
z/OS

MVS Programming: Authorized Assembler
Services Reference, Volume 3 (LLA-SDU)
Version 2 Release 1

SA23-1374-01

���



Note
Before using this information and the product it supports, read the information in “Notices” on page 375.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . . xi

Tables . . . . . . . . . . . . . . . xiii

About this information . . . . . . . . xv
Who should use this information . . . . . . . xv
How to use this information. . . . . . . . . xv
z/OS information . . . . . . . . . . . . xv

How to send your comments to IBM xvii
If you have a technical problem . . . . . . . xvii

Summary of changes . . . . . . . . xix
Summary of changes for z/OS Version 2 Release 1,
as updated February 2015 . . . . . . . . . xix
z/OS Version 2 Release 1 summary of changes . . xix

Chapter 1. Using the services . . . . . 1
Compatibility of MVS macros. . . . . . . . . 1
Addressing mode (AMODE) . . . . . . . . . 2
Address space control (ASC) mode . . . . . . . 3

ALET qualification . . . . . . . . . . . 4
User parameters . . . . . . . . . . . . 4

Telling the system about the execution environment 6
Specifying a macro version number. . . . . . . 7

How to request a macro version using PLISTVER 7
Register use . . . . . . . . . . . . . . 8
Handling return codes and reason codes . . . . . 9

Handling program errors . . . . . . . . . 9
Handling environmental and system errors . . . 10

Using X-macros . . . . . . . . . . . . . 11
Macro forms . . . . . . . . . . . . . . 11

Conventional list form macros . . . . . . . 12
Alternative list form macros . . . . . . . . 12

Coding the macros . . . . . . . . . . . . 13
Continuation lines . . . . . . . . . . . 15

Coding the callable services . . . . . . . . . 16
Including equate (EQU) statements . . . . . 17
Link-editing linkage-assist routines . . . . . 17

Service summary . . . . . . . . . . . . 17

Chapter 2. LLACOPY - Library
lookaside refresh . . . . . . . . . . 27
Description . . . . . . . . . . . . . . 27

Environment . . . . . . . . . . . . . 27
Programming requirements . . . . . . . . 27
Restrictions . . . . . . . . . . . . . 27
Input register information . . . . . . . . 27
Output register information . . . . . . . . 27
Performance implications . . . . . . . . . 28
Syntax . . . . . . . . . . . . . . . 28
Parameters . . . . . . . . . . . . . 29
ABEND codes . . . . . . . . . . . . 29
Return and reason codes . . . . . . . . . 29

Example . . . . . . . . . . . . . . 30
LLACOPY - List form . . . . . . . . . . . 30

Syntax . . . . . . . . . . . . . . . 30
Parameters . . . . . . . . . . . . . 31

LLACOPY - Execute form . . . . . . . . . 31
Syntax . . . . . . . . . . . . . . . 31
Parameters . . . . . . . . . . . . . 32

Chapter 3. LOAD - Bring a load module
into virtual storage . . . . . . . . . 33
Description . . . . . . . . . . . . . . 33

Environment . . . . . . . . . . . . . 33
Programming requirements . . . . . . . . 33
Restrictions . . . . . . . . . . . . . 33
Register information . . . . . . . . . . 34
Performance implications . . . . . . . . . 35
Syntax . . . . . . . . . . . . . . . 35
Parameters . . . . . . . . . . . . . 36
Return and reason codes . . . . . . . . . 39
Example 1 . . . . . . . . . . . . . . 40
Example 2 . . . . . . . . . . . . . . 40

LOAD - List form . . . . . . . . . . . . 40
Syntax . . . . . . . . . . . . . . . 40
Parameters . . . . . . . . . . . . . 41

LOAD - Execute form . . . . . . . . . . . 41
Syntax . . . . . . . . . . . . . . . 42
Parameters . . . . . . . . . . . . . 43

Chapter 4. LOADWAIT — Build a wait
state parameter list for use with WTO . 45
Description . . . . . . . . . . . . . . 45

Environment . . . . . . . . . . . . . 45
Programming requirements . . . . . . . . 45
Restrictions . . . . . . . . . . . . . 45
Register information . . . . . . . . . . 45
Performance implications . . . . . . . . . 46

LOADWAIT - List form . . . . . . . . . . 46
Syntax . . . . . . . . . . . . . . . 46
Parameters . . . . . . . . . . . . . 47
Return and reason codes . . . . . . . . . 47
Example 1 . . . . . . . . . . . . . . 47
Example 2 . . . . . . . . . . . . . . 48
Example 3 . . . . . . . . . . . . . . 48

LOADWAIT - Modify form . . . . . . . . . 48
Syntax . . . . . . . . . . . . . . . 48
Parameters . . . . . . . . . . . . . 49
Example 1 . . . . . . . . . . . . . . 49
Example 2 . . . . . . . . . . . . . . 50

Chapter 5. LOCASCB — Locate
address space control block (ASCB)
address . . . . . . . . . . . . . . 51
Description . . . . . . . . . . . . . . 51

Environment . . . . . . . . . . . . . 51

© Copyright IBM Corp. 1988, 2015 iii



Programming requirements . . . . . . . . 51
Restrictions . . . . . . . . . . . . . 51
Input register information . . . . . . . . 51
Output register information . . . . . . . . 51
Performance implications . . . . . . . . . 52
Syntax . . . . . . . . . . . . . . . 52
Parameters . . . . . . . . . . . . . 53
ABEND codes . . . . . . . . . . . . 53
Return codes . . . . . . . . . . . . . 53
Example 1 . . . . . . . . . . . . . . 53
Example 2 . . . . . . . . . . . . . . 54

Chapter 6. LXFRE - Free a linkage
index . . . . . . . . . . . . . . . 55
Description . . . . . . . . . . . . . . 55

Related macro . . . . . . . . . . . . 55
Environment . . . . . . . . . . . . . 55
Programming requirements . . . . . . . . 55
Restrictions . . . . . . . . . . . . . 55
Input register information . . . . . . . . 55
Output register information . . . . . . . . 56
Performance implications . . . . . . . . . 56
Syntax . . . . . . . . . . . . . . . 56
Parameters . . . . . . . . . . . . . 56
ABEND codes . . . . . . . . . . . . 57
Return codes . . . . . . . . . . . . . 57
Examples . . . . . . . . . . . . . . 57

LXFRE - List form . . . . . . . . . . . . 58
Syntax . . . . . . . . . . . . . . . 58
Parameters . . . . . . . . . . . . . 58

LXFRE - Execute form . . . . . . . . . . . 58
Syntax . . . . . . . . . . . . . . . 58
Parameters . . . . . . . . . . . . . 59

Chapter 7. LXRES — Reserve a linkage
index . . . . . . . . . . . . . . . 61
Description . . . . . . . . . . . . . . 61

Related macro . . . . . . . . . . . . 61
Environment . . . . . . . . . . . . . 61
Programming requirements . . . . . . . . 61
Restrictions . . . . . . . . . . . . . 62
Input register information . . . . . . . . 62
Output register information . . . . . . . . 62
Performance implications . . . . . . . . . 62
Syntax . . . . . . . . . . . . . . . 62
Parameters . . . . . . . . . . . . . 63
ABEND codes . . . . . . . . . . . . 64
Return codes . . . . . . . . . . . . . 65
Examples . . . . . . . . . . . . . . 65

LXRES - List form . . . . . . . . . . . . 65
Syntax . . . . . . . . . . . . . . . 65
Parameters . . . . . . . . . . . . . 66

LXRES - Execute form . . . . . . . . . . . 66
Syntax . . . . . . . . . . . . . . . 66
Parameters . . . . . . . . . . . . . 67

Chapter 8. MCSOPER - Manage
extended MCS operations . . . . . . 69
Description . . . . . . . . . . . . . . 69

Environment . . . . . . . . . . . . . 69

Programming requirements . . . . . . . . 69
Restrictions . . . . . . . . . . . . . 69
Input register information . . . . . . . . 69
Output register information . . . . . . . . 70
Performance implications . . . . . . . . . 70
Syntax . . . . . . . . . . . . . . . 70
Parameters . . . . . . . . . . . . . 72
ABEND codes . . . . . . . . . . . . 75
Return and reason codes . . . . . . . . . 75
Example 1 . . . . . . . . . . . . . . 78
Example 2 . . . . . . . . . . . . . . 78
Example 3 . . . . . . . . . . . . . . 79

MCSOPER - List form . . . . . . . . . . . 80
Syntax . . . . . . . . . . . . . . . 81
Parameters . . . . . . . . . . . . . 81

MCSOPER - Modify form . . . . . . . . . 81
Syntax . . . . . . . . . . . . . . . 81
Parameters . . . . . . . . . . . . . 83

MCSOPER - Execute form . . . . . . . . . 83
Syntax . . . . . . . . . . . . . . . 83
Parameters . . . . . . . . . . . . . 84

Chapter 9. MCSOPMSG - Retrieve MCS
operator messages . . . . . . . . . 87
Description . . . . . . . . . . . . . . 87

Environment . . . . . . . . . . . . . 87
Programming requirements . . . . . . . . 87
Restrictions . . . . . . . . . . . . . 88
Input register information . . . . . . . . 88
Output register information . . . . . . . . 88
Performance implications . . . . . . . . . 88
Syntax . . . . . . . . . . . . . . . 88
Parameters . . . . . . . . . . . . . 89
ABEND codes . . . . . . . . . . . . 90
Return and reason codes . . . . . . . . . 90
Example . . . . . . . . . . . . . . 92

MCSOPMSG - List form . . . . . . . . . . 92
Syntax . . . . . . . . . . . . . . . 93
Parameters . . . . . . . . . . . . . 93

MCSOPMSG - Execute form . . . . . . . . . 93
Syntax . . . . . . . . . . . . . . . 93
Parameters . . . . . . . . . . . . . 95

MCSOPMSG - Modify form . . . . . . . . . 95
Syntax . . . . . . . . . . . . . . . 95
Parameters . . . . . . . . . . . . . 96

Chapter 10. MGCR — Issue an internal
START or REPLY command. . . . . . 97
Description . . . . . . . . . . . . . . 97

Environment . . . . . . . . . . . . . 97
Programming requirements . . . . . . . . 97
Restrictions . . . . . . . . . . . . . 97
Input register information . . . . . . . . 97
Output register information . . . . . . . . 97
Performance implications . . . . . . . . . 98
Syntax . . . . . . . . . . . . . . . 98
Parameters . . . . . . . . . . . . . 98
ABEND codes . . . . . . . . . . . . 99
Return and reason codes . . . . . . . . . 99
Example . . . . . . . . . . . . . . 99

iv z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 11. MGCRE — Issue internal
commands . . . . . . . . . . . . 101
Description . . . . . . . . . . . . . . 101

Environment . . . . . . . . . . . . 101
Programming requirements. . . . . . . . 101
Restrictions . . . . . . . . . . . . . 101
Input register information . . . . . . . . 102
Output register information . . . . . . . 102
Performance implications . . . . . . . . 102

MGCRE - List form . . . . . . . . . . . 102
Syntax. . . . . . . . . . . . . . . 102
Parameters . . . . . . . . . . . . . 103

MGCRE - Execute form . . . . . . . . . . 103
Syntax. . . . . . . . . . . . . . . 103
Parameters . . . . . . . . . . . . . 104
ABEND codes . . . . . . . . . . . . 106
Return and reason codes . . . . . . . . 106
Example . . . . . . . . . . . . . . 107

Chapter 12. MIHQUERY — Retrieve
MIH time interval . . . . . . . . . . 109
Description . . . . . . . . . . . . . . 109

Environment . . . . . . . . . . . . 109
Programming requirements. . . . . . . . 109
Restrictions . . . . . . . . . . . . . 109
Input register information . . . . . . . . 109
Output register information . . . . . . . 109
Performance implications . . . . . . . . 110
Syntax . . . . . . . . . . . . . . . 110
Parameters . . . . . . . . . . . . . 110
ABEND codes . . . . . . . . . . . . 111
Return and reason codes. . . . . . . . . 111
Example . . . . . . . . . . . . . . 111

MIHQUERY - List form . . . . . . . . . . 113
Syntax . . . . . . . . . . . . . . . 113
Parameters . . . . . . . . . . . . . 114

MIHQUERY - Execute form . . . . . . . . 114
Syntax . . . . . . . . . . . . . . . 114
Parameters . . . . . . . . . . . . . 115

Chapter 13. MODESET — Change
system status . . . . . . . . . . . 117
Description . . . . . . . . . . . . . . 117

Inline code generation . . . . . . . . . 117
Environment . . . . . . . . . . . . 117
Programming requirements . . . . . . . . 117
Restrictions . . . . . . . . . . . . . 117
Input register information . . . . . . . . 117
Output register information . . . . . . . 117
Performance implications . . . . . . . . 118
Syntax . . . . . . . . . . . . . . . 118
Parameters . . . . . . . . . . . . . 119
ABEND codes . . . . . . . . . . . . 120
Return and reason codes . . . . . . . . 120
Example 1 . . . . . . . . . . . . . 120
Example 2 . . . . . . . . . . . . . 120
SVC generation. . . . . . . . . . . . 121
Environment . . . . . . . . . . . . 121
Programming requirements. . . . . . . . 121
Restrictions . . . . . . . . . . . . . 121

Input register information . . . . . . . . 121
Output register information . . . . . . . 121
Performance implications . . . . . . . . 122
Syntax. . . . . . . . . . . . . . . 122
Parameters . . . . . . . . . . . . . 122
ABEND codes . . . . . . . . . . . . 123
Return and reason codes . . . . . . . . 123
Example . . . . . . . . . . . . . . 123

MODESET - List form . . . . . . . . . . 123
Syntax. . . . . . . . . . . . . . . 123
Parameters . . . . . . . . . . . . . 124

MODESET - Execute form . . . . . . . . . 124
Syntax. . . . . . . . . . . . . . . 124
Parameters . . . . . . . . . . . . . 124

Chapter 14. NIL — Provide a lock via
an AND IMMEDIATE (NI) instruction . . 125
Description . . . . . . . . . . . . . . 125

Environment . . . . . . . . . . . . 125
Programming requirements. . . . . . . . 125
Restrictions . . . . . . . . . . . . . 125
Input register information . . . . . . . . 125
Output register information . . . . . . . 125
Performance implications . . . . . . . . 126
Syntax. . . . . . . . . . . . . . . 126
Parameters . . . . . . . . . . . . . 126
ABEND codes . . . . . . . . . . . . 127
Return and reason codes . . . . . . . . 127
Example . . . . . . . . . . . . . . 127

Chapter 15. NMLDEF — Customizing
the nucleus . . . . . . . . . . . . 129
Description . . . . . . . . . . . . . . 129

Environment . . . . . . . . . . . . 129
Programming requirements. . . . . . . . 129
Restrictions . . . . . . . . . . . . . 130
Register information . . . . . . . . . . 130
Performance implications . . . . . . . . 130
Syntax. . . . . . . . . . . . . . . 130
Parameters . . . . . . . . . . . . . 130
ABEND codes . . . . . . . . . . . . 130
Return and reason codes . . . . . . . . 130
Example 1 . . . . . . . . . . . . . 130
Example 2 . . . . . . . . . . . . . 131
Example 3 . . . . . . . . . . . . . 131

Chapter 16. NUCLKUP — Nucleus
map lookup service. . . . . . . . . 133
Description . . . . . . . . . . . . . . 133

Environment . . . . . . . . . . . . 133
Programming requirements. . . . . . . . 133
Restrictions . . . . . . . . . . . . . 133
Input register information . . . . . . . . 133
Output register information . . . . . . . 133
Performance implications . . . . . . . . 134
Syntax. . . . . . . . . . . . . . . 134
Parameters . . . . . . . . . . . . . 135
ABEND codes . . . . . . . . . . . . 135
Return codes . . . . . . . . . . . . 135
Example 1 . . . . . . . . . . . . . 136

Contents v



Example 2 . . . . . . . . . . . . . 136
Example 3 . . . . . . . . . . . . . 136

Chapter 17. OIL — Provide a lock via
an OR IMMEDIATE (OI) instruction . . 137
Description . . . . . . . . . . . . . . 137

Environment . . . . . . . . . . . . 137
Programming requirements. . . . . . . . 137
Restrictions . . . . . . . . . . . . . 137
Input register information . . . . . . . . 137
Output register information . . . . . . . 137
Performance implications . . . . . . . . 138
Syntax. . . . . . . . . . . . . . . 138
Parameters . . . . . . . . . . . . . 138
ABEND codes . . . . . . . . . . . . 139
Return and reason codes . . . . . . . . 139
Example . . . . . . . . . . . . . . 139

Chapter 18. OUTADD — Create an
output descriptor. . . . . . . . . . 141
Description . . . . . . . . . . . . . . 141

Environment . . . . . . . . . . . . 141
Programming requirements. . . . . . . . 141
Restrictions . . . . . . . . . . . . . 141
Input register information . . . . . . . . 141
Output register information . . . . . . . 142
Performance implications . . . . . . . . 142

OUTADD - List form . . . . . . . . . . . 142
Syntax. . . . . . . . . . . . . . . 142
Example . . . . . . . . . . . . . . 143

OUTADD - Execute form . . . . . . . . . 143
Syntax. . . . . . . . . . . . . . . 143
Parameters . . . . . . . . . . . . . 143
ABEND codes . . . . . . . . . . . . 144
Return and reason codes . . . . . . . . 145
Reason codes for return code 04 . . . . . . 145
Reason codes for return code 08 . . . . . . 147
Reason codes for return code 0C . . . . . . 151
Reason codes for return code 10 . . . . . . 157
Example . . . . . . . . . . . . . . 158

Chapter 19. OUTDEL — Delete an
output descriptor. . . . . . . . . . 159
Description . . . . . . . . . . . . . . 159

Environment . . . . . . . . . . . . 159
Programming requirements. . . . . . . . 159
Restrictions . . . . . . . . . . . . . 159
Input register information . . . . . . . . 159
Output register information . . . . . . . 159
Performance implications . . . . . . . . 160

OUTDEL - List form . . . . . . . . . . . 160
Syntax. . . . . . . . . . . . . . . 160
Parameters . . . . . . . . . . . . . 160
Example . . . . . . . . . . . . . . 161

OUTDEL - Execute form. . . . . . . . . . 161
Syntax. . . . . . . . . . . . . . . 161
Parameters . . . . . . . . . . . . . 161
ABEND codes . . . . . . . . . . . . 161
Return and reason codes . . . . . . . . 162
Reason codes for return code 04 . . . . . . 162

Reason codes for return code 08 . . . . . . 163
Reason codes for return code 0C . . . . . . 168
Reason codes for return code 10 . . . . . . 172
Example . . . . . . . . . . . . . . 173

Chapter 20. PCLINK — Stack, unstack,
or extract program call linkage
information . . . . . . . . . . . . 175
Description . . . . . . . . . . . . . . 175
STACK option of PCLINK . . . . . . . . . 175

Environment . . . . . . . . . . . . 175
Programming requirements. . . . . . . . 175
Restrictions . . . . . . . . . . . . . 175
Input register information . . . . . . . . 176
Output register information . . . . . . . 176
Performance implications . . . . . . . . 176
Syntax. . . . . . . . . . . . . . . 176
Parameters . . . . . . . . . . . . . 177
ABEND codes . . . . . . . . . . . . 177
Return and reason codes . . . . . . . . 177

UNSTACK option of PCLINK . . . . . . . . 178
Environment . . . . . . . . . . . . 178
Programming requirements. . . . . . . . 178
Restrictions . . . . . . . . . . . . . 178
Input register information . . . . . . . . 178
Performance implications . . . . . . . . 178
Syntax. . . . . . . . . . . . . . . 178
Parameters . . . . . . . . . . . . . 179
ABEND codes . . . . . . . . . . . . 181
Return and reason codes . . . . . . . . 181

EXTRACT option of PCLINK . . . . . . . . 182
Environment . . . . . . . . . . . . 182
Programming requirements. . . . . . . . 182
Restrictions . . . . . . . . . . . . . 182
Input register information . . . . . . . . 182
Performance implications . . . . . . . . 182
Syntax. . . . . . . . . . . . . . . 182
Parameters . . . . . . . . . . . . . 183
ABEND codes . . . . . . . . . . . . 184
Return and reason codes . . . . . . . . 184

Chapter 21. PGANY — Page anywhere 185
Description . . . . . . . . . . . . . . 185

Input register information . . . . . . . . 185
Output register information . . . . . . . 185
Syntax. . . . . . . . . . . . . . . 185
Parameters . . . . . . . . . . . . . 186
Return and reason codes . . . . . . . . 186

Chapter 22. PGFIX — Fix virtual
storage contents . . . . . . . . . . 189
Description . . . . . . . . . . . . . . 189

Syntax. . . . . . . . . . . . . . . 189
Parameters . . . . . . . . . . . . . 190
Return and reason codes . . . . . . . . 191
Example 1 . . . . . . . . . . . . . 191
Example 2 . . . . . . . . . . . . . 191
Example 3 . . . . . . . . . . . . . 191

vi z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 23. PGFIXA — Fix virtual
storage contents . . . . . . . . . . 193
Description . . . . . . . . . . . . . . 193

Output . . . . . . . . . . . . . . 193
Restrictions . . . . . . . . . . . . . 193
Syntax. . . . . . . . . . . . . . . 194
Parameters . . . . . . . . . . . . . 194
Example 1 . . . . . . . . . . . . . 194
Example 2 . . . . . . . . . . . . . 195

Chapter 24. PGFREE — Free virtual
storage contents . . . . . . . . . . 197
Description . . . . . . . . . . . . . . 197

Syntax. . . . . . . . . . . . . . . 197
Parameters . . . . . . . . . . . . . 198
Return and reason codes . . . . . . . . 198
Example 1 . . . . . . . . . . . . . 199
Example 2 . . . . . . . . . . . . . 199
Example 3 . . . . . . . . . . . . . 199

Chapter 25. PGFREEA — Free virtual
storage contents . . . . . . . . . . 201
Description . . . . . . . . . . . . . . 201

Syntax. . . . . . . . . . . . . . . 201
Restrictions . . . . . . . . . . . . . 201
Output . . . . . . . . . . . . . . 201

Chapter 26. PGSER — Page services 203
Description . . . . . . . . . . . . . . 203

Environment . . . . . . . . . . . . 203
Programming requirements. . . . . . . . 204
Restrictions . . . . . . . . . . . . . 204
Input register information . . . . . . . . 204
Output register information . . . . . . . 204
Performance implications . . . . . . . . 205
Syntax. . . . . . . . . . . . . . . 205
Parameters . . . . . . . . . . . . . 207
ABEND codes . . . . . . . . . . . . 210
Return and reason codes . . . . . . . . 210
Example 1 . . . . . . . . . . . . . 211
Example 2 . . . . . . . . . . . . . 211
Example 3 . . . . . . . . . . . . . 212
Example 4 . . . . . . . . . . . . . 212
Example 5 . . . . . . . . . . . . . 212
Example 6 . . . . . . . . . . . . . 212

Chapter 27. PGSER — Fast path page
services. . . . . . . . . . . . . . 213
Description . . . . . . . . . . . . . . 213

Environment . . . . . . . . . . . . 213
Programming requirements. . . . . . . . 213
Restrictions . . . . . . . . . . . . . 213
Input register information . . . . . . . . 213
Output register information . . . . . . . 213
Performance implications . . . . . . . . 214
Syntax. . . . . . . . . . . . . . . 214
Parameters . . . . . . . . . . . . . 215
ABEND codes . . . . . . . . . . . . 216
Return and reason codes . . . . . . . . 216

Example 1 . . . . . . . . . . . . . 216
Example 2 . . . . . . . . . . . . . 216

Chapter 28. POST — Signal event
completion . . . . . . . . . . . . 217
Description . . . . . . . . . . . . . . 217

Environment . . . . . . . . . . . . 217
Programming requirements. . . . . . . . 218
Restrictions . . . . . . . . . . . . . 218
Input register information . . . . . . . . 218
Output register information . . . . . . . 218
Performance implications . . . . . . . . 220
Syntax. . . . . . . . . . . . . . . 220
Parameters . . . . . . . . . . . . . 221
ABEND codes . . . . . . . . . . . . 223
Return codes . . . . . . . . . . . . 223
Example 1 . . . . . . . . . . . . . 223
Example 2 . . . . . . . . . . . . . 224
Example 3 . . . . . . . . . . . . . 224

POST - List form . . . . . . . . . . . . 224
Syntax. . . . . . . . . . . . . . . 224
Parameters . . . . . . . . . . . . . 224

POST - Execute form . . . . . . . . . . . 225
Syntax. . . . . . . . . . . . . . . 225
Parameters . . . . . . . . . . . . . 226

Chapter 29. PTRACE — Processor
trace . . . . . . . . . . . . . . . 227
Description . . . . . . . . . . . . . . 227

Environment . . . . . . . . . . . . 227
Programming requirements. . . . . . . . 227
Restrictions . . . . . . . . . . . . . 227
Output register information . . . . . . . 227
Performance implications . . . . . . . . 228
Syntax. . . . . . . . . . . . . . . 228
Parameters . . . . . . . . . . . . . 228
Return and reason codes . . . . . . . . 229
Example 1 . . . . . . . . . . . . . 229
Example 2 . . . . . . . . . . . . . 230

Chapter 30. PURGEDQ — Purge SRB
activity . . . . . . . . . . . . . . 231
Description . . . . . . . . . . . . . . 231

Environment . . . . . . . . . . . . 231
Programming requirements. . . . . . . . 232
Restrictions . . . . . . . . . . . . . 232
Input register information . . . . . . . . 232
Output register information . . . . . . . 232
Performance implications . . . . . . . . 232
Syntax. . . . . . . . . . . . . . . 232
Parameters . . . . . . . . . . . . . 233
ABEND codes . . . . . . . . . . . . 234
Return and reason codes . . . . . . . . 234
Example 1 . . . . . . . . . . . . . 234
Example 2 . . . . . . . . . . . . . 234
Example 3 . . . . . . . . . . . . . 234
Example 4 . . . . . . . . . . . . . 235

PURGEDQ - List form . . . . . . . . . . 235
Syntax. . . . . . . . . . . . . . . 235
Parameters . . . . . . . . . . . . . 235

Contents vii



Example . . . . . . . . . . . . . . 236
PURGEDQ - Execute form . . . . . . . . . 236

Syntax. . . . . . . . . . . . . . . 236
Parameters . . . . . . . . . . . . . 236
Example . . . . . . . . . . . . . . 236

Chapter 31. QEDIT — Command input
buffer manipulation. . . . . . . . . 237
Description . . . . . . . . . . . . . . 237

Environment . . . . . . . . . . . . 237
Syntax. . . . . . . . . . . . . . . 237
Parameters . . . . . . . . . . . . . 238
Return and reason codes . . . . . . . . 238
Example 1 . . . . . . . . . . . . . 238
Example 2 . . . . . . . . . . . . . 238

Chapter 32. RACF macros . . . . . . 239

Chapter 33. RESERVE — Reserve a
device (shared DASD). . . . . . . . 241
Description . . . . . . . . . . . . . . 241

Environment . . . . . . . . . . . . 241
Programming requirements. . . . . . . . 242
Restrictions . . . . . . . . . . . . . 242
Input register information . . . . . . . . 242
Output register information . . . . . . . 242
Syntax. . . . . . . . . . . . . . . 243
Parameters . . . . . . . . . . . . . 244
ABEND codes . . . . . . . . . . . . 246
Return and reason codes . . . . . . . . 247
Example . . . . . . . . . . . . . . 251

RESERVE—List form . . . . . . . . . . . 251
Parameters . . . . . . . . . . . . . 252

RESERVE - Execute form . . . . . . . . . 253
Parameters . . . . . . . . . . . . . 254

Chapter 34. RESMGR — Add or delete
a resource manager . . . . . . . . 255
Description . . . . . . . . . . . . . . 255

Environment . . . . . . . . . . . . 255
Programming requirements. . . . . . . . 255
Restrictions . . . . . . . . . . . . . 255
Input register information . . . . . . . . 256
Output register information . . . . . . . 256
Performance implications . . . . . . . . 256
Syntax. . . . . . . . . . . . . . . 256
Parameters . . . . . . . . . . . . . 257
ABEND codes . . . . . . . . . . . . 260
Return codes from the ADD function . . . . 260
Return codes from the DELETE function . . . 261
Example 1 . . . . . . . . . . . . . 263
Example 2 . . . . . . . . . . . . . 263

RESMGR - List form . . . . . . . . . . . 263
Syntax. . . . . . . . . . . . . . . 264
Parameters . . . . . . . . . . . . . 265

RESMGR - Execute form . . . . . . . . . 265
Syntax. . . . . . . . . . . . . . . 265
Parameters . . . . . . . . . . . . . 266

Chapter 35. RESUME — Resume
execution of a suspended RB . . . . 267
Description . . . . . . . . . . . . . . 267

Environment . . . . . . . . . . . . 267
Programming requirements. . . . . . . . 267
Restrictions . . . . . . . . . . . . . 267
Input register information . . . . . . . . 267
Output register information . . . . . . . 267
Performance implications . . . . . . . . 268
Syntax. . . . . . . . . . . . . . . 268
Parameters . . . . . . . . . . . . . 269
ABEND codes . . . . . . . . . . . . 270
Return codes . . . . . . . . . . . . 270
Example . . . . . . . . . . . . . . 270

Chapter 36. RESUME — Resume or
purge a suspended SRB . . . . . . 271
Description . . . . . . . . . . . . . . 271

Environment . . . . . . . . . . . . 271
Programming requirements. . . . . . . . 271
Restrictions . . . . . . . . . . . . . 271
Input register information . . . . . . . . 271
Output register information . . . . . . . 271
Syntax. . . . . . . . . . . . . . . 272
Parameters . . . . . . . . . . . . . 272
ABEND codes . . . . . . . . . . . . 273
Return codes . . . . . . . . . . . . 273
Example . . . . . . . . . . . . . . 273

RESUME - Resume or purge an SRB (List form) 274
Syntax. . . . . . . . . . . . . . . 274
Parameters . . . . . . . . . . . . . 274

RESUME - Resume or purge an SRB (Execute
form) . . . . . . . . . . . . . . . . 274

Syntax. . . . . . . . . . . . . . . 274
Parameters . . . . . . . . . . . . . 275

Chapter 37. RISGNL — Issue remote
immediate signal . . . . . . . . . . 277
Description . . . . . . . . . . . . . . 277

Environment . . . . . . . . . . . . 277
Programming requirements. . . . . . . . 277
Restrictions . . . . . . . . . . . . . 277
Input register information . . . . . . . . 277
Output register information . . . . . . . 277
Performance implications . . . . . . . . 278
Syntax. . . . . . . . . . . . . . . 278
Parameters . . . . . . . . . . . . . 278
ABEND codes . . . . . . . . . . . . 279
Return codes . . . . . . . . . . . . 279
Example 1 . . . . . . . . . . . . . 279
Example 2 . . . . . . . . . . . . . 280

Chapter 38. SCHEDIRB — Schedule
IRB . . . . . . . . . . . . . . . . 281
Description . . . . . . . . . . . . . . 281

Environment . . . . . . . . . . . . 281
Programming requirements. . . . . . . . 281
Restrictions . . . . . . . . . . . . . 281
Input register information . . . . . . . . 281

viii z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Output register information . . . . . . . 281
Performance implications . . . . . . . . 282
Syntax. . . . . . . . . . . . . . . 282
Parameters . . . . . . . . . . . . . 283
ABEND codes . . . . . . . . . . . . 284
Return and reason codes . . . . . . . . 284

SCHEDIRB - List form . . . . . . . . . . 285
Syntax. . . . . . . . . . . . . . . 285
Parameters . . . . . . . . . . . . . 285

SCHEDIRB - Execute form . . . . . . . . . 285
Syntax. . . . . . . . . . . . . . . 286
Parameters . . . . . . . . . . . . . 286

Chapter 39. SCHEDULE — Schedule a
service request block (SRB) . . . . . 289
Description . . . . . . . . . . . . . . 289

Environment . . . . . . . . . . . . 289
Programming requirements. . . . . . . . 290
Restrictions . . . . . . . . . . . . . 290
Input register information . . . . . . . . 290
Output register information . . . . . . . 290
Performance implications . . . . . . . . 290
Syntax. . . . . . . . . . . . . . . 290
Parameters . . . . . . . . . . . . . 291
ABEND codes . . . . . . . . . . . . 293
Return and reason codes . . . . . . . . 293
Example 1 . . . . . . . . . . . . . 293
Example 2 . . . . . . . . . . . . . 293
Example 3 . . . . . . . . . . . . . 293
Example 4 . . . . . . . . . . . . . 293
Example 5 . . . . . . . . . . . . . 293
Example 6 . . . . . . . . . . . . . 294

Chapter 40. SCHEDXIT — Schedule an
exit routine for execution . . . . . . 295
Description . . . . . . . . . . . . . . 295

Environment . . . . . . . . . . . . 295
Programming requirements. . . . . . . . 295
Restrictions . . . . . . . . . . . . . 295
Input register information . . . . . . . . 295
Output register information . . . . . . . 295
Performance implications . . . . . . . . 296
Syntax. . . . . . . . . . . . . . . 296
Parameters . . . . . . . . . . . . . 296
ABEND codes . . . . . . . . . . . . 296
Return and reason codes . . . . . . . . 296

Chapter 41. SDUMP — Dump virtual
storage . . . . . . . . . . . . . . 297
Description . . . . . . . . . . . . . . 297

Environment . . . . . . . . . . . . 298
Programming requirements. . . . . . . . 299
Restrictions . . . . . . . . . . . . . 299
Input register information . . . . . . . . 299
Output register information . . . . . . . 299

Performance implications . . . . . . . . 300
Syntax. . . . . . . . . . . . . . . 300
Parameters . . . . . . . . . . . . . 302
Return and reason codes . . . . . . . . 315
Register 15 return codes . . . . . . . . . 315
ECB and SRB return codes . . . . . . . . 316
Reason codes for return code 08 . . . . . . 317
Example 1 . . . . . . . . . . . . . 320
Example 2 . . . . . . . . . . . . . 321

SDUMP - List form . . . . . . . . . . . 321
Syntax. . . . . . . . . . . . . . . 321
Parameters . . . . . . . . . . . . . 323

SDUMP - Execute form . . . . . . . . . . 323
Syntax. . . . . . . . . . . . . . . 323
Parameters . . . . . . . . . . . . . 325
Example 1 . . . . . . . . . . . . . 325
Example 2 . . . . . . . . . . . . . 325

Chapter 42. SDUMPX — Dump virtual
storage . . . . . . . . . . . . . . 327
Description . . . . . . . . . . . . . . 327

Wildcards . . . . . . . . . . . . . 328
Environment . . . . . . . . . . . . 328
Programming requirements. . . . . . . . 329
Restrictions . . . . . . . . . . . . . 330
Input register information . . . . . . . . 330
Output register information . . . . . . . 330
Performance implications . . . . . . . . 330
Syntax. . . . . . . . . . . . . . . 331
Parameters . . . . . . . . . . . . . 334
Return and reason codes . . . . . . . . 356
Register 15 return codes . . . . . . . . . 357
ECB and SRB return codes . . . . . . . . 357
Reason codes for return code 08 . . . . . . 358

SDUMPX - List form . . . . . . . . . . . 363
Syntax. . . . . . . . . . . . . . . 363
Parameters . . . . . . . . . . . . . 365

SDUMPX - Execute form . . . . . . . . . 366
Syntax. . . . . . . . . . . . . . . 366
Parameters . . . . . . . . . . . . . 369

Appendix. Accessibility . . . . . . . 371
Accessibility features . . . . . . . . . . . 371
Consult assistive technologies . . . . . . . . 371
Keyboard navigation of the user interface . . . . 371
Dotted decimal syntax diagrams . . . . . . . 371

Notices . . . . . . . . . . . . . . 375
Policy for unsupported hardware. . . . . . . 376
Minimum supported hardware . . . . . . . 377
Programming interface information . . . . . . 377
Trademarks . . . . . . . . . . . . . . 377

Index . . . . . . . . . . . . . . . 379

Contents ix



x z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Figures

1. Sample User Parameter List for Callers in AR
Mode . . . . . . . . . . . . . . . 5

2. Sample Macro Syntax Diagram . . . . . . 14

3. Continuation Coding . . . . . . . . . 16
4. Return Code Area Used by RESERVE 247

© Copyright IBM Corp. 1988, 2015 xi



xii z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Tables

1. Passing User Parameters in AR Mode . . . . 5
2. Execution environment characteristics and

corresponding SYSSTATE parameters and global
symbols . . . . . . . . . . . . . . 6

3. Service Summary . . . . . . . . . . 18
4. Return and Reason Codes for the LLACOPY

Macro . . . . . . . . . . . . . . 29
5. Return Codes for the LOCASCB Macro 53
6. Return Codes for the LXFRE Macro . . . . 57
7. Return Code for the LXRES Macro . . . . . 65
8. Parameters available with REQUEST= services 72
9. Parameters available with MSGDLVRY=

services . . . . . . . . . . . . . . 72
10. Return and Reason Codes for the MCSOPER

Macro . . . . . . . . . . . . . . 75
11. Parameters valid with REQUEST=services 89
12. Return and Reason Codes for the MCSOPMSG

Macro . . . . . . . . . . . . . . 90
13. Parameters valid with REQUEST=services for

the execute form of the macro . . . . . . 94
14. Parameters valid with REQUEST= services for

the modify form of the macro . . . . . . 96
15. Return Codes for the START Command 99
16. MGCRE Return Codes . . . . . . . . 106
17. Return and Reason Codes for the MIHQUERY

Macro . . . . . . . . . . . . . . 111
18. Return and Reason Codes for the MODESET

Macro . . . . . . . . . . . . . . 123
19. Return Codes for the NUCLKUP Macro 135
20. Return and Reason Codes for the OUTADD

Macro . . . . . . . . . . . . . . 145
21. Reason Codes for Return Code 04. . . . . 146
22. Reason Codes for Return Code 08. . . . . 147
23. Reason Codes for Return Code 0C . . . . 152
24. Reason Codes for Return Code 10. . . . . 158
25. Return and Reason Codes for the OUTDEL

Macro . . . . . . . . . . . . . . 162
26. Reason Codes for Return Code 04. . . . . 163
27. Reason Codes for Return Code 08. . . . . 164
28. Reason Codes for Return Code 0C . . . . 168
29. Reason Codes for Return Code 10. . . . . 173
30. Return Codes for the PGANY Macro 186

31. Return Codes for the PGFIX Macro . . . . 191
32. Return Codes for the PGFREE Macro 199
33. Return Codes for the POST Macro . . . . 223
34. Return Code for the PTRACE Macro 229
35. Return Codes for the QEDIT Macro . . . . 238
36. Return Codes for the RESERVE Macro with

the RET=TEST Parameter . . . . . . . 247
37. Return Codes for the RESERVE Macro with

the RET=USE Parameter . . . . . . . . 248
38. Return Codes for the RESERVE Macro with

the RET=HAVE Parameter . . . . . . . 249
39. Return Codes for the RESERVE Macro with

the ECB Parameter. . . . . . . . . . 250
40. Return Codes from the ADD Function 260
41. Return Codes from the DELETE Function 262
42. Return Codes for the RESUME Macro for RBs 270
43. Return Codes for the RESUME Macro for

SRBs . . . . . . . . . . . . . . 273
44. Return Codes for the RISGNL Macro 279
45. Return Codes for the SCHEDIRB Macro 284
46. PSWREGS parameter list. . . . . . . . 307
47. Return Codes for the SDUMP Macro when

BRANCH=NO . . . . . . . . . . . 315
48. Return Codes for the SDUMP Macro when

BRANCH=YES . . . . . . . . . . . 316
49. Return Codes for the ECB Parameter and SRB

Parameter. . . . . . . . . . . . . 316
50. Return Codes for the ECB or SRB Parameter

with the DCB Parameter . . . . . . . . 316
51. Reason Codes for Return Code 08. . . . . 317
52. PSWREGS Parameter List . . . . . . . 344
53. Affects on the CSA storage captured in an

SVC dump . . . . . . . . . . . . 347
54. Return Codes for the SDUMPX Macro when

BRANCH=NO . . . . . . . . . . . 357
55. Return Codes for the SDUMPX Macro when

BRANCH=YES . . . . . . . . . . . 357
56. Return Codes for the ECB Parameter and SRB

Parameter. . . . . . . . . . . . . 357
57. Return Codes for the ECB or SRB Parameter

with the DCB Parameter . . . . . . . . 358
58. Reason Codes for Return Code 08. . . . . 359

© Copyright IBM Corp. 1988, 2015 xiii

|
||



xiv z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



About this information

This information describes the authorized services that the MVS™ operating system
provides; that is, services available only to authorized programs. An authorized
program must meet one or more of the following requirements:
v Running in supervisor state
v Running under PSW key 0-7
v Running with APF-authorization

Some of the services included in this information are not authorized, but are
included because they are of greater interest to the system programmer than to the
general applications programmer. The functions of these services are of such a
nature that their use should be limited to programmers who write authorized
programs. Services are also included if they have one or more authorized
parameters — parameters available only to authorized programs.

Programmers using assembler language can use the macros described in this
information to invoke the system services that they need. This document includes
the detailed information — such as the function, syntax, and parameters — needed
to code the macros.

This document is divided into four volumes. Volumes 1 through 4 present the
macro descriptions in alphabetical order.

Who should use this information
This information is for the programmer who is using assembler language to code a
system program. A system program is usually one that runs in supervisor state or
runs with PSW key 0-7 or runs with APF authorization.

The information assumes a knowledge of the computer, as described in Principles of
Operation, as well as an in-depth knowledge of assembler language programming.

System macros require High Level Assembler. Assembler language programming is
described in the following information:
v HLASM Programmer's Guide
v HLASM Language Reference

Using this information also requires you to be familiar with the operating system
and the services that programs running under it can invoke.

How to use this information
This information is one of the set of programming documents for MVS. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see z/OS Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents
and on the web.

© Copyright IBM Corp. 1988, 2015 xv



When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS® library, go to the IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

xvi z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome


How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU
SA23-1374-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1988, 2015 xvii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/


xviii z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 1, as updated
February 2015

The following changes are made for z/OS Version 2 Release 1 (V2R1), as updated
February 2015.

New
v The HCSAByASID, HCSANoOwner, and HCSASysOwner options were added

to the SDATA parameter of Chapter 42, “SDUMPX — Dump virtual storage,” on
page 327.

