENQSHR JES jobclass parameter value is ALLOW or DISALLOW, the
system is not allowed to change the serialization of the data set.

ALLOW
The system may change the serialization on the data set to shared control
when the DSENQSHR parameter value for the JES jobclass is AUTO or
ALLOW. When the DSENQSHR JES jobclass parameter value is DISALLOW,
the system is not allowed to change the serialization of the data set.

Defaults
USEJC

Overrides
A similar parameter for the JES JOBCLASS. If the JOBCLASS includes a
DSENQSHR parameter set to DISALLOW, the job specification will be ignored. A
job class with DSENQSHR set to AUTO or ALLOW must be used to exploit this
function.

Note: The DSENQSHR jobclass attribute is JES2-only. When using a JES3
environment, the DSENQSHR function is never active. Additionally, when GRS is
in RING mode, the DSENQSHR function is disabled.

Table 26. JOBCLASS attribute for DSENQSHR

LANGUAGE JOBCLASS attribute for DSENQSHR

JCL

AUTO ALLOW DISALLOW

ALLOW yes yes no

USEJC yes no no

DISALLOW no no no

When yes is indicated, the system is allowed to change the data set serialization to
shared control and other jobs may share that data set with this job.

Relationship to other control statements
This keyword is related to the DISP parameter on DD statements within the job.

Examples of the DSENQSHR parameter
Example 1
//JOB1 JOB DSENQSHR=ALLOW

In this example, the JOB statement specifies that for any data set allocated for this
job, the serialization may be changed to shared control from exclusive control.
Whether the function is enabled depends on the DSENQSHR JES jobclass attribute
value.

Example 2

JOB: DSENQSHR

416 z/OS V2R1.0 MVS JCL Reference

//JOB2 JOB DSENQSHR=DISALLOW

In this example, the JOB statement specifies that for any data set allocated for this
job, the serialization may not be changed to shared control from exclusive control.

Example
//JOB3 JOB DSENQSHR=USEJC

In this example, the JOB statement specifies that for any data set allocated for this
job, the serialization may be changed to shared control from exclusive control.
Whether the function is enabled depends on the DSENQSHR JES jobclass attribute
value.

GROUP parameter
Parameter type

Keyword, optional

Note: Do not specify this parameter for a started task; if GROUP is specified, the
job will fail.

Purpose

Use the GROUP parameter to specify a RACF-defined group to which a
RACF-defined user is to be connected. RACF places each RACF-defined user in a
default group; the GROUP parameter is needed only to specify a group other than
a user’s default group.

If the installation contains the feature for propagation of the user and group
identification, the USER and PASSWORD parameters are required, and the GROUP
parameter is optional on JOB statements only for the following:
v Batch jobs submitted through an input stream, such as a card reader, if:

– the job requires access to RACF-protected resources, or
– the installation requires that all jobs have RACF identification.

v Jobs submitted by one RACF-defined user for another user. In this case, the JOB
statement must specify the other user’s userid and may need a password. The
group id is optional.

v Jobs that execute at another network node that uses RACF protection.

Otherwise, the USER, PASSWORD, and GROUP parameters can be omitted from
JOB statements. RACF uses the userid, password, and default group id of the
submitting TSO/E user or job.

References

For more information on RACF-protected facilities, see the z/OS Security Server
RACF Security Administrator's Guide.

Considerations for an APPC scheduling environment

The GROUP parameter has no function in an APPC scheduling environment. If
you code GROUP, the system will check it for syntax and ignore it.

JOB: DSENQSHR

Chapter 21. JOB statement 417

Syntax

GROUP=group-name

Subparameter definition
group-name

Identifies the group with which the system is to associate the user. group-name
is 1 through 8 alphanumeric or national ($, #, @) characters. The first character
must be alphabetic or national ($, #, @).

Defaults
If you do not code the GROUP parameter, but do code the USER and PASSWORD
parameters, the system assigns the RACF default group name associated with the
specified userid. However, the default group name is not passed to JES and thus is
not available to JES installation exits.

Example of the GROUP parameter
//TEST JOB ’D83,123456’,GROUP=MYGROUP,USER=MYNAME,PASSWORD=ABC

This statement requests that the system connect RACF-defined user MYNAME to
the group named MYGROUP for the duration of the job.

JESLOG parameter
Parameter type

Keyword, optional

Purpose

Use the JESLOG parameter to indicate whether the JESLOG data set should be
spin-eligible and if it should be automatically spun at a particular time or time
interval. JESLOG has meaning when the subsystem is a version of JES2 or JES3
that supports this function.

Syntax
JESLOG= {SPIN,’hh:mm’}

{SPIN,’+hh:mm’}
{SPIN,nnn}
{SPIN,nnnK}
{SPIN,nnnM}
{NOSPIN}
{SUPPRESS}

Subparameter definition
SPIN

JESLOG is spin-eligible. If you specify SPIN without the optional second
operand, the JESLOG data sets can be spun at any time during job execution
when a JES-specific operator command is issued. The optional second operand
is as follows:

JOB: GROUP

418 z/OS V2R1.0 MVS JCL Reference

|
|
|
|
|
|
|

JESLOG=(SPIN,'hh:mm')
JESLOG will be spun at time 'hh:mm' each 24 hour period. hh is hours and
has a range of 00 through 23. mm is minutes and has a range of 00 through
59.

Note:

1. The time must be specified within apostrophes.
2. JESLOG will be spun when the next message is written to the data set

after the specified time.

JESLOG=(SPIN,'+hh:mm')
JESLOG will be spun every 'hh:mm' time interval. hh is hours and has a
range of 00 through 23. mm is minutes and has a range of 00 through 59.
The minimum interval which can be specified is 10 minutes. hh must be
specified even if zero. For example, JESLOG=(SPIN,'+00:20') specifies that
JESLOG be spun at 20 minute intervals.

Note:

1. The time interval must be specified within apostrophes.
2. JESLOG will be spun when the next message is written to the data set

after the specified time interval has passed.

JESLOG=(SPIN,nnn)
JESLOG=(SPIN,nnnK)
JESLOG=(SPIN,nnnM)

JESLOG will be spun when either data set has n lines. A minimum of 500
lines must be specified. K is thousands and M is millions.

NOSPIN
JESLOG will not be spun.

SUPPRESS
JESLOG will be suppressed.

Defaults
If no JESLOG parameter is specified, the default is NOSPIN.

There is no default for the optional second operand. If you specify SPIN without
the second parameter, the JESLOG data sets can be spun at any time during job
execution when a JES-specific operator command is issued.

Examples of the JESLOG parameter
Example 1
//PEH JOB ,BAKER,JESLOG=(SPIN,’+08:00’)

The JESLOG parameter requests that JESLOG be spun every 8 hours.

Example 2
//DEB JOB ,ERIC,JESLOG=(SPIN,090K)

The JESLOG parameter requests that JESLOG be spun every 90,000 lines.

JOB: JESLOG

Chapter 21. JOB statement 419

JOBRC parameter
Parameter type

Keyword, optional

Purpose

Use the JOBRC parameter to control how the job completion code (presented by
JES2) is set.

Syntax

JOBRC= {MAXRC}
{LASTRC}
{(STEP,stepname[.procstepname]}

Subparameter definition
MAXRC

The job completion code is set to the highest return code of any step in the job,
or if the completion of the job fails because of an ABEND, the job completion
code is set to the last ABEND code. This is the default.

LASTRC

The job completion code is set to the return code or ABEND code of the last
step that is executed in the job.

(STEP,stepname[.procstepname])

The job completion code is set to the return code or ABEND code of the step
that is indicated by the stepname.[.procstepname] parameter. If there are
duplicate stepnames, than the last matching step is used. If this step does not
exist, a JCL error is generated. If this step does not execute, the processing is
the same as if MAXRC is specified. .

Defaults
If the whole parameter is not specified, then the JOBCLASS setting in jesparm is
used (either it's MACRC(=default) or LASTRC). If only the _subparameter_ is not
specified, MAXRC is used.

Overrides
None

Relationship to other control statements
None.

Examples of the JOBRC parameter
Example 1
JOBRC=LASTRC

This specification indicates to use the return code of the last executed step as the
completion code for the job.

JOB: JOBRC

420 z/OS V2R1.0 MVS JCL Reference

Example 2
JOBRC=(STEP,C.HLASM)

Use the return code for the C step in the HLASM procstepname as the completion
code for the job.

LINES parameter
Parameter type: Keyword, optional

Purpose: Use the LINES parameter to:
v Indicate the maximum amount of output, in thousands of lines, to be printed for

this job's sysout data sets
v Specify the action that the system is to take if the maximum is exceeded. You

can indicate that the job is to be cancelled with or without a dump, or that the
job is to continue and the system is to notify the operator that the maximum
was exceeded.

Syntax

LINES={nnnnnn }
{([nnnnnn][,CANCEL]) }
{([nnnnnn][,DUMP]) }
{([nnnnnn][,WARNING])}

Subparameter definition
nnnnnn

Indicates the maximum amount of output to be printed for this job, in
thousands of lines. An nnnnnn value of 500 represents 500,000 lines. The value
for nnnnnn is 0 through 999999.

In a JES2 system, a value of 0 for nnnnnn will produce an amount of output
that is based on the record blocking factor. When the system recognizes that
the 0 value has been exceeded, one of the following will get control:
v The CANCEL, DUMP, or WARNING option (if coded)
v The installation exit.

In a JES3 system, a value of 0 for nnnnnn produces no output.

CANCEL
Indicates that the system is to cancel the job without dumping storage when
the output for the job exceeds the maximum.

DUMP
Indicates that the system is to cancel the job when the output for the job
exceeds the maximum, and requests a storage dump.

WARNING
Indicates that the job is to continue, and the system is to send a message to the
operator, when the output for the job exceeds the maximum. The system issues
subsequent warning messages at an interval defined by the installation.

Defaults
If you do not code the LINES parameter, the system uses the installation-defined
default value.

JOB: JOBRC

Chapter 21. JOB statement 421

If you do not code nnnnnn, the system uses an installation-defined limit.

If you do not code CANCEL, DUMP, or WARNING, the system uses the
installation-defined default option.

Overrides
Specifying LINES on the JOB statement overrides LINES on the JES2 /*JOBPARM
statement, the JES3 //*MAIN statement, the JES2 accounting subparameter for
lines on the JOB statement, and the installation-defined default.

Relationship to other parameters
In addition to LINES, the following JOB statement parameters also limit the
amount of output for a job:
v BYTES
v CARDS
v PAGES

If the job's output exceeds the limits defined by any of these parameters, the
system might cancel the job. When coding LINES, determine whether the values
coded on these related parameters are sufficient to produce the output you require.

Relationship to other control statements
The OUTLIM parameter of the DD statement controls the number of logical
records in the sysout data set defined by that DD statement. If the sysout limit
defined on the LINES parameter is exceeded before the limit defined on OUTLIM,
the system will take the action defined on LINES. If the sysout limit defined on the
OUTLIM parameter is exceeded before the limit defined on LINES, the system
exits to the sysout limit exit routine.

Examples of the LINES parameter
Example 1
//JOB1 JOB (123456),’R F B’,LINES=(500,CANCEL)

In this example, the job JOB1 will be cancelled when its output exceeds 500
thousand lines. The system will not produce a storage dump.

Example 2
//JOB2 JOB (123456),’R F B’,LINES=40

In this example, when the output for JOB2 exceeds 40 thousand lines, the
installation default determines whether the job is
v Cancelled, and a dump is requested
v Cancelled, and no dump is requested
v Allowed to continue, with a warning message issued to the operator.

MEMLIMIT parameter
Parameter type: Keyword, optional

Purpose: Use the MEMLIMIT parameter to specify the limit on the total number of
usable virtual pages above the bar for a single address space.

JOB: LINES

422 z/OS V2R1.0 MVS JCL Reference

Syntax

MEMLIMIT={nnnnnM}
{nnnnnG}
{nnnnnT}
{nnnnnP}
{NOLIMIT}

Subparameter definition
nnnnnM
nnnnnG
nnnnnT
nnnnnP

Specifies a value to be used as the limit on the total size of usable virtual
storage above the bar in a single address space. The value may be expressed in
megabytes (M), gigabytes (G), terabytes (T), or petabytes (P). nnnnn may be a
value from 0 to 99999, with a maximum value of 16384P.

NOLIMIT
Specifies that there is no limit on the virtual pages to be used above the bar.

Note: Unlike the REGION parameter, MEMLIMIT=0M (or equivalent in G, T,
or P) means that the step can not use virtual storage above the bar.

Defaults
If no MEMLIMIT parameter is specified, the default is the value defined to SMF,
except when REGION=0K/0M is specified, in which case the default is NOLIMIT.

Overrides
Specifying MEMLIMIT on the JOB statement overrides MEMLIMIT on the EXEC
statement.

If MEMLIMIT is not specified, SMF provides a default value. The IEFUSI
installation exit can override any JCL- or SMF-supplied value.

Relationship to the REGION parameter
A specification of REGION=0K/0M will result in a MEMLIMIT value being set to
NOLIMIT, when a MEMLIMIT value has not been specified on either the JOB or
EXEC statements, and IEFUSI has not been used to set the MEMLIMIT.

Considerations when using the MEMLIMIT parameter
Specifying a REGION size that gives the job all the available storage, such as 0K or
any value greater than 16,384K, can cause storage problems if the IBM- or
installation-supplied routine IEALIMIT or IEFUSI is not used to establish a limiting
value.

Examples of the MEMLIMIT parameter
//TEST JOB ’D83,123456’,MEMLIMIT=10000M

This statement specifies that the job is limited to the use of 10000 megabytes of
usable virtual pages above the bar.

JOB: MEMLIMIT

Chapter 21. JOB statement 423

MSGCLASS parameter
Parameter type

Keyword, optional

Purpose

Use the MSGCLASS parameter to assign the job log to an output class. The job log
is a record of job-related information for the programmer. Depending on the JOB
statement MSGLEVEL parameter, the job log can consist of:
v Only the JOB statement.
v All job control statements.
v In-stream and cataloged procedure statements.
v Job control statement messages.
v JES and operator messages about the job.

Note: In a JES3 environment, a job can complete processing before all of its
messages have been written to the job log. When this occurs, the job's output is
incomplete. For this reason, do not use the contents of the job log as an automation
or as a programming interface.

Considerations for an APPC scheduling environment

The MSGCLASS parameter has no function in an APPC scheduling environment. If
you code MSGCLASS, the system will check it for syntax and ignore it.

Syntax

MSGCLASS=class

Subparameter definition
class

Identifies the output class for the job log. The class is one character, A through
Z or 0 through 9, and must be a valid output class specified at JES
initialization.

NJE Note: If you specify an output class that is a held class in an NJE
environment, the system does not hold the data set until it reaches its ultimate
destination node.

Defaults
The default is based on the source of the job: The system places the job log in the
same output class as the installation-specified default class for the particular card
reader, work station, or time-sharing user that submitted the job. The installation
default is specified at JES initialization.

Significance of output classes
To print the job log and any output data sets on the same output listing, code one
of the following:

JOB: MSGCLASS

424 z/OS V2R1.0 MVS JCL Reference

v The same output class in the DD SYSOUT parameter as in the JOB MSGCLASS
parameter.

v DD SYSOUT=* to default to the JOB MSGCLASS output class.
v DD SYSOUT=(,) to default to one of the following:

1. The CLASS parameter in an explicitly or implicitly referenced OUTPUT JCL
statement. In this case, the OUTPUT JCL CLASS parameter should specify
the same output class as the JOB MSGCLASS parameter.

2. The JOB MSGCLASS output class, if no OUTPUT JCL statement is referenced
or if the referenced OUTPUT JCL statement contains either CLASS= or
CLASS=*.

Examples of the MSGCLASS parameter
Example 1
//EXMP1 JOB ,GEORGE,MSGCLASS=F

In this example, the JOB statement specifies output class F for the job log.

Example 2
//EXMP2 JOB ,MENTLE,MSGLEVEL=(2,0)

This JOB statement does not specify an output class. In this case, the output class
defaults to the installation default output class for the device from which the job
was submitted.

Example 3
//A1403 JOB ,BLACK,MSGCLASS=L
//STEP1 EXEC PGM=PRINT
//OUTDD1 DD SYSOUT=L

In this example, the JOB statement and sysout DD statement OUTDD1 both specify
the same output class. Consequently, the job log and data set OUTDD1 are written
on the same output listing.

Example 4
//B209 JOB ,WHITE,MSGCLASS=M
//STEPA EXEC PGM=PRINT
//OUTDDX DD SYSOUT=*

In this example, the JOB statement specifies that the system route the job log to
output class M. The system also routes sysout data set OUTDDX to class M
because SYSOUT=* is specified.

MSGLEVEL parameter
Parameter type

Keyword, optional

Purpose

Use the MSGLEVEL parameter to control the listing of the JCL output for the job.
You can request that the system print the following:
v The JOB statement and all comments and JECL statements up to the first EXEC

statement.

JOB: MSGCLASS

Chapter 21. JOB statement 425

v All job control statements in the input stream, that is, all JCL statements and
JES2 or JES3 statements.

v In-stream and cataloged procedure statements for any procedure a job step calls.
v Messages about job control statements.
v JES and operator messages about the job’s processing: allocation of devices and

volumes, execution and termination of job steps and the job, and disposition of
data sets.

Considerations for an APPC scheduling environment

For information about using the MSGLEVEL parameter in a TP message log
definition, see z/OS MVS Planning: APPC/MVS Management.

Syntax

MSGLEVEL=([statements][,messages])

You can omit the parentheses if you code only the first subparameter.

Subparameter definition
The JCL output for a batch job or any piece of work handled by JES2 or JES3 is a
collection of three data sets. These three data sets (in the order they appear in the
output) are:
v JES JOB LOG (JESMSGLG)
v STATEMENT IMAGES (JESJCL)
v SYSTEM MESSAGES (JESYSMSG)

statements
Indicates which job control statements the system is to print in the statement
images portion of the JCL output. This subparameter is one of the following
numbers:

0 The system prints the JOB statement and all comments and JECL
statements up to the first EXEC statement.

1 The system prints all JCL statements, JES2 or JES3 control statements,
the procedure statements, and IEF653I messages, which give the values
assigned to symbolic parameters in the procedure statements.

2 The system prints only JCL statements and JES2 or JES3 control
statements.

messages
Indicates which messages the system is to print in the system messages portion
of the JCL output. This subparameter is one of the following numbers:

0 The system prints only JCL messages. It prints JES and operator
messages only if the job abnormally terminates, and prints SMS
messages only if SMS fails the job.

1 The system prints JCL, JES, operator, and SMS messages.

Defaults
If you do not code the MSGLEVEL parameter, JES uses an installation default
specified at initialization.

JOB: MSGLEVEL

426 z/OS V2R1.0 MVS JCL Reference

Examples of the MSGLEVEL parameter
Example 1
//EXMP3 JOB ,GEORGE,MSGLEVEL=(2,1)

In this example, the JOB statement requests that the system print JCL statements,
JCL messages, JES and operator messages, and SMS messages.

Example 2
//EXMP4 JOB ,MENTLE,MSGLEVEL=0

In this example, the JOB statement requests that the system print the JOB
statement and any comments and JECL statements up to the first EXEC statement;
and, that JES is to use the installation default for messages.

Example 3
//EXMP5 JOB ,MIKE,MSGLEVEL=(,0)

In this example, the JOB statement requests that JES use the installation default for
printing JCL statements and the system is not to print JES and operator messages
unless the job abnormally terminates. SMS messages are printed only if SMS fails
the job.

NOTIFY parameter
Parameter type

Keyword, optional

Purpose

Use the NOTIFY parameter to request that the system send a message to a user
when this background job completes processing.

Considerations for an APPC scheduling environment

The NOTIFY parameter has no function in an APPC scheduling environment. If
you code NOTIFY, avoid possible syntax and runtime errors by reading the
information about scheduler JCL for TP profiles in z/OS MVS Planning: APPC/MVS
Management.

Syntax

The NOTIFY parameter for both JES2 and JES3 is the following:

NOTIFY={nodename.userid}
{userid }

Subparameter definition for JES2 systems
nodename.userid

Identifies a node and a TSO/E or VM userid at that node. The nodename is a
symbolic name defined by the installation during initialization; nodename is 1
through 8 alphanumeric or national ($, #, @) characters. The first character of

JOB: MSGLEVEL

Chapter 21. JOB statement 427

nodename must be alphabetic or national ($, #, @). The userid must be defined
at the node. It is 1 through 8 alphanumeric or national ($, #, @) characters; the
first character must be alphabetic or national ($, #, @).

userid
Identifies the user that the system is to notify. The userid is 1 through 7
alphanumeric or national ($, #, @) characters. The first character must be an
alphabetic or national ($, #, @) character. When you specify only a userid, JES2
assumes that the userid is at the origin node.

The userid may also be a valid remote ID in the form Rnnnn or a destid for a
remote. If the userid is specified as R1-R9999, JES2 will assume the notify
message is intended for a remote and not a userid. If the remote is defined to
the system or is less than the highest defined remote for your system, the
notify message is queued to the remote. If the remote value is greater than the
highest defined remote but less than the maximum allowed remote, the notify
message is discarded. If the Rxxxx value specified is greater than R9999, JES2
will consider that as a TSO/E userid and not a remote id.

Subparameter definition for JES3 systems
userid

Identifies the user that the system is to notify. The userid is 1 through 7
alphanumeric characters and must be a valid TSO/E userid. JES3 assumes that
the userid is at the node where the job runs.

Receiving notification of job completion
In a JES2 system: If you are logged on to the member of the JES2 multi-access
spool from which you submitted the job, the system immediately notifies you
when the job completes. If you are not logged on, the system saves the message
until you log on to the member from which you originally submitted the job.

In a JES3 system: If you are logged on, the system immediately notifies you at the
system you are logged onto when the job completes. If you are not logged on, the
system saves the message until you log on to the system from which you
originally submitted the job.

If you want to receive notification at a system of your choice, specify the system
you want to be notified at on the ACMAIN parameter.

If a job is submitted by another job, the ACMAIN parameter specified for the first
job is propagated to the second job.

If a //*ROUTE or XMIT JCL statement follows the JOB statement, you may not be
notified when the transmitted job completes.

Examples of the NOTIFY parameter
//SIGN JOB ,TKLOMP,NOTIFY=VMNODE.VMUSERID

When the job SIGN completes processing, the system sends a message to user
VMUSERID on node VMNODE.
//SIGN JOB ,TKLOMP,NOTIFY=MVSUSER

When the job SIGN completes processing, the system sends a message to user
MVSUSER on the job's origin node.

JOB: NOTIFY

428 z/OS V2R1.0 MVS JCL Reference

PAGES parameter
Parameter type: Keyword, optional

Purpose: Use the PAGES parameter to
v Indicate the maximum amount of output, in pages, to be printed for this job's

sysout data sets
v Specify the action that the system is to take if the maximum is exceeded. You

can indicate that the job is to be cancelled with or without a dump, or that the
job is to continue and the system is to notify the operator that the maximum
was exceeded.

Syntax

PAGES={nnnnnnnn }
{([nnnnnnnn][,CANCEL]) }
{([nnnnnnnn][,DUMP]) }
{([nnnnnnnn][,WARNING])}

Subparameter definition
nnnnnnnn

Indicates the maximum amount of output, in pages, to be printed for this job.
The value for nnnnnnnn is 0 through 99999999.

In a JES2 system, a value of 0 for nnnnnnnn will produce an amount of output
that is based on the record blocking factor. When the system recognizes that
the 0 value has been exceeded, one of the following will get control:
v The CANCEL, DUMP, or WARNING option (if coded)
v The installation exit.

In a JES3 system, a value of 0 for nnnnnnnn will produce no output.

CANCEL
Indicates that the system is to cancel the job without dumping storage when
the output for the job exceeds the maximum.

DUMP
Indicates that the system is to cancel the job when the output for the job
exceeds the maximum, and requests a storage dump.

WARNING
Indicates that the job is to continue, and the system is to send a message to the
operator, when the output for the job exceeds the maximum. The system issues
subsequent warning messages at an interval defined by the installation.

Defaults
If you do not code the PAGES parameter, the system uses the installation-defined
default value.

If you do not code nnnnnnnn, the system uses an installation-defined limit.

If you do not code CANCEL, DUMP, or WARNING, the system uses the
installation-defined default option.

JOB: PAGES

Chapter 21. JOB statement 429

Overrides
Specifying PAGES on the JOB statement overrides PAGES on the JES2 /*JOBPARM
statement, the JES3 //*MAIN statement, and the installation-defined default.

Relationship to other parameters
In addition to PAGES, the following JOB statement parameters also limit the
amount of output for a job:
v BYTES
v CARDS
v LINES

If the job's output exceeds the limits defined by any of these parameters, the
system might cancel the job. When coding PAGES, determine whether the values
coded on these related parameters are sufficient to produce the output you require.

Relationship to other control statements
The OUTLIM parameter of the DD statement controls the number of logical
records in the sysout data set defined by that DD statement. If the sysout limit
defined on the PAGES parameter is exceeded before the limit defined on OUTLIM,
the system will take the action defined on PAGES. If the sysout limit defined on
the OUTLIM parameter is exceeded before the limit defined on PAGES, the system
exits to the sysout limit exit routine.

Examples of the PAGES parameter
Example 1
//JOB1 JOB (123456),’R F B’,PAGES=(500,CANCEL)

In this example, the job JOB1 will be cancelled when its output exceeds 500 pages.

Example 2
//JOB2 JOB (123456),’R F B’,PAGES=40

In this example, when the output for JOB2 exceeds 40 pages, the installation
default determines whether the job is
v Cancelled, and a dump is requested
v Cancelled, and no dump is requested
v Allowed to continue, with a warning message issued to the operator.

PASSWORD parameter
Parameter type

Keyword, optional

Note: Do not specify this parameter for a started task; if PASSWORD is specified,
the job will fail.

Purpose

Use the PASSWORD parameter to identify a current RACF password or specify a
new RACF password. You can specify a new password at any time and must
specify a new password when your current one expires.

JOB: PAGES

430 z/OS V2R1.0 MVS JCL Reference

If the installation contains the installation exit routine used to verify the password,
a new password specified in the PASSWORD parameter takes effect when the job
is read in. The new password takes effect even if the job is held for execution later
and may take effect even if the job fails because of JCL errors. When changing the
password, other jobs that use the new or old password may fail, depending on
when their passwords are verified.

If the installation contains the feature for propagation of the user and group
identification, the USER and the PASSWORD parameters are required, and the
GROUP parameter is optional on JOB statements only for the following:
v Batch jobs submitted through an input stream, such as a card reader, (1) if the

job requires access to RACF-protected resources or (2) if the installation requires
that all jobs have RACF identification.

v Jobs submitted by one RACF-defined user for another user. In this case, the JOB
statement must specify the other user’s userid and may need a password. The
group id is optional.

v Jobs that execute at another network node that uses RACF protection.

Otherwise, the USER, PASSWORD, and GROUP parameters can be omitted from
JOB statements. RACF uses the userid, password, and default group id of the
submitting TSO/E user or job.

References

For more information on using RACF-protected facilities, see the z/OS Security
Server RACF Security Administrator's Guide.

Considerations for an APPC scheduling environment

The PASSWORD parameter has no function in an APPC scheduling environment.
If you code PASSWORD, the system will check it for syntax and ignore it.

Syntax

PASSWORD=(password[,new-password])

You can omit the parentheses if you code only the first subparameter.

Subparameter definition
password

Specifies the user’s current RACF password. The password is 1 through 8
alphanumeric or national ($, #, @) characters.

Note: The system suppresses the value you code for password from the
JESJCL and JESJCLIN data sets.

new-password
Specifies the user’s new RACF password. The new-password is 1 through 8
alphanumeric or national ($, #, @) characters. The installation’s security
administrator can impose additional restrictions on passwords; follow your
installation’s rules.

Note: The system suppresses the value you code for new-password from the
JESJCL and JESJCLIN data sets.

JOB: PASSWORD

Chapter 21. JOB statement 431

Relationship to other parameters
If the installation does not contain the user and group identification propagation
feature:
v Code a PASSWORD parameter when coding a USER or GROUP parameter on a

JOB statement.
v Code a USER parameter when coding a PASSWORD parameter.

Examples of the PASSWORD parameter
Example 1
//TEST1 JOB ’D83,123456’,PASSWORD=ABCDE,USER=MYNAME

This JOB statement identifies ABCDE as the current password for the RACF user.

Example 2
//TEST2 JOB ’D83,123456’,PASSWORD=(BCH,A12),USER=RAC1,GROUP=GRP1

This JOB statement requests that the system change the RACF password from BCH
to A12.

PERFORM parameter
Parameter type

Keyword, optional

Purpose

Use the PERFORM parameter in WLM compatibility mode to specify the
performance group for the job. The installation-defined performance groups
determine the rate at which associated jobs have access to the processor, storage,
and channels.

In WLM goal mode, the PERFORM parameter on the JOB statement can be used to
classify jobs and started procedures to a service class and/or report class. This
classification method is provided to reduce the need to modify existing JCL when
migrating to goal mode. Note that PERFORM on the EXEC statement is ignored in
goal mode for jobs and started procedures.

For details on how to use the WLM application for managing a service definition
and service policies, see z/OS MVS Planning: Workload Management.

Syntax

PERFORM=n

Important

Beginning with z/OS V1R3, WLM compatibility mode is no longer available.
Accordingly, the information that pertains specifically to WLM compatibility mode is no
longer valid. It has been left here for reference purposes, and for use on backlevel
systems.

JOB: PASSWORD

432 z/OS V2R1.0 MVS JCL Reference

Subparameter definition
n In WLM compatibility mode, requests a performance group. The n is a number

from 1 through 999 and must identify a performance group that has been
defined by your installation. The specified performance group should be
appropriate for your job type according to your installation’s rules.

In WLM goal mode, n can be used to classify the job or started task to a
service class and/or report class.

Defaults
In compatibility mode, if no PERFORM parameter is specified or if the specified
PERFORM number fails validity checks, the system uses an installation default
specified at initialization. If the installation did not specify a default, the system
uses a built-in default:

Default Use

1 For non-TSO/E job steps

2 For TSO/E sessions

See z/OS MVS Initialization and Tuning Guide for details.

Overrides
A JOB statement PERFORM parameter applies to all steps of the job and overrides
any EXEC statement PERFORM parameters.

Code EXEC statement PERFORM parameters when each job step executes in a
different performance group. The system uses an EXEC statement PERFORM
parameter only when no PERFORM parameter is on the JOB statement and only
during the job step.

Examples of the PERFORM parameter
Example 1: PERFORM in compatibility mode
//STEP1 JOB ,MARLA,CLASS=D,PERFORM=25

In this example, CLASS=D determines the class in which the system will execute
the job. Once in the system, the job will run in performance group 25. The
installation must have defined the significance of this performance group.

Example 2: PERFORM in goal mode
//STEP1 JOB ,KIRTS,PERFORM=26

In this example, the job will be associated with service class PBATCH because the
PERFORM value is specified as 26, and the PERFORM value of 26 is defined to
workload management as being associated with the service class named PBATCH.
To associate the PERFORM value with a service class, you need to define a
classification rule in the workload management service definition. The following
panel from the WLM application shows a rule for subsystem type JES that assigns
any job with a PERFORM value of 26 to service class PBATCH.

Modify Rules for the Subsystem Type Row 1 to 1 of
Command ===> __ SCROLL ===> PA

Subsystem Type . : JES Fold qualifier names? Y (Y or N)
Description . . . batch

JOB: PERFORM

Chapter 21. JOB statement 433

Action codes: A=After C=Copy M=Move I=Insert rule
B=Before D=Delete row R=Repeat IS=Insert Sub-rule

-------Qualifier------------- -------Class--------
Action Type Name Start Service Report

DEFAULTS: TBATCH ________
____ 1 PF 26 ___ PBATCH ________

Programmer’s name parameter
Parameter type

Positional, required (according to installation procedures)

Purpose

Use the programmer’s name parameter to identify the person or group responsible
for a job.

Syntax

programmer’s-name

Location: Place the programmer’s name parameter immediately after the accounting
information parameter and before all keyword parameters.

Omission: Do not code a comma to indicate the absence of the programmer’s name
parameter. For example:

//JOBA JOB ’D58/706’,MSGCLASS=A

Special characters: Enclose the programmer’s name in apostrophes (single quotation
marks) when:

v The name contains special characters (including blanks), other than hyphens, leading
periods, or embedded periods. For example:

//JOBB JOB ,S-M-TU
//JOBC JOB ,.ABC
//JOBD JOB ,P.F.M
//JOBE JOB ,’BUILD/PAUL’
//JOBF JOB ,’MAE BIRDSALL’

If the character string contains a blank but with no enclosing single quotation marks, the
blank is taken to indicate the end of the JCL statement.

v The last character of the name is a period. For example:

//JOBG JOB ,’A.B.C.’

v Code each apostrophe that is part of the name as two consecutive apostrophes. For
example, code O'DONNELL as 'O''DONNELL'.

Parameter definition
programmer’s-name

Identifies the job’s owner. The name must not exceed 20 characters, including
all special characters.

Examples of the programmer’s name parameter
Example 1
//APP JOB ,G.M.HILL

JOB: PERFORM

434 z/OS V2R1.0 MVS JCL Reference

This JOB statement specifies a programmer’s name with no accounting
information. The leading comma may be optional; check with your installation.

Example 2
//DELTA JOB ’T.O’’NEILL’

The programmer’s name contains special characters. The installation requires no
accounting information. The imbedded apostrophe is coded as two consecutive
apostrophes; the entire name must be enclosed in apostrophes.

Example 3
//#308 JOB (846349,GROUP12),MATTHEW

This JOB statement specifies an account number, additional accounting
information, and a programmer’s name.

Example 4
//JOBA JOB ’DEPT. 15E’

This installation requires the department number in the programmer’s name
parameter.

PRTY parameter
Parameter type

Keyword, optional

Purpose

Use the PRTY parameter to assign a selection priority to your job. Within a JES2
job class or a JES3 job class group, the system selects jobs for execution in order by
priority. A job with a higher priority is selected for execution sooner; jobs with the
same priority are selected on a first-in first-out basis.

Note: Depending on the JES2 initialization options in use at your installation, JES2
may ignore the PRTY parameter.

In a JES2 system, there are a number of factors that determine the order in which a
particular job is selected for execution. Therefore, you cannot be assured that job
priority (based on the PRTY you assign a job), job class, or the order of job
submission will guarantee that the jobs will execute in a particular order. If you
need to submit jobs in a specific order, contact your JES2 system programmer for
advice based on how your system honors such requests. (z/OS JES2 Initialization
and Tuning Guide provides JES2 system programmer procedures concerning job
queuing and how to control job execution sequence.)

References

For more information about priority, see z/OS JES2 Initialization and Tuning Guide.

Considerations for an APPC scheduling environment

The PRTY parameter has no function in an APPC scheduling environment. If you
code PRTY, the system will check it for syntax and ignore it.

JOB: Programmer’s Name

Chapter 21. JOB statement 435

Syntax

PRTY=priority

Subparameter definition
priority

Requests a priority for the job. The priority is a number from 0 through 15 for
JES2 and from 0 through 14 for JES3. The highest priority is 15 or 14.

Follow your installation’s rules in coding a priority.

Defaults
JES2 determines the job priority from the following, in override order:
1. A JES2 /*PRIORITY statement.
2. A PRTY parameter on the JOB statement.
3. A value calculated from the accounting information on a JES2 /*JOBPARM

statement or the JOB statement.
4. An installation default specified at JES2 initialization.

JES3 determines the job priority from the following, in override order:
1. A PRTY parameter on the JOB statement. If the specified priority is invalid,

JES3 issues an error message.
2. An installation default specified at JES3 initialization.

Example of the PRTY parameter
//JOBA JOB 1,’JIM WEBSTER’,PRTY=12

This job has a priority of 12.

RD parameter
Parameter type

Keyword, optional

Note: This parameter is ignored for a started task.

Purpose

Use the RD (restart definition) parameter to:
v Specify that the system is to allow the operator the option of performing

automatic step or checkpoint restart if a job step abends with a restartable abend
code. (See the SCHEDxx parmlib member description in z/OS MVS Initialization
and Tuning Guide for information about restartable abends.)

v Allow JES to perform automatic step restart after a system failure even if the
journal option is not specified in the JES initialization parameters or JES control
statements.

v Suppress, partially or totally, the action of the assembler language CHKPT macro
instruction or the DD statement CHKPT parameter.

JOB: PRTY

436 z/OS V2R1.0 MVS JCL Reference

The system can perform automatic restart only if all of the following are true:
v The JOB or EXEC statement contains RD=R or RD=RNC.
v The step to be restarted abended with a restartable abend code.
v The operator authorizes a restart.

The system can perform automatic step restart for a job running during a system
failure as long as the job has a job journal. A job journal is a sequential data set
that contains job-related control blocks needed for restart.

If you use checkpoint restart or restart a job step, you need to save the journal or
the system cannot automatically restart the job if it fails or if there is a system
restart. If you use the automatic restart manager (ARM) to restart a job, you do not
need to save the journal because ARM does not use the job journal when restarting
jobs.

For JES2, specify a job journal by one of the following:
v JOURNAL=YES on the CLASS statement in the JES2 initialization parameters.
v RD=R or RD=RNC on either the JOB statement or any one EXEC statement in

the job.

For JES3, specify a job journal by one of the following:
v JOURNAL=YES on the CLASS statement in the JES3 initialization parameters.
v RD=R or RD=RNC on either the JOB statement or any one EXEC statement in

the job.
v JOURNAL=YES on a JES3 //*MAIN statement in the job.

References

For detailed information on deferred checkpoint restart, see z/OS DFSMSdfp
Checkpoint/Restart.

Considerations for an APPC scheduling environment

The RD parameter has no function in an APPC scheduling environment. If you
code RD, the system will check it for syntax and ignore it.

Syntax

RD= {R }
{RNC}
{NR }
{NC }

v The RD parameter cannot have a null value.

Subparameter definition
R (Restart, Checkpoints Allowed)

Indicates that the operator can perform automatic step restart if the job fails.

RD=R does not suppress checkpoint restarts:

JOB: RD

Chapter 21. JOB statement 437

v If the processing program executed in a job step does not include a CHKPT
macro instruction, RD=R allows the system to restart execution at the
beginning of the abnormally terminated step.

v If the program includes a CHKPT macro instruction, RD=R allows the
system to restart execution at the beginning of the step, if the step
abnormally terminates before the CHKPT macro instruction is executed.

v If the step abnormally terminates after the CHKPT macro instruction is
executed, only checkpoint restart can occur. If you cancel the affects of the
CHKPT macro instruction before the system performs a checkpoint restart,
the request for automatic step restart is again in effect.

RNC (Restart, No Checkpoints)
Indicates that the operator can perform automatic step restart if the job fails.

RD=RNC suppresses automatic and deferred checkpoint restarts. It suppresses:
v Any CHKPT macro instruction in the processing program: That is, the

operator cannot perform an automatic checkpoint restart, and the system is
not to perform a deferred checkpoint restart if the job is resubmitted.

v The DD statement CHKPT parameter.
v The checkpoint at end-of-volume (EOV) facility.

NR (No Automatic Restart, Checkpoints Allowed)
Indicates that the operator cannot perform automatic step restart if the job
fails.

RD=NR suppresses automatic checkpoint restart but permits deferred
checkpoint restarts. It permits:
v A CHKPT macro instruction to establish a checkpoint.
v The job to be resubmitted for restart at the checkpoint. On the JOB statement

when resubmitting the job, specify the checkpoint in the RESTART
parameter.

If the system fails, RD=NR does not prevent the job from restarting.

NC (No Automatic Restart, No Checkpoints)
Indicates that the operator cannot perform automatic step restart if the job
fails.

RD=NC suppresses automatic and deferred checkpoint restarts. It suppresses:
v Any CHKPT macro instruction in the processing program.
v The DD statement CHKPT parameter.
v The checkpoint at EOV facility.

Defaults
If you do not code the RD parameter, the system uses the installation default from
the job’s job class specified at initialization.

Overrides
A JOB statement RD parameter applies to all steps of the job and overrides any
EXEC statement RD parameters.

Code EXEC statement RD parameters when each job step requires different restart
types. The system uses an EXEC statement RD parameter only when no RD
parameter is on the JOB statement and only during the job step.

JOB: RD

438 z/OS V2R1.0 MVS JCL Reference

Relationship to other control statements
RD=NC or RD=RNC suppresses the action of the DD statement CHKPT parameter.

Examples of the RD parameter
Example 1
//JILL JOB 333,TOM,RD=R

RD=R specifies that the operator can perform automatic step restart if the job fails.

Example 2
//TRY56 JOB 333,DICK,RD=RNC

RD=RNC specifies that, if the job fails, the operator can perform automatic step
restart beginning with the step that abnormally terminates. RD=RNC suppresses
automatic and deferred checkpoint restarts.

Example 3
//PASS JOB (721,994),HARRY,RD=NR

RD=NR specifies that the operator cannot perform automatic step restart or
automatic checkpoint restart. However, a CHKPT macro instruction can establish
checkpoints to be used later for a deferred restart.

REGION parameter
Parameter type

Keyword, optional

Purpose

Use the REGION parameter to specify the amount of central or virtual storage that
the job requires. The system applies the value that you code on REGION to each
step of the job.

The amount of storage requested must include the following:
v Storage for all programs to be executed.
v All additional storage the programs request with GETMAIN macro instructions

during execution.
v Enough unallocated storage for task initialization and termination. Task

initialization and termination can issue GETMAIN macro instructions for storage
in the user's address space.

Two installation exits, IEFUSI and IEALIMIT, can also affect the size of the user
address space assigned to the job step.

References

For more information on address space size, see z/OS MVS Initialization and Tuning
Guide, and "Resource Control of Address Space" in z/OS MVS JCL User's Guide. For
more information on region size with checkpoint/restart jobs, see z/OS DFSMSdfp
Checkpoint/Restart.

JOB: RD

Chapter 21. JOB statement 439

Syntax

REGION= {valueK}
{valueM}

Subparameter definition
valueK

Specifies the required storage in kilobytes (1 kilobyte = 1024 bytes). The value
is 1 through 7 decimal numbers, from 1 through 2096128. Code a multiple of 4.
For example, code REGION=68K. If the value you code is not a multiple of 4,
the system will round it up to the next multiple of 4.

valueM
Specifies the required storage in megabytes (1 megabyte = 1024 kilobytes). The
value is 1 through 4 decimal numbers, from 1 through 2047. For example,
REGION=3M.

value=0M or 0K
A value equal to 0K or 0M gives the step all the storage available below the 2
GB bar. This includes below and above 16 megabytes. The resulting size of the
region below and above 16 megabytes depends on system options and what
system software is installed. When REGION=0K/0M is specified, the
MEMLIMIT value is set to NOLIMIT.

Note: This may cause storage problems. See the Considerations When Using
the REGION parameter section for more information.

Defaults
If no REGION parameter is specified, the system uses the REGION parameter
specified on each EXEC statement. If no EXEC statement REGION parameter is
specified, the system uses a job step installation default specified at JES
initialization.

If your installation does not change the IBM-supplied default limits in the
IEALIMIT or IEFUSI exit routine modules, then specifying various values for the
region size has the following results:
v A value equal to 0K or 0M — gives the job all the storage available below and

above 16 megabytes. The resulting size of the region below and above 16
megabytes is installation-dependent. When REGION=0K/0M is specified, the
MEMLIMIT is set to NOLIMIT.

Note: This may cause storage problems. See the Considerations When Using the
REGION parameter section for more information.

v A value greater than 0K or 0M and less than or equal to 16,384K or 16M —
establishes the size of the private area below 16 megabytes. If the region size
specified is not available below 16 megabytes, the job step abnormally ends with
an ABEND822. The extended region size is the default value of 32 megabytes.

v A value greater than 16,384K or 16M and less than or equal to 32,768K or 32M
— gives the job all the storage available below 16 megabytes. The resulting size
of the region below 16 megabytes is installation-dependent. The extended region
size is the default value of 32 megabytes.

v A value greater than 32,768K or 32M and less than or equal to 2,096,128K or
2047M — gives the job all the storage available below 16 megabytes. The
resulting size of the region below 16 megabytes is installation-dependent. The

JOB: REGION

440 z/OS V2R1.0 MVS JCL Reference

extended region size is the specified value. If the region size specified is not
available above 16 megabytes, the job step receives any storage available above
16 megabytes, up to the requested amount, and the resulting size of the region
above 16 megabytes is installation-dependent.

Overrides
A JOB statement REGION parameter applies to all steps of the job and overrides
any EXEC statement REGION parameters.

Code EXEC statement REGION parameters when each job step requires a different
region size. The system uses an EXEC statement REGION parameter only when no
REGION parameter is on the JOB statement and only during the job step.

Relationship to the JOB ADDRSPC parameter
When ADDRSPC=REAL: Code a REGION parameter to specify how much central
storage (also called real storage) the job needs. If you omit the REGION parameter,
the system uses the default.

When ADDRSPC=VIRT or ADDRSPC is Omitted: Code a REGION parameter to
specify how much virtual storage the job needs. If you omit the REGION
parameter, the system uses the default.

Relationship to the MEMLIMIT parameter
A specification of REGION=0K/0M will result in a MEMLIMIT value being set to
NOLIMIT, when a MEMLIMIT value has not been specified on either the JOB or
EXEC statements, and IEFUSI has not been used to set the MEMLIMIT.

Considerations when using the REGION parameter
Specifying a REGION size that gives the job all the available storage below the 2
GB bar, such as 0K or any value greater than 16,384K, can cause storage problems
if the IBM- or installation-supplied routine IEALIMIT or IEFUSI is not used to
establish a limiting value.

Examples of the REGION parameter
Example 1
//ACCT1 JOB A23,SMITH,REGION=100K,ADDRSPC=REAL

This JOB statement indicates that the job requires 100K of central storage.

Example 2
//ACCT4 JOB 175,FRED,REGION=250K

This JOB statement indicates that the job requires 250K of virtual storage. When
the ADDRSPC parameter is omitted, the system defaults to ADDRSPC=VIRT.

RESTART parameter
Parameter type

Keyword, optional

Note: Do not specify this parameter for a started task; if RESTART is specified, the
job will fail.

JOB: REGION

Chapter 21. JOB statement 441

Purpose

Use the RESTART parameter to indicate the step, procedure step, or checkpoint at
which the system is to restart a job. You can specify that the system perform either
of two restarts:
v Deferred step restart, which is a restart at the beginning of a job step.
v Deferred checkpoint restart, which is a restart from a checkpoint taken during

step execution by a CHKPT macro instruction.

References

For detailed information on the deferred checkpoint restart, see z/OS DFSMSdfp
Checkpoint/Restart.

Considerations for an APPC scheduling environment

The RESTART parameter has no function in an APPC scheduling environment. If
you code RESTART, the system will check it for syntax and ignore it.

Syntax

RESTART= ({* } [,checkid])
({stepname })
({stepname.procstepname})

v You can omit the outer parentheses if you code only the first subparameter.

v The RESTART parameter cannot have a null value.

Subparameter definition
* Indicates that the system is to restart execution (1) at the beginning of or

within the first job step or (2), if the first job step calls a cataloged or in-stream
procedure, at the beginning of or within the first procedure step.

stepname
Indicates that the system is to restart execution at the beginning of or within a
job step. If stepname refers to an EXEC statement that invokes a procedure, the
step name of the step within the procedure must also be specified.

stepname.procstepname
Indicates that the system is to restart execution at the beginning of or within a
step of a cataloged procedure. Stepname identifies the EXEC statement of the
job step that calls the procedure; procstepname identifies the EXEC statement
of the procedure step. The step identified by procstepname must contain the
PGM keyword rather than invoke a procedure.

checkid
Specifies the name of the checkpoint at which the system is to restart
execution. This checkpoint must be in the job step specified in the first
subparameter.

Omit checkid to request restart at the beginning of the specified job step.

When the name contains special characters, enclose it in apostrophes. Code
each apostrophe that is part of the name as two consecutive apostrophes. For
example, code CHPT'1 as 'CHPT''1'.

JOB: RESTART

442 z/OS V2R1.0 MVS JCL Reference

Relationship to other control statements
When the system is to restart execution in a job step, place a SYSCHK DD
statement immediately following the JOB statement. The SYSCHK DD statement
defines the data set on which the system entered the checkpoint for the step being
restarted.

When preparing for a deferred checkpoint, code the DISP abnormal termination
disposition subparameter in the step’s DD statements as follows:
v KEEP, to keep all data sets that the restart step is to use.
v CATLG, to catalog all data sets that you are passing from steps preceding the

restart step to steps following the restart step.

In JES2 systems, you can also use the RESTART parameter on the /*JOBPARM
control statement.

In JES3 systems, you must also code the FAILURE parameter on the //*MAIN
control statement.

Cautions when coding the RESTART parameter
Before resubmitting a job:
v Check all backward references to steps before the restart step. Eliminate all

backward references in EXEC statement PGM parameters and DD statement
VOLUME=REF parameters.

v Review all EXEC statement COND parameters. If any of the COND parameters
reference a step before the restart step, be aware that the system ignores the
return code tests for those steps. See “Considerations when using the COND
parameter” on page 346 for more information.

v Note that the stepname and procstepname specified to identify the restart step
must be unique within the job. Otherwise, the system will not be able to
determine the correct restart step. Results will be unpredictable.

v Review all IF/THEN/ELSE/ENDIF structures. If a relational expression
references a step that is bypassed by the RESTART keyword, the system
evaluates that part of the expression as false.

Generation data sets in restarted jobs
In the restart step or following steps, do not use the original relative generation
numbers to refer to generation data sets that were created and cataloged before the
restart step. Instead, refer to a generation data set by its present relative generation
number.

For example, if the last generation data set created and cataloged was assigned a
generation number of +2, refer to it as 0 in the restart step and following steps. If
generation data set +1 was also created and cataloged, refer to it as -1.

If generation data sets created in the restart step were kept instead of cataloged,
that is, DISP=(NEW,CATLG,KEEP) was coded, then refer to them by the same
relative generation numbers used to create them.

Examples of the RESTART parameter
Example 1
//LINES JOB ’1/17/95’,RESTART=COUNT

JOB: RESTART

Chapter 21. JOB statement 443

This JOB statement indicates that the system is to restart execution at the
beginning of the job step named COUNT.

Example 2
//@LOC5 JOB ’4/11/96’,RESTART=(PROCESS,CHKPT3)
//SYSCHK DD DSNAME=CHK,UNIT=3390,DISP=OLD

The JOB statement indicates that the system is to restart execution at checkpoint
CHKPT3 in job step PROCESS. The SYSCHK DD statement must follow the JOB
statement; it defines the data set on which the system wrote checkpoint CHKPT3.

Example 3
//WORK JOB ,PORTER,RESTART=(*,CKPT2)
//SYSCHK DD DSNAME=CHKPT,UNIT=3390,DISP=OLD

The JOB statement indicates that the system is to restart execution at checkpoint
CKPT2 in the first job step. The SYSCHK DD statement defines the data set on
which the system wrote checkpoint CKPT2.

Example 4
//CLIP5 JOB ,COLLINS,RESTART=(PAY.WEEKLY,CHECK8)
//SYSCHK DD DSNAME=CHKPT,UNIT=3350,DISP=OLD

The JOB statement indicates that the system is to restart execution at checkpoint
CHECK8 in procedure step WEEKLY. PAY is the name field on the EXEC statement
that calls the cataloged procedure that contains procedure step WEEKLY. The
SYSCHK DD statement defines the data set on which the system wrote checkpoint
CHECK8.

SECLABEL parameter
Parameter type

Keyword, optional

Note: Do not specify this parameter for a started task; if SECLABEL is specified,
the job will fail.

Purpose

Use the SECLABEL parameter to specify the security level at which the job is to
execute when submitted to the system. The security label represents a security
level and categories as defined to RACF. You must have sufficient authority,
granted by the security administrator at your installation, to run the job with the
security label you specify.

References

For more information about security labels, see the z/OS Security Server RACF
Security Administrator's Guide.

Considerations for an APPC scheduling environment

The SECLABEL parameter has no function in an APPC scheduling environment. If
you code SECLABEL, the system will check it for syntax and ignore it.

JOB: RESTART

444 z/OS V2R1.0 MVS JCL Reference

Syntax

SECLABEL=seclabel-name

Subparameter definition
seclabel-name

Specifies the name of a security label defined by the security administrator at
your installation. The seclabel-name is one through eight alphanumeric or
national ($, #, @) characters. The first character must be alphabetic, $, #, or @.

Defaults
If you do not specify the SECLABEL parameter, the system uses the default
security label in your RACF profile.

Relationship to other parameters
Use the SECLABEL parameter on the JOB statement with the DPAGELBL and
SYSAREA parameters on an OUTPUT JCL statement, as instructed by your
security administrator.

You may code SECLABEL with any other JOB statement parameters.

Example of the SECLABEL parameter
//JOBA JOB 1,’JIM WOOSTER’,SECLABEL=CONF

In this example, JOBA executes at a security level defined for security label CONF.

SCHENV parameter
Parameter type

Keyword, optional

Purpose

Use the SCHENV parameter to specify the name of the Workload Manager (WLM)
scheduling environment to associate with this job. A scheduling environment is a
list of resources and their required settings. By associating a scheduling
environment name with a job, you ensure that the job will be scheduled for
execution only on a system that satisfies those resource state requirements. Note,
however, that the job will go through JCL conversion prior to being held. If the
JCL of the job refers to a subsystem (DD SUBSYS=), then TYPRUN=JCLHOLD is
the only way to ensure that the required subsystem is actually up and functioning
at JCL conversion-time.

Reference

For more information about WLM scheduling environments, see z/OS MVS
Planning: Workload Management.

Note: Do not specify the SCHENV parameter for a started task; the job will fail.

Considerations for an APPC scheduling environment

JOB: SECLABEL

Chapter 21. JOB statement 445

The SCHENV parameter has no function in an APPC scheduling environment. If
you code SCHENV, the system will check it for syntax and ignore it.

Considerations for a JES2 environment

You can provide a SCHENV default in a JES2 environment via a JOBCLASS(c)
specification.

Syntax

SCHENV=schenv-name

Subparameter definition
schenv-name

Specifies the name of a WLM scheduling environment to be associated with
this job. The schenv-name is 1 through 16 alphanumeric, national ($, #, @)
characters, or the underscore (_). If you include an underscore character in the
schenv-name, you must imbed the underscore and enclose the name in
apostrophes (single quotation marks). For example, 'PLEX_D01' is valid, but
'PLEX_' and PLEX_D01 are not.

Defaults
If you do not specify the SCHENV parameter, the job will not be associated with
any WLM scheduling environment.

Relationship to other control statements
You can use scheduling environments with the following parameters:
v The SYSAFF parameter or SYSTEM parameter on the JOB control statement.
v The SYSAFF parameter on the /*JOBPARM control statement for JES2.
v The SYSTEM parameter on the //*MAIN control statement for JES3.

For example, you can restrict a job to either SYS1 or SYS2 based on the scheduling
environment associated with that work, and then use the SYSAFF or SYSTEM
parameter to further restrict that work only to system SYS1.

Example of the SCHENV parameter
//JOBA JOB 1,’STEVE HAMILTON’,SCHENV=DB2LATE

In this example, JOBA is associated with the DB2LATE scheduling environment.

SYSAFF parameter
Parameter type

Keyword, optional

Purpose

JOB: SCHENV

446 z/OS V2R1.0 MVS JCL Reference

Indicates the JES2 members and JES3 systems that are eligible to process the job
(representing system affinity). Up to 33 names can be specified on the SYSAFF
parameter, limited by the number of JES2 members and JES3 systems that can exist
in a JESplex.

Considerations for a JES3 environment

The following parameters must be consistent with the SYSTEM or SYSAFF
parameter, or JES3 will terminate the job:
v For the CLASS parameter on the JOB or //*MAIN statement, the requested

processor must be assigned to execute jobs in the specified class.
v All devices specified on DD statement UNIT parameters must be available to the

requested processor.
v The TYPE parameter on the //*MAIN statement must specify the system

running on the requested processor.
v Dynamic support programs requested on //*PROCESS statements must be able

to be executed on the requested processor.
v If any DD statement UNIT parameter in the job specifies a device-number, either

a SYSTEM or SYSAFF parameter must be coded or the JES3 //*MAIN statement
must contain a SYSTEM parameter.

Syntax

SYSAFF={MemberName}
{(MemberName,MemberName, ...,MemberName)}
{(-MemberName,MemberName, ...,MemberName)}
{-MemberName}
{(MemberName,...,IND)}
{(-MemberName,...,IND)}
{ANY}
{(ANY,IND)}

Subparameter definition
MemberName

Specifies up to 33 1-4 character valid JES2 member names and 8-character JES3
system names. A of value of * (asterisk character) indicates the system that
submitted the job. A - (minus character) preceding a member or system name
indicates the JES2 member or JES3 system is not eligible for processing the job.
A - (minus character) preceding the first member or system name in a list
indicates that none of members or systems in the list are eligible for processing
the job.

ANY
Indicates any system that satisfies the job's requirements.

IND
Specifies, after any other SYSAFF parameters, for JES2 to use system
scheduling in independent mode. If IND is specified, the subparameters must
be enclosed in parentheses characters. The IND value must be included with at
least one JES2 member name or a JCL error will result. JES3 ignores the IND
value if it is not a valid JES3 system name.

JOB: SYSAFF

Chapter 21. JOB statement 447

Defaults
For JES2, the default system(s) for a job are set via SYSAFF values that are
associated with the input device. For JES3, the default system is the processor that
is defined for the job's class.

Relationship to other control statements
The following JOB parameters cannot be specified with the SYSAFF parameter:
v SYSTEM

Examples of the SYSAFF parameter
In the following example, the systems represented by member names SY1 and SY2
are eligible for processing the job:
SYSAFF=(SY1,SY2)

In the following example, the systems represented by member names SY1 and SY2
and the system that submitted the job are eligible for processing the job:
SYSTEM=(SY1,*,SY2)

In the following example, the systems represented by member names SY1 and SY2
and the system that submitted the job are not eligible for processing the job:
SYSTEM=(-SY1,*,SY2)

In the following example, any JES2 member or JES3 system in the JESplex that
satisfies the job's requirements are eligible to process the job:
SYSAFF=ANY

In the following example, the systems represented by member names SY1 and SY2
and the system that submitted the job are eligible for processing the job. The IND
value indicates that JES2 will use system scheduling in independent mode. JES3
ignores the IND value when it is not a valid JES3 system name. If IND is a valid
JES3 system name, then the JES3 system that is represented by member name IND
will also be eligible for processing the job.
SYSAFF=(SY1,*,SY2,IND)

SYSTEM parameter
Parameter type

Keyword, optional

Purpose

Indicates the systems that are eligible to process the job. The parameter indicates
the system affinity represented by a system name. Up to 32 system names can be
coded on the SYSTEM parameter, limited by the number of JES systems that can
exist in a JESplex. A minus character (-) preceding the first system name in a list
indicates that none of the systems listed are eligible for processing the job. For
JES2, the default systems for a job are set via SYSAFF values that are associated
with the input device. For JES3, the default system is the processor used for the
job's class.

Considerations for a JES3 environment

JOB: SYSAFF

448 z/OS V2R1.0 MVS JCL Reference

The following parameters must be consistent with the SYSTEM or SYSAFF
parameter, or JES3 will terminate the job:
v For the CLASS parameter on the JOB or //*MAIN statement, the requested

processor must be assigned to execute jobs in the specified class.
v All devices specified on DD statement UNIT parameters must be available to the

requested processor.
v The TYPE parameter on the //*MAIN statement must specify the system

running on the requested processor.
v Dynamic support programs requested on //*PROCESS statements must be able

to be executed on the requested processor.
v If any DD statement UNIT parameter in the job specifies a device-number, either

a SYSTEM or SYSAFF parameter must be coded or the JES3 //*MAIN statement
must contain a SYSTEM parameter.

Syntax

SYSTEM={SystemName}
{(SystemName,SystemName, ...,SystemName)}
{(-SystemName,SystemName, ...,SystemName)}
{-SystemName}
{ANY}}
{JGLOBAL}
{JLOCAL}

Subparameter definition
SystemName

Specifies up to 32 1-8 character system names. A value of * (asterisk character)
indicates the system that submitted the job. A minus character (-) preceding a
system name indicates the system is not eligible for processing the job. A
minus character (-) preceding the first system name in a list indicates that none
of the systems listed are eligible for processing the job.

ANY
Indicates any system that satisfies the job requirements.

JGLOBAL
Indicates that the job is to run on the JES3 global processor only.

JLOCAL
Indicates that the job is to run on a JES3 local processor only.

Relationship to other control statements
The following JOB parameters cannot be specified with the SYSTEM parameter:
v SYSAFF

Examples of the SYSTEM parameter
In the following example, systems SYSTEM01 and SYSTEM02 are eligible to
process the job:
SYSTEM=(SYSTEM01,SYSTEM02)

In the following example, systems SYSPROD, SYSTEST, and the system that
submitted the job are eligible to process the job:
SYSTEM=(SYSPROD,*,SYSTEST)

JOB: SYSTEM

Chapter 21. JOB statement 449

In the following example, systems SYSTEST, SYSPROD and the system that
submitted the job are not eligible to process the job:
SYSTEM=(-SYSPROD,*,SYSTEST)

In the following example, any system in the JESplex that satisfies the job's
requirements are eligible to process the job:
SYSTEM=ANY

TIME parameter
Parameter type

Keyword, optional

Purpose

Use the TIME parameter to specify the maximum amount of time that a job may
use the processor or to find out through messages how much processor time a job
used.

The system terminates a job that exceeds the specified time limit unless an
installation exit routine at exit IEFUTL extends the time. Exit routine IEFUTL is
established through System Management Facilities (SMF).

You can use the TIME parameter on a JOB statement to decrease the amount of
processor time available to a job or job step below the default value. You cannot
use the TIME parameter on a JOB statement to increase the amount of time
available to a job step over the default value. To increase the allowable time over
the default value, use the TIME parameter on the EXEC statement.

For releases prior to MVS/ESA SP Version 4 Release 3.0, the amount of time that a
job step receives might be slightly more or less than the requested processor time.
The exact amount of processor time is based on certain system events.

As of MVS/ESA SP Version 4 Release 3.0, the job step receives at least the
requested amount of CPU time. Based on system events, additional CPU time
might be provided.

Reference

See z/OS MVS Installation Exits.

Syntax

TIME= {([minutes][,seconds])}
{1440 }
{NOLIMIT }
{MAXIMUM }

You can omit the parentheses if you code only 1440 or the processor time in minutes.

Subparameter definition
minutes

Specifies the maximum number of minutes a job may use the processor.
Minutes must be a number from 0 through 357912 (248.55 days).

JOB: SYSTEM

450 z/OS V2R1.0 MVS JCL Reference

Do not code TIME=0 on a JOB statement. The results are unpredictable.

seconds
Specifies the maximum number of seconds that a job may use the processor, in
addition to any minutes that you specify. Seconds must be a number from 0
through 59.

1440 or NOLIMIT
Indicates that the job can use the processor for an unlimited amount of time.
("1440" literally means "24 hours.")

Also code TIME=1440 or TIME=NOLIMIT to specify that the system is to allow
any of the job's steps to remain in a continuous wait state for more than the
installation time limit, which is established through SMF. "Continuous wait
time" is defined as time spent waiting while the application program is in
control. For example, the time required to recall a data set from HSM
Migration Levels 1 or 2 and/or the time required to mount a tape is counted
towards the job's continuous wait time if the allocation of the data set was
dynamic (that is, issued while the program was running) while the time
required for those activities will not be counted towards the job's continuous
wait time if the allocation was static (that is, for a DD statement).

MAXIMUM
Indicates that the job can use the processor for the maximum amount of time.
Coding TIME=MAXIMUM allows a job to run for 357912 minutes.

Defaults
Every job step has a time limit. If you do not specify a TIME parameter on the JOB
statement, the time limit for each job step is:
v The value you specify for the TIME parameter on its EXEC statement, or
v The default time limit (that is, the JES default job step time limit), if you do not

specify a TIME parameter on its EXEC statement.

If you specify a value other than TIME=NOLIMIT or TIME=1440, SMF uses its
current job wait time limit.

Overrides
For a JOB statement TIME parameter of TIME=NOLIMIT or TIME=1440, the
system nullifies any TIME parameters on EXEC statements as well as the default
TIME values. All steps within the job will have unlimited processor time.

For a JOB statement TIME parameter other than TIME=NOLIMIT or TIME=1440,
the system sets the time limit for each step to one of the following:
v The step time limit specified on the EXEC statement TIME parameter or the job

time remaining after execution of previous job steps, whichever is smaller.
v If no EXEC TIME parameter was specified: the default time limit, or the job time

remaining after execution of previous steps, whichever is smaller.

Examples of the TIME parameter

Note: The following examples assume the default time limit (set by the
installation) to be greater than the TIME=parameter specified in each example.

Example 1
//STD1 JOB ACCT271,TIME=(12,10)

JOB: TIME

Chapter 21. JOB statement 451

This statement specifies that the maximum amount of time the job can use the
processor is 12 minutes, 10 seconds.

Example 2
//TYPE41 JOB ,GORDON,TIME=(,30)

This statement specifies that the maximum amount of time the job can use the
processor is 30 seconds.

Example 3
//FORMS JOB ,MORRILL,TIME=5

This statement specifies that the maximum amount of time the job can use the
processor is 5 minutes.

Example 4
//RAINCK JOB 374231,MORRISON,TIME=NOLIMIT

This statement specifies an unlimited amount of time for job execution; the job can
use the processor and remain in wait state for an unspecified period of time. The
system will issue messages telling how much processor time the job used.

Examples of the TIME parameter on JOB and EXEC
statements

Note: The following examples assume the default time limit (set by the
installation) to be greater than the TIME=parameter specified in each example.

Example 1
//FIRST JOB ,SMITH,TIME=2
//STEP1 EXEC PGM=READER,TIME=1

.

.

.
//STEP2 EXEC PGM=WRITER,TIME=1

.

In this example, the job is allowed 2 minutes for execution and each step is
allowed 1 minute. If either step continues executing beyond 1 minute, the entire
job abnormally terminates beginning with that step.

Example 2
//SECOND JOB ,JONES,TIME=3
//STEP1 EXEC PGM=ADDER,TIME=2

.

.

.
//STEP2 EXEC PGM=PRINT,TIME=2

.

In this example, the job is allowed 3 minutes for execution, and each step is
allowed 2 minutes. If either step continues executing beyond 2 minutes, the entire
job abnormally terminates beginning with that step. If STEP1 executes for 1.74
minutes and STEP2 tries to execute beyond 1.26 minutes, the job abnormally
terminates because of the 3-minute limit specified on the JOB statement.

JOB: TIME

452 z/OS V2R1.0 MVS JCL Reference

TYPRUN parameter
Parameter type

Keyword, optional

Note: Do not specify this parameter for a started task; if TYPRUN is specified, the
job will fail.

Purpose

Use the TYPRUN parameter to request special job processing. The TYPRUN
parameter can tell the system to:
v In a JES2 system, copy the input job stream directly to a sysout data set and

schedule it for output processing.
v In a JES2 or JES3 system, place a job on hold until a special event occurs. When

the event occurs, the operator, following your directions, must release the job
from its hold to allow the system to select the job for processing. Use the JES2
/*MESSAGE statement or the JES3 //*OPERATOR statement to notify the
operator to release the job.

v In a JES2 or JES3 system, scan a job’s JCL for syntax errors.

Considerations for an APPC scheduling environment

The TYPRUN parameter has no function in an APPC scheduling environment. If
you code TYPRUN, the system will check it for syntax and ignore it.

Syntax

TYPRUN= {COPY }
{HOLD }
{JCLHOLD}
{SCAN }

Note: The TYPRUN parameter can have a null value only in JES2 systems.

Subparameter definition
COPY (JES2 only)

Requests that JES2 copy the input job stream, as submitted, directly to a sysout
data set and schedule the sysout data set for output processing. The system
does not schedule the job for execution. The class of this sysout data set is the
same as the message class of the job and is controlled by the JOB MSGCLASS
parameter.

Note: COPY is supported only in JES2 systems.

HOLD
Requests that the system hold the job before execution until the operator
releases it. The operator should release the job when a particular event occurs.
If an error occurs during input service processing, JES does not hold the job.

JCLHOLD (JES2 only)
Requests that JES2 hold the job before completing JCL processing. JES2 holds
the job until the operator releases it.

JOB: TYPRUN

Chapter 21. JOB statement 453

Note: JCLHOLD is supported only in JES2 systems.

SCAN
Requests that the system scan this job’s JCL for syntax errors, without
executing the job or allocating devices. This parameter asks the system to
check for:
v Spelling of parameter keywords and some subparameter keywords that is

not valid.
v Characters that are not valid.
v Unbalanced parentheses.
v Misplaced positional parameters on some statements.
v In a JES3 system only, parameter value errors or excessive parameters.
v Invalid syntax on JCL statements in cataloged procedures invoked by any

scanned EXEC statements.

The system does not check for misplaced statements, for invalid syntax in JCL
subparameters, or for parameters and/or subparameters that are inappropriate
together.

In a JES3 system, the system does not scan the JCL on the submitting system
when a //*ROUTE or XMIT JCL statement follows the JOB statement.

TYPRUN=SCAN checks the JCL only through the converter, not the interpreter.
The difference is that the converter basically checks all expressions to the LEFT
of an equal sign plus SOME expressions to the right of an equal sign (and
issues messages that start with IEFC), while the interpreter checks all
expressions to the RIGHT of an equal sign (and issues messages that start with
IEF). For example, a data set name containing a qualifier that exceeds eight
characters, such as

DSN=L9755TB.JCL.TEST19970103

would NOT be flagged by TYPRUN=SCAN but would be caught by the
interpreter.

Relationship to other control statements
In a JES3 system, code PGM=JCLTEST or PGM=JSTTEST on the EXEC statement to
scan a job step’s JCL. JCLTEST or JSTTEST provides for a step the same function as
provided by TYPRUN=SCAN for a job.

Example of the TYPRUN parameter
//UPDATE JOB ,HUBBARD
//STEP1 EXEC PGM=LIBUTIL

.

.

.
//LIST JOB ,HUBBARD,TYPRUN=HOLD
//STEPA EXEC PGM=LIBLIST

.

.

.

Jobs UPDATE and LIST are submitted for execution in the same input stream.
UPDATE executes a program that adds and deletes members of a library; LIST
executes a program that lists the members of that library. For an up-to-date listing
of the library, LIST must execute after UPDATE. To force this execution order, code
TYPRUN=HOLD on JOB statement LIST.

JOB: TYPRUN

454 z/OS V2R1.0 MVS JCL Reference

If a MONITOR JOBNAMES command is executed from the input stream or by the
operator, the system notifies the console operator when UPDATE completes. The
operator can then release LIST, allowing the system to select LIST for execution.

UJOBCORR parameter
Parameter type

Keyword, optional

Purpose

Specifies the user portion of the job correlator that will be associated with the
current job. The job correlator (JOBCORR parameter) is a 64-byte token that
uniquely identifies a job to JES. The JOBCORR value is composed of a 32-byte
system portion, which ensures a unique value, and a 32-byte user portion which
helps identify the job to the system. The UJOBCORR parameter specifies this
32-byte user portion of the job correlator.

The UJOBCORR value can be overridden when the job is submitted by using the
JES SYS_CORR_USRDATA symbol. Both the UJOBCORR and
SYS_CORR_USRDATA values can be overridden by JES2 installation exits 2 and 52
for JOB JCL statement scan, and by exits 20 and 50 for end of job input. For
information on modifying the user portion of the job correlator using JES2
installation exits, see z/OS JES2 Installation Exits For SYS_CORR_USRDATA symbol
information, see z/OS JES Application Programming.

In JES3 environments, this UJOBCORR parameter is accepted but ignored.

Networking considerations

A value that is passed over NJE will override the value that is passed on this
parameter—an NJE value comes from the JES symbol service or from installation
exits and passes over NJE.