Changed
v The descriptions of the CSA, LSQA, RGN, and SQA options of the SDATA

parameter have been updated in Chapter 41, “SDUMP — Dump virtual storage,”
on page 297 and Chapter 42, “SDUMPX — Dump virtual storage,” on page 327.

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1988, 2015 xix



xx z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 1. Using the services

Macros and callable services are programming interfaces that application programs
can use to access MVS system services. This chapter provides general information
and guidelines about how to use the macros and callable services accurately and
efficiently. For more specific and detailed information about coding a particular
macro or callable service, see the individual service description in this information.

Some of the topics covered in this chapter apply only to macros, some apply only
to callable services, and some apply to both. This chapter uses the word "services"
when referring to information that applies to both service types. When information
applies only to one type or the other, the particular service type is specified.

Note: z/OS macros do not code to restrictions that are imposed by the
COMPAT(CASE) HLASM option or its abbreviation CPAT(CASE). Therefore, you
cannot rely on using COMPAT(CASE) if you use z/OS macros.

The following table lists the topics covered in this chapter and whether the topic
applies to macros, callable services, or both:

Topic Service Type
“Compatibility of MVS macros” Macros
“Addressing mode (AMODE)” on page 2 Both
“Address space control (ASC) mode” on page 3 Both

“ALET qualification” on page 4 Both
“User parameters” on page 4 Macros

“Telling the system about the execution environment” on page 6 Macros
“Specifying a macro version number” on page 7 Macros
“Register use” on page 8 Both
“Handling return codes and reason codes” on page 9 Both

“Handling program errors” on page 9 Both
“Handling environmental and system errors” on page 10 Both

“Using X-macros” on page 11 Macros
“Macro forms” on page 11 Macros
“Coding the macros” on page 13 Macros
“Coding the callable services” on page 16 Callable Services

“Including equate (EQU) statements” on page 17 Callable Services
“Link-editing linkage-assist routines” on page 17 Callable Services

“Service summary” on page 17 Both

Compatibility of MVS macros
When IBM® introduces a new version or a new release of an existing version, the
new version or release supports all MVS macros from previous versions and
releases. Programs assembled on an earlier level of MVS that issue macros will run
on later levels of MVS.

In most cases, the reverse is also true. When you assemble programs that issue
macros on a particular version and release of MVS, those programs can run on
earlier versions and releases of MVS, provided you request only those functions

© Copyright IBM Corp. 1988, 2015 1



that are supported by the earlier version and release. This is useful for installations
that write applications that might be assembled on one level of MVS, but run on a
different level.

As MVS supports new architectures, addressability changes. To take best
advantage of the new architectures, some macros have more than one possible
expansion. You are required to have the macro expand according to the
environment in which the program runs. This topic is described in this
introductory information.

The problem of compatibility is not the same as selecting a macro version through
the PLISTVER parameter to ensure the correct parameter list size for a macro. For
selecting a parameter list version number, see “Specifying a macro version
number” on page 7.

Addressing mode (AMODE)
A program can run in 24-bit, 31-bit, or 64-bit addressing mode. A program that
executes in 24-bit or 31-bit addressing mode can invoke most of the services
described in this information. A program that executes in 64-bit addressing mode
has a smaller group of services that it can invoke.

In general,
v A program running in 24-bit addressing mode cannot pass parameters or

parameter addresses that are higher than 16 megabytes. However, there are
exceptions. For example, a program running in 24-bit addressing mode can:
– Free storage above 16 megabytes using the FREEMAIN macro
– Allocate storage above 16 megabytes using the GETMAIN macro
– Use cell pool services for cell pools located in storage above 16 megabytes

using the CPOOL macro
– Use page services for storage locations above 16 megabytes using the PGSER

macro
v A program running in 24-bit or 31-bit addressing mode cannot pass parameter

addresses that are higher than 2 gigabytes, unless stated otherwise in the
individual service description.

v If a program running in 31-bit or 64-bit addressing mode issues a service,
parameters and parameter addresses can be above or below 16 megabytes,
unless otherwise stated in the individual service description.

Some macros can generate code that is appropriate for programs in either 64-bit
addressing mode or 24-bit or 31-bit addressing mode. These macros check a global
symbol set by the SYSSTATE macro. See “Telling the system about the execution
environment” on page 6 for more information.

When you call a callable service in 24-bit or 31-bit addressing mode, you must pass
31-bit addresses to the system service regardless of what addressing mode your
program is running in. If your program is running in 24-bit mode and you use a
callable service, you must set the high-order byte of parameter addresses to zeros.

You can invoke the following services in 64-bit addressing mode, subject to the
“SVC or PC” restrictions mentioned later in this topic, but you cannot pass
parameters and parameter addresses above 2 gigabytes: ABEND, ATTACHX,
CALLDISP, CHAP, CSVQUERY, DELETE, DEQ, DETACH, DOM, DSPSERV,
DYNALLOC, ENQ, ESPIE, ESTAEX, EXCP, FREEMAIN, GETMAIN, GTRACE,

2 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



IARVSERV, IDENTIFY, IEAARR, LINKX, LOAD, MODESET, PGSER, POST,
RESERVE, SDUMPX, SETRP, STAX, STIMER, STIMERM, STORAGE, SYNCHX,
TIME, TIMEUSED, TTIMER, VRADATA, WAIT, WTO, WTOR, and XCTL.

There are many services that support 64-bit addressing mode and parameter
addresses above 2 gigabytes. Examples are IRAV64, IARST64, and ISGENQ. For
details on the supported addressing mode and parameter address ranges for any
specific service, see the following books:
v z/OS MVS Programming: Assembler Services Reference ABE-HSP

v z/OS MVS Programming: Assembler Services Reference IAR-XCT

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

v z/OS MVS Programming: Sysplex Services Reference

Before invoking a service in 64-bit addressing mode, you must inform system
macros, by specifying SYSSTATE AMODE=64, that you are in 64-bit addressing
mode. You can invoke only those options that result in calling the system by an
SVC or PC in 64-bit addressing mode. You cannot invoke any option that results in
calling the system by a branch-entry in 64-bit addressing mode.

Unless explicitly stated otherwise, assume that a given service cannot be invoked
in 64-bit addressing mode and cannot accept parameters and parameter addresses
above 2 gigabytes.

For information about 64-bit addressing mode and the 64-bit GPR, see z/OS MVS
Programming: Extended Addressability Guide.

Address space control (ASC) mode
A program can run in either primary ASC mode or access register (AR) ASC mode.
In primary mode, the processor uses the contents of general purpose registers
(GPRs) to resolve an address to a specific location. In AR mode, the processor uses
the contents of ARs as well as the contents of GPRs to resolve an address to a
specific location. See z/OS MVS Programming: Assembler Services Guidefor more
detailed information about AR mode.

Some macros can generate code that is appropriate for programs in either primary
mode or AR mode. These macros check a global symbol set by the SYSSTATE
macro. See “Telling the system about the execution environment” on page 6 for
more information. Table 3 on page 18 lists the macros that check the global symbol.

Some services can generate code that is appropriate for programs in primary mode
only. If you write a program in AR mode that invokes one or more services, check
the description in this information for each service your program issues. Unless the
description indicates that a service supports callers in AR mode, the service does
not support callers in AR mode. In this case, use the SAC instruction to change the
ASC mode of your program and issue the service in primary mode.

Whether the caller is in primary or AR ASC mode, the system uses ARs 0-1 and
14-15 as work registers across any service call.

Chapter 1. Using the services 3



ALET qualification
The address space where you can place parameters varies with the individual
service:
v You can place parameters in the primary address space in all service.
v You must place parameters in the primary address space in some services.
v You can place parameters in any address space in some services.

To identify where you can locate parameters in a service, read the individual
service description.

Programs in AR mode that pass parameters must use an access register and the
corresponding general purpose register together (for example, access register 1 and
general purpose register 1) to identify where the parameters are located. The access
register must contain an access list entry token (ALET) that identifies the address
space where the parameters reside. The general purpose register must identify the
location of the parameters within the address space.

The only ALETs that MVS services typically accept are:
v Zero (0), which specifies that the parameters are in the caller's primary address

space
v An ALET for a public entry on the caller's dispatchable unit access list (DU-AL)
v An ALET for a common area data space (CADS)

MVS services do not accept the following ALETs, and you cannot attempt to pass
them to a service:
v One (1), which signifies that the parameters are in the caller's secondary address

space
v An ALET that is on the caller's primary address space access list (PASN-AL) that

does not represent a CADS
v An ALET for a private entry on the PASN-AL or the DU-AL

Throughout, this information uses the term AR/GPR n to mean an access register
and its corresponding general purpose register. For example, to identify access
register 1 and general purpose register 1, this information uses AR/GPR 1.

User parameters
Some macros that you can issue in AR mode include control parameters, user
parameters, or both. Control parameters refer to the macro parameter list, and the
parameters whose addresses are in the parameter list. Control parameters control
the operation of the macro itself. User parameters are parameters that a user
provides to be passed through to a user routine. For example, the PARAM
parameter on the ATTACHX macro defines user parameters. The ATTACHX macro
passes these parameters to the routine that it attaches. All other parameters on the
ATTACHX macro are control parameters that control the operation of the
ATTACHX macro.

Note:

1. User parameters are sometimes referred to as problem program parameters.
2. Control parameters are sometimes referred to as system parameters or control

program parameters.

The macros shown in Table 1 on page 5 allow a caller in AR mode to pass
information in the form of a parameter list (or parameter lists) to another routine.

4 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



This table identifies the parameter that receives the ALET-qualified address of the
parameter list and tells you where the target routine finds the ALET-qualified
address.

Table 1. Passing User Parameters in AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH/ATTACHX PARAM,VL=1 AR/GPR 1 contains the address of a list of
addresses. When either

v a 4-bytes-per-entry parameter list or

v an 8-bytes-per-entry parameter list with
PLIST8ARALETS=YES

is being used, this list also contains the ALETs
associated with those addresses. (See Figure 1
for the format of the 4-bytes-per-entry
parameter list when it contains ALETs.)

ESTAEX PARAM SDWAPARM contains the address of an 8-byte
area, which contains the address and ALET of
the parameter list.

When an AR mode caller who is using a 4-bytes-per-entry parameter list passes
ALET-qualified addresses to the called program through PARAM,VL=1 on the
ATTACH/ATTACHX macro, the system builds a list formatted as shown in
Figure 1. The addresses passed to the called program are at the beginning of the
list, and their associated ALETs follow the addresses. The last address in the list
has the high-order bit on to indicate the end of the list. For example, Figure 1
shows the format of a list where an AR mode issuer of ATTACHX who is using a
4-bytes-per-entry parameter list has coded the PARAM parameter as follows:

PARAM=(A,B,C),VL=1

When an AR mode caller who is using an 8-bytes-per-entry parameter list specifies
PLIST8ARALETS=YES, the system builds a parameter list with the 8-byte
addresses at the beginning of the list and their associated 4-byte ALETs following
the addresses.

For information about linkage conventions, see the chapter in z/OS MVS
Programming: Assembler Services Guide.

@

ALET

@A

@B

@C

GPR1
AR1

0

0

1

ALET A

ALET B

ALET C

Figure 1. Sample User Parameter List for Callers in AR Mode

Chapter 1. Using the services 5



Telling the system about the execution environment
To generate code that is correct for the environment in which the program runs,
some macros need to know one or more of the following characteristics about that
environment:
v The addressing mode (AMODE) at the time the macro is issued
v The ASC mode of the program at the time the macro is issued
v The architectural level in which the program runs

For macros that are sensitive to their environment, use the SYSSTATE macro to
define the environment. During the assembly stage, SYSSTATE sets one or more
global symbols. Later, in your source code, the macro checks the global symbols
and generates the correct code, which might mean avoiding using a
z/Architecture® instruction or an access register. Table 3 on page 18 lists MVS
macros and identifies macros that need to know the environmental characteristics.

IBM recommends you issue the SYSSTATE macro before you issue other macros.
Once a program has issued SYSSTATE, there is no need to reissue it, unless the
program switches from one AMODE to another or one ASC mode to another or
has code paths that are isolated according to architecture level or operating system
release. If you switch AMODE or ASC mode to a different architecture code path,
issue SYSSTATE immediately after the switch to indicate the new state. In general,
specify SYSSTATE ARCHLVL=2, and switch to SYSSTATE ARCHLVL=3 before
issuing macros in sections of code that only run when z/OS 2.1 capabilities are
available. If you do not issue the SYSSTATE macro, the system assumes the macro
is issued as follows:
v In AMODE other than 64-bit
v In primary ASC mode
v Usually, in ESA/390 architectural level (but may assume z/Architecture level

since all supported z/OS releases require z/Architecture level)

Table 2 describes the relevant characteristics, the corresponding parameters on the
SYSSTATE macro, and the global symbols the macro checks.

Table 2. Execution environment characteristics and corresponding SYSSTATE parameters
and global symbols

Characteristic Parameter on SYSSTATE Global symbol

AMODE of 64-bit, or either 24-bit or 31-bit AMODE64=YES or NO &SYSAM64

Primary or AR ASC mode ASCENV=P or AR &SYSASCE

Architectural level of z/Architecture ARCHLVL=0, 1, 2, 3 or OSREL &SYSALVL

Operating system release ZOSVvRr &SYSOSREL

You can issue the SYSSTATE macro with the TEST parameter in your own
user-written macro to allow your macros to generate code appropriate for their
execution environment.

Callable services do not check the global symbols described in this topic. To
determine whether a callable service is sensitive to the AMODE, ASC mode, or the
Architecture level, see the description of the individual callable service.

In early releases of MVS, the SPLEVEL macro performs a function similar to
SYSSTATE. The SPLEVEL macro identifies the level of the operating system, so
that you can tune a macro expansion based on that level. You can use this where

6 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU

|
|
|

|
|

|

|||



macro expansions change incompatibly. Because SPLEVEL applies to levels that the
system no longer supports, it is not described in this topic.

Specifying a macro version number
Often there is more than one version of a macro, differentiated by additional
parameters or new or expanded function. For example, version 1 of the IXGCONN
macro provides a connection to a log stream, while version 2 adds new parameters
in support of resource manager programs. This is different than using the
SPLEVEL macro to select a macro version level to solve problems of downward
compatibility.

You can request a specific version of a macro based on the parameters you need to
use in your application, but you should also be attuned to the storage constraints
of the program. The version of a macro might affect the length of the parameter
list generated when the macro is assembled, because when you add new
parameters to a macro, the parameter list must be large enough to fit them. The
size of the parameter list might grow from release to release of z/OS, perhaps
affecting the amount of storage your program needs.

How to request a macro version using PLISTVER
Many macros that have one or more versions supply the PLISTVER parameter. For
those that do, use the PLISTVER parameter to request a version of the macro.
PLISTVER is the only parameter allowed on the list form of a macro (MF), and it
determines which parameter list the system generates. PLISTVER is optional. If
you omit it, the system generates a parameter list for the lowest version that will
accommodate the parameters specified. This is the IMPLIED_VERSION default.
Note that on the list form, the default will cause the smallest parameter list to be
created.

You can also code a specific version number using plistver, or specify MAX:
v You can use plistver to code a decimal value corresponding to the version of the

macro you require. The decimal value you provide determines the amount of
storage allotted for the parameter list.

v You can use MAX to request that the system generate a parameter list for the
highest version number currently available. The amount of storage allotted for
the parameter list will depend on the level of the system on which the macro is
assembled.
IBM recommends, if your program can tolerate additional growth, that you
always specify PLISTVER=MAX on the list form of the macro. MAX ensures that
the list form parameter list is always long enough to hold whatever parameters
might be specified on the execute form when both forms are assembled using
the save level of the system.

Hints for using PLISTVER
There are some general considerations that you should keep in mind when
specifying the version of a macro with PLISTVER:
v If PLISTVER is omitted, the macro generates a parameter list of the lowest

version that allows all the parameters specified to be processed.
v If you code PLISTVER=n and then specify any version ‘n+1’ parameter, the

macro will not assemble.
v If you code PLISTVER=n and do not specify any version ‘n’ parameter, the

macro will generate a version ‘n’ parameter list.

Chapter 1. Using the services 7



v If you are using the standard form of the macro (MF=S), there is no reason you
need to code the PLISTVER parameter.

v Not all macros have the same version numbers. The version numbers need not
be contiguous.

The PLISTVER parameter appears in the syntax diagram and in the parameter
descriptions. Within each macro description, the PLISTVER parameter description
specifies the range of values and lists the parameters applicable for each version of
the macro.

Register use
Some services require that the caller place information in specific general purpose
registers (GPRs) or access registers (ARs) prior to issuing the service. If a service
has such a requirement, the “Input Register Information” topic for the service
provides that information. The topic lists only those registers that have a
requirement. If a register is not specified as having a requirement, then the caller
does not have to place any information in that register unless using it in register
notation for a particular parameter, or using it as a base register.

Once the caller issues the service, the system can change the contents of one or
more registers, and leave the contents of other registers unchanged. When control
returns to the caller, each register contains one of the following values or has the
following status:
v The register content is preserved and is the same as it was before the service

was issued.
v The register contains a value placed there by the system for the caller's use.

Examples of such values are return codes and tokens.
v The system used the register as a work register. Do not assume that the register

content is the same as it was before the service was issued.

Note that the system uses ARs 0, 1, 14, and 15 as work registers for every service,
regardless of whether the caller is in primary or AR address space control (ASC)
mode. The system does not use ARs 2 through 13 for any service.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Many macros require that the caller have a program base register and assembler
USING instruction in effect when issuing the macro; that is, the caller must have
program addressability. AR mode programs also require that the AR associated with
the caller's base GPR be set to zero. IBM recommends the following:
v When issuing a macro, the caller should always have program addressability in

effect.
v When establishing addressability, the caller should use only registers 2 through

12.

Many macros can take advantage of relative branching when they are used with
the IEABRC macro or with SYSSTATE ARCHLVL=1 or SYSSTATE ARCHLVL=2, if
they are running on z/OS. If relative branching is used, the caller might then need
addressability only to the static data portion of the program, and not to the
executable code.

8 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Handling return codes and reason codes
Most of the services described in this information provide return codes and reason
codes. Return and reason codes indicate the outcome of the service in one of the
following ways:
v Successful completion: you do not need to take any action.
v Successful or partially successful completion, with additional information

supplied: you should evaluate the additional information in light of your
particular program and determine if you need to take any action.

v Unsuccessful completion: some type of error has occurred, and you must take
some action to correct the error.

The errors that cause unsuccessful completion fall into three broad categories:

Program errors
Errors that your program causes: you can correct these.

Environmental errors
Errors not caused directly by your program; rather, your program's request
caused a limit to be exceeded, such as a storage limit, or the limit on the
size of a particular data set. You might or might not be able to correct
these.

System errors
Errors caused by the system: your program did nothing to cause the error,
and you probably cannot correct these.

In some cases, a return or reason code can result from some combination of these
errors.

The return and reason code descriptions for the services in this information
indicate whether the error is a program error, an environmental error, a system
error, or some combination. Whenever possible, the return and reason code
descriptions give you a specific action that you can take to fix the error.

IBM recommends that you read all the return and reason codes for each service
that your program issues. You can then design your program to handle as many
errors as possible. When designing your program, you should allow for the
possibility that future releases of MVS might add new return and reason codes to a
service that your program issues.

Handling program errors
The actions to take in the case of program errors are usually straightforward.
Typical examples of program errors are:
1. Breaking one of the rules of the service. For example:

v Passing parameters that are either in the wrong format or not valid
v Violating one of the environment requirements (addressing mode, locking

requirements, dispatchable unit mode, and so on)
v Providing insufficient storage for information to be returned by the system.

2. Causing errors related to the parameter list. For example:
v Coding an incorrect combination of parameters
v Coding one or more parameters on the service incorrectly
v Inadvertently overlaying an area of the parameter list storage
v Inadvertently destroying the pointer to the parameter list.

Chapter 1. Using the services 9



3. Requesting a service or function for which the calling program is not
authorized, or which is not available on the system on which the program is
running.

In each of the first two cases, you can correct your program. For completeness, the
return and reason code descriptions give you specific actions to perform, even
when it might seem obvious what the action should be.

In the third case, you might have to contact your system administrator or system
programmer to obtain the necessary authorization, or to request that the service or
function be made available on your system, and the return or reason code
description asks you to take that step.

Note: Generally, the system does not take dumps for errors that your program
causes when issuing a system service. If you require such a dump, then it is your
responsibility to request one in your recovery routine. See the topic on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide for
information about writing recovery routines.

Handling environmental and system errors
With environmental errors, often your first action should be to rerun your program
or retry the request one or more times. The following are examples of
environmental errors where rerunning your program or retrying the request is
appropriate:
v The request being made through the service exceeds some internal system limit.

Sometimes, rerunning your program or retrying the request results in successful
completion. If the problem persists, it might be an indication of a larger problem
requiring you to consult your system programmer, or possibly IBM support
personnel. Your system programmer might be able to tune the system or cancel
users so that the limit is no longer exceeded.

v The request exceeds an installation-defined limit. If the problem persists, the
action might be to contact your system programmer and request that a
specification in an installation exit or parmlib member be modified.

v The system cannot obtain storage, or some other resource, for your request. If
the problem persists, the action might be to check with the operator to see if
another user in the installation is causing the problem, or to see if the entire
installation is experiencing storage constraint problems.

You might be able to design your program to anticipate certain environmental
errors and handle them dynamically.

With system errors, as with environmental errors, often your first action should be
to rerun your program or retry the request one or more times. If the problem
persists, you might have to contact IBM support personnel.

Whenever possible for environmental and system errors, the return or reason code
description gives you either a specific action you can take, or a list of
recommended actions you can try.

For some errors, providing a specific action is not possible, because the action you
should take depends on your particular application, and on what is happening in
your installation. In those cases, the return or reason code description gives you
one or more possible causes of the error to help you to determine what action to
take.

10 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Some system errors result in return and reason codes that are provided for IBM
diagnostic purposes only. In these cases, the return or reason code description asks
you to record the information and provide it to the appropriate IBM support
personnel.

Using X-macros
Some MVS services support callers in both primary and AR ASC mode. When the
caller is in AR mode, macros must generate larger parameter lists; the increased
size of the list reflects the addition of ALETs to qualify addresses, as described
under “ALET qualification” on page 4. For some MVS macros, two versions of a
particular macro are available: one for callers in primary mode and one for callers
in AR mode. The name of the macro for the AR mode caller is the same as the
name of the macro for primary mode callers, except the AR mode macro name
ends with an “X”. This information refers to these macros as X-macros.

The authorized X-macros are:
v ATTACHX
v ESTAEX
v SDUMPX
v SYNCHX

The only way these macros know that a caller is in AR mode is by checking the
global symbol that the SYSSTATE macro sets. Each of these macros (and
corresponding non-X-macro) checks the symbol. If SYSSTATE ASCENV=AR has
been issued, the macro issues code that is valid for callers in AR mode. If it has not
been issued, the macro generates code that is not valid for callers in AR mode.
When your program returns to primary mode, use the SYSSTATE ASCENV=P
macro to reset the global symbol.

IBM recommends that you use the X-macro regardless of whether your program is
running in primary or AR mode. However, you should consider the following
before deciding which macro to use:

The rules for using all X-macros, except ESTAEX, are:
v Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non-X-macros are not valid for callers in AR
mode. Check the macro descriptions for these exceptions.

v Callers in AR mode should issue the X-macros.
If a caller in AR mode issues the non-X-macro, the system substitutes the
X-macro and sends a message describing the substitution.

IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a branch
entry. In these cases, you should use ESTAE.

Macro forms
You can code most macros in three forms: standard, list, and execute. Some macros
also have a modify form. When you code a macro, you use the MF parameter to
select one of the forms. The list, execute and modify forms are for reenterable
programs that need to change values in the parameter list of the macro. The
standard form is for programs that are not reenterable, or for programs that do not
change values in the parameter list.

Chapter 1. Using the services 11



When a program wants to change values in the parameter list of a macro, it can
make the change dynamically.

However, using the standard form and changing the parameter list dynamically
might cause errors. For example, after storing a new value into the inline, standard
form of the parameter list, a reenterable program operating under a given task
might be interrupted by the system before the program can invoke the macro. In a
multiprogramming environment, another task can use the same reenterable
program, and that task might change the inline parameter list again before the first
task regains control. When the first task regains control, it invokes the macro.
However, the inline parameter list now has the wrong values.

Through the use of the different macro forms, a program that runs in a
multiprogramming environment can avoid errors related to reenterable programs.
The techniques required for using the macro forms, however, are different for some
macros, called alternative list form macros, than for most other macros. For the
alternative list form macros, the list form description notes that different
techniques are required and refers you to the information under “Alternative list
form macros.”

Conventional list form macros
With conventional list form macros, you can use the macro forms as follows:
1. Use the list form of the macro, which expands to the parameter list. Place the

list form in the section of your program where you keep non-executable data,
such as program constants. Do not code it in the instruction stream of your
program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
some virtual storage.

3. Code a move character instruction that moves the parameter list from its
non-executable position in your program into the virtual storage area that you
obtained.

4. For macros that have a modify form, you can code the modify form of the
macro to change the parameter list. Use the address parameter of the modify
form to reference the parameter list in the virtual storage area that you
obtained. Thus, the parameter list that you change is the one in the virtual
storage area obtained by the GETMAIN or STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address
parameter of the execute form to reference the parameter list in the virtual
storage area that you obtained.

With this technique, the parameter list is safe even if the first task is interrupted
and a second task intervenes. When the program runs under the second task, it
cannot access the parameter list in the virtual storage of the first task.

Alternative list form macros
Certain macros, called alternative list form macros, require a somewhat different
technique for using the list form. With these macros, you do not move the area
defined by the list form into virtual storage that you have obtained; instead, you
place the area defined by the list form into a DSECT. Also, it is the list form, not
the execute form, that you use to specify the address parameter that identifies the
address of the storage for the parameter list. Note that no modify form is available
for these macros.

You can use the macro forms for the alternative list form macros as follows:

12 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



1. Use the list form of the macro to define an area of storage that the execute form
can use to store the parameters. As with other macros, do not code the list form
in the instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
virtual storage for the list form expansion.

3. Place the area defined by the list form into a DSECT that maps a portion of the
virtual storage you obtained.

4. Invoke the macro by issuing the execute form of the macro. The address
parameter specified on the list form references the parameter list in the virtual
storage area that you obtained.

Coding the macros
In this information, each macro description includes a syntax diagram near the
beginning of the macro description. The diagram shows how to code the macro.
The syntax diagram does not explain the meanings of the parameters; the
meanings are explained in the parameter descriptions that follow the syntax
diagram.

The syntax tables assume that the standard begin, end, and continue columns are
used. Thus, column 1 is assumed as the begin column. To change the begin, end,
and continue columns, use the ICTL instruction to establish the coding format you
want to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see HLASM Language Reference.

Figure 2 on page 14 shows a sample macro, TEST, and summarizes all the coding
information that is available for it. The table is divided into three columns, A, B,
and C.

Chapter 1. Using the services 13



v Column A and Column B contain those parameters that are allowed for the
macro. Column A contains those parameters that are required; column B
contains those parameters which are optional.

v If a single line appears, as shown in A1 and B1, then that is the only available
choice for the particular parameter.

v If two or more lines appear together, as shown in A2 and B2, the parameters on
those lines are mutually exclusive, that is, you can code any one of those
parameters.

v A further distinction is made between mandatory and optional parameters. The
parameter descriptions that follow the syntax table clearly identify those
parameters which are optional.

v The third column, C, provides additional information about coding the macro.

When substitution of a variable is required in column C, the following
classifications are used:

Variable
Classification

Symbol Any symbol valid in the assembler language. The symbol can be as long as
the supported maximum length of a name entry in the assembler you are
using.

Decimal digit
Any decimal digit up to and including the value indicated in the
parameter description. If both symbol and decimal digit are indicated, an
absolute expression is also allowed.

A B C

A1

A2

B1

B2

name name:

TEST

b One or more blanks must precede TEST.

b One or more blanks must follow TEST.

MATH
HIST
GEOG

,DATA=

,LNG=

symbol. Begin in column 1.name

data length data length: symbol or decimal digit, with a maximum value of 256.

,FMT=HEX
,FMT=DEC
,FMT=BIN

Default: FMT=HEX

,PASS=
Default: PASS=65

,grade grade: symbol, decimal digit, or register (1) or (2) - (12).

symbol, decimal digit, or register (1) or (2) - (12).

RX-type address, or register (2) - (12)data addr data addr:

value value:

Figure 2. Sample Macro Syntax Diagram

14 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Register (2)-(12)
One of general purpose registers 2 through 12, specified within
parentheses, previously loaded with the right-adjusted value or address
indicated in the parameter description. You must set the unused high-order
bits to zero. You can designate the register symbolically or with an
absolute expression.

Register (0)
General purpose register 0, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (0) only.

Register (1)
General purpose register 1, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (1) only.

Register (15)
General purpose register 15, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must set the
unused high-order bits to zero. Designate the register as (15) only.

RX-type address
Any address that is valid in an RX-type instruction (for example, LA).

RS-type address
Any address that is valid in an RS-type instruction (for example, STM).

RS-type name
Any name that is valid in an RS-type instruction (for example, STM).

A-type address
Any address that can be written in an A-type address constant.

Default
A value that is used in default of a specified value; that is, the value the
system assumes if the parameter is not coded.

Use the parameters to specify the services and options to be performed, and write
them according to the following rules:
v If the selected parameter is written in all capital letters (for example, MATH,

HIST, or FMT=HEX), code the parameter exactly as shown.
v If the selected parameter is written in italics (for example, grade), substitute the

indicated value, address, or name.
v If the selected parameter is a combination of capital letters and italics separated

by an equal sign (for example, DATA=data addr), code the capital letters and
equal sign as shown, and then make the indicated substitution for the italics.

v Read the table from top to bottom.
v Code commas and parentheses exactly as shown.
v Positional parameters (parameters without equal signs) appear first; you must

code them in the order shown. You may code keyword parameters (parameters
with equal signs) in any order.

v If you select a parameter, read the third column before proceeding to the next
parameter. The third column often contains coding restrictions for the parameter.

Continuation lines
You can continue the parameter field of a macro on one or more additional lines
according to the following rules:

Chapter 1. Using the services 15



v Enter a continuation character (not blank, and not part of the parameter coding)
in column 72 of the line.

v Continue the parameter field on the next line, starting in column 16. All columns
to the left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the
parameter field through column 71, with no blanks, and continue in column 16 of
the next line; or truncate the parameter field by a comma, where a comma
normally falls, with at least one blank before column 71, and then continue in
column 16 of the next line. Figure 3 shows an example of each method.

Coding the callable services
A callable service is a programming interface that uses the CALL macro to access
system services. To code a callable service, code the CALL macro followed by the
name of the callable service, and a parameter list; for example:

CALL service,(parameter list)

The syntax diagram for the sample callable service SCORE:

Syntax Description

CALL SCORE

,(test_type
,level
,data
,format_option
,return_code)

Considerations for coding callable services are:
v You must code all the parameters in the parameter list because parameters are

positional in a callable service interface. That is, the function of each parameter
is determined by its position with respect to the other parameters in the list.
Omitting a parameter, therefore, assigns the omitted parameter's function to the
next parameter in the list.

v You must place values explicitly into all input parameters, because callable
services do not set default values.

v You can use the list and execute forms of the CALL macro to preserve your
program's reentrancy.

NAME 1

NAME 2 OP2

OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAND5,OPERAND6,OPX
ERAND7
OPERAND1,OPERAND2
OPERAND3,OPERAND4,
OPERAND5,OPERAND6,OPERAND7

THIS IS ONE WAY
THIS IS ANOTHER WAY X

X

1 1610 44 72

Figure 3. Continuation Coding

16 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Including equate (EQU) statements
IBM supplies sets of equate (EQU) statements for use with some callable services.
These statements, which you may optionally include in your source code, provide
constants for use in your program. IBM provides the statements as a programming
convenience to save you the trouble of coding the definitions yourself.

Note: Check the “Programming Requirements” section of the individual service
description to determine if the equate statements are available for the callable
service you are using. If the equate statements are available, that section will also
provide a list of the statements that are provided, along with a description of how
to include them in your program.

Link-editing linkage-assist routines
Linkage-assist routines provide the connection between your program and the
system services that your program requests. When using callable services, link-edit
the appropriate linkage-assist routines into your program module so that, during
execution, the linkage-assist routines can resolve the address of, and pass control
to, the requested system services. You can also dynamically link to linkage-assist
routines as an alternative to link-editing. For example, issue the LOAD macro for
the linkage-assist routine, then issue a CALL to the loaded addresses.

To invoke the linkage-editor or binder, code JCL as in the following example:

Note: Omitting NCAL from the linkedit parameters (as the example shows) and
specifying SYS1.CSSLIB in the //SYSLIB statement, as shown, causes the addresses
of all required linkage-assist routines to be automatically resolved. This statement
saves you the trouble of having to specify individual linkage-assist routines in
INCLUDE statements.

Service summary
Table 3 on page 18 lists services described in the following:
v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

For each service, the table indicates:
v Whether a program in AR ASC mode can issue the service
v Whether a program in cross memory mode can issue the service
v Whether the macro checks the SYSSTATE global macro variables
v Whether the macro can be issued in 64-bit addressing mode

//userid JOB ’accounting-info’,’name’,CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTEP EXEC PGM=HEWL,
// PARM=’LIST,LET,XREF,REFR,RENT’
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=OLD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *

INCLUDE OBJLIB(userpgm)
ENTRY userpgm
NAME userpgm(R)

/*

Chapter 1. Using the services 17



Note:

1. A program running in primary ASC mode when PASN=HASN=SASN can issue
any of the services listed in the table.

2. Cross memory mode means that at least one of the following conditions is true:

PASN¬=SASN
The primary address space (PASN) and the secondary address space
(SASN) are different.

PASN¬=HASN
The primary address space (PASN) and the home address space
(HASN) are different.

SASN¬=HASN
The secondary address space (SASN) and the home address space
(HASN) are different.

For more information about functions that are available to programs in cross
memory mode, see z/OS MVS Programming: Extended Addressability Guide.

3. Callable services do not check the SYSSTATE or SPLEVEL global variables.

Table 3. Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

ALESERV Yes Yes No No

ASCRE Yes Yes Yes No

ASDES Yes Yes Yes No

ASEXT Yes Yes No No

ATSET No Yes Yes No

ATTACH Yes (See note 1
on page 25)

No Yes No

ATTACHX Yes No Yes Yes

AXEXT No Yes Yes No

AXFRE No Yes Yes No

AXRES No Yes Yes No

AXREXX No Yes Yes Yes

AXSET No Yes Yes No

BPXEKDA Yes No Yes No

BPXESMF Yes No Yes No

CALLDISP No Yes No Yes

CALLRTM No Yes (See note 2
on page 26)

No No

CHANGKEY No Yes No No

CIRB No No No No

CMDAUTH No No No No

CNZMXURF No Yes No No

CNZTRKR No Yes No No

COFCREAT Yes Yes Yes No

COFDEFIN Yes Yes Yes No

18 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

COFIDENT Yes Yes Yes No

COFNOTIF Yes Yes Yes No

COFPURGE Yes Yes Yes No

COFREMOV Yes Yes Yes No

COFRETRI Yes Yes Yes No

COFSDONO No No Yes No

CONFCHG No No Yes No

CPF No No No No

CPOOL No Yes Yes No

CPUTIMER No Yes Yes No

CSRSI No Yes No No

CSRUNIC Yes Yes No No

CSVAPF Yes (See note 11
on page 26)

Yes (See note 12
on page 26)

Yes No

CSVDYNEX Yes (See note 13
on page 26)

Yes (See note 14
on page 26)

Yes No

CTRACE No No Yes No

CTRACECS Yes No Yes No

CTRACEWR Yes Yes Yes No

DATOFF Yes No No No

DEQ No Yes Yes Yes

DIV Yes No Yes No

DOM No No No Yes

DSPSERV Yes Yes Yes Yes

DYNALLOC No No No Yes

EDTINFO No Yes Yes Yes

ENFREQ No No No No

ENQ No Yes Yes Yes

ESPIE No No No Yes

ESTAE (See note
3 on page 26)

No No Yes No

ESTAEX Yes Yes Yes Yes

ETCON No Yes Yes No

ETCRE No Yes Yes No

ETDEF Yes Yes No No

ETDES No Yes Yes No

ETDIS No Yes Yes No

EVENTS No No No No

EXTRACT No No No No

Chapter 1. Using the services 19



Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

FESTAE No No No No

FREEMAIN Yes (See note 4
on page 26)

Yes Yes Yes

GETDSAB No No Yes No

GETMAIN Yes (See note 4
on page 26)

Yes Yes Yes

GQSCAN No Yes No No

GTRACE No Yes No Yes

HSPSERV Yes Yes (See note 5
on page 26)

(See note 6 on
page 26)

No

IARCP64 Yes Yes Yes Yes

IARR2V Yes Yes No No

IARSUBSP Yes Yes Yes No

IARST64 Yes Yes Yes Yes

IARVSERV Yes Yes Yes No

IARV64 Yes Yes Yes Yes

IAZXCTKN Yes Yes Yes No

IAZXJSAB Yes Yes (See note 15
on page 26)

Yes No

IEAARR Yes Yes Yes Yes

IEAFP Yes Yes Yes No

IEALSQRY Yes Yes Yes No

IEAMETR Yes Yes Yes No

IEAMRMF3 No Yes No No

IEAMSCHD Yes Yes Yes No

IEANTCR Yes Yes N/A No

IEANTDL Yes Yes N/A No

IEANTRT Yes Yes N/A No

IEARBUP Yes Yes Yes No

IEATDUMP Yes No Yes No

IEATEDS Yes Yes Yes No

IEATXDC Yes Yes Yes Yes

IEAVAPE No Yes No No

IEAVAPE2 No Yes No No

IEAVDPE No Yes No No

IEAVDPE2 No Yes No No

IEAVPSE No Yes No No

IEAVPSE2 No Yes No No

IEAVRLS No Yes No No

IEAVRLS2 No Yes No No

20 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU

|||||



Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IEAVRPI No Yes No No

IEAVRPI2 No Yes No No

IEAVTPE No Yes No No

IEAVXFR No Yes No No

IEAVXFR2 No Yes No No

IEA4APE No Yes No Yes

IEA4APE2 No Yes No Yes

IEA4DPE No Yes No Yes

IEA4DPE2 No Yes No Yes

IEA4PSE No Yes No Yes

IEA4PSE2 No Yes No Yes

IEA4RLS No Yes No Yes

IEA4RLS2 No Yes No Yes

IEA4RPI No Yes No Yes

IEA4RPI2 No Yes No Yes

IEA4TPE No Yes No Yes

IEA4XFR No Yes No Yes

IEA4XFR2 No Yes No Yes

IEECMDS Yes Yes Yes No

IEEQEMCS Yes Yes Yes No

IEEVARYD No No Yes No

IEFPPSCN No No Yes No

IEFQMREQ No No No No

IEFSSI Yes No No No

IEFSSVT Yes No No No

IEFSSVTI Yes Yes No No

IFAQUERY Yes Yes No No

IOCINFO Yes Yes No No

IOSADMF No No Yes No

IOSCAPF No Yes (See note 7
on page 26)

Yes No

IOSCAPU Yes Yes (See note 7
on page 26)

Yes No

IOSCDR No No Yes No

IOSCHPD Yes Yes Yes No

IOSCMXA No Yes (See note 7
on page 26)

Yes No

IOSCMXR No Yes (See note 7
on page 26)

Yes No

Chapter 1. Using the services 21



Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IOSDCXR No Yes (See note 7
on page 26)

Yes No

IOSENQ Yes Yes Yes No

IOSINFO No No No No

IOSLOOK No No No No

IOSPTHV No No Yes No

IOSSPOF No Yes Yes Yes

IOSUPFA No Yes Yes No

IOSUPFR No Yes Yes No

IOSVRYSW Yes Yes Yes No

IOSWITCH Yes Yes Yes No

IOSZHPF Yes Yes Yes No

IRDFSD Yes Yes Yes No

IRDFSDU Yes Yes Yes No

ISGADMIN Yes Yes Yes Yes

ISGECA Yes Yes Yes Yes

ISGENQ Yes Yes Yes Yes

ISGLCRT (See
note 16 on page
26)

No Yes N/A No

ISGLID (See
note 16 on page
26)

No Yes N/A Yes

ISGLOBT No Yes N/A No

ISGLREL No Yes N/A No

ISGLPRG No Yes N/A No

ISGQUERY Yes Yes Yes Yes

ITTFMTB No No No No

ITZXFILT No Yes Yes No

IWMCLSFY No Yes Yes No

IWMCONN No Yes Yes No

IWMDISC No Yes Yes No

IWMECQRY No Yes Yes No

IWMECREA No Yes Yes No

IWMEDELE No Yes Yes No

IWMMABNL No Yes No No

IWMMCHST No Yes No No

IWMMCREA No Yes Yes No

IWMMDELE No Yes Yes No

IWMMEXTR No Yes Yes No

22 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IWMMINIT No Yes No No

IWMMNTFY No Yes Yes No

IWMMRELA No Yes Yes No

IWMMSWCH No Yes Yes No

IWMMXFER No Yes No No

IWMPQRY Yes Yes Yes No

IWMRCOLL Yes Yes Yes No

IWMRPT No Yes Yes No

IWMRQRY Yes Yes Yes No

IWMSRDRS No Yes Yes No

IWMSRSRG No Yes Yes No

IWMSRSRS No Yes Yes No

IWMWMCON No Yes Yes No

IWMWQRY Yes Yes Yes No

IWMWQWRK No Yes Yes No

IXCCREAT Yes Yes Yes No

IXCDELET Yes Yes Yes No

IXCJOIN Yes No Yes No

IXCLEAVE Yes No Yes No

IXCMG Yes Yes Yes No

IXCMOD Yes Yes Yes No

IXCMSGI Yes No Yes No

IXCMSGO Yes Yes Yes No

IXCQUERY Yes Yes Yes No

IXCQUIES Yes No Yes No

IXCSETUS Yes Yes Yes No

IXCTERM Yes Yes Yes No

IXGBRWSE Yes Yes Yes Yes

IXGCONN Yes Yes Yes Yes

IXGDELET Yes Yes Yes Yes

IXGWRITE Yes Yes Yes Yes

LLACOPY No No Yes No

LOAD Yes No No Yes

LOADWAIT No Yes Yes No

LOCASCB Yes Yes Yes No

LXFRE No Yes Yes No

LXRES No Yes Yes No

MCSOPER Yes No Yes No

Chapter 1. Using the services 23



Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

MCSOPMSG Yes No Yes No

MGCR No No No No

MGCRE No No No No

MIHQUERY Yes No Yes No

MODESET No Yes No Yes

NIL Yes Yes Yes No

NMLDEF No No No No

NUCLKUP No No No No

OIL Yes Yes Yes No

OUTADD No No No No

OUTDEL No No No No

PCLINK No Yes No No

PGANY No No No No

PGFIX No Yes No No

PGFIXA No No No No

PGFREE No Yes No No

PGFREEA No No No No

PGSER Yes (See note 8
on page 26)

Yes (See note 8
on page 26)

No Yes

POST No Yes No Yes

PTRACE No Yes No No

PURGEDQ No No No No

QEDIT No No No No

RESERVE No No No Yes

RESMGR Yes Yes No No

RESUME No Yes No No

RISGNL No Yes No No

SCHEDIRB Yes No Yes No

SCHEDULE Yes Yes Yes No

SCHEDXIT No Yes No No

SDUMP Yes (See note 1
on page 25)

Yes (See note 9
on page 26)

Yes No

SDUMPX Yes Yes (See note 9
on page 26)

Yes Yes

SETFRR Yes Yes Yes No

SETLOCK Yes Yes Yes No

SETRP Yes Yes Yes Yes

SJFREQ No Yes No No

SPIE No No No No

24 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

SPOST No No No No

SRBSTAT No Yes No No

SRBTIMER No No No No

STATUS Yes Yes No No

STORAGE Yes Yes No Yes

SUSPEND No Yes No No

SVCUPDTE No No No No

SWAREQ No No No No

SWBTUREQ No No No No

SYMREC No Yes Yes No

SYNCH Yes (See note 1) No Yes No

SYNCHX Yes No Yes Yes

SYSEVENT No No No No

TCBTOKEN Yes Yes No No

TCTL No No No No

TESTAUTH No No No No

TIMEUSED Yes (See note 10
on page 26)

Yes No Yes

T6EXIT No No No No

UCBINFO Yes Yes Yes No

UCBLOOK Yes Yes Yes No

UCBPIN Yes Yes Yes No

UCBSCAN Yes Yes Yes No

VSMLIST No Yes Yes No

VSMLOC No Yes Yes No

VSMREGN No Yes No No

WAIT No Yes No Yes

WTL No No No No

WTO No No No Yes

WTOR No No No Yes

Notes:

1. Primary mode callers can use either macro in the following macro pairs:
v ATTACH or ATTACHX
v SDUMP or SDUMPX
v SYNCH or SYNCHX
IBM recommends that programs in AR ASC mode use the X-macros
(ATTACHX, SDUMPX, and SYNCHX). If, however, a program in AR mode
issues ATTACH, SDUMP, or SYNCH after issuing SYSSTATE ASCENV=AR,
the system substitutes the corresponding X-macro and issues a message telling
you that it made the substitution.

Chapter 1. Using the services 25



2. CALLRTM TYPE=MEMTERM can be issued in cross memory mode. For
CALLRTM TYPE=ABTERM, see the CALLRTM macro description.

3. The only programs that can use ESTAE are programs that are in primary
mode with (PASN=HASN=SASN).
IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a
branch entry. In these cases, you should use ESTAE.

4. IBM recommends that AR mode callers use the STORAGE macro instead of
using GETMAIN or FREEMAIN.

5. For HSPSERV SREAD and HSPSERV SWRITE, PASN=HASN=SASN for a
non-shared standard hiperspace for which an ALET is not used (that is, the
HSPALET parameter is omitted).

6. If you use the HSPALET parameter, the HSPSERV macro checks SYSSTATE.
7. If the input UCB is captured, the IOSCAPF, IOSCMXA, IOSCMXR, and

IOSDCXR macros can be issued in cross memory mode only if the UCB is
captured in the primary address space. IOSCAPU CAPTOACT without the
ASID parameter also can be issued in cross memory mode if the UCB was
captured in the primary address space. IOSCAPU CAPTUCB and IOSCAPU
UCAPTUCB cannot be issued in cross memory mode.

8. PGSER can be issued in AR ASC mode only if you specify BRANCH=Y.
PGSER can be issued in cross memory mode only if you specify BRANCH=Y
or BRANCH=SPECIAL.

9. Both SDUMP and SDUMPX can be issued in cross memory mode only if you
specify BRANCH=YES.

10. Only TIMEUSED LINKAGE=SYSTEM can be issued in AR ASC mode.
TIMEUSED LINKAGE=BRANCH cannot be issued in AR ASC mode.

11. For a QUERY request, CSVAPF can be issued only in primary mode. For all
other requests, CSVAPF can be issued in primary or AR mode.

12. For CSVAPF with the ADD, DELETE, and DYNFORMAT requests, PASN =
HASN = SASN. For CSVAPF with the QUERY, QUERYFORMAT, and LIST
requests, any PASN, any HASN, any SASN.

13. For a QUERY or a CALL request with FASTPATH=YES, CSVDYNEX can be
issued only in primary mode. For all other requests, CSVDYNEX can be
issued in primary or AR mode.

14. For CSVDYNEX CALL, RECOVER, and QUERY requests, any PASN, any
HASN, any SASN. For all other requests, PASN=HASN=SASN.

15. When the caller of the IAZXJSAB macro specifies the ASCB parameter, any
PASN, any HASN, any SASN; otherwise, PASN=HASN is required.

16. The 64 bit entry names are as follows:
v ISGLCR64
v ISGLID64
v ISGLOB64
v ISGLRE64
v ISGLPB64
v ISGLPR64

26 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 2. LLACOPY - Library lookaside refresh

Description
The LLACOPY macro obtains new directory entries from DASD and uses them to
synchronously refresh the LLA directory. LLACOPY uses the BLDL macro to obtain
the directory entries, and returns them to the caller even if LLA is not active.
LLACOPY requires the same input parameters as BLDL: an open DCB and a BLDL
list of member names. If the directory entry for any of the member names is not
found, that member will be removed from LLA's directory as part of the refresh.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state with any key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: None

Programming requirements
None.

Restrictions
The storage key of the parameter list and the storage key of the BLDL list must be
the same as the PSW key in which the caller runs.

The caller must have UPDATE access to the data set in either the FACILITY class
or the DATASET class. LLACOPY first checks to see if the caller is authorized in
the FACILITY class. The resource name used in this check is in the form
CSVLLA.data_set_name. If the caller is authorized (or if there is no profile
protecting the resource name), LLACOPY completes successfully. If the caller is not
authorized, LLACOPY then checks to see if the caller is authorized in the
DATASET class. If the caller is authorized, LLACOPY completes successfully.
Otherwise, LLACOPY fails, and an SMF record may be created by the external
security product.

Input register information
Before issuing the LLACOPY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

© Copyright IBM Corp. 1988, 2015 27



Register
Contents

0-1 If GPR 15 contains a return code of X'8', GPR 0 contains a reason code;
otherwise, used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
LLACOPY eliminates the reduced fetch I/O benefit of LLA's module caching until
the module is again staged to LLA's VLF data space.

An additional cost of using LLACOPY for LLA-managed data sets is that LLA
serializes the use of the LLA directory. So, for the duration of the LLACOPY, the
LLA directory cannot be changed by another LLACOPY or LLA command.

Syntax
The standard form of the LLACOPY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LLACOPY.

LLACOPY

� One or more blanks must follow LLACOPY.

DCB=dcb addr dcb addr: RX-type address or register (2) - (12).

,BLDLLIST=list addr list addr: RX-type address or register (2) - (12).

,RETCODE=ret code ret code: RX-type address or register (2) - (12).

LLACOPY macro

28 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,RSNCODE=rsn code rsn code: RX-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

DCB=dcb addr
Specifies the address of an open DCB that LLACOPY uses to issue the BLDL
macro to obtain new directory entries.

,BLDLLIST=list addr
Specifies the address of a list of member names in the format required by the
BLDL macro.

,RETCODE=ret code
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15.

,RSNCODE=rsn code
Specifies the location where the system is to store the reason code. If the return
code is X'8', the reason code is also in GPR 0.

,MF=S
Specifies the standard form of LLACOPY. The standard form places the
parameters into an in-line parameter list.

ABEND codes
LLACOPY might abnormally terminate with abend code X'023'. See z/OS MVS
System Codes for an explanation of the reason codes and programmer responses for
X'023'.

Return and reason codes
The return and reason codes for LLACOPY are the same as those for the BLDL
macro. When control returns from LLACOPY, GPR 15 (and ret code, if you coded
RETCODE) contains one of the following hexadecimal return codes. If you receive
a return code of 8, GPR 0 (and rsn code, if you coded RSNCODE) contains one of
the following hexadecimal reason codes.

Table 4. Return and Reason Codes for the LLACOPY Macro

Return Code Reason Code Meaning and Action

00 None Meaning: LLACOPY found all requested directory
entries and copied the new entries into the caller's
BLDL list. If LLA was available, LLACOPY refreshed
the LLA directory for the given members in the data
set concatenation that the open DCB defined.

Action: None.

LLACOPY macro

Chapter 2. LLACOPY - Library lookaside refresh 29



Table 4. Return and Reason Codes for the LLACOPY Macro (continued)

Return Code Reason Code Meaning and Action

04 None Meaning: LLACOPY did not find all the requested
directory entries, and might not have found any
entries. It copies into the caller's BLDL list entries
that it did find. If LLA was available, LLACOPY
refreshed the LLA directory for the entries that it
found, and removed from the LLA directory any
members whose directory entries it did not find.

Action: Ensure that each member name in the
caller's BLDL list is in one of the data sets described
by the caller's DCB.

08 00 Meaning: Environmental error. LLACOPY detected a
permanent I/O error when trying to search the
directory. LLACOPY did not update the BLDL list or
refresh the LLA directory.

Action: Contact your system programmer. The error
could be caused by a software or hardware problem.

08 04 Meaning: Environmental error. LLACOPY did not
have sufficient virtual storage in the primary address
space to complete. LLACOPY did not update the
BLDL list or refresh the LLA directory.

Action: Contact your system programmer, who can
ensure that sufficient virtual storage is available.

Example
Request LLACOPY to retrieve and update module ABC from library USERLIB.
USERLIB is opened by the application program. The DCB that was used to OPEN
the library is also used in the LLACOPY.

LLACOPY BLDLLIST=B_LIST,DCB=USERDCB,
RETCODE=RETNCODE,RSNCODE=RSONCODE

USERDCB DCB DDNAME=USERLIB,MACRF=R,DSORG=PO
B_LIST DS 0F BLDL LIST

DC H’01’ NUMBER OF ENTRIES
DC H’76’ LENGTH OF ENTRY

MODNAME DC CL8’ABC ’ MODULE NAME
DS CL68 DIRECTORY INFO FILLED IN BY LLACOPY

RETNCODE DS F
RSONCODE DS F

LLACOPY - List form
Use the list form of the LLACOPY macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the LLACOPY macro is written as follows:

Syntax Description

LLACOPY macro

30 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LLACOPY.

LLACOPY

� One or more blanks must follow LLACOPY.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

Default: 0D.

Parameters
The parameters are explained under the standard form of the LLACOPY macro
with the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the LLACOPY macro.

list addr is the address of the storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

LLACOPY - Execute form
Use the execute form of the LLACOPY macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the LLACOPY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LLACOPY.

LLACOPY

� One or more blanks must follow LLACOPY.

LLACOPY macro

Chapter 2. LLACOPY - Library lookaside refresh 31



Syntax Description

DCB=dcb addr dcb addr: RX-type address or register (2) - (12).

,BLDLLIST=list addr list addr: RX-type address or register (2) - (12).

,RETCODE=ret code ret code: RX-type address or register (2) - (12).

,RSNCODE=rsn code rsn code: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained under the standard form of the LLACOPY macro
with the following exception:

,MF=(E,list addr)
Specifies the execute form of LLACOPY.

list addr specifies the area that the system uses to store the parameters.

LLACOPY macro

32 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 3. LOAD - Bring a load module into virtual storage

Description
The LOAD macro brings the load module containing the specified entry name into
virtual storage, if a usable copy is not available in virtual storage. Control is not
passed to the load module; instead, the load module's entry point address is
returned in GPR 0. Load services places the load module in storage above or
below 16 megabytes depending on the RMODE of the module. The responsibility
count for the load module is increased by one.

The load module remains in virtual storage until the responsibility count is
reduced to 0 through task terminations or until the effects of all outstanding LOAD
requests for the module have been canceled (using the DELETE macro described in
), and there is no other requirement for the module.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state or supervisor state, and any PSW key. The

GLOBAL, EOM, ADDR, ADDR64, ADRNAPF and
ADRNAPF64 parameters are restricted to authorized users
(APF authorized, PSW key 0-7, or supervisor state).

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
If you code any of the parameters LSEARCH, ADDR, ADRNAPF, GLOBAL, EOM,
or LOADPT, you will obtain a macro-generated parameter list. Therefore, except
for the error routine address, all addresses must be specified as A-type addresses
or registers (2) - (12).

Restrictions
v Any module loaded by a task will not be removed from virtual storage unless

the task that loaded the module invokes the DELETE macro or terminates.
v The load module entry name must be listed as a member name or alias in a

partitioned data set directory or it must have been specified previously in an
IDENTIFY macro invocation. If the LOAD macro cannot find the specified entry
name, the caller's task is ended abnormally unless the caller provides an ERRET
exit.

v The caller cannot have an EUT FRR established.

© Copyright IBM Corp. 1988, 2015 33



Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

If the LOAD is successful, the GPRs contain the following when control returns to
the caller:

Register
Contents

0 Entry point address of the requested load module. The Load service sets
bits within the entry point address to indicate the load module's AMODE:
v AMODE 24: Within the 32-bit GPR, the high-order and low-order bits

are both 0.
v AMODE 31: Within the 32-bit GPR, the high-order bit is 1, low-order bit

is 0.
v AMODE 64: The 64-bit GPR contains the entry point address. Bit 63 is 1.

If the module's AMODE is ANY, it indicates AMODE 24 if the caller is
AMODE 24 (the high order bit is 0), or AMODE 31 if the caller is AMODE
31 or AMODE 64 (the high order bit is 1).

1 The high-order byte contains the load module's APF authorization code.

If the module's length value in doublewords is less than 16M (2**24) and
the module does not have the RMODE(SPLIT) attribute, then the low-order
three bytes contain the module length in doublewords.

If the module's length value in doublewords is greater than or equal to
16M (2**24), the low-order three bytes contain zeros. To obtain the module
length, issue the CSVQUERY macro with the OUTLENGTH parameter.

If the module is a program object with the RMODE(SPLIT) attribute, the
low-order three bytes contain zeros. To obtain the length and load point
information for each segment, issue the CSVQUERY macro with the
OUTXTLST parameter.

When the module is a program object, bound with FETCHOPT=NOPACK
option, multiplying by eight the returned length value (to get the total
number of bytes) always results in a multiple of one page (4096 bytes) (this
is the full size of the area obtained with GETMAIN to hold the program
object). If the program object is bound with FETCHOPT=PACK, the length
value returned is the virtual storage size indicated in the directory entry.
See z/OS MVS Program Management: User's Guide and Reference for further
information.

2-13 Unchanged

14 Used as a work register by the system

15 Zero, indicating successful completion.

If the LOAD is not successful and the caller provided an ERRET exit to receive
control, the GPRs contain:

LOAD macro

34 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Register
Contents

0 Used as a work register by the system

1 System completion code for the abend that would have been issued had
the caller not provided an ERRET exit.

2-13 Unchanged

14 Used as a work register by the system

15 Reason code (never zero) associated with the system completion code
contained in GPR 1.

When control returns to the caller or the ERRET exit receives control, the access
registers (ARs) are unchanged.

Performance implications
None.

Syntax
The LOAD macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LOAD.

LOAD

� One or more blanks must follow LOAD.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: RX-type address or register (0), (2) - (12); A-type

DE=list entry addr list entry address: If ADDR, ADRNAPF, EOM,EXTINFO, GLOBAL, LOADPT,
or LSEARCH is specified, A-type address or register (2) - (12); otherwise,
RX-type address, or register (2) - (12).

,DCB=dcb addr dcb address: If ADDR, ADRNAPF, EOM,EXTINFO, GLOBAL, LOADPT, or
LSEARCH is specified, A-type address or register (2) - (12); otherwise,
RX-type address, or register (1) or (2) - (12).

,ERRET=err rtn addr err rtn addr: RX-type address, or register (2) - (12).

,LSEARCH=NO Default: LSEARCH=NO

,LSEARCH=YES

,ADDR=load addr load addr: A-type address or register (2) - (12).

LOAD macro

Chapter 3. LOAD - Bring a load module into virtual storage 35



Syntax Description

,ADRNAPF=load addr

,ADDR64=load addr64 load addr64: AD-type address or 64-bit register (2) - (12).

,ADRNAPF64=load addr64

,GLOBAL=YES Default: GLOBAL=NO

,GLOBAL=(YES,P) If GLOBAL=YES is specified, the default is GLOBAL=(YES,P).

,GLOBAL=(YES,F)

,GLOBAL=NO

,EOM=NO Default: EOM=NO

,EOM=YES Note: GLOBAL must be specified with EOM=YES.

,LOADPT=addr addr: A-type address or register (2) - (12).

Note: ADDR(or ADDR64) and ADRNAPF(or ADRNAPF64) cannot be
specified with LOADPT or GLOBAL or EXTINFO.

,EXTINFO=addr addr: A-type address or register (2) - (12).

,RELATED=value

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

,PLISTVER=0

Parameters
The parameters are explained below:

EP=entry name
EPLOC=entry name addr
DE=list entry addr

Specifies the entry name, the address of the name, or the address of the name
field in a 62-byte list entry for the entry name that was constructed using the
BLDL macro. If EPLOC is coded, the name must be padded to eight bytes, if
necessary.

Note: When you use the DE parameter with the LOAD macro, DE specifies
the address of a list that was created by a BLDL macro. The LOAD and the
BLDL must be issued from the same task. Otherwise, the system might
terminate the program with a system completion code of 106 and a return code
of 15. Therefore, do not issue an ATTACH or DETACH between issuances of
BLDL and LOAD.

,DCB=dcb addr
Specifies the address of the data control block for the partitioned data set

LOAD macro

36 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



containing the entry name described above. This parameter must indicate the
same DCB used in the BLDL mentioned above.

If the DCB parameter is omitted or if DCB=0 is specified when the LOAD
macro is issued by the job step task, the data sets referred to by either the
STEPLIB or JOBLIB DD statement are first searched for the entry name. If the
entry name is not found, the link library is searched.

If the DCB parameter is omitted or if DCB=0 is specified when the LOAD
macro is issued by a subtask, the data sets associated with one or more data
control blocks referred to by the TASKLIB operand of previous ATTACH
macros in the subtask chain are first searched for the entry name. If the entry
name is not found, the search is continued as if the LOAD had been issued by
the job step task.

Note: DCB must reside in 24-bit addressable storage.

,ERRET=err rtn addr
Specifies the address of a routine to receive control when an error condition
that would cause an abnormal termination of the task is detected. GPR 1
contains the abend code that would have resulted had the task abended, and
GPR 15 contains the reason code that is associated with the abend. The routine
does not receive control when input parameter errors are detected.

,LSEARCH=NO
,LSEARCH=YES

Specifies whether (YES) or not (NO) you want the library search limited to the
job pack area and to the first library in the normal search sequence.

,ADDR=load addr
,ADRNAPF=load addr

Specifies that the module is to be loaded at the designated address. The
address must begin on a doubleword boundary. Storage for the module must
have been previously allocated in the key of the eventual user. The system
does not search for the module and does not maintain a record of the module
when it is loaded. If you code ADDR or ADRNAPF, you must also code the
DCB parameter (not DCB=0) and you must not code GLOBAL or LOADPT.
ADDR and ADRNAPF are only allowed with PLISTVER=0.

Note: The system assumes that the RMODE of the module is consistent with
this address, but the system does not check.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4–byte
field.

If your program requires that the module be in an APF-authorized library, use
ADDR; otherwise, use ADRNAPF.
v For the ADDR parameter, the system checks that the module being loaded is

in an APF-authorized library.
v For the ADRNAPF parameter, the system does not check that the module

resides in an APF-authorized library. Therefore, if the module is not in an
APF-authorized library, the program must make sure that the loaded
programs receive control only in problem state.

,ADDR64=load addr64
,ADRNAPF64=load addr64

Specifies that the module is to be loaded beginning at the designated address.
The address must begin on a doubleword boundary. Storage for the module
must have been previously allocated in the key of the eventual user. The

LOAD macro

Chapter 3. LOAD - Bring a load module into virtual storage 37



system does not search for the module and does not maintain a record of the
module when it is loaded. If you code ADDR64 or ADRNAPF64, you must
also code the DCB parameter (not DCB=0), and you must not code GLOBAL
or LOADPT. ADDR64 and ADRNAPF64 are only allowed with PLISTVER=1 or
PLISTVER=MAX. The SYSSTATE ARCHLVL value (by specifying SYSSTATE
ARCHLVL=n) must be greater than 1.

Note: The system assumes that the RMODE of the module is consistent with
this address, but the system does not check. The data set from which an
ADDR64 or ADRNAPF64 request is met must not be a VIO data set.

To code: Specify the AD-type address, or address in 64-bit register (2)-(12), of
an 8-byte field.

If your program requires that the module is in an APF-authorized library, use
ADDR64; otherwise, use ADRNAPF64.
v For the ADDR64 parameter, the system checks that the module being loaded

is in an APF-authorized library.
v For the ADRNAPF64 parameter, the system does not check whether the

module resides in an APF-authorized library. Therefore, if the module is not
in an APF-authorized library, the program must make sure that the loaded
programs receive control only in problem state.

,GLOBAL=YES
,GLOBAL=(YES,P)
,GLOBAL=(YES,F)
,GLOBAL=NO

Specifies whether the module is to be loaded into the pageable common
service area (CSA) (GLOBAL=(YES,P) or GLOBAL=YES), or loaded into fixed
CSA (GLOBAL=(YES,F)), or not loaded into CSA (GLOBAL=NO). (When the
module is to be loaded into CSA, the module must not have been previously
loaded with different attributes by the same job step. The module must also be
reentrant and must reside in an APF-authorized library.)

For GLOBAL=(YES,F), the module must not be marked as requiring alignment
on a page boundary. If you code the GLOBAL parameter, you cannot code the
ADDR or ADRNAPF parameter.

If the requested module resides in the link pack area, the LOAD request
performs as though the GLOBAL parameter was omitted. The LOAD request
locates the module in the link pack area and allows access to it, but the request
does not load a copy of the desired module into the common service area.

Note: A load request with the GLOBAL=YES, (YES,P), or (YES,F) option does
not cause the loaded module to be implicitly known to other address spaces.
The loaded module can be accessed by other address spaces, however, only the
task that loaded the module may delete it.

,EOM=YES
,EOM=NO

Indicates whether a module in global storage is to be deleted when the address
space terminates (EOM=YES) or when the task terminates (EOM=NO). If you
code EOM, you must also code GLOBAL.

,LOADPT=addr
Specifies that the starting address at which the module was loaded is to be
returned to the caller at the indicated address. If you code LOADPT, you
cannot code ADDR or ADRNAPF.

LOAD macro

38 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



,EXTINFO=addr
Specifies a 304-byte area which upon return is to contain extended information.
This area is mapped by dsect EXTI within macro CSVEXTI. Included in this
area are :
v the extent list (each entry is mapped by dsect EXTIXE within macro

CSVEXTI)
v the authorization code
v the entry point address

By using the EXTINFO keyword you can avoid the need to call CSVQUERY
after doing the LOAD to obtain information that would not otherwise be
returned by LOAD. For example, if a program object length were greater than
128 megabytes or had been bound with RMODE=SPLIT, LOAD would not
otherwise return the length information.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both forms are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, may be used with any currently available parameters.
v 0, if you use any currently available parameters other than ADDR64 or

ADRNAPF64; may not be used with ADDR64 and ADRNAPF64.

To code: Specify one of the following versions:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

Return and reason codes
When the LOAD macro returns control to the caller, GPR 15 is set to zero if the
load request was successful.

LOAD macro

Chapter 3. LOAD - Bring a load module into virtual storage 39



If the load request was not successful and a caller-provided error routine (specified
using the ERRET keyword) receives control, GPR 1 contains the system completion
code for the ABEND that would have been issued had the caller not provided an
ERRET exit. GPR 15 contains the reason code associated with the system
completion code in GPR 1.

Example 1
Bring a load module with entry name PGMLKRUS into virtual storage. Let the
system find the module from available libraries.
LOAD EP=PGMLKRUS

Example 2
Bring a load module with entry name PGMEOM into pageable CSA storage and
return the load address at location PGMLPT.
LDPGM LOAD EP=PGMEOM,EOM=YES,LOADPT=PGMLPT,GLOBAL=(YES,P)

.

.

.
PGMLPT DS A LOAD ADDRESS RETURNED HERE

LOAD - List form
The list form of the LOAD macro builds a nonexecutable parameter list that can be
referred to by the execute form of the LOAD macro.

Syntax
The list form of the LOAD macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LOAD.

LOAD

� One or more blanks must follow LOAD.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: A-type address.

DE=list entry addr list entry addr: A-type address.

,DCB=dcb addr dcb addr: A-type address.

,LSEARCH=NO Default: LSEARCH=NO

,LSEARCH=YES

,ADDR=load addr load addr: A-type address.

LOAD macro

40 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,ADRNAPF=load addr
Note: ADDR and ADRNAPF are only allowed with PLISTVER=0.

,ADDR64=load addr64 load addr64: AD-type address.

,ADRNAPF64=load addr64
Note: ADDR64 and ADRNAPF64 are only allowed with PLISTVER=1 or
PLISTVER=MAX.

,GLOBAL=YES Default: GLOBAL=NO

,GLOBAL=(YES,P) If GLOBAL=YES is specified, the default GLOBAL=(YES,P).

,GLOBAL=(YES,F)

,GLOBAL=NO

,EOM=NO Default: EOM=NO

,EOM=YES Note: GLOBAL must be specified with EOM=YES.

,LOADPT=addr addr: A-type address.

Note: ADDR(or ADDR64) and ADRNAPF(or ADRNAPF64) cannot be
specified with LOADPT or GLOBAL or EXTINFO.

,EXTINFO=addr addr: A-type address or register (2) - (12).

,RELATED=value

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

,PLISTVER=0

,SF=L

Parameters
The parameters are explained under the standard form of LOAD macro with the
following exception:

,SF=L
Specifies the list form of the LOAD macro.

LOAD - Execute form
The execute form of the LOAD macro can refer to and modify the parameter list
constructed by the list form of the macro.

LOAD macro

Chapter 3. LOAD - Bring a load module into virtual storage 41



Syntax
The execute form of the LOAD macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LOAD.

LOAD

� One or more blanks must follow LOAD.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: RX-type address or register (2) - (12).

DE=list entry addr list entry addr: RX-type address, or register (2) - (12).

,DCB=dcb addr dcb addr: RX-type address, or register (2) - (12).

,ERRET=err rtn addr err rtn addr: RX-type address, or register (2) - (12).

,LSEARCH=NO Default: LSEARCH=NO

,LSEARCH=YES

,ADDR=load addr load addr: RX-type address or register (2) - (12).

,ADRNAPF=load addr Note: For an RX-type address, the operand is treated as the address of a
field that contains the actual load address.

,ADDR64=load addr64 load addr64: RX-type address or 64–bit register (2) - (12).

,ADRNAPF64=load addr64

,GLOBAL=YES Default: GLOBAL=NO

,GLOBAL=(YES,P) Note: If GLOBAL=YES is specified, the default is GLOBAL=(YES,P).

,GLOBAL=(YES,F)

,GLOBAL=NO

,EOM=NO Default: EOM=NO

,EOM=YES Note: GLOBAL must also be specified with EOM=YES.

,LOADPT=addr addr: RX-type address or register (2) - (12).

Note: ADDR(or ADDR64) and ADRNAPF(or ADRNAPF64) cannot be
specified with LOADPT or GLOBAL or EXTINFO.

,EXTINFO=addr addr: A-type address or register (2) - (12).

LOAD macro

42 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,RELATED=value

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

,PLISTVER=0

,SF=(E,list addr) list addr: RX-type address or register (2) - (12) or (15).

Parameters
The parameters are explained under the standard form of LOAD macro with the
following exception:

,SF=(E,list addr)
Specifies the execute form of the LOAD macro.

LOAD macro

Chapter 3. LOAD - Bring a load module into virtual storage 43



LOAD macro

44 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 4. LOADWAIT — Build a wait state parameter list for
use with WTO

Description
The LOADWAIT macro can:
v Define storage for a parameter list
v Define and initialize storage for a parameter list
v Modify storage of an existing parameter list

z/OS MVS Programming: Authorized Assembler Services Guide describes how to use
the LOADWAIT macro.

The WSPARM parameter of the WTO macro contains the name of the parameter
list that you build using the LOADWAIT macro. WTO uses the parameter list from
LOADWAIT to put the system into the wait state and issues one message to the
operator. The wait state code and operator message explain what action the
operator is to take. For more information about wait state codes, see z/OS MVS
System Codes.

There is a list and modify form of the macro, but no standard form.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0, or APF-authorized
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled or disabled for I/O and external interrupts
Locks: No requirement
Control parameters: No requirement

Programming requirements
None.

Restrictions
The LOADWAIT parameter list and action code receiving byte, if specified, must
be in fixed storage of the WTO issuer’s address space.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers

© Copyright IBM Corp. 1988, 2015 45



containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller after the caller has issued the modify form of the
macro, the general purpose registers contain:

Register
Contents

0 Address of the action code variable if specified.

1 Address of parameter list.

2-15 Unchanged

Performance implications
None.

LOADWAIT - List form
Use the list form of the LOADWAIT macro together with the modify form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage or initializes that storage. The modify form of the macro
updates the parameters in the area previously defined by the list form.

Syntax
The list form of the LOADWAIT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LOADWAIT.

LOADWAIT

� One or more blanks must follow LOADWAIT.

Valid parameters (Required parameters are underlined)

WAITTYPE=RESTARTABLE CODE, REASON, PSAPARM, MF

WAITTYPE=NONREST CODE, REASON, MF

,CODE=wait state code wait state code: Constant

,REASON=reason code reason code: Constant

,REASON=0 Default: REASON=0

,PSAPARM=PSA parm PSA parm: Constant

,PSAPARM=0 Default: PSAPARM=0

LOADWAIT macro

46 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,MF=(L,list addr,attr) list addr: RX-type address.

attr: 1- to 60-character input string. Default: 0F

Parameters
The parameters are explained as follows:

WAITTYPE=RESTARTABLE
WAITTYPE=NONREST

Identifies the type of wait state to be loaded. WAITTYPE=RESTARTABLE
indicates a restartable wait state. WAITTYPE=NONREST indicates a
nonrestartable wait state.

,CODE=wait state code
Specifies a 2-byte wait state code. The contents of the leftmost 4 bits are
irrelevant; the remaining 12 bits contain the wait state code. For more
information about wait state codes, see z/OS MVS System Codes.

,REASON=reason code
,REASON=0

Specifies a 2-byte wait state reason code. For more information about wait
states and their reason codes, see z/OS MVS System Codes.

,PSAPARM=PSA parm
,PSAPARM=0

Specifies a fullword field that you can use for additional information, such as a
pointer to a data area, or a system ID at the time you issue the LOADWAIT
macro. This information is used for diagnostic purposes when the system
enters a wait state. The PSAPARM parameter is valid only if you specify
WAITTYPE=RESTARTABLE.

If you do not specify PSAPARM, the system initializes the field to zeroes.

,MF=(L,list addr,attr)
Specifies the list form of the LOADWAIT macro. list addr names the area that
the system is to use for the parameter list. Use standard assembler variable
naming conventions to name this area, and refer to the parameter list by the
same name. Use this area name as input on the WSPARM parameter of the
WTO macro.

attr is an optional 1- to 60-character string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the system
provides a value of 0F, which forces the parameter list to a fullword boundary.

Return and reason codes
None.

Example 1
Generate a parameter list to load a restartable wait state.

LOADWAIT WAITTYPE=RESTARTABLE,CODE=WAIT062,MF=(L,WAITPRM)
.
.
.

LOADWAIT macro

Chapter 4. LOADWAIT — Build a wait state parameter list for use with WTO 47



DS 0D
WAIT062 EQU X’62’ * WAIT STATE CODE IS KNOWN
.
.
.

Example 2
Generate a parameter list to load a restartable wait state and specify a reason code
and PSAPARM.

LOADWAIT WAITTYPE=RESTARTABLE,CODE=WAIT114,REASON=REASON02,
PSAPARM=OPERINFO,MF=(L,WAITPRM2)

.

.

.
DS 0D

WAIT114 EQU X’114’ * WAIT STATE CODE IS KNOWN
REASON02 EQU X’2’ * REASON CODE IS KNOWN
OPERINFO EQU X’C5E2C1E3’ * PSAPARM = ’ESAT’
.
.
.

Example 3
Generate a parameter list to load a nonrestartable wait state.

LOADWAIT WAITTYPE=NONREST,CODE=WAIT093,MF=(L,WAITPRM3)
.
.
.

DS 0D
WAIT093 EQU X’093’ * WAIT STATE CODE
.
.
.

LOADWAIT - Modify form
The modify form of the macro updates an existing parameter list.

Note: When you use the modify form of the macro, the parameter list is reset to
all zeroes. You must specify all of the required information each time you use the
modify form.

Syntax
The modify form of the LOADWAIT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LOADWAIT.

LOADWAIT

� One or more blanks must follow LOADWAIT.

LOADWAIT macro

48 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

Valid parameters (Required parameters are underlined)

WAITTYPE=RESTARTABLE CODE, REASON, ACTCODE, PSAPARM, MF

WAITTYPE=NONREST CODE, REASON, MF

,CODE=wait state code wait state code: Value

,REASON=reason code reason code: Value

,REASON=0 Default: REASON=0

,ACTCODE=action code action code: 1-byte field

,ACTCODE=0 Default: ACTCODE=0

,PSAPARM=PSA parmr PSA parm: Value

,PSAPARM=0 Default: PSAPARM=0

,MF=(M,list addr) list addr: RX-type address.

Parameters
The parameters are explained under the list form of the macro with the following
exceptions:

,ACTCODE=action code
,ACTCODE=0

Specifies a 1-byte field that the system updates with the contents of storage
location X'30E' after the system is restarted. The operator is not required to
supply any information but can store 1 byte of information into location X'30E'
before initiating a restart. ACTCODE is valid only if you specify
WAITTYPE=RESTARTABLE on the modify form of the macro.

,MF=(M,list addr)
Specifies the modify form of the LOADWAIT macro.

list addr specifies the area that the system uses to store the parameter list.

Example 1
Reserve storage for a parameter list named ‘WAITPRM’, then modify the existing
list to load a wait state code and reason code. Assume that you will not know all
the wait state information at program assembly time, so you must invoke
LOADWAIT twice.

LOADWAIT MF=(L,WAITPRM)
.
.
.

LOADWAIT WAITTYPE=NONREST,CODE=WAIT032,REASON=STOPCPU,
MF=(M,WAITPRM)

.

.

.
WAIT032 DC XL2’0032’ * WAIT STATE CODE IS KNOWN

LOADWAIT macro

Chapter 4. LOADWAIT — Build a wait state parameter list for use with WTO 49



STOPCPU DS XL2 * STOPPED PROCESSOR IS NOT KNOWN
.
.
.

Example 2
Reserve storage for a parameter list named ‘WAITPRM’, then modify the existing
list to load a wait state code and reason code. Also specify ‘OPRESP’ as the action
code and ‘MOREINFO’ for the PSAPARM. Assume that you will not know all the
wait state information at program assembly time, so you must invoke LOADWAIT
twice.

LOADWAIT MF=(L,WAITPRM)
.
.
.

LOADWAIT WAITTYPE=RESTARTABLE,CODE=WAIT045,ACTCODE=OPRESP,
PSAPARM=MOREINFO,REASON=REASON01,MF=(M,WAITPRM)

.

.

.
WAIT045 DC XL2’45’ * WAIT STATE CODE IS KNOWN
REASON01 DC XL2’7A’ * REASON CODE IS KNOWN
MOREINFO DC XL4’8007A045’ * PSAPARM IS KNOWN
OPRESP DS XL1 * ACTION CODE ADDRESS IS NOT KNOWN

.

.

.

LOADWAIT macro

50 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 5. LOCASCB — Locate address space control block
(ASCB) address

Description
The system identifies an address space through an address space identifier (ASID),
an address space control block (ASCB), or a space token (STOKEN). Depending on
the MVS service you want to use, you might be required to supply an identifier
you do not have. For example, you might have the ASID of an address space but
need to supply the ASCB. If you have the ASID or STOKEN but need to supply
the ASCB, use the LOCASCB macro to return the ASCB address.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state or supervisor state, and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or secondary when you specify the ASID

parameter; primary or access register (AR) when you specify
STOKEN.

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: CMS lock, if you want to be sure that the address space

doesn't terminate while the system is referencing the ASCB;
otherwise, no requirement.

Control parameters: If you specify the ASID parameter, control parameters must
be in the primary address space; if you specify the STOKEN
parameter, control parameters must be in the primary
address space or be in an address/data space that is
addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the LOCASCB macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the caller issued the macro. Therefore, if the caller depends on these

© Copyright IBM Corp. 1988, 2015 51



registers containing the same value before and after issuing the macro, the caller
must save these registers before issuing the macro and restore them after the
system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 When the return code is 0, a reason code.

Reason
code Explanation

0 At the time of checking, the address space was not terminating. As
long as the caller remains legally disabled or holds the general
CMS lock, if the address space is targeted for termination, the
address space may be quiesced (ASCBFAIL) and may be set invalid
for cross memory access (ASTEICMA), but memory termination
will not proceed to give control to any address space termination
resource managers.

4 The address space is terminating, but termination is not complete.
As long as the caller remains legally disabled or continues to hold
the general CMS lock, the ASCB/ASSB will not be FREEMAINed.
All other address space related resources may or may not be
cleaned up.

1 ASCB address or 0

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0 Used as a work register by the system

1 0 if you specify STOKEN; otherwise, used as a work register by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the LOCASCB macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LOCASCB.

LOCASCB macro

52 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

LOCASCB

� One or more blanks must follow LOCASCB.

ASID=asid addr asid addr: RX-type address or register (0) - (15).

STOKEN=stoken addr stoken addr: RX-type address

Parameters
The parameters are explained as follows:

ASID=asid addr
Specifies the RX-type address of a halfword that contains the ASID for which
the ASCB is to be returned or the register that contains the ASID in bits 16-31.
(Bits 0-15 of the register are ignored.)

STOKEN=stoken addr
Specifies the RX-type address of the STOKEN that identifies the address space
for which the ASCB is to be returned.

ABEND codes
None.

Return codes
When the LOCASCB macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 5. Return Codes for the LOCASCB Macro

Return Code Meaning and Action

00 Meaning: LOCASCB successfully located and returned the ASCB address.

Action: None.

04 Meaning: Program error. The ASID or STOKEN did not map to a valid, active
ASCB. This may occur because the input ASID of STOKEN never was valid, or
because the address space it represents is no longer active.

Action: Verify that the input ASID or STOKEN is valid.

08 Meaning: Program error. The STOKEN was not valid.

Action: Supply a valid input STOKEN.

Example 1
Get the ASCB address for the address space whose ASID is specified by the
constant at location ASN.

LH 4,ASN
LOCASCB ASID=(4)

ASN DC H’34’

LOCASCB macro

Chapter 5. LOCASCB — Locate address space control block (ASCB) address 53



Example 2
Get the ASCB address for the address space whose STOKEN is stored at the
location STOKADDR.

LOCASCB STOKEN=STOKADDR

STOKADDR DS 2F

LOCASCB macro

54 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 6. LXFRE - Free a linkage index

Description
The LXFRE macro frees one or more linkage indexes. You cannot free a linkage
index that was reserved with the SYSTEM option. (See the LXRES macro). Before
issuing the LXFRE macro, disconnect all entry tables associated with the linkage
index, unless you specify FORCE=YES. If you do not disconnect the entry tables
and do not specify FORCE=YES, linkage indexes are not freed and the routine is
abnormally terminated.

Related macro
LXRES

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space

Programming requirements
None.

Restrictions
None.

Input register information
The LXFRE macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the LXFRE
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

© Copyright IBM Corp. 1988, 2015 55



Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
None.

Syntax
The standard form of the LXFRE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LXFRE.

LXFRE

� One or more blanks must follow LXFRE.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

,FORCE=NO Default: FORCE=NO

,FORCE=YES

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

LXLIST=lx list addr

LXFRE macro

56 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



ELXLIST=elx list addr
lx list addr specifies the address of a variable length list of fullword entries.
The first word in the list must contain the number (1 to 32) of LXs to be freed.
Each entry following the first must contain a linkage index value specified in
the form returned by the LXRES macro.

elx list addr specifies the address of an area that contains extended linkage
index (LX) values. The first word in the list must contain the number (1 to 32)
of LXs values to be freed. Each subsequent eight bytes contains an extended
linkage index value in the form returned by the LXRES macro: a 4-byte
sequence number followed by an LX value. If the sequence number in one of
the eight-byte sections is incorrect, the system issues abend X'052' with reason
code X'0216'.

,FORCE=NO
,FORCE=YES

Specifies whether (YES) or not (NO) the linkage index is to be freed even if
entry tables are currently connected to it. Any connected entry tables are
disconnected before the linkage index is freed. FORCE=NO is the default.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified can be any valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return codes
When LXFRE macro returns control to your program, GPR 15 contains a
hexadecimal return code and GPR 0 contains a hexadecimal reason code.

Table 6. Return Codes for the LXFRE Macro

Return Code Meaning and Action

00 Meaning: The specified linkage indexes were freed. No entry tables were
connected.

Action: None.

04 Meaning: The specified linkage indexes were freed. Entry tables were connected,
but FORCE was specified and was successfully executed.

Action: None.

08 Meaning: Some of the specified linkage indexes were freed. Entry tables were
connected. FORCE was specified but one or more of the necessary disconnects
failed.

Action: None required.

Examples
For examples of the use of this and other cross memory macros, see the chapter on
cross memory communication in z/OS MVS Programming: Extended Addressability
Guide.