Additional information

The job correlator is used to identify the job in multiple interfaces, including:
v JES operator commands
v ENF messaging
v Subsystem interfaces such as extended status and SAPI
v SMF records.

Syntax

UJOBCORR={user-correlator}

Subparameter definition
user-correlator

The user portion of the job correlator, 1-32 characters in length. This value
must start with an alphabetic or national character, which can be followed by

JOB: TYPRUN

Chapter 21. JOB statement 455

alphanumeric, national, and underscore ('_') characters. If the underscore
character is used, then the entire value must be enclosed within single
quotation marks (' ').

Examples of the UJOBCORR parameter
In the following example, the user portion of the job correlator is set to
JMAN_COMPILE:
//TEST JOB 333,STEVE,UJOBCORR=’JMAN_COMPILE’

Subsequently, this value will be combined with the system portion of the correlator
to form a job correlator similar to the following example:
J0000025NODE1...C910E4EC.......:JMAN_COMPILE
|<-system portion------------->||<-user portion--------------->|

USER parameter
Parameter type

Keyword, optional

Note: Do not specify this parameter for a started task; if USER is specified, the job
will fail.

Purpose

Code the USER parameter to identify to the system the person submitting the job.
The userid is used by RACF, the system resources manager (SRM), and other
system components.

If the installation contains the feature for propagation of the user and group
identification, the USER and PASSWORD parameters are required, and the GROUP
parameter is optional on JOB statements only for the following:
v Batch jobs submitted through an input stream, such as a card reader, (1) if the

job requires access to RACF-protected resources or (2) if the installation requires
that all jobs have RACF identification.

v Jobs submitted by one RACF-defined user for another user. In this case, the JOB
statement must specify the other user’s userid and may need a password. The
group id is optional.

v Jobs that execute at another network node that uses RACF protection.

Otherwise, the USER, PASSWORD, and GROUP parameters can be omitted from
JOB statements. RACF uses the userid, password, and default group id of the
submitting TSO/E user or job.

References

For more information on RACF-protected facilities, see the z/OS Security Server
RACF Security Administrator's Guide.

Considerations for an APPC scheduling environment

The USER parameter has no function in an APPC scheduling environment. If you
code USER, the system will check it for syntax and ignore it.

JOB: UJOBCORR

456 z/OS V2R1.0 MVS JCL Reference

Syntax

USER=[(]userid[)]

Subparameter definition
userid

Identifies a user to the system. The userid consists of 1 through 8
alphanumeric or national ($, #, @) characters; the first character must be
alphabetic or national ($, #, @).

Defaults
When not required by the installation and if the JOB statement or the submitting
TSO/E user does not supply identification information, RACF assigns a default
userid and group id, unless the job enters the system via a JES internal reader. In
this case, the user and default group identification of the submitting TSO/E user
or job is used.

Relationship to other parameters
If the JOB statement contains a GROUP or PASSWORD parameter, the statement
must also contain a USER parameter.

Example of the USER parameter
//TEST JOB ’D83,123456’,USER=MYNAME,PASSWORD=ABCD

This statement identifies the user submitting this job as MYNAME.

JOB: USER

Chapter 21. JOB statement 457

458 z/OS V2R1.0 MVS JCL Reference

Chapter 22. Null Statement

Use the null statement to mark the end of a job.

Description

Syntax

//

v The null statement consists of the characters // in columns 1 and 2.

v Columns 3 through 72 must be blank.

Location in the JCL
Place a null statement (1) at the end of a job’s control statements and data and (2)
at the end of an input stream.

The system can also recognize the end of a job when it reads the next JOB
statement or when the input stream contains no more records.

A null statement that does not end an input stream should be immediately
followed by a JOB statement. The system ignores statements between a null
statement and the next valid JOB statement.

Note: JES2 ignores a NULL statement when it is included in a job’s JCL statements.
JES2 processes JES2 control statements following a NULL statement as part of the
job (until the next JOB statement or EOF).

If a null statement follows a control statement that is being continued, the system
treats the null statement as a blank comment field and assumes that the control
statement contains no other parameters.

Example of the null statement
//MYJOB JOB ,’C BROWN’
//STEP1 EXEC PROC=FIELD
//STEP2 EXEC PGM=XTRA
//DD1 DD UNIT=3400-5
//DD2 DD *

.

.
data
.

/*
//

The null statement indicates the end of job MYJOB.

© Copyright IBM Corp. 1988, 2013 459

460 z/OS V2R1.0 MVS JCL Reference

Chapter 23. OUTPUT JCL statement

Purpose: Use the OUTPUT JCL statement to specify processing options for a
system output (sysout) data set. These processing options are used only when the
OUTPUT JCL statement is explicitly or implicitly referenced by a sysout DD
statement. JES combines the options from this OUTPUT JCL statement with the
options from the referencing DD statement.

OUTPUT JCL statements are useful in processing the output of one sysout data set
in several ways. For example, a sysout data set can be sent to a distant site for
printing, as shown in statement OUT1, while it is also printed locally, as shown in
statement OUT2:

//OUT1 OUTPUT DEST=STLNODE.WMSMITH
//OUT2 OUTPUT CONTROL=DOUBLE
//DS DD SYSOUT=C,OUTPUT=(*.OUT1,*.OUT2)

The parameters you can specify for sysout data set processing are arranged
alphabetically in the following sections.

References: For information about the JES initialization parameters that provide
installation defaults, see z/OS JES2 Initialization and Tuning Reference and z/OS JES3
Initialization and Tuning Reference. For examples of OUTPUT statement processing
on the JES3 hold queue and writer queue, see z/OS JES3 Initialization and Tuning
Guide.

Description

Syntax

//name OUTPUT parameter[,parameter]... [comments]

The OUTPUT JCL statement consists of the characters // in columns 1 and 2 and four
fields: name, operation (OUTPUT), parameter, and comments.

Name field
Code a name in the name field of every OUTPUT JCL statement, as follows:
v Each job-level OUTPUT JCL name must be unique within a job.
v Each step-level OUTPUT JCL name must be unique within the same job step.
v The name must begin in column 3.
v The name is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The name must be followed by at least one blank.

Operation field
The operation field consists of the characters OUTPUT and must be preceded and
followed by at least one blank. It can begin in any column.

© Copyright IBM Corp. 1988, 2013 461

Parameter field
The OUTPUT JCL statement contains only keyword parameters. All parameters are
optional; however, do not leave the parameter field blank. You can code any of the
keyword parameters in any order in the parameter field.

Table 27. Keyword parameters

KEYWORD PARAMETERS VALUES PURPOSE

ADDRESS= {(’delivery address’[,’delivery address’]...)}
{delivery-address }

See section “ADDRESS parameter” on page 472

delivery address: 1 - 4 delivery-address
subparameters; a delivery-address is 1 - 60
valid EBCDIC text values

Specifies an address to be
printed on output separator
pages.

AFPPARMS=datasetname

See section “AFPPARMS parameter” on page 474

datasetname must be a sequential data set.

datasetname must be cataloged.

See the DSNAME parameter on the DD
statement for additional syntax rules.

Use the AFPPARMS keyword
to reference the data set name
which specifies the parameter
file that contains the
parameters and values for the
AFP print distributor feature
of PSF. The parameters
specified in this parameter
file augment parameters
specified on the output JCL
statement.

AFPSTATS= {YES}
{Y }
{NO }
{N }

See section “AFPSTATS parameter” on page 474

YES or Y: Requests that PSF produce an
AFPSTATS report for the printing of this
sysout data set.

NO or N: Specifies that PSF should not
produce an AFPSTATS report for the
printing of this sysout data set.

Specifies to Print Services
Facility (PSF) that an AFP
Statistics About the Printfile
(AFPSTATS) report is to be
generated while printing this
sysout data set.

BUILDING= {’building identification’}
{building-identification }

See section “BUILDING parameter” on page 476

building identification: 1 - 60 valid EBCDIC
text values

Specifies a building location
to be printed on output
separator pages.

BURST= {YES}
{Y }
{NO }
{N }

See section “BURST parameter” on page 477

YES or Y: burster-trimmer-stacker
NO or N: continuous forms stacker

Directs output to a stacker on
a 3800 Printing Subsystem.

CHARS= {font-name }
{(font-name[,font-name]...)}
{STD }
{DUMP }
{(DUMP[,font-name]...) }

See section “CHARS parameter” on page 478

1 - 4 font-name subparameters:
1 - 4 alphanumeric or
national ($, #, @) characters
STD: character-arrangement
table (JES3 only)
DUMP: 204-character print
lines on 3800 dump

Names character-arrangement
tables for printing on an AFP
printer. Can request a
high-density dump on a
SYSABEND or SYSUDUMP
DD statement.

CKPTLINE=nnnnn

See section “CKPTLINE parameter” on page 479

nnnnn: 0 - 32,767 Specifies the maximum lines
in a logical page. (JES3
supports this parameter only
when PSF prints the sysout
data set on an AFP printer.)

CKPTPAGE=nnnnn

See section “CKPTPAGE parameter” on page 480

nnnnn: 1 - 32,767 Specifies the number of
logical pages to be printed or
transmitted before JES takes a
checkpoint. (JES3 supports
this parameter only when PSF
prints the sysout data set on
an AFP printer.)

OUTPUT JCL

462 z/OS V2R1.0 MVS JCL Reference

Table 27. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

CKPTSEC=nnnnn

See section “CKPTSEC parameter” on page 481

nnnnn: 1 - 32,767 Specifies how many seconds
of printing are to elapse
between each checkpoint of
this sysout data set. (JES3
supports this parameter only
when PSF prints the sysout
data set on an AFP printer.)

CLASS= {class}
{* }

See section “CLASS parameter” on page 482

class: A - Z, 0 - 9 *: same output class as
MSGCLASS parameter on JOB statement

Assigns the sysout data set to
an output class.

COLORMAP=resource

See section “COLORMAP parameter” on page 484

resource: 1 - 8 alphanumeric or national ($,
#, @) characters

Specifies the AFP resource
(object) for the data set that
contains color translation
information.

COMPACT=compaction-font-name

See section “COMPACT parameter” on page 484

compaction-font-name: 1 - 8 alphanumeric
characters

Specifies a compaction table
for sending this sysout data
set to a SNA remote terminal.

COMSETUP=resource

See section “COMSETUP parameter” on page 485

resource: 1 - 8 alphanumeric or national ($,
#, @) characters

Specifies the name of a
macrofile setup resource that
contains the SETUP
information.

CONTROL= {PROGRAM}
{SINGLE }
{DOUBLE }
{TRIPLE }

See section “CONTROL parameter” on page 486

PROGRAM: each logical record begins with
a carriage control character

SINGLE: single spacing
DOUBLE: double spacing
TRIPLE: triple spacing

Specifies that the data set
records begin with carriage
control characters or specifies
line spacing.

COPIES= {nnn }
{(,(group-value[,group-value]...))}

See section “COPIES parameter” on page 487

nnn (JES2): 1 - 255
nnn (JES3): 0 - 255
1 - 8 group-values (JES2): 1 - 255
1 - 8 group values (JES3): 1 - 254

Specifies number of copies
printed. For an AFP printer,
can instead specify number of
copies of each page printed
before the next page is
printed.

COPYCNT= {xxx}

See section “COPYCNT parameter” on page 489

xxx: 0 - 2147483647 Specifies number of copies
printed where the limit is 2G
in size.

DATACK= {BLOCK }
{UNBLOCK}
{BLKCHAR}
{BLKPOS }

See section “DATACK parameter” on page 490

BLOCK: indicates errors are
not reported
UNBLOCK: indicates errors
are reported
BLKCHAR: indicates print errors
are blocked
BLKPOS: indicates data errors
are blocked

Indicates whether or not
print-positioning errors and
invalid character data-check
errors are to be blocked or
not blocked.

DDNAME= {ddname}
{stepname.ddname}
{stepname.procstepname.ddname}

See section “DDNAME parameter” on page 491

ddname: DD to apply OUTPUT to
stepname.ddname: DD to apply OUTPUT
to, with preceding STEP name.
stepname.procstepname.ddname DD to apply
OUTPUT to, with preceding STEP and
PROCSTEP names.

Specifies the DDs to apply
the specifications on the
OUTPUT statement to (JES2
only).

DEFAULT= {YES}
{Y }
{NO }
{N }

See section “DEFAULT parameter” on page 492

YES or Y: this statement can be implicitly
referenced by sysout DD statements

NO or N: this statement cannot be implicitly
referenced by sysout DD statements.

Specifies that this is a default
OUTPUT JCL statement.

OUTPUT JCL

Chapter 23. OUTPUT JCL statement 463

Table 27. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

DEPT= {’department identification’}
{department-identification }

See section “DEPT parameter” on page 494

department identification: 1 - 60 valid
EBCDIC text values

Specifies a department
identification to be printed on
output separator pages.

DEST=destination

destination (JES2):
LOCAL
’IP:ipaddr’
name
Nnnnnn
NnRmmmmm to NnnnnnRm
(node,remote)
nodename.userid
’nodename.IP:ipaddr’
Rnnnnn or RMnnnnn or RMTnnnnn
Unnnnn

destination (JES3):
ANYLOCAL
’IP:ipaddr’
device-name
group-name
nodename
’nodename.IP:ipaddr’
nodename.remote

See section “DEST parameter” on page 495

LOCAL: local device
ipaddr identifies a TCP/IP routing
designation.
name: named local or remote device
Nnnnnn: node (1 - 32,767)
NnRmm: node (1 - 32,767) and
remote work station (1 - 32,767);
6 digits
maximum for n and m combined
nodename.userid: node (1 - 8
alphanumeric characters) and userid
(1 - 8 alphanumeric characters)
Rnnnnn or RMnnnnn or RMTnnnnn:
remote terminal (1 - 32,767)
Unnnnn: local terminal (1 - 32,767)
ANYLOCAL: any local device
device-name: local device (1 - 8
alphanumeric or national ($, #, @)
characters)
group-name: 1 or more local
devices or remote stations
(1 - 8 alphanumeric or national
($, #, @) characters)
nodename: node (1 - 8 alpha-
numeric or national ($, #, @)
characters)
remote: remote workstation (1 - 8
alphanumeric or national
($, #, @) characters)

Sends a sysout data set to the
specified destination.

DPAGELBL= {YES}
{Y }
{NO }
{N }

See section “DPAGELBL parameter” on page 498

YES or Y: requests that the system print a
security label on each page.

NO or N: requests that the system not print
a security label on each page.

Indicates whether the system
should print a security label
on each page of output.

DUPLEX= {NO }
{N }
{NORMAL}
{TUMBLE}

See section “DUPLEX parameter” on page 500

X'80' for NO
X'40' for NORMAL
X'20' for TUMBLE

Specifies whether the job
prints on one or both sides of
the paper. Overrides
comparable FORMDEF.

FCB= {fcb-name}
{STD }

See section “FCB parameter” on page 500

fcb-name: 1 - 4 alphanumeric or national ($,
#, @)

STD: standard FCB (JES3 only)

Specifies FCB image, carriage
control tape for 1403 Printer,
or data-protection image for
3525 Card Punch.

FLASH= {overlay-name }
{(overlay-name[,count])}
{(,count) }
{NONE }
{STD }

See section “FLASH parameter” on page 502

overlay-name: forms overlay frame (1 - 4
alphanumeric or national ($, #, @)
characters)

count: copies with overlay (0 - 255)

NONE: suppresses flashing

STD: standard forms flash overlay (JES3
only)

For printing on a 3800
Printing Subsystem, indicates
that the data set is to be
printed with forms overlay
and can specify how many
copies are to be flashed.

FORMDEF=membername

See section “FORMDEF parameter” on page 504

membername: 1 - 6 alphanumeric or
national ($, #, @) characters

Names a library member that
PSF uses in printing the
sysout data set on an AFP
printer.

OUTPUT JCL

464 z/OS V2R1.0 MVS JCL Reference

Table 27. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

FORMLEN=nn[.mmm]{IN|CM}

See section “FORMLEN parameter” on page 505

nn= 0-99
mmm= 0-999
IN= inches
CM= centimeters

Allows PSF users to set the
length of pages for print
without reconfiguring the
printer.

FORMS= {form-name}
{STD }

See section “FORMS parameter” on page 506

form-name: 1 - 8 alphanumeric or national
($, #, @) characters

STD: standard form (JES3 only)

Identifies forms on which the
sysout data set is to be
printed or punched.

FSSDATA=value

See section “FSSDATA parameter” on page 507

values: 1-127 EBCDIC characters Defined by a functional
subsystem. Refer to that
subsystem's documentation
for the intent and use of this
keyword.

GROUPID=output-group

See section “GROUPID parameter” on page 509

output-group: 1 - 8 alphanumeric characters Specifies that this sysout data
set belongs to a user-named
output group. (JES2 only)

INDEX=nn

See section “INDEX parameter” on page 511

nn: 1 - 31 Specifies how many print
positions the left margin is to
be indented for a sysout data
set printed on a 3211 Printer
with the indexing feature.
(JES2 only)

INTRAY=nnn

See section “INTRAY parameter” on page 512

nnn: 1 - 255 Specifies the printer input
tray from which to take paper
for the print job. Overrides
comparable FORMDEF
specification.

JESDS= {ALL}
{JCL}
{LOG}
{MSG}

See section “JESDS parameter” on page 512

ALL: all of the job’s JCL,
LOG, and MSG data sets

JCL: all JCL processing data sets
LOG: job’s hard-copy log
MSG: job’s system messages

Requests that the indicated
data sets for the job be
processed according to the
parameters on this OUTPUT
JCL statement.

LINDEX=nn

See section “LINDEX parameter” on page 514

nn: 1 - 31 Specifies how many print
positions to move the right
margin in from the full page
width for a sysout data set
printed on a 3211 Printer with
the indexing feature. (JES2
only)

LINECT=nnn

See section “LINECT parameter” on page 515

nnn: 0 - 255 Specifies the maximum lines
JES2 is to print on each page.
(JES2 only)

MAILBCC= {(’bcc address’[,’bcc address’]...)}
{bcc-address }

See section “MAILBCC parameter” on page 516

bcc address: 1-60 valid EBCDIC text values

bcc address: 1 - 32 addresses allowed

Specifies the e-mail addresses
of the recipients on the blind
copy list.

MAILCC= {(’cc address’[,’cc address’]...)}
{cc-address }

See section “MAILCC parameter” on page 517

cc address: 1-60 valid EBCDIC text values

cc address: 1 - 32 addresses allowed

Specifies the e-mail addresses
of the recipients on the copy
list.

MAILFILE= {’file id’}
{file-id }

See section “MAILFILE parameter” on page 517

file id: 1- 60 valid EBCDIC text values Specifies the file name of the
attachment to an e-mail.

MAILFROM= {’from address’}
{from-address }

See section “MAILFROM parameter” on page 518

from address: 1- 60 valid EBCDIC text
values

Specifies the descriptive name
or identifier of the sender of
an e-mail.

OUTPUT JCL

Chapter 23. OUTPUT JCL statement 465

Table 27. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

MAILTO= {(’to address’[,’to address’]...)}
{to-address }

See section “MAILTO parameter” on page 519

to address: 1- 60 valid EBCDIC text values

to address: 1 - 32 addresses allowed

Specifies the e-mail addresses
of the e-mail recipients.

MERGE= {YES}
{Y }
{NO }
{N }

See section “MERGE parameter” on page 520

YES or Y: OUTPUT JCL parameters will be
the job's default

NO or N: OUTPUT JCL parameters will not
be the job's default

Indicates whether or not the
parameters specified on the
OUTPUT JCL statement will
be the default OUTPUT
parameters for the job (JES2
only).

MODIFY= {module-name }
{([module-name][,trc])}

See section “MODIFY parameter” on page 521

module-name: 1 - 4 alphanumeric or
national ($, #, @) characters trc: font-name in
CHARS parameter (0 for first, 1 for second,
2 for third, and 3 for fourth font-name)

Specifies a copy-modification
module in SYS1.IMAGELIB to
be used by JES to print the
data set on a 3800 Printing
Subsystem.

NAME= {’preferred name’}
{preferred-name }

See section “NAME parameter” on page 522

preferred name: 1 - 60 valid EBCDIC text
values

Specifies the preferred name
to be printed on output
separator pages.

NOTIFY= {[node.]userid }
{([node.]userid1,...[node.]userid4)}

See section “NOTIFY parameter” on page 523

{node.}userid: node and userid to receive
print complete message.

Specifies the node and userid
to receive a print complete
message when the sysout
data set is printed.

OFFSETXB=mmmm[.nnn]{IN }
{CM }
{MM }
{PELS }
{POINTS}

See section “OFFSETXB parameter” on page 524

mmmm: 0 - 9999
nnn: 0 - 999
IN: inches
CM: centimeters
MM: millimeters

Specifies the offset in the X
direction from the page origin
(or partition origin for N_UP)
for the back side of each
output page.

OFFSETXF=mmmm[.nnn]{IN }
{CM }
{MM }
{PELS }
{POINTS}

See section “OFFSETXF parameter” on page 525

mmmm: 0 - 9999
nnn: 0 - 999
IN: inches
CM: centimeters
MM: millimeters

Specifies the offset in the X
direction from the page origin
(or partition origin for N_UP)
for the front side of each
output page.

OFFSETYB=mmmm[.nnn]{IN }
{CM }
{MM }
{PELS }
{POINTS}

See section “OFFSETYB parameter” on page 525

mmmm: 0 - 9999
nnn: 0 - 999
IN: inches
CM: centimeters
MM: millimeters

Specifies the offset in the Y
direction from the page origin
(or partition origin for N_UP)
for the back side of each
output page.

OFFSETYF=mmmm[.nnn]{IN }
{CM }
{MM }
{PELS }
{POINTS}

See section “OFFSETYF parameter” on page 525

mmmm: 0 - 9999
nnn: 0 - 999
IN: inches
CM: centimeters
MM: millimeters

Specifies the offset in the Y
direction from the page origin
(or partition origin for N_UP)
for the front side of each
output page.

OUTBIN=nnnnn

See section “INDEX parameter” on page 511

nnnnn: 1 - 65535 Specifies the ID of the printer
output bin where the data set
is to be sent.

OUTDISP=[normal-output-disposition,
abnormal-output-disposition]

See section “OUTDISP parameter” on page 526

normal output disposition: WRITE, HOLD,
KEEP, LEAVE, or PURGE.

abnormal output disposition: WRITE,
HOLD, KEEP, LEAVE, or PURGE.

Specifies the disposition of
the sysout process instance
for normal or, in a non-APPC
scheduling environment,
abnormal termination of the
job step. (JES2 only)

OUTPUT JCL

466 z/OS V2R1.0 MVS JCL Reference

Table 27. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

OVERLAYB=name

See section “OVERLAYB parameter” on page 528

name: 1 - 8 alphanumeric or national ($, #,
@) characters

Specifies placing the named
medium overlay on the back
side of each printed sheet.

OVERLAYF=name

See section “OVERLAYF parameter” on page 529

name: 1 - 8 alphanumeric or national ($, #,
@) characters

Specifies placing the named
medium overlay on the front
side of each printed sheet.

OVFL= {ON }
{OFF}

See section “OVFL parameter” on page 529

ON: JES3 should check for forms overflow
on an output printer.

OFF: JES3 should not check for forms
overflow on an output printer.

Specifies whether or not JES3
should check for forms
overflow on an output
printer. (JES3 only)

PAGEDEF=membername

See section “PAGEDEF parameter” on page 530

membername: 1 - 6 alphanumeric or
national ($, #, @) characters

Names a library member that
PSF uses in printing the
sysout data set on an AFP
printer.

PIMSG= {(YES[,msg-count])}
{(NO[,msg-count]) }

See section “PIMSG parameter” on page 531

YES: print messages from a functional
subsystem

NO: not print messages from a functional
subsystem

msg-count: number of errors to cause
printing to be terminated (0-999)

Indicates that messages from
a functional subsystem
should or should not be
printed in the listing
following the sysout data set.

PORTNO=nnnnn

See section “PORTNO parameter” on page 533

nnnnn: 1 - 65535 Specifies the TCP port
number at which Infoprint
Server connects to the printer
rather than connecting to
LPD on the printer. Specify
either PORTNO or
PRTQUEUE, but not both.
PRTQUEUE indicates the
queue used when connecting
to LPD on the printer.

PRMODE= {LINE }
{PAGE }
{process-mode}

See section “PRMODE parameter” on page 533

LINE: send data set to line-mode printer

PAGE: send data set to page-mode printer

process-mode: installation-defined mode (1 -
8 alphanumeric characters)

Identifies the process mode
required to print the sysout
data set.

PRMODE= {LINE }
{PAGE }
{process-mode}

See section “PRMODE parameter” on page 533

LINE: send data set to line-mode printer

PAGE: send data set to page-mode printer

process-mode: installation-defined mode (1 -
8 alphanumeric characters)

Identifies the process mode
required to print the sysout
data set.

PRTATTRS= {’attributename=value
attributename=value ...’}

See section “PRTATTRS parameter” on page 534

The minimum length is one character.

The maximum length is 127 characters.

Enclose the parameter in apostrophes
because attribute names contain lower case
letters.

All EBCDIC text characters are valid.

Use the PRTATTRS keyword
to specify one or more job
attributes for Infoprint Server.
See z/OS Infoprint Server
User's Guide.

OUTPUT JCL

Chapter 23. OUTPUT JCL statement 467

Table 27. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

PRTERROR= {DEFAULT}
{QUIT }
{HOLD }

See section “PRTERROR parameter” on page 535

DEFAULT= Specifies that PSF will take the
standard action if a terminating error occurs
during printing. This is the default.

QUIT= Specifies that PSF will release the
data set complete even if a terminating error
occurs during printing.

HOLD= Specifies that if a terminating error
occurs during printing, the data set will
remain on the JES SPOOL until the system
operator releases it.

On the OUTPUT statement or
dynamic output descriptor,
indicates the disposition of
the SYSOUT data set to use if
a terminating error occurs
during printing of the
SYSOUT data with the PSF
functional subsystem.

PRTOPTNS= {options data set entry name }
{’options data set entry name’}

See section “PRTOPTNS parameter” on page 536

print options: 1-16 valid EBCDIC characters. Identifies the print options
data.

PRTQUEUE= {print queue name }
{’print queue name’}

See section “PRTQUEUE parameter” on page 537

print queue: 1-127 valid EBCDIC characters. Identifies the target print
queue name.

PRTY=nnn

See section “PRTY parameter” on page 537

nnn: 0 - 255 (0 is lowest, 255 is highest) Specifies initial priority at
which the sysout data set
enters the output queue.

REPLYTO= {’reply address’ }
{reply-address }

See section “REPLYTO parameter” on page 538

reply address: 1- 60 valid EBCDIC text
values

Specifies the e-mail address
to which recipients can
respond.

RESFMT= {P240}
{P300}

See section “RESFMT parameter” on page 539

P240: specifies 240 pels per inch resolution.

P300: specifies 300 pels per inch resolution.

Specifies the resolution used
to format the print data set.

RETAINS= {’<hhhh>:<mm>:<ss>’}
{FOREVER }

See section “RETAINS and RETAINF parameters” on
page 539

retain time: 1-10 numeric characters or
FOREVER.

The successful transmission
retain time specification.

RETAINF= {’<hhhh>:<mm>:<ss>’}
{FOREVER }

See section “RETAINS and RETAINF parameters” on
page 539

retain time: 1-10 numeric characters or
FOREVER.

The failed transmission retain
time specification.

RETRYL= {nnn}

See section “RETRYL and RETRYT parameters” on
page 541

nnnnn: one to five numeric characters. The maximum number of
retries.

RETRYT= {’<hh>:<mm>:<ss>’}

See section “RETRYL and RETRYT parameters” on
page 541

retry time: 1-10 numeric characters. Wait time between
transmission retries.

ROOM= {’room identification’}
{room-identification }

See section “ROOM parameter” on page 542

room identification: 1-60 valid EBCDIC text
values

Specifies a room identification
to be printed on output
separator pages.

SYSAREA= {YES}
{Y }
{NO }
{N }

See section “SYSAREA parameter” on page 543

YES or Y: requests that the system reserve a
system area.

NO or N: requests that the system not
reserve a system area.

Indicates whether the system
should reserve a system area
on each page of output.

OUTPUT JCL

468 z/OS V2R1.0 MVS JCL Reference

Table 27. Keyword parameters (continued)

KEYWORD PARAMETERS VALUES PURPOSE

THRESHLD=limit

See section “THRESHLD parameter” on page 544

limit: 1 - 99999999 Specifies the maximum size
for a sysout data set. Use it to
obtain simultaneous printing
of large data sets or many
data sets from one job. (JES3
only)

TITLE= {’description of output’}
{description-of-output }

See section “TITLE parameter” on page 545

description of output: 1 - 60 valid EBCDIC
characters

Identifies a report title to be
printed on separator pages.

TRC= {YES}
{Y }
{NO }
{N }

See section “TRC parameter” on page 546

YES or Y: data set contains TRC codes

NO or N: data set does not contain TRC
codes

Specifies whether or not the
sysout data set’s records
contain table reference codes
(TRC) as the second character.

UCS=character-set-code

See section “UCS parameter” on page 547

character-set-code: 1 - 4 alphanumeric or
national ($, #, @) characters

Specifies universal character
set, print train, or character-
arrangement table for an AFP
printer.

USERDATA=value
(value[,value]...)

See section “USERDATA parameter” on page 549

From 1 to 16 values; each value may be
from 1 to 60 EBCDIC characters.

Defined by the installation.
Refer to your installation's
definition on the intent and
use of this keyword. If your
installation does not define
any use for this keyword, the
information will be syntax
checked, stored as part of the
output descriptor's
information, and then
ignored.

USERLIB={data-set-name }
{(data-set-name1,data-set-name2,
...data-set-name8)}

See section “USERLIB parameter” on page 552

data-set-name: 1 - 8 library data set names
containing AFP resources

Identifies libraries containing
AFP resources for PSF to use
when processing sysout data
sets.

USERPATH={path }
{(path1,path2,
...path8)}

pathname: 1 - 8 z/OS UNIX file paths. For
more information on specifying paths, see
“PATH parameter” on page 237.

Specifies a private path for
TrueType/OpenType fonts to
PSF for the print application
owner.

WRITER=name

See section “WRITER parameter” on page 555

name: 1 - 8 alphanumeric characters Names an external writer to
process the sysout data set
rather than JES.

Default OUTPUT JCL statement: An OUTPUT JCL statement that contains a
DEFAULT=YES parameter is called a default OUTPUT JCL statement.

Using enclosing apostrophes in OUTPUT parameters
Several of the parameters (such as ADDRESS, BUILDING, MAILBCC, and
USERDATA) on the OUTPUT JCL statement have variables that can be specified
with or without apostrophes. The rules governing the use of apostrophes are as
follows:

Valid characters within enclosing apostrophes:
v A variable enclosed in apostrophes can contain any EBCDIC text character.
v Enclose a value that contains a blank in apostrophes.

OUTPUT JCL

Chapter 23. OUTPUT JCL statement 469

v To code an apostrophe in a variable, code 2 apostrophes, and enclose the entire
delivery address in single apostrophes. For example, you might code the
ADDRESS parameter as follows:

//OUTDS OUTPUT ADDRESS=’O’’DARBY AVE’

v Each value may optionally be enclosed in apostrophes.

Valid characters without enclosing apostrophes: When a variable is not enclosed
in apostrophes, the following characters are valid:
v Alphanumeric and national (@, $, #) characters
v Period (.) and asterisk (*); however, an asterisk followed by a period indicates a

referral and is not allowed as the start (first and second characters) of the value.
v Ampersand (&). An ampersand that refers to a symbolic is substituted. Two

consecutive ampersands are not substituted, but they will result in a single
ampersand as part of the value.

v Plus sign (+)
v Hyphen (-)
v Slash (/)

Null Subparameters: You may code a null subparameter to cause a blank line to
appear in the delivery address. Code a comma to indicate the omitted
subparameter.

Symbolic Parameters: Do not enclose symbolic parameters within apostrophes.
Symbolic parameters enclosed in apostrophes are not resolved for this keyword.

Comments field
The comments field follows the parameter field after at least one intervening blank.

Location in the JCL
References by sysout DD statements: An OUTPUT JCL statement can be referenced
by a sysout DD statement in two ways:
v Explicitly. The sysout DD statement contains an OUTPUT parameter that

specifies the name of the OUTPUT JCL statement. You must place the OUTPUT
JCL statement in the input stream before any sysout DD statement that refers to
it.

v Implicitly. The sysout DD statement does not contain an OUTPUT parameter.
Implicit references are to default OUTPUT JCL statements. The sysout DD
statement implicitly references all step-level default OUTPUT JCL statements in
the same step.

Note: If the sysout DD statement does not contain an OUTPUT parameter and the
job or step does not contain a default OUTPUT JCL statement, processing of the
sysout data set is controlled only by the DD statement, a JES2 /*OUTPUT
statement or a JES3 //*FORMAT statement, and appropriate installation defaults.

Job-level OUTPUT JCL statements: This statement appears after the JOB statement
and before the first EXEC statement. It cannot be used for a started procedure.

Step-level OUTPUT JCL statements: This statement appears in a step, that is,
anywhere after the first EXEC statement in a job, except within a concatenated DD
statement.

OUTPUT JCL

470 z/OS V2R1.0 MVS JCL Reference

Location of default OUTPUT JCL statements: Where you place default OUTPUT
JCL statements determines to which statements a sysout DD statement implicitly
refers. A sysout DD statement implicitly references all job-level default OUTPUT
JCL statements when the step containing the DD statement does not contain any
step-level default OUTPUT JCL statements.

You can place more than one job- or step-level default OUTPUT JCL statement in a
job or step.

OUTPUT JCL statement with JESDS parameter: Place an OUTPUT JCL statement
with a JESDS parameter after the JOB statement and before the first EXEC
statement.

OUTPUT JCL statements in cataloged or in-stream procedures: OUTPUT JCL
statements can appear in procedure steps. The referencing DD statement can
appear later in the procedure, in the calling job step, or in a later step in the job.

An OUTPUT JCL statement must not be placed before the first EXEC statement in
a procedure; for this reason, procedures cannot contain job-level OUTPUT JCL
statements or OUTPUT JCL statements with JESDS parameters.

A procedure DD statement can refer to an OUTPUT JCL statement in an earlier job
step or to a job-level OUTPUT JCL statement. However, a procedure DD statement
cannot refer to an OUTPUT JCL statement in the calling step.

Table 28. Job- and Step-Level OUTPUT JCL Statements in the JCL
Job/Step Statement Description

Job in Input Stream //jobname JOB ...
//name OUTPUT ... Job-level OUTPUT JCL statement

Step 1 //STEP1 EXEC PGM=X
//name OUTPUT ...
//DD1 DD ...
//DD2 DD ...
//DD3 DD ...

Step-level OUTPUT JCL statement for STEP1

Step 2 //STEP2 EXEC PROC=A
//name OUTPUT ...
//DD1 DD ...
//DD2 DD ...
//DD3 DD ...

Step-level OUTPUT JCL statement for STEP2

Procedure A in
SYS1.PROCLIB
Procedure Step 1

// PROC ...
//PSTEP1 EXEC PGM=G
//name OUTPUT ...
//DD4 DD ...
//DD5 DD ...
//DD6 DD ...

Step-level OUTPUT JCL statement for PSTEP1

Procedure Step 2 //PSTEP2 EXEC PGM=H
//name OUTPUT ...
//DD7 DD ...
//DD8 DD ...
//DD9 DD ...

Step-level OUTPUT JCL statement for PSTEP2

Overrides
v Parameters on a sysout DD statement override corresponding parameters on an

OUTPUT JCL statement.
v Parameters that appear only on the sysout DD statement or only on the

OUTPUT JCL statement are used by JES in processing the data set.

Relationship to sysout DD statement
Do not refer to an OUTPUT JCL statement in a sysout DD statement that defines a
JES internal reader. Such a DD statement contains an INTRDR subparameter in the
SYSOUT parameter.

OUTPUT JCL

Chapter 23. OUTPUT JCL statement 471

Relationship to the JES2 /*OUTPUT statement
JES2 ignores a JES2 /*OUTPUT statement when either of the following appears in
the same job or step:
v A default OUTPUT JCL statement implicitly referenced by the sysout DD

statement.
v An OUTPUT JCL statement explicitly referenced by the OUTPUT parameter of

the sysout DD statement.

In this case, JES2 uses the third positional subparameter of the DD SYSOUT
parameter as a form name, and not as a reference to a JES2 /*OUTPUT statement.

Relationship to the JES3 //*FORMAT statement
v When a sysout DD statement implicitly or explicitly references an OUTPUT JCL

statement, JES3 ignores any default JES3 //*FORMAT statements in the job. A
default //*FORMAT statement contains a DDNAME=, parameter.

v When a JES3 //*FORMAT statement contains a DDNAME parameter that
explicitly references a sysout DD statement, JES3 ignores any default OUTPUT
JCL statements in the job.

v JES3 uses the processing options from both a JES3 //*FORMAT statement and
an OUTPUT JCL statement in a job when (1) the //*FORMAT statement
DDNAME parameter names a sysout DD statement and (2) the sysout DD
statement’s OUTPUT parameter names an OUTPUT JCL statement. Two separate
sets of output are created from the data set defined by the sysout DD statement:
– One processed according to the options on the JES3 //*FORMAT statement

combined with the sysout DD statement.
– One processed according to the options on the OUTPUT JCL statement

combined with the sysout DD statement.

For more information on the use of the OUTPUT JCL statement with JES3, see
z/OS JES3 Initialization and Tuning Guide.

ADDRESS parameter

Keyword, optional

Purpose

Use the ADDRESS parameter to print an address on the separator pages of an
output data set. An installation can use the address to assist in sysout distribution.

Syntax

ADDRESS= {(’delivery address’[,’delivery address’]...)}
{delivery-address }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the delivery
address.

Subparameter definition
delivery address

Specifies the delivery address for the output data set. You can code up to 4

OUTPUT JCL

472 z/OS V2R1.0 MVS JCL Reference

delivery addresses. Each delivery address can be 1 - 60 EBCDIC text characters.
See “Character sets” on page 21 for a description of EBCDIC text characters.

Defaults
v In an APPC scheduling environment: In both JES2 and JES3 systems, if you do

not code ADDRESS, the system uses the value defined in the transaction
program (TP) user's RACF profile when:
– The user submitting the TP profile has a RACF profile defined for him, and
– The transaction program profile includes TAILOR_SYSOUT(YES).

v In a non-APPC scheduling environment: There is no default for the ADDRESS
parameter on the OUTPUT JCL statement.

Overrides
v In an APPC scheduling environment: In both JES2 and JES3 systems, the

ADDRESS parameter on the OUTPUT JCL statement overrides the address in
the RACF profile.

v In a non-APPC scheduling environment: In both JES2 and JES3 systems, there
are no override considerations for ADDRESS.

Examples of the ADDRESS parameter
Example 1
//OUTDS2 OUTPUT ADDRESS=(’J. Plant’,’1234 Main Street’,
// ’POUGHKEEPSIE, NY’,’zipcd’)

In this example, the address

J. Plant
1234 Main Street
POUGHKEEPSIE, NY
zipcd

is printed on the separator pages of each output data set that references OUTDS2.
You may code a name in the address field when the name associated with an
address is not the name you want to associate with the output (coded on the
OUTPUT NAME statement.) The name appears in the address field on the
separator pages.

Example 2
//OUTDS3 OUTPUT ADDRESS=(,’57 FAIR LANE’,’OMAHA,NE’,12121)

In this example, the following address is printed on the separator pages of each
output data set that references OUTDS3.

57 FAIR LANE
OMAHA,NE
12121

The first line reserved for the address on the separator page will be blank. Note
that 12121 does not require enclosing apostrophes, because it contains only
characters that are valid without them.

OUTPUT JCL: ADDRESS

Chapter 23. OUTPUT JCL statement 473

AFPPARMS parameter
Parameter type

Keyword, optional

Purpose

Use the AFPPARMS keyword to reference the data set name which specifies the
parameter file that contains the parameters and values for the AFP print distributor
feature of PSF. The parameters specified in this parameter file augment parameters
specified on the output JCL statement.

References: For more information, see PSF for z/OS: User's Guide and PSF for z/OS:
Customization.

Syntax

AFPPARMS=datasetname

Parameter definition
datasetname

Specifies the data set name that AFP print distributor uses to locate the
parameter file.

Defaults
No Default.

Overrides
None.

Relationship to other control statements
None.

Example of the AFPPARM keyword
//OUTPUT1 OUTPUT AFPPARMS=’JOHNDOE.MY.PARM.FILE’
//SOMEDD DD SYSOUT=*,OUTPUT=(*.OUTPUT1)

AFPSTATS parameter
Parameter type

Keyword, optional

Purpose

Use the AFPSTATS keyword on the OUTPUT statement to indicate to the Print
Services Facility (PSF) that an AFP Statistics (AFPSTATS) report is to be generated
while printing this sysout data set. The AFPSTATS report can provide sysout data
set processing detail for:
v Determining in which resource libraries PSF found particular resources.
v Diagnosing some resource selection problems.

OUTPUT JCL: AFPPARMS

474 z/OS V2R1.0 MVS JCL Reference

v Obtaining statistical data about the printing of a sysout data set. These statistics
may contain some inaccuracies caused by error recovery and repositioning
within the sysout data set that make them unsuitable for accounting purposes.

v Diagnosing some sysout data set printing performance situations.

References: For more information, see PSF for z/OS: User's Guide and PSF for z/OS:
Customization.

Syntax

AFPSTATS= {YES}
{Y }
{NO }
{N }

Parameter definition
YES

Requests that PSF produce an AFPSTATS report for the printing of this sysout
data set. This parameter may also be coded as Y.

NO
Specifies that PSF should not produce an AFPSTATS report for the printing of
this sysout data set. This parameter may also be coded as N.

Defaults
If you do not code an AFPSTATS keyword, PSF will assume the value NO.

Overrides
Specification of AFPSTATS=YES will be ignored on systems with a PSF older than
PSF for OS/390 3.3.0.

The specification for the AFPSTATS keyword is exposed by PSF on the PSF
Installation Exit. The Installation Exit can override the user's OUTPUT statement
specification. When the Installation Exit overrides the OUTPUT statement
specification of the AFPSTATS keyword, the user will receive a message in the
sysout data set messages printed at the end of the sysout data set.

Relationship to other control statements
Coding the AFPSTATS=YES keyword on the OUTPUT statement will not generate
an AFPSTATS report unless the AFPSTATS DD statement in the PSF startup
procedure has been coded. The AFPSTATS DD statement identifies the data set
where PSF will place the AFPSTATS report. If you code the AFPSTATS keyword,
but the PSF start-up procedure does not have a valid AFPSTATS DD statement, the
sysout data set will be processed without PSF producing an AFPSTATS report.

Example of the AFPSTATS keyword
//OUT1 OUTPUT AFPSTATS=YES
//PRINT DD SYSOUT=*,OUTPUT=*.OUT1

In this example, PSF will produce an AFPSTATS report for the sysout data set
defined by the PRINT DD statement.

OUTPUT JCL: AFPSTATS

Chapter 23. OUTPUT JCL statement 475

BUILDING parameter
Parameter Type

Keyword, optional

Purpose

Use the BUILDING parameter to print a building identification on the separator
pages of an output data set. An installation can use the building location to assist
in sysout distribution.

Syntax

BUILDING= {’building identification’}
{building-identification }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the BUILDING
parameter.

Subparameter definition
building identification

Specifies the building location associated with the output data set. The value
for building location is 1 - 60 EBCDIC text characters. See “Character sets” on
page 21 for a description of EBCDIC text characters.

Defaults
v In an APPC scheduling environment: In both JES2 and JES3 systems, if you do

not code BUILDING, the system uses the value defined in the transaction
program (TP) user's RACF profile when:
– The user submitting the TP profile has a RACF profile defined for him, and
– The transaction program profile includes TAILOR_SYSOUT(YES).

v In a non-APPC scheduling environment: There is no default for the BUILDING
parameter on the OUTPUT JCL statement.

Overrides
v In an APPC scheduling environment: In both JES2 and JES3 systems, the

BUILDING parameter on the OUTPUT JCL statement overrides the building in
the RACF profile.

v In a non-APPC scheduling environment: In both JES2 and JES3 systems, there
are no override considerations for BUILDING.

Example of the BUILDING parameter
//OUTDS3 OUTPUT BUILDING=’920’

In this example, 920 will be printed on the line reserved for BUILDING on the
separator pages of any output data set that references OUTDS3.

OUTPUT JCL: BUILDING

476 z/OS V2R1.0 MVS JCL Reference

BURST parameter
Parameter type

Keyword, optional

Purpose

Use the BURST parameter to specify that the output for the sysout data set printed
on a continuous-forms AFP printer is to go to:
v The burster-trimmer-stacker, to be burst into separate sheets.
v The continuous forms stacker, to be left in continuous fanfold.

If the specified stacker is different from the last stacker used, or if a stacker was
not previously requested, JES issues a message to the operator to thread the paper
into the required stacker.

Note: BURST applies only for a data set printed on a 3800 or 3900 equipped with
a burster-trimmer-stacker.

Syntax

BURST= {YES}
{Y }
{NO }
{N }

Subparameter definition
YES

Requests that the printed output is to be burst into separate sheets. This
subparameter can also be coded as Y.

NO
Requests that the printed output is to be in a continuous fanfold. This
subparameter can also be coded as N.

Defaults
If you do not code a BURST parameter and the sysout data set is printed on a 3800
or 3900 that has a burster-trimmer-stacker, JES uses an installation default specified
at initialization.

Overrides
A BURST parameter on the sysout DD statement overrides the OUTPUT JCL
BURST parameter.

Example of the BURST parameter
//OUTDS1 OUTPUT BURST=YES

In this example, the output from the 3800 will be burst into separate sheets.

OUTPUT JCL: BURST

Chapter 23. OUTPUT JCL statement 477

CHARS parameter
Parameter type

Keyword, optional

Purpose

Use the CHARS parameter to specify the name of one or more coded fonts for
printing this sysout data set on an AFP printer.

Note:

v CHARS applies only for a data set that is either printed on an AFP printer or
processed by Infoprint Server.

v STD applies only on a JES3 system.

References

For more information on coded font names, see IBM AFP Fonts: Font Summary for
AFP Font Collection.

Syntax

CHARS= {font-name }
{(font-name[,font-name]...)}
{STD }
{DUMP }
{(DUMP[,font-name]...) }

v You can omit the parentheses if you code only one font-name.

v Null positions in the CHARS parameter are invalid. For example, you cannot code
CHARS=(,font-name) or CHARS=(font-name,,font-name).

Subparameter definition
font-name

Names a coded font or character-arrangement table. Each font-name is 1
through 4 alphanumeric or national ($, #, @) characters. Code one to four
names.

STD
Specifies the standard character-arrangement table. JES3 uses the standard table
specified at initialization.

Note: STD is supported only on JES3 systems.

DUMP
Requests a high-density dump of 204-character print lines from a 3800. If more
than one font-name is coded, DUMP must be first.

Note: DUMP is valid only on the OUTPUT JCL statement referenced in a
SYSABEND or SYSUDUMP DD statement that specifies a sysout data set for
the dump.

OUTPUT JCL: CHARS

478 z/OS V2R1.0 MVS JCL Reference

Defaults
If you do not code the OUTPUT JCL CHARS parameter, JES uses the following, in
order:
1. The DD CHARS parameter.
2. The DD UCS parameter value, if coded.
3. The OUTPUT JCL UCS parameter value, if coded.

If no character-arrangement table is specified on the DD or OUTPUT JCL
statements, JES uses an installation default specified at initialization.

Overrides
A CHARS parameter on the sysout DD statement overrides the OUTPUT JCL
CHARS parameter.

For a data set scheduled to the Print Services Facility (PSF), PSF uses the following
parameters, in override order, to select the font list:
1. Font list in the library member specified by an OUTPUT JCL PAGEDEF

parameter.
2. DD CHARS parameter.
3. OUTPUT JCL CHARS parameter.
4. DD UCS parameter.
5. OUTPUT JCL UCS parameter.
6. JES installation default for the device.
7. Font list on the PAGEDEF parameter in the PSF-cataloged procedure.

See “PAGEDEF parameter” on page 530 for more information.

Requesting a high-density dump
You can request a high-density dump on the 3800 through two parameters on the
DD statement for the dump data set or on an OUTPUT JCL statement referenced
by the dump DD statement:
v FCB=STD3. This parameter produces dump output at 8 lines per inch.
v CHARS=DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same
statement or one on each statement.

Example of the CHARS parameter
//OUTDS2 OUTPUT CHARS=(GT12,GB12,GI12)

In this example, the output from the AFP printer will be printed in three upper
and lower case fonts: GT12, Gothic 12-pitch; GB12, Gothic Bold 12-pitch; and GI12,
Gothic Italic 12-pitch.

CKPTLINE parameter
Parameter type

Keyword, optional

Purpose

OUTPUT JCL: CHARS

Chapter 23. OUTPUT JCL statement 479

Use the CKPTLINE parameter to specify the maximum number of lines in a logical
page. JES uses this value, with the CKPTPAGE parameter, to determine when to
take checkpoints while printing the sysout data set or transmitting the systems
network architecture (SNA) data set.

Note: A JES3 system supports this parameter only when PSF prints the sysout
data set on an AFP printer.

Syntax

CKPTLINE=nnnnn

Subparameter definition
nnnnn

Specifies the maximum number of lines in a logical page. nnnnn is a number
from 0 through 32,767.

Defaults
If you do not code the CKPTLINE parameter, JES2 uses an installation default
specified at initialization. JES3 provides no installation default.

Example of the CKPTLINE parameter
//OUTDS3 OUTPUT CKPTLINE=4000,CKPTPAGE=5

In this example, the sysout data set will be checkpointed after every 5 logical
pages. Each logical page contains 4000 lines.

CKPTPAGE parameter
Parameter type

Keyword, optional

Purpose

Use the CKPTPAGE parameter to specify the number of logical pages:
v To print before JES takes a checkpoint.
v To transmit as a single systems network architecture (SNA) chain to an SNA

work station before JES takes a checkpoint.

The CKPTLINE parameter specifies the number of lines in these logical pages.

Note: A JES3 system supports this parameter only when PSF prints the sysout
data set on an AFP printer.

Syntax

CKPTPAGE=nnnnn

OUTPUT JCL: CKPTLINE

480 z/OS V2R1.0 MVS JCL Reference

Subparameter definition
nnnnn

Specifies the number of logical pages to print or transmit before the next
sysout data set checkpoint is taken. nnnnn is a number from 1 through 32,767.

Defaults
If you do not code the CKPTPAGE parameter, JES2 uses an installation default
specified at initialization; the default may also indicate whether checkpoints are to
be based on page count or time. JES3 provides no installation default.

Relationship to other parameters
If you code both the CKPTPAGE and CKPTSEC parameters:
v JES2 uses the value on the CKPTSEC parameter, provided the installation did

not specify at initialization that checkpoints are to be based only on page count
or time.

v JES3 uses the value on the CKPTPAGE parameter.

Example of the CKPTPAGE parameter
//OUTDS4 OUTPUT CKPTPAGE=128,CKPTLINE=58

In this example, the sysout data set will be checkpointed after every 128 logical
pages. Each logical page contains 58 lines.

CKPTSEC parameter
Parameter type

Keyword, optional

Purpose

Use the CKPTSEC parameter to specify how many seconds are to elapse between
checkpoints of the sysout data set that JES is printing.

Note: A JES3 system supports this parameter only when PSF prints the sysout
data set on an AFP printer.

Syntax

CKPTSEC=nnnnn

Subparameter definition
nnnnn

Specifies the number of seconds that is to elapse between checkpoints. nnnnn
is a number from 1 through 32,767.

Defaults
If you do not code the CKPTSEC parameter, JES2 uses an installation default
specified at initialization; the default may also indicate whether checkpoints are to
be based on page count or time. JES3 provides no installation default.

OUTPUT JCL: CKPTPAGE

Chapter 23. OUTPUT JCL statement 481

Relationship to other parameters
If you code both the CKPTPAGE and CKPTSEC parameters:
v JES2 uses the value on the CKPTSEC parameter, provided the installation did

not specify at initialization that checkpoints are to be based only on page count
or time.

v JES3 uses the value on the CKPTPAGE parameter.

Example of the CKPTSEC parameter
//OUTDS5 OUTPUT CKPTSEC=120

In this example, the sysout data set will be checkpointed after every 120 seconds,
or 2 minutes.

CLASS parameter
Parameter type

Keyword, optional

Purpose

Use the CLASS parameter to assign the sysout data set to an output class.

Note: If a sysout data set has the same class as the JOB statement MSGCLASS
parameter, the job log appears on the same output listing as the sysout data set.

Syntax

CLASS= {class}
{* }

Subparameter definition
class

Identifies the output class for the data set. The class is one character: A
through Z or 0 through 9, which you may optionally include in quotation
marks. The attributes of each output class are defined during JES initialization;
specify the class with the desired attributes.

* Requests the output class in the MSGCLASS parameter on the JOB statement.

null value
Requests the output class in the MSGCLASS parameter on the JOB statement.

Overrides
The class subparameter of the DD statement SYSOUT parameter overrides the
OUTPUT JCL CLASS parameter. On the DD statement, you must code a null class
in order to use the OUTPUT JCL CLASS parameter; for example:

//OUTDS DD SYSOUT=(,),OUTPUT=*.OUT1

Held Classes in a JES2 system
An installation option at JES2 initialization determines if both the class for the
sysout data set and the class for the job’s messages must be held in order for a
sysout data set to be held.

OUTPUT JCL: CKPTSEC

482 z/OS V2R1.0 MVS JCL Reference

A sysout data set is held in the following cases:
v The sysout DD statement contains HOLD=YES.
v The sysout DD statement does not contain a HOLD parameter or contains

HOLD=NO but requests a class that the installation defined as held and defined
as:
– Not requiring the message class to be a held class in order for the sysout data

set to be held. The JOB statement MSGCLASS parameter can specify any
class.

– Requiring the message class to be a held class in order for the sysout data set
to be held. The JOB MSGCLASS parameter must also specify a held class.

v The OUTPUT JCL statement specifies OUTDISP=HOLD.

A sysout data set is not held in the following cases:
v The sysout DD statement does not contain a HOLD parameter or contains

HOLD=NO and requests:
– A class that the installation defined as not held.
– A class that the installation defined as held and defined as requiring the

message class to be a held class in order for the sysout data set to be held.
The JOB MSGCLASS parameter must specify a class that is not held.

Contact the installation to find out if holding the sysout class depends on a held
MSGCLASS class.

Held Classes in a JES3 system
If CLASS specifies a class-name that is defined to JES3 as a held class for the
output service hold queue (Q=HOLD), all of the new output characteristics might
not be included in the data set on the writer queue when (1) the data set is moved
from the hold queue to the output service writer queue (Q=WTR), (2) the data set
includes an OUTPUT JCL statement, and (3) the NQ= or NCL= keyword is used.

For more information, see z/OS JES3 Initialization and Tuning Guide.

Significance of output classes
To print this sysout data set and the messages from your job on the same output
listing, code one of the following:
v The same output class in the DD SYSOUT parameter as in the JOB MSGCLASS

parameter.
v DD SYSOUT=* to default to the JOB MSGCLASS output class.
v DD SYSOUT=(,) to default to one of the following:

1. The CLASS parameter in an explicitly or implicitly referenced OUTPUT JCL
statement. In this case, the OUTPUT JCL CLASS parameter should specify
the same output class as the JOB MSGCLASS parameter.

2. The JOB MSGCLASS output class, if no OUTPUT JCL statement is referenced
or if the referenced OUTPUT JCL statement contains either CLASS= or
CLASS=*.

Examples of the CLASS parameter
Example 1
//OUTDS6 OUTPUT CLASS=D
//OUT1 DD SYSOUT=(,),OUTPUT=*.OUTDS6

OUTPUT JCL: CLASS

Chapter 23. OUTPUT JCL statement 483

In this example, JES processes the sysout data set defined in DD statement OUT1
in output class D.

Example 2
//PRINTALL JOB ACCT123,MAEBIRD,MSGCLASS=H
//STEP1 EXEC PGM=PRINTER
//OUTDS7 OUTPUT CLASS=*
//OUTPTR DD SYSOUT=(,),OUTPUT=*.OUTDS7

In this example, JES processes the sysout data set defined in DD statement
OUTPTR in output class H, as specified in the JOB statement MSGCLASS
parameter. The same result could be obtained by the following:
//PRINTALL JOB ACCT123,MAEBIRD,MSGCLASS=H
//STEP1 EXEC PGM=PRINTER
//OUTPTR DD SYSOUT=H

COLORMAP parameter
Parameter Type: Keyword, optional

Purpose: Use COLORMAP to specify the AFP Resource (object) for the data set
that contains color translation information. For more information see PSF for z/OS:
User's Guide.

Syntax

COLORMAP=resource

Subparameter definition
resource

Specifies the name of an AFP resource, where the resource name is 1 through 8
alphanumeric or national ($, #, @) characters and the first must be alphabetic
or national.

Example of the COLORMAP parameter
//OUTCOLOR OUTPUT COLORMAP=M1SETUP

In this example, M1SETUP is the name of the AFP resource.

COMPACT parameter
Parameter type

Keyword, optional

Purpose

Use the COMPACT parameter to specify a compaction table for JES to use when
sending the sysout data set, which is a systems network architecture (SNA) data
set, to a SNA remote terminal.

OUTPUT JCL: CLASS

484 z/OS V2R1.0 MVS JCL Reference

Syntax

COMPACT=compaction-font-name

Subparameter definition
compaction-font-name

Specifies a compaction table by a symbolic name. The name is 1 through 8
alphanumeric characters. The symbolic name must be defined by the
installation during JES initialization.

Defaults
If you do not code the COMPACT parameter, compaction is suppressed for the
data set.

Overrides
This parameter overrides any compaction table value defined at the SNA remote
terminal.

Example of the COMPACT parameter
//OUTDS8 OUTPUT DEST=N555R222,COMPACT=TBL77

In this example, the sysout data set will be sent to remote terminal 222 at node
555; JES will use compaction table TBL77.

COMSETUP parameter
Parameter type

Keyword, optional

Purpose

Use the COMSETUP parameter to specify the name of a microfile setup resource
that contains setup information.

References

For more information, see PSF for z/OS: User's Guide.

Syntax

COMSETUP=resource

Subparameter definition
resource

Specifies the name of a macrofile setup resource, where the resource name is 1
through 8 alphanumeric or national ($, #, @) characters. (The first must be
alphabetic or national.)

OUTPUT JCL: COMPACT

Chapter 23. OUTPUT JCL statement 485

Example of the COMSETUP parameter
//RPTDS OUTPUT COMSETUP=H1SETUP

In this example, H1SETUP is the name of a microfilm setup resource.

CONTROL parameter
Parameter type

Keyword, optional

Purpose

Use the CONTROL parameter to specify either that each logical record starts with
a carriage control character or that the output is to be printed with single, double,
or triple spacing.

Syntax

CONTROL= {PROGRAM}
{SINGLE }
{DOUBLE }
{TRIPLE }

Subparameter definition
PROGRAM

Indicates that each logical record in the data set begins with a carriage control
character, which must be identified in the DD statement, DCB macro, or data
set label. You might identify these carriage control characters in the DD
statement through the DCB subparameter in the RECFM of the data set as
being A (ASA) or M (machine). The carriage control characters are given in
z/OS DFSMS Using Data Sets.

SINGLE
Indicates forced single spacing.

DOUBLE
Indicates forced double spacing.

TRIPLE
Indicates forced triple spacing.

Defaults
In a JES3 system, if you do not code the CONTROL parameter, JES3 uses an
installation default specified at initialization.

In a JES2 system, if you do not code the CONTROL parameter, JES2 uses the
settings from the device statement in the JES2 initialization deck or the operator
command to modify the spacing for that device. This modify device command can
set single, double, or triple spacing.

Example of the CONTROL parameter
//OUTDS9 OUTPUT CONTROL=PROGRAM

OUTPUT JCL: COMSETUP

486 z/OS V2R1.0 MVS JCL Reference

In this example, the sysout data set is printed using the first character of each
logical record for carriage control.

COPIES parameter
Parameter type

Keyword, optional

Purpose

Use the COPIES parameter to specify how many copies of the sysout data set to
print. The printed output is in page sequence for each copy.

For printing on an AFP printer, this parameter can instead specify how many
copies of each page are to be printed before the next page is printed.

Syntax

COPIES= {nnn }
{(nnn,(group-value[,group-value]...))}
{(,(group-value[,group-value]...)) }

v You can omit the parentheses if you code only COPIES=nnn.

v The following are not valid:

– A null group-value, for example, COPIES=(5,(,)) or COPIES=(5,)

– A zero group-value, for example, COPIES=(5,(1,0,4))

– A null within a list of group-values, for example, COPIES=(5,(1,,4))

Subparameter definition
nnn

A number (1 through 255 in a JES2 system, 0 through 255 in a JES3 system)
that specifies how many copies of the sysout data set to print. Each copy will
be in page sequence order.

For a data set printed on an AFP printer, JES ignores nnn if any group values
are specified.

group-value
Specifies how many copies of each page are to be printed before the next page
is printed. Each group-value is 1 through 3 decimal numbers from 1 through
255 in a JES2 system and from 1 through 254 in a JES3 system. You can code a
maximum of eight group-values. The total copies of each page equals the sum
of the group-values.

Note:

v This subparameter is valid only for output processed by PSF.
v For output printed on an AFP printer, this subparameter overrides an nnn

subparameter, if coded.

Defaults
For JES2, on the DD, OUTPUT JCL, or /*OUTPUT statement: if you do not code a
COPIES parameter, code it incorrectly, or code COPIES=0, the system uses a
default of 1, which is the default for the DD COPIES parameter.

OUTPUT JCL: CONTROL

Chapter 23. OUTPUT JCL statement 487

For JES3, on the DD, OUTPUT JCL, or //*FORMAT statement: if you do not code
a COPIES parameter, code it incorrectly, or code COPIES=0 on the DD statement,
the system uses a default of 1, which is the default for the DD COPIES parameter.

Overrides
A COPIES parameter on the sysout DD statement overrides the OUTPUT JCL
COPIES parameter.

If the OUTPUT JCL statement contains a FORMDEF parameter, which specifies a
library member, the COPYGROUP parameter on a FORMDEF statement in that
member overrides any group-value subparameters on the OUTPUT JCL COPIES
parameter or the sysout DD COPIES parameter. For more information, see
“FORMDEF parameter” on page 504.

Relationship to other parameters
If the OUTPUT JCL or the sysout DD statement contains a FLASH parameter, JES
prints with the forms overlay the number of copies specified in one of the
following:
v COPIES=nnn, if the FLASH count is larger than nnn. For example, if COPIES=10

and FLASH=(LTHD,12) JES prints 10 copies, all with the forms overlay.
v The sum of the group-values specified in the COPIES parameter, if the FLASH

count is larger than the sum. For example, if COPIES=(,(2,3,4) and
FLASH=(LTHD,12) JES prints nine copies in groups, all with the forms overlay.

v The count subparameter in the FLASH parameter, if the FLASH count is smaller
than nnn or the sum from the COPIES parameter. For example, if COPIES=10
and FLASH=(LTHD,7) JES prints seven copies with the forms overlay and three
copies without.

Relationship to other control statements
For JES2, if you request copies of the entire job on the JES2 /*JOBPARM COPIES
parameter and also copies of the data set on the DD COPIES or OUTPUT JCL
COPIES parameter, JES2 prints the number of copies equal to the product of the
two requests.

Examples of the COPIES parameter
Example 1
//RPTDS OUTPUT COPIES=4,FORMS=WKREPORT

This example asks JES to print four copies of the weekly report on forms named
WKREPORT.

Example 2
//EXPLD OUTPUT COPIES=(,(3)),FORMS=ACCT

This example asks JES to print the first page three times, then the second page
three times, the third page three times, etc., on forms named ACCT.

Example 3
//QUEST OUTPUT COPIES=(,(8,25,18,80)),FORMS=ANS

This example asks JES to print each page eight times before printing the next page,
then 25 times before the next, then 18 times before the next, and finally 80 times
before the next. The forms are named ANS.

OUTPUT JCL: COPIES

488 z/OS V2R1.0 MVS JCL Reference

Example 4
//EXMP OUTPUT COPIES=(5,(3,2))

This example asks JES to do one of the following:
v If the data set is printed on other than an AFP printer, to print five copies.
v If it is printed on an AFP printer, to print each page three times before printing

the next page and then to print each page twice before printing the next page.

COPYCNT parameter
Parameter type

Keyword, optional

Purpose

The COPYCNT=xxx keyword supercedes the COPIES=xxx keyword on the output
statement. Use it to define the number of copies of output. Where COPIES is
limited to 255 maximum size, COPYCNT can be 0 - 2147483647 in size.

Note: This is only supported for PSF 4.4.0 and above.

Syntax

COPYCNT= {xxx}

Subparameter definition
None.

Defaults
None.

Overrides
COPYCNT supercedes COPIES. If both are coded, COPYCNT takes precedence.

Relationship to other parameters
None.

Relationship to other control statements
None.

Examples of the COPYCNT parameter
Example 1
COPYCNT=3500

This example provides a larger range of values for the number of copies of output
to be produced.

OUTPUT JCL: COPIES

Chapter 23. OUTPUT JCL statement 489

DATACK parameter
Parameter type

Keyword, optional

Purpose

Use the DATACK parameter to indicate whether or not print-positioning and
invalid-character data-check errors are to be blocked or unblocked for printers
accessed through the Print Services Facility (PSF) functional subsystem.

A print-positioning error occurs when the designated position of any kind of
printable information is beyond the limits of either the physical page, or the
overlay or logical page of which it is part.

An invalid-character data-check error occurs when the hexadecimal representation
of a text character has no mapping in the code page to a member of the font raster
patterns.

If an error type is unblocked, the printer reports the error at the end of the page in
which it occurs, and PSF processes the error and generates an error message. (See
the PIMSG parameter for more information on the printing of error messages.)

If an error type is blocked, the printer does not report the error to PSF. Printing
continues but data may be lost on the output.

References

For more information on data-check errors and their processing through PSF, see
PSF for z/OS: Customization or PSF for z/OS: User's Guide.

Syntax

DATACK= {BLOCK }
{UNBLOCK}
{BLKCHAR}
{BLKPOS }

Subparameter definition
BLOCK

Indicates that print-positioning errors and invalid-character errors are not
reported to PSF.

UNBLOCK
Indicates that print-positioning errors and invalid-character errors are reported
to PSF.

BLKCHAR
Indicates that invalid-character errors are blocked, and not reported to PSF.
Print-positioning errors are reported normally.

BLKPOS
Indicates that print-positioning errors are blocked, and not reported to PSF.
Invalid-character errors are reported normally.

OUTPUT JCL: DATACK

490 z/OS V2R1.0 MVS JCL Reference

Defaults
If you do not code the DATACK parameter, the DATACK specification from the
PSF PRINTDEV statement is used. If not specified in the PRINTDEV statement, the
default is BLOCK. For information about the PRINTDEV statement, see PSF for
z/OS: Customization.

Relationship to other parameters
If DATACK is specified as UNBLOCK, BLKCHAR, or BLKPOS, and an unblocked
error occurs, the printer reports the error to PSF which processes the error. The
coding of the PIMSG parameter then determines whether or not printing of the
data set continues after the page in error, and if error messages are printed at the
end of the data set.

Example of the DATACK parameter
//OUTDS1 OUTPUT DATACK=BLKCHAR,PIMSG=(YES,0)

In this example, when a print-position error occurs, it is reported to the user via a
printed error message. If an invalid-character error occurs, it is not reported. In
either case, the printing of the data set continues, and all functional subsystem
messages are printed.

DDNAME parameter
Keyword, optional

Purpose

Specifies the DD statements to apply the specifications on the OUTPUT statement
to.

Syntax

DDNAME={ddname }
{stepname.ddname }
{stepname.procstepname.ddname}

Subparameter definition
ddname

A 1-8 character label for a specific DD statement.

stepname
A 1-8 character label for a specific step name.

procstepname
A 1-8 character label for a specific procedure.

Example of the DDNAME parameter
In the following example, the specifications on the OUTPUT statement are applied
to the DD statement named DDNAME1, which resides in STEP1 of procstep
PSTEP1.
DDNAME=STEP1.PSTEP1.DDNAME1

OUTPUT JCL: DATACK

Chapter 23. OUTPUT JCL statement 491

DEFAULT parameter
Parameter type

Keyword, optional

Purpose

Use the DEFAULT parameter to specify that this OUTPUT JCL statement can or
cannot be implicitly referenced by a sysout DD statement. An OUTPUT JCL
statement that contains a DEFAULT=YES parameter is called a default OUTPUT
JCL statement.

Syntax

DEFAULT= {YES}
{Y }
{NO }
{N }

Subparameter definition
YES

Indicates that this OUTPUT JCL statement can be implicitly referenced by
sysout DD statements. This subparameter can also be coded as Y.

NO
Indicates that this OUTPUT JCL statement cannot be implicitly referenced by
sysout DD statements. This subparameter can also be coded as N.

Defaults
If you do not code DEFAULT=YES, the default is NO. In order to take effect, an
OUTPUT JCL statement without DEFAULT=YES must be explicitly referenced in
an OUTPUT parameter on a sysout DD statement.

Location in the JCL
v A step-level OUTPUT JCL statement appears within a step, that is, anywhere

after the first EXEC statement in a job.
v A job-level OUTPUT JCL statement appears after the JOB statement and before

the first EXEC statement.
v You can place more than one job- or step-level default OUTPUT JCL statement

in a job or step.
v You must place an OUTPUT JCL statement in the input stream before any

sysout DD statement that explicitly or implicitly refers to it.

References to default OUTPUT JCL statements
v A sysout DD statement makes an explicit reference in an OUTPUT parameter

that specifies the name of an OUTPUT JCL statement.
v A sysout DD statement makes an implicit reference when it does not contain an

OUTPUT parameter, and the job or step contains one or more default OUTPUT
JCL statements.

v A sysout DD statement implicitly references all step-level default OUTPUT JCL
statements in the same step.

OUTPUT JCL: DEFAULT

492 z/OS V2R1.0 MVS JCL Reference

v A sysout DD statement implicitly references all job-level default OUTPUT JCL
statements when the step containing the DD statement does not contain any
step-level default OUTPUT JCL statements.

v A sysout DD statement can explicitly reference a default OUTPUT JCL
statement.

Example of the DEFAULT parameter
//EXMP2 JOB ACCT555,MAEBIRD,MSGCLASS=B
//OUTDAL OUTPUT DEFAULT=YES,DEST=DALLAS
//OUTPOK OUTPUT DEST=POK
//STEP1 EXEC PGM=REPORT
//OUTHERE OUTPUT CLASS=D
//SYSIN DD *

.

.

.
/*
//WKRPT DD UNIT=VIO,DISP=(,PASS)
//RPT1 DD SYSOUT=(,),OUTPUT=*.OUTHERE
//RPT2 DD SYSOUT=A
//STEP2 EXEC PGM=SUMMARY
//OUTHQ OUTPUT DEFAULT=YES,DEST=HQ
//WKDATA DD UNIT=VIO,DISP=(OLD,DELETE),DSNAME=*.STEP1.WKRPT
//MONTH DD SYSOUT=(,),OUTPUT=*.STEP1.OUTHERE
//SUM DD SYSOUT=A
//FULRPT DD SYSOUT=A,OUTPUT=(*.OUTDAL,*.OUTPOK)

In this example, the JOB named EXMP2 contains two job-level OUTPUT JCL
statements: OUTDAL and OUTPOK. OUTDAL is a default OUTPUT JCL statement
because it contains DEFAULT=YES; OUTDAL can be implicitly referenced by a
sysout DD statement. OUTPOK must be explicitly referenced in a sysout DD
OUTPUT parameter for its processing options to be used. The purpose of both of
these OUTPUT JCL statements is to specify a destination for a sysout data set.