LXFRE macro

Chapter 6. LXFRE - Free a linkage index 57



LXFRE - List form
The list form of the LXFRE macro is used to construct a nonexecutable parameter
list. The execute form of the LXFRE macro can refer to or modify the parameter
list.

Syntax
The list form of the LXFRE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LXFRE.

LXFRE

� One or more blanks must follow LXFRE.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

,FORCE=NO Default: FORCE=NO

,FORCE=YES

,RELATED=value value: Any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the LXFRE macro with
the following exception:

,MF=L
Specifies the list form of the LXFRE macro.

LXFRE - Execute form
The execute form of the LXFRE macro can refer to and modify a remote parameter
list created by the list form of the macro.

Syntax
The execute form of the LXFRE macro is written as follows:

Syntax Description

LXFRE macro

58 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LXFRE.

LXFRE

� One or more blanks must follow LXFRE.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

,FORCE=NO Default: FORCE=NO

,FORCE=YES

,RELATED=value value: Any valid macro keyword specification.

,MF=(E,cntl addr) cntl addr: RX-type address or register (0) - (12).

Parameters
The parameters are explained under the standard form of the LXFRE macro with
the following exception:

,MF=(E,cntl addr)
Specifies the execute form of the LXFRE macro. This form uses a remote
parameter list.

LXFRE macro

Chapter 6. LXFRE - Free a linkage index 59



LXFRE macro

60 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 7. LXRES — Reserve a linkage index

Description
The LXRES macro reserves one or more linkage indexes for the caller's use. The
reserved linkage indexes are owned by the cross memory resource ownership task
of the current home address space. The linkage index reservation applies across all
linkage tables in the system and remains in effect until the LX is eligible to be
reassigned, as described below:

Non-reusable system LX
The system does not reassign the LX. The original requestor of the LX should
reconnect to the LX if the address space terminates and then restarts.

Reusable system LX
The system reassigns the LX after the owning address space has terminated or
after the owner has used LXFRE to free the LX.

Non-reusable non-system LX
The system reassigns the LX after all entry tables are disconnected from the
LX. This is the case when the owning address space terminates or when the
owner uses ETDIS to disconnect the entry table from the LX and uses LXFRE
to free the LX; and all address spaces that have used ETCON to connect the LX
to that entry table have either terminated or used ETDIS to disconnect the
entry table from the LX.

Reusable non-system LX
The system reassigns the LX after the owning address space has terminated or
after the owner has used LXFRE to free the LX.

Related macro
LXFRE

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space

Programming requirements
Register 13 must point to a standard register savearea that must be addressable in
primary mode.

© Copyright IBM Corp. 1988, 2015 61



Restrictions
None.

Input register information
The LXRES macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the LXRES
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
None.

Syntax
The standard form of the LXRES macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LXRES.

LXRES

LXRES macro

62 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

� One or more blanks must follow LXRES.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

,LXSIZE=12 Default: LXSIZE=12 when you do not specify EXLIST or REUSABLE=YES;
LXSIZE=16 when you specify ELXLIST or REUSABLE=YES.

,LXSIZE=16

,LXSIZE=23

,LXSIZE=24

,REUSABLE=NO Default: REUSABLE=NO

,REUSABLE=YES

,SYSTEM=NO Default: SYSTEM=NO

,SYSTEM=YES

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

LXLIST=list addr
ELXLIST=list addr

lx list addr specifies the address of a variable-length list of fullword entries.
The first fullword in the list must contain the number (1 to 32) of linkage index
(LX) values to be returned. The list must be long enough to contain the
requested number of values. The LX values are returned in the list entries in
the proper position for ORing with the entry index to form a PC number.

elx list addr specifies the address of an area that contains extended linkage
index (LX) values. The first fullword in the list must contain the number (1 to
32) of extended linkage index (LX) values to be returned. Each extended LX
value is an eight-byte area that contains a 4-byte sequence number followed by
a 4-byte LX value. The area must be long enough to contain the requested
number of values. The LX value within the extended LX value is in the proper
position for ORing with the entry index to form a PC number. The sequence
number in each extended LX value is relevant only when you have specified
REUSABLE=YES. You can specify ELXLIST even if the LX Reuse Facility is not
enabled.

LXSIZE=12
LXSIZE=16
LXSIZE=23
LXSIZE=24

LXSIZE allows you to specify the maximum size of the LX, which is either 12,
16, 23, or 24 bits. The system is allowed to return any LX that is no larger than
the size that you specify. On a system that supports only 2048 LXs (running on

LXRES macro

Chapter 7. LXRES — Reserve a linkage index 63



a processor prior to a z890 or z990 at driver level 55 and running at level z/OS
V1R6 or with the LX reuse facility, the returned LX will fit within 12 bits. The
LX reuse facility is available with z/OS V1R6 to provide additional LXs and
improve reusability of LXs. It is enabled when running on a z890 or z990
processor at driver level 55 or above, with APAR OA07708 installed. When the
facility is enabled bit CVTALR in byte CVTFLAG2 of the CVT data area is 1.

LXSIZE=12 is the default when you do not specify REUSABLE=YES and you
do not specify ELXLIST. If you specify LXSIZE=12 along with EXLIST or
REUSABLE=YES, the system ignores LXSIZE=12 and uses LXSIZE=16 instead.
You can use the LXLIST parameter for the returned data regardless of the
LXSIZE value, unless you also specify REUSABLE=YES.

LXSIZE=16 is the default when you have specified either the ELXLIST or
REUSABLE parameter.

Because the LX forms part of the PC number (bits 0–23), and because the PC
instruction generates the PC number as an 'effective address', the value you
specify for LXSIZE depends on the addressing mode of the calling programs
that will execute the PC:
v Specify LXSIZE=16 if any callers might execute the PC instruction in

AMODE 24.
v Specify LXSIZE=23 if callers will execute the PC instruction only in AMODE

31 or 64. Do not specify LXSIZE=23 if the PC can ever be executed in
AMODE 24.

v Specify LXSIZE=24 if callers will execute the PC instruction only in AMODE
64.

REUSABLE=NO
REUSABLE=YES

By specifying the REUSABLE keyword, you can decide that whether or not the
LX being returned is reusable. When you specify REUSABLE=YES, you must
also:
v Specify the ELXLIST parameter.
v Make sure that the PC issued using the reusable LX is done by placing the

sequence number for that LX in bits 0-31 of 64-bit GPR 15 prior to issuing
the PC.

The sequence number for the LX is returned within the ELXLIST entry for the
LX.

If the LX Reuse Facility is not enabled, a non-reusable LX will be returned.

,SYSTEM=NO
,SYSTEM=YES

Specifies whether (YES) or not (NO) the linkage indexes are being reserved for
system connections. If YES is specified, a subsequent ETCON macro specifying
the linkage index causes all address spaces to be connected to the entry table.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding services performed elsewhere. The format and
contents of the information specified can be any valid coding values.

ABEND codes
052
053

LXRES macro

64 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return codes
When the LXRES macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 7. Return Code for the LXRES Macro

Return Code Meaning

00 Meaning: The specified linkage indexes were successfully reserved.

Examples
For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in z/OS MVS Programming: Extended
Addressability Guide.

LXRES - List form
The list form of the LXRES macro is used to construct a nonexecutable parameter
list. The execute form of the macro can then refer to this list or a copy of it for
reentrant programs.

Syntax
The list form of the LXRES macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LXRES.

LXRES

� One or more blanks must follow LXRES.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

,LXSIZE=12 Default: LXSIZE=12 when you do not specify EXLIST or REUSABLE=YES;
LXSIZE=16 when you specify ELXLIST or REUSABLE=YES.

,LXSIZE=16

,LXSIZE=23

,LXSIZE=24

,SYSTEM=NO Default: SYSTEM=NO

,SYSTEM=YES

LXRES macro

Chapter 7. LXRES — Reserve a linkage index 65



Syntax Description

,RELATED=value value: Any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the LXRES macro with
the following exception:

,MF=L
Specifies the list form of the LXRES macro.

LXRES - Execute form
The execute form of the LXRES macro can refer to and modify a remote parameter
list constructed by the list form of the macro.

Syntax
The execute form of the LXRES macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede LXRES.

LXRES

� One or more blanks must follow LXRES.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

,LXSIZE=12 Default: LXSIZE=12 when you do not specify EXLIST or REUSABLE=YES;
LXSIZE=16 when you specify ELXLIST or REUSABLE=YES.

,LXSIZE=16

,LXSIZE=23

,LXSIZE=24

,SYSTEM=NO Default: SYSTEM=NO

,SYSTEM=YES

,RELATED=value value: Any valid macro keyword specification.

LXRES macro

66 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,MF=(E,cntl addr) cntl addr: RX-type address or register (0) - (12).

Parameters
The parameters are explained as under the standard form of the LXRES macro
with the following exception:

,MF=(E,cntl addr)
Specifies the execute form of the LXRES macro, and cntl addr is the name or
address of the list form of the macro.

LXRES macro

Chapter 7. LXRES — Reserve a linkage index 67



LXRES macro

68 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 8. MCSOPER - Manage extended MCS operations

Description
MCSOPER enables you to activate and manage extended MCS consoles. An
extended MCS console is a program that acts as a console. It can issue MVS
commands, and receive command responses and unsolicited message traffic.
MCSOPER defines and activates an extended MCS console to the system and
provides a means of storing operator messages and command responses.
MCSOPER also deactivates the extended console or console class and allows the
extended console to receive the hardcopy message set.

You can remove extended MCS consoles from your configuration using the
IEARELEC sample program that is shipped in the V1R7 samplib. See z/OS MVS
Planning: Operations for a description of how to use this program.

Use the MCSOPMSG macro to retrieve messages delivered to the EMCS console
that has been activated using the MCSOPER macro. For more information on
MCSOPER and MCSOPMSG, see z/OS MVS Programming: Authorized Assembler
Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
If MSGDLVRY=NONE is specified on the MCSOPER ACTIVATE request, the
OPERPARM console attribute for DOM will be forced to DOM=NONE. See z/OS
MVS Programming: Authorized Assembler Services Guide for a description of console
attributes.

Input register information
Before issuing the MCSOPER macro, the caller must ensure that the following
general purpose register (GPR) contains the specified information:

Register
Contents

13 The address of an 18-word save area

© Copyright IBM Corp. 1988, 2015 69



Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 If GPR 15 contains a hexadecimal return code of 00, 10, or 14, GPR 0
contains a reason code; otherwise, GPR 0 contains zero.

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
v MSGDLVRY=FIFO delivers better performance than MSGDLVRY=SEARCH. Use

MSGDLVRY=SEARCH when you are looking only for certain types of messages
such as command responses.

v If you request that an extended console receive the hardcopy message set from
all the systems in a sysplex by specifying the MSCOPE=*ALL console attribute
with the HARDCOPY OPERPARM option, you might experience performance
problems.

Syntax
The standard form of the MCSOPER macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MCSOPER.

MCSOPER

� One or more blanks must follow MCSOPER.

REQUEST=ACTIVATE See Table 8 on page 72 for parameters available with REQUEST= services.

MCSOPER macro

70 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

REQUEST=DEACTIVATE

,NAME=opername addr opername addr: RX-type address or register (2) - (12).

,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

,ABTERM=NO Default: ABTERM=NO

,ABTERM=YES

,TERMNAME=terminal name addr terminal name addr: RX-type address or register (2) - (12).

,OPERPARM=parm area addr parm area addr: RX-type address or register (2) - (12).

,MCSCSA=csa addr csa addr: RX-type address or register (2) - (12).

,MCSCSAA=alet addr alet addr: RX-type address or register (2) - (12).

,MSGDLVRY=FIFO See Table 9 on page 72 for parameters valid with MSGDLVRY services.

,MSGDLVRY=SEARCH

,MSGDLVRY=NONE

,MSGECB=ecb addr ecb addr: RX-type address or register (2) - (12).

,QLIMIT=qlimit addr qlimit addr: RX-type address or register (2) - (12).

Default: QLIMIT=2147483647

,ALERTECB=alert addr alert addr: Rx-type address or register (2) - (12).

,ALERTECB=0 Default: ALERTECB=0

,ALERTPCT=percent addr percent addr: Rx-type address or register (2) - (12).

,ALERTPCT=percent num percent num: number from 0 to 100. Default: ALERTPCT=100

,QRESUME=qresume addr qresume addr: RX-type address or register (2) - (12).

,QRESUME=qresume num qresume num: number from 0 to 99. Default: QRESUME=0

,RTNCODE=ret code ret code: RX-type address or register (2) - (12).

,RSNCODE=reason code reason code: Rx-type address or register (2) - (12).

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 71



The following table lists the parameters available with REQUEST=ACTIVATE and
REQUEST=DEACTIVATE. REQUEST=RELEASE can be used only to release a
migration ID. Migration IDs are not supported at release V1R7; therefore, the
REQUEST=RELEASE service is ignored.

Table 8. Parameters available with REQUEST= services

Parameters REQUEST= ACTIVATE REQUEST= DEACTIVATE

NAME required Either NAME or CONSID
(not both)

CONSID required Either NAME or CONSID
(not both)

ABTERM not valid optional

TERMNAME required not valid

OPERPARM optional not valid

MCSCSA required not valid

MCSCSAA required not valid

MSGDLVRY optional not valid

RTNCODE optional optional

RSNCODE optional optional

Table 9. Parameters available with MSGDLVRY= services

Parameters MSGDLVRY= FIFO MSGDLVRY=
SEARCH

MSGDLVRY=
NONE

MSGECB required required not valid

QLIMIT optional optional not valid

ALERTECB optional optional not valid

ALERTPCT optional optional not valid

QRESUME optional optional not valid

Parameters
The parameters are explained as follows:

REQUEST=ACTIVATE
REQUEST=DEACTIVATE

Specifies the MCSOPER function you want to perform. This is a required
parameter. The functions are as follows:
v ACTIVATE identifies an extended console to MCS. It initializes a specific

session. The application activating the extended console must have READ
access to the MVS.MCSOPER.consname resource. See z/OS MVS Planning:
Operations for more details. MCSOPER processing will perform the check
unless the authorized application has already verified the authority and
turned on bit MCSOBYPY in the MCSOP data area (IEZVG111).

v DEACTIVATE identifies the console as inactive and terminates the session.

You can specify only one of these functions each time you invoke MCSOPER.

,NAME=opername addr
Specifies the address of an 8-byte field that contains the name of the console to
be activated or deactivated.. NAME is required when you specify
REQUEST=ACTIVATE. Do not use a name that might match the name of a

MCSOPER macro

72 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



device number (for example, BAD). If the name of a console matches a device
number, a VARY command might not work as expected. If you specify
REQUEST=DEACTIVATE, then either NAME or CONSID must be specified,
but not both.

,CONSID=console id addr
Specifies the address of the 4-byte console ID. If you specified
REQUEST=ACTIVATE, CONSID is an output area that will receive the console
ID. CONSID is required if you specify REQUEST=ACTIVATE. If you specified
REQUEST=DEACTIVATE, then either CONSID or NAME must be specified,
but not both.

,ABTERM=NO
,ABTERM=YES

Indicates an abnormal termination of an extended MCS console. If you request
to deactivate a console ID by abnormally terminating the console, the system
fails the extended MCS console.

If ABTERM is not specified, ABTERM=NO is the default.

,TERMNAME=terminal name addr
Specifies the terminal name, VTAM® LU name, or other identification of the
source for the activate request. The name is logged when the activate occurs
and has no other use.

,OPERPARM=parm area addr
Specifies the address of the MCSOP data area, mapped by IEZVG111. That area
contains information on operator parameters such as routing codes, command
authority, message format, message level, and whether the console will receive
the hardcopy message set. OPERPARM is optional. The system looks for
information on operator parameters first in the user profile of a security
product, such as RACF®. If the system does not find operator parameters in
the user profile, it uses the operator parameters passed in the MCSOP data
area, mapped by IEZVG111. If you did not specify the OPERPARM parameter,
the system takes the default values of the operator parameters, also defined in
the MCSOP data area. You can override the console attributes specified in the
user profile of the security product by turning on bit MCSOVRDY in the
MCSOP data area.

Note: When the RACF OPERCMDS class is not active, the OPERPARM
segment on the RACF user profile is ignored.
For more information about OPERPARM, see z/OS MVS Programming:
Authorized Assembler Services Guide.

,MCSCSA=csa addr
Specifies the address of a 4-byte output area that will contain the address of
the MCS console status area. When MCSOPER posts the ECB and if the return
and reason codes indicate that queueing has been disabled, you need to check
the MCS console status area, which is defined in the MCSCSA data area,
mapped by IEAVG131, to determine which problem has disabled queuing. The
MCSCSA parameter is required if you specified REQUEST=ACTIVATE.

,MCSCSAA=alet addr
Specifies the address of a 4-byte output area on a fullword boundary that will
contain the ALET that identifies the address or data space that contains the
MCS console status area. MCSCSAA is required if you specified
REQUEST=ACTIVATE.

,MSGDLVRY=FIFO
,MSGDLVRY=SEARCH

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 73



,MSGDLVRY=NONE
Specifies how MCSOPER queues messages to extended MCS consoles.
Specifying FIFO will cause MCSOPER to deliver messages on a first-in,
first-out basis. This is the default option. Specifying SEARCH allows you to
request messages based on search arguments specified in the MCSOPMSG
macro. Specifying NONE will keep messages from being delivered to this
console. In addition, if NONE is specified, the OPERPARM console attribute
for DOM will be forced to DOM=NONE. See z/OS MVS Programming:
Authorized Assembler Services Guide for a description of console attributes.

,MSGECB=ecb addr
Specifies the address of the ECB that the system posts when it queues a
message to the console. Note that the system posts this ECB for every message
it delivers to the message dataspace. However, since it is not possible to tell
how many times an ECB has been posted since it was last waited on, once an
ECB is posted, users should issue MCSOPMSG to retrieve messages until they
receive a return and reason code indicating that no more messages remain to
be retrieved. This keyword is optional and is not valid if you specified
MSGDLVRY=NONE.

Note: For system performance reasons, IBM recommends that the message
ECB be in common storage.

,QLIMIT=qlimit addr
Specifies either the maximum number or the address of the maximum number
of messages which the system can queue to the console issuing the request.
You can specify the maximum number as any number from 1 to 2147483647 (2
gigabytes). QLIMIT=2147483647 is the default.

,ALERTECB=alert addr
,ALERTECB=0

Specifies the address of the ECB that the system will post when one of the
following is true:
v The number of messages in storage has reached the number specified in

QLIMIT.
v The number of messages in storage matches the percentage of the QLIMIT

number specified in ALERTPCT.
v You ran out of space for messages in storage.
v There is a queuing error.

If you specify ALERTECB=0, MCSOPER will not post an ECB.

,ALERTPCT=percent addr
,ALERTPCT=percent num

Specifies the address of the percentage of the maximum number of messages
specified in QLIMIT or the number representing the percent. When the queue
reaches this percentage, the MCSOPER posts the ALERTECB. If you do not
specify percent addr, or percent num is outside the range of 1 through 99,
MCSOPER will operate on the default, 100.

,QRESUME=qresume
,QRESUME=qresume num

Specifies the address that contains the depth percent at which the queue must
be to resume queuing. If the system disabled queuing because the number of
messages in the data space reached the percentage of the QLIMIT (ALERTPCT)
and you retrieve enough messages to meet the percentage you specify in
QRESUME, queuing will resume automatically for the console issuing the
request. If you do not specify QRESUME, or QRESUME is outside the range of

MCSOPER macro

74 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



0 through 99, queuing will only resume after explicit action by the application
using the MCSOPMSG REQUEST=RESUME macro. The default is
QRESUME=0.

,RTNCODE=ret code
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15.

,RSNCODE=reason code
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

ABEND codes
None.

Return and reason codes
When control returns from MCSOPER, GPR 15 (and ret code, if you specified
RTNCODE) contains one of the following hexadecimal return codes. GPR 0 (and
reason code, if you specified RSNCODE) contains one of the following hexadecimal
reason codes.

Table 10. Return and Reason Codes for the MCSOPER Macro

Return Code Reason Code Meaning and Action

00 00 Meaning: Processing was successful.

Action: None.

00 04 Meaning: An EMCS console was successfully activated;
however, a migration ID was not obtained if one was
requested. Migration IDs are not supported as of z/OS
V1R8.

Action: Remove the request for a migration ID.

04 None Meaning: Environmental error. For REQUEST=ACTIVATE,
an EMCS console with this name is already active on this
system or on a system within the same GRS NONE or
RING environments. For REQUEST=DEACTIVATE, the
console was already inactive.

Action: If you specified the wrong console, correct the error
and retry the request.

08 None Meaning: Program or environmental error. For
REQUEST=DEACTIVATE, the console has not been
defined.

Action: If you specified the wrong console, correct the error
and retry the request. If the console should have been
active, find out why it was not, correct the problem, and
rerun the program.

0C None Meaning: For an ACTIVATE request, the issuer does not
have READ access to the OPERCMDS resource name
MVS.MCSOPER.console_name, where console_name is the
name of the console the user tried to activate.

Action: Correct the problem and rerun the program.

10 00 Meaning: System error. The input parameter list contains
an error. This reason code is for IBM diagnostic purposes
only.

Action: Record the return and reason code and supply
them to the appropriate IBM support personnel.

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 75



Table 10. Return and Reason Codes for the MCSOPER Macro (continued)

Return Code Reason Code Meaning and Action

10 08 Meaning: Program error. The specified console name is not
valid. The reason could be one of the following:
v The syntax of the console name is incorrect.
v You specified the console name of a system console.
v You specified a restricted console name.

Action: Correct any errors and rerun the program.

10 0C Meaning: Program error. The specified console ID is not
valid. The reason could be one of the following:

v The syntax of the console ID is incorrect.

v You specified the console ID of a system console.

v You did not specify the console ID of an EMCS console.

Action: Correct any errors and rerun the program.

10 18 Meaning: Program error. The authority level specified in
the OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

10 1C Meaning: Program error. The message format specified in
the OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

10 20 Meaning: Program error. The message level specified in the
OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

10 24 Meaning: Program error. The message type specified in the
OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

10 28 Meaning: Program error. The log command response
specified in the OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

10 2C Meaning: System error. This reason code is used for IBM
diagnostic purposes only.

Action: Record the return and reason code and supply
them to the appropriate IBM support personnel.

10 30 Meaning: Program error. The key specified in the
OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

10 38 Meaning: Program error. The command association
specified in the OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

10 3C Meaning: Program error. The message scope specified in
the OPERPARM segment is not valid. One of the following
errors exists:

v The calling program specified ALL with some other
value

v A system name contains a syntax error

v A duplicate system name exists in the list of systems

v The specified number of systems is not valid.

Action: Correct the problem and rerun the program.

MCSOPER macro

76 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 10. Return and Reason Codes for the MCSOPER Macro (continued)

Return Code Reason Code Meaning and Action

10 44 Meaning: You issued MCSOPER while in cross-memory
mode. You cannot issue MCSOPER if your program is in
cross-memory mode.

Action: Correct the problem and rerun the program.

10 48 Meaning: Program error. The maximum dataspace size
value in the OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

14 00 Meaning: System error. This reason code is for IBM
diagnostic purposes only.

Action: Record the return and reason code and supply
them to the appropriate IBM support personnel.

14 08 Meaning: System error. This reason code is for IBM
diagnostic purposes only.

Action: Record the return and reason code and supply
them to the appropriate IBM support personnel.

14 0C Meaning: Program or environmental error. There was an
SAF routine error.

Action: Check your OPERPARM statement for incorrect
entries. If you do not find an error, record the return and
reason code and supply them to the appropriate IBM
support personnel.

14 10 Meaning: System error. This reason code is for IBM
diagnostic purposes only.

Action: Record the return and reason code and supply
them to the appropriate IBM support personnel.

14 14 Meaning: System error. This reason code is for IBM
diagnostic purposes only.

Action: Record the return and reason code and supply
them to the appropriate IBM support personnel.

14 18 Meaning: Program error. The console ID you specified is
not defined to the sysplex at this time.

Action: Check to see that you specified the correct console
ID. Determine whether the console is active by issuing a
DISPLAY EMCS command from a console. Correct the
problem and rerun the program.

14 1C Meaning: System error. This reason code is for IBM
diagnostic purposes only.

Action: Record the return and reason code and supply
them to the appropriate IBM support personnel.

14 20 Meaning: System error. There was a data space
initialization error. The system could not create a data
space because it could not obtain a data space or ALET.

Action: This might be a performance or tuning problem.
Contact your system programmer.

14 24 Meaning: This reason code is for IBM diagnostic purposes
only.

Action: Record the return and reason code and supply
them to the appropriate IBM support personnel.

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 77



Table 10. Return and Reason Codes for the MCSOPER Macro (continued)

Return Code Reason Code Meaning and Action

14 28 Meaning: System error. Necessary storage could not be
obtained for the console.

Action: Attempt to rerun the program. If the error persists,
record the return and reason code and supply them to the
appropriate IBM support personnel.

14 2C Meaning: System error. The task terminated because
abends cannot be performed any more.

Action: Try to run the program again. If the error persists,
keep a record of the return and reason code and contact the
IBM Support Center for help.

18 None Meaning: Program error. The caller is not in supervisor
state.

Action: Correct your program and resubmit it.

1C nnnnnnnn Meaning: For REQUEST=ACTIVATE, an ALESERV ADD
request failed. nnnnnnnn is the failed ALESERV ADD
return code.

Action: See the ALESERV ADD return code information
and correct the problem.

Example 1
This example activates a console named TAPE1 with operator parameter
information contained in an area called PARMAREA, and values for MCSCSA and
return and reason codes.
MDR CSECT

STM 14,12,12(13)
BALR 12,0
USING *,12

MCSOPER REQUEST=ACTIVATE,NAME=TAPE1,CONSID=IDAREA, X
MSGECB=ALERT_ECB,TERMNAME=TERMINAL, X
OPERPARM=PARMAREA, X
MCSCSA=STATUS_AREA,MCSCSAA=MY_ALET, X
RTNCODE=RETCODE,RSNCODE=REASON

LM 14,12,12(13)
BR 14

*
PARMAREA DS CL40
IDAREA DS CL4
ASCBPTR DS A
CLASSNAME DS CL8
TERMINAL DC CL8’CN3E0’
TAPE1 DC CL8’TAPE1’
RETCODE DS F
REASON DS F
ALERT_ECB DS A

DS 0D
STATUS_AREA DS CL4
MY_ALET DS F

IEZVG111
END MDR

Example 2
This example deactivates a console named TAPE1 by failing the console.
MDR CSECT

STM 14,12,12(13)
BALR 12,0

MCSOPER macro

78 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



USING *,12
MCSOPER REQUEST=DEACTIVATE,NAME=TAPE1,ABTERM=YES, X

RTNCODE=RETCODE,RSNCODE=REASON
LM 14,12,12(13)
BR 14

*
TAPE1 DC CL8’TAPE1’
IDAREA DS CL4
RETCODE DS F
REASON DS F

END MDR

Example 3
Activate an extended MCS console and specify that it is to receive the hardcopy
message set.
TESTHC CSECT
TESTHC AMODE 31
TESTHC RMODE ANY
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*

STM R14,R12,12(R13)
BALR R12,0
USING *,R12
MODID BRANCH=YES

*
GETMAIN RU,LV=DATAEND Obtain storage for data areas
LR R11,R1
USING DATAAREA,R11
ST R13,SAVEAREA+4
LA R15,SAVEAREA
ST R15,8(R13)
LR R13,R15

*
LA R8,OPERDATA Address of operparm area
USING MCSOPPRM,R8 IEZVG111 addressability
XC MCSOPPRM(MCSOPLEN),MCSOPPRM Clear the operparm area

*************************************************************************
* Override the console attributes specified in the user profile
* of the security product by turning on bit MCSOVRDY in the MCSOP data
* area. Request the hardcopy attribute (to receive hardcopy message set).
*************************************************************************

OI MCSOFLAG,MCSOVRDY Override console attributes
OI MCSOMISC,MCSOHDCY Request the hardcopy attribute

*
MODESET MF=(E,SUP) Change to supervisor state

* to issue MCSOPER ACTIVATE request
*************************************************************************
* Activate an extended MCS console whose name is contained in a field
* called HCCONSNM. The attributes of the extended MCS console are

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 79



* contained in a field called OPERDATA, mapped by IEZVG111. The
* console will have its messages delivered on a first-in-first-out
* basis. The system will post a message ECB called HCMECB.
* The address of the output area that contains the
* address of the MCS console status area is contained in a field
* called HCSTATUS. The address of the ALET that identifies the address
* or data space that contains the MCS console status area is
* contained in a field called HCSTATAL.
* The system returns the console ID in the field called HCCONSID.
* The system returns a return code and a reason code in fields
* called HCRETC and HCRNC, respectively.
*************************************************************************

MCSOPER REQUEST=ACTIVATE, Activate the console X
NAME=HCCONSNM, X
TERMNAME=HCCONSNM, X
OPERPARM=OPERDATA, X
MSGDLVRY=FIFO, X
MSGECB=HCMECB, X
MCSCSA=HCSTATUS, X
MCSCSAA=HCSTATAL, X
CONSID=HCCONSID, X
RTNCODE=HCRETC, X
RSNCODE=HCRSNC, X
MF=(E,MCSOPPL)

*
MODESET MF=(E,PROB) Return to problem state

*
L R13,4(R13)
FREEMAIN RU,LV=DATAEND,A=(R11),SP=230
LM R14,R12,12(R13)
BR R14

*
HCCONSNM DC CL8’HCMCSOP ’
SUP MODESET MODE=SUP,MF=L Parmlist for supervisor state
PROB MODESET MODE=PROB,MF=L Parmlist for problem state
*
DATAAREA DSECT

DS 0F
SAVEAREA DS 18F

DS 0F
OPERDATA DS CL(MCSOPLEN)
HCCONSID DS CL4
HCSTATUS DS A
HCSTATAL DS F
HCMECB DS F
HCRETC DS F
HCRSNC DS F

MCSOPER MF=(L,MCSOPPL)
DATAEND EQU *-DATAAREA

IEZVG111
END TESTHC

MCSOPER - List form
Use the list form of the MCSOPER macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

MCSOPER macro

80 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax
The list form of the MCSOPER macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

blank; One or more blanks must precede MCSOPER.

MCSOPER

� One or more blanks must follow MCSOPER.

,MF=(L,list addr) list addr: Symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string.

,MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the macro with the
following exception:

,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)

Specifies the list form of the MCSOPER macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

MCSOPER - Modify form
The modify form of the MCSOPER macro changes parameters in the control
parameter list that the system created through the list form of the macro.

Syntax
The modify form of the MCSOPER macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MCSOPER.

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 81



Syntax Description

MCSOPER

� One or more blanks must follow MCSOPER.

REQUEST=ACTIVATE See Table 8 on page 72 for parameters available with REQUEST services.

REQUEST=DEACTIVATE

,NAME=opername addr opername addr: RX-type address or register (2) - (12).

,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

,ABTERM=NO Default: ABTERM=NO

,ABTERM=YES

,TERMNAME=terminal name addr terminal name addr: RX-type address or register (2) - (12).

,OPERPARM=parm area addr parm area addr: RX-type address or register (2) - (12).

,MCSCSA=csa addr csa addr: RX-type address or register (2) - (12).

,MCSCSAA=alet addr alet addr: RX-type address or register (2) - (12).

,MSGDLVRY=FIFO See Table 9 on page 72 for parameters valid with MSGDLVRY services.

,MSGDLVRY=SEARCH

,MSGDLVRY=NONE

,MSGECB=ecb addr ecb addr: RX-type address or register (2) - (12).

,QLIMIT=qlimit addr qlimit addr: RX-type address or register (2) - (12).

Default: QLIMIT=2147483647

,ALERTECB=alert addr alert addr: Rx-type address or register (2) - (12).

,ALERTECB=0 Default: ALERTECB=0

,ALERTPCT=percent addr percent addr: Rx-type address or register (2) - (12).

,ALERTPCT=percent num percent num: Number from 0 to 100. Default: ALERTPCT=100

,QRESUME=qresume addr qresume addr: RX-type address or register (2) - (12).

,QRESUME=qresume num qresume num: Number from 0 to 99. Default: QRESUME=0

,RTNCODE=ret code ret code: RX-type address or register (2) - (12).

MCSOPER macro

82 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,RSNCODE=reason code reason code: Rx-type address or register (2) - (12).

,MF=(M,list addr,COMPLETE) list addr: RX-type address or register (2) - (12).

,MF=(M,list addr,NOCHECK) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the macro with the
following exception:

,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the MCSOPER macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that are not specified.
NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

MCSOPER - Execute form
Use the execute form of the MCSOPER macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the MCSOPER macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MCSOPER.

MCSOPER

� One or more blanks must follow MCSOPER.

REQUEST=ACTIVATE See Table 8 on page 72 for parameters available with REQUEST services.

REQUEST=DEACTIVATE

,NAME=opername addr opername addr: RX-type address or register (2) - (12).

,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 83



Syntax Description

,ABTERM=NO Default: ABTERM=NO

,ABTERM=YES

,TERMNAME=terminal name addr terminal name addr: RX-type address or register (2) - (12).

,OPERPARM=parm area addr parm area addr: RX-type address or register (2) - (12).

,MCSCSA=csa addr csa addr: RX-type address or register (2) - (12).

,MCSCSAA=alet addr alet addr: RX-type address or register (2) - (12).

,MSGDLVRY=FIFO See Table 9 on page 72 for parameters valid with MSGDLVRY services.

,MSGDLVRY=SEARCH

,MSGDLVRY=NONE

,MSGECB=ecb addr ecb addr: RX-type address or register (2) - (12).

,QLIMIT=qlimit addr qlimit addr: RX-type address or register (2) - (12).

Default: QLIMIT=2147483647

,ALERTECB=alert addr alert addr: Rx-type address or register (2) - (12).

,ALERTECB=0 Default: ALERTECB=0

,ALERTPCT=percent addr percent addr: Rx-type address or register (2) - (12).

,ALERTPCT=percent num percent num: Number from 0 to 100. Default: ALERTPCT=100

,QRESUME=qresume addr qresume addr: RX-type address or register (2) - (12).

,QRESUME=qresume num qresume num: Number from 0 to 99. Default: QRESUME=0

,RTNCODE=ret code ret code: RX-type address or register (2) - (12).

,RSNCODE=reason code reason code: Rx-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,NOCHECK) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the MCSOPER macro
with the following exception:

MCSOPER macro

84 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the MCSOPER macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that are not specified.
NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 85



MCSOPER macro

86 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 9. MCSOPMSG - Retrieve MCS operator messages

Description
MCSOPMSG retrieves messages queued to an extended MCS console, and returns
message information in a message data block (MDB). “Retrieving” a message more
specifically means that MCSOPMSG returns the address of the MDB that contains
the message and information pertaining to that message. MCSOPMSG also
resumes queuing to a message storage area if queuing was previously suspended.

Use MCSOPMSG to retrieve messages delivered to the EMCS console that has been
activated using the MCSOPER macro. For more information on MCSOPMSG, see
z/OS MVS Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
v The console for which you are issuing this macro must already be activated.
v If you specified MSGDLVRY=NONE on the MCSOPER macro for a particular

console, do not issue MCSOPMSG for that console.
v Only the address space that activated the extended console can issue

MCSOPMSG for that console.
v If you specified MSGDLVRY=FIFO for MCSOPER and you are running in a

multi-task environment, ensure that only one task is currently performing
MCSOPMSG for the console at any time.

v You can use the CMDRESP, CART, and MASK parameters only if you activate
the console with MCSOPER MSGDLVRY=SEARCH.

v You must include mapping macro IEAVM105. You can use mapping macro
IEAVM105 to access fields in the message data block (MDB), which is returned
by MCSOPMSG. Refer to z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) for the format and content
of this information.

v IBM suggests that you code a loop around the MCSOPMSG invocation, so that
the MCSOPMSG macro can retrieve messages that are currently queued to this
EMCS console. Exit the loop when there are no more messages (MCSOPMSG
RC=8,RSN=0).

© Copyright IBM Corp. 1988, 2015 87

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/


Restrictions
None.

Input register information
Before issuing the MCSOPMSG macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 If GPR 15 contains a return code of 08, 10, or 14, GPR 0 contains a reason
code; otherwise, GPR 0 contains zero.

1 Address of the MDB if REQUEST=GETMSG was specified and the return
code is zero or four. Otherwise, GPR 1 is used as a work register by the
system.

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0 Used as a work register by the system

1 If your program is in AR mode and GPR 1 contains the address of an
MDB, AR 1 contains the ALET for the MDB; otherwise, AR 1 is used as
work register by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the MCSOPMSG macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MCSOPMSG.

MCSOPMSG macro

88 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

MCSOPMSG

� One or more blanks must follow MCSOPMSG.

REQUEST=GETMSG See Table 11 for parameters valid with REQUEST services.

REQUEST=RESUME

,CMDRESP=NO Default: CMDRESP=NO

,CMDRESP=YES

,CART=cart addr cart addr: RX-type address or register (2) - (12).

,MASK=mask addr mask addr: RX-type address or register (2) - (12).

,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

,NAME=console name addr console name addr: RX-type address or register (2) - (12).

,RTNCODE=return code addr return code addr: RX-type address or register (2) - (12).

,RSNCODE=reason code addr reason code addr: RX-type address or register (2) - (12).

Table 11. Parameters valid with REQUEST=services

Parameters REQUEST=GETMSG REQUEST=RESUME

CMDRESP optional not valid

CART optional not valid

MASK optional not valid

NAME either NAME or CONSID
(not both)

either NAME or CONSID
(not both)

CONSID either NAME or CONSID
(not both)

either NAME or CONSID
(not both)

RTNCODE optional optional

RSNCODE optional optional

Parameters
The parameters are explained as follows:

REQUEST=GETMSG
REQUEST=RESUME

Specifies the MCSOPMSG function you want to perform.

GETMSG retrieves a queued message from storage, and RESUME resumes
message queuing.

MCSOPMSG macro

Chapter 9. MCSOPMSG - Retrieve MCS operator messages 89



,CMDRESP=NO
,CMDRESP=YES

Specifies the type of message search. NO indicates that MCSOPMSG will
obtain the next message. YES indicates that MCSOPMSG will return the next
command response message. CMDRESP is valid only with
REQUEST=GETMSG, and is meaningful only if you specified
MSGDLVRY=SEARCH on the MCSOPER macro.

,CART=cart addr
Specifies the address of an 8-character field that contains the name of the
CART (command and response token) to use to search for the next message. A
CART associates a command with a response. You can specify CART only if
you specify CMDRESP=YES and you specified MSGDLVRY=SEARCH on
MCSOPER.

,MASK=mask addr
Specifies the address of an 8-character field that contains the mask that
MCSOPMSG will compare with the CART using the logical AND instruction.
Specify MASK only if you specified CART.

,CONSID=console id addr
Specifies the address of the 4-byte console ID. CONSID or NAME is required,
but both may not be specified.CONSID is mutually exclusive with NAME.

,NAME
Specifies the address of the 8-byte field containing the console name. NAME or
CONSID is required, but both may not be specified. NAME is mutually
exclusive with CONSID.

,RTNCODE=return code addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=reason code addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

ABEND codes
None.

Return and reason codes
When control returns from MCSOPMSG, GPR 15 (and return code addr, if you
coded RTNCODE) contains one of the following hexadecimal return codes and
GPR 0 (and reason code addr, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

Table 12. Return and Reason Codes for the MCSOPMSG Macro

Return Code Reason Code Meaning and Action

00 None Meaning: MCSOPMSG completed successfully. If
REQUEST=GETMSG was specified, MCSOPMSG retrieved
a message; if REQUEST=RESUME was specified, message
queuing resumed.

Action: None

MCSOPMSG macro

90 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 12. Return and Reason Codes for the MCSOPMSG Macro (continued)

Return Code Reason Code Meaning and Action

04 None Meaning: Program error. MCSOPMSG retrieved a message,
but either message queuing is disabled (if you specified
REQUEST=GETMSG) or message queuing was already
enabled (if you specified REQUEST=RESUME).

Action: For REQUEST=GETMSG, continue until all
messages have been retrieved. Then, attempt a
REQUEST=RESUME to allow the system to send messages
to that console again.

08 00 Meaning: Program error. For REQUEST=GETMSG,
MCSOPMSG attempted to retrieve a message, but there are
no messages available for the specified search criteria. Note
that this is the normal, expected, return and reason code
issued when MCSOPMSG retrieved all messages currently
queued to this EMCS console.

Action: None if all messages have been retrieved or change
the search criteria and reissue MCSOPMSG.

08 01 Meaning: Environmental error. For REQUEST=RESUME,
queueing is not resumed because the message queue is
being rebuilt.

Action: If you specified ALERTECB=alert address on the
MCSOPER request to define this extended MCS console,
the calling program will receive control when the queue
has been rebuilt. Either add this parameter to the
MCSOPER specification and provide an ECB to be posted,
or retry the request at a later time.

0C None Meaning: Program error or environmental error.
MCSOPMSG did not retrieve a message. Message queuing
is disabled, because either the queue limit or the memory
limit has been reached. Either the dataspace has simply
filled up with messages, or you specified search criteria on
the CMDRESP, CART, or MASK parameters and the
dataspace is filled with messages which do not match your
search criteria.

Action: If you specified search criteria on
REQUEST=GETMSG, specify different search criteria, or
specify only the CONSID parameter (in order to clear out
the messages which do not match your search criteria). If
you specified only the CONSID parameter, the dataspace is
full; issue REQUEST=RESUME on the MCSOPMSG macro
to start reading again.

10 01 Meaning: Program error. The specified console is not
active.

Action: Verify that you specified the correct console. If so,
take steps to activate the console and retry the request. If
not, correct the error and retry the request.

10 02 Meaning: Program or environmental error. The specified
console was not activated by this address space.

Action: Ensure that you specified the correct console and
that you issued MCSOPMSG from the correct address
space. Correct the problem and retry the request.

14 01 Meaning: Program error. The parameter list contains an
incorrect acronym or an incorrect version indicator.

Action: Correct the problem and retry the request.

MCSOPMSG macro

Chapter 9. MCSOPMSG - Retrieve MCS operator messages 91



Table 12. Return and Reason Codes for the MCSOPMSG Macro (continued)

Return Code Reason Code Meaning and Action

14 02 Meaning: Program error. The caller is not in AR mode.