STEP1 contains a step-level OUTPUT JCL statement: OUTHERE. The purpose of
this statement is to specify that JES process the data set locally in output class D.
OUTHERE can be used only if it is explicitly referenced.

STEP2 contains a step-level default OUTPUT JCL statement: OUTHQ. The purpose
of this statement is to specify a destination for a sysout data set. OUTHQ can be
implicitly referenced.

The references in this job are as follows:
v In STEP1 and STEP2, sysout DD statements RPT1 and MONTH explicitly

reference OUTPUT JCL statement OUTHERE. These two sysout data sets are
printed locally in the same output class.

Note: You can explicitly reference an OUTPUT JCL statement in a preceding job
step.

v In STEP1, DD statement RPT2 implicitly references OUTPUT JCL statement
OUTDAL. This implicit reference occurs because all of the following are true:
1. DD statement RPT2 contains a SYSOUT parameter but does not contain an

OUTPUT parameter. Thus, this DD statement is making an implicit reference.
2. STEP1 does not contain a default OUTPUT JCL statement, so the implicit

reference must be to job-level default OUTPUT JCL statements.
3. OUTDAL is the only job-level default OUTPUT JCL statement.

OUTPUT JCL: DEFAULT

Chapter 23. OUTPUT JCL statement 493

v In STEP2, DD statement SUM implicitly references OUTPUT JCL OUTHQ
because all of the following are true:
1. DD statement SUM contains a SYSOUT parameter but does not contain an

OUTPUT parameter. Thus, this DD statement is making an implicit reference.
2. STEP2 contains a default OUTPUT JCL statement: OUTHQ. Therefore, the

implicit reference is to OUTHQ and cannot be to any job-level default
OUTPUT JCL statements.

v In STEP2, DD statement FULRPT explicitly references OUTPUT JCL statements
OUTDAL and OUTPOK.

DEPT parameter
Parameter type

Keyword, optional

Purpose

Use the DEPT parameter to print the department identification on the separator
pages of output for a sysout data set. An installation can use the department
identification to assist in sysout distribution.

Syntax

DEPT= {’department identification’}
{department-identification }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the DEPT
parameter.

Subparameter definition
department identification

Specifies the department identification associated with the sysout. The value
for department identification is 1 - 60 EBCDIC text characters. See “Character
sets” on page 21 for a description of EBCDIC text characters.

Defaults
v In an APPC scheduling environment: In both JES2 and JES3 systems, if you do

not code DEPT, the system uses the value defined in the transaction program
(TP) user's RACF profile when:
– The user submitting the TP profile has a RACF profile defined for him, and
– The transaction program profile includes TAILOR_SYSOUT(YES).

v In a non-APPC scheduling environment: There is no default for the DEPT
parameter on the OUTPUT JCL statement.

Overrides
v In an APPC scheduling environment: In both JES2 and JES3 systems, the DEPT

parameter on the OUTPUT JCL statement overrides the department in the RACF
profile.

v In a non-APPC scheduling environment: In both JES2 and JES3 systems, there
are no override considerations for DEPT.

OUTPUT JCL: DEFAULT

494 z/OS V2R1.0 MVS JCL Reference

Example of the DEPT parameter
//OUTDS4 OUTPUT DEPT=’PAYROLL’

In this example, PAYROLL will be printed on the line reserved for DEPT on
separator pages of any sysout data set that references OUTDS4.

DEST parameter
Parameter type

Keyword, optional

Purpose

Use the DEST parameter to specify a destination for the sysout data set. The DEST
parameter can send a sysout data set to a remote or local terminal, a node, a node
and remote work station, a local device or group of devices, or a node and userid.

Syntax

DEST=destination

The destination subparameter for JES2 is one of the following:

LOCAL|ANYLOCAL
’IP:ipaddr’
name
Nnnnnn
NnRmmmmm
NnnRmmmm
NnnnRmmm
NnnnnRmm
NnnnnnRm
(node.remote)
nodename.userid
’nodename.IP:ipaddr’
Rnnnnn
RMnnnnn
RMTnnnnn
Unnnnn
userid

The destination subparameter for JES3 is one of the following:

ANYLOCAL
’IP:ipaddr’
device-name
group-name
nodename
’nodename.IP:ipaddr’
nodename.remote

Subparameter definition for JES2 systems
LOCAL|ANYLOCAL

Indicates any local device.

'IP:ipaddr' | 'nodename.IP:ipaddr'
Identifies a TCP/IP routing designation, where ipaddr can be any printable

OUTPUT JCL: DEPT

Chapter 23. OUTPUT JCL statement 495

character string of from 1 to 124 characters. The entire parameter list is limited
to 127 characters, and it must be enclosed in single quotation marks.

name
Identifies a destination by a symbolic name (for example, a local device,
remote device, or a userid) which is defined by the installation during JES2
initialization. The name can be, for example, a local device, remote device, or a
userid. The name is 1 through 8 alphanumeric or national ($, #, @) characters.

Nnnnnn
Identifies a node. nnnnn is 1 through 5 decimal numbers from 1 through
32,767. For example, N103.

NnRmmmmm
NnnRmmmm
NnnnRmmm
NnnnnRmm
NnnnnnRm

Identifies a node and a remote work station connected to the node. The node
number, indicated in the format by n, is 1 through 5 decimal numbers from 1
through 32,767. The remote work station number, indicated in the format by m,
is 1 through 5 decimal numbers from 1 through 32,767. Do not code leading
zeros in n or m. The maximum number of digits for n and m combined cannot
exceed six.

Note: R0 is equivalent to LOCAL specified at node Nn.

nodename.userid
Identifies a destination node and a VM or a TSO/E userid, a remote
workstation, or a symbolic name defined at the destination node. The
nodename is a symbolic name defined at the node of execution. nodename is 1
through 8 alphanumeric or national ($, #, @) characters. userid is 1 through 8
alphanumeric or national ($, #, @) characters, and must be defined at the
specified node.

Rnnnnn
RMnnnnn
RMTnnnnn

Identifies a remote workstation. nnnnn is 1 through 5 decimal numbers from 1
through 32,767. Note that with remote pooling, the installation may translate
this route code to another route code.

If you send a job to execute at a remote node and the job has a ROUTE PRINT
RMTnnnn statement, JES returns the output to RMTnnnn at the node of origin.
For JES2 to print the output at RMTnnnn at the executing node, code
DEST=NnnnRmmm on an OUTPUT JCL statement or sysout DD statement.

Note: R0 is equivalent to LOCAL.

Unnnnn
Identifies a local terminal with special routing. nnnnn is 1 through 5 decimal
numbers from 1 through 32,767.

If you send a job to execute and the job has a ROUTE PRINT Unnnn
statement, JES returns the output to Unnnn at the node of origin.

userid
Identifies a userid at the local node. Userid for TSO/E is 1 through 7
alphanumeric or national ($, #, @) characters. The userid can also be a
destination name defined in a JES2 DESTID initialization statement.

OUTPUT JCL: DEST

496 z/OS V2R1.0 MVS JCL Reference

Note: JES2 initialization statements determine whether or not the node name is
required when coding a userid. See your system programmer for information
about how routings will be interpreted by JES2.

Subparameter definition for JES3 systems
ANYLOCAL

Indicates any local device.

'IP:ipaddr' | 'nodename.IP:ipaddr'
Identifies a TCP/IP routing designation, where ipaddr can be any printable
character string of from 1 to 124 characters. The entire parameter list is limited
to 127 characters, and it must be enclosed in single quotation marks.

device-name
Identifies a local device by a symbolic name defined by the installation during
JES3 initialization. device-name is 1 through 8 alphanumeric or national ($, #,
@) characters.

group-name
Identifies a group of local devices, an individual remote station, or a group of
remote stations by a symbolic name defined by the installation during JES3
initialization. group-name is 1 through 8 alphanumeric or national ($, #, @)
characters.

nodename
Identifies a node by a symbolic name defined by the installation during JES3
initialization. The node is 1 through 8 alphanumeric or national ($, #, @)
characters. If the node you specify is the same as the node you are working on,
JES3 treats the output as though you had specified ANYLOCAL.

nodename.remote
Identifies a destination node and either a remote work station or VM userid at
that node, as follows:

nodename
A symbolic name defined by the installation during JES3 initialization. The
nodename is 1 through 8 alphanumeric or national ($, #, @) characters.

remote
A name for a remote work station. The name is 1 through 8 alphanumeric
or national ($, #, @) characters and must be defined at the node. Enclose it
in apostrophes when it contains special characters or begins with a
number.

Defaults
In a JES2 system, if you do not code a DEST parameter, JES directs the sysout data
set to the default destination for the input device from which the job was
submitted.

In a JES3 system, if you do not code a DEST parameter, the default destination is
the submitting location. For jobs submitted through TSO/E and routed to NJE for
execution, the default is the node from which the job was submitted, and the
destination ANYLOCAL.

If a specified destination is invalid, the job fails.

OUTPUT JCL: DEST

Chapter 23. OUTPUT JCL statement 497

Note: Most JCL syntax errors are detected and reported by JES or the functional
subsystem that is processing the sysout data set, rather than when the system first
reads in the JCL.

Overrides
A DEST parameter on the sysout DD statement overrides the OUTPUT JCL DEST
parameter.

Relationship to other parameters
For JES3, you can code the DEST=nodename parameter with the OUTPUT JCL
WRITER=name parameter; however, do not code DEST=nodename.userid with
WRITER=name.

Examples of the DEST parameter
Example 1
//REMOT1 OUTPUT DEST=R444

In this example, JES2 sends the sysout data set to remote terminal 444.

Example 2
//REMOT2 OUTPUT DEST=STAT444

In this example, JES sends the sysout data set to an individual remote station
named by the installation STAT444.

Example 3
//REMOT3 OUTPUT DEST=KOKVMBB8.DP58HHHD

In this example, JES sends the sysout data set to VM userid DP58HHHD at node
KOKVMBB8.

Example 4
//REMOT4 OUTPUT DEST=’NEWYORK.IP:bldprt-2’

In this example JES2 sends the sysout data set to node NEWYORK, where a
functional subsystem that can process IP-distributed data sets sends the data to the
bldprt-2 host system.

Example 5
//REMOT5 OUTPUT DEST=’IP:9.117.84.53’

In this example the functional subsystem sends the sysout data to the host machine
at IP address 9.117.84.53.

DPAGELBL parameter
Parameter type

Keyword, optional

Purpose

OUTPUT JCL: DEST

498 z/OS V2R1.0 MVS JCL Reference

Use the DPAGELBL (data page labelling) parameter to indicate whether the system
should print the security label on each page of printed output. The security label
represents a security level and categories as defined to RACF.

The security label that the system prints is determined by the SECLABEL
parameter of the JOB statement. If you do not specify SECLABEL on the JOB
statement, the security level at which the job is executing is printed.

Reference

For additional information on data page labelling, refer to PSF for z/OS:
Customization and PSF for z/OS: Security Guide.

Syntax

DPAGELBL= {YES}
{Y }
{NO }
{N }

Subparameter definition
YES

Requests the system to print the security label on each page of printed output.
You can also code this parameter as Y.

NO
Requests that the system print no security label on each page of printed
output. You can also code this parameter as N.

Defaults
If you do not code the DPAGELBL parameter, an installation default determines if
a security label is printed.

Relationship to other parameters
Use the DPAGELBL parameter with the SYSAREA parameter on the OUTPUT JCL
statement and the SECLABEL parameter on the JOB statement as instructed by
your security administrator.

You can code the DPAGELBL parameter with any other OUTPUT JCL statement
parameters.

Example of the DPAGELBL parameter
//JOBA JOB 1,’JIM WOOSTER’,SECLABEL=CONF

.

.
//VPRPT OUTPUT DPAGELBL=YES,FORMS=VP20

In this example, the security label CONF (specified on the SECLABEL parameter of
the JOB statement) is printed on each page of printed output. The sysout data set
is printed on forms named VP20.

OUTPUT JCL: DPAGELBL

Chapter 23. OUTPUT JCL statement 499

DUPLEX parameter
Parameter type

Keyword, optional

Purpose

Use DUPLEX to specify whether or not printing is to be done on both sides of the
sheet. This overrides what is specified in the FORMDEF in use.

Syntax

DUPLEX={NO }
{N }
{NORMAL}
{TUMBLE}

Subparameter definition
NO or N

Specifies to print on one side only.

NORMAL
Specifies that the physical page is rotated about the Y axis. For most page
orientations (including the default orientation), the Y axis is the long edge of
the sheet. This allows for binding on the long side of the sheet.

TUMBLE
Specifies that the physical page is rotated about the X axis. For most page
orientations (including the default orientation), the X axis is the short edge of
the sheet. This allows for binding on the short side of the sheet.

Relationship to other keywords on this statement
The DUPLEX keyword overrides the duplex option from the forms definition,
which may be specified by the FORMDEF keyword.

Example of the DUPLEX parameter
//OUTDUP OUTPUT DUPLEX=NO

In this example, the output is to be printed in simplex (printed on only one side of
the paper).

FCB parameter
Parameter type

Keyword, optional

Purpose

Use the FCB parameter to specify:
v The forms control buffer (FCB) image JES is to use to guide printing of the

sysout data set by a 1403 Printer, 3211 Printer, 3203 Printer Model 5, 3800

OUTPUT JCL: DUPLEX

500 z/OS V2R1.0 MVS JCL Reference

Printing Subsystem, 4245 Printer, or 4248 Printer, or by a printer supported by
systems network architecture (SNA) remote job entry (RJE).

v The page definition member to be used if the data set is line-mode and is
printed on a page-mode printer and you do not code PAGEDEF.

v The carriage control tape JES is to use to control printing of the sysout data set
by a 1403 Printer or by a printer supported by SNA RJE.

v The data-protection image JES is to use to control output by a 3525 Card Punch.
v The name of a page definition to be used by PSF in formatting a print data set.

The FCB image specifies how many lines are to be printed per inch and the length
of the form. JES loads the image into the printer’s forms control buffer. The FCB
image is stored in SYS1.IMAGELIB. IBM provides three standard FCB images:
v STD1, which specifies 6 lines per inch on an 8.5-inch-long form. (3211 and 3203-5

only)
v STD2, which specifies 6 lines per inch on an 11-inch-long form. (3211 and 3203-5

only)
v STD3, which specifies 8 lines per inch on an 11-inch form for a dump. (3800

only)

References

For more information on the forms control buffer, see z/OS DFSMSdfp Advanced
Services or PSF for z/OS: User's Guide.

Syntax

FCB= {fcb-name}
{STD }

v Code the fcb-name as STD1 or STD2 only to request the IBM-supplied images.

v Code the fcb-name as STD3 only for a high-density dump.

Subparameter definition
fcb-name

Identifies the FCB image. The name is 1 through 4 alphanumeric or national ($,
#, @) characters and is the last characters of a SYS1.IMAGELIB member name:
v FCB2xxxx member, for a 3211, a 3203 Model 5, or a printer supported by

SNA.
v FCB3xxxx member, for a 3800.
v FCB4xxxx member, for a 4248.

Identifies a PAGEDEF member in the PSF libraries.

STD
Indicates the standard FCB. JES3 uses the standard FCB specified at JES3
initialization.

Note: STD is supported only on JES3 systems.

Defaults
If you do not code the FCB parameter for a data set on an impact printer, the
system checks the FCB image that was last loaded in the printer; if it is a default

OUTPUT JCL: FCB

Chapter 23. OUTPUT JCL statement 501

image, as indicated by its first byte, JES uses it. If it is not a default image, JES
loads the FCB image that is the installation default specified at JES initialization.

The FCB parameter names a default page definition to be used if the data set is
line-mode, is printed on a page-mode printer and PAGEDEF is not coded on the
OUTPUT or DD statements.

Overrides
An FCB parameter on the sysout DD statement overrides the OUTPUT JCL FCB
parameter. If the data set is line-mode and is printed on a page-mode printer and
you code PAGEDEF on the DD statement or OUTPUT statement, then PAGEDEF
overrides FCB.

Relationship to other parameters
The FCB parameter is mutually exclusive with the FRID subparameter of the DD
statement DCB parameter.

Requesting a high-density dump
You can request a high-density dump on the 3800 through two parameters on the
DD statement for the dump data set or on an OUTPUT JCL statement referenced
by the dump DD statement:
v FCB=STD3. This parameter produces dump output at 8 lines per inch.
v CHARS=DUMP. This parameter produces 204-character print lines.

You can code one or both of these parameters. You can place both on the same
statement or one on each statement.

Example of the FCB parameter
//OUTDS1 OUTPUT FCB=AA33

In this example, JES will print the sysout data set using the FCB image named
AA33.

FLASH parameter
Parameter type

Keyword, optional

Purpose

Use the FLASH parameter to identify the forms overlay to be used in printing the
sysout data set on a 3800 Printing Subsystem and, optionally, to specify the
number of copies on which to print the forms overlay.

Note: FLASH applies only for a data set printed on a 3800.

Reference

For information on forms overlays, see the Forms Design Reference Guide for the
3800.

OUTPUT JCL: FCB

502 z/OS V2R1.0 MVS JCL Reference

Syntax

FLASH= {overlay-name }
{(overlay-name[,count])}
{(,count) }
{NONE }
{STD }

The count subparameter is optional. If you omit it, you can omit the parentheses.

Subparameter definition
overlay-name

Identifies the forms overlay frame that the operator is to insert into the printer
before printing begins. The name is 1 through 4 alphanumeric or national ($, #,
@) characters.

count
Specifies the number, 0 through 255, of copies that JES is to flash with the
overlay, beginning with the first copy printed. Code a count of 0 to flash no
copies.

NONE
Suppresses flashing for this sysout data set.

If FLASH=NONE is on an OUTPUT JCL statement in a job to be executed at a
remote node, JES3 sets the overlay-name to zero before sending the job to the
node.

STD
Indicates the standard forms flash overlay. JES3 uses the standard forms
overlay specified at JES3 initialization.

Note: STD is supported only on JES3 systems.

Defaults
If you do not code a FLASH parameter and an installation default was not
specified at JES2 or JES3 initialization, forms are not flashed.

If you specify an overlay-name without specifying a count, all copies are flashed.
That is, the default for count is 255.

Overrides
A FLASH parameter on the sysout DD statement overrides the OUTPUT JCL
FLASH parameter.

Relationship to other parameters
If the OUTPUT JCL or the sysout DD statement also contains a COPIES parameter,
JES prints with the forms overlay the number of copies specified in one of the
following:
v COPIES=nnn, if the FLASH count is larger than nnn. For example, if COPIES=10

and FLASH=(LTHD,12) JES prints 10 copies, all with the forms overlay.
v The sum of the group-values specified in the COPIES parameter, if the FLASH

count is larger than the sum. For example, if COPIES=(,(2,3,4)) and
FLASH=(LTHD,12) JES prints nine copies in groups, all with the forms overlay.

OUTPUT JCL: FLASH

Chapter 23. OUTPUT JCL statement 503

v The count subparameter in the FLASH parameter, if the FLASH count is smaller
than nnn or the sum from the COPIES parameter. For example, if COPIES=10
and FLASH=(LTHD,7) JES prints seven copies with the forms overlay and three
copies without.

Verification of forms overlay frame
Before printing starts, the system requests the operator to load the specified forms
overlay frame in the printer. A frame must be loaded but the system cannot verify
that it is the correct frame.

Printing without flashing
To print without flashing, specify one of the following:
v FLASH=NONE on the DD or OUTPUT JCL statement.
v Omit the FLASH parameter on all of the statements for the data set and on all

JES initialization statements.
v FLASH=(,0) on the OUTPUT JCL statement.

Example of the FLASH parameter
//OUTDS1 OUTPUT COPIES=16,FLASH=(LTHD,7)

In this example, JES issues a message to the operator requesting that the forms
overlay frame named LTHD be inserted in the printer. Then JES prints the first
seven copies of the sysout data set with the forms overlay and the last nine
without.

FORMDEF parameter
Parameter type

Keyword, optional

Purpose

Use the FORMDEF parameter to identify a library member that contains
statements to tell the Print Services Facility (PSF) how to print the sysout data set
on a page-mode printer (such as the 3800 Printing Subsystem Model 3). The
statements can specify the following:
v Overlay forms to be used during printing.
v Location on the page where overlays are to be placed.
v Suppressions that can be activated for specified page formats.

The member must be in the library named in the cataloged procedure that was
used to initialize PSF, or in a library specified in the USERLIB parameter.

Note: FORMDEF applies only for data sets printed on a PSF-managed AFP printer.

References

For more information, see PSF for z/OS: User's Guide.

OUTPUT JCL: FLASH

504 z/OS V2R1.0 MVS JCL Reference

Syntax

FORMDEF=membername

Subparameter definition
membername

Specifies the name of a library member. membername is 1 through 6
alphanumeric or national ($, #, @) characters; the first two characters are
pre-defined by the system.

Overrides
The library member specified by the OUTPUT JCL FORMDEF parameter can
contain:
v Statements that override the installation’s FORMDEF defaults in the

PSF-cataloged procedure.
v A FORMDEF statement with a COPYGROUP parameter. The COPYGROUP

parameter overrides any group-value subparameters on the OUTPUT JCL
COPIES parameter or the sysout DD COPIES parameter.

Note: The FORMDEF statement in the library member does not override a
sysout DD or OUTPUT JCL COPIES=nnn parameter.

Example of the FORMDEF parameter
//PRINT3 OUTPUT FORMDEF=JJPRT

In this example, PSF is to print the sysout data set on an AFP printer according to
the parameters in the library member JJPRT.

FORMLEN parameter
Parameter type: Keyword, optional

Purpose: A PSF user can use the FORMLEN parameter to set the length of pages
for print without reconfiguring the printer.

Syntax

FORMLEN=nn[.mmm]{IN|CM}

Subparameter definition
nn Required. A one or two digit number, which can be zero.

.mmm
Optional. A decimal point (period) followed by up to three digits.

{IN|CM}
Required. The unit the decimal digits represent. Code IN for inches or CM for
centimeters.

OUTPUT JCL: FORMDEF

Chapter 23. OUTPUT JCL statement 505

Relationship to other control statements
FORMLEN is coordinated with FORMDEF (which may also be specified on the
OUTPUT or PSF PRINTDEV statements).

Examples of the FORMLEN parameter
Example 1
//OUTFORML OUTPUT FORMLEN=12.345CM

In this example the PSF user has requested that a specification of paper length
12.345 centimeters be sent to the printer.

Example 2
//OUTFORML OUTPUT FORMLEN=2IN

In this example the PSF user has requested that a specification of 2-inch paper
length be sent to the printer.

Note: The decimal point and fractional portion are optional.

Example 3
//OUTFORML OUTPUT FORMLEN=0.1IN

In this example the PSF user has requested that a specification of 0.1-inch paper
length be sent to the printer.

Note: You must specify at least one digit to the left of the decimal point.

FORMS parameter
Parameter type

Keyword, optional

Purpose

Use the FORMS parameter to identify the forms on which the sysout data set is to
be printed or punched.

Syntax

FORMS= {form-name}
{STD }

Subparameter definition
form-name

Identifies the print or punch forms. form-name is 1 through 8 alphanumeric or
national ($, #, @) characters.

STD
Indicates that JES3 is to use the standard form specified at JES3 initialization.

Note: STD is supported only on JES3 systems.

OUTPUT JCL: FORMLEN

506 z/OS V2R1.0 MVS JCL Reference

Defaults
If you do not code a form-name subparameter, JES uses an installation default
specified at initialization.

Overrides
The form-name subparameter of the SYSOUT parameter on the sysout DD
statement overrides the OUTPUT JCL FORMS parameter. Note that the SYSOUT
form-name subparameter can be only four characters maximum while both the
OUTPUT JCL FORMS form-name and the JES initialization default form names can
be eight characters maximum.

Example of the FORMS parameter
//OUTDS1 OUTPUT FORMS=ACCT4010

In this example, the sysout data set will be printed on forms named ACCT4010.

FSSDATA parameter
Parameter type

Keyword, optional

Purpose

Use the FSSDATA parameter for the intended purpose of each functional
subsystem that documents this parameter.

Syntax

FSSDATA=value

Subparameter definition
value

Required. A subsystem-defined parameter (maximum = 127) to pass from a
spooling product to a despooler.

The following considerations apply when you supply the value a functional
subsystem requires:

Characters valid when enclosed in apostrophes

v You may include any EBCDIC text characters in an FSSDATA parameter
value if you enclose the value in apostrophes. See Character Set in topic
4.2 for a list and description of valid EBCDIC text characters.

v You must enclose the value in apostrophes if it contains a blank.
v The system preserves trailing blanks you include as part of a value you

enclose in apostrophes. For example, if you specify
FSSDATA=’SUNDAY ’

the parameter value for the FSSDATA keyword is eight (8) characters,
and a functional subsystem may deem it to be different from
FSSDATA=’SUNDAY’

(6 characters) or
FSSDATA=’SUNDAY ’

OUTPUT JCL: FORMS

Chapter 23. OUTPUT JCL statement 507

(7 characters).
v To code an apostrophe as part of the value, code two apostrophes, as

well as enclosing the entire value in single apostrophes. Example:
//OUT1 OUTPUT FSSDATA=’New Year’’s Day’

Characters not requiring enclosing apostrophes
Apostrophes are optional when "value" consists only of:
v Uppercase alphanumeric characters
v National characters @, $, and #
v Period (.)
v Asterisk (*). However, an asterisk followed by a period indicates a

referral; *. is NOT allowed as the first two characters of the value
v Ampersand (&). An ampersand referring to a symbolic is substituted.

Two consecutive ampersands are not substituted; they will result in a
single ampersand as part of the value

v Plus sign (+)
v Hyphen(-)
v Slash (/)

Characters you may not enclose in aphstrophes
Do not enclosed symbolic parameters within apostrophes. The system will
not resolve them.

Defaults
None.

Overrides
None.

Relationship to other keywords on this statement
None.

Relationship to other system functions
None.

Examples of the FSSDATA parameter
A functional subsystem defines its intended content for the FSSDATA parameter
value. The following are examples of the allowable syntax for the FSSDATA
parameter. Parentheses enclose the resulting values (or portions thereof) to help
distinguish them.

Example 1
//OUTDS1 OUTPUT FSSDATA=FSSVALUE

In Example 1 the FSSDATA parameter contains a value (FSSVALUE) that does not
require apostrophes around it. This is because the value contains no blanks and
consists only of characters that are valid without apostrophes.

Example 2
//OUTDS2 OUTPUT FSSDATA=’Subsystem data’

OUTPUT JCL: FSSDATA

508 z/OS V2R1.0 MVS JCL Reference

In Example 2 the FSSDATA parameter contains a single value (Subsystem data)
which you must enclose in apostrophes because of the embedded blank.

Example 3
//OUTDS3 OUTPUT FSSDATA=’AOPPT=CFF’

In Example 3 the FSSDATA parameter contains a value (AOPPT=CFF) within
apostrophes. The parameter value consists of a string that a functional subsystem
could use to identify a defined keyword (AOPPT) and its parametric value (CFF).

Example 4
//PROCC PROC PARM1=FSSDATA
//STEPC EXEC PGM=MYPGM
//OUTDS4 OUTPUT FSSDATA=&PARM1

In Example 4 the FSSDATA parameter contains a value whose first character is an
ampersand (&). "Value" consists of a string that a functional subsystem could use
to identify a symbolic parameter. The system takes the procedure default for the
value from the PROC statement (FSSDATA).

Example 5
//PROCD PROC PARM1=FSSDATA
//STEPD EXEC PGM=MYPGM
//OUTDS5 OUTPUT FSSDATA=’&PARM1’

In Example 5 the FSSDATA parameter contains a value enclosed within
apostrophes, where the first character of the value is an ampersand (&). The value
consists of a string that a functional subsystem could use to identify a symbolic
parameter. Because the subsystem-defined parameter is enclosed within
apostrophes, the system does not resolve the &PARM1 symbolic; it leaves the
parameter value unchanged (&PARM1).

Example 6
//OUTDS3 OUTPUT FSSDATA=’printer=MyPrinter’

In Example 6, the FSSDATA parameter contains a value (printer=MyPrinter) within
apostrophes. The parameter value consists of a string that Infoprint Server uses to
identify a defined keyword (printer), and its value (MyPrinter). For more
information about Infoprint Server and the printer keyword, see z/OS Infoprint
Server User's Guide.

GROUPID parameter
Parameter type

Keyword, optional, JES2 only

Purpose

Use the GROUPID parameter to specify that the sysout data set belongs to an
output group. The data sets in an output group are processed together in the same
location and time. Data sets to be grouped should have similar characteristics: the
same output class, destination, process mode, and external writer name.

Note: GROUPID is supported only on JES2 systems.

OUTPUT JCL: FSSDATA

Chapter 23. OUTPUT JCL statement 509

Syntax

GROUPID=output-group

Subparameter definition
output-group

Specifies the name of an output group. The output-group is 1 through 8
alphanumeric characters and is selected by the programmer to define an
output group for this job. The name is not installation-defined.

Relationship to other control statements
If you code FREE=CLOSE on a sysout DD statement that references an OUTPUT
JCL statement containing a GROUPID parameter, JES2 will not group the data sets
into one output group. Instead, JES2 produces one copy of the sysout data set for
each OUTPUT JCL statement that the DD statement references.

Examples of the GROUPID parameter
Example 1
//EXMP5 JOB ACCT1984,MAEBIRD,MSGCLASS=A
//OUTRPT OUTPUT GROUPID=RPTGP,DEFAULT=YES,DEST=TDC
//STEP1 EXEC PGM=RPTWRIT
//SYSIN DD *

.

.

.
/*
//RPTDLY DD SYSOUT=C
//RPTWK DD SYSOUT=C

In this example, the DD statements RPTDLY and RPTWK implicitly reference the
default OUTPUT JCL statement OUTRPT. JES2 creates two output groups:
1. Group RPTGP is created because of the GROUPID parameter in the OUTPUT

JCL statement. It contains the two reports from the sysout DD statements
RPTDLY and RPTWK and is printed at the destination TDC. The programmer
named this group RPTGP.

2. The other group is named by JES2. It contains the system-managed data set for
the job’s messages.

Example 2
//EXAMP JOB MSGCLASS=A
//JOBOUT OUTPUT GROUPID=SUMM,DEST=HQS,CHARS=GT10
//STEP1 EXEC PGM=RWRITE
//OUT1 OUTPUT FORMS=STD,CHARS=GS10,DEST=LOCAL
//RPT1 DD SYSOUT=A,OUTPUT=(*.OUT1,*.JOBOUT)
//STEP2 EXEC PGM=SWRITE
//OUT2 OUTPUT FORMS=111,CHARS=GB10,DEST=LOCAL
//RPT2 DD SYSOUT=B,OUTPUT=(*.OUT2,*.JOBOUT)

This job causes JES2 to produce five sets of output:
v 1.1.1, containing the system-managed data sets. This set is specified through the

JOB statement MSGCLASS parameter.
v SUMM.1.1, containing a copy of the data set defined by DD statement RPT1.

This set is specified through the second OUTPUT subparameter: *.JOBOUT. It is
for output class A.

OUTPUT JCL: GROUPID

510 z/OS V2R1.0 MVS JCL Reference

v SUMM.2.1, containing a copy of the data set defined by DD statement RPT2.
This set is specified through the second OUTPUT subparameter: *.JOBOUT.
Because it is for output class B, it is in a separate subgroup from the SUMM.1.1
subgroup.

v 4.1.1, containing a copy of the data set defined by DD statement RPT1. This set
is specified through the first OUTPUT subparameter: *.OUT1.

v 5.1.1, containing a copy of the data set defined by DD statement RPT2. This set
is specified through the first OUTPUT subparameter: *.OUT2.

INDEX parameter
Parameter type

Keyword, optional, JES2 only

Purpose

Use the INDEX parameter to set the left margin for output on a 3211 Printer with
the indexing feature. The width of the print line is reduced by the INDEX
parameter value.

Note: INDEX is supported only on JES2 systems and only for output printed on a
3211 with the indexing feature. JES2 ignores the INDEX parameter if the printer is
not a 3211 with the indexing feature.

Syntax

INDEX=nn

Subparameter definition
nn

Specifies how many print positions the left margin on the 3211 output is to be
indented. nn is a decimal number from 1 through 31. n=1 indicates flush-left;
n=2 through n=31 indent the print line by n-1 positions.

Defaults
The default is 1, which indicates flush left. Thus, if you do not code an INDEX or
LINDEX parameter, JES2 prints full-width lines.

Relationship to other parameters
INDEX and LINDEX are mutually exclusive; if you code both, JES2 uses the last
one encountered. Note that you cannot index both the left and right margins.

Example of the INDEX parameter
//OUT17 OUTPUT INDEX=6

In this example, because the printed report is to be stapled, extra space is needed
on the left. Assuming the data set is printed on a 3211 with the indexing feature,
all lines are indented 5 print positions from the left page margin.

OUTPUT JCL: GROUPID

Chapter 23. OUTPUT JCL statement 511

INTRAY parameter
Parameter type

Keyword, optional

Purpose

Use INTRAY to specify the paper source. This overrides what is specified in the
FORMDEF in use.

Syntax

INTRAY=nnn

Subparameter definition
nnn

Specifies the paper source, where nnn is a number from 1 to 255. To determine
what value to specify, see the documentation for your printer.

Relationship to other keywords on this statement
If OUTBIN is specified, the paper from the INTRAY must be compatible with the
output bin.

Example of the INTRAY parameter
//OUTTRAY OUTPUT INTRAY=2

In this example, 2 is the paper source.

JESDS parameter
Parameter type

Keyword, optional

Purpose

Use the JESDS parameter to process the job’s system-managed data sets according
to the parameters on this OUTPUT JCL statement. The system-managed data sets
consist of:
v The job log, which is a record of job-related information for the programmer.

Printing of the job log is controlled by two JOB statement parameters: the
MSGLEVEL parameter controls what is printed and the MSGCLASS parameter
controls the system output class.

v The job’s hard-copy log, which is a record of all message traffic for the job to
and from the operator console.

v System messages for the job.

Note: In a JES3 environment, a job can complete processing before all of its
messages have been written to the job log. When this occurs, the job's output is
incomplete. For this reason, do not use the contents of the job log as an automation
or as a programming interface.

OUTPUT JCL: INTRAY

512 z/OS V2R1.0 MVS JCL Reference

References

For more information on the job log, see z/OS MVS System Commands.

Syntax

JESDS= {ALL}
{JCL}
{LOG}
{MSG}

Subparameter definition
ALL

Indicates that this OUTPUT JCL statement applies to all of the job's
system-managed data sets.

LOG
Indicates that this OUTPUT JCL statement applies only to the JESMSGLG data
set, which contains the JES and operator messages for this job.

JCL
Indicates that this OUTPUT JCL statement applies only to the JESJCL data set,
which contains the JCL statements for this job.

MSG
Indicates that this OUTPUT JCL statement applies only to the JESYSMSG data
set, which contains any JCL error messages and any system messages for this
job.

Overrides
The NOLOG parameter on a JES2 /*JOBPARM statement overrides the OUTPUT
JCL JESDS=ALL parameter.

If an OUTPUT JCL statement contains both JESDS and CLASS parameters, the
CLASS parameter will override the MSGCLASS parameter on the JOB statement
for the specified JES data sets.

Location in the JCL
Place an OUTPUT JCL statement containing JESDS before the first EXEC statement
of the job. An OUTPUT JCL statement containing JESDS placed after an EXEC
statement is a JCL error.

You can place more than one OUTPUT JCL statement containing JESDS before the
first EXEC statement. JES creates a copy of the job’s system data sets for each.

Destination for the system data sets
If you want the job’s system data sets processed at a particular destination, code a
DEST parameter on the OUTPUT JCL statement containing JESDS. Otherwise, JES
routes the system data sets to a local device.

JES2 processing with JESDS
JES2 processes OUTPUT JCL statements for system-managed data sets (JESDS
parameter) only if a job starts execution.

OUTPUT JCL: JESDS

Chapter 23. OUTPUT JCL statement 513

System-managed data sets are not processed for the following jobs because the jobs
do not start execution:
v Jobs that specify a TYPRUN value on the JOB statement that prevents execution,

such as COPY or SCAN.
v Jobs that do not execute because of a JCL error, an error in a JES2 control

statement, or a system failure in JES2 input processing.

JES3 processing with JESDS
System-managed data sets are not processed by JES3 for the following jobs because
the jobs do not complete execution:
v Jobs that specify a TYPRUN value on the JOB statement that prevents execution,

such as SCAN.
v Jobs that do not execute because of a JCL error.

Example of the JESDS parameter
//EXMP JOB MSGCLASS=A
//OUT1 OUTPUT JESDS=ALL
//OUT2 OUTPUT JESDS=ALL,DEST=AUSTIN

.

.

.

In this example, JES produces two copies of the system-managed data sets: one
copy for OUTPUT JCL statement OUT1 and one copy for OUTPUT JCL statement
OUT2. The copy for statement OUT2 is sent to AUSTIN.

LINDEX parameter
Parameter Type

Keyword, optional, JES2 only

Purpose

Use the LINDEX parameter to set the right margin for output on a 3211 Printer
with the indexing feature. The width of the print line is reduced by the LINDEX
parameter value.

Note: LINDEX is supported only on JES2 systems and only for output printed on
a 3211 with the indexing feature. JES2 ignores the LINDEX parameter if the printer
is not a 3211 with the indexing feature.

Syntax

LINDEX=nn

Subparameter definition
nn

Specifies how many print positions the right margin on the 3211 output is to
be moved in from the full page width. nn is a decimal number from 1 through
31. n=1 indicates flush-right; n=2 through n=31 move the right margin over by
n-1 positions.

OUTPUT JCL: JESDS

514 z/OS V2R1.0 MVS JCL Reference

Defaults
The default is 1, which indicates flush right. Thus, if you do not code an INDEX or
LINDEX parameter, JES2 prints full-width lines.

Relationship to other parameters
INDEX and LINDEX are mutually exclusive; if you code both, JES2 uses the last
one encountered. Note that you cannot index both the left and right margins.

Example of the LINDEX parameter
//OUT18 OUTPUT LINDEX=21

In this example, the author of the report wanted extra space on the right side of
the paper for notes. Assuming the data set is printed on a 3211 with the indexing
feature, all lines are ended 20 print positions from the right page margin.

LINECT parameter
Parameter type

Keyword, optional, JES2 only

Purpose

Use the LINECT parameter to specify the maximum number of lines JES2 is to
print on each output page.

Note: LINECT is supported only on JES2 systems.

Syntax

LINECT=nnn

Subparameter definition
nnn

Specifies the maximum number of lines JES2 is to print on each page. nnn is a
number from 0 through 255.

Specify LINECT=0 to keep JES2 from starting a new page when the number of
lines exceeds the JES2 initialization parameter.

Defaults
If you do not code the LINECT parameter, JES2 obtains the value from one of the
following sources, in order:
1. The linect field of the accounting information parameter on the JOB statement.
2. The installation default specified at JES2 initialization.

Example of the LINECT parameter
//PRNTDS OUTPUT LINECT=45

In this example, JES2 will start a new page after every 45 lines.

OUTPUT JCL: LINDEX

Chapter 23. OUTPUT JCL statement 515

MAILBCC parameter
Parameter type: Keyword, optional

Purpose: Use the MAILBCC parameter to specify one or more e-mail addresses of
the blind copy (bcc) recipients of an e-mail. A bcc means that other recipients of
the e-mail do not see the bcc recipient listed.

Syntax

MAILBCC= {(’bcc address’[,’bcc address’]...)}
{bcc-address }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the MAILBCC
parameter.

Subparameter definition
bcc address

Specifies the e-mail addresses of the blind copy (bcc) recipients of an e-mail.
You can code up to 32 bcc-addresses. Each address can be 1 - 60 EBCDIC text
characters. See “Character sets” on page 21 for a description of EBCDIC text
characters.

Defaults
There is no default for MAILBCC.

Overrides
There are no override considerations for MAILBCC.

Relationship to other system functions
This keyword can be used by Infoprint Server. For more information about this
keyword when you use Infoprint Server, see z/OS Infoprint Server User's Guide.

Examples of the MAILBCC parameter
Example 1
//OUTDS2 OUTPUT MAILBCC=(’robertanders@companya.net’,
// ’suesmth1@companyb.net’)

In this example, the system will send a blind copy to the following e-mail
addresses:
v robertanders@companya.net
v suesmth1@companyb.net

Example 2
//OUTDS2 OUTPUT MAILBCC=(ROBERT@XYZ.NET,
// SUE@XYZ.NET)

In this example, the system will send a blind copy to the following e-mail
addresses:
v robert@xyz.net
v sue@xyz.net

OUTPUT JCL: MAILBCC

516 z/OS V2R1.0 MVS JCL Reference

MAILCC parameter
Parameter type: Keyword, optional

Purpose: Use the MAILCC parameter to specify one or more e-mail addresses of
the copy (cc) recipients of an e-mail. A cc means that other recipients of the e-mail
can see the cc recipient listed.

Syntax

MAILCC= {(’cc address’[,’cc address’]...)}
{cc-address }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the MAILCC
parameter.

Subparameter definition
cc address

Specifies the e-mail addresses of the copy (cc) recipients of an e-mail. You can
code up to 32 cc addresses. Each address can be 1 - 60 EBCDIC text characters.
See “Character sets” on page 21 for a description of EBCDIC text characters.

Defaults
There is no default for MAILCC.

Overrides
There are no override considerations for MAILCC.

Relationship to other system functions
This keyword can be used by Infoprint Server. For more information about this
keyword when you use Infoprint Server, see z/OS Infoprint Server User's Guide.

Examples of the MAILCC parameter
Example 1
//OUTDS2 OUTPUT MAILCC=(’robertanders@companya.net’,
// ’suesmth1@companyb.net’)

In this example, the system will send a copy to the following e-mail addresses:
v robertanders@companya.net
v suesmth1@companyb.net

Example 2
//OUTDS2 OUTPUT MAILCC=(ROBERT@XYZ.NET,
// SUE@XYZ.NET)

In this example, the system will send a copy to the following e-mail addresses:
v robert@xyz.net
v sue@xyz.net

MAILFILE parameter
Parameter type: Keyword, optional

OUTPUT JCL: MAILCC

Chapter 23. OUTPUT JCL statement 517

Purpose: Use the MAILFILE parameter to specify the file name of the attachment
to an e-mail.

Syntax

MAILFILE= {’file id’}
{file-id }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the MAILFILE
parameter.

Subparameter definition
file id

Specifies the name of a file attached in an e-mail. The file id can be 1 - 60
EBCDIC text characters. See “Character sets” on page 21 for a description of
EBCDIC text characters.

Defaults
Infoprint Server uses the last qualifier of the data set name as the name of the
e-mail attachment. You can specify the last qualifier in the DSNAME parameter of
the DD statement.

Overrides
If you do not specify the DSNAME parameter, Infoprint Server uses the job name.

Relationship to other system functions
This keyword can be used by Infoprint Server. For more information about this
keyword when you use Infoprint Server, see z/OS Infoprint Server User's Guide.

Example of the MAILFILE parameter
//OUTDS2 OUTPUT MAILFILE=’third quarter growth chart’

In this example, the system will use the name third quarter growth chart for the
attached file.

MAILFROM parameter
Parameter type: Keyword, optional

Purpose: Use the MAILFROM parameter to specify the descriptive name or other
identifier of the sender of an e-mail.

Syntax

MAILFROM = {’from address’}
{from-address }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the
MAILFROM parameter.

OUTPUT JCL: MAILFILE

518 z/OS V2R1.0 MVS JCL Reference

Subparameter definition
from address

Specifies descriptive name or other identifier of the sender of an e-mail. The
from address can be 1 - 60 EBCDIC text characters. See “Character sets” on
page 21 for a description of EBCDIC text characters.

Defaults
There is no default for MAILFROM. However, Infoprint Server always includes
userid@domainname to identify the sender. userid is the TSO user ID of the job
submitter and domainname is the domain name where Infoprint Server is running.
For example, if someone with a TSO user ID of JOHN sends an e-mail, and
Infoprint Server is running on domain SYSTEM1, Infoprint Server will include
JOHN@SYSTEM1.

Overrides
There are no override considerations for MAILFROM.

Relationship to other system functions
This keyword can be used by Infoprint Server. For more information about this
keyword when you use Infoprint Server, see z/OS Infoprint Server User's Guide.

Example of the MAILFROM parameter
//OUTDS2 OUTPUT MAILFROM=’John Q. Sender’

In this example, the system will identify John Q. Sender
<JOHNS@COMPANY1.COM> as the sender of the e-mail. JOHNS is the job
submitter's TSO user ID, and COMPANY1.COM is the domain name of the z/OS
system.

MAILTO parameter
Parameter type: Keyword, optional

Purpose: Use the MAILTO parameter to specify one or more e-mail address of the
recipients of an e-mail.

Syntax

MAILTO= {(’to address’[,’to address’]...)}
{to-address }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the MAILTO
parameter.

Subparameter definition
to address

Specifies the e-mail addresses of the recipients. You can code up to 32
addresses. Each address can be 1 - 60 EBCDIC text characters. See “Character
sets” on page 21 for a description of EBCDIC text characters.

Defaults
There is no default for MAILTO.

OUTPUT JCL: MAILFROM

Chapter 23. OUTPUT JCL statement 519

Overrides
There are no override considerations for MAILTO.

Relationship to other system functions
This keyword can be used by Infoprint Server. For more information about this
keyword when you use Infoprint Server, see z/OS Infoprint Server User's Guide.

Example of the MAILTO parameter
//OUTDS2 OUTPUT MAILTO=(’gwashngtn1@companya.com’,
// ’mwshngtn@companyb.org’)

In this example, the system will send the output to the following e-mail addresses:
v gwashngtn1@companya.com
v mwshngtn@companyb.org

MERGE parameter
Keyword, optional

Purpose

Specifies whether or not the parameters which are specified on the OUTPUT JCL
statement will be merged with the output statement for the job. The default value
is NO.

Syntax

MERGE={YES}
{Y}
{NO}
{N}

Subparameter definition
YES | Y

Indicates that the parameters which are specified on the OUTPUT JCL
statement will be the default OUTPUT parameters for the job.

NO | N
Indicates that the parameters which are specified on the OUTPUT JCL
statement will not be the default OUTPUT statement parameters for the job.

Defaults
The default value for MERGE is NO. This indicates that the parameters which are
specified on the OUTPUT JCL statement will not be the default OUTPUT statement
parameters for the job.

Example of the MERGE parameter
In the following example, the parameters specified on the OUTPUT JCL statement
will be the default OUTPUT parameters for the job:
MERGE=YES

OUTPUT JCL: MAILTO

520 z/OS V2R1.0 MVS JCL Reference

MODIFY parameter
Parameter type

Keyword, optional

Purpose

Use the MODIFY parameter to specify a copy-modification module that tells JES
how to print the sysout data set on a 3800 Printing Subsystem. The module can
specify the following:
v Legends.
v Column headings.
v Where and on which copies to print the data.

The module is defined and stored in SYS1.IMAGELIB using the IEBIMAGE utility
program.

Note: MODIFY applies only for the 3800 Printing Subsystem Model 1 and 2 and
the 3800 Printing Subsystem Models 3, 6 and 8 in compatibility mode. For
page-mode printers (such as the 3800 Model 3 or the Infoprint 4000), use the
FORMDEF and PAGEDEF parameters to obtain the same functions.

References

For more information on the copy modification module and the IEBIMAGE utility
program, see z/OS DFSMSdfp Utilities.

Syntax

MODIFY= {module-name }
{([module-name][,trc])}

v You can omit the module-name, thereby obtaining the initialization default. For example,
MODIFY=(,2).

v The trc subparameter is optional. If you omit it, you can omit the parentheses.

Subparameter definition
module-name

Identifies a copy-modification module in SYS1.IMAGELIB. The module-name
is 1 through 4 alphanumeric or national ($, #, @) characters.

trc
Identifies which character-arrangement table named in the CHARS parameter
is to be used. This table reference character is 0 for the first font-name
specified, 1 for the second, 2 for the third, or 3 for the fourth. The CHARS
parameter used is on the following, in override order:
1. The DD statement.
2. This OUTPUT JCL statement.
3. A statement in the library member specified on the OUTPUT JCL

PAGEDEF parameter.
4. A statement in the SYS1.IMAGELIB member obtained by default.
5. A JES3 initialization statement.

OUTPUT JCL: MODIFY

Chapter 23. OUTPUT JCL statement 521

Defaults
If you do not code module-name in the MODIFY parameter, JES3 uses an
installation default specified at initialization. JES2 provides no installation default
at initialization.

If you do not specify trc, the default is 0. If the trc value is greater than the
number of font-names in the CHARS parameter, JES2 uses the first
character-arrangement table named in the CHARS parameter and JES3 uses the last
character-arrangement table named in the CHARS parameter.

Overrides
A MODIFY parameter on the sysout DD statement overrides the OUTPUT JCL
MODIFY parameter.

Relationship to other parameters
The second character of each logical record can be a TRC code, so that each record
can be printed in a different font. This way of specifying fonts is indicated by the
OUTPUT JCL TRC parameter.

Example of the MODIFY parameter
//OUTDS1 OUTPUT CHARS=(GT12,GB12,GI12),MODIFY=(MODA,2)

In this example, JES loads the MODA module in SYS1.IMAGELIB into the 3800
and uses GI12, Gothic Italic 12-pitch font, which is the third table name specified
in the CHARS parameter.

NAME parameter
Parameter type

Keyword, optional

Purpose

Use the NAME parameter to print a preferred name on the separator pages of the
output for a sysout data set. The preferred name is the name associated with the
output. An installation can use the preferred name to assist in sysout distribution.

Syntax

NAME= {’preferred name’}
{preferred-name }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the NAME
parameter.

Subparameter definition
preferred name

Specifies the preferred name that is associated with the sysout. The preferred
name is 1 - 60 EBCDIC text characters. See “Character sets” on page 21 for a
description of EBCDIC text characters.

OUTPUT JCL: MODIFY

522 z/OS V2R1.0 MVS JCL Reference

Defaults
v In an APPC scheduling environment: In both JES2 and JES3 systems, if you do

not code the NAME parameter on the OUTPUT JCL statement, the system uses
the value defined in the transaction program (TP) user's RACF profile when:
– The user submitting the TP profile has a RACF profile defined for him, and
– The transaction program profile includes TAILOR_SYSOUT(YES).
Otherwise, the system uses the value defined on the transaction initiator's job
statement.

v In a non-APPC scheduling environment: In a JES2 system, if you do not code
the NAME parameter on the OUTPUT JCL statement, the system uses the name
defined on the job statement.
In a JES3 system, there is no default for the NAME parameter on the OUTPUT
JCL statement.

Overrides
v In an APPC scheduling environment: In both JES2 and JES3 systems, the

NAME parameter on the OUTPUT JCL statement overrides the name defined in
the RACF profile. The name in the RACF profile overrides the name defined in
the transaction initiator's JOB statement.

v In a non-APPC scheduling environment: In both JES2 and JES3 systems, the
NAME parameter on the OUTPUT JCL statement overrides the name defined on
the JOB statement.

Example of the NAME parameter
//OUTDS7 OUTPUT NAME=’R. ROPER’

In this example, the name R. ROPER will be printed on the line reserved for
NAME on separator pages of any sysout data set that references OUTDS7.

NOTIFY parameter
Parameter type

Keyword, optional - Use this parameter only for printers managed by PSF or
Infoprint Server.

Purpose

Use the NOTIFY parameter to have PSF issue a print completion message to up to
four users. The message identifies the output that has completed printing, and
indicates whether the printing was successful. This parameter is effective for PSF
devices and any FSS products that support the NOTIFY keyword (such as Infoprint
Server); it has no effect for JES-mode devices. The print completion message is
issued:
v on a JES2 system: when printing for all the sysout data sets for an output group

has completed. An output group consists of the sysout data sets printed between
the output header page and the output trailer page of a job.

v on a JES3 system: when the sysout data sets for the same printer and the same
job have been printed.

OUTPUT JCL: NAME

Chapter 23. OUTPUT JCL statement 523

Syntax

NOTIFY= [node.]userid
([node1.]userid1,[node2.]userid2,...[node4.]userid4)

v You can omit the parentheses if you code only one destination.

v For any destination, you can omit the node name.

Subparameter definitions
[node]userid

Specifies the node name and userid of a recipient of the print completion
message.

Defaults
If you do not code the NOTIFY parameter, the system will not issue a print
completion message. If you do not specify node, it will default to the node where
the job was submitted.

Examples of the NOTIFY parameter
Example 1

//OUT1 OUTPUT NOTIFY=BLDVM2.RICH1

In this example, the system sends a print completion message to RICH1 at
BLDVM2.

Example 2
//OUT1 OUTPUT NOTIFY=(BLDVM2.RICH1,CARTER)

In this example, the system sends a print completion message to RICH1 at
BLDVM2, and to the userid CARTER at the node where the job was submitted.

OFFSETXB parameter
Parameter type: Keyword, optional

Purpose: Use OFFSETXB to specify the offset in the X direction from the page
origin (or partition origin for N_UP) for the back side of each page of output. This
overrides what is specified in the FORMDEF in use. For more information on page
offsets see the section "Page Position" in PSF for z/OS: User's Guide.

Syntax

OFFSETXB=mmmm[.nnn]{IN }
{CM }
{MM }
{PELS }
{POINTS}

Subparameter definition
mmmm[.nnn]

Specifies a value, which may be one (m), two (mm), three (mmm), or four

OUTPUT JCL: NOTIFY

524 z/OS V2R1.0 MVS JCL Reference

(mmmm) digits (and which may be zero), and which optionally may be
followed by a decimal point (a period) and up to three (nnn) digits.

IN | CM | MM | PELS | POINTS
A mandatory unit that follows the value. The unit can be inches (IN),
centimeters (CM), millimeters (MM), pels, or points. If you specify the unit as
pels or points you must specify the value as a whole number with no decimal
point.

Relationship to other keywords on this statement
The OFFSETXB parameter is used in conjunction with the OFFSETXF, OFFSETYB,
and OFFSETYF parameter to define the page origin.

Example of the OFFSETXB parameter
//OUTSET OUTPUT OFFSETXB=10.5MM

In this example, the page is to be offset 10.5 millimeters in the X direction from the
page origin on the back of each sheet.

OFFSETXF parameter
Parameter type: Keyword, optional

Purpose: Similar to OFFSETXB (with the same units, values, and restrictions),
OFFSETXF is used to specify the offset in the X direction from the page origin (or
partition origin for N_UP) for the front side of each page of output.

OFFSETYB parameter
Parameter type: Keyword, optional

Purpose: Similar to OFFSETXB (with the same units, values, and restrictions),
OFFSETYB is used to specify the offset in the Y direction from the page origin (or
partition origin for N_UP) for the back side of each page of output.

OFFSETYF parameter
Parameter type: Keyword, optional

Purpose: Similar to OFFSETXB (with the same units, values, and restrictions),
OFFSETYF is used to specify the offset in the Y direction from the page origin (or
partition origin for N_UP) for the front side of each page of output.

OUTBIN parameter
Parameter type: Keyword, optional

Purpose: The OUTBIN keyword specifies the printer output bin identifier to be
used for the sysout data set. See PSF for z/OS: User's Guide for more information on
multiple media destinations and OUTBIN processing.

Syntax

OUTBIN = nnnnn

OUTPUT JCL: OFFSETXB

Chapter 23. OUTPUT JCL statement 525

Subparameter definition
nnnnn

Species the ID of the printer output bin where the data set is to be sent. nnnnn
is 1 through 5 decimal digits from 1 to 65535.

Defaults
If the OUTBIN keyword is not specified, PSF (Print Services Facility) will stack the
output in the printer default output bin. If OUTBIN specifies a value that is not
one of the supported identifiers, PSF will stack the output in the printer default
output bin and issue a message indicating that the requested bin is not available.

Overrides
The OUTBIN value can be overridden via the JES3 *MODIFY command.

Relationship to other system functions
JES3 printers use OUTBIN as a grouping attribute and will print header and trailer
pages around each group of data sets with unique OUTBIN specifications.

Example of the OUTBIN parameter
//OUT1 OUTPUT DATACK=UNBLOCK,OUTBIN=2,TRC=N0

In this example, the user has specified an output bin id of '2'.

OUTDISP parameter
Parameter type: Keyword, optional

Purpose: In a JES2 system, use the OUTDISP parameter to indicate the disposition
of a sysout data set. You can code different dispositions based on whether the job
completes successfully.

Considerations for an APPC scheduling environment: In an APPC scheduling
environment, sysout data sets are treated as spin data sets. The system will process
only the normal output disposition. If you code an abnormal output disposition,
the system will check it for syntax and then ignore it.

If the automatic restart manager (ARM) restarts a job, JES discards all non-spin
sysout data sets created during the previous execution. (You can avoid losing that
output by adding SPIN=UNALLOC to the DD statement for the SYSOUT data set.)

Syntax

{OUTDISP=(normal-output-disposition,abnormal-output-disposition)}

OUTDISP= ([WRITE] [,WRITE])
([HOLD] [,HOLD])
([KEEP] [,KEEP])
([LEAVE] [,LEAVE])
([PURGE] [,PURGE])

OUTPUT JCL: OUTBIN

526 z/OS V2R1.0 MVS JCL Reference

v If you code only the normal-output-disposition, you can omit the parentheses.

v If you code only the abnormal-output-disposition, enclose the disposition in parentheses
and precede it with a comma. For example:

//OUTDS OUTPUT OUTDISP=(,PURGE)

Subparameter definitions
WRITE

Indicates that the system is to print the sysout data set. After printing the data
set, the system purges it.

Unless it is held by the system or operator, a sysout data set with the
disposition WRITE will always print.

HOLD
Indicates that the system is to hold the sysout data set until the user or
operator releases it. Releasing the sysout data set changes its disposition to
WRITE.

If HOLD output is not released, the system holds it until the user or operator
purges it.

NJE Note: In an NJE environment, the system does not hold the data set until
it reaches its ultimate destination node.

KEEP
Indicates that the system is to print the sysout data set. After printing the data
set, the system changes its disposition to LEAVE.

LEAVE
Indicates that after the user or operator releases the sysout data set, the
disposition of the data set changes to KEEP.

If LEAVE output is not released, the system holds it until the user or operator
purges it.

PURGE
Indicates that the system is to delete the sysout data set without printing it.

Defaults
If you do not specify OUTDISP, the system uses the installation defaults for normal
and abnormal disposition for the sysout class of the data set.

If you do not specify an abnormal output disposition, the system uses the normal
disposition that you specified.

If you specify an abnormal disposition but do not specify a normal disposition, the
normal disposition defaults to WRITE.

Overrides
The DD statement HOLD=YES parameter overrides the OUTDISP parameter.

OUTPUT JCL: OUTDISP

Chapter 23. OUTPUT JCL statement 527

Relationship to other control statements
A data set defined by a sysout DD statement that contains a DSID parameter is
always held. The system ignores the OUTDISP parameter on an OUTPUT JCL
statement that is referenced by such a DD statement.

Examples of the OUTDISP parameter
Example 1
//OUTDS6 OUTPUT OUTDISP=(KEEP,PURGE)

When the job completes successfully, the disposition of the data set is KEEP. After
the sysout is printed, the data set disposition changes to LEAVE, and the sysout
data set is held until released by the user or operator.

If the job does not complete normally, the system purges the data set without any
post-execution processing.

Example 2
//OUTNORM OUTPUT OUTDISP=(WRITE,PURGE),DEST=ROOM111
//OUTBAD OUTPUT OUTDISP=(PURGE,HOLD),NAME=’D JONES’
//DD5 DD SYSOUT=A,OUTPUT=(*.OUTNORM,*.OUTBAD)

If the job completes successfully, the output for DD DD5 is to be sent to the
destination ROOM111. If the job does not complete successfully, the output is to be
held for a programmer named D JONES. D JONES can view the output on the
screen, and then purge it or release it to be printed if further diagnosis is required.

There are two OUTPUT statements, OUTNORM and OUTBAD. In any given case,
however, only one of the OUTPUT statements actually produces output. For
successful completion, the WRITE option on the OUTNORM statement specifies
that the output should be printed and sent to ROOM111, and the PURGE option
on OUTBAD specifies that no output is produced for the OUTBAD statement. For
unsuccessful completion, the HOLD option on the OUTBAD statement specifies
that the output should be held for D JONES, and the PURGE option on
OUTNORM specifies that no output is produced for the OUTNORM statement.

Example 3
//SYSOUTK OUTPUT OUTDISP=(WRITE,HOLD)
//REPORT1 DD SYSOUT=K,OUTPUT=*.SYSOUTK

The system processes the data set using OUTPUT statement SYSOUTK.

When the job completes successfully, the WRITE option specifies that the system
should print and then purge the output.

When the job does not complete successfully, the HOLD option specifies that the
system should hold the output.

OVERLAYB parameter
Parameter type: Keyword, optional

Purpose: Specifies to place the named medium overlay on the back side of each
sheet to print.

OUTPUT JCL: OUTDISP

528 z/OS V2R1.0 MVS JCL Reference

Syntax

OVERLAYB=ovlyname

Subparameter definition
ovlyname

Specifies the medium overlay name, where the overlay name is 1 though 8
alphanumeric or national ($, #, @) characters and the first of those characters is
alphabetic or national.

Relationship to other keywords on this statement
The overlay specified is in addition to any overlays from other sources.

Example of the OVERLAYB parameter
//OUTOVLY OUTPUT OVERLAYB=MYOVLY

In this example, the overlay named MYOVLY will be included on the back side of
each sheet for this data set.

OVERLAYF parameter
Parameter type: Keyword, optional

Purpose: Similar to OVERLAYB, with the same restrictions on the name,
OVERLAYF specifies to place the named medium overlay on the front side of each
sheet to print.

OVFL parameter
Parameter type: Keyword, optional

Purpose: Use the OVFL parameter to specify whether the printer program (JES3
output writer) should check for forms overflow (by sensing channel 12 as defined
in the FCB that is used for printing the output).

Note: OVFL is supported only on JES3 systems. Neither JES2 nor Print Services
Facility (PSF) supports OVFL.

Syntax

OVFL = [ON|OFF]

Subparameter definition
ON Indicates that the printer program should eject (skip to channel 1) whenever

the end-of-forms indicator (channel 12) is sensed.

OFF
Indicates that forms overflow control is not to be used.

Defaults
If you do not code the OVFL parameter, the default is ON.

OUTPUT JCL: OVERLAYB

Chapter 23. OUTPUT JCL statement 529

Example of the OVFL parameter
//WRTO JOB ACNO77,MAEBIRD,MSGCLASS=B
//DS23 OUTPUT DEFAULT=YES,FORMS=STD,OVFL=OFF
//STEP1 EXEC PGM=DLYRPT
//DAILY DD SYSOUT=A

In this example, sysout DD statement DAILY implicitly references the default
job-level OUTPUT JCL statement DS23. This OUTPUT JCL statement directs JES3
to print the daily report on standard forms. If no carriage control characters are
used, the JES3 output writer will print the output as a continuous stream of data
with no blank lines between pages.

PAGEDEF parameter
Parameter type

Keyword, optional

Purpose

Use the PAGEDEF parameter to identify a library member that contains statements
to tell the Print Services Facility (PSF) how to print the sysout data set on a
page-mode printer (such as the Infoprint 4000). The data set may be sysout or a
data set that is allocated directly to a printer. The statements can specify the
following:
v Logical page length and width.
v Fonts.
v Page segments.
v Multiple page types or formats.
v Lines within a page; for example:

– Line origin.
– Carriage controls.
– Spacing.

v Multiple logical pages on a physical page.

The member must be in the library named in the cataloged procedure that was
used to initialize PSF, or in a library specified in the USERLIB parameter.

Note: PAGEDEF applies only for data sets printed on a page-mode printer
controlled by PSF.

References

For more information, see PSF for z/OS: User's Guide.

Syntax

PAGEDEF=membername

OUTPUT JCL: OVFL

530 z/OS V2R1.0 MVS JCL Reference

Subparameter definition
membername

Specifies the name of the library member. membername is 1 through 6
alphanumeric or national ($, #, @) characters; the first two characters are
pre-defined by the system.

Overrides
The statements in the library member specified by the OUTPUT JCL PAGEDEF
parameter override the installation’s PAGEDEF defaults in the PSF-cataloged
procedure.

PSF uses the following parameters, in override order, to select the font list:
1. Font list in the library member specified by an OUTPUT JCL PAGEDEF

parameter.
2. DD CHARS parameter.
3. OUTPUT JCL CHARS parameter.
4. DD UCS parameter.
5. OUTPUT JCL UCS parameter.
6. JES installation default for the device.
7. Font list on the PAGEDEF parameter in the PSF-cataloged procedure.

Example of the PAGEDEF parameter
//OUTDS1 OUTPUT PRMODE=PAGE,PAGEDEF=SSPGE

In this example, PSF is to print the sysout data set on an AFP printer operating in
page mode. The printing is to be done according to the parameters in the library
member SSPGE.

PIMSG parameter
Parameter type: Keyword, optional

Purpose: Use the PIMSG parameter to indicate the handling of messages by Print
Services Facility (PSF). PIMSG is used to specify whether all error messages are to
be printed, and the number of errors sufficient to cause the printing process to be
terminated and the data set to be purged.

When you code PIMSG=YES, the system prints all these messages at the end of the
output data set.

When you code PIMSG=NO, no messages are printed unless there is an error that
forces premature termination of the printing of the data set. If an error occurs, the
system prints the set of messages (called a message group) associated with the
error that caused the termination.

As errors are detected by PSF or reported to PSF by the printer, a count is kept of
the associated message groups. When the count equals the number specified on the
PIMSG parameter, PSF terminates the printing of the current data set. PSF
interprets a count of zero as infinite, and does not terminate the printing of the
data set on the basis of the number of errors detected.

Note: PIMSG can be specified only for data sets printed through PSF.

OUTPUT JCL: PAGEDEF

Chapter 23. OUTPUT JCL statement 531

Syntax

PIMSG= {(YES[,msg-count])}
{(NO[,msg-count]) }

v You can omit the parentheses if you do not specify msg-count.

Subparameter definition
YES

Requests the system to print all messages generated by PSF. You can also code
this subparameter as Y.

NO
Requests that the system print no error messages, unless printing of the data
set is prematurely terminated. If a terminating error occurs, only the set of
messages (called a message group) associated with the error that caused the
termination is printed. You can also code this subparameter as N.

msg-count
Requests the system to cancel the printing of the current data set after the
specified number of errors (as represented by the associated message groups)
have been detected by PSF or reported to PSF by the printer. In this context,
errors refers to data-stream errors, and errors resulting from any malfunction
that would cause the printer to halt, such as a mechanism failure, or
out-of-paper condition. However, these errors do not include those caused by
operator intervention.

Valid values for msg-count are 0-999, where 0 is interpreted as infinite.

The types of errors that increment the message count are those that induce a
message group to be printed at the end of the data set. However, even though
the printing of the message groups is inhibited by PIMSG=NO, the associated
error still increments the message count. (A message group consists of a
primary message and variable number of informational messages that result
from a single error.)

In the case that multiple transmissions have been specified for a single data set
(user-specified multiple copies), the message count would apply on a per copy
basis. If the specified number of errors are discovered during the printing of
any copy, the subject copy is terminated, and the remaining copies are not
printed.

Defaults
If you do not code the PIMSG parameter, the PIMSG specification from the PSF
PRINTDEV statement applies. If not specified in the PRINTDEV statement, the
default is PIMSG=(YES,16). For information about the PRINTDEV statement, see
PSF for z/OS: Customization.

Examples of the PIMSG parameter
Example 1
//OUTDS2 OUTPUT DATACK=UNBLOCK,PIMSG=(YES,0)

In this example, regardless of how many message-generating errors are detected by
PSF or reported to PSF by the printer, the printing of the current data set continues
to completion or until a terminating error is encountered. All the messages are
printed by the system.

OUTPUT JCL: PIMSG

532 z/OS V2R1.0 MVS JCL Reference

Example 2
//OUTDS2 OUTPUT DATACK=UNBLOCK,PIMSG=(NO,5)

In this example, after five message-generating errors are detected by PSF or
reported to PSF by the printer, the printing of the current data set is terminated.
Only the last message group is printed by the system.

PORTNO parameter
Parameter type: Keyword, optional

Purpose: Use the PORTNO parameter to specify the TCP/IP port number at which
the FSS (for example, Infoprint Server) connects to the printer.

Syntax

PORTNO=nnnnn

Subparameter definition
nnnnn

Specifies the TCP/IP port number, where nnnnn is a number from 1 through
65,535.

Relationship to other system functions
The port number must match the port number configured at the printer.

Example of the PORTNO parameter
//OUTPORT OUTPUT PORTNO=5005

In this example, 5005 is the TCP/IP port number.

PRMODE parameter
Parameter type: Keyword, optional

Purpose: Use the PRMODE parameter to identify the process mode required to
print the sysout data set. JES schedules the data set to a printer that can operate in
the specified mode.

For a list of valid process modes, contact your system programmer.

Syntax

PRMODE= {LINE }
{PAGE }
{process-mode}

Subparameter definition
LINE

Indicates that the data set is to be scheduled to a line-mode printer.

OUTPUT JCL: PIMSG

Chapter 23. OUTPUT JCL statement 533

PAGE
Indicates that the data set is to be scheduled to a page-mode printer.

process-mode
Specifies the required process mode. The process-mode is 1 through 8
alphanumeric characters.

For an NJE-transmitted data set, use PRMODE to request specific processing
without having to obtain output classes for the node that processes the data
set.

Defaults
If you do not code the PRMODE parameter, JES schedules output processing as
follows:
v If the sysout data set does not contain page-mode formatting controls, the

process mode of line is given to the data set.
v If the sysout data set contains page-mode formatting controls, the process mode

of page is given to the data set.

Printing a line-mode data set using PSF
To print a line-mode data set using the Print Services Facility (PSF) and an AFP
printer, code PRMODE=PAGE. PSF formats this line-mode data set using the
installation’s default values for PAGEDEF and FORMDEF defined in the
PSF-cataloged procedure; if these defaults are unsatisfactory, code the PAGEDEF
and FORMDEF parameters on the OUTPUT JCL statement.

Example of the PRMODE parameter
//DS18 OUTPUT PRMODE=LINE

In this example, JES schedules the sysout data set to a printer with a process mode
of line.

PRTATTRS parameter
Parameter type: Keyword, optional

Purpose: Use the PRTATTRS keyword to specify one or more job attributes for
Infoprint Server. The z/OS Infoprint Server User's Guide information supported job
attributes and their syntax.

Syntax

PRTATTRS={’attributename=value attributename=value ...’}

--

o The minimum length is one character.

o The maximum length is 127 characters.

o Enclose the parameter in apostrophes because attribute
names contain lower case letters.

o All EBCDIC text characters are valid.

OUTPUT JCL: PRMODE

534 z/OS V2R1.0 MVS JCL Reference

Parameter definition
attributename=value

Specifies an Infoprint Server job attribute. For more information on job
attribute names and syntax for acceptable values, see z/OS Infoprint Server
User's Guide.

Defaults
No Default.

Overrides
Specification of PRTATTRS might be ignored if the OUTPUT statement is
associated with a SYSOUT data set that is not processed by the IP PrintWay™

extended mode component of Infoprint Server.

Relationship to other keywords on this statement
None.

Relationship to other control statements
None.

Example of the PRTATTRS parameter
//OUTDS3 OUTPUT PRTATTRS=’document-codepage=ISO8859-1’

In this example, the IP PrintWay extended mode component of Infoprint Server
uses the document-codepage specification to control code page translation for the
SYSOUT data set associated with this OUTPUT statement.

PRTERROR parameter
Parameter type: Keyword, optional

Purpose: Specifies the disposition of the SYSOUT data set used if a terminating
error occurs during printing through the PSF functional subsystem. (A terminating
error is an error that the automated recovery of PSF cannot correct.) You can
specify which of the following actions PSF is to take for a terminating error:
v Use the default error disposition (DEFAULT),
v Release the SYSOUT data set back to JES as complete (QUIT), or
v Hold for operator action (HOLD).