Action: Correct the problem and retry the request.

14 03 Meaning: Environmental error. Another MCSOPMSG
request is in progress for this console.

Action: This duplication can happen only if you specified
MSGDLVRY=FIFO on the initial MCSOPER request. Either
wait for the current request to complete and then retry, or
do not specify MSGDLVRY=FIFO when you issue the
MCSOPER macro.

14 04 Meaning: Program error. The extended console was
activated with MSGDLVRY=FIFO, but MCSOPMSG was
issued with the CMDRESP parameter.

Action: Issue MCSOPMSG without the CMDRESP
parameter.

14 05 Meaning: Program error. The caller is not in supervisor
state.

Action: Reissue MCSOPMSG in supervisor state.

18 None Meaning: System error. The service ended abnormally.

Action: Record the return code and supply it to the
appropriate IBM support personnel.

Example
Obtain a message for a console. Request message queuing to resume using a
parameter list named DATA. The parameter list was created using the list form of
the macro.
MDR CSECT
R12 EQU 12
R13 EQU 13
R14 EQU 14

STM R14,R12,12(R13) 0000600
BALR R12,0
USING *,R12
MCSOPMSG REQUEST=RESUME,NAME=CONSNM, X
MF=(E,DATA,COMPLETE)
LM R14,R12,12(R13)
BR R14
DROP R12

*******************************************************************
* CONSTANTS AND DATA *
*******************************************************************

CONSNM DS CL8
MCSOPMSG MF=(L,DATA)
IEAVM105
END MDR

MCSOPMSG - List form
Use the list form of the MCSOPMSG macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

MCSOPMSG macro

92 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax
The list form of the MCSOPMSG macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MCSOPMSG.

MCSOPMSG

� One or more blanks must follow MCSOPMSG.

,MF=(L,list addr) list addr: Symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string.

,MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the macro with the
following exception:

,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)

Specifies the list form of the MCSOPMSG macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

MCSOPMSG - Execute form
Use the execute form of the MCSOPMSG macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the MCSOPMSG macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MCSOPMSG.

MCSOPMSG macro

Chapter 9. MCSOPMSG - Retrieve MCS operator messages 93



Syntax Description

MCSOPMSG

� One or more blanks must follow MCSOPMSG.

REQUEST=RESUME See Table 13 for parameters valid with REQUEST services.

REQUEST=GETMSG

,CMDRESP=NO Default: CMDRESP=NO

,CMDRESP=YES

,CART=cart addr cart addr: RX-type address or register (2) - (12).

,MASK=mask addr mask addr: RX-type address or register (2) - (12).

,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

,NAME=console name addr console name addr: RX-type address or register (2) - (12).

,RTNCODE=return code addr return code addr: RX-type address or register (2) - (12).

,RSNCODE=reason code addr reason code addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,NOCHECK) Default: COMPLETE

Table 13. Parameters valid with REQUEST=services for the execute form of the macro

Parameters REQUEST=GETMSG REQUEST=RESUME

CMDRESP optional not valid

CART optional not valid

MASK optional not valid

NAME either NAME or CONSID
(not both)

either NAME or CONSID
(not both)

CONSID either NAME or CONSID
(not both)

either NAME or CONSID
(not both)

RTNCODE optional optional

RSNCODE optional optional

MF required required

MCSOPMSG macro

94 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Parameters
The parameters are explained under the standard form of the MCSOPMSG macro
with the following exception:

,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the MCSOPMSG macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

MCSOPMSG - Modify form
Use the modify form of the MCSOPMSG macro together with the list and execute
forms of the macro for service routines that need to provide different options
according to user-provided input. Use the list form to define a storage area; use the
modify form to set the appropriate options; then use the execute form to call the
service.

Syntax
The modify form of the MCSOPMSG macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MCSOPMSG.

MCSOPMSG

� One or more blanks must follow MCSOPMSG.

REQUEST=GETMSG See Table 14 on page 96 for parameters valid with REQUEST services.

REQUEST=RESUME

,CMDRESP=NO Default: CMDRESP=NO

,CMDRESP=YES

,CART=cart addr cart addr: RX-type address or register (2) - (12).

,MASK=mask addr mask addr: RX-type address or register (2) - (12).

,NAME=console name addr console name addr: RX-type address or register (2) - (12).

,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

MCSOPMSG macro

Chapter 9. MCSOPMSG - Retrieve MCS operator messages 95



Syntax Description

,RTNCODE=return code addr return code addr: RX-type address or register (2) - (12).

,RSNCODE=reason code addr reason code addr: RX-type address or register (2) - (12).

,MF=(M,list addr,COMPLETE) list addr: RX-type address or register (2) - (12).

,MF=(M,list addr,NOCHECK) Default: COMPLETE

Table 14. Parameters valid with REQUEST= services for the modify form of the macro

Parameters REQUEST=GETMSG REQUEST=RESUME

CMDRESP optional not valid

CART optional not valid

MASK optional not valid

NAME either NAME or CONSID
(not both)

either NAME or CONSID
(not both)

CONSID either NAME or CONSID
(not both)

either NAME or CONSID
(not both)

RTNCODE optional optional

RSNCODE optional optional

MF required required

Parameters
The parameters are explained under the standard form of the macro with the
following exception:

,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the MCSOPMSG macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

MCSOPMSG macro

96 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 10. MGCR — Issue an internal START or REPLY
command

Description

Note: IBM recommends that you use the MGCRE macro rather than MGCR.

The MGCR macro starts a program or subsystem from within your program and
passes 31 bits of information, in the form of a token, to the started program. The
MGCR macro can also issue a reply to a WTOR macro. In other words, use MGCR
to issue an internal START or REPLY command.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0-7
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
v The command buffer can be located in 24-bit or 31-bit addressable storage.
v A program token is meaningful only with the START command.

Restrictions
You can use MGCR to issue only START or REPLY commands. You must use
MGCRE for any other commands.

Input register information
Before calling the MGCR macro, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

0 Zero

1 A pointer to a parameter list mapped by IEZMGCR.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Unchanged

© Copyright IBM Corp. 1988, 2015 97



1 Used as a work register by the system

2-14 Unchanged

15 For the START command, GPR 15 contains a return code; otherwise, GPR
15 is used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The MGCR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MGCR.

MGCR

� One or more blanks must follow MGCR.

command-buffer-address command-buffer-address: RX-type address or register (1) or (2) - (12).

Parameters
The parameters are explained as follows:

command-buffer-address
Specifies the address of a command buffer mapped by the IEZMGCR macro.
The command buffer must contain the following information:

Name Length Contents

flags1 1 byte If bit 0 is one, then flags2 must contain meaningful
information. Bits 1-7 must be zero.

length 1 byte Length of the buffer up to but not including the
program token field.

flags2 2 bytes X‘0000’ - neither a program token nor a user
security token are present.
X‘0800’ - a program token is present.
X‘0008’ - a user security token is present.
X‘0808’ - both a program token and a user
security token are present.

text up to 126 bytes Command, operands, and optional comments as
follows: command operands comments

MGCR macro

98 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Name Length Contents

ptoken 31 bits right-justified An optional field containing any desired information,
such as an identifier that indicates the issuing
program.

utoken 80 bytes Indicates which user security token the system takes
to use for a command issued from an MCS console.
The possibilities are console, CTAS, *FAIL, or
“undefined-user” ACEE.

ABEND codes
MGCR might abnormally terminate with abend code X'D22'. See z/OS MVS System
Codes for an explanation and programmer response for this code.

Return and reason codes
Register 15 contains one of the following hexadecimal return codes as the result of
a START command. No return codes result from the REPLY command.

Table 15. Return Codes for the START Command

Return Code Meaning and Action

00 Meaning: The START command processed successfully. Register 0 contains the
right-justified ASID of the started address space.

Action: None.

04 Meaning: A START command was suppressed by the SSI or a command exit.
Register zero does not contain a valid ASID; instead it contains all zeros.

Action: None.

08 Meaning: Environmental error. The START command failed for one of the
following reasons:

v The START command specified a console that is not authorized for entering
the command

v The system did not allow the address space to be created at this time due to a
heavy system workload

v There is not enough storage available to schedule the command

v The system tried to obtain more address spaces than the maximum number
supported.

Action: Check to see if the START command specified a console that is not
authorized for entering the command, and correct the situation if necessary.
Next, retry the request. If the problem persists, record the return code and
supply it to the appropriate IBM support personnel.

Example
Issue an internal REPLY command in response to an action message. Security
tokens are not in use.
ISSUMGCR EQU *

XC MGCRPL(MGCRLTH),MGCRPL Clear the parameter list
MVC MGCRTEXT(L’TXTINSRT),TXTINSRT Move in the reply buffer
MVC REPLY,CTXTRPID Insert the reply ID
LA REG1,(MGCRTEXT-MGCRPL)+L’TXTINSRT Get MGCRPL length
STC REG1,MGCRLGTH Save length in the MGCRPL
SR REG0,REG0 Clear register zero
MGCR MGCRPL Issue the command
.
.
.

MGCR macro

Chapter 10. MGCR — Issue an internal START or REPLY command 99



IEZMGCR DSECT=NO Mapping of MGCR parameter list
ORG MGCRTEXT

COMMAND DS CL6 Storage for REPLY verb
REPLY DS CL2 Reply ID
REPLYMSG DS CL3 WTOR response

ORG

MGCR macro

100 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 11. MGCRE — Issue internal commands

Description
MGCRE allows a program to issue commands without operator intervention. For
example, an application could issue a VARY or CONTROL command by using
MGCRE, which might satisfy an outstanding action message.

The authority of the issuer to issue the command is validated based on the
information provided on the macro invocation. Priority is given to the UTOKEN or
ENVRIN data structures, either the data provided on the macro invocation, or
lacking that, the security data associated with the issuer.

If OPERCMDS is not active, or a decision cannot be made based on the established
definitions, then the authority is determined based on the authority of the console
as provided on the AUTHCMDX keyword, or lacking that, the required CONSID
or CONSNAME keywords.

Note: You can still use the MGCR macro to issue internal START or REPLY
commands. However, IBM recommends using MGCRE.

See z/OS MVS Programming: Authorized Assembler Services Guide for more
information about using the MGCRE macro. See MVS Commands Installation Exit
in z/OS MVS Installation Exits for more information about the MVS commands
installation exit. The MVS commands installation exit and subsystems can review
submitted commands.

MGCRE has a list and an execute form, but no standard form.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0-7
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: Any
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
v It is possible that a console associated with a command has a CMDSYS

parameter on a control command in effect. This condition may cause the
command to be sent to another system in a sysplex.

v If you issue MGCRE from a program or an address space controlling a console,
CMDSYS takes effect.

© Copyright IBM Corp. 1988, 2015 101



v The caller cannot have an EUT FRR established.

Input register information
Before issuing the MGCRE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system. If register 15 contains a return code
of 0, register 0 contains the ASID of the started address space.

2-13 Unchanged

14 Used as a work register by the system

15 Used as a work register by the system, unless a START, MOUNT, or
LOGON command was suppressed by the SSI or an MVS commands
installation exit. In that case, register 15 contains a return code.

Performance implications
None.

MGCRE - List form
Use the list form of the MGCRE macro together with the execute form of the
macro. The list form of the macro defines an area of storage, which the execute
form of the macro uses to store the parameters.

Syntax
The list form of the MGCRE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

�

One or more blanks must precede MGCRE.

MGCRE

� One or more blanks must follow MGCRE.

,PLISTVER=MAX

,PLISTVER=plistver plistver: 1-3 Default: 1

,MF=L

MGCRE macro

102 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

Parameters
The parameters are explained as follows:

,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
that the system generates. PLISTVER is an optional input parameter on all
forms of the macro, including the list form. When using PLISTVER, specify it
on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

MAX Use PLISTVER=MAX if you want the parameter list to be the largest
size currently possible. The size might grow from release to release and
affect the amount of storage that your program needs.

If you can tolerate the size change, it is recommended that you always
specify PLISTVER=MAX on the list form of the macro. Specifying
PLISTVER=MAX ensures that the list form parameter list is always
long enough to hold all the parameters you might specify on the
execute form and ensures that the parameter list does not overwrite
nearby storage.

1 - 2 Use PLISTVER=1 or PLISTVER=2 if you use the base set of parameters.
If you omit PLISTVER, the value of 1 is used.

3 Use PLISTVER=3 if you use ENVRIN.

,MF=L
Specifies the list form of MGCRE.

MGCRE - Execute form
Use the execute form of the MGCRE macro together with the list form of the
macro. The execute form of the macro stores the parameters into the storage area
defined by the list form.

Syntax
The execute form of the MGCRE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

�

One or more blanks must precede MGCRE.

MGCRE

� One or more blanks must follow MGCRE.

MGCRE macro

Chapter 11. MGCRE — Issue internal commands 103



Syntax Description

TEXT=text addr text addr: RX-type address or address in register (2) - (12).

,CONSID=console id console id: RX-type address or register (2) - (12).

,CONSNAME=console name console name: RX-type address or address in register (2) - (12).

,CMDFLAG=NOHCPY

,CMDFLAG=TSO (NOT a programming interface)

,TOKEN=token token: RX-type address or register (2) - (12).

,UTOKEN=utoken addr utoken addr: RX-type address or address in register (2) - (12).

,CART=cart cart: RX-type address or address in register (2) - (12).

,ENVRIN=envrin addr envrin addr: RX-type address or address in register (2) - (12).

,AUTHCMDX=authcmdx addr authcmdx addr: RX-type address or address in register (2) - (12).

,PLISTVER=plistver plistver: 1 - 3.

,MF=(E, list addr) list addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

TEXT=text addr
Specifies the required input field that contains the address of a command area.
If a register is used, it should contain the address of the command area. The
first 2 bytes of this command area contain the length of the command. The
command text immediately follows this 2-byte area, and can be up to 126
characters. The command must be in storage addressable by the caller at the
time the caller issues MGCRE.

Operator commands may contain the following characters:
v A to Z
v 0 to 9
v ' # $ & ( ) * + , - . / ¢ < | ! ; ¬ % _ > ? : @ " =

The system translates characters that are not valid into null characters (X'00').

To code: Specify the RX-type address of a pointer field that contains the
address, or the register (2) - (12), of a particular field.

,CONSID=console id

MGCRE macro

104 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



,CONSNAME=console name
CONSID specifies the required input field that contains the 4-byte ID of the
console that issued the command specified in the TEXT parameter. If a register
is used, it should contain the 4-byte console ID. If you specify CONSID, do not
specify CONSNAME.

CONSNAME specifies the required input field that contains the console name.
The console name is a 2- to 8-byte character string. If a register is used, it
should contain the address of an 8-byte field containing the console name. This
name identifies the console that issued the command specified in the TEXT
parameter. The console name is left-justified and padded with blanks. If you
specify CONSNAME, do not specify CONSID.

You must specify either CONSID or CONSNAME. Use the DISPLAY
CONSOLES command to obtain these values.

Note: When you specify a console ID of X'00000000' on the CONSID
parameter, the issuer receives MASTER command authority. Entries in the
hardcopy log for the command have the name INTERNAL associated with
them.

,CMDFLAG=NOHCPY
Requests that no copy of the command appear in the hardcopy log.

Note: If you do not specify this option, the system logs the command in the
hardcopy log.

,CMDFLAG=TSO
NOT a programming interface. Causes the CONSID value to be treated as a
TSO identifier instead of a console ID.

Note: This option allows TSO to use MGCRE instead of MGCR.

,TOKEN=token
Specifies the optional input field that contains a 31-bit right-justified program
token for the command specified in the TEXT parameter. If a register is used, it
should contain a 31-bit right justified token. Any 4-byte value is valid as input.
TOKEN is optional.

,UTOKEN=utoken addr
Specifies the optional input field that contains the address of a security token
for the command identified in the TEXT parameter. If a register is used, it
should contain the address of a data area for the UTOKEN. You can obtain the
UTOKEN value by using the RACROUTE REQUEST=TOKENXTR,
RACROUTE REQUEST=VERIFYX, or RACROUTE REQUEST=TOKENBLD
macros. See z/OS Security Server RACROUTE Macro Reference for more
information on the RACROUTE macros. Command processing passes the
UTOKEN to SAF (Security Authorization Facility) to validate the authority of
the issuer. The UTOKEN should be that of the user on whose behalf the
command is issued. UTOKEN is an optional parameter; if it is omitted, the
address space's UTOKEN is used.

,CART=cart
Specifies the optional input field that contains the address of the 8-byte field
that contains a command and response token. If a register is used, it should
contain the address of a data area containing the command and response
token. Your installation can use any value as a CART. The program that issues
the command can tag each command with this token, which associates the
command with its response. CART is an optional parameter.

MGCRE macro

Chapter 11. MGCRE — Issue internal commands 105



,ENVRIN=envrin addr
Specifies the optional field that contains the address of the ENVR data
structure for the command identified in the TEXT parameter. The ENVR object
should be one that was obtained on the same system where the MGCRE macro
is issued or unpredictable results may occur. If ENVRIN is specified, then
UTOKEN must also be specified.

,AUTHCMDX=authcmdx addr
Specifies the optional input field that contains the address of a data structure
depicting the issuer's authority. The data is formatted like the CMDXAUTH 16
bit structure.

1000000000000000 - Master Authority
0100000000000000 - Sys Authority
0010000000000000 - IO Authority
0001000000000000 - Cons Authority
0000000000000000 - Info Authority

,PLISTVER=plistver
Specifies the version of the macro. PLISTVER determines which parameter list
that the system generates. PLISTVER is an optional input parameter on all
forms of the macro, including the list form. When using PLISTVER, specify it
on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

1 - 2 Use PLISTVER=1 or PLISTVER=2 if you use the base set of parameters.
If you omit PLISTVER, the value of 1 is used.

3 Use PLISTVER=3 if you use ENVRIN.

,MF=(E,list addr)
Specifies the execute form of MGCRE. This form generates the code to store
the parameters into the parameter list and execute the MGCRE macro.

list addr specifies the area that the system uses to store the parameters.

ABEND codes
MGCRE might abnormally terminate with abend code X'D22'. See z/OS MVS
System Codes for an explanation and programmer response for this code.

Return and reason codes
Register 15 contains one of the following hexadecimal return codes as the result of
a START, MOUNT, or LOGON command. No return codes result from any other
commands.

Table 16. MGCRE Return Codes

Return Code Meaning and Action

00 Meaning: The START command processed successfully. Register 0 contains the
right-justified ASID of the started address space.

Action: None.

04 Meaning: A START, MOUNT, or LOGON command was suppressed by the SSI
or an MVS commands installation exit. Register 0 does ot contain a valid ASID;
instead it contains all zeros.

Action: None.

MGCRE macro

106 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 16. MGCRE Return Codes (continued)

Return Code Meaning and Action

08 Meaning: Environmental error. The START command failed for one of the
following reasons:

v The START command specified a console that is not authorized for entering
the command

v The system did not allow the address space to be created at this time due to a
heavy system workload

v There is not enough storage available to schedule the command

v The system tried to obtain more address spaces than the maximum number
supported.

Action: Check to see if the START command specified a console that is not
authorized for entering the command, and correct the situation if necessary.
Next, retry the request. If the problem persists, record the return code and
supply it to the appropriate IBM support personnel.

Example
Create the list form of MGCRE, modify it using the execute form of MGCRE, and
issue a display consoles command associated with a console named CON4.
DOMTST CSECT
R2 EQU 2

USING *,R12
LA R2,CMD R2 POINTS TO THE COMMAND AREA
MGCRE MF=(E,LAREA),TEXT=(R2),CMDFLAG=(NOHCPY),CONSNAME=MYCON

CMD DS 0CL6 THE COMMAND AREA
CMDLEN DC XL2’4’ LENGTH OF COMMAND
CMDCOMM DC CL4’D C ’ THE ACTUAL COMMAND
MYCON DC CL8’CON4 ’ NAME OF ISSUING CONSOLE
LAREA MGCRE MF=L LIST FORM OF MGCRE

END

MGCRE macro

Chapter 11. MGCRE — Issue internal commands 107



MGCRE macro

108 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 12. MIHQUERY — Retrieve MIH time interval

Description
Use the MIHQUERY macro to retrieve the current MIH time interval setting for a
device.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in the primary address space

Programming requirements
Before issuing the MIHQUERY macro, you must pin the UCB you specify in the
macro. The UCB identifies the device. Pinning the UCB ensures that a
reconfiguration request does not delete or reuse the UCB between the time you
determine the UCB address and the time the MIHQUERY service uses the address.

For more information about pinning, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Restrictions
None.

Input register information
Before issuing the MIHQUERY macro, the caller must ensure that the following
general purpose register (GPR) contains the specified information:

Register
Contents

13 Address of an 18-word save area that must reside in the primary address
space.

Output register information
When control returns to the caller of the MIHQUERY macro, the GPRs contain:

Register
Contents

0 Reason code

1 Address of the MIHQUERY control parameters

2-13 Unchanged

© Copyright IBM Corp. 1988, 2015 109



14 Return address

15 Return code

When control returns to the caller of the MIHQUERY macro, the access registers
(ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
To ensure that the system can detect missing interrupts, do not issue this macro
more than once per second. Issuing the macro more than once per second might
also interfere with DISPLAY, SET IOS, and SETIOS commands.

Syntax
The standard form of the MIHQUERY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MIHQUERY

MIHQUERY

� One or more blanks must follow MIHQUERY

UCBPTR=ucb addr ucb addr: RS-type address, or address in register (2) - (12).

,TIMEINT=time interval time interval: RS-type address, or address in register (2) - (12).

,RETCODE=return code return code: RS-type address, or address in register (2) - (12).

,RSNCODE=reason code reason code: RS-type address, or address in register (2) - (12).

Parameters
The parameters are explained as follows:

MIHQUERY macro

110 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



UCBPTR=ucb addr
A required parameter that specifies the fullword containing the address of the
UCB or a copy of the UCB for the device whose MIH time interval you are
requesting. To determine the UCB address, use the UCBSCAN or UCBLOOK
macro, described in z/OS MVS Programming: Authorized Assembler Services
Guide.

,TIMEINT=time interval
A required parameter that specifies the fullword output field where the
MIHQUERY service is to place the hexadecimal value of the MIH time interval,
reported in seconds.

,RETCODE=return code
An optional parameter that specifies the location where the system is to place
the return code. The return code is also in register 15.

,RSNCODE=reason code
An optional parameter that specifies the location where the system is to place
the reason code. The reason code is also in register 0.

ABEND codes
Any errors related to state, key, and addressing requirements cause an abend
X'2C6'. See z/OS MVS System Codes for complete information about this abend and
its associated reason codes. To help debug the problem, provide a recovery routine
that records and/or dumps the needed data, including the address and contents of
the parameter list.

Return and reason codes
When the MIHQUERY macro returns control to your program, GPR 15 contains a
hexadecimal return code and GPR 0 contains a hexadecimal reason code.

Table 17. Return and Reason Codes for the MIHQUERY Macro

Return Code Reason Code Meaning and Action

00 None Meaning: MIHQUERY processing completed successfully.

Action: None.

04 None Meaning: The MIH interval for this device is zero. The
system does not monitor missing interrupts for the device.

Action: None.

08 01 Meaning: Environmental error. NIP processing is still in
progress.

Action: Retry.

0C None Meaning: System error. This return code is for IBM
diagnostic purposes only.

Action: Supply the following information to the
appropriate IBM support personnel:

v Return codes

v Dump data

v LOGREC data

Example
Obtain an address of a UCB from the DASD class and pass that address to the
MIHQUERY service. MIHQUERY determines the MIH time interval for the device.

MIHQUERY macro

Chapter 12. MIHQUERY — Retrieve MIH time interval 111



***********************************************************************
** USE THE LIST AND EXECUTE FORM OF THE MIHQUERY SERVICE. OBTAIN **
** AN ADDRESS OF A UCB FROM THE DASD CLASS AND PASS THAT ADDRESS TO **
** THE MIHQUERY SERVICE. **
** **
** ASSUMPTIONS: **
** ENTRY STATE: SUPERVISOR **
** ENTRY KEY : 7 **
** ENTRY MODE : PRIMARY **
** **
** REGISTER USAGE: **
** **
** BASEREG: 9 **
** DYNAMIC AREA: 6 (SUBPOOL 2) **
** **
***********************************************************************
IOTMW111 CSECT ,
IOTMW111 AMODE 31
IOTMW111 RMODE ANY
***********************************************************************
** ENTRY LINKAGE **
***********************************************************************

BAKR 14,0
LR 9,15
USING IOTMW111,9

***********************************************************************
** OBTAIN STORAGE FOR THE SERVICE PARAMETER LISTS AND WORKAREAS. **
** ESTABLISH ADDRESSABILITY TO ALL. **
***********************************************************************

L 0,SIZDATD GETS THE DYNAMIC AREA SIZE INTO
* REGISTER ZERO FOR GETMAIN

GETMAIN RU,LV=(0),SP=2 GETS THE DYNAMIC AREA FROM SUBPOOL 2
LR 6,1 GETS ADDRESS OF DYNAMIC AREA FROM

* THE RETURNED ADDRESS OF THE GETMAIN
USING MYDYNMIC,6 GETS ADDRESSABILITY TO THE DYNAMIC

* AREA.
***********************************************************************
** SCANS FOR THE FIRST DEVICE IN THE DASD DEVICE CLASS. **
** NOTE THAT THERE IS NO NEED TO PIN A COPY OF THE UCB FOR THE SCAN **
** BUT A PIN IS REQUIRED FOR THE MIHQUERY SO IT IS DONE IN THE SCAN **
** TO SAVE A SERVICE CALL. **
***********************************************************************

UCBSCAN ADDRESS,WORKAREA=UCBWORK,UCBPTR=MYUCBPTR, X
PIN,TEXT=MYPINTXT,PTOKEN=MYPTOKEN, X
DYNAMIC=YES,RANGE=ALL,DEVCLASS=DASD,LINKAGE=SYSTEM, X
MF=(E,UCBAREA,COMPLETE) GETS THE FIRST DASD DEVICE

***********************************************************************
********* RETURN AND REASON CODES SHOULD BE CHECKED HERE ************
***********************************************************************
***********************************************************************
** OBTAIN THE MIH TIME INTERVAL **
***********************************************************************

MIHQUERY UCBPTR=MYUCBPTR,TIMEINT=TIMEINTERVAL, X
MF=(E,MIHAREA,COMPLETE) QUERIES THE MIH INTERVAL FOR

* THE DASD DEVICE.
***********************************************************************
********* DO SOMETHING WITH THE RETURNED VALUE. *******************
***********************************************************************
***********************************************************************
** UNPINS THE UCB. **
***********************************************************************

UCBPIN UNPIN,PTOKEN=MYPTOKEN,LINKAGE=SYSTEM, X
MF=(E,PINAREA,COMPLETE)

***********************************************************************
** RETURNS TO THE CALLER. **
***********************************************************************

PR RETURN TO CALLER

MIHQUERY macro

112 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



MYPINTXT DC CL58’THIS SHOULD BE MEANINGFUL INFORMATION’
LTORG

MYDYNMIC DSECT MY DYNAMIC AREA
***********************************************************************
* **
* MIHQUERY LIST FORM **
* **
***********************************************************************

MIHQUERY MF=(L,MIHAREA)
***********************************************************************
* **
* UCBSCAN LIST FORM **
* **
***********************************************************************

UCBSCAN MF=(L,UCBAREA)
UCBWORK DS CL100 100 BYTE WORK AREA FOR UCBSCAN.
***********************************************************************
* **
* UCBPIN LIST FORM **
* **
***********************************************************************

UCBPIN MF=(L,PINAREA)
MYPTOKEN DS CL8 PIN TOKEN RETURNED BY THE UCBSCAN
* SERVICE.
TIMEINTERVAL DS CL4 MIH TIME INTERVAL RETURNED BY THE
* MIHQUERY SERVICE.
MYUCBPTR DS CL4 CONTAINS THE ADDRESS OF THE UCB
* RETURNED BY THE SCAN SERVICE AND
* FOR WHICH THE MIHQUERY IS DONE.
ENDDATD DS 0D GETS ON AN 8 BYTE BOUNDARY FOR
* GETMAIN
DYNSIZE EQU (ENDDATD-MYDYNMIC) TOTAL SIZE OF THE DYNAMIC AREA
IOTMW111 CSECT ,

DS 0F
SIZDATD DS 0A SETS THE SIZE IN THE MODULE

DC AL1(0)
DC AL3(DYNSIZE)
END IOTMW111

MIHQUERY - List form
Use the list form of the MIHQUERY macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the MIHQUERY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MIHQUERY.

MIHQUERY

� One or more blanks must follow MIHQUERY.

MIHQUERY macro

Chapter 12. MIHQUERY — Retrieve MIH time interval 113



Syntax Description

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameter is explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the MIHQUERY macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

MIHQUERY - Execute form
Use the execute form of the MIHQUERY macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the MIHQUERY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MIHQUERY

MIHQUERY

� One or more blanks must follow MIHQUERY

UCBPTR=ucb addr ucb addr: RS-type address, or address in register (2) - (12).

,TIMEINT=time interval time interval: RS-type address, or address in register (2) - (12).

,RETCODE=rc rc: RS-type address, or address in register (2) - (12).

MIHQUERY macro

114 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,RSNCODE=reason code reason code: RS-type address, or address in register (2) - (12).

,MF=(E,list addr) list addr: RS-type address, or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the MIHQUERY macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the MIHQUERY macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that are not specified.

MIHQUERY macro

Chapter 12. MIHQUERY — Retrieve MIH time interval 115



MIHQUERY macro

116 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 13. MODESET — Change system status

Description
The MODESET macro is used to change system status by altering the PSW key
and/or PSW problem state indicator. The MODESET macro has two forms: the
form that generates inline code and the form that generates an SVC.

Inline code generation

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v Problem state, with a PSW key mask that allows the

program to switch to the requested PSW key, or

v Supervisor state
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary or secondary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
The caller must include the IKJTCB and IHARB mapping macros. If EXTKEY=
TCB, RBT1, or RBT234 is specified, the home address space must be the currently
addressable address space.

Restrictions
None.

Input register information
If any of the following parameters are specified: EXTKEY=TCB, EXTKEY=RBT1, or
EXTKEY=RBT234, before issuing the MODESET macro, the caller must load the
address of the active TCB into a register and establish addressability to that TCB. If
none of the above is specified, the caller does not have to place any information
into any register before issuing the MODESET macro unless using it in register
notation for a particular parameter, or using it as a base register.

Output register information
All GPRs are unchanged except GPR 1 and 15, and those specified on the
KEYADDR, KEYREG, SAVEKEY, and WORKREG keywords.

Register
Contents

0 Used as a work register by the system when specified on the WORKREG
parameter; otherwise, unchanged.

© Copyright IBM Corp. 1988, 2015 117



1 Used as a work register by the system, even if you specify register 1 on the
WORKREG or KEYREG parameter.

2 Used as a work register by the system when specified on the WORKREG,
KEYREG, or KEYADDR parameters; otherwise, unchanged.

3-14 Used as work registers by the system when specified on the WORKREG,
KEYREG, or KEYADDR parameters; otherwise, unchanged.

15 Used as a work register by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the MODESET macro that generates inline code is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MODESET.

MODESET

� One or more blanks must follow MODESET.

EXTKEY=key key: One of the following:

1. ZERO

2. TCB

3. RBT1

4. RBT234

5. KEY2

6. KEY3

7. KEY4

8. KEY7

MODESET macro

118 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

KEYADDR=new key addr

KEYREG=new key reg

new key addr: RX-type address or register (2).

new key reg: Register 1-15 without parentheses; may be symbolic.

,SAVEKEY=old key addr old key addr: RX-type address or register (2).

Note:

1. If KEYADDR=(2) is specified above, then SAVEKEY=(2) cannot be
specified.

2. If WORKREG and SAVEKEY are specified with KEYREG, the KEYREG
register should be different from the WORKREG register. Also, if
SAVEKEY is specified with KEYREG, the KEYREG register should not be
register 2.

,WORKREG=work reg work reg: Decimal digits 0-15 without parentheses.

Note:

1. WORKREG is required if the following are specified:

v EXTKEY=TCB

v EXTKEY=RBT234

v EXTKEY=RBT1

v KEYADDR=new key addr, unless KEYADDR=(2) is specified.

2. The WORKREG parameter should be register 1-15 if one of these four
parameters is specified because WORKREG is used as a base register on
the SPKA instruction. WORKREG=0 sets the PSW key to zero.

,RELATED=value value: Any valid macro keyword specification.

Parameters

Note: The inline expansion of the MODESET macro does not result in a change to
the caller’s PSW key mask.

The parameters are explained as follows:

EXTKEY=key
Specifies the key, or the address of the key, to be set in the current PSW.

ZERO
Set a key of zero.

TCB Set the key of the active TCB.

RBT1 Set the key of the active RB of type 1 SVC routine issuing MODESET.

MODESET macro

Chapter 13. MODESET — Change system status 119



RBT234
Set the key of the active RB preceding SVRB of type 2, 3, or 4 SVC
routine issuing MODESET.

KEY2 Set a key of 2.

KEY3 Set a key of 3.

KEY4 Set a key of 4.

KEY7 Set a key of 7.

KEYADDR=new key addr
Specifies a location 1 byte in length which contains the key in bit positions 0-3.
If register (2) is specified, the key is contained in bit positions 24-27 (bits 28-31
are ignored). This parameter permits a previously saved key to be restored.

KEYREG=new key reg
Specifies a register that contains a key value in bit positions 24-27.

,SAVEKEY=old key addr
Specifies a location 1 byte in length where the current PSW key is to be saved,
in bit positions 0-3. If register (2) is specified, the key is left in register 2.

,WORKREG=work reg
Specifies the register into which the contents of register 2 are to be saved while
performing the SAVEKEY function, or the working register to be used by the
EXTKEY or KEYADDR function. See Note 1 above. If WORKREG=2 is
specified, no register saving takes place.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ABEND codes
The MODESET macro might abnormally terminate with abend code X'0C2'. See
z/OS MVS System Codes for an explanation and programmer response.

Return and reason codes
None.

Example 1
Save the current PSW key, and change the key to that of the active TCB.
MODESET EXTKEY=TCB,SAVEKEY=KEYSAVE,WORKREG=1

Example 2
Save the current key at location KEY and set the key to the value contained in bits
24-27 of register 3.
MODESET KEYREG=REG3,SAVEKEY=KEY,WORKREG=4

MODESET macro

120 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



SVC generation

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v - Supervisor state

v - PSW key 0 - 7

v - APF authorization

The program must reside in an APF–authorized library and
be link–edited with authorization code AC=1.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control Parameters: Must be in primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the MODESET macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

MODESET macro

Chapter 13. MODESET — Change system status 121



Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the MODESET macro that generates an SVC is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MODESET.

MODESET

� One or more blanks must follow MODESET.

KEY=ZERO Note: KEY is required if MODE is not specified.

KEY=NZERO

,MODE=PROB Note: MODE is required if KEY is not specified.

,MODE=SUP

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

KEY=ZERO
KEY=NZERO

Specifies that the PSW key (bits 8-11) is to be either set to zero (ZERO) or set
to the value in the caller's TCB (NZERO).

,MODE=PROB
,MODE=SUP

Specifies that the PSW problem state indicator (bit 15) is to be either turned on
(PROB) or turned off (SUP). If the MODESET operation completes with a
problem state PSW, the caller’s PSW key mask (PKM) is set according to the
following rules:
v The bit matching the resulting PSW key is set on.
v The bit matching key 9 is set on.

MODESET macro

122 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



v For a task attached with ATTACHX using the KEY=NINE parameter, the bits
that were on in the PKM of the ATTACHX issuer are set on.

v All other bits are set off.

If the resulting PSW is in supervisor state, the caller’s PKM is unchanged.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ABEND codes
The MODESET macro might abnormally terminate with abend code X'16B'. See
z/OS MVS System Codes for an explanation and programmer response.

Return and reason codes
When the MODESET macro returns control to your program, GPR 15 contains a
hexadecimal return code and GPR 0 contains a hexadecimal reason code.

Table 18. Return and Reason Codes for the MODESET Macro

Return Code Reason Code Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

Example
Change to supervisor mode and key zero.
MODESET KEY=ZERO,MODE=SUP

MODESET - List form

Syntax
The list form of the MODESET macro that generates an SVC is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MODESET.

MODESET

� One or more blanks must follow MODESET.

KEY=ZERO Note: KEY is required if MODE is not specified.

KEY=NZERO

,MODE=PROB Note: MODE is required if KEY is not specified.

MODESET macro

Chapter 13. MODESET — Change system status 123



Syntax Description

,MODE=SUP

,RELATED=value value: Any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the MODESET macro
that generates an SVC, with the following exception:

,MF=L
Specifies the list form of the MODESET macro.

MODESET - Execute form

Syntax
The execute form of the MODESET macro that generates an SVC is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede MODESET.

MODESET

� One or more blanks must follow MODESET.

RELATED=value, value: Any valid macro keyword specification.

,MF=(E,list addr) list addr: RX-type address, or register (1).

Parameters
The parameters are explained under the standard form of the MODESET macro
that generates an SVC, with the following exception:

,MF=(E,list addr)
Specifies the execute form of the MODESET macro.

list addr specifies the area that the system used to store the parameters.

MODESET macro

124 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 14. NIL — Provide a lock via an AND IMMEDIATE (NI)
instruction

Description
The NIL macro is used to provide a lock on a byte of storage on which an AND
immediate (NI) instruction is to be executed. Because the byte of storage exists in a
multiprocessing environment, the possibility exists that the byte might be changed
by another processor at the same time. Storage modification during NIL processing
is accomplished by using the compare and swap (CS) instruction.

For details on the AND immediate and compare and swap instructions, see
Principles of Operation.

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Problem or supervisor state, any key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: None
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the NIL macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs are unchanged except for the three
work registers that are used by the system. If WREGS is not specified, these will be
registers 0-2.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

© Copyright IBM Corp. 1988, 2015 125



2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The NIL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede NIL.

NIL

� One or more blanks must follow NIL.

byte addr byte addr: RX-type address.

,mask mask: Symbol or self-defining term.

,REF=stor addr stor addr: RX-type address.

,WREGS=(reg1,reg2,reg3) reg1: Symbol or decimal digits 0-15.

,WREGS=(reg1,reg2) reg2: Symbol or decimal digits 1-15.

,WREGS=(reg1,,reg3) reg3: Symbol or decimal digits 0-15.

,WREGS=(,reg2,reg3) Default for reg1: 0

,WREGS=(reg1) Default for reg2: 1

,WREGS=(,reg2) Default for reg3: 2

,WREGS=(,,reg3)

Parameters
The parameters are explained as follows:

byte addr
Specifies the address of the byte to which the AND function is to be applied.

,mask
Specifies the value to be ANDed to the byte at the address specified above.

,REF=stor addr
Specifies the address of a storage location on a fullword boundary. This
address provides the means by which the compare and swap instruction may
be executed. The address must be less than or equal to the byte address

NIL macro

126 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



specified above, and the difference between the addresses must be less than
4095. The two addresses must be addressable via the same base register.

,WREGS=(reg1,reg2,reg3)
,WREGS=(reg1,reg2)
,WREGS=(reg1,,reg3)
,WREGS=(,reg2,reg3)
,WREGS=(reg1)
,WREGS=(,reg2)
,WREGS=(,,reg3)

Specifies the work registers to be used to perform the compare and swap
instruction. reg1 is used to contain the “old” byte; reg2 is used to contain the
“updated” byte; and reg3 is used to contain the mask.

ABEND codes
None.

Return and reason codes
None.

Example
Turn off bit TNVLXMET in byte TNVLCS1. The reference field, TNVLFW3,
specifies the word being updated.
NIL TNVLCS1,X’FF’-TNVLXMET,REF=TNVLFW3

NIL macro

Chapter 14. NIL — Provide a lock via an AND IMMEDIATE (NI) instruction 127



NIL macro

128 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 15. NMLDEF — Customizing the nucleus

Description
A set of tables, called nucleus module lists (NMLs), are used to identify the
members in SYS1.NUCLEUS that are to be loaded into the DAT-on nucleus region.
NMLs can be installed as part of an IBM product, a vendor product, or a customer
user modification. Each NML contains a list of the SYS1.NUCLEUS members that
are part of the same product or user modification. The NMLs themselves are load
modules that also reside in SYS1.NUCLEUS.

The NML must have a module name (CEST name) in the form of IEANYnnn:

Y Y can be either of S or C.
v S stands for IBM provided NML.
v C stands for customer provided NML.

nnn nnn is a 3-digit decimal number from 001 through 256.

Use the NMLDEF macro to generate an NML statement (at the end of the macro
expansion). See z/OS MVS Programming: Authorized Assembler Services Guide for
more information on using the NMLDEF macro.

Existing nucleus-resident entry points cannot be replaced or overridden using an
NML. To find out how to perform these functions, refer to information about
customizing the nucleus in the z/OS MVS Programming: Authorized Assembler
Services Guide.

You can use a NUCLSTxx member of SYS1.PARMLIB instead of NMLDEF to
specify modules to be loaded into the nucleus. For more information on
NUCLSTxx, especially its possible advantages over NMLDEF, see z/OS MVS
Initialization and Tuning Reference.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state or supervisor state, and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: No requirement
AMODE: 24- or 31-bit
ASC mode: No requirement
Interrupt status: No requirement
Locks: No requirement
Control parameters: None.

Note: This macro does not generate any executable code.

Programming requirements
None.

© Copyright IBM Corp. 1988, 2015 129



Restrictions
None.

Register information
None.

Performance implications
None.

Syntax
The standard form of the NMLDEF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede NMLDEF.

NMLDEF

� One or more blanks must follow NMLDEF.

NUCL=nucid nucid: One to eight characters in length.

Parameters
The parameter is explained as follows:

NUCL=nucid
Identifies the name of one or more SYS1.NUCLEUS members that are to be
loaded into the nucleus region. At least one nucleus identifier must be
specified on the NMLDEF macro. If you specify more than one nucleus
identifier, enclose the list in parentheses and use commas to separate the
identifiers.

ABEND codes
None.

Return and reason codes
None.

Example 1
Specify the macro as follows to name an NML as IEANC002 and identify the
members named ABC00122 and ABC00123 in SYS1.NUCLEUS that are to be
loaded into the nucleus region.
IEANC002 NMLDEF NUCL=(ABC00122,ABC00123)

NMLDEF macro

130 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Example 2
To install a user nucleus-resident routine or a release of a product, you can use
SMP/E, or code your own JCL.