Syntax

PRTERROR=(DEFAULT|QUIT|HOLD)

Subparameter definition
DEFAULT

Specifies that PSF will take the standard (default) action if a terminating error
occurs during printing. When operator action is expected to correct the error,
PSF releases the SYSOUT data set for hold. Otherwise, it treats the SYSOUT
data as complete. For JES2, processing of the data set proceeds according to the

OUTPUT JCL: PRTATTRS

Chapter 23. OUTPUT JCL statement 535

OUTDISP keyword value that is associated with it. For JES3, the data set is
deleted from the SPOOL. See the "Relationship to Other Control Statements"
below.

QUIT
Specifies that PSF is to release the data set complete even if a terminating error
occurs during printing. JES then disposes of the data set as if it completed
printing successfully. For JES2, processing of the data set proceeds according to
the OUTDISP keyword value that is associated with it. For JES3, the data set is
deleted from the SPOOL. See "Relationship to Other Control Statements,"
below.

HOLD
Specifies that if a terminating error occurs during printing, the data set will
remain on the JES SPOOL until the system operator releases it.

Relationship to other control statements
For the JES2 subsystem, OUTDISP affects the processing when
PRTERROR=DEFAULT or PRTERROR=QUIT is performed and PSF releases the
data set as complete.

An installation can control (through the PSF PRINTDEV initialization statement)
whether the system honors or ignores the specification of the PRTERROR keyword
on the OUTPUT JCL statement or dynamic output descriptors.

Note: There are conditions under which PRTERROR has no effect. See PSF for
z/OS: Customization for additional information.

Examples of the PRTERROR parameter
Example 1
//OUTPRTER OUTPUT PRTERROR=HOLD

In this example, if a terminating error occurs during printing, the data set remains
on the JES SPOOL until the system operator releases it.

Example 2
//OUTPRTER OUTPUT PRTERROR=QUIT

In this example, if a terminating error occurs during printing, PSF quits processing
the data set and releases it as "complete," and JES applies processing appropriate
for a completed data set.

PRTOPTNS parameter
Parameter type: Keyword, optional

Purpose: PRTOPTNS defines a named entity that contains additional print options.
JES does not use PRTOPTNS, but passes it to JES subsystems during data set
selection.

Syntax

PRTOPTNS=<options name>

OUTPUT JCL: PRTERROR

536 z/OS V2R1.0 MVS JCL Reference

Subparameter definition
<options data set entry name>

Identifies the print options data. The name can be 1 to 16 characters long. If
the name includes any special characters (for example, a dash), enclose the
entire parameter in single quotation marks. You can also specify this keyword
by using a dynamic output descriptor.

Relationship to other system functions
This keyword can be used by Infoprint Server. For more information about this
keyword when you use Infoprint Server, see z/OS Infoprint Server User's Guide.

Example of the PRTOPTNS parameter
//OUTOPTNS OUTPUT PRTOPTNS=’Boulder4019Optns’

In this example Boulder4019Optns is the name of the entity used to reference
additional print options.

PRTQUEUE parameter
Parameter type: Keyword, optional

Purpose: PRTQUEUE defines the name of the target print queue on a remote host
system. JES does not use PRTQUEUE, but passes it to JES subsystems during data
set selection.

Syntax

PRTQUEUE=<print queue name>

Subparameter definition
<print queue name>

Identifies the target print queue name. The name can be 1 to 127 characters
long and may include any printable character. If the name includes any special
character (for example, a dash or lower case letter), enclose the entire
parameter in single quotation marks. You can also specify this keyword by
using a dynamic output descriptor.

Relationship to other system functions
This keyword can be used by Infoprint Server. For more information about this
keyword when you use Infoprint Server, see z/OS Infoprint Server User's Guide.

Example of the PRTQUEUE parameter
//OUTQUEUE OUTPUT PRTQUEUE=’4019’

In this example 4019 is the name of the target print queue destination.

PRTY parameter
Parameter type: Keyword, optional

OUTPUT JCL: PRTOPTNS

Chapter 23. OUTPUT JCL statement 537

Purpose: Use the PRTY parameter to specify the priority at which the sysout data
set enters the output queue. A data set with a higher priority is printed sooner.

Syntax

PRTY=nnn

Subparameter definition
nnn

Specifies the initial priority. nnn is a decimal number from 0 through 255; 0 is
the lowest priority while 255 is the highest.

Defaults
If you do not code the PRTY parameter, JES3 uses an installation default specified
at initialization. JES2 uses a priority that is calculated for all output.

Overrides
In JES2 systems, the installation can specify at JES2 initialization that JES2 is to
ignore the OUTPUT JCL PRTY parameter.

In JES3 systems, the OUTPUT JCL PRTY parameter is ignored for JES3
networking.

Example of the PRTY parameter
//PRESRPT OUTPUT PRTY=200,FORMS=TOPSEC

In this example, JES prints one copy of the president’s report, PRESRPT, on forms
named TOPSEC. Because a priority of 200 is specified, the report is probably
printed immediately after entering the output queue.

REPLYTO parameter
Parameter type: Keyword, optional

Purpose: Use the REPLYTO parameter to specify the e-mail address to which
recipients of the e-mail can respond.

Syntax

REPLYTO = {’reply address’}
{reply-address }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the REPLYTO
parameter.

Subparameter definition
reply address

Specifies the e-mail address to which recipients of the e-mail can respond. The
reply address can be 1 - 60 EBCDIC text characters. See “Character sets” on
page 21 for a description of EBCDIC text characters.

OUTPUT JCL: PRTY

538 z/OS V2R1.0 MVS JCL Reference

Defaults
There is no default for REPLYTO.

Overrides
There are no override considerations for REPLYTO.

Relationship to other system functions
This keyword can be used by Infoprint Server. For more information about this
keyword when you use Infoprint Server, see z/OS Infoprint Server User's Guide.

Example of the REPLYTO parameter
//OUTDS2 OUTPUT REPLYTO=’jdoe@abc.net’

In this example, the system will identify jdoe@abc.net as the address to which the
e-mail recipients can respond.

RESFMT parameter
Parameter type: Keyword, optional

Purpose: Use the RESFMT parameter to specify the resolution used to format the
print data set. PSF will use this value to select the resource libraries for the
resolution indicated. For more information see PSF for z/OS: User's Guide.

Syntax

RESFMT = {P240 | P300}

Subparameter definition
P240

Indicates that the data set was formatted with resources at 240 pels per inch.

P300
Indicates that the data set was formatted with resources at 300 pels per inch.

Relationship to other control statements
If RESFMT is the highest priority specified resolution for a data set, then PSF will
use the corresponding resource libraries as defined by the system programmer on
the PRINTDEV statement. For information about the PRINTDEV statement, see
PSF for z/OS: Customization.

Example of the RESFMT parameter
//OUTRES OUTPUT RESFMT=P240

In this example, the print data set was formatted for printing at 240 pels per inch.

RETAINS and RETAINF parameters
Parameter type: Keyword, optional

OUTPUT JCL: REPLYTO

Chapter 23. OUTPUT JCL statement 539

Purpose: RETAINS specifies the amount of time to retain a successfully transmitted
data set. RETAINF specifies the amount of time to retain a data set that failed to be
transmitted. Each of these keywords consists of a numeric value indicating hours,
minutes, and seconds.

These parameters apply only to data sets processed by a functional subsystem that
can perform Internet Protocol (IP) transmission. JES does not use the RETAINS or
RETAINF parameters, but passes them to the functional subsystem during data set
selection.

Use RETAINS= when the functional subsystem has successfully transmitted the
data set. Use RETAINF= when the functional subsystem employing the IP routing
has not successfully transmitted the data set, despite performing all the indicated
retries through any RETRY parameters specified. You have the option of
manipulating the data set through the facilities provided by the functional
subsystem before that subsystem releases the data set to JES. See the
documentation for the particular subsystem for additional information.

Syntax

RETAINS=’<hhhh>:<mm>:<ss>’ -or- RETAINS=FOREVER
RETAINF=’<hhhh>:<mm>:<ss>’ -or- RETAINF=FOREVER

Subparameter definition
<hhhh>:<mm>:<ss>

Specifies the successful (RETAINS=) and failed (RETAINF=) time intervals to
retain the data set.

One to ten characters, where <hhhh>, <mm>, and <ss> are numeric. This
format requires that for either keyword you enclose the entire parameter in
single quotation marks due to the colon as a special character.

You may specify FOREVER to request the system to retain the data set
indefinitely.

You can also specify these keywords by using a dynamic output descriptor.

Only functional subsystems may use these keywords. See the documentation
for the particular subsystem for additional information.

Relationship to other control statements
The RETAIN keywords interact with the RETRY keywords in determining how
long the functional subsystem is to hold on to the data set after either a successful
or failed transmission of the data set before releasing it back to JES.

Relationship to other system functions
The RETAINS and RETAINF keywords can be used by Infoprint Server to perform
Internet Protocol (IP) transmission.

Examples of the RETAIN keywords
Example 1: RETAINS and RETAINF
//OUTRETRY OUTPUT RETAINS=’0001:00:00’,RETAINF=’0002:00:00’

In this example the functional subsystem will not release the data set to JES until
one hour after a successful transmission. If the data set was not successfully

OUTPUT JCL: RETAINS and RETAINF

540 z/OS V2R1.0 MVS JCL Reference

transmitted, the subsystem will not release the data set to JES until two hours after
the last unsuccessful transmission attempt.

Example 2: RETAINF Only
//OUTRETRY OUTPUT RETAINF=’0003:00:00’

In this example the functional subsystem will retain the data set for three hours
following a failed transmission before releasing it to JES.

RETRYL and RETRYT parameters
Parameter type: Keyword, optional

Purpose: Each of these keywords specifies a numeric value, as follows:
v RETRYL=limit defines the maximum number of attempts to transmit a data set

before the RETAIN keyword options take effect.
v RETRYT='retry time' defines how much time to wait between each attempt to

transmit the data set. It is formatted into hours, minutes, and seconds.

RETRYL and RETRYT apply only to data sets processed by a functional subsystem
that can perform Internet Protocol (IP) transmission. JES does not use the RETRYL
or RETRYT parameters, but passes them to the functional subsystem during data
set selection. See the documentation for the particular subsystem for additional
information.

Syntax

RETRYL=nnnnn
RETRYT=’<hhhh>:<mm>:<ss>’

Subparameter definition
<nnnnn>

An integer from 0 to 32,767 (decimal) that specifies the maximum number of
retries to attempt before the RETAIN keyword options are to take effect.

<hhhh>:<mm>:<ss>
One to ten characters, where <hhhh>, <mm>, and <ss> are numeric. This
format requires that you enclose this entire parameter in single quotation
marks due to the colon as a special character.

You can also specify these keywords by using a dynamic output descriptor.

Relationship to other control statements
The RETRYL and RETRYT keywords interact with the RETAINS and RETAINF
keywords to determine the number and frequency of retry attempts to transmit the
data set before the values of RETAIN for successful or failed attempts, respectively,
take effect.

Relationship to other system functions
The RETRYL and RETRYT keywords can be used by Infoprint Server to perform
Internet Protocol (IP) transmission.

OUTPUT JCL: RETAINS and RETAINF

Chapter 23. OUTPUT JCL statement 541

Examples of the RETRY keywords
Example 1: RETRYT and RETRYL
//OUTRETRY OUTPUT RETRYT=’0001:00:00’,RETRYL=5

In this example a retry is attempted every hour, for a maximum of five attempts.

Example 2: RETRYT Only
//OUTRETRY OUTPUT RETRYT=’0000:05:00’

In this example a retry is attempted every five minutes.

ROOM parameter
Parameter type: Keyword, optional

Purpose: Use the ROOM parameter to print a room identification on the separator
pages of the output for a sysout data set. An installation can use the room
identification to assist in sysout distribution.

Syntax

ROOM= {’room identification’}
{room-identification }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the ROOM
parameter.

Subparameter definition
room identification

Specifies the room identification to be associated with the sysout. The room
identification is 1 - 60 EBCDIC text characters. See “Character sets” on page 21
for a description of EBCDIC text characters.

Defaults
v In an APPC scheduling environment: In both JES2 and JES3 systems, if you do

not code the ROOM parameter on the OUTPUT JCL statement, the system uses
the value defined in the transaction program (TP) user's RACF profile when:
– The user submitting the TP profile has a RACF profile defined for him, and
– The transaction program profile includes TAILOR_SYSOUT(YES).
Otherwise, the system uses the value defined on the transaction initiator's job
statement.

v In a non-APPC scheduling environment: In a JES2 system, if you do not code
the ROOM parameter on the OUTPUT JCL statement, the system uses the
4-character room field defined in the JES2 accounting parameter on the JOB
statement.
In a JES3 system, there is no default for the ROOM parameter on the OUTPUT
JCL statement.

OUTPUT JCL: RETRYL and RETRYT

542 z/OS V2R1.0 MVS JCL Reference

Overrides
v In an APPC scheduling environment: In both JES2 and JES3 systems the ROOM

parameter on the OUTPUT JCL statement overrides the room defined in the
RACF profile. The room in the RACF profile overrides the room defined in the
transaction initiator's job statement.

v In a non-APPC scheduling environment: In both JES2 and JES3 systems, the
ROOM parameter on the OUTPUT JCL statement overrides the 4-character room
field defined in the JES2 accounting parameter on the JOB statement.

Example of the ROOM parameter
//OUTDS8 OUTPUT ROOM=’CONFERENCE ROOM’

In this example, CONFERENCE ROOM is printed on the line reserved for ROOM
on the separator pages of any sysout data set that references OUTDS8.

SYSAREA parameter
Parameter type

Keyword, optional

Purpose

Use the SYSAREA (system area) parameter to indicate whether the system should
reserve an area on each page of printed output for the security label. The security
label represents a security level and categories as defined to RACF.

Note: When a system area is reserved for a security label, the system shifts the
printed output on each page. You cannot print output data in the system area.

Reference

For additional information on the system area, refer to PSF for z/OS: Customization
and PSF for z/OS: Security Guide.

Syntax

SYSAREA= {YES}
{Y }
{NO }
{N }

Subparameter definition
YES

Requests that a system area be reserved on each page of printed output for the
security label. This parameter can also be coded as Y.

NO
Requests that a system area not be reserved on each page of printed output for
the security label. This parameter can also be coded as N.

OUTPUT JCL: ROOM

Chapter 23. OUTPUT JCL statement 543

Defaults
If you do not code the SYSAREA parameter, an installation default determines if a
system area is reserved for a security label.

Relationship to other parameters
Use the SYSAREA parameter with the DPAGELBL parameter on the OUTPUT JCL
statement and the SECLABEL parameter on the JOB statement as instructed by
your security administrator.

The SYSAREA parameter can be coded with any other OUTPUT JCL statement
parameters.

Example of the SYSAREA parameter
//JOBB JOB 1,’JIM WOOSTER’,SECLABEL=CONF

.

.
//PRESRPT OUTPUT DPAGELBL=YES,SYSAREA=YES,FORMS=CSEC

In this example, the security label CONF (specified on the SECLABEL parameter of
the JOB statement) is printed on each page of printed output in the system area.
The sysout data set is printed on forms named CSEC.

THRESHLD parameter
Parameter type: Keyword, optional, JES3 only

Purpose: Use the THRESHLD parameter to specify the maximum size for the
sysout data set. JES3 calculates the sysout data set size as the number of records
multiplied by the number of copies requested. When this size exceeds the
THRESHLD value, JES3 creates a new unit of work, on a data set boundary, and
queues it for printing. Consequently, copies of the sysout data set may be printed
simultaneously by different printers.

Use the THRESHLD parameter for jobs that generate many large data sets or many
copies of one large data set.

Note: THRESHLD is supported only on JES3 systems.

Syntax

THRESHLD=limit

Subparameter definition
limit

Specifies the maximum number of records for a single sysout data set. limit is
a decimal number from 1 through 99999999.

Defaults
If you do not code the THRESHLD parameter, JES3 uses an installation default
specified at initialization.

OUTPUT JCL: SYSAREA

544 z/OS V2R1.0 MVS JCL Reference

Example of the THRESHLD parameter
//STEPA EXEC PGM=RPTWRT
//SYSDS3 OUTPUT DEFAULT=YES,THRESHLD=10000
//RPT1 DD SYSOUT=A,COPIES=10
//RPT2 DD SYSOUT=A,COPIES=2
//RPT3 DD SYSOUT=A,COPIES=5

In this example, the report data sets, RPT1, RPT2, and RPT3, are processed in
sysout class A. All three DD statements implicitly reference the step-level default
OUTPUT JCL statement SYSDS3; therefore, the THRESHLD value specified in the
OUTPUT JCL statement applies to the three reports combined. JES3 is to print the
following:

Copies
Data
Set

Records in
Data Set

Total
Records

10 RPT1 1000 10000
2 RPT2 2000 4000
5 RPT3 500 2500

Total 16500

Because the total exceeds the THRESHLD limit, JES3 divides the sysout data sets
into two units of work. RPT1 is printed as one unit, and the other two data sets
are printed together as another unit. If the THRESHLD limit had been 20000, all
three data sets would have been printed as one unit of work.

TITLE parameter
Parameter type: Keyword, optional

Purpose: Use the TITLE parameter to print a description of the output on the
separator pages of the output of a sysout data set. An installation can use the
description to assist in sysout distribution.

Syntax

TITLE= {’description of output’}
{description-of-output }

See “Using enclosing apostrophes in OUTPUT parameters” on page 469 for the TITLE
parameter.

Subparameter definition
description of output

Specifies a description of output to be associated with a sysout data set. The
description of output is 1 - 60 EBCDIC text characters. See “Character sets” on
page 21 for a description of EBCDIC text characters.

Example of the TITLE parameter
//OUTDS5 OUTPUT TITLE=’ANNUAL REPORT’

In this example, ANNUAL REPORT is printed on the line reserved for title on the
separator pages of any sysout data set referencing OUTDS5.

OUTPUT JCL: THRESHLD

Chapter 23. OUTPUT JCL statement 545

TRC parameter
Parameter type: Keyword, optional

Purpose: Use the TRC parameter to specify whether the logical record for each
output line in the sysout data set contains table reference character (TRC) codes or
not. The TRC code identifies which font-name in the CHARS parameter is to be
used to print the record.

If present, a TRC code in the output line record is:
v The first byte, if a carriage control character is not used.
v The second byte, immediately following the carriage control character, if used.

Note: TRC is supported only for a data set processed by the Print Services Facility
(PSF).

Syntax

TRC= {YES}
{Y }
{NO }
{N }

Subparameter definition
YES

Indicates that the data set contains TRC codes. This subparameter can also be
coded as Y.

NO
Indicates that the data set does not contain TRC codes. This subparameter can
also be coded as N.

Note: The data set DCB must not indicate that the data set contains TRC codes.
DCB=(OPTCD=J) overrides TRC=NO when the data set is printed by PSF.

Defaults
If you do not code the TRC parameter, the default is to use TRC characters only if
the data set DD statement specified DCB=(OPTCD=J).

Relationship to other parameters
A table reference character for the entire data set can be specified in the OUTPUT
JCL MODIFY parameter.

Example of the TRC parameter
//WRTR JOB ACNO77,MAEBIRD,MSGCLASS=B
//DS23 OUTPUT DEFAULT=YES,FORMS=STD,CONTROL=PROGRAM,TRC=YES
//STEP1 EXEC PGM=DLYRPT
//DAILY DD SYSOUT=A,CHARS=(GT12,GB12,GI12)

In this example, sysout DD statement DAILY implicitly references the default
job-level OUTPUT JCL statement DS23. This OUTPUT JCL statement directs PSF to
print the daily report on standard forms, using table reference characters. The
sysout data set defined by DD statement DAILY contains carriage control

OUTPUT JCL: TRC

546 z/OS V2R1.0 MVS JCL Reference

characters in the first character of each logical record and a TRC code in the
second character. The TRC characters in the records are 0 to use the font GT12; 1 to
use GB12; and 2 to use GI12.

UCS parameter
Parameter type: Keyword, optional

Purpose: Use the UCS parameter to identify:
v The universal character set (UCS) image JES is to use in printing the sysout data

set.
v A print train (print chain or print band) JES is to use in printing the sysout data

set on an impact printer.
v A font for the sysout data set printed on an AFP printer in a JES2 system.

The UCS image specifies the special character set to be used. JES loads the image
into the printer’s buffer. The UCS image is stored in SYS1.IMAGELIB. IBM
provides the special character set codes in Table 29.

References: For more information on the UCS parameter, see z/OS DFSMSdfp
Advanced Services.

Syntax

UCS=character-set-code

Subparameter definition
character-set-code

Identifies a universal character set. The character-set-code is 1 through 4
alphanumeric or national ($, #, @) characters. See Table 29 for IBM standard
special character set codes.

Defaults
If you do not code the UCS parameter, the system checks the UCS image in the
printer’s buffer; if it is a default image, as indicated by its first byte, JES uses it. If
it is not a default image, JES loads the UCS image that is the installation default
specified at JES initialization.

On an impact printer, if the chain or train does not contain a valid character set,
JES asks the operator to specify a character set and to mount the corresponding
chain or train.

Table 29. Special Character Sets for the 1403, 3203 Model 5, and 3211 Printers

1403
3203
Model 5 3211 Characteristics

AN AN A11 Arrangement A, standard EBCDIC character set, 48
characters

HN HN H11 Arrangement H, EBCDIC character set for FORTRAN
and COBOL, 48 characters

G11 ASCII character set

PCAN PCAN Preferred alphanumeric character set, arrangement A

OUTPUT JCL: TRC

Chapter 23. OUTPUT JCL statement 547

Table 29. Special Character Sets for the 1403, 3203 Model 5, and 3211 Printers (continued)

1403
3203
Model 5 3211 Characteristics

PCHN PCHN Preferred alphanumeric character set, arrangement H

PN PN P11 PL/I alphanumeric character set

QN QN PL/I preferred alphanumeric character set for
scientific applications

QNC QNC PL/1 preferred alphanumeric character set for
commercial applications

RN RN Preferred character set for commercial applications of
FORTRAN and COBOL

SN SN Preferred character set for text printing

TN TN T11 Character set for text printing, 120 characters

XN High-speed alphanumeric character set for 1403,
Model 2

YN High-speed preferred alphanumeric character set for
1403, Model N1

Note: Where three values exist (for the 1403, 3211, and 3203 Model 5 printers), code any
one of them. JES selects the set corresponding to the device on which the data set is
printed.

Not all of these character sets may be available at your installation. Also, an installation
can design character sets to meet special needs and assign a unique code to them. Follow
installation procedures for using character sets.

Overrides
For printing on a printer with the UCS feature, a UCS parameter on the sysout DD
statement overrides the OUTPUT JCL UCS parameter. For printing on a 3800, a
CHARS parameter on the sysout DD statement or the OUTPUT JCL statement
overrides all UCS parameters.

For a data set scheduled to the Print Services Facility (PSF), PSF uses the following
parameters, in override order, to select the font list:
1. Font list in the library member specified by an OUTPUT JCL PAGEDEF

parameter.
2. DD CHARS parameter.
3. OUTPUT JCL CHARS parameter.
4. DD UCS parameter.
5. OUTPUT JCL UCS parameter.
6. JES installation default for the device.
7. Font list on the PAGEDEF parameter in the PSF-cataloged procedure.

See “PAGEDEF parameter” on page 530 for more information.

Using special characters sets
To use a special character set, SYS1.IMAGELIB must contain an image of the
character set, and the chain or train for the character set must be available. IBM
provides standard special character sets, and the installation may provide
user-designed special character sets.

OUTPUT JCL: UCS

548 z/OS V2R1.0 MVS JCL Reference

Example of the UCS parameter
//PRTDS9 OUTPUT UCS=A11

In this example, JES uses standard EBCDIC character set arrangement A, with 48
characters, to print the sysout data set on a 3211 printer.

USERDATA parameter
Parameter type: Keyword, optional

Purpose: The purpose and use of this keyword is defined by the installation. Refer
to your installation's definition on the intent and use of this keyword.

If your installation does not define any use for this keyword, the information will
be checked for syntax, stored as part of the output descriptor's information, and
will then be ignored.

Networking considerations: The use of the USERDATA keyword on one network
node can be different from the use on another network node. An installation will
have to coordinate any sending and receiving nodes to make use of the
USERDATA keyword.

References: Refer to the z/OS MVS JCL User's Guide, section “SYSOUT
Resources—USERDATA OUTPUT JCL Keyword” for more details on how this
keyword may be used.

Syntax

USERDATA=value
(value[,value]...)

v Your installation defines the intent and use of this keyword.

v You can omit the parentheses if you code only one value.

v Null positions in the USERDATA parameter are not allowed. For example, you cannot
code USERDATA=(,value) or USERDATA=(value,,value).

v Each value may optionally be enclosed in apostrophes. See “Using enclosing apostrophes
in OUTPUT parameters” on page 469 for the USERDATA parameter.

Subparameter definition
value

Specifies the installation defined values for the installation's prescribed
processing. You can code up to 16 installation-defined values. Each value may
be from 1 to 60 EBCDIC text characters. See “Character sets” on page 21 for a
description of EBCDIC text characters.

Defaults
Determined by the installation.

Overrides
Determined by the installation.

OUTPUT JCL: UCS

Chapter 23. OUTPUT JCL statement 549

Relationship to other keywords on this statement
Determined by the installation.

Relationship to other control statements
Determined by the installation.

Relationship to other system functions
Determined by the installation.

Examples of the USERDATA parameter
The installation defines the intended content for each of the USERDATA values.
The following examples are intended to provide samples of the allowable syntax
for the USERDATA keyword. The resulting value (or portions of the value) are
enclosed in parentheses to help distinguish them.

Example 1
//OUTDS1 OUTPUT USERDATA=USERVALUE

In this example, the USERDATA keyword contains a single parameter value
(USERVALUE). Note that the value does not require enclosing apostrophes,
because it contains only characters that are valid without them.

Example 2
//OUTDS2 OUTPUT USERDATA=’Installation data’

In this example, the USERDATA keyword contains a single parameter value within
apostrophes (Installation data).

Example 3
//OUTDS3 OUTPUT USERDATA=’LOCALKEY=Installation data’

In this example, the USERDATA keyword contains a single parameter value within
the apostrophes (LOCALKEY=Installation data). The single parameter value
contains a string within the apostrophes that could be used to identify an
installation-defined keyword (LOCALKEY) and its parameter value (Installation
data).

Example 4
//OUTDS4 OUTPUT USERDATA=’USERKEY1=User’’s value’

In this example, the USERDATA keyword contains a single parameter value
containing a string within the apostrophes that could be used to identify an
installation defined keyword (USERKEY1) and its parameter value (User's value).

Example 5
//OUTDSA OUTPUT USERDATA=(’non-keyword data’,
// ’SOMEKEY=Some data’,
// ’PARM3=Parm3’’s value’,
// LASTVALUE)

In this example, the USERDATA keyword contains four parameter values.
v The first parameter value contains a string within the apostrophes (non-keyword

data). An installation can consider this type of parameter a positional parameter.

OUTPUT JCL: USERDATA

550 z/OS V2R1.0 MVS JCL Reference

It is recommended that positional parameters be clearly indicated by the
installation to allow for easier specification, recognition, and processing.

v The second parameter value contains a string within the apostrophes that could
be used to identify an installation defined keyword (SOMEKEY) and its
parameter value (Some data).

v The third parameter value contains a string within the apostrophes that could be
used to identify an installation defined keyword (PARM3) and its parameter
value (Parm3's value).

v The fourth parameter value contains a string without any enclosing apostrophes
(LASTVALUE).

Example 6
//OUTDSB OUTPUT USERDATA=(’Installation_Keyword=Installation
// defined keyword value’,
// ’PARM2=Parm2’’s value (second option)’)

In this example, the USERDATA keyword contains two parameter values.
v The first parameter value contains a string within the apostrophes that could be

used to identify an installation defined keyword (Installation_Keyword) and its
parameter value (Installation defined keyword value), assuming the 'd' was
specified in column 71 on the first statement.

v The second parameter value contains a string within the apostrophes that could
be used to identify an installation defined keyword (PARM2) and its parameter
value (Parm2's value (second option)).

Example 7
//PROCC PROC PARM1=POSITIONAL,SOMEDATA=SOMETHING
//STEPC EXEC PGM=MYPGM
//OUTDSC OUTPUT USERDATA=(&PARM1,
// SOMEKEY-&SOMEDATA)

In this example, the USERDATA keyword contains two parameter values. If the
installation allows a format of keyword-value, where the hyphen (-) is interpreted
as an equal sign (=), then the parameter values do not need to be enclosed within
apostrophes. Symbolic substitution of the parameter values is more
straightforward.
v The first parameter value contains a string that could be used to identify an

installation defined parameter value that is defined as a symbolic parameter. The
procedure default for the value is taken from the PROC statement
(POSITIONAL).

v The second parameter value contains a string that could be used to identify an
installation defined keyword (SOMEKEY), the hyphen is considered an equal
sign (by the installation), and the parameter value that is defined as a symbolic
parameter. The procedure default for the value is taken from the PROC
statement (SOMETHING).

Example 8
//PROCD PROC PARM1=POSITIONAL,SOMEDATA=SOMETHING
//STEPD EXEC PGM=MYPGM
//OUTDSD OUTPUT USERDATA=(’&PARM1’,
// ’SOMEKEY-&SOMEDATA’)

In this example, the USERDATA keyword contains two parameter values. If the
installation allows a format where an installation-defined keyword=value format

OUTPUT JCL: USERDATA

Chapter 23. OUTPUT JCL statement 551

requires the entire parameter value to be enclosed within apostrophes, symbolic
substitution of the parameter values is less straightforward than in the previous
example.
v The first parameter value contains a string within the apostrophes that could be

used to identify an installation defined parameter value that is defined as a
symbolic parameter. Since the parameter is enclosed within apostrophes, the
&PARM1 symbolic is not resolved so the parameter value is left unchanged
(&PARM1).

v The second parameter value contains a string that could be used to identify an
installation defined keyword (SOMEKEY), and the parameter value that is
defined as a symbolic parameter. However, since the entire parameter is
enclosed within apostrophes, the &SOMEDATA symbolic is not resolved so the
entire parameter is left unchanged (SOMEKEY=&SOMEDATA).

USERLIB parameter
Parameter type: Keyword, optional

Purpose: Use the USERLIB parameter to identify libraries containing AFP resources
to be used by Print Services Facility (PSF) when processing sysout data sets. The
system searches libraries specified on the USERLIB parameter before using any
system-defined resources. The resources specify how PSF is to print the sysout data
set. They include:
v Fonts
v Page segments
v Overlays
v Page definitions

To have PSF search the libraries specified on the USERLIB parameter for page
definitions, you must code the membername on the PAGEDEF parameter of the
OUTPUT JCL statement. If you do not code the PAGEDEF parameter, the system
searches the system libraries.

v Form definitions
To have PSF search the libraries specified on the USERLIB parameter for form
definitions, you must code the membername on the FORMDEF parameter of the
OUTPUT JCL statement. If you do not code the FORMDEF parameter, the
system searches the system libraries.

Syntax

USERLIB={data-set-name }
{(data-set-name1,data-set-name2,...data-set-name8)}

v You can omit the parentheses if you code only one data set name.

v If you code more than one data set name, each data set name may be enclosed in
apostrophes. However, apostrophes around each data set name are not required.

Subparameter definitions
data-set-name

Specifies from 1 to 8 library data set names containing AFP resources. The data
set name must be a cataloged MVS data set. The library can contain any AFP
resources. The libraries are searched in the order in which they are specified on
the USERLIB statement.

OUTPUT JCL: USERDATA

552 z/OS V2R1.0 MVS JCL Reference

Defaults
If you do not code USERLIB, only the system and installation print resources are
available. These resources include those available in the system libraries, and those
specified inline in the print data set.

Overrides
PSF obtains the system and installation resources in the following order:
1. Inline print data set resources
2. Libraries specified on the USERLIB statement
3. System libraries

Requirements for USERLIB libraries
Data sets specified by USERLIB are concatenated to the system resource libraries,
and are checked before the system libraries for requested resources. Unique
member names should be defined for concatenated libraries. If the member names
are not unique, the system uses the first member that it encounters.

Examples of the USERLIB parameter
Example 1
//OUT1 OUTPUT PAGEDEF=STNDRD,FORMDEF=CENTER,
// USERLIB=(USER.PRIVATE.RESOURCE,GROUP.PRIVATE.RESOURCE)

In this example, PSF is to print the sysout data set using PAGEDEF=STNDRD and
FORMDEF=CENTER.

When processing the sysout data set, PSF will search the user libraries before
searching the system libraries for the specified PAGEDEF and FORMDEF. When
searching the user libraries, PSF will search USER.PRIVATE.RESOURCE before
searching GROUP.PRIVATE.RESOURCE.

Example 2
//OUT1 OUTPUT PAGEDEF=STNDRD,FORMDEF=CENTER,
// USERLIB=(’USER.PRIVATE.RESOURCE’,’GROUP.PRIVATE.RESOURCE’)

You may code apostrophes around the data set names, but apostrophes are not
required. The system will process this example the same way it processes Example
1.

USERPATH parameter
Parameter type: Keyword, optional

Purpose: Names up to eight z/OS UNIX file system paths containing resources to
be used by Print Services Facility (PSF) when processing sysout data sets. The
system will search for resources in the paths specified on the USERPATH
parameter before it searches paths specified at the system level. The paths specified
on the USERPATH parameter can contain the following resources:
v TrueType fonts
v OpenType fonts

OUTPUT JCL: USERLIB

Chapter 23. OUTPUT JCL statement 553

Syntax

USERPATH={path }
{(path1,path2,...path8)}

v Path is the path name only. It cannot include the file name.

v You can omit the parentheses if you code only one path.

v A USERPATH parameter can specify from one to eight path subparameters.

v USERPATH=(,path) is invalid.

v If the path contains any special characters, blanks, or is continued to the next line, it
must be enclosed in apostraphes.

v The first character in a path is a slash.

v A path can be specified as a maximum of 255 characters including any blank characters.

v See the PATH parameter on the DD statement for additional syntax rules.

Subparameter definitions
path

Specifies the name of a z/OS UNIX System Services path which contains
resources to be used for processing sysout data sets. Up to eight paths can be
specified on the USERPATH parameter. PSF will search these paths for
resources in the order the paths are specified.

Defaults
If you do not code USERPATH, only the system paths and the sysout data set itself
are searched for available resources.

Overrides
Resources identified while processing a sysout data set are searched for in the
following order:
v The sysout data set as an inline resource.
v The paths specified on the USERPATH parameter.
v The system path resource repositories.

Relationship to other system functions
The USERPATH parameter is the companion parameter to the USERLIB parameter.
Paths specified by the USERPATH parameter are logically concatenated to the
system paths (see the FONTPATH parameter in the Print Services Facility for
OS/390 & z/OS Customization). When looking for a resource, the USERPATH
repositories are searched before the system path repositories. If two resources with
the same file name exist in these paths, the system will use the first file
encountered.

Examples of the USERPATH parameter
Example 1
//OUT1 OUTPUT PAGEDEF=STNDRD,FORMDEF=CENTER,
// USERLIB=(USER,PRIVATE,RESOURCE),
// USERPATH=(/usr/fonts/ttfonts,/usr/fonts/otfonts)

In the prior example, two USERPATH paths have been specified. For any resource
which can legally reside in a z/OS UNIX System Services path, PSF will first
search path /usr/fonts/ttfonts and then path /usr/fonts/otfonts before searching
for the resource in the system level path repositories.

OUTPUT JCL: USERPATH

554 z/OS V2R1.0 MVS JCL Reference

WRITER parameter
Parameter type: Keyword, optional

Purpose: Use the WRITER parameter to name an external writer to process the
sysout data set rather than JES. An external writer is an IBM- or
installation-written program.

References: For information about external writers, see z/OS JES2 Initialization and
Tuning Guide or z/OS JES3 Initialization and Tuning Guide.

Syntax

WRITER=name

Subparameter definition
name

Identifies the member name (1 to 8 alphanumeric characters) of an
installation-written program in the system library that the external writer loads
to write the output data set.

Do not code INTRDR or STDWTR (and for JES3, NJERDR) as the writer name.
These names are reserved for JES.

Defaults
If you do not code the WRITER parameter, the installation’s job entry subsystem
processes the sysout data set.

Overrides
The writer-name subparameter of the SYSOUT parameter on the sysout DD
statement overrides the OUTPUT JCL WRITER parameter.

Relationship to other parameters
For JES3, you can code the OUTPUT JCL DEST=nodename parameter with the
WRITER=name parameter; however, do not code DEST=nodename.userid with
WRITER=name.

Starting an external writer
When a statement supplying processing options for a sysout data set specifies an
external writer, the writer must be started before it can print or punch the data set.
The writer is started by a system command from the operator or in the input
stream. If the writer is not started before the job produces the sysout data set, the
data set is retained until the writer is started.

Examples of the WRITER parameter
Example 1
//MYOUT JOB ACCT928,MAEBIRD,MSGCLASS=B
// START XWTR
//MYDS OUTPUT WRITER=MYPGM
//STEP1 EXEC PGM=REPORT
//RPT1 DD SYSOUT=A,OUTPUT=*.MYDS

OUTPUT JCL: WRITER

Chapter 23. OUTPUT JCL statement 555

The second statement is a JCL command statement to start the IBM-supplied
external writer. This writer is a cataloged procedure in SYS1.PROCLIB. The sysout
DD statement RPT1 explicitly references OUTPUT JCL statement MYDS, which
specifies that the program MYPGM is to be loaded by XWTR and process the
sysout data set.

Example 2 (for a JES3 system)
//**START XWTR
//MYOUT JOB ACCT928,MAEBIRD,MSGCLASS=B
//MYDS OUTPUT WRITER=MYPGM
//STEP1 EXEC PGM=REPORT
//RPT1 DD SYSOUT=A,OUTPUT=*.MYDS

OUTPUT JCL: WRITER

556 z/OS V2R1.0 MVS JCL Reference

Chapter 24. PEND statement

Purpose: Use the PEND statement to mark the end of an in-stream procedure. You
may end a cataloged procedure with a PEND statement, but it is not required.

Description

Syntax

//[name] PEND [comments]

The PEND statement consists of the characters // in columns 1 and 2 and three fields:
name, operation (PEND), and comments. Do not continue a PEND statement.

Name field
A name is optional on the PEND statement. If used, code it as follows:
v The name must begin in column 3.
v The name is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The name must be followed by at least one blank.
v The name may be preceded by up to 8 alphanumeric or national characters, and

then separated by a period. Coding the name in this way should not be
confused with specifying an override, as can be done when coding DD
statements.

If a name is not coded, column 3 must be blank.

Operation field
The operation field consists of the characters PEND and must be preceded and
followed by at least one blank. It can begin in any column.

Comments field
The comments field follows PEND after at least one intervening blank.

Location in the JCL
A PEND statement follows the statements of an in-stream procedure, and may
follow the statements of a cataloged procedure.

Examples of the PEND statement
Example 1
//PROCEND1 PEND THIS STATEMENT IS REQUIRED FOR IN-STREAM PROCEDURES

This PEND statement contains a comment.

Example 2
// PEND

© Copyright IBM Corp. 1988, 2013 557

This PEND statement contains only // and the operation field with the necessary
blanks.

PEND

558 z/OS V2R1.0 MVS JCL Reference

Chapter 25. PROC statement

Purpose: The PROC statement marks the beginning of a procedure. The PROC
statement can assign default values to symbolic parameters, if coded, in the
procedure.

Description

Syntax

For a cataloged procedure:
[//[name] PROC [parameter [comments]]]
//[name] PROC

For an in-stream procedure:
//name PROC [parameter [comments]]
//name PROC

A PROC statement consists of the characters // in columns 1 and 2 and four fields: name,
operation (PROC), parameter, and comments.
Note: A PROC statement is optional in a cataloged procedure.

Multiple parameters: When more than one parameter is coded, separate parameters by
commas. For example, //P1 PROC PARM1=OLD,PARM2=222001.

Special characters: When a parameter value contains special characters, enclose the value
in apostrophes. The enclosing apostrophes are not considered part of the value. For
example, //P2 PROC PARM3='3400-6'.

Code each apostrophe that is part of a value as two consecutive apostrophes. For example,
//P3 PROC PARM4=‘O’‘DAY’.

However, if the symbolic parameter is enclosed within a matched pair of parentheses, you
do not need to enclose the parentheses in apostrophes.

Continuation onto another statement: End each statement with a comma after a complete
parameter. For example:

//P4 PROC PARM5=OLD,PARM6=’SYS1.LINKLIB(P40)’,
// PARM7=SYSDA,PARM8=(CYL,(10,1))

Name field
A name is required on a PROC statement in an in-stream procedure and is optional
on a PROC statement in a cataloged procedure. Code it as follows:
v When coded for an in-stream procedure, each name must be unique within the

job. When coded for a cataloged procedure, the name need not be unique.
v The name must begin in column 3.
v The name is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The name must be followed by at least one blank.

If a name is not coded, column 3 must be blank.

© Copyright IBM Corp. 1988, 2013 559

Operation field
The operation field consists of the characters PROC and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter field
The parameters on a PROC statement assign default values to symbolic parameters
on procedure statements. An in-stream PROC statement requires parameters only if
the procedure contains symbolic parameters. See “Using system symbols and JCL
symbols” on page 38 for details on symbolic parameters and on how to assign
values to them.

If coded, the parameter field must be preceded and followed by at least one blank.

Comments field
The comments field follows the parameter field after at least one intervening blank.
Do not code comments unless you code the parameter field.

Overrides
To override a default parameter value on a PROC statement, code the same
parameter on the EXEC statement that calls the procedure.

Location in the JCL
A PROC statement must be the first statement in a procedure. An in-stream
procedure must appear in the same job before the EXEC statement that calls it. A
cataloged procedure appears in a procedure library, usually SYS1.PROCLIB.

Examples of the PROC statement
Example 1
//DEF PROC STATUS=OLD,LIBRARY=SYSLIB,NUMBER=777777
//NOTIFY EXEC PGM=ACCUM
//DD1 DD DSNAME=MGMT,DISP=(&STATUS,KEEP),UNIT=3390,
// VOLUME=SER=888888
//DD2 DD DSNAME=&LIBRARY,DISP=(OLD,KEEP),UNIT=3390,
// VOLUME=SER=&NUMBER

Three symbolic parameters are defined in this cataloged procedure: &STATUS,
&LIBRARY, and &NUMBER. Values are assigned to the symbolic parameters on
the PROC statement. These values are used when the procedure is called and
values are not assigned to the symbolic parameters on the calling EXEC statement.

Example 2
//CARDS PROC

This PROC statement can be used to mark the beginning of an in-stream procedure
named CARDS.

PROC

560 z/OS V2R1.0 MVS JCL Reference

Chapter 26. SET statement

Purpose: Use the SET statement to:
v Define and assign initial values to symbolic parameters that are to be used when

processing JCL statements.
v Change or nullify the values of defined symbolic parameters (those that are

defined on previous SET statements) by assigning new values or nullifying
current values.

The values that you assign to symbolic parameters on a SET statement are used in
v Subsequent JCL statements in the JCL stream, and
v Statements in subsequent procedures and nested procedures, when you:

– Do not assign the values for the symbolic parameters on any PROC
statements, or on any EXEC statements that call the procedures

– Do not nullify the values for the symbolic parameters on any PROC
statements, or on any EXEC statements that call the procedures.

Symbolic parameter values that are assigned or nullified by calling EXEC or PROC
statements override the values you assign or nullify with the SET statement.

The rules for symbolic parameters apply to the symbolic parameters you specify
on the SET statement. See the topics “Using system symbols and JCL symbols” on
page 38 and “Using symbols in nested procedures” on page 51.

See also the EXEC and PROC statements, which also define and assign values to
symbolic parameters.

Description

Syntax

//[name] SET symbolic-parameter=value
// [,symbolic-parameter=value]... [comments]

© Copyright IBM Corp. 1988, 2013 561

The SET statement consists of the characters // in columns 1 and 2 and four fields: name,
operation (SET), parameter(s), and comments.

Multiple parameters: When more than one parameter is coded, separate parameters by
commas. For example:

//SP1 SET PARM1=OLD,PARM2=222001

Special characters and blanks: When a parameter value contains special characters or
blanks, enclose the value in apostrophes. The enclosing apostrophes are not considered
part of the value. For example:

//SP2 SET PARM3=’3400-6’

Code each apostrophe that is part of a value as two consecutive apostrophes. For example:

//SP3 SET PARM4=’O’’DAY’

However, if the symbolic parameter is enclosed within a matched pair of parentheses, you
do not need to enclose the parentheses in apostrophes. For example:

//SET1 SET DSP=(NEW,KEEP)

Continuation onto another statement: End each statement with a comma after a complete
parameter and continue the parameter field on the next statement between columns 4 and
16. For example:

//SP4 SET PARM5=OLD,PARM6=’SYS1.LINKLIB(P40)’,
// PARM7=SYSDA,PARM8=’(CYL,(10,1))’

Name field
A name is optional on a SET statement. If used, code it as follows:
v The name should be unique within the job.
v The name must begin in column 3.
v The name is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The name must be followed by at least one blank.
v The name can not be @GENSET@, as this is a reserved name.

If a name is not coded, column 3 must be blank.

Operation field
The operation field consists of the characters SET and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter field
The SET statement contains one or more parameters:

symbolic-parameter=value[,symbolic parameter=value]...
Defines a symbolic parameter and specifies the initial value to be assigned to
the symbolic parameter appearing in subsequent JCL statements. Separate each
assignment of a value to a symbolic parameter by commas.

To nullify a symbolic parameter, specify:
symbolic-parameter=

Comments field
The comments field follows the parameter field after at least one intervening blank.

SET

562 z/OS V2R1.0 MVS JCL Reference

Overrides
A value you assign to a symbolic parameter on a SET statement is overridden by:
v A subsequent SET statement
v Any default value assigned or nullified on a subsequent PROC statement for a

procedure
v Any value assigned or nullified on a subsequent EXEC statement that calls a

procedure.

When the target of an MVS START command contains a JOB statement, and the
MVS START command specifies symbolic parameters, the system inserts a SET
statement into the job to define those symbolic values. In contrast to the normal
behavior of SET statements, values defined on this SET statement override:
v Other SET statements that occur before the first IF or EXEC statement in the job
v An EXEC statement that invokes an outer (non-nested) procedure
v A PROC statement in an outer procedure.

See “Defining and nullifying JCL symbols” on page 39 and “Using symbols in
nested procedures” on page 51 for the complete set of rules for assigning values to
symbolic parameters.

Location in the JCL
A SET statement can appear anywhere in the job after the JOB statement with the
following restrictions:
v It must appear in the job's JCL before the intended use of the symbolic

parameter.
v It must follow a complete JCL statement.
v It cannot appear immediately after the first DD statement within a

concatenation.
Examples: The following JCL will work.
//DD1 DD DSN=dsnA,DISP=SHR
// DD DSN=dsnB,DISP=SHR
// SET
// DD DSN=dsnC,DISP=SHR

The following JCL will fail.
//DD1 DD DSN=dsnA,DISP=SHR
// SET
// DD DSN=dsnB,DISP=SHR
// DD DSN=dsnC,DISP=SHR

Relationship to other control statements
Symbolic parameters are also assigned values or nullified on PROC statements and
EXEC statements that call procedures.

Considerations for using the SET statement
v The symbolic parameters you define on the SET statement are assigned the

specified values at the location in which the SET statement is encountered in
processing the JCL.
If you use SET to define a value for a symbolic parameter that does not appear
in the JCL, the system does not issue message IEFC657I, and there is no JCL
error.

SET

Chapter 26. SET statement 563

v The SET statement is not executed conditionally. For example, if the SET
statement appears in an IF/THEN/ELSE/ENDIF statement construct, the value
is assigned to the symbolic parameter regardless of the logic of the construct.

Examples of the SET statement
Example 1: The symbolic parameter DSP is defined and initialized to the value
NEW.

//SET1 SET DSP=NEW

DSP is referenced by coding &DSP in the JCL, for example:
.
.

//DD1 DD DSNAME=ALPHA.PGM1,DISP=(&DSP,KEEP)

In the example, &DSP is assigned the value NEW for execution:
//DD1 DD DSNAME=ALPHA.PGM1,DISP=(NEW,KEEP)

Example 2: The symbolic parameter DSP is defined and initialized to the value
(NEW,DELETE,KEEP).

//SETA SET DSP=(NEW,DELETE,KEEP)

DSP is referenced by coding &DSP in the JCL, for example:
//PR2 PROC DSP=(NEW,KEEP)

.

.
//DD6 DD DSNAME=ALPHA.PGM2,DISP=&DSP

&DSP is assigned the value (NEW,KEEP) from PROC statement PR2 for execution:
//DD6 DD DSNAME=ALPHA.PGM2,DISP=(NEW,KEEP)

In the example, the definition of DSP on SET statement SETA does not override
the default definition of DSP on PROC statement PR2.

Example 3: This example shows the SET statement spanning two records. The
symbolic parameters are defined and initialized to the values shown on SET
statement SETB. They are referenced by coding &AA, &BB, and &CC in the JCL,
for example:

//SETB SET AA=BETA.PGM.RATE,BB=DCLAS03,
// CC=(NEW,KEEP)

.

.
//PR3 PROC ...
//S3 EXEC PGM=...
//DD7 DD DSNAME=&AA,DATACLAS=&BB,DISP=&CC

.
// PEND

.
//S1 EXEC PROC=PR3,BB=DCLAS0X

.

In the example, the values assigned on DD statement DD7 for execution are:
//DD7 DD DSNAME=BETA.PGM.RATE,DATACLAS=DCLAS0X,DISP=(NEW,KEEP)

The values defined for the symbolic parameters on SET statement SETB are
assigned to the AA and CC symbolic parameters in procedure PR3 for execution.
However, the value defined for symbolic parameter BB on EXEC statement S1
overrides the value defined on SET statement SETB.

SET

564 z/OS V2R1.0 MVS JCL Reference

Example 4: The following example shows the use of the SET statement assigning
values to symbolic parameters in an INCLUDE group.

//* THIS INCLUDE GROUP IS CATALOGED AS...
//* PUCHKOFF.SYSOUT.JCL(SYSOUT2)
//SYSOUT2 DD SYSOUT=A
//OUT1 OUTPUT DEST=POK,COPIES=3
//OUT2 OUTPUT DEST=&AA,COPIES=&NC
//OUT3 OUTPUT DEST=&BB,COPIES=10
//* END OF INCLUDE GROUP...
//* PUCHKOFF.SYSOUT.JCL(SYSOUT2)

The following program is executed.
//TESTJOB JOB ...
//LIBSRCH JCLLIB ORDER=PUCHKOFF.SYSOUT.JCL
//SET1 SET AA=KINGSTON,BB=STL,NC=10
//STEP1 EXEC PGM=OUTRTN
//OUTPUT1 INCLUDE MEMBER=SYSOUT2
//STEP2 EXEC PGM=IEFBR14

The SET statement, which can be easily changed for different jobs, assigns values
to the symbolic parameters in INCLUDE group SYSOUT2.

After the INCLUDE statement is processed, the JCL stream would be executed as:
//TESTJOB JOB ...
//LIBSRCH JCLLIB ORDER=PUCHKOFF.SYSOUT.JCL
//STEP1 EXEC PGM=OUTRTN
//* THIS INCLUDE GROUP IS CATALOGED AS...
//* PUCHKOFF.SYSOUT.JCL(SYSOUT2)
//SYSOUT2 DD SYSOUT=A
//OUT1 OUTPUT DEST=POK,COPIES=3
//OUT2 OUTPUT DEST=KINGSTON,COPIES=10
//OUT3 OUTPUT DEST=STL,COPIES=10
//* END OF INCLUDE GROUP...
//* PUCHKOFF.SYSOUT.JCL(SYSOUT2)
//STEP2 EXEC PGM=IEFBR14

The INCLUDE group has been imbedded in the JCL stream (replacing the
INCLUDE statement) and values assigned to the symbolic parameters in the
INCLUDE group.

SET

Chapter 26. SET statement 565

566 z/OS V2R1.0 MVS JCL Reference

Chapter 27. XMIT JCL statement

Support for the XMIT JCL statement:

v The XMIT JCL statement has no function in an APPC scheduling environment. If
you code XMIT, the system will check it for syntax and ignore it.

v The XMIT JCL statement is supported on both JES2 and JES3 systems. In JES2
systems, however, the SUBCHARS operand is not supported.

Purpose: Use the XMIT JCL statement to transmit records from an MVS node to a
JES3 node, a JES2 node, a VSE/POWER node, a VM/RSCS node, or an AS/400®

node.

The sending system does not process or check the records for validity except when
the JCL is processed by an internal reader (such as with TSO/E submit processing).
In this case, the system recognizes /*EOF and /*DEL as internal reader control
statements and errors can occur on the sending system if /*EOF or /*DEL are
included in the XMIT JCL stream.

To transmit /*EOF and /*DEL statements as part of the XMIT JCL stream on a
JES3 node, replace /* with two substitute characters and identify the substitute
characters on the SUBCHARS parameter. Prior to transmission, the sending system
converts the two substitute characters to /*. The receiving (execution) system can
then process the /*EOF and /*DEL statements as internal reader control
statements.

Note: Since JES2 does not support the SUBCHARS parameter, it also does not
support sending /*EOF and /*DEL as part of the XMIT JCL stream.

Do not nest XMIT JCL statements. That is, do not include an XMIT JCL statement
between an XMIT JCL statement and its delimiter.

The system builds network job header and trailer records from information on the
JOB statement and any //*NETACCT statements, if included, preceding the XMIT
JCL statement. Then the system transmits all the records between the XMIT JCL
statement and a delimiter statement.

The records can consist of a job input stream, an in-stream DD * or DD DATA data
set, or any job definition statements recognized by the destination node. If the
records are a job input stream, and the destination node can process the JCL, the
transmitted input stream is executed at the destination node. The records must be
80 characters long.

The records end when the system finds one of the following delimiters:
v /* in the input stream, if a DLM parameter is not coded on this XMIT JCL

statement. (Refer to the Delimiter Statement information for an explanation of
/*.)
From TSO/E only, TSO/E inserts /* at the end-of-file if the default delimiter is
not supplied.

v The two-character delimiter specified by a DLM parameter on this XMIT JCL
statement.

© Copyright IBM Corp. 1988, 2013 567

Description

Syntax

//[name] XMIT parameter[,parameter]... [comments]

The XMIT JCL statement consists of the characters // in columns 1 and 2 and four fields:
name, operation (XMIT), parameter, and comments.

Name field
A name is optional on the XMIT JCL statement. If used, code it as follows:
v Each name must be unique within the job.
v The name must begin in column 3.
v The name is 1 through 8 alphanumeric or national ($, #, @) characters.
v The first character must be alphabetic or national ($, #, @).
v The name must be followed by at least one blank.

Operation field
The operation field consists of the characters XMIT and must be preceded and
followed by at least one blank. It can begin in any column.

Parameter field
The XMIT JCL statement contains only keyword parameters. A DEST parameter is
required; the DLM and SUBCHARS parameters are optional. If your JCL is to be
processed by an internal reader and /*EOF or /*DEL is part of the XMIT JCL
stream, you must code the SUBCHARS parameter.

You can code the keyword parameters in any order in the parameter field.

KEYWORD PARAMETERS VALUES PURPOSE

DEST=nodename[.vmuserid]

See section “DEST parameter” on page 570

nodename: 1 - 8 alphanumeric or $,
#, @ characters

vmuserid: 1 - 8 alphanumeric or $, #,
@ characters

Identifies the destination
for all following records
until a delimiter stops
transmission of the
records.

DLM=delimiter

See section “DLM parameter” on page 571

delimiter: 2 alphanumeric, $, #, @, or
special characters

Specifies a delimiter to
stop the transmission of
records.

SUBCHARS=substitute

See section “SUBCHARS parameter” on page 572

substitute: 2 alphanumeric, $, #, @, or
special characters

Specifies a substitute for
internal reader control
statements. (JES3 only)

Comments field
The comments field follows the parameter field after at least one intervening blank.

Location in the JCL
Place the XMIT JCL statement after a JOB statement and any //*NETACCT or
/*NETACCT statements. (Other JES2 and JES3 JCL statements between the JOB
and XMIT JCL statements are not supported and can cause unpredictable results.)
The JOB statement must be valid for the submitting location.

XMIT JCL

568 z/OS V2R1.0 MVS JCL Reference

Do not place any other MVS JCL statements between the JOB statement and the
XMIT JCL statement. If any of these statements intervene, the system terminates
the job.

Error on XMIT JCL statement
For JES2, if the system finds an error on the XMIT JCL statement before a specified
DLM parameter, the current job is flushed.

For JES3, if the system finds an error on the XMIT JCL statement before a specified
DLM parameter, all jobs in the batch are flushed.

If the system finds an error on the XMIT JCL statement after a specified DLM
parameter, the network job is flushed and local processing starts at the statement
following the specified delimiter.

Examples of the XMIT JCL statement
Example 1
//JOBA JOB 25FA64,’KEN KAHN’
//X1 XMIT DEST=KGNMVS45

.

.
(records to be transmitted)
.

/*
//JOBB JOB ...

.

In this example, the records between the XMIT JCL statement and the delimiter
statement (/* in columns 1 and 2) are transmitted to the node named KGNMVS45.

Example 2
//JOBC JOB PW19,’DEPT 53’
//X2 XMIT DEST=POKVMDD3.MVSGST34,DLM=AA

.

.
/*

(records to be transmitted)
/*EOF
/*DEL

.

.
AA
//JOBB JOB ...

.

In this example, processing is not through an internal reader on the sending
system. The records between the XMIT JCL statement and the delimiter statement,
which must contain AA in columns 1 and 2 as specified in the DLM parameter, are
transmitted to the system, MVSGST34, running on the VM system at the node
named POKVMDD3.

Example 3 (JES3 only)
//JOBE JOB NS37,’NYC BX’
//X3 XMIT DEST=SANFRAN,DLM=AA,SUBCHARS=’/+’

.

.
(records to be transmitted)
.
.

XMIT JCL

Chapter 27. XMIT JCL statement 569

/+EOF
.
.

/+DEL
AA
//JOBF JOB ...

.

In this example, the JCL is processed through an internal reader on the sending
system. The records between the XMIT JCL statement and the delimiter statement,
which must contain AA in columns 1 and 2 as specified in the DLM parameter, are
transmitted to the node named SANFRAN.

To transmit the /*EOF and /*DEL internal reader control statements, /* is replaced
by /+ in columns 1 and 2 on both statements in the XMIT JCL stream and
SUBCHARS=‘/+’ is coded on the XMIT statement. The sending system does not
recognize /+EOF and /+DEL as internal reader statements. Then prior to
transmission, the sending system converts /+ to /* and sends /*EOF and /*DEL to
the receiving node, which can then process the internal reader control statements.

DEST parameter
Parameter type: Keyword, required

Purpose: Use the DEST parameter to specify a destination for the following input
stream records. The DEST parameter can send the records to a node or, for a node
that is a VM system, to a guest system running on the virtual machine.

Syntax

DEST=nodename

DEST=nodename.vmuserid

Subparameter definition
nodename

Identifies the destination node. The nodename identifies a JES2 system, a JES3
system, a VSE/POWER node, or a VM system. The nodename is 1 through 8
alphanumeric or national ($, #, @) characters specified during JES initialization.
If the requested node is the same as the submitting node, the records following
the XMIT JCL statement are processed by the local system.

userid
Identifies a destination guest system. The userid is 1 through 8 alphanumeric
or national ($, #, @) characters.

Examples of the DEST parameter
Example 1
//TRANS XMIT DEST=LAXSYS

This example sends the following records to a node named LAXSYS.

Example 2
//SEND XMIT DEST=VMSYS3.GUEST7

XMIT JCL

570 z/OS V2R1.0 MVS JCL Reference

This example sends the following records to a guest system, named GUEST7,
running in the VM system at the node named VMSYS3.

DLM parameter
Parameter type: Keyword, optional

Purpose: Use the DLM parameter to specify a delimiter to stop transmission of
input stream records. When the DLM parameter assigns a delimiter other than the
standard delimiter (/* in columns 1 and 2), the records can include the standard
delimiter.

If you use the DLM delimiter to define a delimiter, be sure to terminate the records
with the specified DLM characters. Otherwise, all jobs between the XMIT JCL
statement and the end-of-file will be transmitted, and processed at the node to
which they are sent.

From TSO/E only, TSO/E inserts /* at the end-of-file if the default delimiter is not
supplied.

Syntax

DLM=delimiter

v If the specified delimiter contains any special characters, enclose the delimiter in
apostrophes. In this case, a special character is any character that is neither alphanumeric
nor national ($, #, @).

v If the delimiter contains an ampersand or an apostrophe, code each ampersand or
apostrophe as two consecutive ampersands or apostrophes and enclose the delimiter in
apostrophes. Each pair of consecutive ampersands or apostrophes counts as one
character.

Subparameter definition
delimiter

Specifies two characters that indicate the end of this data set in the input
stream.

Default
If you do not specify a DLM parameter, the default is the standard /* delimiter
statement.

Invalid delimiters
If the delimiter is not two characters, the system terminates the job and does not
transmit any records.

Examples of the DLM parameter
Example 1
//XX XMIT DEST=NYCNODE,DLM=AA

.

.
(records to be transmitted)
.

AA

XMIT JCL: DEST

Chapter 27. XMIT JCL statement 571

The DLM parameter assigns the characters AA as the delimiter for the in-stream
records to be transmitted.

Example 2
//XY XMIT DEST=ATL,DLM=’A+’
//XZ XMIT DEST=BOST,DLM=’&&7’
//XW XMIT DEST=CHI,DLM=’B’’’

These examples specify delimiters of A+, &7, and B'.

SUBCHARS parameter
Parameter type: Keyword, optional

Purpose: Use the SUBCHARS parameter (supported by JES3 only) to specify a
substitute (consisting of two characters) for the first two characters of /*EOF and
/*DEL internal reader control statements. The substitute characters on the internal
reader control statements must be in columns 1 and 2.

You can use the SUBCHARS parameter for any XMIT JCL job. However,
SUBCHARS is required if you want to transmit internal reader control statements
(/*EOF and /*DEL) and the job is processed by an internal reader on the sending
system. Note that the system recognizes /*EOF and /*DEL as internal reader
control statements and errors can occur on the sending system if /*EOF or /*DEL
are included in the XMIT JCL stream.

To transmit internal reader control statements, replace /* on the /*EOF and /*DEL
statements in the records to be transmitted with two substitute characters and
identify the substitute characters on the SUBCHARS parameter. Prior to
transmission, the system converts the substitute characters to /* and sends /*EOF
and /*DEL to the receiving node for processing.

Reference: The internal reader is described in z/OS MVS Programming: Assembler
Services Guide.

Syntax

SUBCHARS=substitute

v If the specified substitute contains any special characters, enclose the substitute in
apostrophes. In this case, a special character is any character that is neither alphanumeric
nor national ($, #, @).

v If the substitute contains an ampersand or an apostrophe, code each ampersand or
apostrophe as two consecutive ampersands or apostrophes and enclose the substitute in
apostrophes. Each pair of consecutive ampersands or apostrophes counts as one
character.

Subparameter definition
substitute

Specifies two characters that indicate the substitute characters for the first two
characters of internal reader control statements. The substitute characters apply
only to internal reader statements.

XMIT JCL: DLM

572 z/OS V2R1.0 MVS JCL Reference

Default
There is no default for SUBCHARS.

Invalid substitute
If the substitute is not two characters, the system terminates the job and does not
transmit any records.

Examples of the SUBCHARS parameter
Example 1
//XX XMIT DEST=NYCNODE,SUBCHARS=MV

.

.
(records to be transmitted)

MVEOF
.

The SUBCHARS parameter identifies the characters MV as the substitute for the
first two characters of the internal reader control statement to be transmitted. Prior
to transmission, the system converts the MV substitute characters to /* and sends
/*EOF to the receiving node for processing.

Example 2
//XY XMIT DEST=ATL,SUBCHARS=’A+’
//XZ XMIT DEST=BOST,SUBCHARS=’&&7’
//XW XMIT DEST=CHI,SUBCHARS=’B’’’

These examples specify substitutes of A+, &7, and B'.

XMIT JCL: SUBCHARS

Chapter 27. XMIT JCL statement 573

574 z/OS V2R1.0 MVS JCL Reference

Chapter 28. JES2 control statements

Code JES2 control statements with JCL statements to control the input and output
processing of jobs. The rules for coding in Chapter 3, “Format of statements,” on
page 13, and Chapter 4, “Syntax of parameters,” on page 19, apply to the JES2
control statements.

Description

Considerations for started tasks
The following statements are not supported for a started task:
v /*PRIORITY
v /*ROUTE XEQ
v /*SETUP
v /*XEQ
v /*XMIT
v /*$xxx

The /*PRIORITY statement is ignored. All other statements cause JES2 to fail the
job.

Considerations for an APPC scheduling environment
JES2 control statements have no function in an APPC scheduling environment. If
you code them, the system will detect them as JCL errors.

Location in the JCL
Place JES2 control statements, except the command and /*PRIORITY statements,
after the JOB statement and its continuations. JES2 ignores JES2 control statements,
except the command and /*PRIORITY statements, that appear before the JOB
statement or between continued JOB statements.

Do not include JES2 control statements in a cataloged or in-stream procedure. JES2
ignores JES2 control statements in a procedure.

Internal reader
Use the following control statements when submitting jobs to the internal reader.
The internal reader is described in z/OS MVS Programming: Assembler Services
Guide.
v /*DEL
v /*EOF
v /*PURGE
v /*SCAN

JES2 command statement
Purpose

© Copyright IBM Corp. 1988, 2013 575

Use the command statement to enter a JES2 operator command through the input
stream, the internal reader, or the system console.

Note: Do not specify this statement for a started task; if /*$xxx is specified, JES2
fails the job.

JES2 usually executes an in-stream command as soon as it is read. Therefore, the
command will not be synchronized with the execution of any job or step in the
input stream. To synchronize a command with the job processing, tell the operator
the commands you want and when they should be issued, and let the operator
enter them from the console.

Examples illustrate the format for commands entered through the input stream.
Commands entered through an operator console should not have /* in columns 1
and 2.

References

For more information on the command statement and the JES2 verbs and
operands, see z/OS JES2 Commands.

Syntax

/*$command-verb,operand[,operand]... [N]

The JES2 command statement consists of:

v The characters /* in columns 1 and 2.

v $ or a character chosen by the installation in column 3. For more information, see JES2
initialization statement CONDEF, RDRCHAR=.

v The command verb beginning in column 4.

v A comma.

v Operands up through column 71.

v N in column 72 if JES2 is not to write the command on the operator console.

v Blanks in columns 73 through 80. JES2 ignores these columns.

Do not continue command statements from one statement to the next, instead code as
many command statements as you need.

Parameter definition
command-verb

Specifies the operator command that JES2 is to perform. You can enter the
following JES2 commands in the input stream.
$A $E $I $O $T
$B $F $L $P $RACE
$C $G $M $R $VS
$D $H $N $S $Z

operand
Specifies options for the command.

N in column 72
Indicates that JES2 is not to repeat the command on the operator console.

JES2: Command

576 z/OS V2R1.0 MVS JCL Reference

Location in the JCL
Place JES2 command statements before jobs being entered through the input
stream. JES2 ignores any JES2 command statements within a job.

Do not code JES2 commands in an NJE job stream. If you code JES2 commands in
an NJE job stream, the system will not process them and will issue an error
message.

If a job contains a JES2 /*XMIT statement, and you want JES2 to process and
display the command at the input node only, place the command statement before
the /*XMIT statement.

Examples of the command statement
Example 1
/*$SI3-5

This command statement starts initiators three through five. The command is $S
and the operand is I3-5. JES2 executes the command immediately and repeats the
command on the operator console.

Example 2
/*$TRDR1,H=Y

In response to this command, JES2 places all jobs being read by reader 1 in a hold
status. If a job contains a JES2 /*ROUTE XEQ or /*XEQ statement that specifies an
execution node different from the input node, JES2 holds the job at the execution
node, not the input node.

/*JOBPARM statement
Purpose: Use the /*JOBPARM statement to specify job-related parameters for JES2.

Note: For started tasks:
v The TIME parameter is ignored
v If RESTART=N, the parameter is ignored
v If RESTART=Y, JES2 fails the job
v For SYSAFF, the system on which the job is being started must be in the list of

systems implied or specified, or JES2 will fail the job.

JES2: Command

Chapter 28. JES2 control statements 577

Syntax

/*JOBPARM parameter[,parameter]...

The parameters are:

{BURST} = {Y}
{B } {N}

{BYTES} = nnnnnn
{M }

{CARDS} = nnnnnnnn
{C }

{COPIES} = nnn
{N }

{FORMS} = {xxxxxxxx}
{F } {STD }

{LINECT} = nnn
{K }

{LINES} = nnnnnn
{L }

{NOLOG}
{J }

{PAGES} = nnnnnnnn
{G }

{PROCLIB} = ddname
{P }

{RESTART} = {Y}
{E } {N}

{ROOM} = xxxx
{R }

{SYSAFF} = {* }
{S } {(*[,IND]) }

{ANY }
{(ANY[,IND]) }
{cccc }
{(cccc[,IND]) }
{(cccc[,cccc]...) }
{((cccc[,cccc]...)[,IND])}

{TIME} = nnnn
{T }

The /*JOBPARM statement consists of the characters /* in columns 1 and 2, JOBPARM in
columns 3 through 9, a blank in column 10, and parameters in columns 11 through 71. JES2
ignores columns 72 through 80.

Do not continue a /*JOBPARM statement. Instead, code as many /*JOBPARM statements
as necessary in an input stream.

Code any number of the parameters listed in this topic on a single /*JOBPARM statement.

Parameter definition
BURST=Y

JES2: /*JOBPARM

578 z/OS V2R1.0 MVS JCL Reference

BURST=N
Specifies the default burst characteristic of all sysout data sets that JES2
produces for this job. BURST applies only when the data set is directed to a
3800 Printing Subsystem equipped with a burster-trimmer-stacker.

Y Requests that the 3800 output is to be burst into separate sheets.

N Requests that the 3800 output is to be in a continuous fanfold.

BYTES=nnnnnn
Specifies the maximum output, in thousands of bytes, the system is to produce
from this job. The nnnnnn is 1 through 6 decimal numbers from 0 through
999999. When nnnnnn bytes are reached, JES2 gives control to an installation
exit routine and the job might or might not be terminated.

CARDS=nnnnnnnn
Specifies the maximum number of output cards to be punched for this job’s
sysout data sets. The value is 1 through 8 decimal numbers from 0 through
99999999. When the specified number of cards is reached, JES2 gives control to
an installation exit routine and the job might or might not be terminated.

COPIES=nnn
Specifies how many copies of the spool lines or bytes for this job’s sysout data
sets are to be printed or punched. The nnn is 1 through 3 decimal numbers
from 1 through 255. An installation can reduce the upper limit of this value
during JES2 initialization.

The COPIES parameter is ignored and only one copy is produced if any of the
following is true:
v FREE=CLOSE is coded on the DD statement for the output data set.
v HOLD=YES is coded on any sysout DD statement in the job.
v The output class of the sysout data set is a held class, and the message class

is also a held class. The message class is specified in the JOB statement
MSGCLASS parameter.

Note:

The use of '/*JOBPARM COPIES= ' creates output groups which are special in
a sense that they are a clone of the original output group. When these output
groups are transmitted in an NJE network, the count of copies transmitted will
not behave as expected. Another side effect of these clone JOEs is that their
attributes cannot be changed, and will remain the same as that of the original
output group.

It is recommended to avoid using the /*JOBPARM JECL statement to produce
multiple copies, especially when those outputs will go through NJE network.
Instead, use COPIES keyword at the DD level. When you use COPIES
keyword at the DD level, clone output groups will not be produced and the
outputs will be manipulated appropriately.

FORMS=xxxxxxxx
FORMS=STD

Specifies the print and/or punch forms JES2 is to use for sysout data sets for
which FORMS is not specified on the DD statement or on a JES2 /*OUTPUT
statement.

xxxxxxxx
Identifies the print or punch forms. The xxxxxxxx is 1 through 8
alphanumeric or national ($, #, @) characters.

JES2: /*JOBPARM

Chapter 28. JES2 control statements 579

STD
Indicates that JES2 is to use the default specified at JES2 initialization.

LINECT=nnn
Specifies the maximum number of lines that JES2 is to print on each output
page for this job’s sysout data sets. The nnn is 1 through 3 numbers from 0
through 254.

If you code LINECT=0, JES2 does not eject to a new page when the number of
output lines exceeds the page limit that the installation specified during JES2
initialization.

The LINECT parameter on the /*OUTPUT statement overrides LINECT on the
/*JOBPARM statement and the linect value in the accounting information
parameter of the JOB statement.

LINES=nnnnnn
Specifies the maximum output, in thousands of lines, that JES2 is to place in
the spool data sets for this job’s sysout data sets. The number is 1 through 6
decimal numbers from 0 through 999999. When the specified number of lines
is reached, JES2 gives control to an installation exit routine and the job might
or might not be terminated.

The LINES parameter applies only to line-mode data. (See also the PAGES
parameter.) If the sysout data set contains both line-mode and page-mode data,
the lines and pages are counted separately and checked separately against the
limit.

NOLOG
Requests that JES2 not print the job’s hard-copy log. The job’s hard-copy log
contains the JES2 and operator messages about the job’s processing.

PAGES=nnnnnnnn
Specifies the maximum number of output pages to be printed for this job’s
sysout data sets. The number is 1 through 8 decimal numbers from 0 through
99999999. When the specified number of pages is reached, JES2 gives control to
an installation exit routine and the job might or might not be terminated.

The PAGES parameter applies only to page-mode data. (See also the LINES
parameter.) If the sysout data set contains both page-mode and line-mode data,
the pages and lines are counted separately and checked separately against the
limit.

PROCLIB=ddname
Requests a JES2 procedure library by its ddname, as defined in the JES2
procedure used to initialize JES2. Typically, JES2 procedure library ddnames are
in the format PROCnn, where nn is either 00 or 1 or 2 decimal numbers from 1
through 99. You can, however, use any valid ddname as long as the name
matches the ddname in the JES2 procedure. The system retrieves called
cataloged procedures from the requested JES2 procedure library.

If you omit the PROCLIB parameter, or the ddname cannot be found in the
procedure used to start JES2, JES2 uses the procedure library specified on the
PROC=nn parameter on one of the following JES2 initialization statements:
v JOBCLASS(v) for each job class
v JOBCLASS(STC) for all started tasks
v JOBCLASS(TSU) for all time-sharing tasks

If the PROC=nn parameter is not defined on the appropriate initialization
statement, or if it is not valid, JES2 uses the default library, PROC00. See z/OS
JES2 Initialization and Tuning Guide for information about creating the JES2

JES2: /*JOBPARM

580 z/OS V2R1.0 MVS JCL Reference

cataloged procedure and z/OS JES2 Initialization and Tuning Reference for
information about defining JES2 initialization statements.

RESTART=Y
RESTART=N

Requests one of the following, if this job is executing before a re-IPL and JES2
warm start, and the job cannot restart from a step or checkpoint.

Y Requests that JES2 queue the job for re-execution from the beginning of the
job.

N Requests that JES2 take no special action.

Note:

If you do not specify RESTART, JES2 assumes N. However, the installation
may override this default in JES2 initialization parameters.

If the job is registered with the automatic restart manager (ARM) at the time of
the IPL, ARM determines whether the job is restarted, regardless of whether
RESTART=YES or NO is specified.

ROOM=xxxx
Indicates the programmer's room number. The xxxx is 1 through 4
alphanumeric characters. JES2 places the room number on the job’s separators
so that the installation can deliver the job’s sysout data sets to the programmer.

SYSAFF=*
SYSAFF=(*[,IND])
SYSAFF=ANY
SYSAFF=(ANY[,IND])
SYSAFF=cccc
SYSAFF=(cccc[,IND])
SYSAFF=(cccc[,cccc]...)
SYSAFF=((cccc[,cccc]...)[,IND])

Indicates the systems that are eligible to process the job. The parameter
indicates from 1 system affinity representing a JES2 member name, up to the
number of entries that can be coded on a JOBPARM statement, limited by the
number of JES2 members that can exist in a MAS.

Note:

Use the SYSAFF parameter to ensure the conversion and execution of the job
will be done on a specific system. If you code SYSAFF, both processes are done
on the specified system.

For TSO-submitted jobs that specify NOTIFY in the JOB statement: after a job
has completed execution, JES2 may change the SYSAFF specification for the job
if the job executed on a processor other than the processor that the user is
logged on. This is done by JES2 during output processing to allow NOTIFY
processing to take place on the user’s processor.

* Indicates the system that read the job.

ANY
Indicates any system in the JES2 multi-access spool configuration.

cccc
Identifies a specific system, where cccc is the JES2 member name of the
current system in the JES2 multi-access spool configuration. cccc is 1
through 4 alphanumeric characters. To specify more than one system,

JES2: /*JOBPARM

Chapter 28. JES2 control statements 581

separate the member names with commas and enclose the member name
list in parentheses; for example, SYSAFF=(cccc,cccc,cccc).

Note: If you specify SYSAFF=cccc on the /*JOBPARM statement and also
have a /*ROUTE XEQ or /*XEQ statement, the latter statement must
appear before the /*JOBPARM statement.

IND
After any of the other SYSAFF specifications, indicates that JES2 is to use
system scheduling in independent mode. When IND is coded, the
subparameters must be enclosed in parentheses. IND cannot be coded by
itself. It must be included with at least one JES2 member name, or a JCL
error will be reported.

TIME=nnnn
Estimates the job execution time, in minutes of real time. The nnnn is 1
through 4 decimal numbers from 0 through 9999. If you omit a TIME
parameter and a time subparameter in the JOB statement accounting
information parameter, JES2 uses an installation default specified at
initialization. If job execution exceeds the time, JES2 sends a message to the
operator.

Overrides
v The /*JOBPARM statement parameters override the installation defaults

specified at JES2 initialization.

Note: The /*JOBPARM statement parameters cannot override JES2 installation
defaults when it is placed in a catalogued procedure for an STC.

v An OUTPUT JCL statement can override parameters on a /*JOBPARM
statement.

v A JES2 /*OUTPUT statement can override parameters on a /*JOBPARM
statement.

v Any /*JOBPARM statement parameter value overrides the equivalent parameter
value from the JES2 accounting information on the JOB statement or from any
preceding /*JOBPARM statement in this job.

v The JOB statement parameters BYTES, CARDS, LINES, and PAGES override the
/*JOBPARM parameters BYTES, CARDS, LINES, and PAGES.

Location in the JCL
Place the /*JOBPARM statement after the JOB statement.

Execution node
JES2 normally processes /*JOBPARM statements at the node of execution.

When you place a /*JOBPARM statement before a /*ROUTE XEQ or /*XEQ
statement, JES2 at the input node checks the /*JOBPARM statement for syntax and
parameter validity. After processing the /*ROUTE XEQ or /*XEQ statement, JES2
then passes the /*JOBPARM statement to the execution node, where syntax and
parameter validity are again checked.

When you place a /*JOBPARM statement after a /*ROUTE XEQ or /*XEQ
statement, JES2 passes the /*JOBPARM to the execution node and performs all
syntax and parameter validity processing at the execution node only.

JES2: /*JOBPARM

582 z/OS V2R1.0 MVS JCL Reference

COPIES Parameter in Remote Processing: In remote processing, the COPIES
parameter on the /*JOBPARM statement determines the number of output copies
only when the execution node is a JES2 node. The /*JOBPARM COPIES parameter
is not supported by RSCS, DOS/VSE POWER, or JES3.

Examples of the /*JOBPARM statement
/*JOBPARM LINES=60,ROOM=4222,TIME=50,PROCLIB=PROC03,COPIES=5
/*JOBPARM L=60,R=4222,T=50,P=PROC03,N=5

The two statements specify the same parameters and values. The parameter
specifications mean the following:

LINES=60 or L=60
The job’s estimated output will be 60,000 lines.

ROOM=4222 or R=4222
The programmer’s room is 4222. JES2 places this information in the separators
for both printed and punched data sets.

TIME=50 or T=50
The job’s estimated execution time is 50 minutes.

PROCLIB=PROC03 or P=PROC03
The procedure library that JES2 is to use to convert the JCL for this job is
PROC03.

COPIES=5 or N=5
The estimated 60,000 lines of output will be printed five times.

/*MESSAGE statement
Purpose: Use the /*MESSAGE statement to send messages to the operator console
when JES2 reads in the job.

Syntax

/*MESSAGE message

The /*MESSAGE statement consists of the characters /* in columns 1 and 2, MESSAGE in
columns 3 through 9, a blank in column 10, and the message starting in any column from
11 through 71. JES2 ignores columns 72 through 80.

Relationship to the /*ROUTE XEQ statement
If the /*MESSAGE statement is in a job that also contains a JES2 /*ROUTE XEQ
statement:
v Placing the /*MESSAGE statement before the /*ROUTE XEQ statement directs

JES2 to send the message to the operators at the input node and the execution
node.

v Placing the /*MESSAGE statement after the /*ROUTE XEQ statement directs
JES2 to send the message only to the operator at the execution node.

Location in the JCL
If the /*MESSAGE statement is after the JOB statement, JES2 appends the job
number to the beginning of the message.

JES2: /*JOBPARM

Chapter 28. JES2 control statements 583

If the /*MESSAGE statement is not within a job, JES2 appends the input device
name to the beginning of the message.

Example of the /*MESSAGE statement
/*MESSAGE CALL DEPT 58 WHEN PAYROLL JOB IS FINISHED--EX.1946

JES2 sends this message to the operator console when the job is read in.

/*NETACCT statement
Purpose: Use the /*NETACCT statement to specify an account number that is
available to all the nodes in a network. JES2 uses the account number as is or
translates it to local account numbers.

Syntax

/*NETACCT network-account-number

The /*NETACCT statement consists of the characters /* in columns 1 and 2, NETACCT in
columns 3 through 9, a blank in column 10, and the network account number starting in
any column from 11 through 71. JES2 ignores columns 72 through 80.

Parameter definition
network-account-number

Specifies the job's accounting number. The network-account-number is 1
through 8 alphanumeric characters.

Defaults
If no /*NETACCT statement is specified, JES2 uses the local account number to
search a table for the network account number.

Overrides
If you supply both a /*NETACCT and a local account number, JES2 uses the local
account number on the input node.

Location in the JCL
Place the /*NETACCT statement after the JOB statement.

If a job contains more than one /*NETACCT statement, JES2 uses the network
account number from the last statement.

JES2 ignores the /*NETACCT statement on any node other than the input node.

Example of the /*NETACCT statement
/*NETACCT NETNUM10

JES2 transmits the network account number, NETNUM10, with the job to the
destination node.

JES2: /*MESSAGE

584 z/OS V2R1.0 MVS JCL Reference

/*NOTIFY statement
Purpose: Use the /*NOTIFY statement to direct a job’s notification messages to a
user.

Note: The /*NOTIFY statement does not affect where the job is executed or where
output is printed or punched.

Syntax

/*NOTIFY {nodename.userid }
{nodename:userid }
{nodename/userid }
{nodename(userid)}
{userid }

The /*NOTIFY statement consists of the characters /* in columns 1 and 2, NOTIFY in
columns 3 through 8, a blank in column 9, and a parameter starting in any column from 10
through 71. JES2 ignores columns 72 through 80.

Do not code a comma, a right parenthesis, or a blank character in the nodename or userid.

Parameter definition
nodename.userid
nodename:userid
nodename/userid
nodename(userid)

Identifies a node and a TSO/E or VM userid at that node. The nodename is a
symbolic name defined by the installation during initialization; nodename is 1
through 8 alphanumeric or national ($, #, @) characters. The userid must be
defined at the node; userid for TSO/E is 1 through 7 alphanumeric or national
($, #, @) characters and for VM is 1 through 8 alphanumeric or national ($, #,
@) characters.

userid
Identifies a TSO/E or VM user. The userid for TSO/E is 1 through 7
alphanumeric or national ($, #, @) characters and for VM is 1 through 8
alphanumeric or national ($, #, @) characters. When you specify only a userid,
JES2 assumes that the userid is at the origin node.

The userid may also be a valid remote ID in the form Rnnnn or a destid for a
remote. If the userid is specified as R1-R9999, JES2 assumes the notify message
is intended for a remote and not a userid. If the remote is defined to the
system or is less than the highest defined remote for your system, the notify
message is queued to the remote. If the remote value is greater than the
highest defined remote but less than the maximum allowed remote, the notify
message is discarded. If the Rxxxx value specified is greater than R9999, JES2
considers that a TSO/E userid and not a remote ID.

A valid remote ID is only found when the node specification is for the local
node. A valid specification can be in the form of NxRy.

Overrides
The JES2 /*NOTIFY statement overrides the NOTIFY parameter on the JOB
statement.

JES2: /*NOTIFY

Chapter 28. JES2 control statements 585

Location in the JCL
The /*NOTIFY statement directs the notification messages of the job in which it
appears; place the /*NOTIFY statement after the JOB statement. Do not include the
/*NOTIFY statement in an in-stream procedure.

Examples of the NOTIFY statement
Example 1
/*NOTIFY VMNODE.VMUSER

JES2 sends notification messages to user VMUSER on node VMNODE.

Example 2
/*NOTIFY TSOUSER

JES2 sends notification messages to user TSOUSER on the job’s origin node.

/*OUTPUT statement
Purpose: Use the /*OUTPUT statement to specify characteristics and options for
one or more sysout data sets. This statement supplies processing options in
addition to and in place of the options specified on the sysout DD statement.

Note: You should use the OUTPUT JCL statement instead of the JES2
/*OUTPUT statement because of the OUTPUT JCL statement’s enhanced output
processing capabilities.

JES2: /*NOTIFY

586 z/OS V2R1.0 MVS JCL Reference

Syntax

/*OUTPUT code parameter[,parameter]...

The parameters are:

{BURST} = {Y}
{B } {N}

{CHARS} = {xxxx }
{X } {(xxxx[,xxxx]...)}

{CKPTLNS} =nnnnn
{E }

{CKPTPGS} =nnnnn
{P }

{COMPACT} =nn
{Z }

{COPIES} = {nnn }
{N } {(nnn[,(group-value[,group-value]...)])}

{COPYG} = {group-value }
{G } {(group-value[,group-value]...)}

{DEST} = {destination } destination is:
{D } {(destination[,destination]...)}

{ANYLOCAL }
{LOCAL }

{FCB} =xxxx {name }
{C } {Nnnnn }

{NnnRmmmm }
{FLASH} = {overlay-name } {NnnnRmmm }
{O } {(overlay-name[,count])} {NnnnnRmm }

{NONE } {nodename.userid }
{nodename:userid }

{FLASHC} =count {nodename/userid }
{Q } {nodename(userid)}

{Rnnnn }
{FORMS} = {xxxx} {RMnnnn }
{F } {STD } {RMTnnnn }

{Unnnn }
{Userid }

{{INDEX |I} =nn}
{{LINDEX|L} =nn}

{LINECT} =nnn
{K }

{MODIFY} = {module-name }
{Y } {(module-name[,trc])}

{MODTRC} =trc
{M }

{UCS} =xxxx
{T }

JES2: /*OUTPUT

Chapter 28. JES2 control statements 587

The /*OUTPUT statement consists of the characters /* in columns 1 and 2, OUTPUT in
columns 3 through 8, a blank in column 9, a code beginning in column 10, followed by a
blank and the keyword parameters. JES2 ignores columns 72 through 80.

An * in column 10 indicates that this /*OUTPUT statement is a continuation of the
previous /*OUTPUT statement: JES2 treats it as a continuation, even through the previous
/*OUTPUT statement does not immediately precede the continuation.

Do not specify * in column 10 on the first /*OUTPUT statement in a job.

Parameter definition
code

Identifies the /*OUTPUT statement. The code is 1 through 4 alphanumeric
characters. To refer to a /*OUTPUT statement, the DD statement SYSOUT
parameter must specify this code in its code-name subparameter. The
referenced /*OUTPUT statement specifies processing options for the sysout
data set defined in the referencing DD statement.

A code of * indicates that this /*OUTPUT statement is a continuation of the
previous /*OUTPUT statement.

Note: If you specify the code-name subparameter on a DD statement SYSOUT
parameter in a job or job step that contains a default OUTPUT JCL statement,
JES2 uses the default OUTPUT JCL statement instead of the reference to the
/*OUTPUT statement.

If more than one /*OUTPUT statement has the same code starting in column
10, JES2 uses the parameters from only the first /*OUTPUT statement.

BURST=Y
BURST=N

Indicates the default burst characteristic of all sysout data sets that JES2
produces for this job. BURST applies only when the data set is directed to a
3800 Printing Subsystem equipped with a burster-trimmer-stacker.

Y Requests that the 3800 output is to be burst into separate sheets.

N Requests that the 3800 output is to be in a continuous fanfold.

CHARS=xxxx
CHARS=(xxxx[,xxxx]...)

Names a font for all output that JES2 prints on an AFP printer in this job. The
xxxx is 1 through 4 alphanumeric or national ($, #, @) characters. Code one to
four names.

CKPTLNS=nnnnn
Specifies the maximum number of lines or cards contained in a logical page.
The nnnnn is 1 through 5 decimal numbers from 0 through 32,767 for printers
and 1 through 32,767 for punches. The default is specified in the JES2
initialization parameter for the device.

CKPTPGS=nnnnn
Specifies the number of logical pages to be printed before the next checkpoint
is taken. The nnnnn is 1 through 5 decimal numbers from 1 through 32,767.
The default is specified in the JES2 initialization parameter for the device.

JES2: /*OUTPUT

588 z/OS V2R1.0 MVS JCL Reference

COMPACT=nn
Specifies a compaction table for JES2 to use when sending this sysout data set,
which must be a systems network architecture (SNA) data set, to a SNA
remote terminal.

Note: The COMPACT parameter has no effect on compaction for NJE sessions;
it applies only to SNA RJE sessions.

COPIES=nnn
COPIES=(nnn[,(group-value[,group-value]...)])

Specifies how many copies of the sysout data set are to be printed in page
sequence order, or from an AFP printer, grouped by page.

If you route a job that has a COPIES parameter, the parameter will be used
only if the receiving node is a JES2 node.

nnn
Specifies how many copies of the sysout data set are to be printed; each
copy will be in page sequence order. The nnn is 1 through 3 decimal
numbers from 1 through 255, subject to an installation-specified limit. For a
data set printed on an AFP printer, JES2 ignores nnn if any group values
are specified.

If you incorrectly code the nnn parameter of COPIES, JES2 terminates the
JOB.

group-value
Specifies how many copies of each page are to be printed before the next
page is printed. Each group-value is 1 through 3 decimal numbers from 1
through 255. You can code a maximum of eight group-values. Their sum
must not exceed 255 or the installation-specified limit. The total copies of
each page equals the sum of the group-values.

Note: This subparameter is valid only for output processed by PSF. For
PSF-processed output, this subparameter overrides the nnn subparameter.
The group-value subparameter of the COPIES parameter overrides the
group-value subparameter of the COPYG parameter.

The following are not valid:
v A null group-value, for example, COPIES=(5(,)) or COPIES=(5,)
v A zero group-value, for example, COPIES=(5,(1,0,4))
v A null within a list of group-values, for example, COPIES=(5,(1,,4))

COPYG=group-value
COPYG=(group-value[,group-value]...)

Specifies how many copies of each page are to be printed before the next page
is printed. Each group-value is 1 through 3 decimal numbers from 1 through
255. You can code a maximum of eight group-values. Their sum must not
exceed 255. The total copies of each page equals the sum of the group-values.

Note: This parameter applies only for output processed by PSF. If you code
COPYG and JES2 prints the data set on an impact printer, JES2 ignores
COPYG. The group-value subparameter of the COPIES parameter overrides
the group-value subparameter of the COPYG parameter.

DEST=destination
DEST=(destination[,destination]...)

Note: JES2 initialization statements determine whether or not the node name is

JES2: /*OUTPUT

Chapter 28. JES2 control statements 589

required when coding a userid. See your system programmer for information
regarding how routings will be interpreted by JES2.

Specifies one to four different destinations for the sysout data set. The
destination subparameters follow:

ANYLOCAL
LOCAL

Indicates a local node on a local device.

name
Identifies a local or remote device by a symbolic name defined by the
installation during JES2 initialization. The name is 1 through 8
alphanumeric or national ($, #, @) characters.

Nnnnn
Identifies a node. nnnn is 1 through 4 decimal numbers from 1 through
1000. For example, N0103.

NnnRmmmm
NnnnRmmm
NnnnnRmm

Identifies a node and a remote work station connected to the node. The
node number, indicated in the format by n, is 1 through 4 decimal
numbers from 1 through 1000. The remote work station number, indicated
in the format by m, is 1 through 4 decimal numbers from 1 through 9999.
Do not code leading zeros in n or m. The maximum number of digits for n
and m combined cannot exceed six.

Note: NnnR0 is equivalent to LOCAL specified at node Nn.

nodename.userid
nodename:userid
nodename/userid
nodename(userid)

Identifies a destination node and a TSO/E or VM userid at that node. Use
this parameter to route a sysout data set between JES2 nodes and non-JES2
nodes. The nodename is a symbolic name defined by the installation
during initialization; nodename is 1 through 8 alphanumeric or national ($,
#, @) characters. The userid must be defined at the node; userid for TSO/E
is 1 through 7 alphanumeric or national ($, #, @) characters and for VM is
1 through 8 alphanumeric or national ($, #, @) characters.

Use the form nodename.userid to specify up to four destinations using
continuation statements. The continuation statement must contain the
characters /* in columns 1 and 2, OUTPUT in columns 3 through 8, a
blank in column 9, an * in or following column 10, followed by one or
more blanks, and the characters DEST= with the specified destinations. For
example:

/*OUTPUT ABCD DEST=(POK.USER27,NYC.USER31)
/*OUTPUT * DEST=(BOCA.USER58,STL.USER22)

Use the form nodename.userid to send the output to the VM user’s virtual
reader.

Rnnnn
RMnnnn

JES2: /*OUTPUT

590 z/OS V2R1.0 MVS JCL Reference

RMTnnnn
Identifies a remote terminal. nnnn is 1 through 4 decimal numbers from 1
through 9999. Note that with remote pooling, the installation may translate
this route code to another route code.

If you send a job to execute at a remote node and the job has a ROUTE
PRINT RMTnnnn statement, JES2 returns the output to RMTnnnn at the
node of origin. For JES2 to print the output at RMTnnnn at the executing
node, code DEST=NnnnRmmm on an OUTPUT JCL statement or sysout
DD statement.

Note: R0 indicates any local device.

Unnnn
Identifies a local terminal with special routing. nnnn is 1 through 4 decimal
numbers from 1 through 9999.

If you send a job to execute and the job has a ROUTE PRINT Unnnn
statement, JES2 returns the output to Unnnn at the node of origin.

Userid
Identifies a userid at the local node.

FCB=xxxx
Identifies the forms control buffer (FCB) image JES2 is to use to guide printing
of the sysout data set. The xxxx is 1 through 4 alphanumeric or national ($, #,
@) characters and is the last characters of a SYS1.IMAGELIB member name:
v FCB2xxxx member, for a 3211 Printer, a 3203 Printer Model 5, or a printer

supported by systems network architecture (SNA).
v FCB3xxxx member, for a 3800 Printing Subsystem.
v FCB4xxxx member, for a 4248 Printer.

IBM provides two standard FCB images. Code STD1 or STD2 only to request
them.
v STD1, which specifies 6 lines per inch on an 8.5-inch-long form. (3211 and

3203-5 only)
v STD2, which specifies 6 lines per inch on an 11-inch-long form. (3211 and

3203-5 only)

If the printer on which JES2 is to print the data set does not have the forms
control buffer feature, JES2 sends the operator a message to mount the proper
carriage control tape.

FLASH=overlay-name
FLASH=(overlay-name[,count])
FLASH=NONE

Identifies the forms overlay to be used in printing the sysout data set on a
3800 Printing Subsystem and, optionally, specifies the number of copies on
which the forms overlay is to be printed.

overlay-name
Identifies the forms overlay frame that the operator is to insert into the
printer before printing begins. The name is 1 through 4 alphanumeric or
national ($, #, @) characters.

Do not omit the overlay-name. The count subparameter is optional. If you
omit it, you can omit the parentheses. However, if you omit it, you must
not code it as a null; for example, FLASH=(ABCD,) is invalid.

JES2: /*OUTPUT

Chapter 28. JES2 control statements 591

Before printing starts, JES2 does not verify that the operator inserted the
correct forms overlay frame for flashing.

count
Specifies the number, 1 through 255, of copies that JES2 is to flash with the
overlay, beginning with the first copy printed.

JES2 determines the maximum number of copies to flash with the forms
overlay by the value of nnn or the group-value total on the COPIES
parameter. If the FLASH count value is greater than the value from the
COPIES parameter, JES2 prints with the forms overlay the lower value.

The count subparameter of the FLASH parameter overrides the count
value of the FLASHC parameter.

NONE
Suppresses flashing for this sysout data set.

Defaults: If you omit this parameter and did not specify FLASH on the DD
statement or FLASHC on the /*OUTPUT statement, JES2 uses the default
specified at JES2 initialization.

If you specify an overlay-name without specifying a count, JES2 flashes all
copies. That is, the default for count is 255. If you specify 0 for count, JES2 also
flashes all copies.

FLASHC=count
Specifies the number, 0 through 255, of copies that JES2 is to flash with the
overlay, beginning with the first copy printed.

Note: For the 3800 printer, if you specify FLASH and omit FLASHC, JES2
flashes all copies.

The count subparameter of the FLASH parameter overrides the count value of
the FLASHC parameter.

FORMS=xxxx
FORMS=STD

Identifies the forms on which JES2 is to print or punch the sysout data set.

xxxx
Identifies the print or punch forms. form-name is 1 through 4
alphanumeric or national ($, #, @) characters.

STD
Indicates that JES2 is to use the default specified at JES2 initialization.

INDEX=nn
Sets the left margin for output on a 3211 Printer with the indexing feature. The
width of the print line is reduced by the INDEX parameter value. The nn
specifies how many print positions the left margin on the 3211 output is to be
indented. nn is a decimal number from 1 through 31. n=1 indicates flush-left;
n=2 through n=31 indent the print line by n-1 positions.

JES2 ignores the INDEX parameter if the printer is not a 3211 with the
indexing feature.

Note: INDEX and LINDEX are mutually exclusive; if you code both, JES2 uses
the value you specified in INDEX.

LINDEX=nn
Sets the right margin for output on a 3211 Printer with the indexing feature.

JES2: /*OUTPUT

592 z/OS V2R1.0 MVS JCL Reference

The width of the print line is reduced by the LINDEX parameter value. The nn
specifies how many print positions the right margin on 3211 output is to be
moved in from the full page width. nn is a decimal number from 1 through 31.
n=1 indicates flush-right; n=2 through n=31 move the right margin over by n-1
positions.

JES2 ignores the LINDEX parameter on all printers except the 3211 with the
indexing feature.

Note: INDEX and LINDEX are mutually exclusive; if you code both, JES2 uses
the value you specified in INDEX.

LINECT=nnn
Specifies the maximum number of lines JES2 is to print on each output page.
The nnn is a number from 0 through 255.

Specify LINECT=0 to keep JES2 from starting a new page when the number of
lines exceeds the JES2 initialization parameter.

If you code LINECT on the /*OUTPUT statement, it overrides the LINECT
value on the /*JOBPARM statement and the linect value in the accounting
information parameter of the JOB statement.

If the LINECT parameter is omitted from the /*OUTPUT statement, JES2
obtains the value from one of the following sources, in order:
1. The LINECT parameter on the /*JOBPARM statement.
2. The linect field of the accounting information parameter on the JOB

statement.
3. The installation default specified at JES2 initialization.

MODIFY=module-name
MODIFY=(module-name[,trc])

Specifies a copy-modification module that tells JES2 how to print the sysout
data set on a 3800 Printing Subsystem. The module can specify legends,
column headings, blanks, and where and on which copies the data is to be
printed. The module is defined and stored in SYS1.IMAGELIB using the
IEBIMAGE utility program.

module-name
Identifies a copy-modification module in SYS1.IMAGELIB. The
module-name is 1 through 4 alphanumeric or national ($, #, @) characters.

Do not omit the module-name.

trc
Identifies which table-name in the CHARS parameter is to be used. This
table reference character is 0 for the first table-name specified, 1 for the
second, 2 for the third, or 3 for the fourth.

If you do not specify trc, the default is 0. If the trc value is greater than the
number of table-names in the CHARS parameter, JES2 uses the first table
named in the CHARS parameter.

The trc subparameter is optional. If you omit it, you can omit the
parentheses. However, if you omit it, you must not code it as a null; for
example, MODIFY=(TAB1,) is invalid. If you omit the trc subparameter,
JES2 uses the first table-name.

The trc subparameter of the MODIFY parameter overrides the trc
subparameter of the MODTRC parameter.

JES2: /*OUTPUT

Chapter 28. JES2 control statements 593

MODTRC=trc
Identifies which table-name in the CHARS parameter is to be used. This table
reference character is 0 for the first table-name specified, 1 for the second, 2
for the third, or 3 for the fourth.

If you do not specify trc, the default is 0. If the trc value is greater than the
number of table-names in the CHARS parameter, JES2 uses the first table
named in the CHARS parameter.

The trc subparameter of the MODIFY parameter overrides the trc
subparameter of the MODTRC parameter.

UCS=xxxx
Identifies the universal character set (UCS) image JES2 is to use in printing the
sysout data set. The xxxx is 1 through 4 alphanumeric or national ($, #, @)
characters. See Table 18 on page 291 for IBM standard special character set
codes.

Overrides
v /*OUTPUT statement parameters override all equivalent DD statement

parameters.
v If a /*OUTPUT statement contains duplicate parameters, the last parameter

overrides all preceding duplicates, except for the DEST parameter.
v Any parameter coded on subsequent /*OUTPUT statements overrides the same

parameter on previous /*OUTPUT statements.
v JES2 adds any parameter you code on subsequent /*OUTPUT statements that

you did not code on previous /*OUTPUT statements to the previous /*OUTPUT
statement.

v If you code LINECT on the /*OUTPUT statement, it overrides the LINECT
value on the /*JOBPARM statement and the linect value in the accounting
information parameter of the JOB statement.

Relationship to other control statements
v JES2 processes /*OUTPUT statements placed after a /*ROUTE XEQ statement at

the execution node only.
v JES2 processes /*OUTPUT statements placed before a /*ROUTE XEQ statement

at both the input node and the execution node.

Location in the JCL
Place the /*OUTPUT statement after the JOB statement. Do not include the
/*OUTPUT statement in an instream procedure.

Example of the /*OUTPUT statement
/*OUTPUT ABCD COPIES=6,COPYG=(1,2,3),DEST=RMT23

This statement refers to all sysout data sets defined by a DD statement that
specifies SYSOUT=(c,,ABCD). Six copies of each page of output are printed. If the
printer is an AFP printer, first one copy of each page is printed, then two copies of
each page, and finally, three copies of each page. If the printer is not an AFP
printer, COPYG is ignored and six copies of the entire data set are printed. The
output is sent to remote terminal 23.

JES2: /*OUTPUT

594 z/OS V2R1.0 MVS JCL Reference

/*PRIORITY statement
Purpose: Use the /*PRIORITY statement to assign a selection priority for your job.
Within a job class, a job with a higher priority is selected for execution sooner.

Note: The /*PRIORITY statement is ignored for a started task.

In a JES2 system, there are a number of factors that determine the order in which a
particular job is selected for execution. Therefore, you cannot be assured that job
priority (based on the PRTY you assign a job), job class, or the order of job
submission will guarantee that the jobs will execute in a particular order. If you
need to submit jobs in a specific order, contact your JES2 system programmer for
advice based on how your system honors such requests. (z/OS JES2 Initialization
and Tuning Guide provides JES2 system programmer procedures concerning job
queuing and how to control job execution sequence.)

Syntax

/*PRIORITY p

The /*PRIORITY statement consists of the characters /* in columns 1 and 2, PRIORITY in
columns 3 through 10, a blank in column 11, and the priority starting in any column from
12 through 71. JES2 ignores columns 72 through 80.

Parameter definition
p Requests a priority. The p is 1 or 2 decimal numbers from 0 through 15. The

highest priority is 15.

Follow your installation’s rules in coding a priority.

Overrides
A priority specified on a /*PRIORITY statement overrides a priority specified in
the PRTY parameter on a JOB statement.

Relationship to other control statements
The system derives the priority from the following, in override order:
1. JES2 /*PRIORITY statement.
2. The PRTY parameter on the JOB statement.
3. The accounting information on a /*JOBPARM statement.
4. The accounting information on the JOB statement.
5. An installation default specified at JES2 initialization.

Location in the JCL
The /*PRIORITY statement must immediately precede the JOB statement. If not, or
if p is not a number from 0 through 15, JES2 ignores the /*PRIORITY statement
and flushes the input stream until the next JOB statement or another /*PRIORITY
statement.

In a JES2 network, IBM recommends that the /*PRIORITY statement immediately
follow the /*XMIT statement. If you code any other statement between /*XMIT
and JOB, JES2 will ignore the statement and issue an error message.

JES2: /*PRIORITY

Chapter 28. JES2 control statements 595

Example of the PRIORITY statement
/*PRIORITY 7

This statement assigns a job queue selection priority of 7. This value has meaning
only in relation to other jobs in the system.

/*ROUTE statement
Purpose: Use the /*ROUTE statement to specify the destination of sysout data sets
that are not routed by a DEST parameter or to identify the network node where
the job is to execute.

Note: Do not specify the /*ROUTE XEQ statement for a started task; if /*ROUTE
XEQ is specified, JES2 fails the job.

Syntax

/*ROUTE {PRINT} {ANYLOCAL }
{PUNCH} {LOCAL }

{name }
{Nnnnn }
{NnnRmmmm }
{NnnnRmmm }
{NnnnnRmm }
{nodename.userid }
{nodename:userid }
{nodename/userid }
{nodename(userid)}
{Rnnnn }
{RMnnnn }
{RMTnnnn }
{Unnnn }
{Userid }

/*ROUTE XEQ {name }
{Nnnnn }
{nodename.vmguestid }
{nodename:vmguestid }
{nodename/vmguestid }
{nodename(vmguestid)}

The /*ROUTE statement consists of the characters /* in columns 1 and 2; ROUTE in
columns 3 through 7; at least one blank followed by PRINT, PUNCH, or XEQ; at least one
blank followed by one of the destinations or nodes; and at least one blank before column
72. JES2 ignores columns 72 through 80.

Code only one destination or node on each /*ROUTE statement.

Parameter definition
PRINT

Requests that JES2 route the job’s sysout data sets that are printed.

PUNCH
Requests that JES2 route the job’s sysout data sets that are punched.

XEQ
Requests that JES2 route the job to a network node for execution.

ANYLOCAL

JES2: /*PRIORITY

596 z/OS V2R1.0 MVS JCL Reference

LOCAL
Indicates a local node on a local device.

name
Identifies a local or remote device or node by a symbolic name defined by the
installation with the JES2 DESTID initialization statement. The name is 1
through 8 alphanumeric or national ($, #, @) characters.

Nnnnn
Identifies a node. nnnn is 1 through 4 decimal numbers from 1 through 1000.
For example, N0103.

NnnRmmmm
NnnnRmmm
NnnnnRmm

Identifies a node and a remote work station connected to the node. The node
number, indicated in the format by n, is 1 through 4 decimal numbers from 1
through 1000. The remote work station number, indicated in the format by m,
is 1 through 4 decimal numbers from 1 through 9999. Do not code leading
zeros in n or m. The maximum number of digits for n and m combined cannot
exceed six.

Note: NnnR0 is equivalent to LOCAL specified at node Nn.

nodename.userid
nodename:userid
nodename/userid
nodename(userid)

Identifies a node and a VM or TSO/E userid, a remote workstation, or a
symbolic name defined at the destination node. The node is a symbolic name
defined by the installation during initialization; nodename is 1 through 8
alphanumeric or national ($, #, @) characters. The userid must be defined at
the node; userid is 1 through 8 alphanumeric or national ($, #, @) characters.

A userid requires a node; therefore, code nodename.userid. You cannot code a
userid without a nodename.

If you specify a TSO/E userid, do not specify a nodename that is the same as
the origin node.

Note: If a data set is queued for transmission and an operator changes its
destination, the userid portion of the routing is lost.

Rnnnn
RMnnnn
RMTnnnn

Identifies a remote terminal. nnnn is 1 through 4 decimal numbers from 1
through 9999. Note that with remote pooling, the installation may translate this
route code to another route code.

If you send a job to execute at a remote node and the job has a ROUTE PRINT
RMTnnnn statement, JES2 returns the output to RMTnnnn at the node of
origin. For JES2 to print the output at RMTnnnn at the executing node, code
DEST=NnnnRmmm on an OUTPUT JCL statement or sysout DD statement.

Note: R0 indicates any local device.

Unnnn
Identifies a local terminal with special routing. nnnn is 1 through 4 decimal
numbers from 1 through 9999.

JES2: /*ROUTE

Chapter 28. JES2 control statements 597

If you send a job to execute and the job has a ROUTE PRINT Unnnn
statement, JES2 returns the output to Unnnn at the node of origin.

Userid
Identifies a userid at the local node.

Note: JES2 initialization statements determine whether or not the node name is
required when coding a userid. See your System Programmer for information
regarding how routings will be interpreted by JES2.

nodename.vmguestid
nodename:vmguestid
nodename/vmguestid
nodename(vmguestid)

Identifies the network node where the job is to execute. The nodename
identifies an MVS JES2 system, an MVS JES3 system, a VSE POWER node, or a
VM system. If nodename specifies the local node, the job executes locally. The
nodename is 1 through 8 alphanumeric, national ($, #, @), or special characters
specified during JES2 initialization.

The vmguestid identifies a guest system running in a virtual machine (VM),
for example, an MVS system running under VM. Do not specify a work station
or terminal in this parameter.

Location in the JCL
Place the /*ROUTE statement after the JOB statement and either before or after the
EXEC statements. Place a /*ROUTE XEQ statement before all DD * or DD DATA
statements in the job.

Processing of /*ROUTE statements
v The system ignores the /*ROUTE XEQ statement for NJE devices.
v If you do not specify a node on the /*ROUTE PRINT or PUNCH statement,

printing or punching occurs at the input node.
v JES2 processes /*ROUTE XEQ statements on the input node only.
v When a /*ROUTE PRINT or PUNCH statement follows a /*ROUTE XEQ

statement, JES2 processes the /*ROUTE PRINT or PUNCH statement on the
execution node only. However, printing or punching occurs at the node specified
on the /*ROUTE PRINT or PUNCH statement.

v When a /*ROUTE PRINT or PUNCH statement precedes a /*ROUTE XEQ
statement, JES2 processes the /*ROUTE PRINT or PUNCH statement on both
the input and execution nodes. However, printing or punching occurs at the
node specified on the /*ROUTE PRINT or PUNCH statement.

Multiple /*ROUTE statements
JES2 uses the last /*ROUTE statement of each category, if a job contains more than
one /*ROUTE PRINT or PUNCH or XEQ statement.

Examples of the ROUTE statement
Example 1
/*ROUTE PRINT RMT6

This statement sends the printed output to remote terminal 6.

Example 2

JES2: /*ROUTE

598 z/OS V2R1.0 MVS JCL Reference

/*ROUTE PUNCH PUN2

This statement sends the punched output to device PUN2, which was identified to
the system during initialization.

Example 3
//JOBB JOB ...
/*ROUTE XEQ DENVER
//STEP1 EXEC ...

.

.

This statement sends the job to the node named DENVER for execution. The entire
job is scanned for JCL errors on the input system before it is transmitted to the
target system. The entire job is transmitted, which includes the JOBB JOB
statement. Options on the JOBB JOB statement apply to both the input and target
system.

Example 4
//PAYROLL JOB JONES,CLASS=C
/*ROUTE XEQ WSC
/*JOBPARM L=60,R=4222,T=50,P=PROC03,N=5
//EXEC PROC=PROC489
/*ROUTE XEQ POK

These statements specify multiple routes and could cause JECL statements to be
ignored.

/*SETUP statement
Purpose: Use the /*SETUP statement to identify volumes that the operator should
mount before the job is executed. When the job enters the system, JES2 issues a
message to the operator console, asking the operator to mount the identified
volumes. JES2 then places the job in hold status until the operator mounts the
volumes and releases the job.

Note: Do not specify this statement for a started task; if /*SETUP is specified, JES2
fails the job.

Syntax

/*SETUP serial-number[,serial-number]...

The /*SETUP statement consists of the characters /* in columns 1 and 2, SETUP in
columns 3 through 7, a blank in column 10, and the volume serial number(s) starting in
any column from 11 through 71. JES2 ignores columns 72 through 80.

Do not continue the /*SETUP statement; code as many /*SETUP statements as necessary.

Parameter definition
serial-number

Identifies by serial number the volume(s). A volume serial number is 1 through
6 alphanumeric, national ($, #, @), or special characters; enclose a serial
number that contains special characters, other than hyphens, in apostrophes. If
the number is shorter than 6 characters, it is padded with trailing blanks.

JES2: /*ROUTE

Chapter 28. JES2 control statements 599

|

Location in the JCL
Place all /*SETUP statements after the JOB statement and before the first EXEC
statement.

To prevent JES2 from requesting mounting of volumes on a node other than the
node of execution, the /*SETUP statement should follow any /*ROUTE XEQ or
/*XEQ statement. If JES2 processes the /*SETUP statement before processing a
/*ROUTE XEQ or /*XEQ statement, JES2 requests the setup on both the input and
execution nodes.

Example of the /*SETUP statement
/*SETUP 666321,149658

This statement requests that volumes 666321 and 149658 be mounted for the job.

/*SIGNOFF statement
Purpose: Use the /*SIGNOFF statement to tell JES2 to end a remote job stream
processing session. At the completion of the current print and/or punch streams,
JES2 disconnects the remote work station from the system. If JES2 is reading jobs
from the station when the output completes, JES2 disconnects the remote station
when the input is completed.

Note: The remote terminal access processor processes the /*SIGNOFF statement if
it appears in a job stream.

Both systems network architecture (SNA) and binary synchronous communication
(BSC) remote work stations can use the /*SIGNOFF statement. SNA remote
stations can also use the LOGOFF command to end a session with JES2. The
LOGOFF command has some options that the /*SIGNOFF statement does not
provide.
v /*SIGNOFF# = LOGOFF TYPE(COND) Conditional Disconnect
v LOGOFF = LOGOFF TYPE(UNCOND) Unconditional Disconnect

References: For information on the LOGOFF command, see z/OS Communications
Server: SNA Programming.

Syntax

/*SIGNOFF

The /*SIGNOFF statement consists of the characters /* in columns 1 and 2, SIGNOFF in
columns 3 through 9, and blanks in columns 10 through 80.

Location in the JCL
The /*SIGNOFF statement can appear anywhere in a local input stream or an
input stream from a SNA or BSC remote work station.

Example of the /*SIGNOFF statement
/*SIGNOFF

This statement requests that JES2 terminate a remote job stream processing session.

JES2: /*SETUP

600 z/OS V2R1.0 MVS JCL Reference

/*SIGNON statement
Purpose: Use the /*SIGNON statement to tell JES2 to begin a remote job stream
processing session. For non-multi-leaving remote stations, the terminal transmits
the /*SIGNON statement alone as part of the initial connection process.

Note: The remote terminal access processor processes the /*SIGNON statement if
it appears in a job stream. When the terminal access processor processes the
/*SIGNON statement, the line being processed is restarted.

Systems network architecture (SNA) remote work stations must use the LOGON
command instead of the /*SIGNON statement to notify JES2 of a connection
request.

References: For information on the LOGON command, see z/OS Communications
Server: SNA Programming.

Syntax

/*SIGNON {REMOTEnnn} [password1] [new-password] [password2]
{RMTnnnn }
{RMnnnn }
{Rnnnn }
{NxxRnnnn }
{dest-name}

The /*SIGNON statement consists of the following. Note that all the fields in this
statement must appear in fixed locations.

Column
Contents

1-8 /*SIGNON

16-24 REMOTEnnn, RMTnnnn, RMnnnn, Rnnnn, NxxRnnnn, or dest-name beginning in
16

25-32 password1, beginning in 25

35-42 new-password, beginning in 35

73-80 password2, beginning in 73

Parameter definition
REMOTEnnn

Specifies the identification number assigned to the remote station asking to
sign on. The nnn is 1 through 3 decimal numbers.

Code REMOTEnnn with the same characters as RMTnnn on the /*ROUTE
statement. If you code REMOTEnnn on the /*SIGNON statement, you are
restricted to coding RMTnnn with only three numbers on the /*ROUTE
statement.

RMTnnnn
RMnnnn
Rnnnn

Specifies the identification number assigned to the remote station. nnnn is one
through four decimal numbers.

JES2: /*SIGNON

Chapter 28. JES2 control statements 601

NxxRnnnn
Specifies the node number in the NJE network and the identification number
assigned to the remote station. Nxx must specify the node to which the remote
work station is connected. xx is 1 through 1000. nnnn is 1 through 4 decimal
numbers. xx plus nnnn cannot exceed 6 numbers.

dest-name
Specifies the name (one through eight characters) that you use to refer to the
JES2-defined destination. The dest-name must be defined as a remote work
station on the system to which the terminal is connected.

password1
Specifies the password assigned to a nondedicated connection that allows the
remote station access to JES2 for remote job stream processing. The installation
assigns this password during system initialization. The operator can change or
delete this password with the $T command.

new-password
Specifies a new password for the remote job entry (RJE) station that is signing
on. If the installation is controlling the sign on with JES2 password support
instead of RACF, the new password is ignored.

password2
Specifies the current password for the remote station that is signing on; this
password identifies the remote station as a valid remote job entry (RJE) station.
This parameter is assigned by either RACF, a JES2 initialization parameter (if
JES2 password support is used), or the $T command.

Location in the JCL
Place the /*SIGNON statement at the start of an input stream to be transmitted
from a remote work station. The terminal transmits the /*SIGNON statement alone
as part of the initial connection process.

Place the /*SIGNON statement at the end of the JES2/RTP input stream for
multi-leaving remote stations.

Examples of the /*SIGNON statement
Example 1
/*SIGNON REMOTE123LINEPSWD

This statement requests that remote station 123 begin a remote job stream
processing session. LINEPSWD, beginning in column 25, is the password assigned
to the nondedicated connection.

Example 2
/*SIGNON RMT1000 LINEPSWD

This statement requests that remote station 1000 begin a remote job stream
processing session. LINEPSWD, beginning in column 25, is the password assigned
to the non-dedicated connection.

Example 3
/*SIGNON RMT1000 LINEPSWD PSWDNEW PSWD2

This statement requests that remote station 1000 begin a remote job stream
processing session. LINEPSWD, beginning in column 25, is the password assigned

JES2: /*SIGNON

602 z/OS V2R1.0 MVS JCL Reference

to the nondedicated connection. PSWD2, beginning in column 73, is the password
assigned to the remote station 1000. PSWDNEW, beginning in column 35, is the
new password to be assigned to remote station 1000.

Example 4
/*SIGNON N11R123 LINEPSWD

This statement requests that remote station 123 at node 11 begin a remote job
stream processing session. LINEPSWD, beginning in column 25, is the password
assigned to the switched connection.

/*XEQ statement
Purpose: Use the /*XEQ statement to identify the network node where the job is to
execute. It performs the same function as the /*ROUTE XEQ statement.

Note:

1. Do not specify this statement for a started task; if /*XEQ is specified, JES2 fails
the job.

2. The XEQ statement is ignored for NJE devices.

Syntax

/*XEQ {Nnnnn }
{nodename[.vmguestid]}
{name }

The /*XEQ statement consists of the characters /* in columns 1 and 2, XEQ in columns 3
through 5, a blank in column 6, and a node starting in any column starting with 7.

Parameter definition
Nnnnn

Identifies a node. nnnn is 1 through 4 decimal numbers from 1 through 1000.
For example, N0103.

nodename
Identifies the network node where the job is to execute. The nodename
identifies an MVS JES2 system, an MVS JES3 system, a VSE POWER node, or a
VM system. If nodename specifies the local node, the job executes locally. The
nodename is 1 through 8 alphanumeric, national ($, #, @), or special characters
specified during JES2 initialization.

vmguestid
Identifies a guest system running in a virtual machine (VM), for example, an
MVS system running under VM. Do not specify a work station or terminal in
this parameter.

name
Specifies the name (1 through 8 characters) that you use to refer to the
JES2-defined destination. The name must be defined as a node and userid at
the destination node.

JES2: /*SIGNON

Chapter 28. JES2 control statements 603

Location in the JCL
Place the /*XEQ statement after the JOB statement and either before or after the
EXEC statements. Place a /*XEQ statement before all DD * or DD DATA
statements in the job.

Multiple /*XEQ statements
JES2 uses the last /*XEQ statement, if a job contains more than one /*XEQ
statement.

Example of the XEQ statement
//JOBB JOB ...
/*XEQ ATLANTA
//STEP1 EXEC ...

.

.

JES2 routes and executes this job on the node defined as ATLANTA. The entire job
is transmitted, which includes the JOBB JOB statement. Options on the JOBB JOB
statement apply to both the input and target system.

/*XMIT statement
Purpose: Use the /*XMIT statement to transmit records from a JES2 node to either
another JES2 node or an eligible non-JES2 node, for example, a VM or JES3 node.
JES2 does not process or check the records for JES2 validity. JES2 builds header
and trailer records from information on the JOB statement immediately preceding
the /*XMIT statement. Then JES2 transmits all records after the /*XMIT statement.

The records may consist of a job input stream or an in-stream DD * or DD DATA
data set. If the records are in a job input stream and the destination node can
process JCL (which means it is the ultimate node, not a store-and-forward node),
the system will execute the transmitted input stream provided that: (a) the record
immediately following the /*XMIT statement is a JOB statement valid at that node,
and (b) the input stream consists only of the JCL and data for the one job headed
by that JOB statement. The system will flush ALL jobs if an NJE (network job
entry) receiver finds multiple JOB statements in the input stream.

The records end when JES2 finds one of the following:
v /* in the input stream
v The two-character delimiter specified by a DLM parameter on this /*XMIT

statement
v The input stream runs out of records.
v If the records are being read from an internal reader, the internal reader is closed

Note: Do not specify this statement for a started task; if /*XMIT is specified, JES2
fails the job.

JES2: /*XEQ

604 z/OS V2R1.0 MVS JCL Reference

|

Syntax

/*XMIT {Nnnnn } [DLM=xx]
{nodename }
{nodename.userid }
{nodename:userid }
{nodename/userid }
{nodename(userid) }
{nodename.vmguestid }
{nodename:vmguestid }
{nodename/vmguestid }
{nodename(vmguestid)}
{name }

The /*XMIT statement consists of the characters /* in columns 1 and 2, XMIT in columns 3
through 6, a blank in column 7, a nodename or node-number starting in any column
starting with 8, and optionally followed, with an intervening blank, by a delimiter
parameter.

Do not continue an /*XMIT statement.

Parameter definition
Nnnnn

Identifies the destination node. nnnn is 1 through 4 decimal numbers from 1
through 1000. For example, N0103.

nodename
Identifies the destination node. The nodename identifies an MVS JES2 system,
an MVS JES3 system, a VSE POWER node, or a VM system. The nodename is
1 through 8 alphanumeric, national ($, #, @), or special characters specified
during JES2 initialization.

userid
Identifies a destination terminal or work station at the node. The userid must
be defined at the node; userid for TSO/E is 1 through 7 alphanumeric or
national ($, #, @) characters and for VM is 1 through 8 alphanumeric or
national ($, #, @) characters.

vmguestid
Identifies a destination guest system running in a virtual machine (VM), for
example, an MVS system running under VM. Do not specify a work station or
terminal in this parameter.

name
Specifies the name (1 through 8 characters) that you use to refer to the
JES2-defined destination. The name must be defined as a node and userid at
the destination node.

DLM=xx
Specifies a two-character delimiter to terminate the data being transmitted.

Code any two characters for the delimiter. If the specified delimiter contains
any special characters, enclose it in apostrophes. In this case, a special
character is any character that is neither alphanumeric nor national ($, #, @).

Failing to code enclosing apostrophes produces unpredictable results.

If the delimiter contains an ampersand or an apostrophe, code each ampersand
or apostrophe as two consecutive ampersands or apostrophes. Each pair of
consecutive ampersands or apostrophes counts as one character.

JES2: /*XMIT

Chapter 28. JES2 control statements 605

If you specify a DLM parameter, you must terminate the transmitted records
with the characters in the DLM parameter. The characters you assign as
delimiters override any delimiter implied by the defaults.

The characters // are not valid delimiters unless specifically indicated by
DLM=//.

Defaults
For the end of the records to be transmitted, the default is /* in the input stream.

If you specify for DLM only one character or more than two characters, JES2 uses
/*.

Location in the JCL
Place the /*XMIT statement immediately after a JOB statement. If the records being
transmitted are a job input stream, another JOB statement must follow the /*XMIT
statement.

You can code only the /*PRIORITY statement between an /*XMIT statement and a
JOB statement. If you code any other statement between /*XMIT and JOB, JES2
will ignore the statement and issue an error message.

Code only one /*XMIT statement in a job.

Examples of the XMIT statement
Example 1
//JOBA JOB ...
/*XMIT ATLANTA DLM=AA

.
records to be transmitted
.

AA

JES2 transmits to the node ATLANTA all records following the /*XMIT statement
up to the specified delimiter, AA.

Example 2
//JOBX JOB ...
/*XMIT VMSYS1.MVS223
//JOBB JOB ...

.
job to be transmitted
.

/*

JES2 transmits the JOBB job stream to the VM guest system, MVS223, running on
node VMSYS1, which is a VM system. The job stream will be executed by the
MVS223 system.

The information specified on the JOBX statement is processed on the submitting
system and transmitted in the networking headers to the target system. The target
system, if it is a JES2 node, uses the default routing in the network job header
unless it is specifically overridden in the JCL for the transmitted job.

JES2: /*XMIT

606 z/OS V2R1.0 MVS JCL Reference

Chapter 29. JES3 control statements

Code JES3 control statements with JCL statements to control the input and output
processing of jobs. The rules for coding in Chapter 3, “Format of statements,” on
page 13, and Chapter 4, “Syntax of parameters,” on page 19, apply to the JES3
control statements.

Description

Considerations for an APPC scheduling environment
JES3 control statements have no function in an APPC scheduling environment. If
you code them, the system will ignore them, and they will appear as comments in
the job listing.

Considerations for started tasks
JES3 JECL statements are not supported for started tasks. Use of JECL statements
will result in JES3 failing the job.

Location in the JCL
Place JES3 control statements, except the command and //**PAUSE statements,
after the JOB statement and its continuations. JES3 ignores JES3 control statements,
except the command and //**PAUSE statements, that appear before the JOB
statement or between continued JOB statements.

Internal reader
Use the following control statements when submitting jobs to the internal reader.
The internal reader is described in z/OS MVS Programming: Assembler Services
Guide.
v /*DEL
v /*EOF

Examples of JES3 control statements
The first example shows JES3 control statements in relation to each other and to
JCL statements for a job entered from a remote work station. No actual job should
require all of these statements.

The second example shows an ordinary job entered through the local input stream.

The following sections show the recommended syntax for each control statement,
with examples. Note, however, that for some JES3 control statements (such as the
//* MAIN statement) a single slash followed by an asterisk (/*), rather than two
slashes and an asterisk (//*), will be processed as syntactically acceptable. Your
installation may disallow this option by using the ALTJCL keyword parameter of
the STANDARDS initialization statement. For further information see z/OS JES3
Initialization and Tuning Reference

Example 1:

© Copyright IBM Corp. 1988, 2013 607

//**MESSAGE,CN1,ENTER A START COMMAND FOR THIS JOB
//**PAUSE
//TEST1 JOB ,,MSGCLASS=A
//*NETACCT PNAME=MAEBIRD,ACCT=2K14920
//*NET NETID=N1,NHOLD=0
//*PROCESS CI
//*PROCESS MAIN
//*PROCESS OUTSERV
//*DATASET DDNAME=STEP1.DD1

.

.
data
.

//*ENDDATASET
//*ENDPROCESS
//*OPERATOR THIS IS TEST JOB TEST1.
//*MAIN CLASS=C
//*FORMAT PR,DDNAME=STEP1.DD2,DEST=ANYLOCAL,COPIES=2
//*ROUTE XEQ NODE1
//FARJOB1 JOB ,,MSGCLASS=A
//STEP1 EXEC PGM=CHECKER
//DD1 DD DSNAME=INPUT
//DD2 DD SYSOUT=A
/*

Example 2:
//RUN2 JOB ,,MSGCLASS=A
//*MAIN CLASS=B
//*FORMAT PR,DDNAME=STEPA.DD2,DEST=ANYLOCAL,COPIES=5
//STEPA EXEC PGM=WRITER
//DD1 DD DSNAME=IN1,DISP=OLD,UNIT=3390,VOLUME=SER=MH2244
//DD2 DD SYSOUT=A
/*

JES3 command statement
Purpose

Use the command statement to enter a JES3 operator command through the input
stream.

JES3 usually executes an in-stream command as soon as it is read. Therefore, the
command will not be synchronized with the execution of any job or step in the
input stream. To synchronize a command with job processing, tell the operator the
commands you want and when they should be issued, then let the operator enter
them from the console.

References

For more information on the command statement and the JES3 verbs and
operands, see "Entering Commands through the Input Stream" in z/OS JES3
Commands.

Syntax

//**command-verb[,operand]...

JES3

608 z/OS V2R1.0 MVS JCL Reference

The JES3 command statement consists of the characters //** in columns 1 through 4, the
command verb beginning in column 5, and, if the command requires operands, a comma
followed by the operands up through column 72. JES3 ignores columns 73 through 80.

Do not continue command statements from one record to the next.

Parameter definition
*command-verb

Indicates one of the following JES3 commands. Do not specify a *DUMP or
*RETURN command on a JES3 command statement.

Command
Short Form

CALL X

CANCEL
C

DELAY
D

DISABLE
H

ENABLE
N

ERASE
E

FAIL

FREE

INQUIRY
I

MESSAGE
Z

MODIFY
F

RESTART
R

SEND T

START
S

SWITCH

VARY V

operand
Specifies an operand that pertains to the command-verb.

JES3: Command

Chapter 29. JES3 control statements 609

|

Location in the JCL
v Place JES3 command statements before the first JOB statement in the input

stream, if you are also submitting jobs. JES3 treats any JES3 command
statements that follow the JOB statement as comment statements.

v You may enter several command statements at one time.
v You may enter command statements through card, tape, or disk readers.
v You may place command statements as the first statements in an active card

reader that you are restarting.
v You may not enter command statements through an internal reader (by issuing a

TSO/E Submit command) or from another node.

Examples of the command statement
Example 1
//**VARY,280,OFFLINE
//**V,281,OFFLINE
//**VARY,282,OFF

//**V,280-282,OFF

In this example, the first three statements each vary one device offline.
Alternatively, the fourth statement varies all three devices offline. If you place
these statements in card reader 01C, for example, and that card reader is currently
not in use, the operator would enter through the operator console:

*X CR,IN=01C

Example 2
//**MESSAGE,CN1,OUTPUT FROM JOB X REQUIRES SPECIAL CONTROLS

This statement instructs the operator from a remote location. Place this statement
before the first job in the input stream.

//*DATASET statement
Purpose: Use the //*DATASET statement to identify the beginning of an in-stream
data set, which can contain JCL statements or data. (The //*ENDDATASET
statement ends the in-stream data set.) The data set can be used as input to a
dynamic support program (DSP), such as OUTSERV.

Note: Make sure the operator includes a C operand on the *CALL command for
the reader that reads a job containing this statement if it contains a MODE=C
parameter.

JES3: Command

610 z/OS V2R1.0 MVS JCL Reference

Syntax

//*DATASET DDNAME=ddname[,parameter]...

The parameters are:

MODE= {E}
{C}

J= {YES}
{NO }

CLASS= {NO }
{MSGCLASS}
{class }

The //*DATASET statement consists of the characters //* in columns 1 through 3,
DATASET in columns 4 through 10, a blank in column 11, and parameters in columns 12
through 72. JES3 ignores columns 73 through 80.

Parameter definition
DDNAME=ddname

Specifies the name of the in-stream data set that follows the //*DATASET
statement.

MODE=E
MODE=C

Defines the card-reading mode.

E Indicates that JES3 is to read the statements as EBCDIC with validity
checking. E is the default if the MODE parameter is omitted.

C Indicates that JES3 is to read the statements in card image form, that is, in
column binary or data mode 2.

MODE=C is not valid for jobs read from disk or tape, or for jobs submitted
from remote work stations.

J=YES
J=NO

Indicates how JES3 is to recognize the end of the data set.

If you specify MODE=C, JES3 ignores the J parameter; therefore, use a
//*ENDDATASET statement to end the data set

YES
Indicates that a //*ENDDATASET statement ends the data set. Specify YES
when JOB statements appear in the data set.

NO Indicates that a JOB statement ends the data set. NO is the default if the J
parameter is omitted, unless MODE=C is specified.

CLASS=NO
CLASS=MSGCLASS
CLASS=class

Identifies the output class JES3 is to use for the data set.

NO Indicates that the system is to assign an output class. If you omit the
CLASS parameter, the default is NO.

JES3: //*DATASET

Chapter 29. JES3 control statements 611

MSGCLASS
Requests the output class in the MSGCLASS parameter on the JOB
statement.

class
Specifies the output class.

Location in the JCL
Place a //*DATASET statement immediately before the first record of an in-stream
data set.

Example of the //*DATASET statement
//*PROCESS OUTSERV
//*DATASET DDNAME=MYPRINT,J=YES

.

.
data
.
.

//*ENDDATASET
//*FORMAT PR,DDNAME=MYPRINT,COPIES=5
//STEP1 EXEC ...

.

.

In this example, the //*DATASET statement marks the beginning of the in-stream
data set MYPRINT. The //*FORMAT PR statement requests five copies of it. The
//*ENDDATASET statement marks the end of the data set.

//*ENDDATASET statement
Purpose: Use the //*ENDDATASET statement to indicate the end of an in-stream
data set that was begun with a //*DATASET statement.

Syntax

//*ENDDATASET

The //*ENDDATASET statement consists of the characters //* in columns 1 through 3 and
ENDDATASET in columns 4 through 13. Columns 14 through 80 must be blank.

Location in the JCL
Place a //*ENDDATASET statement immediately after the last record of an
in-stream data set that was begun with a //*DATASET statement.

Example of the //*ENDDATASET statement
//*DATASET DDNAME=INFO,J=YES

.

.
data
.
.

//*ENDDATASET

In this example, the //*ENDDATASET statement marks the end of the in-stream
data set INFO.

JES3: //*DATASET

612 z/OS V2R1.0 MVS JCL Reference

//*ENDPROCESS statement
Purpose: Use the //*ENDPROCESS statement to indicate the end of a series of
//*PROCESS statements in a job.

Syntax

//*ENDPROCESS [comments]

The //*ENDPROCESS statement consists of the characters //* in columns 1 through 3,
ENDPROCESS in columns 4 through 13, a blank in column 14, and, optionally, comments
starting in any column beginning with 15. JES3 ignores columns 73 through 80.

Location in the JCL
Place a //*ENDPROCESS statement immediately after the last //*PROCESS
statement in a job. The //*ENDPROCESS statement is optional if a JCL statement
follows the last //*PROCESS statement.

Do not place any //*PROCESS statements after the //*ENDPROCESS statement.

Example of the //*ENDPROCESS statement
//*ENDPROCESS END OF PROCESS STATEMENTS

//*FORMAT PR statement
Purpose: Use the //*FORMAT PR statement to specify to JES3 processing
instructions for sysout data sets that are printed. These instructions permit special
processing of sysout data sets, such as:
v Multiple destinations.
v Multiple copies of output with different attributes.
v Forced single or double space control.
v Printer overflow checking.

//*FORMAT PR statements can be either specific or nonspecific. A specific
//*FORMAT PR statement contains a DDNAME parameter that specifies
something other than a null value, such as DDNAME=ddname or
DDNAME=JESYSMSG. A nonspecific //*FORMAT PR statement contains
DDNAME= , with no value (null) specified for the DDNAME parameter.

You can code multiple specific //*FORMAT PR statements for a particular sysout
data set to specify special requirements for different copies of the data set. In
addition, you can code a //*FORMAT PU statement for the same sysout data set,
thereby both printing and punching it.

You can also code multiple nonspecific //*FORMAT PR statements. In this case,
the system produces only one copy of each data set, combining any parameter
values specified on the statements. If you specify a given parameter on more than
one of these statements, the system uses the parameter value specified on the last
//*FORMAT PR statement containing that parameter.

Note: The //*FORMAT PR statement applies only to sysout data sets printed by
JES3. The statement is ignored for data sets sent to a TSO/E userid or processed by
an external writer.

JES3: //*ENDPROCESS

Chapter 29. JES3 control statements 613

Reference: For examples of //*FORMAT statement processing on the JES3 hold
queue and writer queue, see z/OS JES3 Initialization and Tuning Guide.

Syntax

//*FORMAT PR,DDNAME= {ddname } [,parameter]...
{stepname.ddname } ,parameter]...
{stepname.procstepname.ddname}
{JESYSMSG }
{JESJCL }
{JESMSGLG }

//*FORMAT PR,DDNAME=[,parameter]...

The parameters are:

{ CARRIAGE= {carriage-tape-name} }
{ {6 } }
{ FCB= {image-name} }
{ {6 } }

CHARS= {STANDARD }
{table-name }
{(table-name[,table-name]...)}

CHNSIZE= {DS }
{(nnn[,mmm])}

COMPACT=compaction-table-name

CONTROL= {PROGRAM}
{SINGLE }
{DOUBLE }
{TRIPLE }

COPIES= {nnn }
{(nnn,(group-value[,group-value]...))}
{(group-value[,group-value]...) }

JES3: //*FORMAT PR

614 z/OS V2R1.0 MVS JCL Reference

DEST= {ANYLOCAL }
{device-name }
{device-number }
{group-name }
{nodename[.remote] }
{(type[,device-name]) }
{(type[,device-number])}
{(type[,group-name]) }

EXTWTR=name

FLASH= {STANDARD }
{overlay-name }
{(overlay-name[,count])}

FORMS= {STANDARD }
{form-name}

MODIFY= {module-name }
{(module-name[,trc])}

OVFL= {ON }
{OFF}

PRTY=nnn

STACKER= {STANDARD}
{S }
{C }

THRESHLD=limit

TRAIN= {STANDARD }
{train-name}

The //*FORMAT PR statement consists of the characters //* in columns 1 through 3,
FORMAT in columns 4 through 9, and a blank in column 10. PR begins in column 11 or
beyond, followed by a comma, and parameters start after the command and can continue
through column 72. JES3 ignores columns 73 through 80.

Parameter definition
PR

Indicates that this statement is associated with a sysout data set that is printed.

DDNAME=
DDNAME=ddname
DDNAME=stepname.ddname
DDNAME=stepname.procstepname.ddname
DDNAME=procstepname.ddname
DDNAME=JESYSMSG
DDNAME=JESJCL
DDNAME=JESMSGLG

(null)
Specifies that the parameters on this //*FORMAT PR statement are the
defaults for the job. These parameters then apply to all of the job’s sysout
data sets that are printed, except those covered by a //*FORMAT PR
statement with a value other than (null) for DDNAME.

JES3: //*FORMAT PR

Chapter 29. JES3 control statements 615

Overrides: Parameters coded on a nonspecific //*FORMAT PR statement
are overridden by parameters coded on sysout DD statements or by
parameters in the JES3 SYSOUT initialization statement.

ddname
stepname.ddname
stepname.procstepname.ddname
procstepname.ddname

Identifies the DD statement that defines the sysout data set to be printed;
for example, ddname indicates all DD statements with the name, ddname,
in this job. Stepname.ddname indicates DD statement, ddname, in step,
stepname, in this job. Stepname.procstepname.ddname indicates DD
statement, ddname, in procedure step, procstepname, of a procedure that is
called by a step, stepname, in this job. The ddname must match exactly the
ddname on the DD statement. (See the example for the //*DATASET
statement.) If the identified DD statement does not contain a SYSOUT
parameter, JES3 ignores the //*FORMAT PR statement.

Note: If a ddname matches more than one //*FORMAT PR statement, the
//*FORMAT PR statement that has more qualifiers for the ddname will
override the others. See “Examples of the //*FORMAT PR statement” on
page 622.

JESYSMSG
Requests printing of system messages for this job.

JESJCL
Requests printing of JCL statements and messages for this job.

JESMSGLG
Requests printing of JES3 and operator messages for this job.

CARRIAGE=carriage-tape-name
CARRIAGE=6

Specifies the carriage tape for the 3211, 3203 Model 5, or 1403 Printer for
printing this output class.

carriage-tape-name
Identifies the name of the carriage tape. The name is 1 through 8
characters. For the 3211 and 3203-5, SYS1.IMAGELIB must contain a
module for each carriage tape name.

6 Indicates the installation standard carriage tape.

Note: You cannot code both the CARRIAGE and FCB parameters on the same
//*FORMAT PR statement.

CHARS=STANDARD
CHARS=table-name
CHARS=(table-name[,table-name]...)

Requests one or more fonts for printing the sysout data set on an AFP printer.

STANDARD
Indicates the standard character-arrangement table, which was specified at
JES3 initialization.

table-name
Identifies a character-arrangement table. Each table-name is 1 through 4
alphanumeric or national ($, #, @) characters. When coding more than one
table-name, parentheses are required around the list and null positions are
invalid in the list.

JES3: //*FORMAT PR

616 z/OS V2R1.0 MVS JCL Reference

CHNSIZE=DS
CHNSIZE=(nnn[,mmm])

Gives the number of logical records to be transmitted to a work station as a
systems network architecture (SNA) chain and indicates whether normal
output checkpoints are to be taken for this sysout data set.

Note: This parameter is valid only when transmitting to a SNA work station.

Be careful in selecting subparameters, because each affects performance
differently. Sending the data set as a SNA chain provides the best performance,
but can cause duplicate data to be written to the output device if operator
intervention is required. The remote operator can eliminate duplicate data by
issuing commands to reposition and restart the output writers.

When an end-of-chain indicator is sent in the data set, JES3 takes an output
checkpoint. You can provide additional checkpoints for critical data by sending
an end-of-chain indicator. For example, when printing bank checks, you can
have an output checkpoint taken for each check by specifying each check as a
SNA chain.

DS Indicates that the sysout data set is to be sent as a single SNA chain and
that JES3 is not to take normal output checkpoints. DS is the default if the
CHNSIZE parameter is omitted.

nnn
Specifies the SNA chain size in pages. nnn is a decimal number from 1
through 255. The size of a page is determined by:
v The value of mmm.
v The carriage control characters in the data that skip to channel 1.

mmm
Specifies the number of logical records in a page, when the data contains
no carriage control characters. mmm is a decimal number from 1 through
255.

COMPACT=compaction-table-name
Specifies the compaction table for JES3 to use when sending a systems network
architecture (SNA) data set to a SNA remote terminal. The
compaction-table-name is a symbolic name defined by the installation during
JES3 initialization. The name is 1 through 8 alphanumeric characters.

In the following cases, JES3 performs compaction using an installation default
table, if defined, or sends the data without compacting it, if no table was
defined. In all cases, JES3 writes a message to the console.
v No compaction table is specified.
v The specified compaction table is invalid.
v JES3 cannot find the specified compaction table.