The following example JCL creates an NML with the CSECT name of IEANC001
containing the module name of DXXTEST.
//FORDON JOB MSGLEVEL=(1,1)
//NMLDEF EXEC ASMHCL
//ASM.SYSIN DD *
IEANC001 NMLDEF NUCL=DXXTEST
//LKED.SYSLMOD DD DSN=SYS1.NUCLEUS,VOL=SER=DCH352,UNIT=3380,DISP=OLD
//LKED.SYSIN DD *

NAME IEANC001
/*

Example 3
To install a user nucleus-resident routine or a release of a product, you can use
SMP/E, or code your own JCL.

The following example JCL creates NMLs with the CSECT name of IEANC002
containing module names of ABC00001-ABC00010.
//FORDON JOB MSGLEVEL=(1,1)
//NMLDEF EXEC ASMHCL
//ASM.SYSIN DD *
IEANC002 NMLDEF NUCL=(ABC00001,ABC00002,ABC00003,ABC00004,ABC00005, X

ABC00006,ABC00007,ABC00008,ABC00009,ABC00010)
//LKED.SYSLMOD DD DSN=SYS1.NUCLEUS,VOL=SER=DCH352,UNIT=3380,DISP=OLD
//LKED.SYSIN DD *

NAME IEANC002
/*

NMLDEF macro

Chapter 15. NMLDEF — Customizing the nucleus 131



NMLDEF macro

132 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 16. NUCLKUP — Nucleus map lookup service

Description
The NUCLKUP macro provides lookup functions by name and by address. Use the
macro to get:
v The name and address of a nucleus CSECT if you have an address within the

CSECT
v The address and AMODE of a nucleus CSECT or ENTRY if you have its name

You would use the NUCLKUP macro to:
v Check an installation program once your installation has put it into the nucleus
v Diagnose a problem of a program residing in the nucleus

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state or supervisor state, and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No requirement
Control parameters: Must be in the primary address space

Programming requirements
The caller must include the CVT mapping macro in the program that issues the
NUCLKUP macro.

Restrictions
None.

Input register information
Before issuing the NUCLKUP macro, the caller must ensure that the following
general purpose register (GPR) contains the specified information:

Register
Contents

13 The address of a standard 18-word save area

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the caller issued the macro. Therefore, if the caller depends on these

© Copyright IBM Corp. 1988, 2015 133



registers containing the same value before and after issuing the macro, the caller
must save these registers before issuing the macro and restore them after the
system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0

v For a BYNAME request, the address and AMODE of the CSECT or
ENTRY

v For a BYADDR request, the 31-bit address of the CSECT

The AMODE is returned as part of the 31-bit address for a BYNAME
request:
v AMODE 24: high-order and low-order bits are both 0
v AMODE 31: high-order bit is 1, low-order bit is 0
v AMODE 64: high-order bit is 0, low-order bit is 1
v If the AMODE of the module is ANY, it indicates AMODE 24 if the

caller is AMODE 24 (the high order bit is 0), or AMODE 31, if the caller
is AMODE 31 or AMODE 64 (the high order bit is 1).

1 For a BYNAME request, the high-order byte is zero and the low-order
three bytes contain the length from the entry point to the end of the
CSECT; for a BYADDR request, register 1 contains the address of the 8-byte
area in which the CSECT name is returned.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code.

Performance implications
None.

Syntax
The standard form of the NUCLKUP macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede NUCLKUP.

NUCLKUP

� One or more blanks must follow NUCLKUP.

BYNAME,NAME=name id name id: 8-byte literal (enclosed in apostrophes), or the address of the 8-byte
literal which can be either an RX-type address, or register (1) - (12).

BYADDR,NAME=name loc

NUCLKUP macro

134 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

name loc: RX-type address or register (1) - (12).

,ADDR=addr addr: RX-type address, or register (0) or (2) - (12).

Parameters
The parameters are explained as follows:

BYNAME
BYADDR

Specifies the function to be performed. If BYNAME is specified, the user
supplies on NAME=name id the name of a CSECT or ENTRY and receives on
ADDR the address and AMODE of that CSECT or ENTRY. If BYADDR is
specified, the user supplies on ADDR an address within a CSECT and receives
on NAME=name id the name and address of the CSECT.

,NAME=name id
,NAME=name loc

Specifies the name or the location of the name of the CSECT depending on the
option requested. If the user specifies BYNAME, name id contains the
8-character name to be searched for or the address of that name. If the user
specifies BYADDR, name loc will contain the address of the 8-byte area in
which the CSECT name is to be returned.

,ADDR=addr
Contains the address to be searched for if BYADDR is specified; contains the
address of the CSECT or ENTRY that is returned if BYNAME is specified.

The AMODE is returned as part of the 31-bit address for a BYNAME request:
v AMODE 24: high-order and low-order bits are both 0
v AMODE 31: high-order bit is 1, low-order bit is 0
v AMODE 64: high-order bit is 0, low-order bit is 1
v If the AMODE of the module is ANY, it indicates AMODE 24 if the caller is

AMODE 24 (the high order bit is 0), or AMODE 31, if the caller is AMODE
31 or AMODE 64 (the high order bit is 1).

ABEND codes
None.

Return codes
When NUCLKUP macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 19. Return Codes for the NUCLKUP Macro

Return Code Meaning and Action

00 Meaning: The request was satisfied.

Action: None.

NUCLKUP macro

Chapter 16. NUCLKUP — Nucleus map lookup service 135



Table 19. Return Codes for the NUCLKUP Macro (continued)

Return Code Meaning and Action

04 Meaning: The request was not satisfied.

For a BYNAME request, the name was not found, and the location containing
the address was set to zero.

For a BYADDR request, the address was not found in the nucleus, and the
location containing the name was set to zero.

Action: None required. However, you might take some action based upon your
application.

08 Meaning: Program error. The request was not satisfied because the type of
request was not specified correctly. The locations containing the name and
address were set to zero.

Action: Ensure that the name id value is supplied for BYNAME requests, and
the addr value is provided on BYADDR requests.

Example 1
Place the address and AMODE of entry point IEAVESTU in register 0.
NUCLKUP BYNAME,NAME=’IEAVESTU’,ADDR=(0)

Example 2
Look up the address and amode of the entry point name in location STRING and
return it at location RETLOC.

NOCLKUP BYNAME,NAME=STRING,ADDR=RETLOC
.
.

STRING DS CL8
RETLOC DS F

Example 3
Return the CSECT name and address of the nucleus routine in which the address
at location INADDR falls. Return the name at location EPLOC1 and the address at
INADDR.

NUCLKUP BYADDR,NAME=EPLOC,ADDR=INADDR
.
.

EPLOC DS CL8
INADDR DS F

NUCLKUP macro

136 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 17. OIL — Provide a lock via an OR IMMEDIATE (OI)
instruction

Description
The OIL macro is used to provide a lock on a byte of storage on which an or
immediate (OI) instruction is to be executed. Because the byte of storage exists in a
multiprocessing environment, the possibility exists that the byte might be changed
by another processor at the same time. Storage modification during OIL processing
is accomplished by using the compare and swap (CS) instruction.

For details on the or immediate and compare and swap instructions, see Principles
of Operation.

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Problem or supervisor state, any key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: None
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the OIL macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs are unchanged except for the three
work registers that are used by the system. If WREGS is not specified, these will be
registers 0-2.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

© Copyright IBM Corp. 1988, 2015 137



2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The OIL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede OIL.

OIL

� One or more blanks must follow OIL.

byte addr byte addr: RX-type address.

,mask mask: Symbol or self-defining term.

,REF=stor addr stor addr: RX-type address.

,WREGS=(reg1,reg2,reg3) reg1: Symbol or decimal digits 0-15.

,WREGS=(reg1,reg2) reg2: Symbol or decimal digits 0-15.

,WREGS=(reg1,,reg3) reg3: Symbol or decimal digits 0-15.

,WREGS=(,reg2,reg3) Default: for reg1: 0

,WREGS=(reg1) Default: for reg2: 1

,WREGS=(,reg2) Default: for reg3: 2

,WREGS=(,,reg3)

Parameters
The parameters are explained as follows:

byte addr
Specifies the address of the byte to which the OR function is to be applied.

,mask
Specifies the value to be ORed to the byte at the address specified above.

,REF=stor addr
Specifies the address of a storage location on a fullword boundary. This
address provides the means by which the compare and swap instruction may
be executed. The address must be less than or equal to the byte address

OIL macro

138 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



specified above, and the difference between the addresses must be less than
4095. The two addresses must be addressable via the same base register.

,WREGS=(reg1,reg2,reg3)
,WREGS=(reg1,reg2)
,WREGS=(reg1,,reg3)
,WREGS=(,reg2,reg3)
,WREGS=(reg1)
,WREGS=(,reg2)
,WREGS=(,,reg3)

Specifies the work registers to be used to perform the compare and swap
instruction. reg1 is used to contain the “old” byte; reg2 is used to contain the
“updated” byte; and reg3 is used to contain the mask.

ABEND codes
None.

Return and reason codes
None.

Example
Turn on bit TVNLXMET in byte TVNLCS1. The reference field TVNL specifies the
area containing the word being updated.
OIL TVNLCS1,TVNLXMET,REF=TVNL

OIL macro

Chapter 17. OIL — Provide a lock via an OR IMMEDIATE (OI) instruction 139



OIL macro

140 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 18. OUTADD — Create an output descriptor

Description
Use the OUTADD macro to create an output descriptor for a system output
(sysout) data set. For information about using the OUTADD macro, see “Dynamic
Output” in z/OS MVS Programming: Authorized Assembler Services Guide.

The OUTADD macro has no standard form. Use the list form to generate a storage
declaration for the input parameter list to dynamic output. Use the execute form to
modify the parameter list and invoke dynamic output.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
When you code the input data to dynamic output, all character data must be
left-justified in a field of blanks. Any noncharacter input data must be
right-justified in a field of binary zeroes. All input addresses or pointers must be
coded as 31-bit addresses, even when you invoke dynamic output in a 24-bit
addressing environment. If you use a 24-bit address, you must right-justify the
address in a 4-byte field, and set the left-most byte to binary zeroes.

Restrictions
v You can use dynamic output in a JES2 environment or a JES3 4.2.1 or later

environment.
v Output descriptors are deleted with the OUTDEL macro. On some systems, the

system does not free the output descriptor's storage when you delete the output
descriptor. Whether or not this storage is freed depends on the version of JES
that is being used on your system. For more information, see “Dynamic Output”
in z/OS MVS Programming: Authorized Assembler Services Guide.

v When you use OUTADD to create output descriptors in a program that also uses
checkpoint/restart, you must observe the restrictions that are described in z/OS
DFSMSdfp Checkpoint/Restart.

Input register information
Before issuing the OUTADD macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

© Copyright IBM Corp. 1988, 2015 141



Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Key of the failing text unit, if available; otherwise, zero

2-14 Unchanged

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

OUTADD - List form

Syntax
The list form of the OUTADD macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede OUTADD.

OUTADD

� One or more blanks must follow OUTADD.

MF=L

The parameters of the list form, which are both required, are explained as follows:

OUTADD macro

142 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



name
The list form defines the storage area to be used as the input parameter list to
the OUTADD macro. name specifies the symbolic address of this storage.

MF=L
Specifies the list form of the OUTADD macro.

Example
Use the list form of the OUTADD macro to generate the input parameter list that is
to be used by the execute form of the OUTADD macro. Locate the parameter list at
symbolic location, PARML.
PARML OUTADD MF=L

OUTADD - Execute form
The execute form of the OUTADD macro modifies and executes the parameter list
that was built with the list form of the OUTADD macro.

Syntax
The execute form of the OUTADD macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede OUTADD.

OUTADD

� One or more blanks must follow OUTADD.

NAME=descriptor name addr descriptor name addr: Rx-type address or register (2)-(12).

SYSNAME=descriptor name addr

,TEXTPTR=tu pointer addr tu pointer addr: Rx-type address or register (2)-(12).

,ENQ=CONDITIONAL Default: ,ENQ=UNCONDITIONAL

,ENQ=UNCONDITIONAL

,MF=(E,list addr) list addr: Rx-type address or register (2)-(12).

Parameters
The parameters are explained as follows:

NAME=descriptor name addr
Specifies the address of the location where you place the name of the output
descriptor. The name, which must be unique in the current job step, must be

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 143



one to eight characters long. If less than eight characters, the name must be left
justified in an eight byte field of blanks. The first character must be alphabetic
or national (@, $, #), and the remaining characters can be alphanumeric or
national.

NAME is mutually exclusive with SYSNAME. You must specify either NAME
or SYSNAME.

Note: If you pass a name field of all binary zeros, the system generates a name
and uses that name. In this case, however, the system does not return the
name.

SYSNAME=descriptor name addr
Specifies the address of an 8-character field into which the system is to return
an output descriptor name. SYSNAME requests the system to generate the
output descriptor name. SYSNAME is mutually exclusive with NAME. You
must code either SYSNAME or NAME.

,TEXTPTR=tu pointer addr
Specifies the address of the text unit pointer list that you create. It is a required
parameter. The text unit pointer list references your text units; to invoke
OUTADD, at least one text unit must exist.

Place the pointer to each of your text units into the text unit pointer list. The
pointers in the text unit pointer list must be in contiguous storage. Each
pointer must be four bytes long, be aligned on a fullword boundary, and point
to a single text unit. Alternatively, if bits 1 - 31 of the text unit pointer are zero,
dynamic output assumes no text unit is associated with the text unit pointer.
You can use a text unit pointer with zeros in bits 1 - 31 to avoid having to
rearrange a predefined text unit pointer list when you do not want to point to
a particular text unit.

To enable the system to find the end of the pointer list, set the leftmost bit of
the last pointer to 1. The system limits the number of text unit pointers to
1000. For a coded example of a text unit pointer list, see z/OS MVS
Programming: Authorized Assembler Services Guide.

,ENQ=CONDITIONAL
,ENQ=UNCONDITIONAL

Specifies whether the OUTADD create request is to wait on a system queue.
When you invoke dynamic output to create an output descriptor, the system
serializes the create request. Because the system processes the requests one at a
time, each must wait on a system queue for all the previous requests to be
processed. If you do not want your request to wait, code
ENQ=CONDITIONAL. This causes the system to ignore your create request
unless the queue is empty. You get return code 04 with reason code of X'405'
when the system ignores your create request. To allow your request to go on
the queue, code ENQ=UNCONDITIONAL. If you omit the ENQ parameter,
your request always goes on the queue.

,MF=(E,list addr)
Specifies the execute form of the OUTADD macro.

list addr specifies the area that the system uses to store the parameters.

ABEND codes
OUTADD might abnormally terminate with abend codes X'76D' or X'054'. See z/OS
MVS System Codes for explanations and programmer responses.

OUTADD macro

144 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Return and reason codes
When control returns to the caller, GPR 15 contains a hexadecimal return code and
GPR 0 contains a hexadecimal reason code. Note that when you invoke dynamic
output to create an output descriptor, the system creates the descriptor only if the
return code is zero.

If the dynamic output request fails, you get a nonzero return code in GPR 15 and a
reason code in GPR 0. If any text unit can be associated with the failure, the key of
the failing text unit is in the rightmost two bytes of GPR 1. GPR 1 contains zero if
the failure does not implicate a particular text unit, or if a text unit caused the
failure but the system cannot determine what text unit is responsible.

When you are using a reason code to debug your program, it is sometimes
advisable to look beyond the immediate explanation of the reason code. For
example, even if the reason code indicates a bad text unit, the text units you coded
might be perfectly correct. The pointers to the text units, however, might be
incorrectly coded, or one of the pointers in the pointer list might be bad.

For programmers who want them, symbolic names for reason codes are available
in the IEFDORC mapping macro. (See z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).) Reason codes are four
bytes long.

Table 20. Return and Reason Codes for the OUTADD Macro

Return Code Reason Code Meaning and Action

00 000 Meaning: The dynamic output request is successful.

Action: None.

04 400-408 Meaning: The dynamic output request failed because of an
error in dynamic output or elsewhere in the system.

08 380-391
500-504

Meaning: The dynamic output request failed. There is an
error in an operating system program.

Action: Contact the system programmer.

08 000
6000-7FFF

Meaning: The dynamic output request failed. The request
was denied by your installation. These reason codes are
defined by your installation.

0C 300-314 Meaning: The dynamic output request failed. The program
that invoked dynamic output has built the text units
incorrectly or, less likely, the installation exit routine has
built the text units incorrectly.

0C 380-394 Meaning: The dynamic output request failed because the
parameter list is incorrectly initialized.

0C 409 Meaning: The dynamic output request failed. The caller's
text unit pointer list was altered by another task during
dynamic output processing.

10 700-702 Action: An abend occurred in the system.

Action: Consult the system programmer.

Reason codes for return code 04
The table below documents the reason codes that can occur when the OUTADD
macro returns with a return code of 04 (in GPR15). The symbol for return code 04
is DOENVERR in macro IEFDORC. The “symbol” field in the following table gives
the symbolic name for the different reason code values. These symbols can be
found in macro IEFDORC.

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 145

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/


Table 21. Reason Codes for Return Code 04

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

400
(1024)

Symbol: DORCGET1

Meaning: Environmental error. A GETMAIN request failed during processing of
the dynamic output request.

Action: Attempt to allow a larger region for the application and retry the
dynamic output request.

401
(1025)

Symbol: DORCEXST

Meaning: Environmental error or program error. The dynamic output request
specified an output descriptor that already exists.

Action: Select an alternate name for the output descriptor and retry the dynamic
output request.

404
(1028)

Symbol: DORCESTA

Meaning: Program or system error. During dynamic output processing, the
system was unable to establish a recovery environment.

Action: Determine if your program is doing something that prevents a recovery
environment from being established. The most likely reason for this error is that
your program is causing all available storage to be used. If the problem cannot
be attributed to your program, record the return and reason code, and optionally
make a copy of your application. Give this information to your system
programmer to supply to the appropriate IBM support personnel.

405
(1029)

Symbol: DORCNENQ

Meaning: Environmental error. The ENQ resource is not available at this time.
This reason code can be issued only for conditional ENQ requests.

Action: Run your application at another time, when the system queue is empty.
Alternatively, you can specify ENQ=UNCONDITIONAL (the default), and the
request will always go onto the queue.

406
(1030)

Symbol: DORCNONM

Meaning: Environmental error. No more system-generated names can be
created; the maximum number allowed are in use.

Action: If your application can delay processing the dynamic output request, it
is possible that an OUTDEL request will be issued. This OUTDEL request might
allow additional system-generated names to be created. You can also consider
segmenting the work of the application so that a smaller number of
system-generated names are in use at any point in time.

407
(1031)

Symbol: DORCGET2

Meaning: Environmental or system error. A GETMAIN request failed during
processing of the dynamic output request.

Possible causes include:

v You created a large number of output descriptors and have not deleted them

v Another program in the region is using up a lot of storage.

Action: Delete any output descriptors that should have been deleted. Attempt to
allow a larger region for the application and retry the dynamic output request.

OUTADD macro

146 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 21. Reason Codes for Return Code 04 (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

408
(1032)

Symbol: DORCALTT

Meaning: Environmental or program error. A text unit was found to have been
altered by another task running in the system.

Action: Review the design of the application and determine if additional tasks
running concurrently with this dynamic output request could be altering shared
storage (the text unit). If a change can be made to eliminate the storage
alteration by another task, retry the dynamic output request.

Reason codes for return code 08
The table below documents the reason codes that can occur when the OUTADD
macro returns with a return code of 08 (in GPR15). The symbol for return code 08
is DOREQDNY in macro IEFDORC. The “symbol” field in the following table gives
the symbolic name for the different reason code values. These symbols can be
found in macro IEFDORC.

Table 22. Reason Codes for Return Code 08

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

0
(0)

Symbol: (none defined)

Meaning: Program error. The dynamic output request was denied by your
installation.

Action: The meaning of this reason code is defined by your installation. Your
installation should be able to make recommendations for altering the dynamic
output request to conform to installation standards.

380
(896)

Symbol: DORCLNIV

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Dynamic output processing detected an incorrect parameter list length.
The installation exit maps the dynamic output parameter list (macro IEFDOCNP).
Determine why the DOCNLEN field was incorrectly set and correct the problem.

381
(897)

Symbol: DORCNZF1

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Unused bits passed back from the dynamic output installation exit were
not set to zero. The installation exit maps the dynamic output parameter list
(macro IEFDOCNP). Determine why the unused bits in the DOCNFNC1 field are not
zero and correct the problem.

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 147



Table 22. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

382
(898)

Symbol: DORCNZF2

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Unused bits passed back from the dynamic output installation exit were
not set to zero. The installation exit maps the dynamic output parameter list
(macro IEFDOCNP). Determine why the unused bits in the DOCNFNC2 field are not
zero and correct the problem.

383
(899)

Symbol: DORCNZR1

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Unused bits passed back from the dynamic output installation exit were
not set to zero. The installation exit maps the dynamic output parameter list
(macro IEFDOCNP). Determine why the DOCNRSV1 reserved field is not zero and
correct the problem.

384
(900)

Symbol: DORCNZR2

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Unused bits passed back from the dynamic output installation exit were
not set to zero. The installation exit maps the dynamic output parameter list
(macro IEFDOCNP). Determine why the DOCNRSV2 reserved field is not zero and
correct the problem.

385
(901)

Symbol: DORCIVID

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. A portion of the dynamic output parameter list was improperly set. The
installation exit maps the dynamic output parameter list (macro IEFDOCNP).
Determine why the DOCNID field was not properly initialized and correct the
problem.

OUTADD macro

148 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 22. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

386
(902)

Symbol: DORCIVVR

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. The DOCNVERS field contains an incorrect parameter list length. The
installation exit maps the dynamic output parameter list (macro IEFDOCNP).
Determine why the DOCNVERS field was not properly initialized and correct the
problem.

387
(903)

Symbol: DORCNOFN

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. A portion of the dynamic output parameter list was improperly set. The
installation exit maps the dynamic output parameter list (macro IEFDOCNP).
Either the DOCNNEW or the DOCNDEL bit must be set in the DOCNFNC1 field.
Determine why no function bit (create or delete) was set and correct the
problem.

388
(904)

Symbol: DORCIVFN

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. A portion of the dynamic output parameter list was improperly set. The
installation exit maps the dynamic output parameter list (macro IEFDOCNP). Only
one function bit (either DOCNNEW or DOCNDEL) should be set in the DOCNFNC1 field.
Determine why more than one function bit (create or delete) was set and correct
the problem.

38B
(907)

Symbol: DORCIVNM

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Dynamic output processing received an incorrect output descriptor name
from the installation exit. The installation exit maps the dynamic output
parameter list (macro IEFDOCNP). The output descriptor name is in the DOCNNAME
field. Check the output descriptor name returned to the dynamic output service.
The first character must be an alphabetic (capitalized) character or a national
character (#, @, or $). The remaining characters must be alphabetic (capitalized)
characters, national characters (#, @, or $), or numbers. There can be no
intervening blanks. Alternatively, the name can be all (binary) zeros, indicating
that the system should generate a name for this request.

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 149



Table 22. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

38F
(911)

Symbol: DORCIVTU

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. A portion of the dynamic output parameter list was improperly set. The
installation exit maps the dynamic output parameter list (IEFDOCNP).
DOCNTXTP must point to a text unit pointer list. Determine why DOCNTXTP
was set to zero and correct the problem.

391
(913)

Symbol: DORCNZR0

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Unused bits passed back from the dynamic output installation exit were
not set to zero. The installation exit maps the dynamic output parameter list
(macro IEFDOCNP). Determine why the DOCNRSV0 reserved field is not zero and
correct the problem.

500
(1280)

Symbol: DORCINST

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer
with the return and reason code. Once the operating system program has been
corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output
installation exit. The return code from the dynamic output installation exit is 8,
but the reason code is not within the allowable range defined for the dynamic
output installation exit. Determine why the installation exit is returning a reason
code that is outside the allowable range and correct the error.

501
(1281)

Symbol: DORCINRC

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer
with the return and reason code. Once the operating system program has been
corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output
installation exit. The return code from the dynamic output installation exit is
zero, but the reason code is not zero. Determine why the installation exit is
returning a nonzero reason code but a zero return code for the dynamic output
request and correct the problem.

OUTADD macro

150 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 22. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

502
(1282)

Symbol: DORCINRT

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer
with the return and reason code. Once the operating system program has been
corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output
installation exit. The return code from the dynamic output installation exit is not
within the allowable range defined for the dynamic output installation exit.
Determine why the installation exit is returning a return code that is outside the
allowable range and correct the error.

503
(1283)

Symbol: DORCINKE

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer
with the return and reason code. Once the operating system program has been
corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output
installation exit. The return code from the dynamic output installation exit is
zero, but the installation exit has returned a nonzero value in register 1. When
control is returned from the installation exit, register 1 contains the value of the
key that is in error. Determine why the installation exit is returning a nonzero
value in register 1 and a zero return code for the dynamic output request.

504
(1284)

Symbol: DORCZKEY

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer
with the return and reason code. Once the operating system program has been
corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output
installation exit. The installation exit has modified the input from the user. It
now has a zero text unit key which is rejected by later processing within
dynamic output.

6000-7FFF
(24576-32767)

Symbol: (none defined)

Meaning: Program error. The dynamic output request was denied by your
installation.

Action: The meaning of this reason code is defined by your installation, and
indicates the reason the dynamic output request was denied. Your installation
should be able to make recommendations for altering the dynamic output
request to conform to installation standards.

Reason codes for return code 0C
OUTADD returns a return code of 0C for errors detected in the caller's parameters.
The list form of the OUTADD macro generates a parameter list. When the caller
invokes the execute form of the OUTADD macro, this parameter list is filled in
with the parameters coded on the execute form of the OUTADD macro. The
OUTADD service verifies this parameter list and text units pointed to from this
parameter list.

The table below documents the reason codes that can occur when the OUTADD
macro returns with a return code of 0C (in GPR15). The symbol for return code 0C

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 151



is DOINVPRM in macro IEFDORC. The “symbol” field in the following table gives
the symbolic name for the different reason code values. These symbols can be
found in macro IEFDORC.

Note: Reason codes less than 380 (hexadecimal) can be returned if the dynamic
output installation exit modifies the text units associated with the request,
producing an error that is detected later by dynamic output processing.

Table 23. Reason Codes for Return Code 0C

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

300
(768)

Symbol: DORCIVCH

Meaning: Program error. A selection specified for a value field in a text unit was
not valid.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

301
(769)

Symbol: DORCGMAX

Meaning: Program error. A numeric parameter exceeds the maximum allowable
value.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

302
(770)

Symbol: DORCLMIN

Meaning: Program error. A numeric parameter is less than the minimum
allowable value.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

303
(771)

Symbol: DORCNNUM

Meaning: Program error. No parameter was specified for the text unit key.

Action: This is probably a logic error in the application program. Correct the
problem and retry the dynamic output invocation.

306
(774)

Symbol: DORCNLLN

Meaning: Program error. A level name in the value field of a text unit is too
long. The maximum is 8 characters. For example, ACMESYSTEM.USNA is not valid
because ACMESYSTEM contains more than 8 characters.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

307
(775)

Symbol: DORCNLNM

Meaning: Program error. There are too many level names in the value field of a
text unit. For example, DAVE.ACME.SYSR is wrong if only two levels are allowed.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

OUTADD macro

152 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 23. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

308
(776)

Symbol: DORCNFCH

Meaning: Program error. The first character in the name of a level in the value
field of a text unit is incorrect. For example, 4DAVE.ACME or DAVE.4ACME is
incorrect if numeric characters are not allowed as the first character of a level
name.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

309
(777)

Symbol: DORCNOCH

Meaning: Program error. In the value field of a text unit, a character (other than
the first) in a level name is incorrect. For example, GARY3.SINKHOLE and
GARY.SI8NK are incorrect if only the first character in a level name can be a
numeric character.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

30A
(778)

Symbol: DORCNLIV

Meaning: Program error. In the value field of a text unit, the levels are
incorrectly specified. The value field has two consecutive periods, or the first or
last character of the value field is a period.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

30B
(779)

Symbol: DORCIVNP

Meaning: Program error. The number of parameters in the text unit is not valid.

Action: The number of parameters in the text unit was indicated as being less
than zero or greater than 1000. Modify the text unit so that the number of
parameters is within the allowable range. Retry the dynamic output invocation.

30C
(780)

Symbol: DORCIVLN

Meaning: Program error. The length field in the text unit is not valid.

Action: The length field in the text unit was indicated as being less than zero or
greater than 254. Modify the text unit length so that it is within the allowable
range. Retry the dynamic output invocation.

30D
(781)

Symbol: DORCNKEY

Meaning: Program error. The key in the text unit was not valid.

Action: This is probably a logic error in the application program. Correct the
problem and retry the dynamic output invocation.

30E
(782)

Symbol: DORCDUPK

Meaning: Program error. Two or more text units were specified with identical
keys.

Action: This is probably a logic error in the application program. Correct the
problem and retry the dynamic output invocation.

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 153



Table 23. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

30F
(783)

Symbol: DORCIVKY

Meaning: Program error. A key that was not valid was found in a text unit.

Action: Determine why a key that was not valid was found in the text unit,
correct the problem, and retry the dynamic output request.

310
(784)

Symbol: DORCNSLE

Meaning: Program error. An incorrect subparameter has been specified for a text
unit. The specified subparameter is not defined for this text unit.

Action: This is probably a logic error in the application program. Correct the
problem and retry the dynamic output invocation.

311
(785)

Symbol: DORCMTUP

Meaning: Program error. The number of text unit pointers was found to be too
large.

Action: The number of text unit pointers must be less than 1000. Modify the text
unit pointer list so that there are less than 1000 text unit pointers. Retry the
dynamic output invocation.

312
(786)

Symbol: DORCIVTX

Meaning: Program error. An incorrect text character was detected in the value
field of the text unit.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

313
(787)

Symbol: DORCISEQ

Meaning: Program error. A character sequence that was not valid was specified
in the value field of the text unit.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

314
(788)

Symbol: DORCIBIT

Meaning: Program error. During the specification of a text unit that defines a
bitstring-type parameter, a bit was specified that is not allowed.

Action: This is probably a logic error in the application program, or perhaps
incorrect data was propagated by the application program to the dynamic
output request. Correct the problem and retry the dynamic output invocation.

380
(896)

Symbol: DORCLNIV

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

OUTADD macro

154 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 23. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

381
(897)

Symbol: DORCNZF1

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

382
(898)

Symbol: DORCNZF2

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

383
(899)

Symbol: DORCNZR1

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

384
(900)

Symbol: DORCNZR2

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

385
(901)

Symbol: DORCIVID

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

386
(902)

Symbol: DORCIVVR

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 155



Table 23. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

387
(903)

Symbol: DORCNOFN

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

388
(904)

Symbol: DORCIVFN

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

38B
(907)

Symbol: DORCIVNM

Meaning: Program error. An incorrect output descriptor name was supplied to
the dynamic output service.

Action: Check the output descriptor name supplied to the dynamic output
service. The first character must be an alphabetic (capitalized) character or a
national character (#, @, or $). The remaining characters must be alphabetic
(capitalized) characters, national characters (#, @, or $), or a number. There can
be no intervening blanks. Alternatively, the name can be all (binary) zeros,
indicating that the system should generate a name for this request. Correct the
problem and retry the dynamic output invocation.

38C
(908)

Symbol: DORCIVRZ

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

38D
(909)

Symbol: DORCIVDZ

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

38E
(910)

Symbol: DORCIVHB

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

OUTADD macro

156 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 23. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

38F
(911)

Symbol: DORCIVTU

Meaning: Program error. No text units were specified. Either the pointer to the
text unit pointer list was zero, or all the text unit pointers were zero.

Action: Determine why no text units were specified. Correct the problem and
retry the dynamic output invocation.

390
(912)

Symbol: DORCP0C4

Meaning: Program error. An 0C4 ABEND occurred when the system referenced
the parameter list. The parameter list is generated by the list form of the
OUTADD macro.

Action: Check to see if the parameter list has the same storage key as the
program that uses the execute form of the macro to invoke dynamic output.
Also check to see if your program passed a bad pointer or address, or if your
program failed to set the leftmost bit in the last pointer of the text unit pointer
list.

391
(913)

Symbol: DORCNZR0

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

394
(916)

Symbol: DORCREON

Meaning: Program error. There is an error in the use of the OUTADD macro.
The execute form of the OUTADD macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

409
(1033)

Symbol: DORCALTP

Meaning: Program error. Dynamic output processing has determined that the
length of the text unit pointer list has changed during the processing of this
dynamic output request. A possible reason for this is that the application is
running in a multitasking environment, where the text unit pointers may be in
shared storage between multiple tasks. Another task could be altering this
shared storage concurrently.

Action: Review the design of the application and determine if additional tasks
running concurrently with this dynamic output request could be altering shared
storage (the text unit pointer list). If a change can be made to eliminate the
storage alteration by another task, retry the dynamic output request.

Reason codes for return code 10
OUTADD returns a return code of 10 for system ABENDs that occurred during
dynamic output OUTADD processing.

The table below documents the reason codes that can occur when the OUTADD
macro returns with a return code of 10 (in GPR15). The symbol for return code 10

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 157



is DOSYSERR in macro IEFDORC. The “symbol” field in the following table gives
the symbolic name for the different reason code values. These symbols can be
found in macro IEFDORC.

Table 24. Reason Codes for Return Code 10

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

700
(1792)

Symbol: DORCABND

Meaning: System error. An ABEND occurred in the dynamic output control
routine.

Action: Record the return and reason code, and optionally make a copy of your
application. Give this information to your system programmer to supply to the
appropriate IBM support personnel.

701
(1793)

Symbol: DORCSJAB

Meaning: System error. An ABEND occurred during this dynamic output
request.

Action: Record the return and reason code, and optionally make a copy of your
application. Give this information to your system programmer to supply to the
appropriate IBM support personnel.

702
(1794)

Symbol: DORCXABD

Meaning: System error. An ABEND occurred in the dynamic output installation
exit.

Action: Notify your system programmer. The dynamic output installation exit
might have a logic error. If a change is made to the installation exit, you can
retry the dynamic output invocation.

Example
Use the execute form of the OUTADD macro to modify and execute a parameter
list at symbolic location PLIST. The output descriptor is at symbolic location,
DESCR2. The text unit pointer list is at symbolic location, TEXTL.
OUTADD NAME=DESCR2,TEXTPTR=TEXTL,MF=(E,PLIST)

OUTADD macro

158 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 19. OUTDEL — Delete an output descriptor

Description
Use the OUTDEL macro to delete an output descriptor for a system output
(sysout) data set. For information about using the OUTDEL macro, see “Dynamic
Output” in z/OS MVS Programming: Authorized Assembler Services Guide.

The OUTDEL macro has no standard form. Use the list form to generate a storage
declaration for the input parameter list to dynamic output. Use the execute form to
modify the parameter list and invoke dynamic output.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
v Use OUTDEL only when the output descriptor being deleted was added by the

OUTADD macro.
v When you code the input data to dynamic output, all character data must be

left-justified in a field of blanks. Any noncharacter input data must be
right-justified in a field of binary zeroes.

Restrictions
v You can use dynamic output in a JES2 environment or a JES3 4.2.1 or later

environment.
v On some systems, the system does not free the output descriptor's storage when

you delete the output descriptor. Whether or not this storage is freed depends
on the version of JES being used on your system. For more information, see
“Dynamic Output” in z/OS MVS Programming: Authorized Assembler Services
Guide.

Input register information
Before issuing the OUTDEL macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control is returned to the calling program the GPRs contain:

© Copyright IBM Corp. 1988, 2015 159



Register
Contents

0 Reason code

1 Zero

2-14 Unchanged

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

OUTDEL - List form

Syntax
The list form of the OUTDEL macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede OUTDEL.

OUTDEL

� One or more blanks must follow OUTDEL.

,MF=L

Parameters
The parameters of the list form, which are both required, are explained as follows:

name
The list form defines the storage area to be used as the input parameter list to
the OUTDEL macro. name specifies the symbolic address of this storage.

OUTDEL macro

160 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



MF=L
Specifies the list form of the OUTDEL macro.

Example
Use the list form of the OUTDEL macro to generate the input parameter list that is
to be used by the execute form of the OUTDEL macro. Locate the parameter list at
symbolic location, PARML.
PARML OUTDEL MF=L

OUTDEL - Execute form
The execute form of the OUTDEL macro modifies and executes the parameter list
that was built with the list form of the OUTDEL macro.

Syntax
The execute form of the OUTDEL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede OUTDEL.

OUTDEL

� One or more blanks must follow OUTDEL.

NAME=descriptor name addr descriptor name addr: RX-type address or register (2)-(12).

,MF=(E,list addr) list addr: RX-type address or register (2)-(12).

Parameters
The parameters are explained as follows:

NAME=descriptor name addr
Specifies the address of an 8-character field. This field contains the name of the
output descriptor that is to be deleted.

,MF=(E,list addr)
Specifies the execute form of the OUTDEL macro.

list addr specifies the area that the system uses to store the parameters.

ABEND codes
OUTDEL might abnormally terminate with abend codes X'76D' or X'054'. See z/OS
MVS System Codes for explanations and programmer responses.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 161



Return and reason codes
When control returns to the caller, GPR 15 contains a hexadecimal return code and
GPR 0 contains a hexadecimal reason code. Note that when you invoke dynamic
output to delete an output descriptor, the system has deleted the descriptor only if
the return code is zero.

For programmers who want them, symbolic names for reason codes are available
in the IEFDORC mapping macro. (See z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).) Reason codes are four
bytes long.

Table 25. Return and Reason Codes for the OUTDEL Macro

Return Code Reason Code Meaning and Action

00 00 Meaning: The dynamic output request is successful.

Action: None.

04 400-407 Meaning: The dynamic output request failed because of an
error in dynamic output or elsewhere in the system.

Action: None.

08 380-38B
391
500-503

Meaning: The dynamic output request failed. There is an
error in an operating system program.

Action: Contact the system programmer.

08 00
6000-7FFF

Meaning: The dynamic output request failed. The request
was denied by your installation. These reason codes are
defined by your installation.

Action: None.

0C 30B-394 Meaning: The dynamic output request failed because the
parameter list is incorrectly initialized.

Action: None.

10 700-702 Meaning: An abend occurred in the system.

Action: Consult the system programmer.

For programmers who want them, symbolic names for reason codes are available
in the IEFDORC mapping macro. (See z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).) Reason codes are four
bytes long.

Reason codes for return code 04
The table below documents the reason codes that can occur when the OUTDEL
macro returns with a return code of 04 (in GPR15). The symbol for return code 04
is DOENVERR in macro IEFDORC. The “symbol” field in the following table gives
the symbolic name for the different reason code values. These symbols can be
found in macro IEFDORC.

OUTDEL macro

162 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/


Table 26. Reason Codes for Return Code 04

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

400
(1024)

Symbol: DORCGET1

Meaning: Environmental error. A GETMAIN failed during processing of the
dynamic output request.

Action: Attempt to allow a larger region for the application and retry the
dynamic output request.

402
(1026)

Symbol: DORCNDES

Meaning: Program error. For a delete request, the output descriptor does not
exist or it has already been deleted.

Action: This can be a logic error in the application. Check the program logic for
conditions that could lead to an incorrect (nonexistent) output descriptor name
being specified on the delete request.

403
(1027)

Symbol: DORCBTCH

Meaning: Program error. The delete request attempted to delete a JCL-specified
output descriptor. A JCL-specified output descriptor cannot be deleted with a
dynamic output delete request.

Action: This can be a logic error in the application. Check the program logic for
conditions that could lead to an incorrect output descriptor name being specified
on the delete request.

404
(1028)

Symbol: DORCESTA

Meaning: System error. During dynamic output processing, the system was
unable to establish a recovery environment.

Action: Determine if your program is doing something that prevents a recovery
environment from being established. The most likely reason for this error is that
your program is causing all available storage to be used. If the problem cannot
be attributed to your program, record the return and reason code, and optionally
make a copy of your application. Give this information to your system
programmer to supply to the appropriate IBM support personnel.

407
(1031)

Symbol: DORCGET2

Meaning: Environmental or system error. A GETMAIN request failed during
processing of the dynamic output request.

Action: Attempt to allow a larger region for the application and retry the
dynamic output request.

Reason codes for return code 08
The table below documents the reason codes that can occur when the OUTDEL
macro returns with a return code of 08 (returned in GPR15). The symbol for return
code 08 is DOREQDNY in macro IEFDORC. The “symbol” field in the following
table gives the symbolic name for the different reason code values. These symbols
can be found in macro IEFDORC.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 163



Table 27. Reason Codes for Return Code 08

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

0
(0)

Symbol: (none defined)

Meaning: Program error. The dynamic output request was denied by your
installation.

Action: The meaning of this reason code is defined by your installation. Your
installation should be able to make recommendations for altering the dynamic
output request to conform to installation standards.

380
(896)

Symbol: DORCLNIV

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Dynamic output processing detected an incorrect parameter list length.
The installation exit maps the dynamic output parameter list (macro IEFDOCNP).
Determine why the DOCNLEN field was incorrectly set and correct the problem.

381
(897)

Symbol: DORCNZF1

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Unused bits passed back from the dynamic output installation exit were
not set to zero. The installation exit maps the dynamic output parameter list
(macro IEFDOCNP). Determine why the unused bits in the DOCNFNC1 field are not
zero and correct the problem.

382
(898)

Symbol: DORCNZF2

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Unused bits passed back from the dynamic output installation exit were
not set to zero. The installation exit maps the dynamic output parameter list
(macro IEFDOCNP). Determine why the unused bits in the DOCNFNC2 field are not
zero and correct the problem.

383
(899)

Symbol: DORCNZR1

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Unused bits passed back from the dynamic output installation exit were
not set to zero. The installation exit maps the dynamic output parameter list
(macro IEFDOCNP). Determine why the DOCNRSV1 reserved field is not zero and
correct the problem.

OUTDEL macro

164 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 27. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

384
(900)

Symbol: DORCNZR2

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Unused bits passed back from the dynamic output installation exit were
not set to zero. The installation exit maps the dynamic output parameter list
(macro IEFDOCNP). Determine why the DOCNRSV2 reserved field is not zero and
correct the problem.

385
(901)

Symbol: DORCIVID

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. A portion of the dynamic output parameter list was improperly set. The
installation exit maps the dynamic output parameter list (macro IEFDOCNP).
Determine why the DOCNID field was not properly initialized and correct the
problem.