If the remote printer does not support compaction, JES3 ignores the COMPACT
parameter and sends the data without compacting it.

CONTROL=PROGRAM
CONTROL=SINGLE
CONTROL=DOUBLE
CONTROL=TRIPLE

Indicates either that the data records control printing or that the output is to be
printed with single, double, or triple spacing.

PROGRAM
Indicates that each logical record in the data set begins with a carriage

JES3: //*FORMAT PR

Chapter 29. JES3 control statements 617

control character. You can specify in the DD statement, the DCB macro, or
the data set label that an optional control character is part of each record in
the data set. The carriage control characters can be in either the extended
USASCII code or can be the actual channel command code. The carriage
control characters are given in z/OS DFSMS Using Data Sets.

SINGLE
Requests single spacing.

DOUBLE
Requests double spacing.

TRIPLE
Requests triple spacing.

COPIES=nnn
COPIES=(nnn,(group-value[,group-value]...))
COPIES=(group-value[,group-value]...)

Indicates how many copies of the sysout data set to print. If you do not specify
a COPIES parameter, the default is 1.

You can omit the parentheses if you code only nnn.

nnn
A number from 1 through 254 that specifies how many copies of the data
set to print. Each copy will be in page sequence order.

If you code COPIES=0 on the DD statement, the system uses a default of 1,
which is the default for the DD COPIES parameter.

JES3 ignores nnn if any group-values are specified.

group-value
Specifies how many copies of each page are to be printed before the next
page is printed. Each group-value is a number from 1 through 255. You
can code a maximum of eight group-values. Their sum must not exceed
255. The total copies of each page equals the sum of the group-values.

This subparameter is valid only for output on a 3800 Printing Subsystem.
Group values override an nnn subparameter.

DEST=destination
Routes the output from the sysout data set to a printer. This parameter
overrides the //*MAIN statement ORG parameter.

If you omit DEST, JES3 assigns the first available printer that is in the origin
group and that fulfills all processing requirements. The origin group is the
group of printers defined for the local or remote submitting location. If the job
originated at a remote job processing (RJP) terminal, JES3 returns the output to
the originating terminal group.

If the job was submitted through TSO/E to the NJE network for execution, the
default is the node from which the job was submitted, and the destination
ANYLOCAL.

ANYLOCAL
Indicates any local printer that is being used for the output class specified
in the SYSOUT parameter on the DD statement and that is attached to the
global processor.

JES3: //*FORMAT PR

618 z/OS V2R1.0 MVS JCL Reference

device-name
Requests a local device by a symbolic name defined by the installation
during JES3 initialization. device-name is 1 through 8 alphanumeric or
national ($, #, @) characters.

device-number
Identifies a specific device by a 3-digit or 4-digit hexadecimal number.
Precede a 4-digit number with a slash (/). A 3-digit number can be
specified with or without a slash.

group-name
Identifies a group of local devices, an individual remote station, or a group
of remote stations by a symbolic name defined by the installation during
JES3 initialization. group-name is 1 through 8 alphanumeric or national ($,
#, @) characters.

nodename
Identifies a node by a symbolic name defined by the installation during
JES3 initialization. nodename is 1 through 8 alphanumeric or national ($, #,
@) characters.

remote
Identifies a remote work station or VM userid to which the receiving node
directs output. remote is 1 through 8 characters.

(type)
Indicates a device classification. type is in the form (gggssss) where ggg is
the general device classification and ssss is the specific device
classification. The type must be enclosed in parentheses. The type must be
defined by the installation during JES3 initialization. For example, type for
a 3800 is (PRT3800).

EXTWTR=name
Identifies the external writer that is to process the sysout data set at the
destination node. name is 1 through 8 alphanumeric characters and must
identify a module defined to the remote JES3 node that is to execute the job.
(Do not code NJERDR, it is reserved for JES3.)

FCB=image-name
FCB=6

Specifies the forms control buffer (FCB) image JES3 is to use to guide printing
of the sysout data set by a 1403 Printer, 3211 Printer, 3203 Printer Model 5,
4245 Printer, 4248 Printer, or 3800 Printing Subsystem, or by a printer
supported by systems network architecture (SNA) remote job processing (RJP).

If the data set is to be produced on some other device, JES3 ignores the FCB
parameter.

image-name
Identifies the FCB image. The name is 1 through 4 alphanumeric or
national ($, #, @) characters and is the last characters of a SYS1.IMAGELIB
member name:
v FCB2xxxx member for a 3211, 3203 model 5, or printer supported by

SNA.
v FCB3xxxx member for a 3800.
v FCB4xxxx member for a 4248.

6 Indicates the standard FCB. JES3 uses the standard FCB specified at JES3
initialization.

JES3: //*FORMAT PR

Chapter 29. JES3 control statements 619

Note: You cannot code both the CARRIAGE and FCB parameters on the same
//*FORMAT PR statement.

FLASH=STANDARD
FLASH=overlay-name
FLASH=(overlay-name[,count])

Identifies the forms overlay to be used in printing the sysout data set on a
3800 Printing Subsystem and, optionally, to specify the number of copies on
which the forms overlay is to be printed.

You can omit the parentheses if you code only an overlay-name. If you omit
the count subparameter or specify a count of 0, JES3 flashes all copies with the
specified overlay.

STANDARD
Indicates the standard forms flash overlay. JES3 uses the standard forms
overlay specified at JES3 initialization.

overlay-name
Identifies the forms overlay frame that the operator is to insert into the
printer before printing begins. The name is 1 through 4 alphanumeric or
national ($, #, @) characters.

count
Specifies the number, 0 through 255, of copies that JES3 is to flash with the
overlay, beginning with the first copy printed. Code a count of 0 to flash
all copies.

Note: See the Forms Design Reference Guide for the 3800 for information on
designing and making forms overlays.

FORMS=STANDARD
FORMS=form-name

Indicates the forms on which the sysout data set is to be printed.

STANDARD
Indicates the standard form. JES3 uses the standard form specified at JES3
initialization.

form-name
Names the print forms. form-name is 1 through 8 alphanumeric characters.

MODIFY=module-name
MODIFY=(module-name[,trc])

Specifies a copy modification module that tells JES3 how to print the sysout
data set on a 3800 Printing Subsystem. The module can specify how to replace
blanks or data in the data set. You can omit the parentheses if you code only a
module-name.

The module is defined and stored in SYS1.IMAGELIB using the IEBIMAGE
utility program. See z/OS DFSMSdfp Utilities for more information.

If you omit the trc subparameter, JES3 prints the data set with the first
character-arrangement table coded in the CHARS parameter.

module-name
Identifies a copy modification module in SYS1.IMAGELIB. module-name is
1 through 4 alphanumeric or national ($, #, @) characters.

trc
Identifies which table-name in the CHARS parameter is to be used. This

JES3: //*FORMAT PR

620 z/OS V2R1.0 MVS JCL Reference

table reference character is 0 for the first table-name specified, 1 for the
second, 2 for the third, or 3 for the fourth.

OVFL=ON
OVFL=OFF

Indicates whether or not the printer program should test for forms overflow.

Because the overflow test is a responsibility of the terminal package for the
remote RJP terminal, JES3 ignores OVFL for remote job processing.

ON Indicates that the printer program should eject whenever the end-of-forms
indicator (channel 12) is sensed. ON is the default if the OVFL parameter is
omitted.

OFF
Indicates that forms overflow control is not to be used.

PRTY=nnn
Specifies the priority at which the sysout data set enters the output queue. nnn
is a decimal number from 0 through 255; 0 is the lowest priority while 255 is
the highest.

STACKER=STANDARD
STACKER=S
STACKER=C

Requests a stacker for output processed by PSF on any continuous forms AFP
printer.

STANDARD
Indicates the standard installation default. This default is specified at JES3
initialization.

S Indicates the burster-trimmer-stacker, in which the output is burst into
separate sheets.

C Indicates the continuous forms stacker, in which the output is left in
continuous fanfold.

THRESHLD=limit
Specifies the maximum size for the sysout data set. JES3 calculates the sysout
data set size as the number of records multiplied by the number of copies
requested. When this size exceeds the THRESHLD value, JES3 creates a new
unit of work, on a data set boundary, and queues it for printing. Consequently,
copies of the sysout data set may be printed simultaneously by different
printers.

Use the THRESHLD parameter for jobs that generate many large sysout data
sets. Grouping data sets as a single unit of work for an output service writer
may decrease the time required for the output service writer to process the
data sets.

The value specified in this parameter overrides the value specified during JES3
initialization.

limit
Specifies the maximum records for a single sysout data set. limit is a
decimal number from 1 through 99999999. The default is 99999999.

TRAIN=STANDARD
TRAIN=train-name

Indicates the printer train to be used in printing the sysout data set. See

JES3: //*FORMAT PR

Chapter 29. JES3 control statements 621

Table 18 on page 291 for the IBM-supplied trains. Because these trains are not
standard machine features, verify that the installation has the required printer
train before specifying it.

Do not code the TRAIN parameter for output destined for a remote job
processing (RJP) terminal.

STANDARD
Indicates the standard installation default. This default is specified at JES3
initialization.

train-name
Specifies an installation-supplied printer train. Check with your installation
for the names of trains.

Relationship to sysout DD and OUTPUT JCL statements
v JES3 ignores the processing options specified on a default //*FORMAT

statement when a sysout DD statement explicitly or implicitly references an
OUTPUT JCL statement.

v JES3 ignores the processing options specified on a default OUTPUT JCL
statement when a //*FORMAT statement explicitly references a sysout DD
statement.

v When a sysout DD statement explicitly references an OUTPUT JCL statement
and a //*FORMAT statement explicitly references the same DD statement, the
processing options from both the OUTPUT JCL and //*FORMAT statements
apply. Two separate sets of output are created from the data set defined by the
sysout DD statement; one according to the processing options on the OUTPUT
JCL and DD statements, and the other according to the processing options on
the //*FORMAT and DD statements.

Relationship to //*PROCESS statement
JES3 accumulates //*FORMAT PR statements within a job and applies them to any
JES3 //*PROCESS statement that is normally affected by a //*FORMAT PR
statement.

Location in the JCL
Place all //*FORMAT PR statements for the job after the JOB statement and before
the first EXEC statement.

Examples of the //*FORMAT PR statement
Example 1
//*FORMAT PR,DDNAME=STEP1.REPORT,COPIES=2

This statement requests two copies of the data set defined by sysout DD statement
REPORT, which appears in STEP1 of this job. Any printer with standard forms,
train, and carriage tape can be used.

Example 2
//*FORMAT PR,DDNAME=,DEST=ANYLOCAL

This statement specifies that all sysout data sets not referenced by //*FORMAT PR
statements are to be printed on any local printer.

Example 3

JES3: //*FORMAT PR

622 z/OS V2R1.0 MVS JCL Reference

//*FORMAT PR,DDNAME=STEP1.REPORT,DEST=A
//*FORMAT PR,DDNAME=REPORT,DEST=B

This statement requests one copy of the data set defined by sysout DD statement
REPORT, which appears in STEP1 of this job, to be sent to destination A and one
copy of the data set defined by sysout DD statement REPORT to be sent to
destination B. The REPORT data set for STEP1 is sent to destination A because the
//*FORMAT PR statement with more qualifiers for the same ddname overrides the
other. The REPORT data set for any other step is sent to destination B.

//*FORMAT PU statement
Purpose: Use the //*FORMAT PU statement to specify to JES3 processing
instructions for sysout data sets that are punched. These instructions permit special
processing of sysout data sets, such as:
v Multiple destinations.
v Multiple copies of output with different attributes.

Use the //*FORMAT PU statement to specify to JES3 processing instructions for
sysout data sets that are punched. These instructions permit special processing of
sysout data sets, such as:
v Multiple destinations.
v Multiple copies of output with different attributes.

//*FORMAT PU statements can be either specific or nonspecific. A specific
//*FORMAT PU statement contains a DDNAME parameter that specifies
something other than a null value, such as DDNAME=ddname or
DDNAME=JESYSMSG. A nonspecific //*FORMAT PU statement contains
DDNAME= , with no value (null) specified for the DDNAME parameter.

You can code multiple specific //*FORMAT PU statements for a particular sysout
data set to specify special requirements for different copies of the data set. In
addition, you can code a //*FORMAT PR statement for the same sysout data set,
thereby both printing and punching it.

You can also code multiple nonspecific //*FORMAT PU statements. In this case,
the system produces only one copy of each data set, combining any parameter
values specified on the statements. If you specify a given parameter on more than
one of these statements, the system uses the parameter value specified on the last
//*FORMAT PU statement containing that parameter.

Note: The //*FORMAT PU statement applies only to sysout data sets punched by
JES3. The statement is ignored for data sets sent to a TSO/E userid or processed by
an external writer.

Reference: For examples of //*FORMAT statement processing on the JES3 hold
queue and writer queue, see z/OS JES3 Initialization and Tuning Guide.

JES3: //*FORMAT PR

Chapter 29. JES3 control statements 623

Syntax

//*FORMAT PU,DDNAME= {ddname } [,parameter]...
{stepname.ddname } parameter]...
{stepname.procstepname.ddname}

//*FORMAT PU,DDNAME=[,parameter]...

The parameters are:

CHNSIZE= {DS }
{(nnn[,mmm])}

COMPACT=compaction-table-name

COPIES=nnn

DEST= {ANYLOCAL }
{device-name }
{device-number }
{group-name }
{nodename[.remote] }
{(type[,device-name]) }
{(type[,device-number])}
{(type[,group-name]) }

EXTWTR=name

FORMS= {STANDARD }
{form-name}

INT= {YES}
{NO }

The //*FORMAT PU statement consists of the characters //* in columns 1 through 3,
FORMAT in columns 4 through 9, and a blank in column 10. PU begins in column 11 or
beyond, followed by a comma, and parameters start after the comma and continue through
column 72. JES3 ignores columns 73 through 80.

Parameter definition
PU

Indicates that this statement is associated with a sysout data set that is
punched.

DDNAME=
DDNAME=ddname
DDNAME=stepname.ddname
DDNAME=stepname.procstepname.ddname

(null)
Specifies that the parameters on this //*FORMAT PU statement are the
defaults for the job. These parameters then apply to all of the job’s sysout
data sets that are punched except those covered by a //*FORMAT PU
statement with a value other than (null) for DDNAME.

Overrides: Parameters coded on a nonspecific //*FORMAT PU statement
are overridden by parameters coded on sysout DD statements or by
parameters in the JES3 SYSOUT initialization statement.

ddname
stepname.ddname

JES3: //*FORMAT PU

624 z/OS V2R1.0 MVS JCL Reference

stepname.procstepname.ddname
Identifies the DD statement that defines the sysout data set to be punched.
Use form ddname to indicate all DD statements with the name, ddname,
in this job. Use form stepname.ddname to indicate DD statement, ddname,
in step, stepname, in this job. Use form stepname.procstepname.ddname
to indicate DD statement, ddname, in procedure step, procstepname, of a
procedure that is called by a step, stepname, in this job. The ddname must
match exactly the ddname on the DD statement. (See the example for the
//*DATASET statement.) If the identified DD statement does not contain a
SYSOUT parameter, JES3 ignores the //*FORMAT PU statement.

Note: If a ddname matches more than one //*FORMAT PU statement, the
//*FORMAT PU statement that has more qualifiers for the ddname will
override the others. See “Examples of the //*FORMAT PU statement” on
page 628.

CHNSIZE=DS
CHNSIZE=(nnn[,mmm])

Gives the number of logical records to be transmitted to a work station as a
systems network architecture (SNA) chain and indicates whether normal
output checkpoints are to be taken for this sysout data set.

Note: This parameter is valid only when transmitting to a SNA work station.

Be careful in selecting subparameters, because each affects performance
differently. Sending the data set as a SNA chain provides the best performance,
but can cause duplicate data to be written to the output device if an operator
intervention is required. The remote operator can eliminate duplicate data by
issuing commands to reposition and restart the output writers.

When an end-of-chain indicator is sent in the data set, JES3 takes an output
checkpoint. You can provide additional checkpoints for critical data by sending
an end-of-chain indicator. For example, when punching bank checks, you can
have an output checkpoint taken for each check by specifying each check as a
SNA chain.

DS Indicates that the sysout data set is to be sent as a single SNA chain and
that JES3 is not to take normal output checkpoints. DS is the default if the
CHNSIZE parameter is omitted.

nnn
Specifies the SNA chain size in pages. nnn is a decimal number from 1
through 255. The size of a page is determined by the value you assign to
mmm.

mmm
Specifies the number of logical records in a page. mmm is a decimal
number from 1 through 255.

COMPACT=compaction-table-name
Specifies the compaction table for JES3 to use when sending a systems network
architecture (SNA) data set to a SNA remote terminal. The
compaction-table-name is a symbolic name defined by the installation during
JES3 initialization. The name is 1 through 8 alphanumeric characters.

In the following cases, JES3 performs compaction using an installation default
table, if defined, or sends the data without compacting it, if no table was
defined. In all cases, JES3 writes a message to the console.
v No compaction table is specified.

JES3: //*FORMAT PU

Chapter 29. JES3 control statements 625

v The specified compaction table is invalid.
v JES3 cannot find the specified compaction table.

If the remote punch does not support compaction, JES3 ignores the COMPACT
parameter and sends the data without compacting it.

COPIES=nnn
Indicates how many copies of the sysout data set are to be punched. nnn is a
number from 0 through 255. If you code COPIES=0, JES3 does not punch this
data set. If a COPIES parameter is not specified, the default is 1.

DEST=destination
Routes the output from the sysout data set to a punch. This parameter
overrides the //*MAIN statement ORG parameter.

If you omit DEST, JES3 assigns the first available punch that is in the origin
group and that fulfills all processing requirements. The origin group is the
group of punches defined for the local or remote submitting location. If the job
originated at a remote job processing (RJP) terminal, JES3 returns the output to
the originating terminal group.

If the job was submitted through TSO/E to the NJE network for execution, the
default is the node from which the job was submitted, and the destination
ANYLOCAL.

ANYLOCAL
Indicates any local punch that is being used for the output class specified
in the SYSOUT parameter on the DD statement and that is attached to the
global processor.

device-name
Requests a local device by a symbolic name defined by the installation
during JES3 initialization. device-name is 1 through 8 alphanumeric or
national ($, #, @) characters.

device-number
Specifies the 3-digit or 4-digit hexadecimal device number. Precede a
4-digit number with a slash (/). A 3-digit number can be specified with or
without a slash.

group-name
Identifies a group of local devices, an individual remote station, or a group
of remote stations by a symbolic name defined by the installation during
JES3 initialization. group-name is 1 through 8 alphanumeric or national ($,
#, @) characters.

nodename
Identifies node by a symbolic name defined by the installation during JES3
initialization. nodename is 1 through 8 alphanumeric or national ($, #, @)
characters.

remote
Identifies a remote work station or VM userid to which the receiving node
directs output. remote is 1 through 8 characters.

(type)
Indicates a device classification. type is in the form (gggssss) where ggg is
the general device classification and ssss is the specific device
classification. The type must be enclosed in parentheses. The type must be
defined by the installation during JES3 initialization. For example, type for
a 3525 is (PUN3525).

JES3: //*FORMAT PU

626 z/OS V2R1.0 MVS JCL Reference

EXTWTR=name
Identifies the external writer that is to process the sysout data set at the
destination node. name is 1 through 8 alphanumeric characters and must
identify a module defined to the remote JES3 node that is to execute the job.

FORMS=STANDARD
FORMS=form-name

Indicates the forms on which the sysout data set is to be punched.

STANDARD
Indicates the standard form. JES3 uses the standard form specified at JES3
initialization.

form-name
Names the punch forms. form-name is 1 through 8 alphanumeric
characters.

INT=YES
INT=NO

Specifies whether or not the output is to be interpreted. If the INT parameter is
omitted, the default is NO.

YES
Requests that JES3 try to punch the sysout data set on a 3525 Card Punch
(PUN3525I) with a Multiline Card Print feature.

Note: If the DEST parameter does not send output to a 3525I, JES3 ignores
INT=YES, if specified.

NO Requests that the cards not be interpreted.

Relationship to sysout DD and OUTPUT JCL statements
v JES3 ignores the processing options specified on a default //*FORMAT

statement when a sysout DD statement explicitly or implicitly references an
OUTPUT JCL statement.

v JES3 ignores the processing options specified on a default OUTPUT JCL
statement when a //*FORMAT statement explicitly references a sysout DD
statement.

v When a sysout DD statement explicitly references an OUTPUT JCL statement
and a //*FORMAT statement explicitly references the same DD statement, the
processing options from both the OUTPUT JCL and //*FORMAT statements
apply. Two separate sets of output are created from the data set defined by the
sysout DD statement; one according to the processing options on the OUTPUT
JCL and DD statements, and the other according to the processing options on
the //*FORMAT and DD statements.

Relationship to //*PROCESS statement
JES3 accumulates //*FORMAT PU statements within a job and applies them to
any JES3 //*PROCESS statement that is normally affected by a //*FORMAT PU
statement.

Location in the JCL
Place all //*FORMAT PU statements for the job after the JOB statement and before
the first EXEC statement.

JES3: //*FORMAT PU

Chapter 29. JES3 control statements 627

Examples of the //*FORMAT PU statement
Example 1
//*FORMAT PU,DDNAME=STEP2.PUNCHOUT,DEST=PU1,FORMS=RED-STRP

This statement requests that one copy of the data set defined by sysout DD
statement PUNCHOUT in STEP2 of this job be punched on device PU1. Before
processing, the operator is requested to insert RED-STRP cards into the punch.

Example 2
//*FORMAT PU,DDNAME=STEP1.PUNCHOUT,DEST=DEVA
//*FORMAT PU,DDNAME=PUNCHOUT,DEST=DEVB

This statement requests one copy of the data set defined by sysout DD statement
PUNCHOUT in STEP1 of this job to be punched on device DEVA and one copy of
the data set defined by sysout DD statement PUNCHOUT to be punched on
device DEVB. The PUNCHOUT data set for STEP1 is sent to DEVA because the
//*FORMAT PU statement with more qualifiers for the same ddname overrides
the other. The PUNCHOUT data set for any other step is sent to DEVB.

//*MAIN statement
Purpose: Use the //*MAIN statement to define the processor requirements for the
current job. Many of the parameters are used to override parameters on the JES3
STANDARDS initialization statement.

Note: If any parameter is misspelled or contains an invalid value, JES3 writes the
following to the JESMSG data set: the //*MAIN statement, the relative error
position on the statement, and an error message. Then JES3 abnormally terminates
the job.

JES3: //*FORMAT PU

628 z/OS V2R1.0 MVS JCL Reference

Syntax

//*MAIN parameter[,parameter]...

The parameters are:

ACMAIN=processor-id

BYTES= {([nnnnnn][,WARNING][,mmm])}
{([nnnnnn][,W][,mmm]) }
{([nnnnnn][,CANCEL]) }
{([nnnnnn][,C]) }
{([nnnnnn][,DUMP]) }
{([nnnnnn][,D]) }

CARDS= {([nnnn][,WARNING][,mmm])}
{([nnnn][,W][,mmm]) }
{([nnnn][,CANCEL]) }
{([nnnn][,C]) }
{([nnnn][,DUMP]) }
{([nnnn][,D]) }

CLASS=class-name

DEADLINE= {(time,type[,date]) }
{(time,type[,rel,cycle])}

EXPDTCHK= {YES}
{NO }

FAILURE= {RESTART}
{CANCEL }
{HOLD }
{PRINT }

FETCH= {ALL }
{NONE }
{SETUP }
{(ddname[,ddname]...) }
{/(ddname[,ddname]...)}

HOLD= {YES}
{NO }

IORATE= {MED }
{HIGH}
{LOW }

JOURNAL= {YES}
{NO }

JES3: //*MAIN

Chapter 29. JES3 control statements 629

LINES= {([nnnn][,WARNING][,mmm])}
{([nnnn][,W][,mmm]) }
{([nnnn][,CANCEL]) }
{([nnnn][,C]) }
{([nnnn][,DUMP]) }
{([nnnn][,D]) }

LREGION=nnnnK

ORG= {group-name }
{nodename[.remote]}

PAGES= {([nnnnnnnn][,WARNING][,mmm])}
{([nnnnnnnn][,W][,mmm]) }
{([nnnnnnnn][,CANCEL]) }
{([nnnnnnnn][,C]) }
{([nnnnnnnn][,DUMP]) }
{([nnnnnnnn][,D]) }

PROC= {ST}
{xx}

RINGCHK= {YES}
{NO }

SETUP= {JOB }
{HWS }
{THWS }
{DHWS }
{(stepname.ddname[,stepname.ddname]...) }
{(stepname.procstepname.ddname[,stepname.procstepname.ddname]...) }
{/(stepname.ddname[,stepname.ddname]...) }
{/(stepname.procstepname.ddname[,stepname.procstepname.ddname]...)}

SPART=partition-name

SYSTEM= {ANY }
{JGLOBAL }
{JLOCAL }
{(main-name[,main-name]...) }
{/(main-name[,main-name]...)}

THWSSEP= {IGNORE }
{PREFER }
{REQUIRE}

TRKGRPS=(primary-qty,second-qty)

TYPE= {ANY}
{VS2}

UPDATE=(dsname[,dsname]...)

USER=userid

The //*MAIN statement consists of the characters //* in columns 1 through 3, MAIN in
columns 4 through 7, a blank in column 8, and parameters in columns 9 through 72. JES3
ignores columns 73 through 80.

Parameter definition
ACMAIN=processor-id

Identifies the job with the specified processor, even though the job was not
submitted from or run on that processor. ACMAIN allows:

JES3: //*MAIN

630 z/OS V2R1.0 MVS JCL Reference

v Sysout data sets to be sent to a userid attached to the specified processor.
The userid must be named in the USER parameter. The ACMAIN parameter
applies to all sysout data sets for the job.

v Receipt of notification that a job you submitted through batch processing has
completed by coding the ACMAIN parameter on a JES3 //*MAIN statement
in addition to the JOB statement NOTIFY parameter. The ACMAIN
parameter names the processor that you, the TSO/E user, are logged onto.

processor-id
Requests a processor in the complex.

BYTES=([nnnnnn][,WARNING][,mmm])
BYTES=([nnnnnn][,W][,mmm])
BYTES=([nnnnnn][,CANCEL])
BYTES=([nnnnnn][,C])
BYTES=([nnnnnn][.DUMP])
BYTES=([nnnnnn][,D])

Specifies the maximum number of bytes of data to be spooled from this job’s
sysout data sets and the action to be taken if the maximum is exceeded.

If BYTES is not specified, the installation default for this job class applies.

nnnnnn
Specifies the number of bytes in thousands. nnnnnn is 1 through 6 decimal
numbers from 1 through 999999.

WARNING or W
If the maximum is exceeded, requests that JES3 issue an operator warning
message and continue processing.

Any messages about this parameter following the warning message will
reflect the number specified on the STANDARD initialization statement or
the system default, not the specified maximum.

mmm
Specifies the frequency that an operator warning message is to be
issued after the maximum specified by nnnnnn is exceeded. mmm is a
multiple of 10 in the range 10 to 100. mmm is a percentage of nnnnnn
that is used to calculate the number of additional bytes between
warning messages. For example, if BYTES=(100,W,20) is specified, the
first warning message is sent to the operator when 100,000 bytes of
sysout data is reached. Subsequent warning messages are sent when
each additional 20 percent of 100,000 is reached (at 120,000 bytes,
140,000 bytes, and so on). Messages are sent until the job ends or the
operator cancels the job.

CANCEL or C
If the maximum is exceeded, requests that JES3 cancel the job.

DUMP or D
If the maximum is exceeded, requests that JES3 cancel the job and ask for a
storage dump.

CARDS=([nnnn][,WARNING][,mmm])
CARDS=([nnnn][,W][,mmm])
CARDS=([nnnn][,CANCEL])
CARDS=([nnnn][,C])
CARDS=([nnnn][,DUMP])
CARDS=([nnnn][,D])

Specifies the maximum number of cards to be punched from this job’s sysout
data sets and the action to be taken if the maximum is exceeded.

JES3: //*MAIN

Chapter 29. JES3 control statements 631

If you specify CARDS=0 the zero applies only to the quantity of punched
output; it does not cancel the action to be taken if the maximum is exceeded. If
a record is then sent to a punch, JES3 will warn, cancel, or dump, depending
on the second parameter.

Note: When punching dump output, JES3 ignores CARDS=0.

If CARDS is not specified, the installation default for this job class is used.

nnnn
Specifies the number of cards in hundreds. nnnn is 1 through 4 decimal
numbers from 1 through 9999.

WARNING or W
If the maximum is exceeded, requests that JES3 issue an operator warning
message and continue processing.

Any subsequent messages about this parameter will reflect the number
specified on the STANDARD initialization statement or the system default,
not the maximum specified in the CARDS parameter.

mmm
Specifies the frequency that an operator warning message is to be
issued after the maximum specified by nnnn is exceeded. mmm is a
multiple of 10 in the range 10 to 100. mmm is a percentage of nnnn
that is used to calculate the number of additional cards between
warning messages. For example, if CARDS=(100,W,20) is specified, the
first warning message is sent to the operator when 10,000 cards of
sysout data is reached. Subsequent warning messages are sent when
each additional 20 percent of 10,000 is reached (at 12,000 cards, 14,000
cards, and so on). Messages are sent until the job ends or the operator
cancels the job.

CANCEL or C
If the maximum is exceeded, requests that JES3 cancel the job.

DUMP or D
If the maximum is exceeded, requests that JES3 cancel the job and ask for a
storage dump.

CLASS=class-name
Specifies the job class for this job. class-name is 1 through 8 characters.

If the desired class-name is a single-character, you can specify it on the
//*MAIN statement or the JOB statement.

JES3 uses the following, in override order, to assign the job to a class:
1. //*MAIN statement CLASS parameter
2. JOB statement CLASS parameter
3. The default class, which is defined during JES3 initialization.

If neither CLASS nor LREGION is specified, JES3 determines the logical region
size based on initialization parameters.

DEADLINE=(time,type[,date])
DEADLINE=(time,type[,rel,cycle])

Specifies when the job is required.

When you specify the current date but submit the job after the specified time,
JES3 changes the priorities to make the job the same priority level it would
have if it had been submitted before the deadline but not completed.

JES3: //*MAIN

632 z/OS V2R1.0 MVS JCL Reference

Attention: Deadline scheduling can interfere with dumping a portion of the job
queue. For example, if JOB A is waiting to be scheduled, has a priority of 7,
and, in one minute, is due to have its priority increased to 9, JOB A could be
missed by dump job processing, if the dump job facility is dumping the entire
job queue and currently dumping priority 8 jobs. The dump job facility
processes the jobs with the highest priority first. If the dump job facility does
not finish processing priority 8 jobs before JOB A becomes priority 9, JOB A
will not be dumped.

Deadline scheduling information is not sent with a job when the job is
transferred via NJE to another node; the destination node may use different
deadline scheduling algorithms, if any.

time
Specifies the deadline time, expressed as one of the following:

nM The job is to be scheduled within n minutes. n is 1 through 4 numbers
from 0 through 1440.

nH The job is to be scheduled within n hours. n is 1 or 2 numbers from 0
through 24.

hhhh
The job is to be scheduled by the time of day, hhhh, in 24-hour clock
time (0800 is 8:00 a.m.). hhhh is from 0000 (start of the day) through
2400 (end of the day).

type
Identifies the deadline algorithm. The deadline algorithm is defined by the
installation, controls how the job’s priority is increased, and is one
character: A through Z or 0 through 9. If the specified algorithm is not
defined, JES3 abnormally terminates the job.

date
Specifies the date, in one of the following formats, when the time
parameter takes effect.

mmddyy
where mm is the month (01-12), dd the day (01-31), and yy the 2-digit
year (01-99).

mm/dd/yyyy
where mm is the month (01-12), dd the day (01-31), and yyyy the
4-digit year (for example, 1999). Leading zeroes are required in the day
and month fields.

Note:

1. For dates in the format of mmddyy, a century of ‘19’ is assumed.
2. For dates in the format of mmddyy, a date of ‘00’ is not allowed.
3. For dates of January 1, 2000 and later, you must use the form

mm/dd/yyyy.
4. If both date and rel,cycle are omitted, JES3 assumes (1) the current date,

if the deadline time is later in the day, or (2) the next day’s date, if the
deadline time has already past today.

rel
Specifies on which day within a cycle the deadline falls. rel is 1 through 3
numbers from 1 through 366. The value of rel depends on the specified
cycle, as follows:

JES3: //*MAIN

Chapter 29. JES3 control statements 633

v WEEKLY: Sunday is day 1; Saturday is day 7. If rel is greater than 7, it
defaults to 7.

v MONTHLY: Day 1 is the first day of the month. Days 29, 30, and 31 are
treated as the last day of the month. If rel is greater than 31, it defaults
to 31.

v YEARLY: Day 1 is January 1; day 365 is December 31, for non-leap years,
and day 366 is December 31, for leap years. If rel is greater than 365, it
defaults to 365 for non-leap years or 366 for leap years.

cycle
Specifies the length of a cycle. cycle is coded as WEEKLY, MONTHLY, or
YEARLY.

For example, DEADLINE=(1200,B,1,WEEKLY) indicates that the job reaches its
deadline at 12 noon on Sunday. This job would be submitted once a week for
it to be processed every Sunday.

EXPDTCHK=YES
EXPDTCHK=NO

Indicates whether or not JES3 is to perform expiration date checking for
scratch output tape volumes with IBM standard labels (SL).

YES
Requests expiration date checking. Tape volumes premounted for SL
scratch requests must have expired dates.

NO Requests that expiration dates not be checked.

FAILURE=RESTART
FAILURE=CANCEL
FAILURE=HOLD
FAILURE=PRINT

Indicates the job recovery option to be used if the system fails. If you do not
code a FAILURE parameter on the //*MAIN statement, JES3 assigns the job
the default failure option, which is defined during JES3 initialization for each
job class. (See also the RD parameter on the JOB statement.)

Note: If a job is registered with the automatic restart manager (ARM) at the
time of a system failure, ARM determines whether to restart the job, regardless
of the value specified on the FAILURE keyword.

If the ARM restarts the job, JES discards all non-spin sysout data sets created
during the previous execution. (You can avoid losing that output by adding
SPIN=UNALLOC to the DD statement for the SYSOUT data set.)

RESTART
Requests that JES3 restart the job when the failing processor is restarted.
Do not specify RESTART for jobs that use the DEQ at DEMOUNT facility
for tape volumes.

CANCEL
Requests that JES3 print the job and then cancel the job.

HOLD
Requests that JES3 hold the job for restart.

PRINT
Requests that JES3 print the job and then hold the job for restart.

FETCH=ALL
FETCH=NONE

JES3: //*MAIN

634 z/OS V2R1.0 MVS JCL Reference

FETCH=SETUP
FETCH=(ddname[,ddname]...)
FETCH=/(ddname[,ddname]...)

Determines the fetch messages that will be issued to the operator for disk and
tape volumes for this job.

If FETCH is not specified, the installation default for this job class applies.

ALL
Requests that JES3 issue fetch messages to the operator for all removable
volumes specified in DD statements that request JES3-setup devices. This
subparameter does not apply to permanently resident volumes.

NONE
Requests that JES3 not issue fetch messages.

SETUP
Requests that JES3 issue fetch messages to the operator for the volumes
specified in all DD statements identified in the //*MAIN SETUP
parameter. If you code FETCH=SETUP without also coding the //*MAIN
SETUP parameter, JES3 will issue fetch message as though you had
specified FETCH=ALL.

ddname
Requests that JES3 issue fetch messages for only the volumes specified in
DD statement ddname.

If you code a list of ddnames and the list cannot be contained on a single
statement, FETCH= must be repeated on the continuation statement.

/ddname
Requests that JES3 not issue fetch messages for any volumes specified in
DD statement ddname.

HOLD=YES
HOLD=NO

YES
Indicates that the job is to enter the system in operator-hold status and be
withheld from processing until the operator requests its release. However,
if an error occurs during input service processing, the job is not held for
operator intervention.

This parameter has the same function as TYPRUN=HOLD on the JOB
statement.

NO Indicates that the job is to enter the system normally. Processing does not
require operator intervention. If the HOLD parameter is omitted, NO is the
default.

IORATE=MED
IORATE=HIGH
IORATE=LOW

Indicates the I/O-to-processor ratio for a job. Use this parameter to balance the
mixture of jobs selected for execution on the processor.

If you do not code an IORATE parameter on the //*MAIN statement, JES3
assigns the job the default I/O-to-processor ratio, which is defined during JES3
initialization for each job class.

JOURNAL=YES

JES3: //*MAIN

Chapter 29. JES3 control statements 635

JOURNAL=NO
Indicates whether or not JES3 is to create a job journal for the job.

If JOURNAL is omitted, JES3 uses an installation default specified at
initialization. If you use the automatic restart manager (ARM) to restart a job,
you do not need to save the journal because ARM does not use the job journal
when restarting jobs.

YES
Indicates that the job is to have a job journal.

NO Indicates that the job is not to have a job journal.

LINES=([nnnn][,WARNING][,mmm])
LINES=([nnnn][,W][,mmm])
LINES=([nnnn][,CANCEL)
LINES=([nnnn][,C])
LINES=([nnnn][,DUMP])
LINES=([nnnn][,D])

Indicates the maximum number of lines of data to be printed from this job’s
sysout data sets and the action to be taken if the maximum is exceeded.

If you specify LINES=0 the zero applies only to the number of lines; it does
not cancel the action to be taken if the maximum is exceeded. If a record is
sent to be printed, JES3 will warn, cancel, or dump, depending on the second
parameter.

Note: JES3 ignores any line count specification when printing the output for a
SYSABEND or SYSUDUMP sysout data set.

If LINES is not specified, the installation default for this job class applies. The
installation default is specified on the OUTLIM parameter of the OUTSERV
JES3 initialization statement.

nnnn
Specifies the number of lines, in thousands. nnnn is 1 through 4 decimal
numbers from 1 through 9999.

WARNING or W
If the maximum is exceeded, requests that JES3 issue an operator warning
and continue processing.

Any messages about this parameter following the warning message will
reflect the number specified on the STANDARD initialization statement or
the system default, not the maximum specified in the LINES parameter.

mmm
Specifies the frequency that an operator warning message is to be
issued after the maximum specified by nnnn is exceeded. mmm is a
multiple of 10 in the range 10 to 100. mmm is a percentage of nnnn
that is used to calculate the number of additional lines between
warning messages. For example, if LINES=(100,W,20) is specified, the
first warning message is sent to the operator when 100,000 lines of
sysout data is reached. Subsequent warning messages are sent when
each additional 20 percent of 100,000 is reached (at 120,000 lines,
140,000 lines, and so on). Messages are sent until the job ends or the
operator cancels the job.

CANCEL or C
If the maximum is exceeded, requests that JES3 cancel the job.

JES3: //*MAIN

636 z/OS V2R1.0 MVS JCL Reference

DUMP or D
If the maximum is exceeded, requests that JES3 cancel the job and ask for a
storage dump.

LREGION=nnnnK
Specifies the approximate size of the largest step’s working set in real storage
during execution. LREGION (logical region) is used by JES3 to improve
scheduling on the processor. The nnnn is 1 through 4 decimal numbers that
indicate the size in kilobytes (1 kilobyte = 1024 bytes).

If neither CLASS nor LREGION is coded, JES3 determines the logical region
size based on initialization parameters.

Use the LREGION parameter carefully. If the values selected for LREGION are
too small, the job may take longer to run.

ORG=group-name
ORG=nodename[.remote]

Indicates that the job’s sysout data sets are to be directed to the named group
or network node. Otherwise, the job’s sysout data sets are directed to the
group of devices or node from which the job originated.

group-name
Specifies an origin group.

nodename
Specifies a network node. nodename is 1 through 8 characters.

remote
Specifies a remote work station or VM userid. remote is 1 through 8
characters and must be separated from the nodename by a period.

Overriding an ORG Parameter: If you do not want a particular data set in the
job to go to the destination on the ORG parameter, change its destination in
one of the following ways:
v If the sysout data set is not scheduled to a held class, you can override the

ORG parameter destination with the DEST parameter on a //*FORMAT,
OUTPUT JCL, or DD statement.

v If the sysout data set is scheduled to a held class, you can override the ORG
parameter destination with the DEST parameter on an OUTPUT JCL, or DD
statement.

JES3 ignores the ORG parameter for a dynamically-allocated SYSOUT data set.

PAGES=([nnnnnnnn][,WARNING][,mmm])
PAGES=([nnnnnnnn][,W][,mmm])
PAGES=([nnnnnnnn][,CANCEL])
PAGES=([nnnnnnnn][,C])
PAGES=([nnnnnnnn][,DUMP])
PAGES=([nnnnnnnn][,D])

Indicates the maximum number of pages to be printed for this job’s sysout
data sets and the action to be taken if the maximum is exceeded.

If PAGES is not specified, the installation default for this job class applies.

nnnnnnnn
Specifies the number of pages. nnnnnnnn is 1 through 8 decimal numbers
from 1 through 16777215.

JES3: //*MAIN

Chapter 29. JES3 control statements 637

WARNING or W
If the maximum is exceeded, requests that JES3 issue an operator warning
message and continue processing.

Any messages about this parameter following the warning message will
reflect the number specified on the STANDARD initialization statement or
the system default value, not the maximum specified in the PAGES
parameter.

mmm
Specifies the frequency that an operator warning message is to be
issued after the maximum specified by nnnnnnnn is exceeded. mmm is
a multiple of 10 in the range 10 to 100. mmm is a percentage of
nnnnnnnn that is used to calculate the number of additional pages
between warning messages. For example, if PAGES=(1000,W,20) is
specified, the first warning message is sent to the operator when 1,000
pages of sysout data is reached. Subsequent warning messages are sent
when each additional 20 percent of 1,000 is reached (at 1,200 pages,
1,400 pages, and so on). Messages are sent until the job ends or the
operator cancels the job.

CANCEL or C
If the maximum is exceeded, requests that JES3 cancel the job.

DUMP or D
If the maximum is exceeded, requests that JES3 cancel the job and ask for a
storage dump.

PROC=ST
PROC=xx

Names the procedure library that the system is to search for cataloged
procedures called by EXEC statements in the job. If a procedure cannot be
found in the named library, JES3 abnormally terminates the job.

If this parameter is omitted, the default depends on the source of the job. If the
job is submitted as a batch job, the default is ST. If the job is submitted from an
internal reader, the default can be another procedure library, as specified by the
installation on the STANDARDS initialization statement (the INTPROC,
STCPROC, or TSOPROC parameters).

ST Indicates the standard procedure library: SYS1.PROCLIB.

xx Identifies the last 2 characters of the ddname of a procedure library. xx is
defined by the installation (IATPLBxx) in the procedure used to start JES3.
If this parameter is coded, only the specified library is searched;
SYS1.PROCLIB is not searched.

RINGCHK=YES
RINGCHK=NO

Indicates whether or not JES3 is to check the status of the tape reel ring for
tape devices set up by JES3.

YES
Indicates that a validation check is to be made. If the RINGCHK parameter
is omitted, YES is the default.

NO Indicates that ring checking is to be by-passed for this job.

SETUP=JOB
SETUP=HWS
SETUP=THWS
SETUP=DHWS

JES3: //*MAIN

638 z/OS V2R1.0 MVS JCL Reference

SETUP=(stepname.ddname[,stepname.ddname]...)
SETUP=
(stepname.procstepname.ddname[,stepname.procstepname.ddname]...)
SETUP=/(stepname.ddname[,stepname.ddname]...)
SETUP=
/(stepname.procstepname.ddname[,stepname.procstepname.ddname]...)

Modifies the standard setup algorithm used in assigning devices to a job before
its execution.

If SETUP is omitted, JES3 assigns mountable tape and disk volumes based on
an installation default defined at initialization.

JOB
Requests job setup, which is allocation of all JES3-managed devices
required in the job before the job executes. JES3 mounts the initial volumes
necessary to run all steps before the job executes. JOB overrides the SETUP
parameter on the JES3 STANDARDS initialization statement.

HWS
Requests high watermark setup, which is allocation of the minimum
number of devices required to run the job. The minimum number is equal
to the greatest number of devices of each type needed for any one job step.
High watermark setup does not cause premounting of all mountable
volumes.

THWS
Requests high watermark setup for tapes but job setup for disks.

DHWS
Requests high watermark setup for disks but job setup for tapes.

stepname.ddname
stepname.procstepname.ddname

Specifies explicit setup, which is allocation of the volumes needed for a DD
statement before the job executes. JES3 premounts the indicated volumes.
When requesting explicit setup, specify enough devices so that JES3 can
allocate all the required devices at any one time. If too few devices are
specified, JES3 cancels the job.

Use form stepname.ddname to indicate DD statement, ddname, in step,
stepname, in this job. Use form stepname.procstepname.ddname to
indicate DD statement, ddname, in procedure step, procstepname, of a
procedure that is called by a step, stepname, in this job. The ddname must
match exactly the ddname on the DD statement. (See the example for the
//*DATASET statement.)

If you code a list of ddnames and the list cannot be contained on a single
statement, SETUP= must be repeated on the continuation statement.

/stepname.ddname
/stepname.procstepname.ddname

Requests that JES3 not explicitly set up any volumes specified in DD
statement ddname.

SPART=partition-name
Indicates the spool partition in which JES3 is to allocate spool space to this job.

partition-name
Specifies the name of the spool partition. partition-name is 1 through 8
characters and must match a partition name specified during JES3

JES3: //*MAIN

Chapter 29. JES3 control statements 639

initialization. If the name does not match, JES3 ignores the SPART
parameter and uses the installation default.

The SPART parameter does not affect allocation for the sysout data sets for the
job; these data sets always go to the spool partitions specified during JES3
initialization for the output classes.

If SPART is not specified, JES3 allocates spool data sets to a partition, as
follows, in override order:
1. The spool partition for the job’s class.
2. The spool partition for the processor executing the job.
3. The default spool partition.

SYSTEM=ANY
SYSTEM=JGLOBAL
SYSTEM=JLOCAL
SYSTEM=(main-name[,main-name]...)
SYSTEM=/(main-name[,main-name]...)

Indicates the processor that is to execute this job. If a specific processor is
named, the processor name must also be specified on the CLASS initialization
statement for the job class.

ANY
Indicates any global or local system that satisfies the job’s requirements.

JGLOBAL
Indicates that the job is to run on the global processor only.

JLOCAL
Indicates that the job is to run on a local processor only.

main-name
Indicates that the job is to run on the named processor or processors.

/main-name
Indicates that the job is not to run on the named processor or processors.

Need for SYSTEM Parameter: If you omit a SYSTEM parameter, the job runs
on the processor used for the job’s class. Usually a SYSTEM parameter is not
needed. However, if any DD statement UNIT parameter in the job specifies a
device-number, a SYSTEM parameter must be coded. JES3 ignores the SYSTEM
parameter if either the SYSTEM or SYSAFF parameter is specified on the JOB
statement.

Parameter Agreements: The following parameters must be consistent with the
SYSTEM parameter or JES3 will terminate the job:
v CLASS parameter on the JOB or //*MAIN statement. The requested

processor must be assigned to execute jobs in the specified class.
v All devices specified on DD statement UNIT parameters must be available to

the requested processor.
v TYPE parameter on the //*MAIN statement must specify the system

running on the requested processor.
v Dynamic support programs requested on //*PROCESS statements must be

able to be executed on the requested processor.

THWSSEP=IGNORE
THWSSEP=PREFER
THWSSEP=REQUIRE

Indicates whether or not you want scratch tape requests and specific tape

JES3: //*MAIN

640 z/OS V2R1.0 MVS JCL Reference

requests separated and whether you want scratch tapes of different media
types separated during high watermark processing. This parameter is valid
only if high watermark setup (HWS or THWS) is specified on the SETUP
parameter or defined at JES3 initialization.

Use this parameter to direct scratch and specific tape requests to different tape
drives (for example, you may want JES3 to allocate only scratch tape requests
to an IBM 3480 that is equipped with an automatic cartridge loader).

If you omit THWSSEP, JES3 uses an installation default defined at
initialization.

IGNORE
Specifies that JES3 is not to separate scratch and specific tape requests and
not separate scratch tape requests of different media types during high
watermark processing. Both scratch and specific tape requests and scratch
requests of different media types can be allocated on the same tape drive.

PREFER
Specifies that JES3 attempt to allocate scratch and specific tape requests on
separate tape drives and attempt to allocate scratch tape requests of
different media types on separate tape drives without allocating additional
devices. If JES3 cannot separate the requests, scratch and specific tape
requests and scratch tape requests of different media types are allocated on
the same tape drive.

REQUIRE
Specifies that JES3 should not allocate scratch and specific tape requests on
the same tape drive and not allocate scratch tape requests of different
media types on the same tape drive, even if JES3 must allocate additional
tape drives to satisfy the request.

TRKGRPS=(primary-qty,second-qty)
Specifies the number of track groups to be assigned to the job. A track group is
a number of spool space allocation units. The size of the track group is defined
in the GRPSZ parameter on the JES3 BUFFER or SPART initialization
statement.

primary-qty
Specifies the number of track groups to be initially allocated. This quantity
is one decimal number from 1 through 9.

second-qty
Specifies the number of track groups to be allocated when the currently
allocated groups are filled and more space is needed. This quantity is one
decimal number from 1 through 9.

The //*MAIN TRKGRPS parameter overrides a TRKGRPS parameter on the
CLASS or MAINPROC initialization statement. However, when a sysout DD
statement specifies an output class, the TRKGRPS parameter for that output
class overrides the //*MAIN TRKGRPS parameter.

TYPE=ANY
TYPE=VS2

Indicates the control program that is to execute this job. If you omit a TYPE
parameter, the job runs under the control program used for the job’s class.

ANY
Indicates that JES3 is to use any control program that satisfies the job’s
requirements. In present systems, JES3 schedules the job on MVS.

JES3: //*MAIN

Chapter 29. JES3 control statements 641

VS2
Indicates that JES3 is to schedule the job on MVS.

UPDATE=(dsname[,dsname]...)
Identifies the procedure library data set(s) that this job is to update. This
parameter causes all jobs using the identified data set and any concatenated
data sets to be held until the update is complete. See z/OS JES3 Initialization
and Tuning Guide for information about updating procedure libraries.

dsname
Specifies the data set name. The identified data set cannot be concatenated
to another data set.

Note: If a data set is dynamically allocated as both a JES3 DISKRDR data set
and a JES3 PROCLIB data set, the UPDATE = parameter (JES3 procedure
library update facility) cannot be used to move the data set.

USER=userid
Identifies the job with the specified TSO/E user, even though the job was not
submitted via TSO/E by that user. USER allows:
v The TSO/E userid, interacting with a global or local processor, to issue the

TSO/E OUTPUT command to access sysout data sets from the job. If the job
executes on one processor and the TSO/E userid is attached to another
processor, the ACMAIN parameter must identify the processor for the
TSO/E userid.

v The TSO/E userid, interacting with any processor, to inquire about the
status of the job or to cancel the job.

userid
Identifies a TSO/E user. userid is 1 through 7 alphanumeric or national ($,
#, @) characters.

Location in the JCL
When you specify ORG on a //*MAIN statement, place the //*MAIN statement
before all //*FORMAT statements that do not contain a DEST parameter. If JES3
does not process the ORG parameter before the //*FORMAT statements, JES3 uses
the default destination for the //*FORMAT statements; their output is sent to the
node where the job entered the system.

When you specify ORG on a //*MAIN statement that is part of a remote job,
place the //*MAIN statement immediately after the second JOB statement.

Examples of the //*MAIN statement
Example 1
//*MAIN SYSTEM=SY1,LINES=(5,C),SETUP=HWS,
//*FAILURE=RESTART,DEADLINE=(0800,A,3,WEEKLY)

The job executes on processor SY1. It is estimated to produce not more than 5000
lines of printed output; if the output exceeds 5000 lines, JES3 is to cancel the job.
HWS specifies high watermark setup, so JES3 is to allocate the minimum number
of devices required for this job. If the system fails, JES3 is to restart the job on the
processor SY1. JES3 is to complete this job by 8 a.m. on Tuesday (Tuesday is day
number 3) by adjusting the job’s scheduling priority using the installation-defined
A-type deadline scheduling parameters.

Example 2

JES3: //*MAIN

642 z/OS V2R1.0 MVS JCL Reference

//*MAIN ACMAIN=2,USER=GARYHIL

If this statement appears in a job entered from any TSO/E userid on any processor
in the complex, then the job’s sysout data sets would go to TSO/E userid
GARYHIL on processor 2.

//*NET statement
Purpose: Use the //*NET statement to define the dependencies between jobs in a
dependent job control (DJC) network. JES3 sets up a network of dependent jobs
and executes them in a specific order. (Once set up, the structure of a DJC network
cannot be changed unless all of the jobs in the network are resubmitted.) Jobs
belonging to a DJC network cannot be registered with the automatic restart
manager (ARM).

Syntax

//*NET {NETID} =name[,parameter]...
{ID }

The parameters are:

{ABCMP} = {NOKP}
{AC } {KEEP}

{ {ABNORMAL|AB} = {D} }
{ {F} }
{ {R} }
{ {NORMAL|NC} = {D} }
{ {F} }
{ {R} }

DEVPOOL=({ANY} [,device-name,n]...
{NET}

DEVRELSE= {YES}
{NO }

{NETREL} =(netid,jobname)
{NR }

{NHOLD} =n
{HC }

{NRCMP} = {HOLD}
{PC } {NOHO}

{FLSH}

{OPHOLD} = {NO }
{OH } {YES}

{RELEASE} =(jobname[,jobname]...)
{RL }

{RELSCHCT} =n
{RS }

The //*NET statement consists of the characters //* in columns 1 through 3, NET in
columns 4 through 6, a blank in column 7, and parameters in columns 8 through 72. JES3
ignores columns 73 through 80.

JES3: //*MAIN

Chapter 29. JES3 control statements 643

Parameter definition
NETID=name

Specifies the name of the DJC network for this job. name is 1 through 8
characters; the first character must be alphabetic.

All jobs put into the system with the same NETID name form a DJC network.
To add a job to an existing DJC network, specify the NETID name for that job.

ABCMP=NOKP
ABCMP=KEEP

Indicates what action JES3 is to take if the job abnormally terminates.

NOKP
Indicates that JES3 is to purge the DJC network if the job abnormally
terminates and has not been resubmitted by the time the other jobs in the
network have completed. JES3 purges the network unless successor jobs or
subnetworks are missing. If the ABCMP parameter is omitted, NOKP is the
default.

KEEP
Indicates that the DJC network is to be kept in the system until (1) the job
is resubmitted and completes normally or (2) the operator forces the
network from the system. Use KEEP to make sure that the network is not
purged until the operator takes proper action.

Note: If the job abnormally terminates, you can resubmit it to the DJC
network, and the network will be retained until the job completes.

ABNORMAL=D
ABNORMAL=F
ABNORMAL=R
NORMAL=D
NORMAL=F
NORMAL=R

Indicates the action JES3 is to take for this job when any predecessor job
completes execution normally or abnormally. If the ABNORMAL parameter is
omitted, the default is R, and, if the NORMAL parameter is omitted, the
default is D.

D Requests that JES3 decrease this job’s NHOLD count, which indicates the
number of predecessors for this job. When the NHOLD count becomes
zero, JES3 can schedule this job.

F Requests that JES3 flush this job and its successor jobs from the system.
JES3 cancels the job, prints any output, and cancels all successor jobs
presently in the system, regardless of their normal or abnormal
specifications. However, JES3 admits into the system all successor jobs that
enter after the DJC network has been flushed. To flush those jobs, the
operator must cancel the jobs or the network.

R Requests that JES3 retain this job in the system and not decrease the
NHOLD count. R suspends the job and its successor jobs from scheduling
until either the predecessor job is resubmitted or the operator decreases the
NHOLD count.

DEVPOOL=(ANY[,device-name,n]...)
DEVPOOL=(NET[,device-name,n]...)

Identifies devices to be dedicated to this DJC network. The system allocates

JES3: //*NET

644 z/OS V2R1.0 MVS JCL Reference

these devices only to jobs in the network. The DEVPOOL parameter should be
coded on the //*NET statement that establishes the network; it is ignored on
other //*NET statements.

ANY
Indicates that jobs in the network can use any dedicated or undedicated
device. JES3 tries to allocate from the dedicated pool before allocating any
undedicated devices.

NET
Indicates that jobs can use only devices dedicated to the network.

device-name,n
Identifies a dedicated device. Code as many device-names with numbers as
will fit on one statement. device-name specifies (1) a device name defined
to JES3 by the installation during initialization or (2) a device-type defined
to the system in HCD. n is the number of named devices. n is a number
from 1 through 32,767.

DEVRELSE=YES
DEVRELSE=NO

Indicates when devices dedicated to the DJC network are to be released. The
DEVRELSE parameter can be coded in several jobs in the network, but must
not be coded in the first job. If no network job containing DEVRELSE=YES
completes, the system releases the devices when it purges the network.

YES
Requests that JES3 release all devices at the end of this job. Completion of
any job that specified DEVRELSE=YES causes the devices dedicated to the
network to be released.

NO Requests that JES3 release all devices only when the last job in the network
ends.

NETREL=(netid,jobname)
Indicates that this job must be executed before the named job in another DJC
network can be executed. The NETREL parameter can be specified only once
for each job of a DJC network.

netid
Identifies the NETID for the successor job.

jobname
Names the JOB statement for the successor job.

NHOLD=n
Indicates the number of predecessor job completions required before this job
can be released for scheduling. The predecessor number can include jobs from
another DJC network. n is a number from 0 through 32,767.

When the predecessor number reaches 0, the job is scheduled for execution.
The system reduces this number:
v When each predecessor job completes execution.
v By operator command.
v When a program in a predecessor job issues an assembler DJC WTO macro.

If you specify NHOLD=0 or omit the NHOLD parameter, this job has no
predecessor jobs. JES3 can schedule it for immediate execution.

If the NHOLD count is incorrect, the following can occur:

JES3: //*NET

Chapter 29. JES3 control statements 645

v If n is greater than the actual number of predecessor jobs, JES3 does not
release this job for execution when all of its predecessor jobs complete
execution.

v If n is less than the actual number of predecessor jobs, JES3 prematurely
releases the job for execution.

NRCMP=HOLD
NRCMP=NOHO
NRCMP=FLSH

Indicates that a network job that completed normally is being resubmitted and
that JES3 must erase all references to the job before the job reenters the
network.

HOLD
Indicates that JES3 is to hold the job until it is released by the operator.

NOHO
Indicates that JES3 is to allow the job to be scheduled as system resources
become available.

FLSH
Indicates that JES3 is to flush the job from the system.

OPHOLD=NO
OPHOLD=YES

NO Indicates that the job is to be processed normally without operator
intervention. If OPHOLD is omitted, NO is the default.

YES
Indicates that JES3 is to hold the job until it is released by the operator.

RELEASE=(jobname[,jobname]...)
Indicates that this job must be executed before the named job(s) in this DJC
network can be executed.

jobname
Names the JOB statement for a successor job. You can specify from 1
through 50 successor jobnames.

RELEASE is the only parameter on the //*NET statement that can be split and
continued on the next statement. To continue the RELEASE parameter, end the
statement with the comma following a jobname and continue the next
statement with the next jobname. The left parenthesis appears at the beginning
of the jobname list and the right parenthesis appears at the end of the list. For
example:

//*NET NETID=EXP1,RELEASE=(JOB35,JOB27Z,MYJOB,
//*WRITJB,JOBABC)

RELSCHCT=n
Controls early set up of a dependent job’s resources. Set up begins when the
NHOLD count becomes less than or equal to n. n is a number from 1 through
32,767.

If you specify RELSCHCT=0 or omit the RELSCHCT parameter, JES3 does not
set up dependent jobs early.

Note: Use this parameter carefully; RELSCHCT can tie up devices and data
sets for long times. Do not specify the RELSCHCT parameter:
v For a job that may have catalog dependencies.

JES3: //*NET

646 z/OS V2R1.0 MVS JCL Reference

v For a job that contains one or more //*PROCESS statements.

Location in the JCL
Place the //*NET statement for a job after the JOB statement and before the first
EXEC statement. Code only one //*NET statement for each job in a DJC network.

The //*NET statement must precede any //*PROCESS statements.

Examples of the //*NET statement
Example 1
//*NET NETID=NET01,NHOLD=0,DEVPOOL=(,3330,2)

This statement defines a DJC network named NET01. The network contains no
predecessor jobs. The DEVPOOL parameter, which must be coded in the first job in
the network, requests that JES3 establish a device pool of two 3330s for network
NET01.

Example 2
//*NET NETID=N1,RELEASE=B,NETREL=(N2,B2)

This statement adds a job to the DJC network named N1. This job must be
executed before job B, which is in N1, and before job B2, which is in the DJC
network named N2.

//*NETACCT statement
Purpose: Use the //*NETACCT statement to specify accounting information that
JES3 is to transmit with a job to another node in the network.

Syntax

//*NETACCT parameter[,parameter]...

The parameters are:

PNAME=programmer’s-name
ACCT=number
BLDG=address
DEPT=dept
ROOM=room
USERID=userid

v The //*NETACCT statement consists of the characters //* in columns 1 through 3,
NETACCT in columns 4 through 10, a blank in column 11, and parameters in columns 9
through 72. JES3 ignores columns 73 through 80.

v Do not continue a //*NETACCT statement. If the parameters cannot fit on one
statement, code more than one //*NETACCT statement.

v Enclose any parameter value that contains special characters, including embedded
blanks, in apostrophes.

Parameter definition
PNAME=programmer’s-name

Identifies the programmer. programmer’s-name is 1 through 20 characters.

JES3: //*NET

Chapter 29. JES3 control statements 647

ACCT=number
Gives the network account number. number is 1 through 8 characters.

BLDG=address
Gives the programmer’s building address. address is 1 through 8 characters.

DEPT=dept
Gives the programmer’s department number. dept is 1 through 8 characters.

ROOM=room
Gives the programmer’s room number. room is 1 through 8 characters.

USERID=userid
Gives the programmer’s network userid. userid is 1 through 8 characters.

Defaults
For any //*NETACCT parameter that is omitted, JES3 uses an installation default
specified at JES3 initialization.

Location in the JCL
Place the //*NETACCT statement(s) for a job stream to be transmitted
immediately after the first JOB statement and before any //*ROUTE XEQ or //
XMIT statements.

Place the //*NETACCT statement(s) for a SYSOUT stream to be transmitted
immediately after the first JOB statement and before any //*MAIN statements
specifying ORG=nodename.

For jobs running at the submitting system and potentially having the destination
changed to a network destination via an output service modify command
(*MODIFY,U ...), place the //*NETACCT statement(s) for the SYSOUT immediately
after the JOB statement.

Example of the //*NETACCT statement
//*NETACCT PNAME=COLLINS,ACCT=D58D921,USERID=NXT

//*OPERATOR statement
Purpose: Use the //*OPERATOR statement to issue a message to the operator.
Columns 1 through 80 are written on the operator console and in the job’s
hard-copy log when JES3 reads in the job.

Syntax

//*OPERATOR message

The //*OPERATOR statement consists of the characters //* in columns 1 through 3,
OPERATOR in columns 4 through 11, a blank in column 12, and the message for the
operator in columns 13 through 80.

Location in the JCL
Place the //*OPERATOR statement anywhere after the JOB statement.

JES3: //*NETACCT

648 z/OS V2R1.0 MVS JCL Reference

Example of the //*OPERATOR statement
//*OPERATOR CALL EXT. 55523 WHEN THIS JOB STARTS

//**PAUSE statement
Purpose: Use the //**PAUSE statement to halt an input reader temporarily. When
you enter a //**PAUSE statement through an input reader, JES3 issues a message
and waits for the operator to reply. To start the input reader, the system operator
must issue a *START command or a remote work station with console level 15
must send a start message.

The //**PAUSE statement is intended primarily for system checkout and test. It
should be issued only by remote work stations.

Syntax

//**PAUSE [comments]

The //**PAUSE statement consists of the characters //** in columns 1 through 4, PAUSE
in columns 5 through 9, a blank in column 10, and, optionally, comments starting in any
column beginning with 11. JES3 ignores columns 73 through 80.

Location in the JCL
Place the //**PAUSE statement before the first JOB statement in an input stream. If
it appears after the first JOB statement, JES3 ignores it.

Example of the //**PAUSE statement
//**PAUSE THIS IS A TEST.

//*PROCESS statement
Purpose: Use the //*PROCESS statement to control how JES3 processes a job. A
job that contains //*PROCESS statements receives only the JES3 processing
specified on the //*PROCESS statements plus certain required processing.

Specifically, the //*PROCESS statement calls a dynamic support program (DSP) in
the DSP dictionary. JES3 must be able to process the called DSP.

Standard job processing: JES3 uses a series of processing functions to process a job.
Standard processing consists of only the standard scheduler functions:
v Converter/interpreter service
v Main service
v Output service
v Purge service

Nonstandard job processing: A nonstandard job uses one or more special
processing functions in place of or in addition to standard processing or skips one
or more of the standard functions. Specify a nonstandard job by following the JOB
statement with a JES3 //*PROCESS statement for each processing function.

Use of nonstandard job processing: Nonstandard job processing is useful in testing.
For example, a //*PROCESS statement can make JES3 bypass program execution

JES3: //*OPERATOR

Chapter 29. JES3 control statements 649

so that the job’s JCL can be checked. Another //*PROCESS statement can make
JES3 bypass output processing; then the operator can check by inquiry command
whether the job reached execution.

If the job generates spin data sets during main execution, the next scheduler
element will not be processed until the spin data sets have been processed. To
avoid long waits or system hangs, make sure that the OUTSERV scheduler element
is the next scheduler element after main processing.

Syntax

//*PROCESS dsp
[parameter[,parameter]...]

The //*PROCESS statement consists of the characters //* in columns 1 through 3,
PROCESS in columns 4 through 10, a blank in column 11, and the DSP name beginning in
column 12. The rest of the columns must be blank.

If the requested DSP requires parameters, code them on the following statement. The
parameter statement consists of parameters in columns 1 through 72, separated by
commas. Columns 73 through 80 must be blank. Only one parameter statement after a
//*PROCESS statement is allowed, any others are ignored by JES3.

Parameter definition
dsp

Identifies the DSP that JES3 is to use in processing the job. Table 30 lists the
valid DSP names and whether parameters can follow.

Table 30. DSPs for JES3 //*PROCESS Statements

DSP DSP function Parameters

Standard processing functions:

CI JES3 Converter/Interpreter Service, which
interprets the JCL and creates control
blocks.

Yes (See z/OS JES3
Commands)

MAIN Main Service, which processes the program. No

OUTSERV Output Service, which processes the job’s
output.

No

PURGE Purge Service, which purges the job. This is
the last function in any job. JES3
automatically creates this DSP.

No

Nonstandard processing functions:

CBPRNT Control Block Print Yes (See z/OS JES3
Commands)

DISPDJC Display Dependent Job Control Yes (See z/OS JES3
Commands)

DISPLAY Display Job Queues Yes (See z/OS JES3
Commands)

DJCPROC Invoke Dependent Job Control Updating

Note: A //*PROCESS DJCPROC statement
is required only when a //*PROCESS
MAIN statement is not coded.

No

JES3: //*PROCESS

650 z/OS V2R1.0 MVS JCL Reference

Table 30. DSPs for JES3 //*PROCESS Statements (continued)

DSP DSP function Parameters

Standard processing functions:

DR Disk Reader Yes (See z/OS JES3
Commands)

ISDRVR Input Service Driver (JES3 Control
Statement Processing)

Yes (Qualified ddname of
input data set)

JESNEWS Use JESNEWS Facility Yes (See z/OS JES3
Commands)

xxx User-written DSP (See z/OS JES3 Customization)

Location in the JCL
v Place all //*PROCESS statements for a job immediately after the JOB statement

and before the first EXEC statement. If the job includes a //*NET statement, the
//*NET statement must appear between the JOB statement and the first
//*PROCESS statement.

v The //*PROCESS statements can be separated only by their parameter
statements.

v JES3 processes the //*PROCESS statements in the order in which they appear in
the input stream.

v The first //*PROCESS statement must request an interpreter DSP if you want
input service error messages, which indicate that a job is to be scheduled for
interpreter processing before being purged.

Examples of the //*PROCESS statement
Example 1
//EXAM1 JOB
//*PROCESS CI
//*PROCESS MAIN
//*PROCESS OUTSERV
//S1 EXEC PGM=ANY

.

.
JCL statements
.

This example shows how to submit a simple job via //*PROCESS statements. It is
processed like a standard job. The four standard scheduler functions are used for
the job: CI, MAIN, OUTSERV, and PURGE. Note that PURGE is not specified; JES3
automatically creates this DSP.

Example 2
//EXAM2 JOB
//*PROCESS CI
//*PROCESS MAIN
//*PROCESS OUTSERV
//*PROCESS PLOT
//*ENDPROCESS
//S1 EXEC PGM=ANY
//DD1 DD ...

.

.
JCL statements
.

JES3: //*PROCESS

Chapter 29. JES3 control statements 651

This example shows how to request a user-written DSP: PLOT. PLOT is to be
executed after output service has completed. Note that PURGE is again not
specified but is automatically created.

Example 3
//EXAM3 JOB
//*PROCESS OUTSERV
//*FORMAT PR,DDNAME=S1.DS1,COPIES=5
//*DATASET DDNAME=S1.DS1

.

.
data
.
.

//*ENDDATASET
//S1 EXEC PGM=ANY
//DS1 DD DSNAME=DATA1

.

.

This example uses JES3 output service and the //*DATASET statement. Five copies
of data set DS1 are printed on any local printer.

//*ROUTE XEQ statement
Purpose: Use the //*ROUTE XEQ statement to send the following input stream to
a network node where the job is then executed. JES3 stops transmitting input
stream records when it finds one of the following:
v The second JOB statement after the //*ROUTE XEQ statement.
v The input stream runs out of records.

All output from the job is assumed to print/punch at the originating node unless
otherwise specified on a DEST parameter.

The //*ROUTE XEQ statement must be given 80 character records.

Syntax

//*ROUTE XEQ nodename[.vmguestid]

The //*ROUTE XEQ statement consists of the characters //* in columns 1 through 3,
ROUTE in columns 4 through 8, a blank in column 9, and, starting in any column from 10
through 72: XEQ, followed by at least one blank and then parameters. JES3 ignores
columns 73 through 80.

Do not imbed blanks in the nodename or vmguestid parameters.

Parameter definition
nodename

Indicates the node. The nodename identifies an MVS JES2 system, an MVS
JES3 (global) system, a VSE POWER node, or a VM system.

If nodename specifies a local node:
v The job executes locally if the job begins with a JOB statement.
v The job is terminated if the job begins with an NJE statement.

JES3: //*PROCESS

652 z/OS V2R1.0 MVS JCL Reference

|

.vmguestid
Identifies a guest system running in a virtual machine (VM), for example, an
MVS system running under VM.

Note: Do not specify a work station or terminal in this parameter.

Location in the JCL
v Place the //*ROUTE XEQ statement after a JOB statement that is valid for the

submitting location and any //*NETACCT statements.
v JES3 requires a MVS JOB statement immediately after the //*ROUTE XEQ

statement.
v If the destination node is not a MVS system, any statement immediately

following the MVS JOB statement must be a valid JOB statement for the
executing node.

JOB Statement after //*ROUTE XEQ
An error in the //*ROUTE XEQ statement can cause the JOB statement following
the //*ROUTE XEQ to be processed at the submitting node. To prevent this, code
NJB instead of JOB on the second JOB statement; JES3 changes the NJB to JOB
before transmitting the job.

Note:

1. TSO/E users must code NJB instead of JOB on the second JOB statement.
2. If an MVS JOB statement is not immediately following the //*ROUTE XEQ

statement, the XMIT JCL statement must be used instead of //*ROUTE XEQ.