386
(902)

Symbol: DORCIVVR

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. The DOCNVERS field contains an incorrect parameter list version. The
installation exit maps the dynamic output parameter list (macro IEFDOCNP).
Determine why the DOCNVERS field was not properly initialized and correct the
problem.

387
(903)

Symbol: DORCNOFN

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. A portion of the dynamic output parameter list was improperly set. The
installation exit maps the dynamic output parameter list (macro IEFDOCNP).
Either the DOCNNEW or the DOCNDEL bit must be set in the DOCNFNC1 field.
Determine why no function bit (create or delete) was set and correct the
problem.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 165



Table 27. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

308
(904)

Symbol: DORCIVFN

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. A portion of the dynamic output parameter list was improperly set. The
installation exit maps the dynamic output parameter list (macro IEFDOCNP). Only
one function bit (either DOCNNEW or DOCNDEL) should be set in the DOCNFNC1 field.
Determine why more than one function bit (create or delete) was set and correct
the problem.

389
(905)

Symbol: DORCIVTP

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. A text unit pointer was specified for a delete request. The installation exit
maps the dynamic output parameter list (macro IEFDOCNP); the text unit pointer
was specified in field DOCNTXTP.

38A
(906)

Symbol: DORCIVEQ

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. A conditional ENQ indicator was specified for a delete request. The
installation exit maps the dynamic output parameter list (macro IEFDOCNP); the
conditional ENQ bit was specified using DOCNCENQ in field DOCNFNC2. Determine
why a conditional ENQ indicator was specified and correct the problem.

38B
(907)

Symbol: DORCIVNM

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Dynamic output processing received an incorrect output descriptor name
from the installation exit. Check the output descriptor name returned to the
dynamic output service. The first character must be an alphabetic (capitalized)
character or a national character (#, @, or $). The remaining characters must be
alphabetic (capitalized) characters, national characters (#, @, or $), or numbers.
There can be no intervening blanks. The installation exit maps the dynamic
output parameter list (macro IEFDOCNP); the output descriptor name is in the
DOCNNAME field.

OUTDEL macro

166 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 27. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

391
(913)

Symbol: DORCNZR0

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with
the return and reason code. Once the problem has been corrected, retry the
dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic
error. Unused bits passed back from the dynamic output installation exit were
not set to zero. The installation exit maps the dynamic output parameter list
(macro IEFDOCNP). Determine why the DOCNRSV0 reserved field is not zero and
correct the problem.

500
(1280)

Symbol: DORCINST

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer
with the return and reason code. Once the operating system program has been
corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output
installation exit. The return code from the dynamic output installation exit is 8,
but the reason code is not within the allowable range defined for the dynamic
output installation exit. Determine why the installation exit is returning a reason
code that is outside the allowable range and correct the error.

501
(1281)

Symbol: DORCINRC

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer
with the return and reason code. Once the operating system program has been
corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output
installation exit. The return code from the dynamic output installation exit is
zero but the reason code is not zero. Determine why the installation exit is
returning a nonzero reason code but a zero return code for the dynamic output
request and correct the error.

502
(1282)

Symbol: DORCINRT

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer
with the return and reason code. Once the operating system program has been
corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output
installation exit. The return code from the dynamic output installation exit is not
within the allowable range defined for the dynamic output installation exit.
Determine why the installation exit is returning a return code that is outside the
allowable range and correct the error.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 167



Table 27. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

503
(1283)

Symbol: DORCINKE

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer
with the return and reason code. Once the operating system program has been
corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output
installation exit. The return code from the dynamic output installation exit is
zero, but the installation exit has returned a nonzero value in register 1.
Although this is an OUTDEL request, when control is returned from the
installation exit for an OUTADD request, register 1 contains the value of the key
that is in error. Determine why the installation exit is returning a nonzero value
in register 1 and a zero return code for the dynamic output request and correct
the error.

6000-7FFF
(24576-32767)

Symbol: (none defined)

Meaning: Program error. The dynamic output request was denied by your
installation.

Action: The meaning of this reason code is defined by your installation, and
indicates the reason the dynamic output request was denied. Your installation
should be able to make recommendations for altering the dynamic output
request to conform to installation standards.

Reason codes for return code 0C
OUTDEL returns a return code of 0C for errors detected in the caller's parameters.
The list form of the OUTDEL macro generates a parameter list. When the caller
invokes the execute form of the OUTDEL macro, this parameter list is filled in with
the parameters coded on the execute form of the OUTDEL macro. The OUTDEL
service verifies this parameter list.

The table below documents the reason codes that can occur when the OUTDEL
macro returns with a return code of 0C (in GPR15). The symbol for return code 0C
is DOINVPRM in macro IEFDORC. The “symbol” field in the following table gives
the symbolic name for the different reason code values. These symbols can be
found in macro IEFDORC.

Table 28. Reason Codes for Return Code 0C

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

30B
(779)

Symbol: DORCIVNP

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

OUTDEL macro

168 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 28. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

30C
(780)

Symbol: DORCIVLN

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

311
(785)

Symbol: DORCMTUP

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

380
(896)

Symbol: DORCLNIV

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

381
(897)

Symbol: DORCNZF1

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

382
(898)

Symbol: DORCNZF2

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

383
(899)

Symbol: DORCNZR1

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 169



Table 28. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

384
(900)

Symbol: DORCNZR2

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

385
(901)

Symbol: DORCIVID

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

386
(902)

Symbol: DORCIVVR

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

387
(903)

Symbol: DORCNOFN

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

388
(904)

Symbol: DORCIVFN

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

389
(905)

Symbol: DORCIVTP

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

OUTDEL macro

170 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 28. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

38A
(906)

Symbol: DORCIVEQ

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

38B
(907)

Symbol: DORCIVNM

Meaning: Program error. Dynamic output processing received an invalid output
descriptor name.

Action: Check the output descriptor name supplied to the dynamic output
service. The first character must be an alphabetic (capitalized) character or a
national character (#, @, or $). The remaining characters must be alphabetic
(capitalized) characters, national characters (#, @, or $), or numbers. There can be
no intervening blanks. Correct the problem and retry the dynamic output
invocation.

38C
(908)

Symbol: DORCIVRZ

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

38D
(909)

Symbol: DORCIVDZ

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

38E
(910)

Symbol: DORCIVHB

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

390
(912)

Symbol: DORCP0C4

Meaning: Program error. An 0C4 ABEND occurred when the system referenced
the parameter list The parameter list is generated by the list form of the
OUTDEL macro.

Action: Check to see if the parameter list has the same storage key as the
program that uses the execute form of the macro to invoke dynamic output.
Also check to see if your program passed a bad pointer or address.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 171



Table 28. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal
(Decimal)

Meaning and Action

391
(913)

Symbol: DORCNZR0

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

392
(914)

Symbol: DORCONEU

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

393
(915)

Symbol: DORCREUS

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

394
(916)

Symbol: DORCREON

Meaning: Program error. There is an error in the use of the OUTDEL macro. The
execute form of the OUTDEL macro creates assembler instructions in your
program. The list form of the macro reserves storage for the input parameter list
that is used by the execute form of the macro. An error has been detected in the
assembler instructions or in the parameter list storage. Another task might have
altered the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

Reason codes for return code 10
OUTDEL returns a return code of 10 for system ABENDS that occurred during
dynamic output OUTDEL processing.

The table below documents the reason codes that can occur when the OUTDEL
macro returns with a return code of 10 (in GPR15). The symbol for return code 10
is DOSYSERR in macro IEFDORC. The “symbol” field in the following table gives
the symbolic name for the different reason code values. These symbols can be
found in macro IEFDORC.

OUTDEL macro

172 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 29. Reason Codes for Return Code 10

Reason Code
Hexadecimal
(Decimal)

Meaning and Actions

700
(1792)

Symbol: DORCABND

Meaning: System error. An ABEND occurred in the dynamic output control
routine.

Action: Record the return and reason code, and optionally make a copy of your
application. Give this information to your system programmer to supply to the
appropriate IBM support personnel.

701
(1793)

Symbol: DORCSJAB

Meaning: System error. An ABEND occurred during this dynamic output
request.

Action: Record the return and reason code, and optionally make a copy of your
application. Give this information to your system programmer to supply to the
appropriate IBM support personnel.

702
(1794)

Symbol: DORCXABD

Meaning: System error. An ABEND occurred in the dynamic output installation
exit.

Action: Notify your system programmer. The dynamic output installation exit
might have a logic error. If a change is made to the installation exit, it might be
possible to retry the dynamic output invocation.

Example
Use the execute form of the OUTDEL macro to modify and execute a parameter
list at symbolic location PLIST. The output descriptor is at symbolic location,
DESCR2.
OUTDEL NAME=DESCR2,MF=(E,PLIST)

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 173



OUTDEL macro

174 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 20. PCLINK — Stack, unstack, or extract program call
linkage information

Description

Note: IBM recommends the use of stacking PC routines instead of basic PC
routines; stacking PC routines use system-provided linkage rather than issuing
PCLINK to save and restore the caller's environment.

Routines that receive control as a result of a basic PC instruction use the PCLINK
macro to provide a standardized method of maintaining basic PC linkage
information. PCLINK has three forms:
v PCLINK STACK saves some of the environment when a routine gets control as a

result of a basic PC instruction.
v PCLINK UNSTACK restores that environment before the routine issues a PT

instruction to return control to the calling routine.
v PCLINK EXTRACT retrieves information from the environment that PCLINK

STACK saved.

See z/OS MVS Programming: Extended Addressability Guide for information about
basic and stacking PC routines, the instructions they can use, and the
environmental information that PCLINK saves and restores.

STACK option of PCLINK

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None

Programming requirements
None.

Restrictions
Your program must not change registers 13-4 between receiving control and the
time of issuing PCLINK.

© Copyright IBM Corp. 1988, 2015 175



Input register information
Before issuing the STACK option of the PCLINK macro, the caller does not have to
place any information into any register unless using it in register notation for a
particular parameter or using it as a base register.

Output register information
On completion of PCLINK STACK, the registers are as follows:

Register
Contents

0-1 Unchanged

2 Bits 0-23 contain bits 8-31 from register 2 at the time the PCLINK macro
was issued. Bits 24-31 contain the PCLINK caller's PSW key.

3-4 Unchanged

5 Used as a work register by the system

6-7 Unchanged

8-12 Unchanged if SAVE=YES, used as work registers by the system if
SAVE=NO

13 Zero, to ensure that the first save area created after the basic PC does not
point to a previous save area.

14 Stack token to uniquely identify the stack entry created. This token is
required for the UNSTACK and EXTRACT forms of PCLINK.

15 Unchanged

Performance implications
Processing is more efficient if SAVE=NO is specified.

Syntax
The STACK option of the PCLINK macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PCLINK.

PCLINK

� One or more blanks must follow PCLINK.

STACK

,INKEY=ZERO

,OUTKEY=CALLER Default: OUTKEY=CALLER

PCLINK macro

176 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,OUTKEY=ZERO

,OUTKEY=KEYn n: Any valid PSW key value from 0-F.

,SAVE=YES Default: SAVE=YES

,SAVE=NO

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

STACK
Saves some of the environment when a routine gets control as a result of a
basic PC instruction.

,INKEY=ZERO
Specifies that the PSW key is zero upon entry to PCLINK. If this parameter is
not specified, the PSW key is temporarily changed to zero.

,OUTKEY=CALLER
,OUTKEY=ZERO
,OUTKEY=KEYn

Specifies the setting of the PSW key after the PCLINK macro has completed.
Specifying CALLER causes the PSW key to be restored to the value it had on
entry. Specifying ZERO sets the PSW key to zero. Specifying a key value
indicates a specific value for the key. You may specify any key value from zero
to F.

,SAVE=YES
,SAVE=NO

Specifies whether (YES) or not (NO) to preserve registers 8 - 12. The save area
used is different from the area addressed by register 13. SAVE=YES is the
default.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding services performed elsewhere. The format and
contents of the information specified can be any valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return and reason codes
None.

PCLINK macro

Chapter 20. PCLINK — Stack, unstack, or extract program call linkage information 177



UNSTACK option of PCLINK

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the UNSTACK option of the PCLINK macro, the caller does not
have to place any information into any register unless using it in register notation
for a particular parameter or using it as a base register.

Performance implications
Processing is more efficient if UNSTACK,SAVE=NO,THRU is specified separately
for each stack element to be dequeued rather than one request for several
elements.

Syntax
The UNSTACK option of the PCLINK macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PCLINK.

PCLINK

� One or more blanks must follow PCLINK.

UNSTACK

,THRU=(reg) reg: Register (0) - (15).

PCLINK macro

178 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,TO=(reg)

,PURGE=YES

,INKEY=ZERO

,OUTKEY=STACK Default: OUTKEY=STACK

,OUTKEY=ZERO

,SAVE=YES Default: SAVE=YES

,SAVE=NO

,ERRET=addr addr: RX-type address or register (0) - (13) or (15).

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

UNSTACK
Restores the environment before the routine issues a PT instruction to return
control to the calling routine.

,THRU=(reg)
Specifies that the stack element identified by the token contained in the
specified register, as well as all more recently stacked elements, are to be
removed from the requestor's stack. The stack element specified by the token is
used to restore registers. If the system cannot process the request, the routine
specified by the ERRET parameter gets control; if the ERRET parameter is not
specified, the requestor is abnormally terminated.

When a PCLINK UNSTACK,THRU is completed, the PSW program mask is
restored from the stack element identified by the token and the registers are as
follows:

Register
Contents

0-1 Unchanged

2 Bits 24-27 contain the PSW key from the stack element identified by
the token

3 As saved by PCLINK STACK

4-7 Unchanged

8-12 Unchanged if SAVE=YES is specified, used as work registers by the
system if SAVE=NO is specified

13-14 As saved by PCLINK STACK

15 Unchanged

PCLINK macro

Chapter 20. PCLINK — Stack, unstack, or extract program call linkage information 179



,TO=(reg)
Specifies that all stack elements stacked more recently than the element
identified by the token contained in the specified register are to be removed
from the stack. The element identified by the token remains on the stack. If the
system cannot process the request, the routine specified by the ERRET
parameter gets control; if the ERRET parameter is not specified, the requestor
is abnormally terminated.

Use the TO parameter for stack cleanup in an FRR or ESTAE retry routine or
in an FRR that is going to retry.

When a PCLINK UNSTACK,TO is completed, the registers are as follows:

Register
Contents

0-1 Used as work registers by the system

2 Unchanged if INKEY=ZERO is specified and ERRET is not specified;
otherwise, PSW key of PCLINK caller

3-7 Unchanged

8-12 Unchanged if SAVE=YES is specified, used as work registers by the
system if SAVE=NO is specified

13 Unchanged

14-15 Used as work registers by the system

,PURGE=YES
Specifies that each stack element is to be freed until no more exist on the
requestor's stack. Any element that resides in a terminated address space as
well as elements stacked prior to it are not freed, but the stack pointer
indicates an empty stack and the PCLINK request returns normally to the
caller.

The ERRET parameter cannot be used with PURGE.

When the PCLINK UNSTACK,PURGE is completed, the registers are as
follows:

Register
Contents

0-1 Used as work registers by the system

2 Unchanged if INKEY=ZERO is specified; otherwise, PSW key of
PCLINK caller

3-7 Unchanged

8-12 Unchanged if SAVE=YES is specified, used as work registers by the
system if SAVE=NO is specified

13 Unchanged

14-15 Used as work registers by the system

,INKEY=ZERO
Specifies that the PSW key is zero on entry to PCLINK. If this parameter is not
specified, the key is temporarily changed to zero.

,OUTKEY=STACK
,OUTKEY=ZERO

Specifies the setting of the PSW key after the PCLINK request is completed.

PCLINK macro

180 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Specifying OUTKEY=ZERO returns to the caller in key zero. Specifying
OUTKEY=STACK restores the key to the value contained in the stack element
identified by token. OUTKEY=STACK is the default.

This parameter is valid only with PCLINK UNSTACK,THRU.

,SAVE=YES
,SAVE=NO

Specifies whether (YES) or not (NO) registers 8 - 12 are to be preserved. The
save area used for these registers is not the area pointed to by register 13.

,ERRET=addr
Specifies the address of an exit routine to be given control if PCLINK
UNSTACK encounters an error. ERRET is valid only with the TO and THRU
parameters.

The ERRET exit routine receives control in the addressing mode of the caller of
PCLINK. When an ERRET exit routine gets control, the cross memory state is
the same as when the PCLINK macro was issued. The registers are as follows:

Register
Contents

0-1 Used as work registers by the system

2 PSW key of PCLINK caller

3 Used as a work register by the system

4-7 Unchanged

8-12 Unchanged if SAVE=YES is specified, used as work registers by the
system if SAVE=NO is specified

13 Used as a work register by the system

14 The token passed as input

15

4 - stack was empty

8 - input token is invalid

12 - an address on the queue is invalid

16 - An ASID on the queue is invalid

20 - Unknown error

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding services performed elsewhere. The format and
contents of the information specified can be any valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return and reason codes
None.

PCLINK macro

Chapter 20. PCLINK — Stack, unstack, or extract program call linkage information 181



EXTRACT option of PCLINK
PCLINK EXTRACT modifies registers 0, 1, 14, and 15. If ALL=YES is specified,
registers 13-4 are also modified.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW key 0 or PKM key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in primary address space

Programming requirements
Your program must have addressability to the address space from which PCLINK
STACK was issued for the current stack element.

Restrictions
None.

Input register information
Before issuing the EXTRACT option of the PCLINK macro, the caller does not have
to place any information into any register unless using it in register notation for a
particular parameter or using it as a base register.

Performance implications
None.

Syntax
The EXTRACT option of the PCLINK macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PCLINK.

PCLINK

� One or more blanks must follow PCLINK.

EXTRACT

PCLINK macro

182 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,TOKEN=(reg) reg: Register (0) - (15).

,ALL=YES

,SVAREA=(reg)

,RETADR=(reg)

,PARM15=(reg)
,PARM0=(reg)
,PARM1=(reg)

,KEY=(reg)

,ASID=(reg)

,LP=(reg)

,ENTRY=(reg)

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

EXTRACT
Retrieves information from the saved environment.

,TOKEN=(reg)
Specifies a register that contains a 32-bit stack token identifying the most
recently stacked element.

,ALL=YES
Specifies that all information stored in the stack element identified by the
token is to be extracted. The stored information is placed into the same
registers (registers 13, 15, and 0-4) it was in when PCLINK STACK was issued.
Registers 5 and 14 are not restored.

,SVAREA=(reg)
Specifies a register into which the address of the program call issuer's save
area is to be placed.

,RETADR=(reg)
Specifies a register into which the AMODE (in which control is to be returned),
the return address, and PSW problem state bit are to be placed. These occupy
bits 0,1-30, and 31, respectively.

,PARM15=(reg)
,PARM1=(reg)

PCLINK macro

Chapter 20. PCLINK — Stack, unstack, or extract program call linkage information 183



,PARM0=(reg)
Specifies a register into which the contents of register 15 (PARM15), register 1
(PARM1), or register 0 (PARM0) at the time PCLINK STACK was issued are to
be placed.

,KEY=(reg)
Specifies a register into which the basic PC issuer's PSW key is to be placed.
The key occupies bit positions 24-27.

,ASID=(reg)
Specifies a register into which the basic PC issuer's PSW key mask (bits 0-15)
and ASID (bits 16-32) are to be placed.

,LP=(reg)
Specifies a register into which the latent parameter list address is to be placed.

,ENTRY=(reg)
Specifies a register into which the contents of register 5 as established by the
PCLINK STACK macro are to be placed. Bit 0 of the register used by the
ENTRY parameter specifies the addressing mode of the program call routine
that issued the PCLINK macro.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding services performed elsewhere. The format and
contents of the information specified can be any valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return and reason codes
None.

PCLINK macro

184 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 21. PGANY — Page anywhere

Description

Note: IBM recommends that you use the PGSER macro rather than PGANY.

Some fixed pages are assigned within the first 16 megabytes of storage. The system
assumes that once a page has been fixed, it is likely to be fixed again. The next
time that page is loaded, the system tries to put it in the first 16 megabytes in
anticipation of a fix. Use the PGANY macro to indicate to the system that no
further page fixes are planned for a particular page and that the next time the page
is loaded, the system can put it anywhere.

Input register information
Entry is by means of an SVC. The caller can be in either problem or supervisor
state and must not hold any locks.

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Syntax
The PGANY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PGANY.

PGANY

� One or more blanks must follow PGANY.

© Copyright IBM Corp. 1988, 2015 185



Syntax Description

L,LA=list addr list addr: RX-type address or register (1) or (2) - (12).

R,A=start addr start addr: RX-type address or register (1), (2) - (12).

,EA=end addr end addr: RX-type address or register (15), (2) - (12).

Note: Cannot be specified unless R is specified.

Default: EA=start addr + 1.

Parameters
The parameters are explained as follows:

L Specifies that the virtual subarea list (VSL) is being supplied with this request.
(See “Input to Page Services” in z/OS MVS Programming: Authorized Assembler
Services Guide for a description of the virtual subarea list.)

,LA=list addr
Specifies the address of the virtual subarea list.

R Specifies that the necessary parameters will be passed in registers. A virtual
subarea list is not being supplied.

,A=start addr
Specifies the address of the start of the virtual area.

,EA=end addr
Specifies the end + 1 byte of the virtual area. If this parameter is not
coded, the default is the start address + 1.

Note: start addr and end addr must be located in 24-bit addressable storage.

Return and reason codes
When PGANY macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 30. Return Codes for the PGANY Macro

Return Code Meaning

00 Meaning: Operation completed normally.

04 Meaning: Parameter error, X‘171’ abend, operation terminated because of invalid
address in VSL entry.

10 Meaning: Parameter error, X‘171’ abend, operation terminated abnormally
because the VSL list was invalid.

14 Meaning: Environmental error, X‘028’ abend.

For return codes 04 and 10, registers are loaded before the abend as follows:

R0 Used as a work register by the macro

R1 Abend code

PGANY macro

186 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



R2-R10
Used as a work register by the macro

R11 Address of input VSL list or 0 for R-form

R12 0 (ECB address =0)

R13-R14
Current VSL entry being processed

R15 Return code

PGANY macro

Chapter 21. PGANY — Page anywhere 187



PGANY macro

188 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 22. PGFIX — Fix virtual storage contents

Description

Note: IBM recommends that you use the PGSER macro rather than PGFIX.

The PGFIX macro makes virtual storage areas, below 16 megabytes, resident in
central (also called real) storage and ineligible for page-out while the requesting
task's address space is swapped into central storage. PGFIX ignores requests to fix
storage in a system area that has the fixed attribute (for example, the LSQA and
SQA). A FIX request for a page in the LSQA or SQA will not cause the page to be
backed by central storage below 16 megabytes. A subsequent PGFREE is effective
only if issued by the same task. The PGFIX function is available only to authorized
users.

PGFIX does not prevent pages from being paged out when an entire address space
is swapped out of central storage. Consequently, when using the PGFIX macro,
you cannot assume a constant real address mapping for fixed pages that are
susceptible to swapping.

Syntax
The standard form of the PGFIX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PGFIX.

PGFIX

� One or more blanks must follow PGFIX.

R

L

,LA=list addr list addr: A-type address, or register (1) or (2) - (12).

,A=start addr start addr: A-type address, or register (1) or (2) - (12).

,ECB=ecb addr ecb addr: A-type address, or register (0) or (2) - (12).

,EA=end addr end addr: A-type address, or register (2) - (12) or (15).

Default: start addr + 1

© Copyright IBM Corp. 1988, 2015 189



Syntax Description

,LONG=Y Default: LONG=Y

,LONG=N

,RELEASE=N Default: RELEASE=N

,RELEASE=Y Note: RELEASE=Y may only be specified with EA above.

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

R Specifies that no parameter list is being supplied with this request.

L Specifies that a parameter list is being supplied with this request.

,LA=list addr
Specifies the address of the first entry of a virtual subarea list (VSL). See
“Input to Page Services” in z/OS MVS Programming: Authorized Assembler
Services Guide for a description of the VSL.

,A=start addr
Specifies the start address of the virtual area to be fixed.

Note: start addr must be located in 24-bit addressable storage.

,ECB=ecb addr
Specifies the address of the ECB that is used to signal event completion. If the
ECB address specified is zero, (ECB=0 or ECB=(register) where the contents of
the register specified is 0), the fix request is completely satisfied before control
is returned.

Note: If the user intends to wait on the ECB as part of an ECB list, he must
ensure that the list and associated ECBs are fixed in central storage before
issuing the WAIT. The PGFIX service routine ensures that the specified ECB is
fixed.

,EA=end addr
Specifies the end address + 1 of the virtual area to be fixed.

Note: end addr must be located in 24-bit addressable storage.

,LONG=Y
,LONG=N

Specifies that the relative real time duration anticipated for the fix is long (Y)
or short (N).

,RELEASE=N
,RELEASE=Y

Specifies that the contents of the virtual area is to remain intact (N) or be
released (Y) before the fix is done.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or

PGFIX macro

190 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

Return and reason codes
When PGFIX macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 31. Return Codes for the PGFIX Macro

Return Code Meaning

00 Meaning: Operation completed normally; ECB posted complete.

04 Meaning: Operation abnormally terminated with a X‘171’ abend. Operation
incomplete because of invalid address virtual subarea list entry; ECB posted
complete. See z/OS MVS System Codes for a complete description of the register
contents after a X‘171’ abend.

08 Meaning: Operation proceeding; ECB will be posted when all requested pages
are fixed in central storage.

10 Meaning: Operation abnormally terminated with a X‘171’ abend. Virtual subarea
list entry or ECB address invalid; no ECB is posted. See z/OS MVS System Codes
for a complete description of the register contents after a X‘171’ abend.

The ECB is unchanged if the request was initiated but not complete (return code
8), or if an ABEND was issued with return code 10. Otherwise, the ECB is posted
complete with code:

0 - operation completed successfully.

4 - operation incomplete because of invalid address in VSL entry.

If the return code issued is 8, the ECB is posted asynchronously when paging I/O
has completed, with code:

0 - operation completed successfully.

4 - operation incomplete because of paging error; requesting TCB will be
abnormally terminated.

The ECB code is posted in the low-order 3 bytes of the ECB, and is right-justified.

Example 1
Fix a single byte of virtual storage addressed by register 3. Note that the full
4096-byte page containing the specified byte is actually fixed. The storage is long
fixed.
PGFIX R,A=(R3),ECB=(R5)

Example 2
Fix virtual storage without using a virtual subarea list. Storage is long fixed.
PGFIX R,A=(R3),EA=(R4),ECB=ECB1

Example 3
Fix, but not long-fix, virtual storage, and ensure that the pages fully included in
the address range are forfeited before fixing the area specified by registers 3 and 4.
PGFIX R,A=(R3),EA=(R4),ECB=(R5),LONG=N,RELEASE=Y

PGFIX macro

Chapter 22. PGFIX — Fix virtual storage contents 191



PGFIX macro

192 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 23. PGFIXA — Fix virtual storage contents

Description

Note: IBM recommends that you use the PGSER macro rather than PGFIXA.

The PGFIXA macro makes virtual storage areas, below 16 megabytes, resident in
central (also called real) storage and ineligible for page-out while the requesting
task's address space is swapped into central storage. The PGFIXA function is
available only to key zero and supervisor state users. The PGFIXA macro executes
short-term, synchronous page fixes. The preferred area(s) of storage are intended
for long term page fixes. A long term page fix in the V=R or nonpreferred areas
may delay V=R functions or CONFIG STORAGE commands. All fix processing is
assumed to be short-term and is complete when control is returned to the issuer of
the macro.

PGFIXA does not prevent pages from being paged out when an entire address
space is swapped out of central storage. Consequently, when using the PGFIXA
macro, you cannot assume a constant real address mapping for fixed pages that are
susceptible to swapping.

Output
If the PGFIXA is successful, control is returned enabled to the user, all pages are
fixed, and register 15 contains a return code of zero.

If the PGFIXA is unsuccessful, the user will be abended with a system completion
code of X‘171’ or a system complete code of X‘028’. For X‘171’ abends, all pages
processed up to, but not including the page causing the error, will be fixed.
Register 10 will contain the address of the pages in error when the abend is issued.
No pages will be fixed in the event of a X‘028’ abend.

Restrictions
Use of the PGFIXA macro is subject to the following restrictions:
v Can be used only for short term synchronous fixes.
v The user must be in supervisor state with a protection key of zero.
v The user must not hold any spin locks.
v The program mask byte in the PSW is zero and interrupts are enabled upon

return from the PGFIXA.
v The user is responsible for freeing any pages fixed via the PGFIXA. A

corresponding PGFREEA macro should be issued. In addition, an FRR should be
established during the period where fixes are outstanding. The FRR should free
the frames in case there is an unexpected error.

v DSECTs for the IHAPSA, CVT, and IHAPVT must be provided.
v The user must ensure that the end address is greater than or equal to the start

address.
v The SAVE keyword can only be used with TYPE=R.

© Copyright IBM Corp. 1988, 2015 193



Syntax
The standard form of the PGFIXA macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PGFIXA.

PGFIXA

� One or more blanks must follow PGFIXA.

,TYPE=L

,TYPE=R Default: TYPE=R

,SAVE=YES Default: SAVE=YES

,SAVE=NO

Parameters
The parameters are explained as follows:

TYPE=L
TYPE=R

Specifies the type of input. When L is specified, register 1 is to contain the
address of a virtual subarea list (VSL) fixed in storage. (See the topic “Input to
Page Services” in z/OS MVS Programming: Authorized Assembler Services Guide
for a description of the VSL.) By specifying TYPE=L, registers 1 through 13 are
saved. If TYPE=R is specified, then register 1 contains the address of the first
byte to be fixed in a contiguous range and register 2 contains the address of
the last byte to be fixed (actual end address). When TYPE=R is specified, the
registers saved depend upon what is specified on the SAVE parameter.

Note: All other users of the PGFIX, PGFIXA (TYPE=L), and PGFREEA macros
must specify the actual end address plus one.

,SAVE=YES
,SAVE=NO

Specifies the registers to be saved for TYPE=R. Registers 1 through 13 are
saved if SAVE=YES is specified or if the default is taken. Registers 2 through
10 are saved if SAVE=NO is specified.

Example 1
Use PGFIXA to fix virtual storage without using a virtual subarea list. Registers 2
through 10 will be saved.
FIX1 PGFIXA TYPE=R,SAVE=NO

PGFIXA macro

194 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Example 2
Use PGFIXA to fix virtual storage using a virtual subarea list. Registers 1 through
13 will be saved.
FIX2 PGFIXA TYPE=L

PGFIXA macro

Chapter 23. PGFIXA — Fix virtual storage contents 195



PGFIXA macro

196 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 24. PGFREE — Free virtual storage contents

Description

Note: IBM recommends that you use the PGSER macro rather than PGFREE.

The PGFREE macro makes virtual storage pages, below 16 megabytes, that were
fixed via the PGFIX macro eligible for page-out. The PGFREE function is available
only to authorized users. PGFREE must be issued by the same task that issued the
PGFIX, otherwise PGFREE has no effect.

Note: A fixed page is not considered pageable until the number of PGFREEs
issued for the page is equal to the number of PGFIXes previously issued for that
page. That is, a page is not automatically made pageable as the result of issuing a
PGFREE macro.

Syntax
The standard form of the PGFREE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PGFREE.

PGFREE

� One or more blanks must follow PGFREE.

L

,LA=list addr list addr: A-type address, or register (1) or (2) - (12).

R

,A=start addr start addr: A-type address, or register (1) or (2) - (12).

,ECB=ecb addr ecb addr: A-type address, or register (0) or (2) - (12).

,EA=end addr end addr: A-type address, or register (2) - (12) or (15).

Default: start addr + 1

,ANYWHER=N Default: ANYWHER=N

,ANYWHER=Y

© Copyright IBM Corp. 1988, 2015 197



Syntax Description

,RELEASE=N Default: RELEASE=N

,RELEASE=Y Note: RELEASE=Y may only be specified with EA above.

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

L Specifies that a parameter list is being supplied with this request.

,LA=list addr
Specifies the address of the first entry of a virtual subarea list (VSL). See
“Input to Page Services” in z/OS MVS Programming: Authorized Assembler
Services Guide for a description of the VSL.

R Specifies that no parameter list is being supplied with this request.

,A=start addr
Specifies the start address of the virtual area to be freed.

Note: start addr must be located in 24-bit addressable storage.

,ECB=ecb addr
Specifies the address of the ECB that was used in a prior PGFIX request. This
parameter is used if there is any possibility that the ECB for the previously
issued PGFIX was not posted complete.

,EA=end addr
Specifies the end address + 1 of the virtual area to be freed.

Note: end addr must be located in 24-bit addressable storage.

,ANYWHER=N
,ANYWHER=Y

On subsequent page-ins, assign real frames below 16 megabytes in anticipation
of a page fix (N) or on subsequent page-ins, assign real frames anywhere (Y).
The ANYWHER option takes effect only when the page fix count goes to zero.
The default is ANYWHER=N.

,RELEASE=N
,RELEASE=Y

Specifies that the contents of the virtual area is to remain intact (N) or be
released (Y).

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

Return and reason codes
When PGFREE macro returns control to your program, GPR 15 contains one of the
following hexadecimal return codes.

PGFREE macro

198 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 32. Return Codes for the PGFREE Macro

Return Code Meaning

00 Meaning: Operation completed normally.

04 Meaning: Operation abnormally terminated. Operation incomplete because of
invalid address in virtual subarea list entry.

10 Meaning: Operation abnormally terminated. Virtual subarea list entry or ECB
address invalid.

Example 1
Free the storage in Example 1 of standard-form PGFIX.
PGFREE R,A=(R3)

Example 2
Free the storage in Example 2 of standard-form PGFIX.
PGFREE R,A=(R3),EA=(R4)

Example 3
Free the storage in Example 3 of standard-form PGFIX, and forfeit the pages fully
included in the address range.
PGFREE R,A=(R3),EA=(R4),ECB=(R5),RELEASE=Y

PGFREE macro

Chapter 24. PGFREE — Free virtual storage contents 199



PGFREE macro

200 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 25. PGFREEA — Free virtual storage contents

Description

Note: IBM recommends that you use the PGSER macro rather than PGFREEA.

The PGFREEA macro makes virtual storage areas, below 16 megabytes, that were
fixed by the PGFIXA macro eligible for page-out.

Syntax
The standard form of the PGFREEA macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PGFREEA.

PGFREEA

� One or more blanks must follow PGFREEA.

No additional parameters are specified.

Restrictions
Use of the PGFREEA macro is subject to the following restrictions:
v The issuer of the PGFREEA must provide a fixed virtual subarea list (VSL) or

chain of them, pointed to by register 1. For a description of the VSL, see z/OS
MVS Programming: Authorized Assembler Services Guide.

v The user must be in supervisor state, protection key 0.
v The user must provide DSECTs for IHAPSA, CVT, and IHAPVT.

Output
If the PGFREEA is successful, all pages will be freed and register 15 will contain a
return code of zero. If unsuccessful, all pages up to, but not including the one that
caused the abend will be freed. The user will be abended with a system
completion code of X‘171’.

© Copyright IBM Corp. 1988, 2015 201



202 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 26. PGSER — Page services

Description
The PGSER macro and its fast path version (see Chapter 27, “PGSER — Fast path
page services,” on page 213) perform the same paging services that the PGANY,
PGFIX, PGFIXA, PGFREE, PGFREEA, PGLOAD, PGOUT, and PGRLSE macros
perform for addresses below 16 megabytes. The PGSER macro performs these
services for addresses either above or below 16 megabytes.

The syntax of the fast path version of PGSER is presented separately following the
standard description.

Note: IBM recommends the use of PGSER for paging services.

The services are:
v Page fix equivalent to the PGFIX macro
v Fast path to fix virtual storage
v Page free equivalent to the PGFREE macro
v Fast path to free virtual storage
v Page load equivalent to the PGLOAD macro
v Page out equivalent to the PGOUT macro
v Page release equivalent to the PGRLSE macro
v Page anywhere equivalent to the PGANY macro
v The PGSER macro with the PROTECT parameter makes a range of virtual

storage pages read-only
v The PGSER macro with the UNPROTECT parameter makes a range of virtual

storage pages modifiable

Environment
The requirements for the caller invoking PGSER with BRANCH=N are:

Environmental factor Requirement
Minimum authorization: v Problem state, and any key except as noted under

“Restrictions” on page 204.

v To use the PROTECT and UNPROTECT options, the
caller must have either PSW key 0 or a PSW key that
matches the key of the storage.

v The parameters FIX and FREE are restricted to
APF-authorized, key 0, or supervisor state callers. (See
“Branch Entry to the PGSER Routine” in z/OS MVS
Programming: Authorized Assembler Services Guide for more
information about branch entry.)

v The RELEASE option of the macro is restricted to
supervisor state with key 0 callers if pages in the common
area are being released.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31- or 64-bit
ASC mode: Primary

© Copyright IBM Corp. 1988, 2015 203



Environmental factor Requirement
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

The requirements for the caller invoking PGSER with BRANCH=Y are:

Environmental factor Requirement
Minimum authorization: Supervisor state and key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No spin locks held
Control parameters: Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL)

Programming requirements
v The caller must include the IHAPVT mapping macro.
v Except for the TCB, all input parameters to this macro can reside in storage

above 16 megabytes if the caller is executing in 31-bit addressing mode.
v Regardless of the addressing mode, all addresses passed in registers are used as

31-bit addresses.
v All RX-type addresses are assumed to be in the addressing mode of the caller.

Restrictions
IBM recommends that page fixes of more than 100 pages be divided into several
smaller fix requests. Large page fix requests can cause an excessive spin loop to
occur.

Input register information
Before issuing PGSER with BRANCH=Y, the caller must ensure that GPR 13 points
to a standard 18-word save area. Before issuing PGSER with BRANCH=N, the
caller does not have to place any information into any register unless using it in
register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-4 Used as work registers by the system

5–13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

PGSER macro

204 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Register
Contents

0-4 Used as work registers by the system

5-13 Unchanged

14 Used as work registers by the system

15 Return Code

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the PGSER macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PGSER.

PGSER

� One or more blanks must follow PGSER.

R

L

,FIX

,FREE

,LOAD

,OUT

,PROTECT

,UNPROTECT

,RELEASE

,ANYWHER

,LA=list addr list addr: RX-type address or register (1), (5) - (12) for branch entry; or
register (1), (2) - (12) for SVC entry.

Note: This parameter is valid only with L.

PGSER macro

Chapter 26. PGSER — Page services 205



Syntax Description

,A=start addr start addr: RX-type address or register (1), (5) - (12) for branch entry; or
register (1), (2) - (12) for SVC entry.

Note: This parameter is valid only with R.

,EA=end addr Default: EA=start addr

end addr: RX-type address or register (2), (5) - (12) for branch entry; or
register (15), (2) - (12) for SVC entry.

Note: This parameter is valid only with R.

,TCB=tcb addr Default: TCB=0

tcb addr: RX-type address or register (4), (5) - (12).

Note: This parameter can be specified only if FIX, FREE, LOAD, or OUT
and BRANCH=Y are specified.

,ECB=ecb addr Default: If FREE or LOAD is specified, ECB=0.

ecb addr: RX-type address or register (0), (5) - (12) for branch entry; or
register (0), (2) - (12) for SVC entry.

Note: This parameter is required if FIX is specified; is optional if FREE or
LOAD is specified; and is not valid for OUT, RELEASE, or ANYWHER. For
synchronous page fix the ECB address must be 0.

,RELEASE=Y Default: RELEASE=N

,RELEASE=N Note: This parameter may be specified only if FIX, FREE, or LOAD is
specified.

,LONG=Y Default: LONG=Y

,LONG=N Note: This parameter may be specified only if FIX is specified.

,BACKOUT=Y Default: BACKOUT=Y

,BACKOUT=N Note: This parameter may be specified only if FIX is specified.

,KEEPREL=Y Default: KEEPREL=N

,KEEPREL=N Note: This parameter may be specified only if OUT is specified.

,ANYWHER=Y Default: ANYWHER=N

,ANYWHER=N Note: This parameter may be specified only if FREE is specified.

,BRANCH=Y Default: BRANCH=N

,BRANCH=N

,RELATED=value value: Any valid macro keyword specification.

PGSER macro

206 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Parameters
The parameters are explained as follows:

R
L Specifies the manner in which the input is supplied. If R is specified, the user

supplies the starting and ending addresses of the virtual area for which the
service needs to be performed. If L is specified, the user supplies the address
of the page services list, which specifies the virtual area for which the service
is to be performed. See “Input to Page Services” in z/OS MVS Programming:
Authorized Assembler Services Guide for a description of the PSL.

,FIX
,FREE
,LOAD
,OUT
,PROTECT
,UNPROTECT
,RELEASE
,ANYWHER

Indicates the function to be performed.

FIX specifies that the virtual storage areas are to reside in central (also called
real) storage and are ineligible for page-out while the address space is
swapped in. This parameter does not prevent pages from being paged out
when the entire address space is swapped out of central storage. FIX will
ignore a request to fix storage in a system area that has the fixed attribute (for
example, the LSQA and SQA). A FIX request for a page in the LSQA or SQA
will not cause the page to be backed by central storage below 16 megabytes.
Requests for disabled reference (DREF) storage are not valid for the FIX
parameter.

FREE specifies that the virtual storage areas that were previously fixed via the
FIX option are eligible for page-out. A fixed page is not considered pageable
until the number of FREE and FIX requests for the page are equal. Requests for
disabled reference (DREF) storage are not valid for the FREE parameter.

LOAD specifies that a page-in operation is to be initiated for the virtual
storage area specified, in anticipation of future needs. Requests for disabled
reference (DREF) storage are not valid for the LOAD parameter.

OUT specifies that a page-out operation is to be initiated for the virtual storage
area specified. Requests for disabled reference (DREF) storage are not valid for
the OUT parameter.

PROTECT specifies that a range of virtual storage be made read-only. R, L, LA,
A, BRANCH, EA, and RELATED are valid keywords with the PROTECT
option.

UNPROTECT specifies that a range of virtual storage be made modifiable. R,
L, LA, A, BRANCH, EA, and RELATED are valid keywords with the
UNPROTECT option. The caller must have either key 0 or a PSW key that
matches the key of the storage.