Example of the //*ROUTE XEQ statement
//JOBN1 JOB options ...
//*ROUTE XEQ 2
//JOBN2 JOB options ...
//STEP1 EXEC PGM=REPORTER
//DD1 DD SYSOUT=A,DEST=N1R33
//DD2 DD SYSOUT=A,DEST=N2R33
//DD3 DD SYSOUT=B,DEST=R33
//DDIN DD *

.

.
data
.

/*

In this example, JOB statement JOBN1 is entered through the JES3 system at node
1. The //*ROUTE XEQ statement tells JES3 to send the following input stream to
node 2. Transmission of the input stream is stopped by the /* delimiter statement.
JOB statement JOBN2 and all following statements until the delimiter are read and
executed by the system at node 2.

The sysout data sets are sent to two work stations:
v Sysout data set DD1 is produced at work station 33 attached to node 1.
v Sysout data set DD2 is produced at work station 33 attached to node 2.
v Sysout data set DD3 is produced at work station 33 attached to node 1. Because

no node is specified, the originating node is assumed.

JES3: //*ROUTE XEQ

Chapter 29. JES3 control statements 653

/*SIGNOFF statement
Purpose: Use the /*SIGNOFF statement to tell JES3 to end a remote job stream
processing session. At the completion of the current print and/or punch streams,
JES3 disconnects the remote work station from the system. If JES3 is reading jobs
from the station when the output completes, JES3 disconnects the station when the
input is completed.

Both systems network architecture (SNA) and binary synchronous communication
(BSC) remote work stations use the /*SIGNOFF statement.

References: For more information on the /*SIGNOFF command, see z/OS JES3
Initialization and Tuning Reference.

Syntax

/*SIGNOFF

The /*SIGNOFF statement consists of the characters /* in columns 1 and 2, SIGNOFF in
columns 3 through 9, and blanks in columns 10 through 80.

Note that, unlike other JES3 statements, this statement starts with only one slash.

Location in the JCL
The /*SIGNOFF statement can appear anywhere in a local input stream or an
input stream from a SNA or BSC remote work station.

Example of the /*SIGNOFF statement
/*SIGNOFF

This statement requests that JES3 terminate a remote job stream processing session.

/*SIGNON statement
Purpose: Use the /*SIGNON statement to tell JES3 to begin a remote job stream
processing session. The /*SIGNON statement can override the remote
identification number normally assigned to the remote work station. This statement
is optional for all work stations except non-multi-leaving remote stations on a
switched line.

Figure 2. Example //*ROUTE XEQ statement

JES3: /*SIGNOFF

654 z/OS V2R1.0 MVS JCL Reference

Systems network architecture (SNA) remote work stations must use the LOGON
command instead of the /*SIGNON statement to notify JES3 of a connection
request.

References: For information on the LOGON command, see z/OS JES3 Initialization
and Tuning Reference and z/OS Communications Server: SNA Programming.

Syntax

/*SIGNON work-station-name {A|(blank)} {R|(blank)} passwd1 passwd2 new-passwd

The /*SIGNON statement consists of the following:

Column
Contents

1-2 /*

3-8 SIGNON

9-15 blanks

16-20 work-station-name, beginning in 16

21 blank

22 A or a blank

23 R or a blank

24 blank

25-32 password1, beginning in 25

33-34 blanks

35-42 password2, beginning in 35

43 blank

44-51 new-password, beginning in 44

52-80 blanks

Note that, unlike other JES3 statements, this statement starts with only one slash.

Parameter definition
work-station-name

Specifies the name of the remote work station. The work-station-name is 1
through 5 characters and must have been defined on a JES3 RJPTERM
initialization statement.

A Indicates an automatic reader. A can be coded only when the work station is a
programmable terminal. Leave this column blank if you do not want to specify
an automatic reader.

R Indicates that print or punch output will be rescheduled if the needed device is
not ready. R can be coded only when the work station is a nonprogrammable
terminal. Leave this column blank if you do not want to specify the R option.

JES3: /*SIGNON

Chapter 29. JES3 control statements 655

password1
Specifies the password for the remote job processing (RJP) line. This parameter
is one through eight characters and must have been initially defined at system
initialization.

password2
Specifies the current password for the work station. This parameter is one
through eight characters and must have been initially defined at system
initialization.

new-password
Specifies a new password for the work station. This parameter is one through
eight characters.

Location in the JCL
Place the /*SIGNON statement at the start of an input stream to be transmitted
from a remote work station.

Example of the /*SIGNON statement
/*SIGNON QUIN A PSWD1 PSWD2

This statement requests that remote work station QUIN begin a remote job stream
processing session. The value A in column 22 specifies an automatic reader for the
programmable terminal. PSWD1, beginning in column 25, is the password assigned
to a dial line. PSWD2, beginning in column 35, is the password assigned to the
remote work station.

To change the current password PSWD2 for the remote work station, the preceding
/*SIGNON statement can be specified as:
/*SIGNON QUIN A PSWD1 PSWD2 PSWDNEW

This statement assigns PSWDNEW, beginning in column 44, as the new password
for the remote work station QUIN.

JES3: /*SIGNON

656 z/OS V2R1.0 MVS JCL Reference

Appendix. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1988, 2013 657

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

658 z/OS V2R1.0 MVS JCL Reference

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix. Accessibility 659

660 z/OS V2R1.0 MVS JCL Reference

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2013 661

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

662 z/OS V2R1.0 MVS JCL Reference

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available at Copyright and Trademark
information (http://www.ibm.com/legal/copytrade.shtml).

Notices 663

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

664 z/OS V2R1.0 MVS JCL Reference

Index

Special characters
, (comma)

in syntax 21
use of in parameter field 15
when coded in bracket or brace 20

/ (slash)
in syntax 21

/ (slash) subparameter
of //*MAIN FETCH parameter 635
of //*MAIN SETUP parameter 639
of //*MAIN SYSTEM parameter 640

//**PAUSE control statement
description 649
example 649
in JES3 649
location in JCL 649

//*DATASET control statement
description 610
example 612
in JES3 610, 611, 612
location in JCL 612
parameter 611

//*ENDDATASET control statement
description 612
example 612
in JES3 612
location in JCL 612

//*ENDPROCESS control statement
description 613
example 613
in JES3 613
location in JCL 613

//*FORMAT PR control statement
description 613
example 622
in JES3 613, 615, 622
location in JCL 622
parameter 615
relationship to //*PROCESS

statement 622
relationship to sysout DD and

OUTPUT JCL statement 622
//*FORMAT PU control statement

description 623
example 628
in JES3 623, 624, 627, 628
location in JCL 627
parameter 624
relationship to //*PROCESS

statement 627
relationship to sysout DD and

OUTPUT JCL statement 627
//*MAIN control statement

description 628
example 642
in JES3 628, 630, 642
location in JCL 642
parameter 630

//*NET control statement
description 643

//*NET control statement (continued)
DJC (dependent job control)

network 643
example 647
in JES3 643, 644, 647
location in JCL 647
parameter 644

//*NETACCT control statement
default 648
description 647
in JES3 647, 648
location in JCL 648
parameter 647

//*OPERATOR control statement
description 648
example 649
in JES3 648, 649
location in JCL 648

//*ROUTE XEQ control statement
description 652
example 653
in JES3 652, 653
location in JCL 653
parameter 652

/* (slash asterisk)
as delimiter statement 329

/*DEL control statement
submitting jobs to internal

reader 575, 607
with XMIT JCL statement 567, 572

/*EOF control statement
submitting jobs to internal

reader 575, 607
with XMIT JCL statement 567, 572

/*JOBPARM control statement
description 577
example 583
in JES2 577, 578, 582, 583
location in JCL 582
override 582
parameter 578

/*MESSAGE control statement
description 583
example 584
in JES2 583, 584
location in JCL 583
relationship to /*ROUTE XEQ

statement 583
/*NETACCT control statement

default 584
description 584
example 584
in JES2 584
location in JCL 584
override 584
parameter 584

/*NOTIFY control statement
description 585
example 586
in JES2 585, 586
location in JCL 586

/*NOTIFY control statement (continued)
override 585
parameter 585

/*OUTPUT control statement
description 586
example 594
in JES2 586, 588, 594
location in JCL 594
override 594
parameter 588
relationship to other control

statement 594
/*PRIORITY control statement

description 595
example 596
in JES2 595, 596
location in JCL 595
override 595
parameter 595
relationship to other control

statement 595
/*PURGE control statement

submitting jobs to internal
reader 575

/*ROUTE control statement
/*ROUTE PRINT 596, 598
/*ROUTE PUNCH 596, 598
/*ROUTE XEQ 596, 598
description 596
example 598
in JES2 596, 598
location in JCL 598
multiple statement 598
parameter 596
processing 598

/*ROUTE PRINT
description 596

/*ROUTE PUNCH
description 596

/*ROUTE XEQ
description 596
relationship to /*MESSAGE

statement 583
/*SCAN control statement

submitting jobs to internal
reader 575

/*SETUP control statement
description 599
example 600
in JES2 599, 600
location in JCL 600
parameter 599

/*SIGNOFF control statement
description 600, 654
example 600, 654
in JES2 600
in JES3 654
location in JCL 600, 654

/*SIGNON control statement
description 601, 654
example 602, 656

© Copyright IBM Corp. 1988, 2013 665

/*SIGNON control statement (continued)
in JES2 601, 602
in JES3 654, 655, 656
location in JCL 602, 656
parameter 601, 655

/*XEQ control statement
description 603
example 604
in JES2 603, 604
location in JCL 604
multiple statement 604
parameter 603

/*XMIT control statement
default 606
description 604
example 606
in JES2 604, 605, 606
location in JCL 606
parameter 605

. (period)
in syntax 21

.. (two consecutive periods)
in syntax 21

... (ellipsis)
in syntax 20

() (parentheses)
in syntax 21

* (asterisk)
as code parameter of JES2 /*OUTPUT

statement 588
in syntax 21
relationship to DD DATA

parameter 129
* parameter

default 101
description 101
example 103
location in JCL 102
of DD statement 101, 102, 103
relationship to other control

statement 102
relationship to other parameter 101
unread record 103

* subparameter
of /*JOBPARM SYSAFF

parameter 581
of DD SYSOUT parameter 284
of JOB RESTART parameter 442
of OUTPUT JCL CLASS

parameter 482
*.ddname subparameter

description 23, 153
of DD DCB parameter 137
of DD DSNAME parameter 182
of DD REFDD parameter 257
of VOLUME=REF subparameter 306

*.label subparameter
of DD CNTL parameter 125

*.name subparameter
description 23
of DD OUTPUT parameter 234

*.procstepname.ddname subparameter
description 23
of VOLUME=REF subparameter 306

*.stepname.ddname subparameter
description 23, 153
of DD DCB parameter 137

*.stepname.ddname subparameter
(continued)

of DD DSNAME parameter 182
of DD REFDD parameter 257
of EXEC PGM parameter 359
of VOLUME=REF subparameter 306

*.stepname.label subparameter
of DD CNTL parameter 125

*.stepname.name subparameter
description 23
of DD OUTPUT parameter 234

*.stepname.procstepname.ddname
subparameter

description 23, 153
of DD DCB parameter 137
of DD DSNAME parameter 182
of DD REFDD parameter 257
of EXEC PGM parameter 359
of VOLUME=REF subparameter 306

*.stepname.procstepname.label
subparameter

of DD CNTL parameter 125
*.stepname.procstepname.name

subparameter
description 23
of DD OUTPUT parameter 234

[] (brackets)
in syntax 20

| (logical or)
in syntax 19

| (OR) operator
of IF/THEN/ELSE/ENDIF statement

construct 377
& (ampersand)

in syntax 21
& (AND) operator

of IF/THEN/ELSE/ENDIF statement
construct 377

&&dsname subparameter
of DD DSNAME parameter 181

= (equal sign)
in syntax 21

' (apostrophe)
use to enclose special character 22
use with special character 22
when not needed to enclose special

character 22
{ } (braces)

in syntax 20

Numerics
1440 subparameter

of EXEC TIME parameter 368
of JOB TIME parameter 451

3211 Printer with indexing feature
specifying indexing of left

margin 511, 512
specifying indexing of right

margin 514
3480 Magnetic Tape Subsystem

specifying in UNIT parameter 294
3540 diskette input/output unit

with DD * statement 102
with DD DATA parameter 130
with DD DCB parameter 139
with DD DSID parameter 174

3540 diskette input/output unit
(continued)

with VOLUME=SER
subparameter 309

3800 Printing Subsystem
DD BURST parameter 117
DD CCSID parameter 119
DD CHARS parameter 121
OUTPUT JCL BURST parameter 477
OUTPUT JCL CHARS parameter 478
specifying copy group 127, 487, 618

A
A parameter

of JES3 /*SIGNON statement 655
A subparameter

of DCB BFTEK subparameter 140
of DCB OPTCD subparameter 146
of DCB PCI subparameter 148
of RECFM parameter 252, 253

A11 character set
for 3211 printer 290, 547

AB parameter
of JES3 //*NET statement 643

ABCMP parameter
of JES3 //*NET statement 644

ABE subparameter
of DCB EROPT subparameter 144

abend condition
with IF/THEN/ELSE/ENDIF

statement construct 378
ABEND keyword

of IF/THEN/ELSE/ENDIF statement
construct 378

ABENDCC keyword
of IF/THEN/ELSE/ENDIF statement

construct 378
abnormal

dump 319
evaluating 379

ABNORMAL parameter
of JES3 //*NET statement 644

ABSTR subparameter
of DD SPACE parameter 270

AC parameter
of JES3 //*NET statement 643

ACB (access method control block) 105
ACC subparameter

of DCB EROPT subparameter 144
access method

for dummy data set 190
access method control block 105
access-code subparameter

of DD ACCODE parameter 104
accessibility 657

contact IBM 657
features 657

ACCODE parameter
default 105
description 104
example 105
of DD statement parameter 104, 105
override 105
subparameter 104

666 z/OS V2R1.0 MVS JCL Reference

account-number subparameter
of JOB accounting information

parameter 404
accounting information 60
accounting-information parameter

description 403
example 405
JES2 format 404
JES2 processing of invalid

subparameter 405
of JOB statement 403, 404, 405
overrides of subparameters in JES2

format 405
relationship to other control

statement 404
specified on JES3 //*NETACCT

statement 647
subparameter 404
subparameters for JES2 format 404

accounting-information subparameter
of EXEC ACCT parameter 339
of JOB accounting information

parameter 404
ACCT parameter

description 338
example 339
of EXEC statement 338, 339
of JES3 //*NETACCT statement 648
subparameter 339

ACMAIN parameter
of JES3 //*MAIN statement 630

ACS routine
with DD DATACLAS parameter 134
with DD MGMTCLAS

parameter 229
with DD STORCLAS parameter 276

ADDRESS parameter
description 472
of OUTPUT JCL statement 472, 516,

517, 518, 519, 538
subparameter 472, 516, 517, 518, 519,

538
address subparameter

of //*NETACCT BLDG
parameter 648

of DD SPACE parameter 270
ADDRSPC parameter

default 340, 406
description 340, 406
example 341, 407
of EXEC statement 340, 341
of JOB statement 406, 407
override 340, 406
relationship to REGION

parameter 341, 406
subparameter 340, 406

administrator
with DD DATACLAS parameter 132
with DD MGMTCLAS

parameter 228
with DD STORCLAS parameter 275
with DD UNIT parameter 293
with DD VOLUME=SER

subparameter 305
AFF subparameter

of DD UNIT parameter 296

AFPSTATS parameter
default 475
description 474
example 475
of OUTPUT JCL statement 474, 475
override 475
subparameter 475

AL subparameter
of DD LABEL parameter 218

ALIGN subparameter
of DD FCB parameter 196

alignment
of printing form 196

ALL subparameter
of JES3 //*MAIN FETCH

parameter 635
of OUTPUT JCL JESDS

parameter 513
ALX subparameter

of DD SPACE parameter 270
AMORG subparameter

of DD AMP parameter 107
AMP parameter

description 105
example 112
of DD statement 105, 107, 111, 112
relationship to other parameter 111
subparameter 107
with DSNAME parameter 182

AN character set
for 1403 printer 290, 547
for 3203 Model 5 printer 290, 547

AND (&) operator
of IF/THEN/ELSE/ENDIF statement

construct 377
ANY subparameter

of //*MAIN SYSTEM parameter 640
of //*MAIN TYPE parameter 641
of //*NET DEVPOOL parameter 644
of /*JOBPARM SYSAFF

parameter 581
ANYLOCAL subparameter

of //*FORMAT DEST
parameter 618, 626

of DD DEST parameter 157
of OUTPUT JCL DEST

parameter 497
ASCII tape record

converting to EBCDIC 147
assistive technologies 657
attribute

of data set 132, 135, 224, 256
on DD LIKE parameter 224
on DD REFDD parameter 256
specifying on DD LIKE

parameter 224
specifying on DD REFDD

parameter 256
specifying with DD DATACLAS

parameter 132
specifying with DD DCB

parameter 135
AUL subparameter

of DD LABEL parameter 218
automatic cartridge loader

use with THWSSEP subparameter of
//*MAIN statement 640

average record length
specifying in DD SPACE

parameter 266

B
B subparameter

of DCB OPTCD subparameter 147
of RECFM parameter 252, 253

background or batch jobs
affect on DD TERM parameter 289

backward
coding 23, 153
example 24
to concatenated data set 99
with DD DUMMY statement 189
with EXEC COND parameter 346

BASIC subparameter
of DD DSNTYPE parameter 186

BCP (base control program)
in relation to JCL statement 5

BDAM (basic direct access method)
subparameters of DD DCB

parameter 140
BFALN subparameter

of DD DCB parameter 140
BFTEK subparameter

of DD DCB parameter 140
BINARY subparameter

of DD FILEDATA parameter 198
blank

use in parameter 22
BLDG parameter

of JES3 //*NETACCT statement 648
BLKCHAR subparameter

of OUTPUT JCL DATACK
parameter 490

blklgth subparameter
of DD SPACE parameter 266

BLKPOS subparameter
of OUTPUT JCL DATACK

parameter 490
BLKSIZE parameter

coexistence consideration 116
default 115
description 114
of DD statement 114, 115, 116
override 115
relationship to other control

statement 116
subparameter 115

BLKSIZE subparameter
coded with DATA parameter 130
of DD DCB parameter 140

BLKSZLIM parameter
default 117
description 116
example 117
of DD statement 116, 117
override 117
relationship to other parameter 117
subparameter 117

block length
specifying in the DD SPACE

parameter 266

Index 667

BLOCK subparameter
of OUTPUT JCL DATACK

parameter 490
blocks subparameter

of DCB LIMCT subparameter 145
BLP subparameter

of DD LABEL parameter 219
BPAM (basic partitioned access method)

subparameters of DD DCB
parameter 140

BS subparameter
of DD RECFM parameter 253

BSAM (basic sequential access method)
subparameters of DD DCB

parameter 140
with DD CHKPT parameter 124

BST subparameter
of DD RECFM parameter 253

BT subparameter
of DD RECFM parameter 252, 253

BTAM (basic telecommunications access
method)

subparameters of DD DCB
parameter 140

buffer
requirements with DD AMP

parameter 112
buffer subparameter

of DCB BUFIN parameter 140
of DCB BUFNO subparameter 143
of DCB BUFOUT subparameter 143

BUFIN subparameter
of DD DCB parameter 140

BUFL subparameter
of DD DCB parameter 140

BUFMAX subparameter
of DD DCB parameter 142

BUFND subparameter
of DD AMP parameter 107

BUFNI subparameter
of DD AMP parameter 107

BUFNO subparameter
coded with DATA parameter 130
of DD DCB parameter 143

BUFOFF subparameter
of DD DCB parameter 143

BUFOUT subparameter
of DD DCB parameter 143

BUFSIZE subparameter
of DD DCB parameter 143

BUFSP subparameter
of DD AMP parameter 107

BUILDING parameter
description 476
of OUTPUT JCL statement 476
subparameter 476

BURST parameter
default 118, 477
description 117, 477
example 119, 477
of DD statement 117, 118, 119, 342,

411
of JES2 /*JOBPARM statement 579
of JES2 /*OUTPUT statement 588
of OUTPUT JCL statement 477
override 118, 477

BURST parameter (continued)
relationship to other control

statement 118
relationship to other parameter 118,

119, 342, 411
subparameter 118, 477

BYTES parameter
of JES2 /*JOBPARM statement 579
of JES3 //*MAIN statement 631
of JOB statement 407

bytes subparameter
of AMP BUFSP parameter 107
of DD DCB BLKSIZE

subparameter 140
of DD DCB BUFL subparameter 140
of DD DCB BUFSIZE

subparameter 143
of DD DCB KEYLEN

subparameter 145
of DD DCB LRECL

subparameter 145
of DD KEYLEN parameter 213
of DD LRECL parameter 226

C
C subparameter

of //*DATASET DDNAME
parameter 611

of //*FORMAT STACKER
parameter 621

of //*MAIN BYTES parameter 631
of //*MAIN CARDS parameter 631
of //*MAIN LINES parameter 636
of //*MAIN PAGES parameter 637
of DCB MODE subparameter 145
of DCB OPTCD subparameter 146,

147, 148
of DCB TRTCH subparameter 150

CANCEL subparameter
of //*MAIN BYTES parameter 631
of //*MAIN CARDS parameter 631
of //*MAIN FAILURE

parameter 634
of //*MAIN LINES parameter 636
of //*MAIN PAGES parameter 637
of JOB BYTES parameter 408
of JOB CARDS parameter 409
of JOB LINES parameter 421
of JOB PAGES parameter 429

CARDS parameter
of JES2 /*JOBPARM statement 579
of JES3 //*MAIN statement 631
of JOB statement 409

cards subparameter
JES2 format of JOB accounting

information 404
carriage control character

specifying 486
CARRIAGE parameter

of JES3 //*FORMAT PR
statement 616

carriage-tape-name subparameter
of //*FORMAT CARRIAGE

parameter 616

cataloged and in-stream
affect of parameters on calling EXEC

statement 337
calling 360
cataloging 27
description 27
effect of PROC parameter on other

parameters and following
statement 360

example 33
example of symbols 50
in-stream data 102
indicating beginning 559
indicating end 557
JCL symbol 38
location of DD statements when

overriding or adding to
procedure 97

modifying DD statement 30
modifying OUTPUT JCL

statement 30
overriding ACCT parameter 339
overriding ADDRSPC parameter 341
overriding COND parameter 345
overriding DYNAMNBR

parameter 351
overriding EXEC statement

parameter 29
overriding PARM parameter 353
overriding PERFORM parameter 358
overriding RD parameter 363
overriding REGION parameter 366
overriding TIME parameter 369
statements as listed in job log 57
system symbol 38
testing 28
using 28

CATLG subparameter
of DD DISP parameter 165, 166

cccc subparameter
of /*JOBPARM SYSAFF

parameter 581
CCSID parameter

description 119
examples 120
of DD statement 119, 120, 342, 411
of EXEC statement 341
of JOB statement 411
subparameter 119, 342, 411

character
with XMIT JCL statement 572

character set 507
chart 21
special character set 21
universal character set (UCS) 21
use in statement 21

character-arrangement table
specifying on DD CHARS

parameter 121
specifying on OUTPUT JCL CHARS

parameter 478
character-set-code subparameter

of DD UCS parameter 290
of OUTPUT JCL UCS parameter 547

CHARS parameter
affect of DD MODIFY parameter 231

668 z/OS V2R1.0 MVS JCL Reference

CHARS parameter (continued)
affect of OUTPUT JCL MODIFY

parameter 521
affect of OUTPUT JCL TRC

parameter 546
default 122, 479
description 121, 478
example 123, 479
of DD statement 121, 122, 123
of JES2 /*OUTPUT statement 588
of JES3 //*FORMAT PR

statement 616
of OUTPUT JCL statement 478, 479
override 122, 479
relationship to other control

statement 123
relationship to other parameter 123
subparameter 122, 478

checkid subparameter
of JOB RESTART parameter 442

checkpoint
allowing and suppressing 361, 366,

436
for checkpointing data set 325
for checkpointing program 323
logical page size 479
of data set 325
of program 323
restart 441
written after specified number of

logical pages 480
written after specified number of

seconds 481
CHKPT parameter

description 123
example 124
for concatenated data set 124
of DD statement 123, 124, 325
override 124
relationship to other parameter 124
relationship to SYSCKEOV DD

statement 124, 325
subparameter 124

CHNSIZE parameter
of JES3 //*FORMAT PR

statement 617
of JES3 //*FORMAT PU

statement 625
CKPTLINE parameter

default 480
description 479
example 480
of OUTPUT JCL statement 479, 480

CKPTLNS parameter
of JES2 /*OUTPUT statement 588

CKPTPAGE parameter
default 481
description 480
example 481
of OUTPUT JCL statement 480, 481
relationship to other parameter 481
subparameter 481

CKPTPGS parameter
of JES2 /*OUTPUT statement 588

CKPTSEC parameter
default 481
description 481

CKPTSEC parameter (continued)
example 482
of OUTPUT JCL statement 481, 482
relationship to other parameter 482
subparameter 481

class
assigning 412
assigning job log 424
held 482, 579
held in JES2 system 287
relationship to DD SYSOUT

parameter 287
significance 287, 424, 483
specifying on OUTPUT JCL

statement 482
specifying on sysout DD

statement 283
CLASS parameter

assigning 412
default 413
description 412, 482
example 413, 483
of JES3 //*DATASET statement 611
of JES3 //*MAIN statement 632
of JOB statement 412, 413
of OUTPUT JCL statement 482, 483
override 413, 482
relationship to other control

statement 413
subparameter 413, 482

class subparameter
of //*DATASET DDNAME

parameter 611
of DD SYSOUT parameter 284
of JOB MSGCLASS parameter 424
of OUTPUT JCL CLASS

parameter 482
class-name subparameter

of //*MAIN CLASS parameter 632
CLOSE macro instruction

with DD SPACE parameter 269
with the DD FREE parameter 203

CLOSE subparameter
of DD FREE parameter 202

CNTL statement
comments field 81
description 81, 125
example 82, 125
in JCL 81, 82
label field 81
location in JCL 82
of DD statement 125
operation field 81
parameter field 81
subparameter 125

code parameter
parameter of JES2 /*OUTPUT

statement 588
code subparameter

of EXEC COND parameter 344
of JOB COND parameter 414

code-name subparameter
of DD SYSOUT parameter 285

COLORMAP parameter
description 484
example 484
of OUTPUT JCL statement 484

COLORMAP parameter (continued)
subparameter 484

command statement
comments field 74
description 73, 575, 608
example 74, 577, 610
in JCL 73, 74
in JES2 575, 576, 577
in JES3 608, 609, 610
location in JCL 74, 577, 610
operand 576, 609
operation field 73
parameter 576, 609
parameter field 73

command-verb parameter
of JES2 command statement 576
of JES3 command statement 609

comment statement
description 79
example 79
in JCL 79
location in JCL 79
relationship to MSGLEVEL

parameter 79
comments

format 13
rules for continuation 17

comments field
continuing 17
on JCL statement 13, 17

COMP subparameter
of DCB TRTCH subparameter 150

COMPACT parameter
default 485
description 484
example 485
of JES2 /*OUTPUT statement 589
of JES3 //*FORMAT PR

statement 617
of JES3 //*FORMAT PU

statement 625
of OUTPUT JCL statement 484, 485
override 485
subparameter 485

compaction
of data 150

compaction table
specifying 484

compaction-table-name subparameter
of //*FORMAT COMPACT

parameter 617, 625
of OUTPUT JCL COMPACT

parameter 485
comparison operator

on IF/THEN/ELSE/ENDIF statement
construct 377

completion code
with IF/THEN/ELSE/ENDIF

statement construct 378
COMSETUP parameter

description 485
example 486
of OUTPUT JCL statement 485, 486
subparameter 485

concatenation
of data 190
with dummy data set 190

Index 669

COND parameter
caution 346
description 342, 413
effect on private job library

specification 315
example 348, 415
of EXEC statement 342, 344, 345, 346,

348
of JOB statement 413, 414, 415
on EXEC statement 315
override 345, 414
subparameter 344, 414
summary chart 415

Consistent read 260
Consistent read explicit 261
CONTIG subparameter

of DD SPACE parameter 270
continuing statement

example 17
JCL statement 16
JES2 control statement 18
JES3 control statement 18

CONTROL parameter
default 486
description 486
example 486
of JES3 //*FORMAT PR

statement 617
of OUTPUT JCL statement 486
subparameter 486

converter/interpreter service
in job processing 649

COPIES parameter
default 127, 487, 489
description 126, 487
example 128, 488, 489
of DD statement 126, 127, 128
of JES2 /*JOBPARM statement 579
of JES2 /*OUTPUT statement 589
of JES3 //*FORMAT PR

statement 618
of JES3 //*FORMAT PU

statement 626
of OUTPUT JCL statement 487, 488,

489
override 127, 488, 489
relationship to DD FLASH

parameter 200
relationship to other control

statement 128, 488, 489
relationship to other parameter 127,

488, 489
relationship to OUTPUT JCL COPIES

parameter 128
subparameter 126, 487, 489

copies subparameter
JES2 format of JOB accounting

information 405
copy

attributes from a model data set 224
jobstream to sysout 453

COPY subparameter
of JOB TYPRUN parameter 453

COPYG parameter
of JES2 /*OUTPUT statement 589

count subparameter
of //*FORMAT FLASH

parameter 620
of /*OUTPUT FLASH parameter 591
of /*OUTPUT FLASHC

parameter 592
of DD FLASH parameter 200
of OUTPUT JCL FLASH

parameter 503
CPRI subparameter

of DD DCB parameter 143
CR subparameter

RLS parameter 260
CRE subparameter

RLS parameter 261
CROPS subparameter

of DD AMP parameter 107
CX subparameter

of DCB DSORG subparameter 143
cycle subparameter

of //*MAIN DEADLINE
parameter 632

CYL subparameter
of DD SPACE parameter 266

cylinders
specifying in DD SPACE

parameter 266
CYLOFL subparameter

of DD DCB parameter 143

D
D subparameter

of //*MAIN BYTES parameter 631
of //*MAIN CARDS parameter 631
of //*MAIN LINES parameter 636
of //*MAIN PAGES parameter 637
of //*NET ABNORMAL

parameter 644
of //*NET NORMAL parameter 644
of DCB BFALN subparameter 140
of DCB BFTEK subparameter 140
of DCB FUNC subparameter 144
of RECFM parameter 253

DA subparameter
of DCB DSORG subparameter 143

data control block
completing 138
completion during execution 135
copying attribute 137

DATA parameter
default 130
description 129
example 131
location in JCL 131
of DD statement 129, 130, 131
relationship to other control

statement 131
relationship to other parameter 130
unread record 131

data set
attribute 229, 260
backup 229
by password 219
checkpoint 229, 260
copying attribute 137
deleting before 259

data set (continued)
in generation group 229, 260
indexed sequential 229, 260
migration 229
multivolume 229, 260
organization 229, 260
partitioned (PDS) 229, 260
partitioned data set

extended(PDSE) 229, 260
passed 229, 260
permanent 229, 260
record-level sharing, VSAM 260
requesting resource 6
sequence number 229, 260
specifying in DD LABEL

parameter 218
specifying in DD RETPD

parameter 258
specifying on DCB KEYLEN

subparameter 145
specifying on DD KEYLEN

parameter 213
specifying on DD KEYOFF

parameter 214
system-managed 229, 260
temporary 229, 260
through DD PROTECT

parameter 249
through DD SECMODEL

parameter 262
type copied when DD statement

referenced 309
data-class-name subparameter

of DD DATACLAS parameter 134
data-set-name subparameter

of DD LGSTREAM parameter 223
of DD LIKE parameter 225

data-set-sequence-number subparameter
of DD LABEL parameter 217

DATACK parameter
default 491
description 490
example 491
of OUTPUT JCL statement 490, 491
relationship to other parameter 491
subparameter 490

DATACLAS parameter
default 134
description 132
example 135
of DD statement 132, 134, 135
override 134
relationship to other parameter 135
subparameter 134

date subparameter
of //*MAIN DEADLINE

parameter 632
DAU subparameter

of DCB DSORG subparameter 143
DCB macro 135
DCB parameter

description 135
example 139
macro instruction 135
of DD statement 135, 137, 138, 139,

140
relationship to other parameter 138

670 z/OS V2R1.0 MVS JCL Reference

DCB parameter (continued)
subparameter 137, 140

DD statement
comments field 97
ddname 83
description 83
example 100
in JCL 83, 85, 97, 100
location in JCL 97
maximum number per job 83
name field 83
number per STEP 83
operation field 85
parameter field 85
special DD statement 83, 85, 97, 100

ddname field
example 100
on DD statement 83
reserved for special use 313
special ddname 84

DDNAME parameter
description 150, 491
example 154
location in JCL 151
location of referenced statement 151
of DD statement 150, 151, 152, 154
of JES3 //*DATASET statement 611
of JES3 //*FORMAT PR

statement 615
of JES3 //*FORMAT PU

statement 624
of JOB statement 491
override 151
parameters not permitted on

referenced DD statement 152
referenced DD statement 152
relationship to other parameter 151
subparameter 151
subparameter definition 491

ddname subparameter
of //*MAIN FETCH parameter 635
of /*JOBPARM PROCLIB

parameter 580
of DD DDNAME parameter 151

DEADLINE parameter
of JES3 //*MAIN statement 632

default 474
location of default OUTPUT JCL

statement 471
OUTPUT JCL statement 469
specifying statement 492

DEFAULT parameter
default 492
description 492
example 493
location in JCL 492
of OUTPUT JCL statement 492, 493
references to default OUTPUT JCL

statement 492
subparameter 492

DEFER subparameter
of DD UNIT parameter 296

DELETE subparameter
of DD DISP parameter 163, 165

delimiter
for JES3 in-stream data set 612
for transmission of input stream 567

delimiter (continued)
processing when invalid 174, 571
with DD * statement 101
with DD DATA statement 129
with XMIT JCL statement 571

delimiter statement
comments field 329
description 329
example 330
in JCL 329, 330
location in JCL 330
relationship to DLM parameter 329

delimiter subparameter
of DD DLM parameter 173
subparameter of XMIT JCL DLM

parameter 571
DEN subparameter

of DD DCB parameter 143
dependent

specifying in JES3 system 643
DEPT parameter

description 494
of JES3 //*NETACCT statement 648
OUTPUT JCL statement

parameter 494
subparameter 494

dept subparameter
of //*NETACCT DEPT

parameter 648
DEST parameter

default 158, 497
description 155, 495, 570
example 159, 498, 570
of DD statement 155, 156, 157, 158,

159
of JES2 /*OUTPUT statement 590
of JES3 //*FORMAT PR

statement 618
of JES3 //*FORMAT PU

statement 626
of OUTPUT JCL statement 495, 497,

498
of XMIT JCL statement 570
override 159, 498
relationship to other control

statement 159
relationship to other parameter 159,

498
subparameter 570
subparameter for JES2 495
subparameters for JES2 156
subparameters for JES3 157, 497

dest-name parameter
of JES2 /*SIGNON statement 602

destination
for data set 155
specifying on OUTPUT JCL

statement 155
device

sharing through unit affinity 296
specifying in DD UNIT

parameter 293
device-name subparameter

of //*FORMAT DEST
parameter 619, 626

of DD DEST parameter 158

device-name subparameter (continued)
of OUTPUT JCL DEST

parameter 497
subparameter of //*NET DEVPOOL

parameter 644
device-number subparameter

of //*FORMAT DEST
parameter 619, 626

of DD DEST parameter 158
of DD UNIT parameter 293

device-type subparameter
of DD UNIT parameter 294

DEVPOOL parameter
of JES3 //*NET statement 644

DEVRELSE parameter
of JES3 //*NET statement 645

DHWS subparameter
of //*MAIN SETUP parameter 639

DIAGNS subparameter
of DD DCB parameter 143

directory subparameter
for system assignment 268
of DD SPACE parameter 268

DISP parameter
default 166
description 159
example 171
of DD statement 159, 161, 166, 167,

171
relationship to other parameter 167
subparameter 161
with DSNAME parameter 183

disposition
DISP=MOD for multivolume data

set 168
of data set 167, 168
of generation data set 167
of partitioned data set 167
of QSAM data set 167
of sysout data set 167, 168
of temporary data set 167

DJC (dependent job control)
network 643

DLM parameter
default 173, 571
description 172, 571
example 174, 571
of DD statement 172, 173, 174
of JES2 /*XMIT statement 605
of XMIT JCL statement 571
relationship to other parameter 173
subparameter 173, 571

DOUBLE subparameter
of //*FORMAT CONTROL

parameter 617
of OUTPUT JCL CONTROL

parameter 486
DPAGELBL parameter

default 499
description 498
example 499
of OUTPUT JCL statement 498, 499
relationship to other parameter 499
subparameter definition 499

DS subparameter
of //*FORMAT CHNSIZE

parameter 617, 625

Index 671

DSID parameter
description 174
example 175
of DD statement 174, 175
relationship to other parameter 175
subparameter 175

DSNAME parameter
description 176
example 183
of DD statement 176, 177, 178, 179,

182, 183
relationship to other parameter 182
subparameter 177
subparameter for dummy data

set 182
subparameters for permanent data

set 178
subparameters for temporary data

set 179
subparameters when copying data set

name 182
dsname subparameter

of //*MAIN UPDATE
parameter 642

of DD DCB parameter 137
of DD DSNAME parameter 178
of VOLUME=REF subparameter 306

DSNTYPE parameter
description 184
example 187
of DD statement 184, 185, 186, 187
override 186
relationship to other parameter 187
subparameter 185

DSORG subparameter
of DD DCB parameter 143

DSP (dynamic support program)
calling 649

dsp parameter
of JES3 //*PROCESS statement 650

dummy file
for OS/390 UNIX System

Services 239
DUMMY parameter

description 188
example 190
for HFS file 239
in concatenation 100
of DD statement 188, 189, 190
parameter 189
referenced in VOLUME=REF

subparameter 309
relationship to other control

statement 189
relationship to other parameter 189
same effect with NULLFILE 182

dump
duplicate request 322
high-density 122, 197, 478, 502
printing 321
request on DD statement 123, 197
request on OUTPUT JCL

statement 479, 502
specification by SYSABEND,

SYSMDUMP, and SYSUDUMP DD
statement 319

storage 320

DUMP subparameter
of //*MAIN BYTES parameter 631
of //*MAIN CARDS parameter 631
of //*MAIN LINES parameter 636
of //*MAIN PAGES parameter 637
of JOB BYTES parameter 408
of JOB CARDS parameter 409
of JOB LINES parameter 421
of JOB PAGES parameter 429
on DD CHARS parameter 122
on OUTPUT JCL CHARS

parameter 478
DUPLEX parameter

description 500
example 500
of OUTPUT JCL statement 500
relationship to other parameter 500
subparameter definition 500

DYNAM parameter
description 191
example 191
of DD statement 191
relationship to other control

statement 191
relationship to other parameter 191

dynamic system symbol 38
DYNAMNBR parameter

default 351
description 350
example 351
of EXEC statement 350, 351
subparameter 350

E
E subparameter

of //*DATASET DDNAME
parameter 611

of DCB BFTEK subparameter 140
of DCB CPRI subparameter 143
of DCB MODE subparameter 145
of DCB OPTCD subparameter 146
of DCB TRTCH subparameter 150

EBCDIC character
converting to ASCII code 147

EBCDIC text
description 21

END subparameter
of DD FREE parameter 202

ENDCNTL statement
comments field 331
description 331
example 331
in JCL 331
label field 331
location in JCL 331
operation field 331

EOV subparameter
of DD CHKPT parameter 124

EQ subparameter
of EXEC COND parameter 344
of JOB COND parameter 414

EROPT subparameter
of DD DCB parameter 144

error
coding DD OUTPUT parameter 235

error messages
in reading or writing a data set 490
printing with PSF 490

ES subparameter
of DD RECORG parameter 255

ET subparameter
of DCB TRTCH subparameter 150

EVEN subparameter
of EXEC COND parameter 344

EXCP (execute channel program)
subparameters of DD DCB

parameter 140
EXEC statement

comments field 337
description 333
example 337
in JCL 333, 334, 337
location in JCL 337
name field 333
operation field 334
parameter field 334
RLSTMOUT parameter 366

default 367
example 367

execution
at checkpoint 441
at step 441
bypassing 342, 413
holding 453
of job at network node 652
requesting for all steps in job 436
requesting for step 361
restarting step 361, 436
specifying 441
specifying program 358
timing 367, 450
with EXEC COND parameter 347

EXPDT parameter
description 193
example 194
of DD statement 193, 194
override 194
relationship to other parameter 194
subparameter 193

EXPDTCHK parameter
of JES3 //*MAIN statement 634

explicit
to OUTPUT JCL statement 470, 492

EXPORT statement 371
examples 373
field

Comments 372
Label 371
Operation 371
Parameter 371

Location in JCL 372
parameter

SYMLIST 372
parameter syntax

SYMLIST 372
subparameter definition 373
SYMLIST parameter 372
syntax 371

extents
allocation 268

672 z/OS V2R1.0 MVS JCL Reference

external
specifying on OUTPUT JCL

statement 555
specifying on sysout DD

statement 283
starting 287, 555
with OUTPUT JCL WRITER

parameter 555
with SYSOUT writer-name

parameter 287
EXTPREF subparameter

of DD DSNTYPE parameter 186
EXTREQ subparameter

of DD DSNTYPE parameter 185
EXTWTR parameter

of JES3 //*FORMAT PR
statement 619

of JES3 //*FORMAT PU
statement 627

F
F subparameter

of //*NET ABNORMAL
parameter 644

of //*NET NORMAL parameter 644
of AMP RECFM subparameter 109
of DCB BFALN subparameter 140
of DCB OPTCD subparameter 146
of RECFM parameter 252, 253

FAILURE parameter
of JES3 //*MAIN statement 634

FB subparameter
of AMP RECFM subparameter 109

FCB parameter
default 196, 501
defining for work station 197
description 195, 500
example 197, 502
of DD statement 195, 196, 197
of JES2 /*OUTPUT statement 591
of JES3 //*FORMAT PR

statement 619
of OUTPUT JCL statement 500, 501,

502
override 196, 502
relationship to other control

statement 197
relationship to other parameter 196,

502
subparameter 196, 501

fcb-name subparameter
of DD FCB parameter 196
of OUTPUT JCL FCB parameter 501

FETCH parameter
of JES3 //*MAIN statement 635

file
HFS

dummy 239
file definition statement 135
FILEDATA parameter

default 199
description 198
example 199
of DD statement 198, 199
override 199
relationship to other parameter 199

FILEDATA parameter (continued)
subparameter 198
syntax 198

FLASH parameter
default 200, 503
description 199, 502
example 201, 504
of DD statement 199, 200, 201
of JES2 /*OUTPUT statement 591
of JES3 //*FORMAT PR

statement 620
of OUTPUT JCL statement 502, 503,

504
override 200, 503
relationship to other control

statement 201
relationship to other parameter 200,

503
subparameter 200, 503

FLASHC
of JES2 /*OUTPUT statement 592

flashing
printing with 199, 502
printing without 201, 504
relationship to DD COPIES

parameter 127
relationship to OUTPUT JCL COPIES

parameter 488, 489
FLSH subparameter

of //*NET NRCMP parameter 646
FOLD subparameter

of DD UCS parameter 291
for data set

specifying on OUTPUT JCL
statement 495

specifying on XMIT JCL
statement 570

foreground jobs
affect on DD TERM parameter 289

form
for printing or punching 195, 500
JES2 format subparameter of JOB

accounting information 405
specifying on OUTPUT JCL FORMS

parameter 506
specifying on sysout DD

statement 283
form-name subparameter

of //*FORMAT FORMS
parameter 620, 627

of DD SYSOUT parameter 285
of OUTPUT JCL FORMS

parameter 506
FORMDEF parameter

description 504
example 505
of OUTPUT JCL statement 504, 505
override 505
subparameter 505

FORMLEN parameter
description 505
of OUTPUT JCL statement 505

FORMS parameter
default 507
description 506
example 507
of JES2 /*JOBPARM statement 579

FORMS parameter (continued)
of JES2 /*OUTPUT statement 592
of JES3 //*FORMAT PR

statement 620
of JES3 //*FORMAT PU

statement 627
of OUTPUT JCL statement 506, 507
override 507
subparameter 506

forward
to concatenated data set 99

FREE parameter
affect on JES2 /*JOBPARM COPIES

parameter 579
default 202
description 201
example 203
of DD statement 201, 202, 203
override 202
relationship to other control

statement 203
relationship to other parameter 202
subparameter 202

FREEVOL parameter
of DD statement

description 204
FRLOG subparameter 108
FSSDATA parameter

description 507
of OUTPUT JCL statement 507

FUNC subparameter
of DD DCB parameter 144
with LABEL parameter 221

G
G11 character set

for 3211 printer 290, 547
GAM (graphics access method)

subparameters of DD DCB
parameter 140

GDGORDER parameter
example 205
of DD statement 205

description 205
subparameter 205

GE subparameter
of EXEC COND parameter 344
of JOB COND parameter 414

generation subparameter
of DD DSNAME parameter 178

generations
specifying maximum 228

GENERIC subparameter
of DD SECMODEL parameter 263

GNCP subparameter
of DD DCB parameter 144

GROUP parameter
default 418
description 417
example 418
of JOB statement 417, 418
subparameter 418

group-name parameter
of //*FORMAT DEST

parameter 619, 626
of //*MAIN ORG parameter 637

Index 673

group-name parameter (continued)
of DD DEST parameter 158
of DD UNIT parameter 294
of JOB GROUP parameter 418
of OUTPUT JCL DEST

parameter 497
group-value subparameter

of //*FORMAT COPIES
parameter 618

of /*OUTPUT COPIES
parameter 589

of /*OUTPUT COPYG
parameter 589

of DD COPIES parameter 127
of OUTPUT JCL COPIES

parameter 487
GROUPID parameter

description 509
example 510
of OUTPUT JCL statement 509, 510
relationship to other control

statement 510
subparameter 510

GS subparameter
of DCB DSORG subparameter 143

GT subparameter
of EXEC COND parameter 344
of JOB COND parameter 414

GTF (generalized trace facility)
use 143

H
H subparameter

of DCB OPTCD subparameter 146,
147

H11 character set code
for 3211 printer 290, 547

halt reading
in JES3 system 649

HC parameter
abbreviation of NHOLD parameter of

JES3 //*NET statement 643
HFS subparameter

of DD DSNTYPE parameter 185
HIGH subparameter

of //*MAIN IORATE parameter 635
HN character set code

for 1403 and 3203 Model 5
printer 290, 547

HOLD parameter
affect on JES2 /*JOBPARM COPIES

parameter 579
default 207
description 206
examples 208
of DD statement 206, 207, 208
of JES3 //*MAIN statement 635
override 207
relationship to other control

statement 208
relationship to other parameter 208
subparameter 206

HOLD subparameter
of //*MAIN FAILURE

parameter 634
of //*NET NRCMP parameter 646

HOLD subparameter (continued)
of JOB TYPRUN parameter 453

HWS subparameter
of //*MAIN SETUP parameter 639

I
I subparameter

of AMP OPTCD subparameter 108
of DCB FUNC subparameter 144
of DCB OPTCD subparameter 148

IAZSYMBL 55
ID parameter

abbreviation of NETID parameter of
JES3 //*NET statement 643

id subparameter
of DD DSID parameter 175

identifier
format 13

IEFSJSYM 55
IGNORE subparameter

of //*MAIN THWSSEP
parameter 640

IL subparameter
of AMP OPTCD subparameter 108

image-name subparameter
of //*FORMAT FCB parameter 619

implicit
to OUTPUT JCL statement 470, 492
using OUTPUT JCL DEFAULT

parameter 492
in generation group

in restarted job 443
labels for 218
naming 178

in JCL
comments field 76, 381, 390, 395, 470,

562
comparison operator 377
consideration 395, 563
considerations 382
considerations for using 390
default definition 469
description 75, 375, 389, 393, 459,

461, 561
ELSE clause 382
example 77, 391, 396, 459, 564
example of job and step-level

statement 471
job-level statement 470
location in JCL 76, 459, 470
location in procedure 471
location in the JCL 381, 390, 395, 563
location of default statement 471
logical operator 377
name field 76, 375, 389, 393, 461, 562
NOT operator 378
operation field 76, 376, 389, 394, 461,

562
override 471, 563
parameter field 76, 389, 394, 462, 562
relational-expression 376
relationship to DD statement COPIES

parameter 128
relationship to JES2 /*OUTPUT

statement 472

in JCL (continued)
relationship to JES3 //*FORMAT

statement 472
relationship to other control

statement 563
relationship to other parameter 381
relationship to sysout DD

statement 471
step-level statement 470
THEN clause 382
use of parenthesis 381

in JES3
description 649
ending 613
example 651
location in JCL 651
parameter 650

in printed output
limiting length 405, 515
specification 617
specifying 486

in reading or writing a data set
specifying options for 144

IN subparameter
of DD LABEL parameter 220
of OUTPUT JCL OFFSETXB

parameter 525
in-stream data

for procedure 102
multiple in-stream data sets in a

step 103
with DD * statement 101
with DD DATA statement 131
with DSNAME parameter 181
with JES3 //*DATASET

statement 610
with SYSIN DD statement 326

INCLUDE group
considerations for using 390
description 389

IND subparameter
of /*JOBPARM SYSAFF

parameter 581
INDEX parameter

default 511
description 511
example 511
of OUTPUT JCL statement 511
parameter of JES2 /*OUTPUT

statement 592
relationship to other parameter 511
subparameter 511

information subparameter
of EXEC PARM parameter 353

initiation or selection
specifying 435

input stream
description 5

INT parameter
of JES3 //*FORMAT PU

statement 627
internal

submitting job 575, 607
INTRAY parameter

description 512
example 512
of OUTPUT JCL statement 512

674 z/OS V2R1.0 MVS JCL Reference

INTRAY parameter (continued)
relationship to other parameter 512
subparameter 512

INTRDR subparameter
of OUTPUT JCL WRITER

parameter 555
INTVL subparameter

of DD DCB parameter 144
IORATE parameter

of JES3 //*MAIN statement 635
IPCS (interactive problem control system)

to print dump 321
IPLTXID subparameter

of DD DCB parameter 144
IS subparameter

of DCB DSORG subparameter 143
ISO/ANSI/FIPS Version 1 or 3 tape data

set
indicating in DD LABEL

parameter 218
restriction on DD DISP

parameter 162
with DD ACCODE parameter 104

ISU subparameter
of DCB DSORG subparameter 143

J
J parameter

of JES3 //*DATASET statement 611
J subparameter

of DCB OPTCD subparameter 147
JCL (job control language)

format 13
statement 1

JCL subparameter
of OUTPUT JCL JESDS

parameter 513
JCL symbol 38
JCL Symbol Service (IEFSJSYM) 55
JCLHOLD subparameter

of JOB TYPRUN parameter 453
JCLTEST subparameter

of EXEC PGM parameter 359
JECL statements 2
JES (job entry subsystem)

running a started task 63
JES Symbol Service (IAZSYMBL) 55
JES2

format 16
location in JCL 575
statement 1, 16, 575

JES2 in-stream data 54
JES3

example 607
format 16
location in JCL 607
statement 1, 16, 607

JESDS parameter
description 512
example 514
location in JCL 513
location of statement containing 471
of OUTPUT JCL statement 512, 513,

514
override 513
subparameter 513

JESJCL subparameter
of //*FORMAT DDNAME

parameter 615
JESLOG parameter of JOB statement 418
JESMSGLG subparameter

of //*FORMAT DDNAME
parameter 615

JESYSMSG
of //*FORMAT DDNAME

parameter 615
JGLOBAL subparameter

of //*MAIN SYSTEM parameter 640
JLOCAL subparameter

of //*MAIN SYSTEM parameter 640
job

background or batch jobs 397
beginning 397
class 397
dependent 397
description 5
entering 5
foreground jobs 397
nonstandard processing 397
processing 6, 397
request to not print 580
restarting 397
send messages to in JES3 system 648
specifying 453
specifying processing 512
standard processing 397

job log
assigning to an output class 424
cataloged procedure statement 57
controlling listing 425
in-stream procedure statement 57
job control statement 57
listing 57
specifying processing 512
statements in listing 57
symbolic parameter 57

Job Statement
DSENQSHR Parameter 415

JOB statement
comments field 402
description 397
example 402
in JCL 397, 398, 402
location in JCL 402
name field 397
operation field 398
parameter field 398
started tasks 398

JOB subparameter
of //*MAIN SETUP parameter 639

job-level
OUTPUT JCL statement level 470

job-level output
control of 60

jobclass subparameter
of JOB CLASS parameter 413

JOBLIB DD statement
description 313
example 315
location in JCL 315
overriding for a step 315, 318
parameter 313

JOBLIB DD statement (continued)
relationship to other control

statement 315
relationship to STEPLIB 315
with COND=ONLY parameter 346

jobname
coding 397

jobname subparameter
of //*NET NETREL parameter 645
of //*NET RELEASE parameter 646

JOBRC parameter
default 420
example 420
of JOB JOBRC parameter 420
of JOB statement 420
override 420
Relationship to other control

statements 420
JOURNAL parameter

of JES3 //*MAIN statement 636
JSTTEST subparameter

of EXEC PGM parameter 359

K
K subparameter

of DD AVGREC parameter 113
KEEP subparameter

of //*NET ABCMP parameter 644
of DD DISP parameter 164, 166

keyboard
navigation 657
PF keys 657
shortcut keys 657

KEYENCD1 PARAMETER
of DD statement

description 211
examples 212
override 212
relationship to other

parameter 212
subparameter 211

KEYENCD2 PARAMETER
of DD statement

description 212
examples 213
override 213
relationship to other

parameter 213
subparameter 212

KEYLABL1 PARAMETER
of DD statement

default 209
description 208
examples 209
override 209
relationship to other

parameter 209
subparameter 209

KEYLABL2 PARAMETER
of DD statement

default 210
description 210
examples 211
override 211
relationship to other

parameter 211

Index 675

KEYLABL2 PARAMETER (continued)
of DD statement (continued)

subparameter 210
KEYLEN parameter

description 213
example 214
of DD statement 213, 214
override 214
relationship to other parameter 214
subparameter 213

KEYLEN subparameter
of DD DCB parameter 145

KEYOFF parameter
description 214
example 215
of DD statement 214, 215
override 215
relationship to other parameter 215
subparameter 215

keyword
on DD statement 86
on EXEC statement 334
on EXEC statement that calls

procedure 337
on JOB statement 398
on OUTPUT JCL statement 462
syntax 15
usage warning 14

KS subparameter
of DD RECORG parameter 255

L
L subparameter

of AMP OPTCD subparameter 108
of DCB BUFOFF subparameter 143
of DCB OPTCD subparameter 146,

148
LABEL parameter

default 220
description 216
example 221
of DD statement 216, 217, 220, 221
relationship to other control

statement 221
relationship to other parameter 220
subparameter 217

LARGE subparameter
of DD DSNTYPE parameter 186

LE subparameter
of EXEC COND parameter 344
of JOB COND parameter 414

LGSTREAM parameter
defaults 223
description 222
example 224
of DD statement 222, 223, 224
override 223
relationship to other parameter 223
subparameter 223

library
procedure

use for procedure 5
LIBRARY subparameter

of DD DSNTYPE parameter 185
LIBRARY,1 subparameter

of DD DSNTYPE parameter 185

LIBRARY,2 subparameter
of DD DSNTYPE parameter 185

LIKE parameter
description 224
example 226
of DD statement 224, 225, 226
override 225
relationship to other parameter 226
subparameter 225

LIMCT subparameter
of DD DCB parameter 145

limit subparameter
of //*FORMAT THRESHLD

parameter 621
of OUTPUT JCL THRESHLD

parameter 544
limiting

of lines per printed page 405
output 405

LINDEX parameter
default 515
description 514
example 515
of JES2 /*OUTPUT statement 592
of OUTPUT JCL statement 514, 515
relationship to other parameter 515
subparameter 514

LINE subparameter
of OUTPUT JCL PRMODE

parameter 533
LINECT parameter

of JES2 /*JOBPARM statement 580
of JES2 /*OUTPUT statement 593

linect subparameter
default 515
description 515
example 515
JES2 format of JOB accounting

information 405
of OUTPUT JCL statement 515
subparameter 515

LINES parameter
of JES2 /*JOBPARM statement 580
of JES3 //*MAIN statement 636
of JOB statement 421

lines subparameter
JES2 format of JOB accounting

information 404
LOCAL parameter

of JES2 /*ROUTE statement 597
LOCAL subparameter

of /*OUTPUT DEST parameter 590
of DD DEST parameter 156
of OUTPUT JCL DEST

parameter 495
log subparameter

JES2 format of JOB accounting
information 405

LOG subparameter
of OUTPUT JCL JESDS

parameter 513
logical operator

on IF/THEN/ELSE/ENDIF statement
construct 377

LOW subparameter
of //*MAIN IORATE parameter 635

lowercase
in syntax 19

LRECL parameter
description 226
example 227
of DD statement 226, 227
override 227
relationship to other parameter 227
subparameter 226

LRECL subparameter
of DD DCB parameter 145

LREGION parameter
of JES3 //*MAIN statement 637

LS subparameter
of DD RECORG parameter 255

LT subparameter
of EXEC COND parameter 344
of JOB COND parameter 414

LTM subparameter
of DD LABEL parameter 219

M
m subparameter

of //*FORMAT CHNSIZE
parameter 617, 625

M subparameter
of DCB OPTCD subparameter 148
of DD AVGREC parameter 114
of DD RECFM parameter 252, 253

magnetic
specification for tape data set 143

MAILBCC
of OUTPUT JCL statement

description 516
MAILCC

of OUTPUT JCL statement
description 517

MAILFILE
of OUTPUT JCL statement

description 517
MAILFROM

of OUTPUT JCL statement
description 518

MAILTO
of OUTPUT JCL statement

description 519
main service

in job processing 649
main-name subparameter

of //*MAIN SYSTEM parameter 640
management-class-name subparameter

of DD MGMTCLAS parameter 229
Master subsystem

JCL restrictions with START
SUB=MSTR 64

restrictions with a started task 64
running a started task 64

MAXGENS parameter
description 228
example 228
of DD statement 228
relationship to other parameter 228
subparameter 228

MAXIMUM subparameter
of the JOB TIME parameter 451
on the EXEC TIME parameter 368

676 z/OS V2R1.0 MVS JCL Reference

maximum-generations subparameter
of DD MAXGENS parameter 228

MED subparameter
of //*MAIN IORATE parameter 635

member subparameter
of DCB INTVL subparameter 144
of DD DSNAME parameter 178, 181

membername subparameter
of OUTPUT JCL FORMDEF

parameter 505
of OUTPUT JCL PAGEDEF

parameter 531
members

maximum generations for 228
MERGE parameter

default 520
description 520
examples 491, 520
of JOB statement 491, 520
subparameter definition 520

message
from functional subsystem 531
specifying processing 512
to operator in JES3 system 648

messages subparameter
of JOB MSGLEVEL parameter 426

MGMTCLAS parameter
default 229
description 228
example 230
of DD statement 228, 229, 230
override 229
relationship to other parameter 230
subparameter 229

minutes subparameter
of EXEC TIME parameter 368
of JOB TIME parameter 450

mmm subparameter
of //*MAIN BYTES parameter 631
of //*MAIN CARDS parameter 631
of //*MAIN LINES parameter 636
of //*MAIN PAGES parameter 637
of OUTPUT JCL OFFSETXB

parameter 524
MOD subparameter

of DD DISP parameter 162
MODE parameter

of JES3 //*DATASET statement 611
MODE subparameter

of DD DCB parameter 145
modification

by specifying copy-modification
module 230, 521

coding 30
of procedure DD statement 30
of procedure DD statements 30

MODIFY parameter
default 231, 522
description 230, 521
example 232, 522
of DD statement 230, 231, 232
of JES2 /*OUTPUT statement 593
of JES3 //*FORMAT PR

statement 620
of OUTPUT JCL statement 521, 522
override 231, 522

MODIFY parameter (continued)
relationship to other control

statement 231
relationship to other parameter 231,

522
subparameter 231, 521

MODTRC parameter
of JES2 /*OUTPUT statement 594

module subparameter
of AMP SYNAD subparameter 109

module-name subparameter
of //*FORMAT MODIFY

parameter 620
of /*OUTPUT MODIFY

parameter 593
of DD MODIFY parameter 231
of OUTPUT JCL MODIFY

parameter 521
MSG subparameter

of OUTPUT JCL JESDS
parameter 513

msg-count subparameter
of OUTPUT JCL PIMSG

parameter 532
MSGCLASS parameter

default 424
description 424
example 425
of JOB statement 424, 425
subparameter 424

MSGCLASS subparameter
of //*DATASET DDNAME

parameter 611
MSGLEVEL parameter

default 426
description 425
example 427
of JOB statement 425, 426, 427
subparameter 426

multivolume
referenced in VOLUME=REF

subparameter 307
specifying volume 303

MXIG subparameter
of DD SPACE parameter 270

N
n or number subparameter

of //*FORMAT CHNSIZE
parameter 617, 625

of //*FORMAT COPIES
parameter 618, 626

of //*FORMAT PRTY parameter 621
of //*MAIN BYTES parameter 631
of //*MAIN CARDS parameter 631
of //*MAIN LINES parameter 636
of //*MAIN PAGES parameter 637
of //*NET DEVPOOL parameter 644
of //*NET NHOLD parameter 645
of //*NET RELSCHCT

parameter 646
of //*NETACCT ACCT

parameter 648
of /*JOBPARM BYTES

parameter 579

n or number subparameter (continued)
of /*JOBPARM CARDS

parameter 579
of /*JOBPARM COPIES

parameter 579
of /*JOBPARM LINECT

parameter 580
of /*JOBPARM LINES parameter 580
of /*JOBPARM PAGES

parameter 580
of /*JOBPARM TIME parameter 582
of /*OUTPUT CKPTLNS

parameter 588
of /*OUTPUT CKPTPGS

parameter 588
of /*OUTPUT COMPACT

parameter 589
of /*OUTPUT COPIES

parameter 589
of /*OUTPUT INDEX parameter 592
of /*OUTPUT LINDEX

parameter 592
of /*OUTPUT LINECT

parameter 593
of AMP BUFND parameter 107
of AMP BUFNI parameter 107
of AMP STRNO parameter 109
of DCB BUFOFF subparameter 143
of DCB GNCP subparameter 144
of DCB INTVL subparameter 144
of DCB NCP parameter 145
of DCB THRESH subparameter 149
of DD COPIES parameter 126
of DD OUTLIM parameter 232
of DD RETPD parameter 259
of EXEC DYNAMNBR

parameter 350
of EXEC PERFORM parameter 357
of JOB PERFORM parameter 433
of OUTPUT JCL CKPTPAGE

parameter 481
of OUTPUT JCL CKPTSEC

parameter 481
of OUTPUT JCL COPIES

parameter 487
of OUTPUT JCL INDEX

parameter 511
of OUTPUT JCL INTRAY

parameter 512
of OUTPUT JCL LINDEX

parameter 514
of OUTPUT JCL LINECT

parameter 515
of OUTPUT JCL PRTY

parameter 538
N subparameter

of /*JOBPARM BURST
parameter 579

of /*JOBPARM RESTART
parameter 581

of /*OUTPUT BURST parameter 588
of DCB PCI subparameter 148

name
format 13
in name field of OUTPUT JCL

statement 461
qualified 461

Index 677

name (continued)
unqualified 461

name parameter
of JES2 /*ROUTE statement 597

NAME parameter
description 522
of OUTPUT JCL statement 522
subparameter 522

name subparameter
of //*FORMAT EXTWTR

parameter 619, 627
of //*NET NETID parameter 644
of /*OUTPUT DEST parameter 590
of DD DEST parameter 156
of OUTPUT JCL DEST

parameter 496
of OUTPUT JCL WRITER

parameter 555
navigation

keyboard 657
NC parameter

abbreviation of NORMAL parameter
of JES3 //*NET statement 643

NC subparameter
of EXEC RD parameter 363
of JOB RD parameter 438

NCK subparameter
of AMP CROPS subparameter 107

NCP subparameter
of DD DCB parameter 145

NE subparameter
of EXEC COND parameter 344
of JOB COND parameter 414

nested
description 35
example 35
modifying procedure statement 36
symbolic parameter 51

NET subparameter
of //*NET DEVPOOL parameter 644

NETID parameter
of JES3 //*NET statement 644

netid subparameter
of //*NET NETREL parameter 645

NETREL parameter
of JES3 //*NET statement 645

network-account-number parameter
of JES2 /*NETACCT statement 584

NEW subparameter
of DD DISP parameter 161

new-password subparameter
of JOB PASSWORD parameter 431
parameter of JES2 /*SIGNON

statement 602
parameter of JES3 /*SIGNON

statement 656
NHOLD parameter

of JES3 //*NET statement 645
NL subparameter

of DD LABEL parameter 218
Nn parameter

of JES2 /*ROUTE statement 597
of JES2 /*XEQ statement 603
of JES2 /*XMIT statement 605

Nn subparameter
of /*OUTPUT DEST parameter 590
of DD DEST parameter 156

Nn subparameter (continued)
of OUTPUT JCL DEST

parameter 496
nnnnK subparameter

of //*MAIN LREGION
parameter 637

No read integrity 260
NO subparameter

of //*DATASET DDNAME
parameter 611

of //*FORMAT FORMS
parameter 627

of //*MAIN EXPDTCHK
parameter 634

of //*MAIN HOLD parameter 635
of //*MAIN JOURNAL

parameter 636
of //*MAIN RINGCHK

parameter 638
of //*NET DEVRELSE

parameter 645
of //*NET OPHOLD parameter 646
of DD BURST parameter 118
of DD HOLD parameter 207
of OUTPUT JCL AFPSTATS

parameter 475
of OUTPUT JCL BURST

parameter 477
of OUTPUT JCL DEFAULT

parameter 492
of OUTPUT JCL DPAGELBL

parameter 499
of OUTPUT JCL DUPLEX

parameter 500
of OUTPUT JCL PIMSG

parameter 532
of OUTPUT JCL SYSAREA

parameter 543
of OUTPUT JCL TRC parameter 546

NOCOMP subparameter
of DCB TRTCH subparameter 150

node
affect on JES2 /*JOBPARM COPIES

parameter 583
of execution 582

node subparameter
of DD DEST parameter 157, 158

nodename parameter
of JES2 /*NOTIFY statement 585
of JES2 /*ROUTE statement 597, 598
of JES2 /*XEQ statement 603
of JES2 /*XMIT statement 605
of JES3 //*ROUTE XEQ 652

nodename subparameter
of //*FORMAT DEST

parameter 619, 626
of //*MAIN ORG parameter 637
of /*OUTPUT DEST parameter 590
of DD DEST parameter 158
of OUTPUT JCL DEST

parameter 496, 497
of XMIT JCL DEST parameter 570

NOHO subparameter
of //*NET NRCMP parameter 646

NOKP subparameter
of //*NET ABCMP parameter 644

NOLIMIT subparameter
of the JOB TIME parameter 451
on the EXEC TIME parameter 368

NOLOG parameter
of JES2 /*JOBPARM statement 580

non-SMS-managed data set
with DD VOLUME=REF

subparameter 308
NONE subparameter

of //*MAIN FETCH parameter 635
of /*OUTPUT FLASH parameter 591
of DD FLASH parameter 200
of OUTPUT JCL FLASH

parameter 503
nonspecific request

allocation 268
specifying 309
volume count 304

nonstandard processing
description 649

NOPWREAD subparameter
of DD LABEL parameter 220

normal
dump 319

NORMAL parameter
of JES3 //*NET statement 644

NORMAL subparameter
of OUTPUT JCL DUPLEX

parameter 500
NOT (¬) operator

of IF/THEN/ELSE/ENDIF statement
construct 378

notation
for syntax 19

Notices 661
notification

of job completion 427
receiving 428

NOTIFY parameter
description 427, 523
example 428
of JOB statement 427, 428
of OUTPUT JCL statement 523, 524
subparameter 524
subparameter for JES2 427
subparameter for JES3 428

NR parameter
abbreviation of NETREL parameter of

JES3 //*NET statement 643
NR subparameter

of EXEC RD parameter 362
of JOB RD parameter 438

NRC subparameter
of AMP CROPS subparameter 107

NRCMP parameter
of JES3 //*NET statement 646

NRE parameter
of AMP CROPS subparameter 107

NRI subparameter
RLS parameter 260

NSL subparameter
of DD LABEL parameter 218

NTM subparameter
of DD DCB parameter 146

null subparameter
of //*FORMAT DDNAME

parameter 615, 624

678 z/OS V2R1.0 MVS JCL Reference

NULLFILE subparameter
of DD DSNAME parameter 182

number
affect on number of devices

allocated 295
specifying by volume-count

subparameter 303
NxxRnnnn

parameter of JES2 /*SIGNON
statement 602

O
O subparameter

of DCB MODE subparameter 145
of cataloged and in-stream procedures

of DD statement 30
of EXEC statement parameter 29
of OUTPUT JCL statement 30
with DD DUMMY statement 190

of data
block size 98
checkpointing 124
coding concatenation 98
description 97
device 98
logical record length 99
of job library 315
of step library 318
reference 99
with dummy data set 100

of data set
at abnormal termination 165
at normal termination 163
deleting before 194, 259
for input or output 220
holding for reuse 350
specifying in DD EXPDT

parameter 193
specifying in DD LABEL

parameter 220
with multiple references in DD

OUTPUT parameter 236
of DCB macro instruction

when coding DUMMY 190
of DD SPACE parameter

for specific request 270, 271
for system assignment 266

of DD statement
defaults 238, 241, 244, 247
description 113, 237, 240, 241, 245
dummy HFS file 239
example 114, 240, 241, 245, 249
file status 248
override 114
relationship to other parameter 114,

238, 241, 244, 247
relationship to other statements 239
subparameter 113, 237, 240, 242, 246
with DD AVGREC parameter 113
with DD SPACE reclgth

subparameter 266
of device

from group 294
number 295
when unit affinity is specified 296

of label
specified by DD LABEL

parameter 221
of operator

of operator 377
of print margins

specifying on OUTPUT JCL
statement 511, 512, 514

of statement
field 13

of sysout data set
at abnormal termination 526
at normal termination 526

of volumes
deferred 296
parallel 295

OFF subparameter
of //*FORMAT OVFL parameter 621

offset-to-key subparameter
of DD KEYOFF parameter 215

OFFSETXB parameter
description 524
example 525
of OUTPUT JCL statement 524, 525
subparameter 524

OFFSETXF parameter
description 525
of OUTPUT JCL statement 525

OFFSETYB parameter
description 525
of OUTPUT JCL statement 525

OFFSETYF parameter
description 525
of OUTPUT JCL statement 525

OH parameter
abbreviation of OPHOLD parameter

of JES3 //*NET statement 643
OLD subparameter

of DD DISP parameter 162
omission

of ddname from DD statement 84
on direct access

request for specific track 270
system assignment 266

on IF/THEN/ELSE/ENDIF statement
construct

continuing 376
description 376
keyword 378
operator 377

ON subparameter
of //*FORMAT OVFL parameter 621

ONLY subparameter
of EXEC COND parameter 345

Open/Close/EOV trace option 144
operating system

content 5
operation

format 13
operator

messages to in JES3 system 648
on IF/THEN/ELSE/ENDIF statement

construct 377
operator commands

entered with JCL COMMAND
statement 75

operator commands (continued)
entering through JCL command

statement 73
entering through JES2 command

statement 575
entering through JES3 command

statement 608
operator subparameter

of EXEC COND parameter 344
of JOB COND parameter 414

OPHOLD parameter
of JES3 //*NET statement 646

OPTCD subparameter
of DD AMP parameter 108
of DD DCB parameter 146

OR (|) operator
of IF/THEN/ELSE/ENDIF statement

construct 377
ORG parameter

of JES3 //*MAIN statement 637
organization

with DSORG subparameter 143
organization subparameter

of DCB DSORG subparameter 143
OUT subparameter

of DD LABEL parameter 220
OUTBIN parameter

of OUTPUT JCL statement 525
OUTDISP parameter

description 526
of OUTPUT JCL statement 526, 527
subparameter 527

OUTLIM parameter
default 232
description 232
example 233
of DD statement 232, 233
relationship to other control

statement 233
relationship to other parameter 232
subparameter 232

output
by specifying DD OUTLIM

parameter 232
class 126, 404, 487, 618
limiting from job 404
maximum size of sysout data set 544
of lines per printed page 515
specifying copy number 126, 487,

618
specifying on the OUTPUT JCL

statement 509
with JOB statement BYTES

parameter 407
with JOB statement CARDS

parameter 409
with JOB statement LINES

parameter 421
with JOB statement PAGES

parameter 429
output data set

controlling spacing in output 486,
617

processing instructions in JES3
system 613

processing options in JES3
system 623

Index 679

OUTPUT parameter
default 234
description 233
example 236
location in JCL 235
of DD statement 233, 234, 235, 236
override 235
relationship to other parameter 235
subparameter 234

output queue
for sysout data set 537

output service
in job processing 649

output-group subparameter
of OUTPUT JCL GROUPID

parameter 510
overflow

holding 143
overlay-name subparameter

of //*FORMAT FLASH
parameter 620

of /*OUTPUT FLASH parameter 591
of DD FLASH parameter 200
of OUTPUT JCL FLASH

parameter 503
OVERLAYB parameter

of OUTPUT JCL statement 528
OVERLAYF parameter

of OUTPUT JCL statement 529
OVFL parameter

of JES3 //*FORMAT PR
statement 621

of OUTPUT JCL statement 529

P
p parameter

of /*PRIORITY statement 595
P subparameter

of DCB FUNC subparameter 144
of DD UNIT parameter 295

P11 character set
for 3211 printer 290, 547

PAGE subparameter
of OUTPUT JCL PRMODE

parameter 534
page-mode printer

on OUTPUT JCL FORMDEF
parameter 504

on OUTPUT JCL PAGEDEF
parameter 530

on OUTPUT JCL PRMODE
parameter 533

PAGEDEF parameter
description 530
example 531
of OUTPUT JCL statement 530, 531
override 531
subparameter 531

PAGES parameter
of JES2 /*JOBPARM statement 580
of JES3 //*MAIN statement 637
of JOB statement 429

pano subparameter
JES2 format of JOB accounting

information 404

parameter
detailed syntax 15
format 13
rules for continuation 17
symbolic

overriding a system symbol 41
parentheses

with relational-expression 381
PARM parameter

description 352
example 353
of EXEC statement 352, 353
subparameter 353

PARMDD parameter
data set requirements 355
description 354
example 356
of EXEC statement 354, 355, 356
parameter string requirements 355
record length requirements 355
relationship to other control

statement 355
partition-name subparameter

of //*MAIN SPART parameter 639
partitioned (PDS)

naming 178, 181
partitioned data set extended(PDSE)

naming 178, 181
PASS subparameter

of DD DISP parameter 164
passed

unit count 295
password

for protection of data set 219
PASSWORD parameter

description 430
example 432
of JOB statement 430, 431, 432
relationship to other parameter 432
subparameter 431

password subparameter
of JOB PASSWORD parameter 431

PASSWORD subparameter
of DD LABEL parameter 220

password1 parameter
of JES2 /*SIGNON statement 602
of JES3 /*SIGNON statement 656

password2 parameter
of JES2 /*SIGNON statement 602
of JES3 /*SIGNON statement 656

PATH parameter
of DD statement 237

PATHDISP parameter
of DD statement 240

PATHMODE parameter
of DD statement 241

PATHOPTS parameter
of DD statement 245

PC parameter
abbreviation of NRCMP parameter of

JES3 //*NET statement 643
PCAN character set

for 1403 and 3203 Model 5
printer 290, 547

PCHN character set
for 1403 and 3203 Model 5

printer 290, 547

PCI subparameter
of DD DCB parameter 148

PDS subparameter
of DD DSNTYPE parameter 185

PEND statement
comments field 557
description 557
example 557
in JCL 557
location in JCL 557
name field 557
operation field 557

PERFORM parameter
default 357, 433
description 356, 432
example 358, 433
of EXEC statement 356, 357, 358
of JOB statement 432, 433
override 357, 433
subparameter 357, 433

permanent
naming 178

PGM parameter
description 358
example 359
of EXEC statement 358, 359
subparameter 358

PIMSG parameter
default 532
description 531
example 532
of OUTPUT JCL statement 531, 532
subparameter 532

PIPE subparameter
of DD DSNTYPE parameter 185

PN character set
for 1403 and 3203 Model 5

printer 290, 547
PNAME parameter

of JES3 //*NETACCT statement 647
PO subparameter

of DCB DSORG subparameter 143
PORTNO parameter

of OUTPUT JCL statement 533
positional

on DD statement 85
on EXEC statement 334
on JOB statement 398
optionally required by

installation 403, 434
syntax 15

POU subparameter
of DCB DSORG subparameter 143

PR parameter
of JES3 //*FORMAT PR

statement 615
PREFER subparameter

of //*MAIN THWSSEP
parameter 640

primary-qty subparameter
of //*MAIN TRKGRPS

parameter 641
of DD SPACE parameter 641

PRINT parameter
of JES2 /*ROUTE statement 596

680 z/OS V2R1.0 MVS JCL Reference

PRINT subparameter
of //*MAIN FAILURE

parameter 634
PRINTDEV statement

DATACK default 491
defined resource libraries 539
example 82
PIMSG default 532

printed output
with OUTPUT JCL DPAGELBL

parameter 498
with OUTPUT JCL DUPLEX

parameter 500
with OUTPUT JCL SYSAREA

parameter 543
printing

specifying on OUTPUT JCL
statement 533

priority
APG (automatic priority group) 143
dispatching 143
initiation or selection 143
of lines for transmission 143
of operator 143
output queue 143
queue selection 143

priority subparameter
of JOB PRTY parameter 436

private
cataloging procedure 27
retrieving procedure 28
specifying for job 313, 393
specifying for step 316
specifying in PRIVATE

subparameter 302
PRIVATE subparameter

of DD VOLUME parameter 302
PRMODE parameter

default 534
description 533
example 534
of OUTPUT JCL statement 533, 534
subparameter 533

PROC parameter
description 360
example 360
of EXEC statement 360
of JES3 //*MAIN statement 638
subparameter 360

PROC statement
comments field 560
description 559
example 560
in JCL 559, 560
location in JCL 560
name field 559
operation field 560
override 560
parameter field 560

procedure
adding 27
calling search order 28
cataloged and in-stream 27, 28

description 5
testing 5

nested 27, 28
private library 27

procedure (continued)
search order 28

procedure-name subparameter
of EXEC PROC parameter 360

process-mode subparameter
of OUTPUT JCL PRMODE

parameter 534
processing

controlling in JES3 system 649
specifying control 397
specifying control in JES3 system 628

processor-id subparameter
of //*MAIN ACMAIN

parameter 630
PROCLIB parameter

of JES2 /*JOBPARM statement 580
PROCLIB, ordering searches with JCLLIB

statement 393
procstepname subparameter

of EXEC ACCT parameter 339
of EXEC ADDRSPC parameter 341
of EXEC COND parameter 344, 345
of EXEC DYNAMNBR

parameter 351
of EXEC PARM parameter 353
of EXEC PERFORM parameter 358
of EXEC RD parameter 363
of EXEC TIME parameter 369
subparameter of EXEC REGION

parameter 366
profile-name subparameter

of DD SECMODEL parameter 262
program

control 81, 82, 331
end 331
execution 358
location of executable program 313,

316
statement 82

PROGRAM subparameter
of //*FORMAT CONTROL

parameter 617
of OUTPUT JCL CONTROL

parameter 486
program-name subparameter

of EXEC PGM parameter 358
programmer's-name parameter

description 434
example 434
of JOB statement 434
parameter 434

programmer's-name subparameter
of //*NETACCT PNAME

parameter 647
PROTECT parameter

description 249
example 251
of DD statement 249, 250, 251
override 250
relationship to other parameter 250
requirements for protecting direct

access data set 251
requirements for protecting tape data

set 250
requirements for protecting tape

volume 250
subparameter 250

protection
through DD PROTECT

parameter 249
through DD SECMODEL

parameter 262
with OUTPUT JCL DPAGELBL

parameter 498
with OUTPUT JCL DUPLEX

parameter 500
with OUTPUT JCL SYSAREA

parameter 543
PRTOPTNS parameter

description 536
of OUTPUT JCL statement 536, 537
subparameter 537

PRTQUEUE parameter
description 537
of OUTPUT JCL statement 537
subparameter 537

PRTY parameter
default 436, 538
description 435, 537
example 436, 538
of JES3 //*FORMAT PR

statement 621
of JOB statement 435, 436
of OUTPUT JCL statement 537, 538
override 538
subparameter 436, 538

PS subparameter
of DCB DSORG subparameter 143

PSF (Print Services Facility)
printing data set 504, 505, 530
printing line-mode data 534
table reference character codes in JES2

system 546
with DD CHARS parameter 122
with DD UCS parameter 292
with OUTPUT JCL CHARS

parameter 479
with OUTPUT JCL DATACK

parameter 490
with OUTPUT JCL PIMSG

parameter 531
with OUTPUT JCL UCS

parameter 548
PSU subparameter

of DCB DSORG subparameter 143
PU parameter

of JES3 //*FORMAT PU
statement 624

PUNCH parameter
of JES2 /*ROUTE statement 596

purge service
in job processing 649

Q
Q subparameter

of DCB OPTCD subparameter 147
QN character set

for 1403 and 3203 Model 5
printer 290, 547

QNC character set
for 1403 and 3203 Model 5

printer 290, 547

Index 681

QSAM (queued sequential access
method)

subparameters of DD DCB
parameter 140

with DD CHKPT parameter 124
qualified

for data set 178
queue selection

requested on JES2 /*PRIORITY
statement 595

specifying 435

R
R parameter

of JES3 /*SIGNON statement 655
R subparameter

of //*NET ABNORMAL
parameter 644

of //*NET NORMAL parameter 644
of DCB BFTEK subparameter 140
of DCB CPRI subparameter 143
of DCB FUNC subparameter 144
of DCB MODE subparameter 145
of DCB OPTCD subparameter 146,

148
of DCB PCI subparameter 148
of EXEC RD parameter 362
of JOB RD parameter 437

RACF (Resource Access Control Facility)
discrete profile 249
new password 430
protection 179, 181, 249, 417, 430,

444, 456, 498, 500, 543
RACF-defined group 417
RACF-defined password 430
RACF-defined user 456
with in-stream data set 181
with JOB SECLABEL parameter 444
with OUTPUT JCL DPAGELBL

parameter 498
with OUTPUT JCL DUPLEX

parameter 500
with OUTPUT JCL SYSAREA

parameter 543
with sysout data set 181
with temporary data set 179

RC keyword
of IF/THEN/ELSE/ENDIF statement

construct 378
RCK subparameter

of AMP CROPS subparameter 107
RD parameter

default 363, 438
description 361, 436
example 363, 439
of EXEC statement 361, 362, 363
of JOB statement 436, 437, 438, 439
override 363, 438
relationship to other control

statement 363, 439
subparameter 362, 437

reader
internal 567, 572

description 5
with JES3 XMIT JCL statement 567,

572

real
requesting for job 406
requesting for step 340

REAL subparameter
of EXEC ADDRSPC parameter 340
of JOB ADDRSPC parameter 406

RECFM parameter
description 251
example 254
of DD statement 251, 254
override 254
relationship to other parameter 254

RECFM subparameter
of DD AMP parameter 109
of records 109

reclgth subparameter
of DD SPACE parameter 266

record
specifying length 113, 145, 226
specifying organization 254

record length
of new data set 226
specifying in the DD SPACE

parameter 266
RECORD subparameter

of DD FILEDATA parameter 198
record-level sharing, VSAM 260
RECORG parameter

default 255
description 254
example 255
of DD statement 254, 255
override 255
relationship to other parameter 255
subparameter 255

REF subparameter
of DD VOLUME parameter 306

REFDD parameter
description 256
example 258
of DD statement 256, 257, 258
override 257
relationship to other parameter 257
subparameter 257

region
default 365, 440
size 365, 440

REGION parameter
considerations 366, 441
default 365, 440
description 364, 439
example 366, 441
of EXEC statement 364, 365, 366
of JOB statement 439, 440, 441
override 365, 441
relationship to the EXEC ADDRSPC

parameter 366
relationship to the JOB ADDRSPC

parameter 441
relationship to the MEMLIMIT

parameter 366, 441
subparameter 364, 440

rel subparameter
of //*MAIN DEADLINE

parameter 632
RELEASE parameter

of JES3 //*NET statement 646

RELSCHCT parameter
of JES3 //*NET statement 646

remote subparameter
of //*FORMAT DEST

parameter 619, 626
of //*MAIN ORG parameter 637

REMOTEnnn parameter
of JES2 /*SIGNON statement 601

REPLYTO
of OUTPUT JCL statement

description 538
requesting resources 8

tasks 8
task chart 8

REQUIRE subparameter
of //*MAIN THWSSEP

parameter 640
reserved name

on DSNAME parameter 182
RESFMT parameter

description 539
example 539
of OUTPUT JCL statement 539
subparameter 539

RESTART parameter
cautions with coding 443
description 441
example 443
of JES2 /*JOBPARM statement 581
of JOB statement 441, 442, 443
relationship to other control

statement 443
subparameter 442

RESTART subparameter
subparameter of //*MAIN FAILURE

parameter 634
restarting

with EXEC COND parameter 347
RETAIN subparameter

of DD VOLUME parameter 302
RETAINS|RETAINF parameter

description 539
of OUTPUT JCL statement 539

retention
specifying by RETAIN

subparameter 302
RETPD parameter

description 258
example 259
of DD statement 258, 259
override 259
relationship to other parameter 259
subparameter 259

RETRYL|RETRYT parameter
description 541
of OUTPUT JCL statement 541

return code
specifying 342, 378, 413
with IF/THEN/ELSE/ENDIF

statement construct 378
RINGCHK parameter

of JES3 //*MAIN statement 638
RJE (remote job entry)

DD * statement 102
RJP (remote job processing)

DD * statement 102

682 z/OS V2R1.0 MVS JCL Reference

RL parameter
abbreviation of RELEASE parameter

of JES3 //*NET statement 643
RLS parameter

CR subparameter 260
CRE subparameter 261
description 260
example 261
NRI subparameter 260
of DD statement 260, 261
override 261
relationship to other parameters 261
subparameter 260
syntax 260

RLSE subparameter
of DD SPACE parameter 269

RLSTMOUT parameter
EXEC statement 366
of EXEC statement

description 366
Rm parameter

of JES2 /*ROUTE statement 597
Rm subparameter

of /*OUTPUT DEST parameter 590
of DD DEST parameter 156
of OUTPUT JCL DEST

parameter 496
RMn parameter

of JES2 /*ROUTE statement 597
of JES2 /*SIGNON statement 601

RMn subparameter
of /*OUTPUT DEST parameter 591
of DD DEST parameter 157
of OUTPUT JCL DEST

parameter 496
RMTn parameter

of JES2 /*ROUTE statement 597
of JES2 /*SIGNON statement 601

RMTn subparameter
of /*OUTPUT DEST parameter 591
of DD DEST parameter 157
of OUTPUT JCL DEST

parameter 496
RN character set

for 1403 and 3203 Model 5
printer 290, 547

Rn parameter
of JES2 /*ROUTE statement 597

Rn subparameter
of /*OUTPUT DEST parameter 591
of DD DEST parameter 157
of OUTPUT JCL DEST

parameter 496
RNC subparameter

of EXEC RD parameter 362
of JOB RD parameter 438

Rnnnn parameter
of JES2 /*SIGNON statement 601

ROOM parameter
description 542
of JES2 /*JOBPARM statement 581
of JES3 //*NETACCT statement 648
of OUTPUT JCL statement 542
subparameter 542

room subparameter
JES2 format of JOB accounting

information 404

room subparameter (continued)
of //*NETACCT ROOM

parameter 648
ROUND subparameter

of DD SPACE parameter 270
RR subparameter

of DD RECORG parameter 255
RS parameter

abbreviation of RELSCHCT parameter
of JES3 //*NET statement 643

RUN keyword
of IF/THEN/ELSE/ENDIF statement

construct 378

S
S subparameter

of //*FORMAT STACKER
parameter 621

of DCB BFTEK subparameter 140
of DCB CPRI subparameter 143
of RECFM parameter 252, 253

SCAN subparameter
of JOB TYPRUN parameter 454

scanning for errors
without execution 359

scheduling environment, WLM 445
SCHENV parameter

default 446
description 445
example 446
of JOB statement 445, 446
relationship to other control

statements 446
subparameter definition 446

search order
calling a procedure 28

SECLABEL parameter
default 445
description 444
example 445
of JOB statement 444, 445
relationship to other parameter 445
subparameter definition 445

seclabel-name subparameter
of JOB SECLABEL parameter 445

SECMODEL parameter
description 262
example 263
of DD statement 262, 263
override 263
relationship to other parameter 263
subparameter 262

second-qty subparameter
of //*MAIN TRKGRPS

parameter 641
of DD SPACE parameter 267

seconds subparameter
of EXEC TIME parameter 368
of JOB TIME parameter 451

security label
on DPAGELBL parameter 499
on DUPLEX parameter 500
on SECLABEL parameter 444
on SYSAREA parameter 543

SEGMENT parameter
description 263

SEGMENT parameter (continued)
of DD statement 263, 264
override 264
relationship to other parameter 264
subparameter 264

sending comments to IBM xxv
sequence number

specifying in DD LABEL
parameter 217

SER subparameter
of DD VOLUME parameter 304

serial numbers
specifying by SER subparameter 304

serial-number parameter
of JES2 /*SETUP statement 599

serial-number subparameter
of VOLUME=SER subparameter 304

SETUP parameter
of JES3 //*MAIN statement 639

SETUP subparameter
of //*MAIN FETCH parameter 635

shortcut keys 657
SHR subparameter

of DD DISP parameter 162
SINGLE subparameter

of //*FORMAT CONTROL
parameter 617

of OUTPUT JCL CONTROL
parameter 486

size
specifying 364, 439

SKP subparameter
of DCB EROPT subparameter 144

SL subparameter
of DD LABEL parameter 218

SMS (Storage Management Subsystem)
with data set password

protection 219
with DD AMP parameter 105
with DD AVGREC parameter 113
with DD DATACLAS parameter 132
with DD DCB parameter 135
with DD DSNTYPE parameter 184
with DD EXPDT parameter 193
with DD KEYLEN parameter 213
with DD KEYOFF parameter 214
with DD LIKE parameter 224
with DD LRECL parameter 226
with DD MAXGENS parameter 228
with DD MGMTCLAS

parameter 228
with DD RECFM parameter 251
with DD RECORG parameter 254
with DD REFDD parameter 256
with DD RETPD parameter 258
with DD SECMODEL parameter 262
with DD SPACE parameter 271
with DD SPACE reclgth

subparameter 266
with DD STORCLAS parameter 275
with DD UNIT parameter 293
with DD VOLUME=REF

subparameter 308
SMS-managed data set

definition 276
with data set password

protection 219

Index 683

SMS-managed data set (continued)
with DD MGMTCLAS

parameter 228
with DD STORCLAS parameter 275
with DD VOLUME=REF

subparameter 308
with temporary data set 179

SMSHONOR subparameter
of DD UNIT parameter 296

SN character set
for 1403 and 3203 Model 5

printer 290, 547
SPACE parameter

description 264
example 271
of DD statement 264, 266, 271
override 271
relationship to other parameter 271
specifying for data sets with

SMS 271
subparameter 266

SPART parameter
of JES3 //*MAIN statement 639

special character set
specifying 290, 547
use 292, 548
use in parameter 22
use in syntax 21

special DD statement
description 313

specifying
on the EXEC statement 356
on the JOB statement 432

SPIN parameter
default 274
description 273
of DD statement 273, 274
override 274
relationship to other parameter 274
subparameter 273

ST subparameter
of //*MAIN PROC parameter 638

STACK subparameter
of DD DCB parameter 149

STACKER parameter
of JES3 //*FORMAT PR

statement 621
standard processing

description 649
STANDARD subparameter

of //*FORMAT CHARS
parameter 616

of //*FORMAT FLASH
parameter 620

of //*FORMAT FORMS
parameter 620, 627

of //*FORMAT STACKER
parameter 621

of //*FORMAT TRAIN
parameter 621

START command
processing

when member is job 60
when member is procedure 60

started task
determining source JCL 59
determining when to use 59

started task (continued)
START command processing

when member is job 60
when member is procedure 60

started tasks
JES2 considerations 575
JES3 considerations 607
JOB statement 398

statement
EXPORT 371

syntax 371
statement fields

chart 14
comments 14, 16
continuation to following

statement 16
identifier 14, 16
location in statement 14
name 14, 16
operation 14, 16
parameter 14, 16

statements subparameter
of JOB MSGLEVEL parameter 426

static system symbol 38
status

coded in DD DISP parameter 161
STD subparameter

of /*JOBPARM FORMS
parameter 579

of /*OUTPUT FORMS
parameter 592

of OUTPUT JCL FCB parameter 501
of OUTPUT JCL FLASH

parameter 503
of OUTPUT JCL FORMS

parameter 506
on OUTPUT JCL CHARS

parameter 478
STD1 forms control buffer image

on DD FCB parameter 195
on OUTPUT JCL FCB parameter 501

STD2 forms control buffer image
on DD FCB parameter 195
on OUTPUT JCL FCB parameter 501

STD3 forms control buffer image
on DD FCB parameter 195
on OUTPUT JCL FCB parameter 501

step
beginning 333
description 5
maximum number 5

step-level
OUTPUT JCL statement 470

STEPLIB DD statement
description 316
example 318
location in JCL 318
parameter 317
relationship to JOBLIB 318
relationship to other control

statement 318
stepname

coding 333
stepname subparameter

of EXEC COND parameter 344
of JOB RESTART parameter 442

stepname.ddname
on DD statement referenced by DD

DDNAME parameter 152
stepname.ddname subparameter

of //*FORMAT DDNAME
parameter 615, 624

of //*MAIN SETUP parameter 639
stepname.procstepname subparameter

of JOB RESTART parameter 442
stepname.procstepname.ddname

subparameter
of //*FORMAT DDNAME

parameter 615, 624
of //*MAIN SETUP parameter 639

storage-class-name subparameter
of DD STORCLAS parameter 276

STORCLAS parameter
default 276
description 275
example 277
of DD statement 275, 276, 277
override 276
relationship to other parameter 276
subparameter 276
with DD UNIT parameter 293

STRNO subparameter
of DD AMP parameter 109

SUB=MSTR option
started task 64

SUBCHARS parameter 572
default 573
description 572
example 573
processing when invalid 573
subparameter 572
XMIT JCL statement parameter 572,

573
subparameter

coding when multiple 15
syntax 15

subparameter subparameter
of DD DCB parameter 137

substitute subparameter
of XMIT JCL SUBCHARS

parameter 572
SUBSYS parameter

description 277
example 279
of DD statement 277, 278, 279
relationship to other parameter 278
running under the master

subsystem 64
subparameter 278, 279

subsystem-name subparameter
of DD SUBSYS parameter 278

subsystem-subparameter subparameter
of DD SUBSYS parameter 278

SUL subparameter
of DD LABEL parameter 218

summary of changes
as updated December 2013 xxvii

Summary of changes xxvii
symbol

JCL symbol 38
system symbol 38

symbolic
coding 38, 43

684 z/OS V2R1.0 MVS JCL Reference

symbolic (continued)
default substitution text 41
defining 39
example 50
in nested procedure 51
location 43
nullifying 39, 42
purpose 38
syntax 40

symbols
in-stream data

JES2 54
SYMBOLS parameter 280
SYMLIST parameter 281, 372
SYNAD subparameter

of DD AMP parameter 109
syntax

for continuing statement 16
format of statement 13
notation 19
of parameter 19
scanning for error 453
scanning for errors 13, 16, 19, 453

SYS1.PROCLIB system procedure library
use for procedure 5

SYSABEND DD statement
description 319
example 322
location in JCL 320
overriding 321

SYSAFF parameter
default 448
description 446
examples 448
of JES2 /*JOBPARM statement 581
of JOB statement 446, 447, 448
relationship to other control

statements 448
subparameter definition 447

SYSALLDA group name
assumed when in-stream data set

referenced 309
SYSAREA parameter

default 544
description 543
example 544
of OUTPUT JCL statement 543, 544
relationship to other parameter 544
subparameter definition 543

SYSCHK DD statement
description 323
example 325
location in JCL 325
parameter 323
relationship to other control

statement 324
SYSCKEOV DD statement

description 325
example 326
location in JCL 326
parameter 325
relationship to DD CHKPT

parameter 124
SYSIN DD statement

description 326
example 326
location in JCL 326

SYSIN DD statement (continued)
parameter 326

SYSMDUMP DD statement
description 319
example 322
location in JCL 320
overriding 321

sysout (system output data set)
associating with an OUTPUT JCL

statement 233
references to OUTPUT JCL

statement 470
specifying through DD SYSOUT

parameter 283
with DSNAME parameter 181

SYSOUT parameter
default 285
description 283
example 287
of DD statement 283, 284, 285, 286,

287
override 285
relationship to DD COPIES

parameter 128
relationship to other control

statement 286
relationship to other parameter 286
subparameter 284
with DEST=(node) subparameter 158

system completion code
with IF/THEN/ELSE/ENDIF

statement construct 378
SYSTEM parameter

description 448
examples 449
of JES3 //*MAIN statement 640
of JOB statement 448, 449
relationship to other control

statements 449
system symbol

coding 39, 43
in started task 56, 66, 69
overridden by JCL symbol 41
using in JCL 38

system-managed
sending to other destination 513
specifying processing 512

SystemName parameter
of JOB statement 449
subparameter definition 449

SYSUDUMP DD statement
description 319
example 322
location in JCL 320
overriding 321

SYSUID system symbolic parameter
description 49
restriction 50
use in transaction program profile 49

T
T subparameter

of DCB EROPT parameter 144
of DCB FUNC subparameter 144
of DCB OPTCD subparameter 147
of DCB TRTCH subparameter 150

T subparameter (continued)
of RECFM parameter 252, 253

T11 character set
for 3211 printer 290, 547

table-name subparameter
of //*FORMAT CHARS

parameter 616
on DD CHARS parameter 122
on OUTPUT JCL CHARS

parameter 478
task

chart 6
description 5
for entering jobs

chart 6
for processing jobs

chart 8
for requesting sysout data set

resources
chart 10

temporary
naming 181

temporary data set 179
TERM parameter

description 288
example 289
location in JCL 289
of DD statement 288, 289
relationship to other parameter 289
subparameter 289

terminal
data coming from or going to a

terminal 288
termination

abnormal 342, 378, 413, 427
normal 342, 378, 413, 427
notification 427
testing return code 342, 378, 413

test
of on-line terminal 144
return code 144

TEXT subparameter
of DD FILEDATA parameter 198
test 198

THRESH subparameter
of DD DCB parameter 149

THRESHLD parameter
default 544
description 544
example 545
of JES3 //*FORMAT PR

statement 621
of OUTPUT JCL statement 544, 545
subparameter 544

THWS subparameter
of //*MAIN SETUP parameter 639

THWSSEP parameter
of JES3 //*MAIN statement 640

time
use by job 450
use by job step 367

TIME parameter
default 368, 451
description 367, 450
example 369, 451
of EXEC statement 367, 368, 369
of JES2 /*JOBPARM statement 582

Index 685

TIME parameter (continued)
of JOB statement 450, 451
override 369, 451
subparameter 368, 450

time subparameter
of //*MAIN DEADLINE

parameter 632
TIME subparameter

JES2 format of JOB accounting
information 404

TITLE parameter
description 545
of OUTPUT JCL statement 545
subparameter 545

TN character set
for 1403 and 3203 Model 5

printer 290, 547
to remote node

input stream for execution 652
TRACE subparameter

of DCB DIAGNS subparameter 143
of DD AMP parameter 109

trace
of OPEN/CLOSE/EOV 143

track
specifying in DD SPACE

parameter 266
track subparameter

of DCB CYLOFL subparameter 143
of DCB LIMCT subparameter 145
of DCB NCP parameter 146

trademarks 663
TRAIN parameter

of JES3 //*FORMAT PR
statement 621

train-name subparameter
of //*FORMAT TRAIN

parameter 621
transmission

of input stream to network node 652
of input stream using XMIT JCL

statement 567
TRC parameter

default 546
description 546
example 546
of OUTPUT JCL statement 546
relationship to other parameter 546
subparameter 546

trc subparameter
of //*FORMAT FORMS

parameter 620
of /*OUTPUT MODIFY

parameter 593
of /*OUTPUT MODTRC

parameter 594
of DD MODIFY parameter 231
of OUTPUT JCL MODIFY

parameter 521
TRIPLE subparameter

of //*FORMAT CONTROL
parameter 617

of OUTPUT JCL CONTROL
parameter 486

TRK subparameter
of DD SPACE parameter 266

TRKGRPS parameter
of JES3 //*MAIN statement 641

TRTCH subparameter
of DD DCB parameter 150

TS subparameter
of DD TERM parameter 289

TUMBLE subparameter
of OUTPUT JCL DUPLEX

parameter 500
TYPE parameter

of JES3 //*MAIN statement 641
type subparameter

of //*FORMAT DEST
parameter 619, 626

of //*MAIN DEADLINE
parameter 632

TYPRUN parameter
description 453
example 454
of JOB statement 453, 454
relationship to other control

statement 454
subparameter 453

U
U subparameter

of DCB OPTCD subparameter 147,
148

of DD AVGREC parameter 113
of DD RECFM parameter 252, 253

UCS parameter
default 291, 547
description 290, 547
example 292, 549
of DD statement 290, 291, 292
of JES2 /*OUTPUT statement 594
of OUTPUT JCL statement 547, 548,

549
override 292, 548
relationship to other parameter 292
subparameter 290, 547

UJOBCORR parameter
description 455
examples 456
of JOB statement 455, 456
subparameter definition 455

Un parameter
of JES2 /*ROUTE statement 597

Un subparameter
of /*OUTPUT DEST parameter 591
of DD DEST parameter 157
of OUTPUT JCL DEST

parameter 496
UNBLOCK subparameter

of OUTPUT JCL DATACK
parameter 490

UNCATLG subparameter
of DD DISP parameter 165, 166

unit affinity
specifying in AFF subparameter 296
when DDNAME parameter is also

coded 152
UNIT parameter

description 293
example 298
location in JCL 298

UNIT parameter (continued)
of DD statement 293, 297, 298
override 297
relationship to DD COPIES

parameter 128
relationship to other control

statements 298
relationship to other parameter 298
subparameter 293

unit-count subparameter
of DD UNIT parameter 295

universal character set (UCS)
specifying 290, 547

unqualified
for data set 178

UPDATE parameter
of JES3 //*MAIN statement 642

uppercase
in syntax 19

user completion code
with IF/THEN/ELSE/ENDIF

statement construct 378
user interface

ISPF 657
TSO/E 657

USER parameter
default 457
description 456
example 457
of JES3 //*MAIN statement 642
of JOB statement 456, 457
relationship to other parameter 457
subparameter 457

USERDATA parameter
of OUTPUT JCL statement 549

userid
data coming from or going to a

user 288
userid parameter

of JES2 /*NOTIFY statement 585
of JES2 /*ROUTE statement 597
of JES2 /*XMIT statement 605

userid subparameter
of //*MAIN USER parameter 642
of //*NETACCT USERID

parameter 648
of /*OUTPUT DEST parameter 590
of DD DEST parameter 157, 158
of JES3 //*NETACCT statement 648
of JOB NOTIFY parameter 428
of JOB USER parameter 457
of OUTPUT JCL DEST

parameter 496
USERLIB parameter

of OUTPUT JCL statement 552
userpath

of OUTPUT JCL statement 553

V
V subparameter

of AMP RECFM subparameter 109
of DD DSID parameter 175
of DD RECFM parameter 252, 253

valueK subparameter
subparameter of EXEC REGION

parameter 364

686 z/OS V2R1.0 MVS JCL Reference

valueK subparameter (continued)
subparameter of JOB REGION

parameter 440
valueM subparameter

subparameter of EXEC REGION
parameter 365

subparameter of JOB REGION
parameter 440

VB subparameter
of AMP RECFM subparameter 109

verification
of FCB image 196
of forms overlay frame 201, 504

VERIFY subparameter
of DD FCB parameter 196
of DD UCS parameter 291

VIRT subparameter
of EXEC ADDRSPC parameter 340
of JOB ADDRSPC parameter 406

virtual
requesting for job 406
requesting for step 340

vmguestid parameter
of JES2 /*ROUTE statement 598
of JES2 /*XEQ statement 603
of JES2 /*XMIT statement 605
of JES3 //*ROUTE XEQ 653

vmguestid subparameter
of XMIT JCL DEST parameter 570

volume
specifying by RETAIN

subparameter 302
VOLUME parameter

description 300
example 310
in JES3 system 309
of DD statement 300, 302, 309, 310
override 309
relationship to other parameter 309
subparameter 302

volume-count subparameter
of DD VOLUME parameter 303

volume-sequence-number subparameter
of DD VOLUME parameter 303

VS2 subparameter
of //*MAIN TYPE parameter 641

VSAM (virtual storage access method)
record-level sharing 260
referenced in VOLUME=REF

subparameter 308
with DD AMP parameter 105
with DD DATACLAS parameter 133
with DD RECORG parameter 254
with DD RLS parameter 260

W
W subparameter

of //*MAIN BYTES parameter 631
of //*MAIN CARDS parameter 631
of //*MAIN LINES parameter 636
of //*MAIN PAGES parameter 637
of DCB FUNC subparameter 144
of DCB OPTCD subparameter 146,

147, 148
WARNING subparameter

of //*MAIN BYTES parameter 631

WARNING subparameter (continued)
of //*MAIN CARDS parameter 631
of //*MAIN LINES parameter 636
of //*MAIN PAGES parameter 637
of JOB BYTES parameter 408
of JOB CARDS parameter 409
of JOB LINES parameter 421
of JOB PAGES parameter 429

WLM scheduling environment 445
work-station-name parameter

of JES3 /*SIGNON statement 655
WRITER parameter

default 555
description 555
example 555
of OUTPUT JCL statement 555
override 555
relationship to other parameter 555
subparameter 555

writer-name subparameter
of DD SYSOUT parameter 284
with DEST=(node) subparameter 158

X
x subparameter

of //*MAIN PROC parameter 638
of /*JOBPARM FORMS

parameter 579
of /*JOBPARM ROOM

parameter 581
of /*OUTPUT CHARS

parameter 588
of /*OUTPUT FCB parameter 591
of /*OUTPUT FORMS

parameter 592
of /*OUTPUT UCS parameter 594
of /*XMIT DLM parameter 605
of DCB EROPT subparameter 144

X subparameter
of DCB FUNC subparameter 144
of DCB PCI subparameter 148
of LRECL parameter 227

XEQ parameter
of JES2 /*ROUTE statement 596

XMIT statement
comments field 568
description 567
error on statement 569
example 569
in JCL 567, 568, 569
location in JCL 568
name field 568
operation field 568
parameter field 568
support 567

XN character set
for 1403 and 3203 Model 5

printer 290, 547

Y
Y subparameter

of /*JOBPARM BURST
parameter 579

Y subparameter (continued)
of /*JOBPARM RESTART

parameter 581
of /*OUTPUT BURST parameter 588
of DCB OPTCD subparameter 148
of DD PROTECT parameter 250

YES subparameter
of //*DATASET DDNAME

parameter 611
of //*FORMAT FORMS

parameter 627
of //*MAIN EXPDTCHK

parameter 634
of //*MAIN HOLD parameter 635
of //*MAIN JOURNAL

parameter 636
of //*MAIN RINGCHK

parameter 638
of //*NET DEVRELSE

parameter 645
of //*NET OPHOLD parameter 646
of DD BURST parameter 118
of DD HOLD parameter 206
of DD PROTECT parameter 250
of OUTPUT JCL AFPSTATS

parameter 475
of OUTPUT JCL BURST

parameter 477
of OUTPUT JCL DEFAULT

parameter 492
of OUTPUT JCL DPAGELBL

parameter 499
of OUTPUT JCL PIMSG

parameter 532
of OUTPUT JCL SYSAREA

parameter 543
of OUTPUT JCL TRC parameter 546

YN character set
for 1403 and 3203 Model 5

printer 290, 547
yyddd subparameter

of DD EXPDT parameter 193
yyyy/ddd subparameter

of DD EXPDT parameter 193

Z
Z subparameter

of DCB OPTCD subparameter 147

Index 687

688 z/OS V2R1.0 MVS JCL Reference

����

Product Number: 5650-ZOS

Printed in USA

SA23-1385-01

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Where to find more information
	Related information
	Programs
	Hardware

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Job control statements
	JCL statements
	JECL statements

	Chapter 2. Job Control Tasks
	Entering Jobs
	Processing Jobs
	Requesting Resources
	Task Charts

	Chapter 3. Format of statements
	JCL statement fields
	Parameter field

	JES2 control statement fields
	JES3 control statement fields
	Continuing statements
	Continuing JCL statements
	Continuing the parameter field
	Continuing parameter fields enclosed in apostrophes
	Continuing the comments field

	Examples of continued statements
	Continuing JES2 control statements
	Continuing JES3 control statements

	Chapter 4. Syntax of parameters
	Notation used to show syntax
	Character sets
	Syntax notes
	Backward references
	Examples of backward references

	Chapter 5. Procedures and symbols
	Cataloged and in-stream procedures
	In-stream procedures
	Cataloged procedures
	Cataloging a procedure

	Using a procedure
	Testing a procedure

	Modifying procedures
	Modifying EXEC statement parameters
	All procedure statements
	A single procedure statement
	Rules for modifying EXEC parameters

	Modifying OUTPUT JCL and DD statements
	Location in the JCL
	Coding an overriding OUTPUT JCL or DD statement
	Rules for modifying OUTPUT JCL or DD parameters
	Additional rules for modifying DD parameters
	Adding an OUTPUT JCL or DD statement
	Supplying in-stream data for a procedure
	Embedding in-stream data in a procedure
	Rules for modifying DD statements in concatenated data sets

	Examples of procedures

	Nested procedures
	Nesting procedures
	Modifying nested procedures
	Examples of modifying nested procedures

	Using system symbols and JCL symbols
	What are system symbols?
	Displaying static system symbols
	Using system symbols in started task JCL

	What are JCL symbols?
	Defining and nullifying JCL symbols

	Coding symbols in JCL
	Rules for coding symbols in JCL

	Determining equivalent JCL
	Continuing JCL statements that contain symbols
	Coding symbols in comments
	Coding symbols in apostrophes
	Using symbols before fixed code
	Using symbols as positional parameters
	Using two or more symbols in succession
	Using multiple symbols
	Using the SYSUID system symbol
	Restrictions on coding SYSUID

	Examples of defining and coding symbols in JCL
	Using symbols in nested procedures
	Examples of coding symbols in nested procedures

	Using symbols in JES2 in-stream data
	JCL symbol service (IEFSJSYM)
	JES symbol service (IAZSYMBL)

	Using symbols in batch JCL

	Chapter 6. Job control statements on the output listing
	Chapter 7. Started tasks
	Determining whether to use a started task
	Determining the source JCL for the started task
	START command processing when the member is a procedure
	START command processing when the member is a job
	Review current started tasks
	Convert procedures to jobs (optional)
	Alternative 1 - Add the member and JCL to the IEFJOBS-Defined data set
	Alternative 2 - Add the job JCL to the existing procedure
	Alternative 3 - Add the member and invoke a procedure in another DD concatenation

	Determining system services for a started task
	Deciding under which subsystem a started task should run
	Running a started task under a job entry subsystem
	Running a started task under the master subsystem
	Running a started task that uses catalogs
	Set Up the master JCL

	Coding the JCL
	Naming the JCL member
	Coding the JOB statement for the started task
	Using symbols in started task JCL
	Example: using system symbols
	Example: using JCL symbols
	Using symbols on certain JCL statements
	Using JCL statement keywords and symbols to override JCL

	Naming a started task (source JCL is a job)
	Setting up operator education for your started task

	Chapter 8. JCL command statement
	Description
	Syntax
	Operation field
	Parameter field
	Comments field
	Location in the JCL
	Defaults
	Examples of the command statement

	Chapter 9. COMMAND statement
	Description
	Syntax
	Name field
	Operation field
	Parameter field
	Comments field
	Location in the JCL
	Defaults
	Examples of the COMMAND statement

	Chapter 10. Comment statement
	Description
	Syntax
	Location in the JCL
	Listing of comments statements
	Examples of the comment statement

	Chapter 11. CNTL statement
	Description
	Syntax
	Label field
	Operation field
	Parameter field
	Comments field
	Location in the JCL
	Program control statements
	Program control statements in procedures
	Example of the CNTL statement

	Chapter 12. DD statement
	Description
	Syntax
	Name field
	Operation field
	Parameter field
	Comments field
	Location in the JCL
	Concatenating data sets
	Two types of concatenation
	Coding a concatenation
	Devices for concatenated data sets
	Block sizes for concatenated data sets
	Logical record lengths for concatenated data sets
	References to concatenated data sets
	Do not concatenate data sets after a DUMMY data set
	Do not code other statements between concatenated DD statements

	Examples of DD statements and ddnames

	* Parameter
	Syntax
	Defaults
	Relationship to other parameters
	Relationship to other control statements
	Location in the JCL
	Unread records
	Examples of the * parameter

	ACCODE parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Example of the ACCODE parameter

	AMP parameter
	Syntax
	Subparameter definition
	Relationship to other parameters
	Buffer requirements
	Examples of the AMP parameter

	AVGREC parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Examples of the AVGREC parameter

	BLKSIZE parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other control statements
	Coexistence considerations
	Examples of the BLKSIZE parameter

	BLKSZLIM parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the BLKSZLIM parameter

	BURST parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Example of the BURST parameter

	CCSID parameter
	Syntax
	Subparameter definition
	Default
	Relationship to other parameters
	Examples of the CCSID parameter

	CHARS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Requesting a high-density dump
	Examples of the CHARS parameter

	CHKPT parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Relationship to the SYSCKEOV DD statement
	Checkpointing concatenated data sets
	Examples of the CHKPT parameter

	CNTL parameter
	Syntax
	Subparameter definition
	Examples of the CNTL parameter

	COPIES parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to Other Parameters
	Relationship to other control statements
	Using OUTPUT JCL COPIES by nullifying DD copies

	Examples of the COPIES parameter

	DATA parameter
	Syntax
	Defaults
	Relationship to other parameters
	Relationship to other control statements
	Location in the JCL
	Unread records
	Examples of the DATA parameter

	DATACLAS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Examples of the DATACLAS parameter

	DCB parameter
	Syntax
	Subparameter definition
	Completing the data control block
	Relationship to other parameters
	Examples of the DCB parameter
	DCB subparameters

	DDNAME parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Location in the JCL
	Referenced DD statement
	Backward references
	Examples of the DDNAME parameter

	DEST parameter
	Syntax
	Subparameter definition for JES2 systems
	Subparameter definition for JES3 systems
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Example of the DEST parameter

	DISP parameter
	Syntax
	Subparameter definition
	Status subparameter
	Normal termination disposition subparameter
	Abnormal termination (conditional) disposition subparameter

	Defaults
	Relationship to other parameters
	Disposition of QSAM data sets
	Disposition of generation data sets
	Disposition of temporary data sets
	Disposition of partitioned data sets (PDSs and PDSEs)
	Adding a volume to a cataloged data set
	DISP=MOD for a multivolume data set
	Minimizing tape mounts
	Determining the last volume
	Extending on a volume other than the last
	Effect of DCB=dsname parameter

	Summary of disposition processing
	Examples of the DISP parameter

	DLM parameter
	Syntax
	Subparameter definition
	Default
	Relationship to other parameters
	Invalid delimiters
	Example of the DLM parameter

	DSID Parameter
	Syntax
	Subparameter definition
	Relationship to other parameters
	Example of the DSID parameter

	DSNAME parameter
	Syntax
	Subparameter definition
	Data set name for permanent data set
	Unqualified name
	Qualified name
	Name for RACF-protected data set
	Cataloged data set name
	Data set name for temporary data set
	Data set name for in-stream or sysout data set
	Data set name copied from earlier dd statement
	Data set name for dummy data set

	Relationship to other parameters
	Examples of the DSNAME parameter

	DSNTYPE parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Examples of the DSNTYPE parameter

	DUMMY parameter
	Syntax
	Parameters on DD DUMMY statements
	Relationship to other parameters
	Relationship to other control statements
	Relationship to access methods
	Examples of the DUMMY parameter

	DYNAM parameter
	Syntax
	Relationship to other parameters
	Relationship to other control statements
	Example of the DYNAM parameter

	EATTR parameter
	Syntax
	Subparameter definition
	Examples of the EATTR parameter

	EXPDT parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Deleting a data set before its expiration date
	Examples of the EXPDT parameter

	FCB parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Defining an FCB image for a work station
	Requesting a high-density dump
	Examples of the FCB parameter

	FILEDATA parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Example of the FILEDATA parameter

	FLASH parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Verification of forms overlay frame
	Printing without flashing
	Example of the FLASH parameter

	FREE parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Relationship to the CLOSE macro instruction
	Examples of the FREE parameter

	FREEVOL parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements

	GDGORDER parameter
	Syntax
	Subparameter definition
	Defaults
	Example of the GDGORDER parameter

	HOLD parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Examples of the HOLD parameter
	Example 1
	Example 2

	KEYLABL1 parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Examples of the KEYLABL1 parameter

	KEYLABL2 parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Examples of the KEYLABL2 parameter

	KEYENCD1 parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Example of the KEYENCD1 parameter

	KEYENCD2 parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Example of the KEYENCD2 parameter

	KEYLEN parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Examples of the KEYLEN parameter

	KEYOFF parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Example of the KEYOFF parameter

	LABEL parameter
	Syntax
	Subparameter definition
	Data-set-sequence-number
	Label
	Password protection
	Input or output processing
	Retention period or expiration date for data set

	Defaults
	Relationship to other parameters
	Relationship to other control statements
	Data conversion
	Examples of the LABEL parameter

	LGSTREAM parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Example of the LGSTREAM parameter

	LIKE parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Examples of the LIKE parameter

	LRECL parameter
	Syntax
	Subparameter definition
	Additional syntax for LRECL=(bytes)

	Overrides
	Relationship to other parameters
	Examples of the LRECL parameter

	MAXGENS parameter
	Syntax
	Subparameter definition
	Relationship to other parameters
	Examples of the MAXGENS parameter

	MGMTCLAS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Example of the MGMTCLAS parameter

	MODIFY parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Example of the MODIFY parameter

	OUTLIM parameter
	Syntax
	Subparameter definition
	Default
	Relationship to other parameters
	Relationship to other control statements
	Example of the OUTLIM parameter

	OUTPUT parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Location in the JCL
	No match for OUTPUT name
	Processing options in multiple references
	Examples of the OUTPUT parameter

	PATH parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Relationship to other statements
	Dummy z/OS UNIX files
	Example of the PATH parameter

	PATHDISP parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the PATHDISP parameter

	PATHMODE parameter
	Syntax
	Subparameter definition
	For file owner class
	For file group class
	For file other class
	To set user and group IDs in a program

	Defaults
	Relationship to other parameters
	Example of the PATHMODE parameter

	PATHOPTS parameter
	Syntax
	Subparameter definition
	Access group
	Status group

	Defaults
	Relationship to other parameters
	File status
	Example of the PATHOPTS parameter

	PROTECT parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Requirements for protecting a tape data set
	Requirements for protecting a tape volume
	Requirements for protecting a direct access data set
	Examples of the PROTECT parameter

	RECFM parameter
	Coding RECFM for BDAM access method
	Coding RECFM for BPAM access method
	Coding RECFM for BSAM, EXCP, and QSAM access methods
	Overrides
	Relationship to other parameters
	Examples of the RECFM parameter

	RECORG parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Example of the RECORG parameter

	REFDD parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Examples of the REFDD parameter

	RETPD parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Deleting a data set before its retention period passes
	Examples of the RETPD parameter

	RLS parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Examples of the RLS parameter

	SECMODEL parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Examples of the SECMODEL parameter

	SEGMENT parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Example of the segment parameter

	SPACE parameter
	Syntax
	Subparameter definition
	System assignment of space
	Request for specific tracks

	Overrides
	Relationship to other parameters
	SPACE for new data sets with SMS
	Examples of the SPACE parameter

	SPIN parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Examples of the SPIN parameter

	STORCLAS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Examples of the STORCLAS parameter

	SUBSYS parameter
	Syntax
	Subparameter definition
	Relationship to other parameters
	Subsystem support for JCL parameters
	Examples of the SUBSYS parameter

	SYMBOLS parameter
	Syntax
	Relationship to other parameters
	Example of the SYMBOLS parameter

	SYMLIST parameter
	Syntax
	Relationship to other parameters
	Example of the SYMLIST parameter

	SYSOUT parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Starting an external writer when requested
	Held classes in a JES2 system
	Held classes in a JES3 system
	Significance of output classes
	Examples of the SYSOUT parameter

	TERM parameter
	Syntax
	Subparameter definition
	Relationship to other parameters
	Location in the JCL
	Examples of the TERM parameter

	UCS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Using special character sets
	Examples of the UCS parameter

	UNIT parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Location in the JCL
	Examples of the UNIT parameter

	VOLUME parameter
	Syntax
	Subparameter definition
	Overrides
	Relationship to other parameters
	VOLUME parameter in a JES3 system
	VOLUME parameter for optical readers
	VOLUME parameter for nonspecific volume requests
	VOLUME parameter for specific multi-volume tape requests
	Examples of the VOLUME parameter

	Chapter 13. Special DD statements
	Description
	Syntax
	Special ddnames

	JOBLIB DD statement
	Syntax
	Parameters on JOBLIB DD statements
	Relationship to other control statements
	Location in the JCL
	Relationship of a JOBLIB to a STEPLIB
	Examples of the JOBLIB DD statement

	STEPLIB DD statement
	Syntax
	Parameters on STEPLIB DD statements
	Relationship to other control statements
	Location in the JCL
	Relationship of a STEPLIB to a JOBLIB
	Examples of the STEPLIB DD statement

	SYSABEND, SYSMDUMP, and SYSUDUMP DD statements
	Syntax
	Location in the JCL
	Storing a dump
	Printing a dump
	Overriding dump DD statements
	Duplicate dump requests
	Examples of the SYSABEND, SYSMDUMP, and SYSUDUMP DD statements

	SYSCHK DD statement
	Syntax
	Parameters on SYSCHK DD statements
	Relationship to other control statements
	Location in the JCL
	Examples of the SYSCHK DD statement

	SYSCKEOV DD statement
	Syntax
	Parameters on SYSCKEOV DD statements
	Location in the JCL
	Example of the SYSCKEOV DD statement

	SYSIN DD statement
	Syntax
	Parameters on SYSIN DD statements
	Location in the JCL
	Examples of SYSIN DD statements

	Chapter 14. Delimiter statement
	Description
	Syntax
	Comments field
	Relationship to the DLM parameter
	Location in the JCL
	Examples of the delimiter statement

	Chapter 15. ENDCNTL statement
	Description
	Syntax
	Label field
	Operation field
	Comments field
	Location in the JCL
	Example of the ENDCNTL statement

	Chapter 16. EXEC statement
	Description
	Syntax
	Name field
	Stepnames for started tasks

	Operation field
	Parameter field
	Comments field
	Location in the JCL
	Examples of EXEC statements

	ACCT parameter
	Syntax
	Subparameter definition
	On an EXEC statement that calls a procedure
	Examples of the ACCT parameter

	ADDRSPC parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to the EXEC REGION parameter
	On an EXEC statement that calls a procedure
	Examples of the ADDRSPC parameter

	CCSID parameter
	Syntax
	Subparameter definition
	Default
	Relationship to other parameters
	Examples of the CCSID parameter

	COND parameter
	Syntax
	Subparameter definition
	Overrides
	Location in the JCL
	On an EXEC statement that calls a procedure
	Considerations when using the COND parameter
	Errors that prevent step execution, regardless of COND specifications
	JES3 considerations
	COND parameter on the first statement in a Job
	JOBLIB with COND=ONLY
	When the JOB statement contains a RESTART parameter

	Summary of COND parameters
	Examples of the COND parameter

	DYNAMNBR parameter
	Syntax
	Subparameter definition
	Defaults
	On an EXEC statement that calls a procedure
	Example of the DYNAMNBR parameter

	MEMLIMIT parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to the REGION parameter
	Considerations When Using the MEMLIMIT parameter
	Example of the MEMLIMIT parameter

	PARM parameter
	Syntax
	Subparameter definition
	On an EXEC statement that calls a procedure
	Examples of the PARM parameter

	PARMDD parameter
	Syntax
	Relationship to other control statements
	Data set requirements
	Record length requirements
	Parameter string requirements
	Examples of the PARMDD parameter

	PERFORM parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	On an EXEC statement that calls a procedure
	Example of the PERFORM parameter

	PGM parameter
	Syntax
	Subparameter definition
	Examples of the PGM parameter

	PROC and procedure name parameters
	Syntax
	Subparameter definition
	Effect of PROC parameter on other parameters and following statements
	Examples of the PROC parameter

	RD parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other control statements
	On an EXEC statement that calls a procedure
	Examples of the RD parameter

	REGION parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to the EXEC ADDRSPC parameter
	On an EXEC statement that calls a procedure
	Relationship to the MEMLIMIT parameter
	Considerations when using the REGION parameter
	Examples of the REGION parameter

	RLSTMOUT parameter
	Syntax
	Defaults
	Examples of the RLSTMOUT parameter

	TIME parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	On an EXEC statement that calls a procedure
	Examples of the TIME parameter

	Chapter 17. EXPORT statement
	Description
	Syntax
	Label field
	Operation field
	Parameter field
	Comments field
	Location in the JCL

	SYMLIST parameter
	Syntax
	Subparameter definition
	Examples

	Chapter 18. IF/THEN/ELSE/ENDIF statement construct
	Description
	Syntax
	Name field
	Operation field
	Relational-expression field
	Priorities of operators
	Comparison operators
	Logical operators
	NOT operator
	Relational-expression keywords
	Specification of step names in relational expression keywords
	Use of parentheses with relational expressions

	Comments field
	Location in the JCL
	Relationship to other parameters
	Defaults

	THEN and ELSE clauses
	Considerations when using the IF/THEN/ELSE/ENDIF construct
	Errors that prevent execution, regardless of if statement tests
	Considerations for restarted jobs

	Examples of IF/THEN/ELSE/ENDIF statement constructs
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	Chapter 19. INCLUDE statement
	Description
	Syntax
	Name field
	Operation field
	Parameter field
	Comments field
	Location in the JCL
	Considerations for using INCLUDE groups
	Examples of the INCLUDE statement:

	Chapter 20. JCLLIB statement
	Description
	Syntax
	Name field
	Operation field
	Parameter field
	Comments field
	Location in the JCL
	Considerations for using the JCLLIB statement
	Examples of the JCLLIB statement

	Chapter 21. JOB statement
	Description
	Syntax
	Name field
	Operation field
	Parameter field
	Comments field
	Location in the JCL
	Examples of JOB statements

	Accounting information parameter
	Syntax
	Subparameter definition
	Relationship to other control statements
	JES2 accounting information format
	Syntax
	Examples of the accounting information parameter

	ADDRSPC parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to the JOB REGION parameter
	Examples of the ADDRSPC parameter

	BYTES parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Examples of the BYTES parameter

	CARDS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Examples of the CARDS parameter

	CCSID parameter
	Syntax
	Subparameter definition
	Default
	Overrides
	Relationship to other parameters
	Examples of the CCSID parameter

	CLASS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other control statements
	Example of the CLASS parameter

	COND parameter
	Syntax
	Subparameter definition
	Overrides
	Summary of COND parameters
	Examples of the COND parameter

	DSENQSHR parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other control statements
	Examples of the DSENQSHR parameter

	GROUP parameter
	Syntax
	Subparameter definition
	Defaults
	Example of the GROUP parameter

	JESLOG parameter
	Syntax
	Subparameter definition
	Defaults
	Examples of the JESLOG parameter

	JOBRC parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other control statements
	Examples of the JOBRC parameter

	LINES parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Examples of the LINES parameter

	MEMLIMIT parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to the REGION parameter
	Considerations when using the MEMLIMIT parameter
	Examples of the MEMLIMIT parameter

	MSGCLASS parameter
	Syntax
	Subparameter definition
	Defaults
	Significance of output classes
	Examples of the MSGCLASS parameter

	MSGLEVEL parameter
	Syntax
	Subparameter definition
	Defaults
	Examples of the MSGLEVEL parameter

	NOTIFY parameter
	Syntax
	Subparameter definition for JES2 systems
	Subparameter definition for JES3 systems
	Receiving notification of job completion
	Examples of the NOTIFY parameter

	PAGES parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Examples of the PAGES parameter

	PASSWORD parameter
	Syntax
	Subparameter definition
	Relationship to other parameters
	Examples of the PASSWORD parameter

	PERFORM parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Examples of the PERFORM parameter

	Programmer’s name parameter
	Syntax
	Parameter definition
	Examples of the programmer’s name parameter

	PRTY parameter
	Syntax
	Subparameter definition
	Defaults
	Example of the PRTY parameter

	RD parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other control statements
	Examples of the RD parameter

	REGION parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to the JOB ADDRSPC parameter
	Relationship to the MEMLIMIT parameter
	Considerations when using the REGION parameter
	Examples of the REGION parameter

	RESTART parameter
	Syntax
	Subparameter definition
	Relationship to other control statements
	Cautions when coding the RESTART parameter
	Generation data sets in restarted jobs
	Examples of the RESTART parameter

	SECLABEL parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the SECLABEL parameter

	SCHENV parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other control statements
	Example of the SCHENV parameter

	SYSAFF parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other control statements
	Examples of the SYSAFF parameter

	SYSTEM parameter
	Syntax
	Subparameter definition
	Relationship to other control statements
	Examples of the SYSTEM parameter

	TIME parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Examples of the TIME parameter
	Examples of the TIME parameter on JOB and EXEC statements

	TYPRUN parameter
	Syntax
	Subparameter definition
	Relationship to other control statements
	Example of the TYPRUN parameter

	UJOBCORR parameter
	Syntax
	Subparameter definition
	Examples of the UJOBCORR parameter

	USER parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the USER parameter

	Chapter 22. Null Statement
	Description
	Syntax
	Location in the JCL
	Example of the null statement

	Chapter 23. OUTPUT JCL statement
	Description
	Syntax
	Name field
	Operation field
	Parameter field
	Using enclosing apostrophes in OUTPUT parameters

	Comments field
	Location in the JCL
	Overrides
	Relationship to sysout DD statement
	Relationship to the JES2 /*OUTPUT statement
	Relationship to the JES3 //*FORMAT statement

	ADDRESS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Examples of the ADDRESS parameter

	AFPPARMS parameter
	Syntax
	Parameter definition
	Defaults
	Overrides
	Relationship to other control statements
	Example of the AFPPARM keyword

	AFPSTATS parameter
	Syntax
	Parameter definition
	Defaults
	Overrides
	Relationship to other control statements
	Example of the AFPSTATS keyword

	BUILDING parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Example of the BUILDING parameter

	BURST parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Example of the BURST parameter

	CHARS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Requesting a high-density dump
	Example of the CHARS parameter

	CKPTLINE parameter
	Syntax
	Subparameter definition
	Defaults
	Example of the CKPTLINE parameter

	CKPTPAGE parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the CKPTPAGE parameter

	CKPTSEC parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the CKPTSEC parameter

	CLASS parameter
	Syntax
	Subparameter definition
	Overrides
	Held Classes in a JES2 system
	Held Classes in a JES3 system
	Significance of output classes
	Examples of the CLASS parameter

	COLORMAP parameter
	Syntax
	Subparameter definition
	Example of the COLORMAP parameter

	COMPACT parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Example of the COMPACT parameter

	COMSETUP parameter
	Syntax
	Subparameter definition
	Example of the COMSETUP parameter

	CONTROL parameter
	Syntax
	Subparameter definition
	Defaults
	Example of the CONTROL parameter

	COPIES parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Examples of the COPIES parameter

	COPYCNT parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Relationship to other control statements
	Examples of the COPYCNT parameter

	DATACK parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the DATACK parameter

	DDNAME parameter
	Syntax
	Subparameter definition
	Example of the DDNAME parameter

	DEFAULT parameter
	Syntax
	Subparameter definition
	Defaults
	Location in the JCL
	References to default OUTPUT JCL statements
	Example of the DEFAULT parameter

	DEPT parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Example of the DEPT parameter

	DEST parameter
	Syntax
	Subparameter definition for JES2 systems
	Subparameter definition for JES3 systems
	Defaults
	Overrides
	Relationship to other parameters
	Examples of the DEST parameter

	DPAGELBL parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the DPAGELBL parameter

	DUPLEX parameter
	Syntax
	Subparameter definition
	Relationship to other keywords on this statement
	Example of the DUPLEX parameter

	FCB parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Requesting a high-density dump
	Example of the FCB parameter

	FLASH parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Verification of forms overlay frame
	Printing without flashing
	Example of the FLASH parameter

	FORMDEF parameter
	Syntax
	Subparameter definition
	Overrides
	Example of the FORMDEF parameter

	FORMLEN parameter
	Syntax
	Subparameter definition
	Relationship to other control statements
	Examples of the FORMLEN parameter

	FORMS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Example of the FORMS parameter

	FSSDATA parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other keywords on this statement
	Relationship to other system functions
	Examples of the FSSDATA parameter

	GROUPID parameter
	Syntax
	Subparameter definition
	Relationship to other control statements
	Examples of the GROUPID parameter

	INDEX parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the INDEX parameter

	INTRAY parameter
	Syntax
	Subparameter definition
	Relationship to other keywords on this statement
	Example of the INTRAY parameter

	JESDS parameter
	Syntax
	Subparameter definition
	Overrides
	Location in the JCL
	Destination for the system data sets
	JES2 processing with JESDS
	JES3 processing with JESDS
	Example of the JESDS parameter

	LINDEX parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the LINDEX parameter

	LINECT parameter
	Syntax
	Subparameter definition
	Defaults
	Example of the LINECT parameter

	MAILBCC parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other system functions
	Examples of the MAILBCC parameter

	MAILCC parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other system functions
	Examples of the MAILCC parameter

	MAILFILE parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other system functions
	Example of the MAILFILE parameter

	MAILFROM parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other system functions
	Example of the MAILFROM parameter

	MAILTO parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other system functions
	Example of the MAILTO parameter

	MERGE parameter
	Syntax
	Subparameter definition
	Defaults
	Example of the MERGE parameter

	MODIFY parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Example of the MODIFY parameter

	NAME parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Example of the NAME parameter

	NOTIFY parameter
	Syntax
	Subparameter definitions
	Defaults
	Examples of the NOTIFY parameter

	OFFSETXB parameter
	Syntax
	Subparameter definition
	Relationship to other keywords on this statement
	Example of the OFFSETXB parameter

	OFFSETXF parameter
	OFFSETYB parameter
	OFFSETYF parameter
	OUTBIN parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other system functions
	Example of the OUTBIN parameter

	OUTDISP parameter
	Syntax
	Subparameter definitions
	Defaults
	Overrides
	Relationship to other control statements
	Examples of the OUTDISP parameter

	OVERLAYB parameter
	Syntax
	Subparameter definition
	Relationship to other keywords on this statement
	Example of the OVERLAYB parameter

	OVERLAYF parameter
	OVFL parameter
	Syntax
	Subparameter definition
	Defaults
	Example of the OVFL parameter

	PAGEDEF parameter
	Syntax
	Subparameter definition
	Overrides
	Example of the PAGEDEF parameter

	PIMSG parameter
	Syntax
	Subparameter definition
	Defaults
	Examples of the PIMSG parameter

	PORTNO parameter
	Syntax
	Subparameter definition
	Relationship to other system functions
	Example of the PORTNO parameter

	PRMODE parameter
	Syntax
	Subparameter definition
	Defaults
	Printing a line-mode data set using PSF
	Example of the PRMODE parameter

	PRTATTRS parameter
	Syntax
	Parameter definition
	Defaults
	Overrides
	Relationship to other keywords on this statement
	Relationship to other control statements
	Example of the PRTATTRS parameter

	PRTERROR parameter
	Syntax
	Subparameter definition
	Relationship to other control statements
	Examples of the PRTERROR parameter

	PRTOPTNS parameter
	Syntax
	Subparameter definition
	Relationship to other system functions
	Example of the PRTOPTNS parameter

	PRTQUEUE parameter
	Syntax
	Subparameter definition
	Relationship to other system functions
	Example of the PRTQUEUE parameter

	PRTY parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Example of the PRTY parameter

	REPLYTO parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other system functions
	Example of the REPLYTO parameter

	RESFMT parameter
	Syntax
	Subparameter definition
	Relationship to other control statements
	Example of the RESFMT parameter

	RETAINS and RETAINF parameters
	Syntax
	Subparameter definition
	Relationship to other control statements
	Relationship to other system functions
	Examples of the RETAIN keywords

	RETRYL and RETRYT parameters
	Syntax
	Subparameter definition
	Relationship to other control statements
	Relationship to other system functions
	Examples of the RETRY keywords

	ROOM parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Example of the ROOM parameter

	SYSAREA parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the SYSAREA parameter

	THRESHLD parameter
	Syntax
	Subparameter definition
	Defaults
	Example of the THRESHLD parameter

	TITLE parameter
	Syntax
	Subparameter definition
	Example of the TITLE parameter

	TRC parameter
	Syntax
	Subparameter definition
	Defaults
	Relationship to other parameters
	Example of the TRC parameter

	UCS parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Using special characters sets
	Example of the UCS parameter

	USERDATA parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other keywords on this statement
	Relationship to other control statements
	Relationship to other system functions
	Examples of the USERDATA parameter

	USERLIB parameter
	Syntax
	Subparameter definitions
	Defaults
	Overrides
	Requirements for USERLIB libraries
	Examples of the USERLIB parameter

	USERPATH parameter
	Syntax
	Subparameter definitions
	Defaults
	Overrides
	Relationship to other system functions
	Examples of the USERPATH parameter

	WRITER parameter
	Syntax
	Subparameter definition
	Defaults
	Overrides
	Relationship to other parameters
	Starting an external writer
	Examples of the WRITER parameter

	Chapter 24. PEND statement
	Description
	Syntax
	Name field
	Operation field
	Comments field
	Location in the JCL
	Examples of the PEND statement

	Chapter 25. PROC statement
	Description
	Syntax
	Name field
	Operation field
	Parameter field
	Comments field
	Overrides
	Location in the JCL
	Examples of the PROC statement

	Chapter 26. SET statement
	Description
	Syntax
	Name field
	Operation field
	Parameter field
	Comments field
	Overrides
	Location in the JCL
	Relationship to other control statements
	Considerations for using the SET statement
	Examples of the SET statement

	Chapter 27. XMIT JCL statement
	Description
	Syntax
	Name field
	Operation field
	Parameter field
	Comments field
	Location in the JCL
	Error on XMIT JCL statement
	Examples of the XMIT JCL statement

	DEST parameter
	Syntax
	Subparameter definition
	Examples of the DEST parameter

	DLM parameter
	Syntax
	Subparameter definition
	Default
	Invalid delimiters
	Examples of the DLM parameter

	SUBCHARS parameter
	Syntax
	Subparameter definition
	Default
	Invalid substitute
	Examples of the SUBCHARS parameter

	Chapter 28. JES2 control statements
	Description
	Considerations for started tasks
	Considerations for an APPC scheduling environment
	Location in the JCL
	Internal reader

	JES2 command statement
	Syntax
	Parameter definition
	Location in the JCL
	Examples of the command statement

	/*JOBPARM statement
	Syntax
	Parameter definition
	Overrides
	Location in the JCL
	Execution node
	Examples of the /*JOBPARM statement

	/*MESSAGE statement
	Syntax
	Relationship to the /*ROUTE XEQ statement
	Location in the JCL
	Example of the /*MESSAGE statement

	/*NETACCT statement
	Syntax
	Parameter definition
	Defaults
	Overrides
	Location in the JCL
	Example of the /*NETACCT statement

	/*NOTIFY statement
	Syntax
	Parameter definition
	Overrides
	Location in the JCL
	Examples of the NOTIFY statement

	/*OUTPUT statement
	Syntax
	Parameter definition
	Overrides
	Relationship to other control statements
	Location in the JCL
	Example of the /*OUTPUT statement

	/*PRIORITY statement
	Syntax
	Parameter definition
	Overrides
	Relationship to other control statements
	Location in the JCL
	Example of the PRIORITY statement

	/*ROUTE statement
	Syntax
	Parameter definition
	Location in the JCL
	Processing of /*ROUTE statements
	Multiple /*ROUTE statements
	Examples of the ROUTE statement

	/*SETUP statement
	Syntax
	Parameter definition
	Location in the JCL
	Example of the /*SETUP statement

	/*SIGNOFF statement
	Syntax
	Location in the JCL
	Example of the /*SIGNOFF statement

	/*SIGNON statement
	Syntax
	Parameter definition
	Location in the JCL
	Examples of the /*SIGNON statement

	/*XEQ statement
	Syntax
	Parameter definition
	Location in the JCL
	Multiple /*XEQ statements
	Example of the XEQ statement

	/*XMIT statement
	Syntax
	Parameter definition
	Defaults
	Location in the JCL
	Examples of the XMIT statement

	Chapter 29. JES3 control statements
	Description
	Considerations for an APPC scheduling environment
	Considerations for started tasks
	Location in the JCL
	Internal reader
	Examples of JES3 control statements

	JES3 command statement
	Syntax
	Parameter definition
	Location in the JCL
	Examples of the command statement

	//*DATASET statement
	Syntax
	Parameter definition
	Location in the JCL
	Example of the //*DATASET statement

	//*ENDDATASET statement
	Syntax
	Location in the JCL
	Example of the //*ENDDATASET statement

	//*ENDPROCESS statement
	Syntax
	Location in the JCL
	Example of the //*ENDPROCESS statement

	//*FORMAT PR statement
	Syntax
	Parameter definition
	Relationship to sysout DD and OUTPUT JCL statements
	Relationship to //*PROCESS statement
	Location in the JCL
	Examples of the //*FORMAT PR statement

	//*FORMAT PU statement
	Syntax
	Parameter definition
	Relationship to sysout DD and OUTPUT JCL statements
	Relationship to //*PROCESS statement
	Location in the JCL
	Examples of the //*FORMAT PU statement

	//*MAIN statement
	Syntax
	Parameter definition
	Location in the JCL
	Examples of the //*MAIN statement

	//*NET statement
	Syntax
	Parameter definition
	Location in the JCL
	Examples of the //*NET statement

	//*NETACCT statement
	Syntax
	Parameter definition
	Defaults
	Location in the JCL
	Example of the //*NETACCT statement

	//*OPERATOR statement
	Syntax
	Location in the JCL
	Example of the //*OPERATOR statement

	//**PAUSE statement
	Syntax
	Location in the JCL
	Example of the //**PAUSE statement

	//*PROCESS statement
	Syntax
	Parameter definition
	Location in the JCL
	Examples of the //*PROCESS statement

	//*ROUTE XEQ statement
	Syntax
	Parameter definition
	Location in the JCL
	JOB Statement after //*ROUTE XEQ
	Example of the //*ROUTE XEQ statement

	/*SIGNOFF statement
	Syntax
	Location in the JCL
	Example of the /*SIGNOFF statement

	/*SIGNON statement
	Syntax
	Parameter definition
	Location in the JCL
	Example of the /*SIGNON statement

	Appendix. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