RELEASE specifies the release of all physical paging resources, including both
processor storage and auxiliary storage. Functionally, RELEASE is equivalent to
a FREEMAIN macro followed by a GETMAIN macro. That is, the virtual space
is maintained, but the data is discarded. When a released page is next referred
to, its contents are binary zeros. RELEASE is the only PGSER function that is
valid for disabled reference (DREF) storage.

PGSER macro

Chapter 26. PGSER — Page services 207



Note: PGRLSE, PGSER RELEASE, PGSER FREE with RELEASE=Y, and
PGFREE RELEASE=Y may ignore some or all of the pages in the input range
and will not notify the caller if this was done.

Any pages in the input range that match any of the following conditions will
be skipped, and processing continues with the next page in the range:
v Storage is not allocated or all pages in a segment have not yet been

referenced.
v Page is in PSA, SQA or LSQA.
v Page is V=R. Effectively, it's fixed.
v Page is in BLDL, (E)PLPA, or (E)MLPA.
v Page has a page fix in progress or a nonzero FIX count.
v Pages with COMMIT in progress or with DISASSOCIATE in progress.

Use PGSER RELEASE instead of the MVCL instruction for these reasons:
v PGSER RELEASE is faster than MVCL for very large areas.
v Pages that are released through PGSER RELEASE do not occupy space in

central, expanded, or auxiliary storage.

ANYWHER applies to virtual storage areas that did not specify
LOC=(BELOW,ANY) or LOC=(ANY,ANY) or LOC=ANY on a GETMAIN
request, that have been previously fixed, and probably will not need to be
fixed again. ANYWHER specifies that the virtual storage area specified can be
placed either above or below 16 megabytes central on future page-ins.

,LA=list addr
Specifies the address of the page services list (PSL) for L requests.

,A=start addr
Specifies the address of the start of the virtual area for R requests.

,EA=end addr
Specifies the last byte of the virtual area to be fixed for R requests.

,TCB=tcb addr
Specifies either zero or the address of the TCB to be assigned ownership of
fixes for a FIX request or fixes for a FREE request. If zero is specified, no TCB
is assigned ownership of the request. Cross memory callers must specify zero.

For OUT and LOAD requests, the PGSER routine associates the request with a
particular TCB so that the request can be purged if the task terminates before
the request is complete. For SVC entry (BRANCH=N), the PGSER routine uses
the current TCB.

Note: The TCB resides in storage below 16 megabytes.

,ECB=ecb addr
Specifies the address of the ECB that is used to signal event completion for an
asynchronous FIX or LOAD request. If the caller is in cross memory mode or if
the caller requests a synchronous page fix (a FIX for which the caller is
suspended until the entire FIX request is complete), the ECB must be zero
(ECB=0 or ECB=(r), where (r) represents a register that contains zero).

For a FREE request, ECB specifies the address of the ECB that was used in a
previous FIX request. If this parameter is specified, any pages in the previous
FIX request that are not yet fixed, will not be fixed. If L is specified, the PSL
chain must contain the addresses of the virtual pages in the same order in both
the FREE and the previous FIX request. Also, the ECB for the FIX request will
not be posted if it was not yet posted at the time of the FREE request.

PGSER macro

208 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



If the ECB parameter is not specified on a FREE request, only the fix counts for
the valid pages in storage at the time of the FREE request are decreased. This
will not affect the paging activity and the posting of the ECB associated with
the original FIX request.

If an ECB is supplied on a FIX or LOAD request, the caller must check the
return code because the ECB will not be posted if the return code is zero. If an
ECB is not supplied, it is not necessary to check the return code because
control returns to the caller only if the request was successfully completed; if
unsuccessful, page services abnormally terminates the caller.

For all callers that supply an ECB, page services verifies that the ECB address
is in an area allocated through the GETMAIN macro and if the caller is not in
key 0, page services also verifies that the ECB is in the caller's protect key. You
must ensure that the page containing the ECB is not freed and that the key is
not altered; otherwise, page services does not post the ECB.

,RELEASE=Y
,RELEASE=N

Specifies that all the central and auxiliary storage associated with the virtual
storage areas is to be released to the system (Y) or that all the central and
auxiliary storage associated with the virtual storage areas is not to be released
to the system (N).

Note: PGRLSE, PGSER RELEASE, PGSER FREE with RELEASE=Y, and
PGFREE RELEASE=Y may ignore some or all of the pages in the input range
and will not notify the caller if this was done.

Any pages in the input range that match any of the following conditions will
be skipped, and processing continues with the next page in the range:
v Storage is not allocated or all pages in a segment have not yet been

referenced.
v Page is in PSA, SQA or LSQA.
v Page is V=R. Effectively, it's fixed.
v Page is in BLDL, (E)PLPA, or (E)MLPA.
v Page has a page fix in progress or a nonzero FIX count.
v Pages with COMMIT in progress or with DISASSOCIATE in progress.

,KEEPREL=Y
,KEEPREL=N

Specifies that the virtual pages should be validated again after the page-out
completes (Y); or that the virtual pages will be marked not valid and the real
frames freed for reuse (N).

,LONG=Y
,LONG=N

Specifies that the relative real time anticipated for the FIX is long (Y); or that
the relative real time anticipated for the FIX is short (N). (In general, the
duration of a fix is long if it can be measured in seconds.)

,BACKOUT=Y
,BACKOUT=N

Specifies the procedure to follow when a nonallocated page is encountered
during the processing of a FIX request. If BACKOUT=Y, all pages fixed as part
of the request are freed before returning to the caller. If BACKOUT=N, the
pages previously fixed as part of the request are not freed and no further
processing is done before returning to the caller.

,ANYWHER=N

PGSER macro

Chapter 26. PGSER — Page services 209



,ANYWHER=Y
Specifies that on subsequent page-ins, page services is to assign real frames
below 16 megabytes in anticipation of a page-fix (N); or on subsequent
page-ins, page services is to assign real frames anywhere (Y). The ANYWHER
option takes effect only when the page-fix count goes to zero.

,BRANCH=Y
,BRANCH=N

Specifies whether this is a branch entry.

If BRANCH=Y is specified, it is a branch entry and users of this option must
provide the address of an 18-word save area in GPR 13. Cross memory callers
and callers in AR mode must use BRANCH=Y.

If BRANCH=N is specified, it is an SVC entry.

,RELATED=value
Provides information to document the macro by relating the service performed
to some corresponding function or service. The format can be any valid coding
value that the user chooses.

ABEND codes
PGSER might abnormally terminate with one of the following abend codes: X'18A',
X'28A'. See z/OS MVS System Codes for explanations and programmer responses.

Return and reason codes
When the PGSER macro returns control to your program, GPR 15 contains one of
the following hexadecimal return codes.

Option Code Meaning and Action

FIX 0 Meaning: The operation completed normally and
the ECB will not be posted.

Action: None. If the ECB parameter was specified,
do not wait on the ECB after receiving this return
code because it will not be posted.

FIX 8 Meaning: The operation is proceeding. The ECB (if
available) will be posted with X‘00’ when the
requested pages are fixed.

Action: None. However, if the ECB parameter was
specified, issuing the WAIT macro for this ECB will
allow your program to synchronize with the
completion of the page fix operation.

FREE 0 Meaning: The operation completed normally.

Action: None.

LOAD 0 Meaning: The operation completed normally and
the ECB will not be posted. If no ECB is supplied,
the operation is completed or proceeding.

Action: None. If the ECB parameter was specified,
do not issue the WAIT macro for the ECB after
receiving this return code because it will not be
posted.

PGSER macro

210 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Option Code Meaning and Action

LOAD 8 Meaning: The operation is proceeding. The ECB will
be posted with X‘00’ when all page-ins are complete.

Action: None. However, if the ECB parameter was
specified, issuing the WAIT macro for this ECB will
allow your program to synchronize with the
completion of the page load operation.

OUT 0 Meaning: The operation completed normally.

Action: None.

OUT C Meaning: The operation completed normally. At
least one page in the requested range was not paged
out.

Action: None.

RELEASE 0 Meaning: The operation completed normally.

Note: PGRLSE, PGSER RELEASE, PGSER FREE with
RELEASE=Y, and PGFREE RELEASE=Y may ignore
some or all of the pages in the input range and will
not notify the caller if this was done.

Any pages in the input range that match any of the
following conditions will be skipped, and processing
continues with the next page in the range:

v Storage is not allocated or all pages in a segment
have not yet been referenced.

v Page is in PSA, SQA or LSQA.

v Page is V=R. Effectively, it's fixed.

v Page is in BLDL, (E)PLPA, or (E)MLPA.

v Page has a page fix in progress or a nonzero FIX
count.

v Pages with COMMIT in progress or with
DISASSOCIATE in progress.

Action: None.

ANYWHER 0 Meaning: The operation completed normally.

Action: None.

Example 1
Synchronously fix the page that starts at the address given in register 1 and ends
at the address given in LOADWORD. Use branch entry. No particular TCB is
associated with this request. Include the IHAPVT mapping macro.
PGSER R,FIX,A=(1),ECB=0,EA=LOADWORD,TCB=0,BRANCH=Y
IHAPVT

Example 2
Free the page specified in the PSL pointed to by register 2. The ECB address is
given in register 8. Use branch entry. Release all central and auxiliary storage
associated with this virtual area. Do not attempt to back the area below 16
megabytes on future page-ins. Include the IHAPVT mapping macro.
PGSER L,FREE,LA=(2),ECB=(8),RELEASE=Y,ANYWHER=Y,BRANCH=Y
IHAPVT

PGSER macro

Chapter 26. PGSER — Page services 211



Example 3
Load the page specified in the PSL pointed to by register 1. Supply an ECB of zero.
Include the IHAPVT mapping macro.
PGSER L,LOAD,LA=(1),ECB=0
IHAPVT

Example 4
Perform a page-out for the virtual area starting at the address given in register 1
and ending at the address given in register 5. The address of the TCB is given in
register 8. Use branch entry. Include the IHAPVT mapping macro.
PGSER R,OUT,A=(1),EA=(5),TCB=(8),BRANCH=Y
IHAPVT

Example 5
Perform a page-out for the virtual area specified in the PSL located at
LOADWORD. Use branch entry. Include the IHAPVT mapping macro.
PGSER L,OUT,LA=LOADWORD
IHAPVT

Example 6
Protect the storage area that starts at the address in GPR 4 and ends at the address
in the variable ENDIT. Include the IHAPVT mapping macro.
PGSER R,PROTECT,A=(4),EA=ENDIT
IHAPVT

PGSER macro

212 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 27. PGSER — Fast path page services

Description
The fast path PGSER macro performs FIX and FREE requests for users on
performance paths.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No spin locks can be held.
Control parameters: Must be in the primary address space

Programming requirements
The caller must include the IHAPVT mapping macro.

Restrictions
The following restrictions apply to the fast path services:
v Short term fixes only.
v No ECB can be specified.
v No TCB can be specified.
v No VIO window page scan be specified.
v When the list form of the macro is being used, all user-defined short page

service lists (SSLs) must be valid in nonpageable storage.
v

Note: IBM recommends that page fixes of more than 100 pages be divided into
several smaller fix requests.
Large page fix requests can cause an excessive spin loop to occur.

The fast path PGSER macro does not verify any of the restricted conditions. The
caller is responsible for verifying the restricted conditions and providing recovery
to purge FIX requests when the task terminates before a page service request is
complete.

Input register information
Before issuing the PGSER macro, the caller must ensure that GPR 13 points to a
standard 18-word save area in nonpageable storage.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2015 213



Register
Contents

0-4 Used as work registers by the system

5-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The fast path PGSER macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PGSER.

PGSER

� One or more blanks must follow PGSER.

R

L

,FIX

,FREE

,LA=list addr list addr: RX-type address or register (1), (5) - (12).

Note: This parameter is valid only if L is specified.

,A=start addr start addr: RX-type address or register (1), (5) - (12).

Note: This parameter is valid only if R is specified.

PGSER macro

214 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,EA=ending addr ending addr: RX-type address or register (2), (5) - (12).

Note: This parameter is valid only if R is specified.

,BACKOUT=Y Default: BACKOUT=Y

,BACKOUT=N Note: This parameter is valid only for FIX requests.

,ASCB=ascb addr ascb addr: RX-type address or register (5) - (12).

,RELATED=value value: Any valid macro keyword specification.

,BRANCH=SPECIAL

Parameters
The parameters are explained as follows:

R
L Specify the manner in which the input is supplied. If R is specified, the user

supplies the starting and ending addresses of the virtual storage area for which
the service is to be performed. If L is specified, the user supplies the address of
the short page services list (SSL), which specifies the virtual storage area for
which the service is to be performed. See the topic “Input to Page Services” in
z/OS MVS Programming: Authorized Assembler Services Guide for a description of
the SSL.

,FIX
,FREE

Indicate the function to be performed.

FIX specifies that the virtual storage areas are to reside in central (also called
real) storage and are ineligible for page-out while the address space is
swapped in. This parameter does not prevent pages from being paged out
when the entire address space is swapped out of central storage. FIX will
ignore a request to fix storage in a system area that has the fixed attribute (for
example, the LSQA and SQA). A FIX request for a page in the LSQA or SQA
will not cause the page to be backed by central storage below 16 megabytes.

FREE specifies that the virtual storage areas that were previously fixed through
the FIX option are eligible for page-out. A fixed page is not considered
pageable until the number of FREE and FIX requests for the page are equal.

,LA=list addr
Specifies the address of the short page service list (SSL) for L requests.

,A=start addr
Specifies the address of the start of the virtual area for R requests.

,EA=end addr
Specifies the last byte on the last page of the virtual area for R requests.

,BACKOUT=Y

PGSER macro

Chapter 27. PGSER — Fast path page services 215



,BACKOUT=N
Specify the procedure to follow if an unallocated page is encountered during
the processing of a fix request.

If BACKOUT=Y is specified, all pages fixed as part of the request will be freed
before control returns to the caller.

If BACKOUT=N is specified, the pages previously fixed as part of the request
will not be freed before control returns to the caller. In this situation, no further
pages are processed once an unallocated page is encountered.

,ASCB=ascb addr
Specifies the address of the ASCB for the currently addressable address space.

Note: The ASCB must reside in 24-bit addressable storage.

,RELATED=value
Specifies information used to document the macro and to relate the service
performed to some corresponding service or function. The format of the
information specified can be any valid coding values that the user chooses.

,BRANCH=SPECIAL
Specifies a branch entry call to the fast path FIX and FREE services.

ABEND codes
None.

Return and reason codes
None.

Example 1
Fix 4096 bytes of storage starting at the address BUFFER. The address of the ASCB
is in register 6. Include the IHAPVT mapping macro.
PGSER R,FIX,A=BUFFER,EA=BUFFER+4095,BRANCH=SPECIAL,ASCB=(6)
IHAPVT

Example 2
Free the area specified in the SSL defined at LISTSSL. Use the ASCB in PSAAOLD.
Include the IHAPVT mapping macro.
L 5,PSAAOLD
PGSER L,FREE,LA=LISTSSL,ASCB=(5),BRANCH=SPECIAL
IHAPVT

PGSER macro

216 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 28. POST — Signal event completion

Description
Use the POST macro to set a specified event control block (ECB) to indicate the
occurrence of an event. If this event satisfies the requirements of an outstanding
WAIT or EVENTS macro, the waiting task is taken out of the wait state and
dispatched according to its priority.

The bits in the ECB are set as follows:
v Bit 0 of the specified ECB is set to 0 (wait bit).
v Bit 1 is set to 1 (complete bit).
v Bits 2 through 31 are set to the specified completion code.

The POST macro is also described in z/OS MVS Programming: Assembler Services
Reference IAR-XCT with the exception of the parameters ASCB, ERRET, ECBKEY,
and LINKAGE=BRANCH. For further information on how to use POST to serialize
parallel tasks, see z/OS MVS Programming: Authorized Assembler Services Guide.

Environment
The requirements for callers of POST with LINKAGE=SVC are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key. For the ASCB, ERRET, and

ECBKEY parameters, one or more of the following:

v Supervisor state

v PSW key 0-7

v APF-authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: If the caller specifies the ASCB parameter, the event control

block (ECB) must be addressable from the address space
identified by the ASCB parameter. If the caller does not
specify the ASCB parameter, the ECB must be in the home
address space.

The requirements for callers of POST with LINKAGE=SYSTEM are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key. For the ASCB, ERRET, and

ECBKEY parameters, one or more of the following:

v Supervisor state

v PSW key 0-7

v APF-authorized
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit

© Copyright IBM Corp. 1988, 2015 217



Environmental factor Requirement
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: If the caller specifies the ASCB parameter, the event control

block (ECB) must be addressable from the address space
identified by the ASCB parameter. If the caller does not
specify the ASCB parameter, the ECB must be in the caller's
primary address space.

The requirements for callers of POST with LINKAGE=BRANCH are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: v If the caller specifies the ASCB parameter: any PASN, any

HASN, any SASN

v If the caller does not specify ASCB and is in primary ASC
mode: PASN=HASN with any SASN

v If the caller does not specify ASCB and is in secondary
ASC mode: SASN=HASN with any PASN.

AMODE: 24- or 31-bit
ASC mode: Primary or secondary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller must hold the local lock, unless the caller

specifies the ASCB parameter, in which case the local lock
can be held but is not required.

Control parameters: If the caller specifies the ASCB parameter, the event control
block (ECB) must be addressable from the address space
identified by the ASCB parameter. If the caller does not
specify the ASCB parameter, the ECB must be in the home
address space.

Programming requirements
For LINKAGE=BRANCH or BRANCH=YES, the caller must include the CVT
mapping macro.

Restrictions
Callers that specify LINKAGE=SVC cannot have any enabled unlocked task (EUT)
functional recovery routines (FRR) established.

Input register information
Before issuing the POST macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
For LINKAGE=SVC, when control returns to the caller the general purpose
registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

POST macro

218 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



2-13 Unchanged

14-15 Used as work registers by the system

For LINKAGE=SYSTEM, when control returns to the caller, the general purpose
registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

For LINKAGE=BRANCH, when control returns to the caller the general purpose
registers (GPRs) contain one of the following:
v If the ASCB parameter is not specified:

Register
Contents

0-9 Unchanged

10-11 Used as work registers by the system

12-13 Unchanged

14-15 Used as work registers by the system
v If the ASCB parameter is specified, the LOCAL lock is held and MEMREL=YES

is specified (or defaulted):

Register
Contents

0 One of the following:
– If the ECBKEY parameter is not specified: Unchanged
– If the ECBKEY parameter is specified: Used as a work register by the

system

1-9 Unchanged

10-15 Used as work registers by the system
v If the ASCB parameter is specified, the LOCAL lock is not held or

MEMREL=NO is specified:

Register
Contents

0-8 Used as work registers by the system

9 Unchanged

10-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service and restore them
after the system returns control.

POST macro

Chapter 28. POST — Signal event completion 219



Performance implications
None.

Syntax
The standard form of the POST macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column
1.

� One or more blanks must precede
POST.

POST

� One or more blanks must follow
POST.

ecb addr ecb addr: RX-type address, or register
(2) - (12), except (10).

,comp code comp code: Symbol, decimal or
hexadecimal digit, or register (0), (2) -
(9), (10), or (12).

Range of values: 0 to (230 − 1)
Default: 0

,ASCB=addr,ERRET=err rtn

,ASCB=addr,ERRET=err rtn,ECBKEY=key

addr: RX-type address, or register (2) -
(9), (12).

: RX-type address, or address in
register (2) - (9), (12).

key: Symbol, decimal or hexadecimal
digit, or register (2) - (9), (12).

Range of values: 0 - 15 (decimal),
Default: None.

Note: If the register form is specified,
bits 24-27 of the register must contain
the key.

,LINKAGE=SVC Default: LINKAGE=SVC

,LINKAGE=BRANCH

,LINKAGE=BRANCH,

ECBKEY=key key: Symbol, decimal or hexadecimal
digit, or register (2) - (9), (12).

POST macro

220 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

Range of values: 0 - 15 (decimal),
Default: None.Note: If the register
form is specified, bits 24-27 of the
register must contain the key.

,LINKAGE=SYSTEM

,LINKAGE=SYSTEM,

ERRET=err rtn : RX-type address, or address in
register (2) - (9), (12).

,BRANCH=NO Default: BRANCH=NO

,BRANCH=YES

,MEMREL=YES Default: MEMREL=YES

,MEMREL=NO Note: MEMREL can be coded only if
LINKAGE=BRANCH and the ASCB
and ERRET parameters are coded.

,RELATED=value value: Any valid macro keyword
specification.

Parameters
The explanation of the parameters is as follows:

ecb addr
Specifies the address of the fullword event control block representing the
event.

,comp code
Specifies the completion code to be placed in the event control block upon
completion.

,ASCB=addr,ERRET=err rtn
,ASCB=addr,ERRET=err rtn,ECBKEY=key

Specifies the address of the ASCB of the address space containing the ECB
being posted, and a pointer to the address of the routine that receives control
when an error condition resulting from a POST failure is detected. The ASCB
must reside in 24-bit addressable storage.

The ERRET routine is further described in Asynchronous Cross Memory POST
in z/OS MVS Programming: Authorized Assembler Services Guide.

,LINKAGE=SVC
,LINKAGE=BRANCH
,LINKAGE=BRANCH,ECBKEY=key
,LINKAGE=SYSTEM
,LINKAGE=SYSTEM,ERRET=err rtn

Specifies the type of linkage from the caller to a system service routine that
POST invokes. The default is LINKAGE=SVC.

POST macro

Chapter 28. POST — Signal event completion 221



For LINKAGE=SVC, the linkage is through an SVC instruction. This linkage is
valid only when the caller is in task mode and primary ASC mode, where
primary, home, and secondary are the same address space. For SVC callers,
registers 2-14 are preserved.

For LINKAGE=BRANCH, the linkage is through a branch entry. This linkage is
valid when the caller is in primary or secondary ASC mode. The calling
requirements and the registers that are preserved depend on the other
parameters specified, as follows:
v If ASCB is not specified, the caller must hold the local lock and be in

noncross memory mode. Registers 0-9, 12, and 13 are preserved.
v If ASCB is specified, the MEMREL parameter and the LOCAL lock

determine the calling requirements and registers saved.
– If the LOCAL lock is held and MEMREL=YES is specified (or defaulted),

then the current address space must be the home address space and
registers 1-9 are preserved. If the ECBKEY parameter is not specified,
register 0 is also preserved.

– If the LOCAL lock is not held or MEMREL=NO is specified, then only
register 9 is preserved. The current address space can be any address
space.

With LINKAGE=BRANCH, you can also specify the storage protection key of
the ECB to be posted using the ECBKEY parameter. The system checks the
storage key of the ECB against the ECBKEY before posting it.

Note: BRANCH=YES and BRANCH=NO are still supported by the system,
but LINKAGE is the recommended parameter.

For LINKAGE=SYSTEM, the linkage uses a non-SVC entry. Callers must be
enabled, unlocked, and in primary ASC mode. This linkage is valid for callers
in both noncross memory and cross memory mode. If you specify the ASCB
parameter, the ECB must be addressable from the address space identified by
ASCB. If you do not specify ASCB, the ECB must be in the caller's primary
address space. When you specify LINKAGE=SYSTEM and ASCB, you must
also specify ECBKEY.
v ERRET=err_rtn specifies the routine that gets control when the system

detects a POST failure after control has been returned to the issuer of POST.
If the caller is not authorized, the error routine does not receive control.
When the ASCB parameter is specified, the ERRET routine is used only
when asynchronous cross-memory POST fails in the address space identified
by the ASCB. The ERRET routine is further described in Asynchronous Cross
Memory POST in z/OS MVS Programming: Authorized Assembler Services
Guide.

v When you issue LINKAGE=SYSTEM, the POST macro service issues the
return codes described in “Return codes” on page 223.
LINKAGE=SYSTEM without the ASCB parameter is intended to be used by
programs in cross memory mode.

,MEMREL=YES
,MEMREL=NO

Specifies the address space in which the routine specified on the ERRET
parameter is to run. MEMREL can be specified with LINKAGE=BRANCH
only:
v Specify MEMREL=YES (or accept the default of MEMREL=YES) if you want

the ERRET routine to run in the caller's home address space.

POST macro

222 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



v Specify MEMREL=NO if you want the ERRET routine to run in the master
scheduler's address space.

Note: You cannot specify MEMREL=YES if you hold the local lock and you
are running in cross memory mode. Therefore, if you do not know that the
primary and home address spaces are the same, you should specify
MEMREL=NO.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ABEND codes
POST might abnormally terminate with one of the following abend codes:
v X'102'
v X'202'
v X'302'
v X'402'
v X'502'
v X'602'
v X'702'

These hexadecimal codes are described in z/OS MVS System Codes.

Return codes
When you issue LINKAGE=SYSTEM, the POST macro service issues the following
hexadecimal return codes.

Table 33. Return Codes for the POST Macro

Return Code Meaning and Action

00 Meaning: Indicates a synchronous POST was done, as requested.

Action: None.

04 Meaning: Environmental error. Indicates an asynchronous POST is in progress.
If you specified ERRET and a failure occurs before the POST completes, the
error routine that you specified will receive control. If you did not specify
ERRET and a failure occurs before the POST completes, no error routine exists to
receive control.

Action: None required. However, you might take some action based upon your
application.

08 Meaning: Environmental error. Indicates an asynchronous POST is in progress.
You specified ERRET; however, if an error occurs before POST completes, the
error routine that you specified will not receive control.

Action: None required. However, you might take some action based upon your
application.

Example 1
Post an event control block whose address is ECB, where the address space
containing the ECB has an ASCB specified by register 5, and where ERRRTN is the
routine to be given control on error conditions.
POST ECB,ASCB=(REG5),ERRET=ERRRTN

POST macro

Chapter 28. POST — Signal event completion 223



Example 2
Post the ECB from example 1 with a hexadecimal completion code of 3FF.
POST ECB,X’3FF’,ASCB=(REG5),ERRET=ERRRTN

Example 3
Post the ECB from example 1 using a stacking PC for linkage. The address of the
error routine is in register 3.
POST ECB,LINKAGE=SYSTEM,ECBKEY=0,ASCB=(REG5),ERRET=(REG3)

POST - List form

Syntax
The list form of the POST macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column
1.

� One or more blanks must precede
POST.

POST

� One or more blanks must follow
POST.

ecb addr ecb addr: A-type address.

,ASCB=addr,ERRET=err rtn

,ASCB=addr,ERRET=err rtn,ECBKEY=YES

addr: A-type address.

err rtn: A-type address.

,RELATED=value value: Any valid macro keyword
specification.

,MF=L

Parameters
The parameters are explained under the standard form of the POST macro, with
the following exceptions:

,MF=L
Specifies the list form of the POST macro.

POST macro

224 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Note: The system assumes that the list form will be used for cross-memory post. If
no ASCB address is specified by either the list or execute form, the POST issued by
the execute form will result in ABEND602 RC0 due to a zero ASCB address on a
cross-memory post request.

POST - Execute form

Syntax
The execute form of the POST macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column
1.

� One or more blanks must precede
POST.

POST

� One or more blanks must follow
POST.

ecb addr ecb addr: RX-type address, or register
(2) - (12).

,comp code comp code: Symbol, decimal or
hexadecimal digit, or register (0) or
(2) - (12).

Range of values: 0 to (230 − 1)

,ASCB=addr,ERRET=err rtn

,ASCB=addr,ERRET=err rtn,ECBKEY=key

addr: RX-type address, or register (2) -
(12).

: RX-type address, or address in
register (2) - (12).

key: Symbol, decimal or hexadecimal
digit, or register (2) - (12).

Range of values: 0 - 15 (decimal),
Default: None.

Note: If the register form is specified,
bits 24-27 of the register must contain
the key.

,RELATED=value value: Any valid macro keyword
specification.

POST macro

Chapter 28. POST — Signal event completion 225



Syntax Description

,MF=(E,prob addr) prob addr: RX-type address, or register
(1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the POST macro, with
the following exception:

,MF=(E,prob addr)
Specifies the execute form of the POST macro using a remote control program
parameter list.

POST macro

226 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 29. PTRACE — Processor trace

Description
The PTRACE macro creates a trace table entry and places it in the system trace
table. The entry consists of an event identifier, the contents of a designated range
of general registers or storage locations, and system supplied status information.

When using this macro, the user must provide the following information:
v The type of trace entry that is to be created
v The data to be recorded in the trace entry

The PTRACE macro can only be issued with DAT-ON. The caller must be in key 0
and supervisor state but can be in cross memory mode and in either 24 or 31-bit
addressing mode. All addresses passed to the PTRACE routine are treated as 31-bit
addresses. PTRACE users must include the IHAPSA and IHATRVT mapping
macros and register 13 must point to a 72-byte save area that can be used by the
PTRACE service.

PTRACE accepts the TRACEMODE=TRACG option to request the use of TRACG
to record trace data. This option alters the interpretation of the existing REGS and
SAVEAREA options.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: Any
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled or disabled for I/O or external interrupts
Locks: Any locks may be held
Control parameters: Must be in the primary address space

Programming requirements
The PTRACE macro can only be issued with DAT-ON. All addresses passed to the
PTRACE routine are treated as 31-bit addresses. PTRACE users must include the
IHAPSA and IHATRVT mapping macros and register 13 must point to a 72-byte
save area that can be used by the PTRACE service.

Restrictions
None.

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers

© Copyright IBM Corp. 1988, 2015 227



containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Performance implications
None.

Syntax
The PTRACE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PTRACE.

PTRACE

� One or more blanks must follow PTRACE.

TYPE=USRn n: hexadecimal digit 0 - F.

,REGS=(reg1,reg2) Default: REGS=(1)

,REGS=(1) reg1: decimal digit 2 - 12.

reg2: decimal digit 2 - 12.

,SAVEAREA=STANDARD

,SAVEAREA=F4SA

,TRACEMODE=TRACE Default: TRACE

,TRACEMODE=TRACG

Parameters
The parameters are explained as follows:

PTRACE Macro

228 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



TYPE=USRn
Specifies a user-event explicit trace entry. The hexadecimal number, n,
identifies the entry. Trace processing places this number in the trace entry for
identification purposes.

,REGS=(reg1,reg2)
,REGS=(1)

Defines the data to be placed in the user's trace entries. Multiple trace entries
are created if more than 5 registers or 5 words of data are requested.

If REGS=(reg1,reg2) is specified, the data is located in a range of registers,
where reg1 specifies the first register in the range and reg2 specifies the last
register in the range. The register number, reg2, must always be greater than or
equal to the register number, reg1. A maximum of 11 words of data can be
indicated for tracing using REGS=(reg1,reg2).

If REGS=(1) is specified or used as the default, register 1 must contain the
31-bit address of a parameter list. The high order bit of this address must be
set to 0. If REGS=(1) is specified, up to 1024 words of data can be recorded.
The parameter list contains N+1 fullword entries. The first word contains the
number of words of data (N) to be recorded. This is followed by the N words
of data to be placed in the user's trace entries.

For TRACEMODE=TRACG this refers to a range of 64-bit registers.

,SAVEAREA=STANDARD
,SAVEAREA=F4SA

STANDARD format specifies that register 13 contains the address of a 72-byte
save area that can be used by the PTRACE routine.

IF F4SA is used, specifies 64-bit GPR 13 contains the address of a 144-byte save
area in F4SA format for TRACEMODE=TRACG.

,TRACEMODE=TRACE
,TRACEMODE=TRACG

An optional operand that requests the use of TRACG for generation of a
system trace entry. Omission of this option requests the use of TRACE.
TRACEMODE=TRACE may be explicitly coded to designate the default use of
the TRACE instruction.

When control returns to the caller, registers 2-13 are restored to their original
values, but the original contents of registers 0, 1, 14, and 15 are destroyed. On exit,
register 15 contains a return code.

Return and reason codes
The hexadecimal return code from the PTRACE macro is as follows:

Table 34. Return Code for the PTRACE Macro

Return Code Meaning

00 Meaning: The function completed successfully.

Example 1
Create a trace table entry for user event 4. Registers 5, 6, and 7 contain the user
data to be recorded.
PTRACE TYPE=USR4,REGS=(5,7),SAVEAREA=STANDARD

PTRACE Macro

Chapter 29. PTRACE — Processor trace 229



Example 2
Create trace table entries for user event C. Register 1 contains the address of a
parameter list containing the data to be recorded.
PTRACE TYPE=USRC,REGS=(1),SAVEAREA=STANDARD

PTRACE Macro

230 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 30. PURGEDQ — Purge SRB activity

Description
The PURGEDQ macro allows a task to purge particular SRB activity. The system
dispatches an SRB routine asynchronously from when the SCHEDULE macro was
issued. For this reason, the conditions that existed in the system at the time the
SCHEDULE was issued might have changed by the time the routine is dispatched.
If the environment that the asynchronous routine requires to run successfully has
been changed, the results are unpredictable. For this reason, the PURGEDQ macro
is available to:
v Dequeue SRBs not yet dispatched.
v Allow processing for dispatched SRBs to complete.
v “Clean up” each dequeued SRB.
v Purge a preemptable SRB at any point in time.
v Purge a non-preemptable SRB (that voluntarily gave up control by doing a

Pause or a SUSPEND with Token) prior to being released or resumed.

The parameters on PURGEDQ determine the target address space and limit the
scope of the purge. When purging SRBs scheduled in the primary address space,
PURGEDQ waits for dispatched SRBs to finish. When purging SRBs scheduled in
an address space other than the primary, PURGEDQ does not purge SRBs that
have been dispatched, nor does PURGEDQ wait for dispatched SRBs to complete.

When the target address space is not the primary address space, PURGEDQ does
not guarantee that all SRBs matching the purge parameters will be purged. The
issuer of PURGEDQ is not informed of SRBs that are not purged. When purging
SRBs scheduled in an address space other than primary, use a resource manager
termination routine (RMTR) if you need to know whether a particular SRB has
been purged.

Except for the TCB, all input parameters to this macro can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

See z/OS MVS Programming: Authorized Assembler Services Guide for more
information on using the PURGEDQ macro, especially the resource manager
termination routine (RMTR).

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW key 0 - 7 or APF-authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the caller's primary address space

© Copyright IBM Corp. 1988, 2015 231



Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the PURGEDQ macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the PURGEDQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PURGEDQ.

PURGEDQ

PURGEDQ macro

232 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

� One or more blanks must follow PURGEDQ.

RMTR=RMTR addr RMTR addr: RX-type address, or register (2) - (12).

,ASID=ASID addr ASID addr: RX-type address, or register (2) - (12).

,ASIDTCB=addr addr: RX-type address of an 8-byte field, or register (2) - (12) that contains an
address of an 8-byte field.

Parameters
The parameters are explained as follows:

RMTR=RMTR addr
Specifies the address of the RMTR. If the program scheduled the SRB using
SCHEDULE, this is the address that was placed in the SRBRMTR field
(mapped by IHASRB). If the program scheduled the SRB using IEAMSCHD,
this is the address specified on the RMTRADDR parameter. It limits the purge
to SRBs that are protected by the same RMTR; that is, where the SRBs have the
same address.

,ASID=ASID addr
Specifies the address of a halfword that contains the ASID of the target address
space into which the SRB was scheduled. If you omit ASID, the system
assumes that the primary address space is the target address space. Note that
when you use the ASID parameter to purge SRBs scheduled to an address
space other than primary, PURGEDQ does not guarantee that all SRBs will be
purged.

,ASIDTCB=addr
Specifies the address of a doubleword that describes the TCB for which SRBs
are to be purged. Through this parameter, you can purge the SRBs associated
with a specific task. If you omit the parameter, the system purges SRBs
associated with the current task in the primary address space.

When you use the ASID parameter to purge SRBs scheduled to an address
space other than primary, PURGEDQ does not guarantee that all SRBs will be
purged.

Specify the ASIDTCB parameter in one of the following ways:
1. To attempt to purge all SRBs scheduled to a specific address space as

defined by ASID, set the ASIDTCB parameter as follows:

Set These Bytes To This Value Meaning
Bytes 0-7 Zero The system is to purge all SRBs defined by the ASID

(SRBASCB) and RMTR parameters, regardless of their
task (SRBPTCB) and address space (SRBPASID)
association.

2. To purge all SRBs scheduled by a specified address space, set the ASIDTCB
parameter as described below:

PURGEDQ macro

Chapter 30. PURGEDQ — Purge SRB activity 233



Set These Bytes To This Value Meaning
Bytes 0-1 Reserved The system is to purge all SRBs defined by
Bytes 2-3 ASID1 the ASID and RMTR parameters associated
Bytes 4-7 Zero with the target address space (SRBPASID), regardless

of their task (SRBPTCB).

3. To purge all SRBs associated with a specified TCB in a specified address
space, set the ASIDTCB parameter as described below:

Set These Bytes To This Value Meaning
Bytes 0-1 Zero The system is to purge all SRBs defined by
Bytes 2-3 ASID2 the ASID and RMTR parameters associated
Bytes 4-7 TCB address with the scheduling address space (SRBPASID) and

task (SRBPTCB). (If you specify SRBPTCB, you must
also specify SRBPASID.)

Note: The TCB resides in storage below 16 megabytes.

ABEND codes
17B
27B
47B

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return and reason codes
None.

Example 1
Purge all SRBs scheduled to ASID ‘20’X with:
v SRBPTCB equal to the current TCB (that is, the TCB issuing the PURGEDQ)
v SRBPASID equal to the primary ASID
v SRBRMTR equal to the address of RMTR routine RMTRA

PURGEDQ ASID=AS1,RMTR=RMTRA

AS1 DC XL2’0020’

Example 2
Purge all SRBs scheduled to ASID ‘21’X, regardless of what is specified in
SRBPASID and SRBPTCB, and that have SRBRMTR equal to the address of RMTR
routine RMTRB.

PURGEDQ ASID=AS2,ASIDTCB=PURGPRM1,RMTR=RMTRB

PURGPRM1 DC XL8’00000000’
AS2 DC XL2’0021’

Example 3
Purge all SRBs scheduled to the primary address space (that is, the address space
from which this PURGEDQ was issued) that have:
v SRBPASID of ‘12’X
v SRBPTCB equal to the address of TCBX

PURGEDQ macro

234 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



v SRBRMTR equal to the address of RMTR routine RMTRC
PURGEDQ ASIDTCB=PURGPRM2,RMTR=RMTRC

PURGPRM2 DS 0CL8
DC XL2’0000’

PURGASID DC XL2’0012’
PURGTCB DC A(TCBX)

Example 4
Purge all SRBs scheduled into the primary address space, related to the current
(terminating) task, and associated with the resource manager termination routine
located at RESCLEAN.
PURGEDQ RMTR=RESCLEAN

PURGEDQ - List form
For programs that require reentrant code, use the list form of the PURGEDQ macro
together with the execute form of the macro. The list form of the macro defines an
area of storage that the execute form of the macro uses to store parameter values.

Syntax
The list form of the PURGEDQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PURGEDQ.

PURGEDQ

� One or more blanks must follow PURGEDQ.

RMTR=RMTR addr RMTR addr: A-type address.

,ASID=ASID addr ASID addr: A-type address.

,ASIDTCB=addr addr: A-type address.

,MF=L

Parameters
The parameters are explained under the standard form of the PURGEDQ macro,
with the following exception:

,MF=L
Specifies the list form of the PURGEDQ macro.

PURGEDQ macro

Chapter 30. PURGEDQ — Purge SRB activity 235



Example
Specify the resource manager termination routine located at RESCLEAN and
produce the parameter list to be used by the execute form of the PURGEDQ
macro.
STATPDQ PURGEDQ RMTR=RESCLEAN,MF=L

PURGEDQ - Execute form
For programs that require reentrant code, use the execute form of the PURGEDQ
macro together with the list form. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the PURGEDQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede PURGEDQ.

PURGEDQ

� One or more blanks must follow PURGEDQ.

RMTR=RMTR addr RMTR addr: RX-type address, or register (2) - (12).

,ASID=ASID addr ASID addr: RX-type address, or register (2) - (12).

,ASIDTCB=addr addr: RX-type address, or register (2) - (12).

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the PURGEDQ macro,
with the following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the PURGEDQ macro, using a remote control
program parameter list.

Example
Purge all SRBs scheduled into the address space given in register 6 and associated
with the resource manager termination routine located at RESCLEAN. Indicate that
the remote control program parameter list is located at STATPDQ.
PURGEDQ ASID=(6),RMTR=RESCLEAN,MF=(E,STATPDQ)

PURGEDQ macro

236 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 31. QEDIT — Command input buffer manipulation

Description
The QEDIT macro generates the required entry parameters and processes the
command input buffer for the following uses:
v Dechaining and freeing of a command input buffer (CIB) from the CIB chain for

a task.
v Setting a limit for the number of CIBs that may be simultaneously chained for a

task.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: When ORIGIN= is specified with no other parameters: PSW

key 0-7
Otherwise: Problem state

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: Any
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Syntax
The QEDIT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede QEDIT.

QEDIT

� One or more blanks must follow QEDIT.

ORIGIN=CIB addr ptr CIB addr ptr: RX-type address, or register (0),(2) - (12).

,BLOCK=CIB addr CIB addr: RX-type address, or register (1), (2) - (12).

,CIBCTR=CIB nmbr CIB nmbr: Decimal digit, with a maximum value of 255 or register (1), (2) -
(12).

© Copyright IBM Corp. 1988, 2015 237



Parameters
The parameters are explained as follows:

ORIGIN=CIB addr ptr
Specifies the address of the pointer to the first CIB chain for the task. This
address is obtained using the EXTRACT macro. If BLOCK and CIBCTR are
omitted, the caller must be executing under PSW key 0-7; in this case, the
entire CIB chain is freed. The system prevents problem state programs from
freeing the entire CIB chain.

,BLOCK=CIB addr
Specifies the address of the CIB to be freed from the CIB chain for a task.

,CIBCTR=CIB nmbr
Specifies the limit for the number of CIBs to be chained at any time for a task.

Note:

1. When using any address returned from the EXTRACT macro as input to the
QEDIT macro, the user must use the IEZCOM mapping macro to establish
addressability based on the address returned by EXTRACT.

2. The CIB must reside in 24-bit addressable storage.

Return and reason codes
When QEDIT macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 35. Return Codes for the QEDIT Macro

Return Code Meaning

00 Meaning: The required function was successfully completed.

04 Meaning: The CIB to be deleted was not found on any CIB chain.

08 Meaning: The limit for the number of CIBs to be chained was exceeded; an
issuer who made a request to free all the CIBs on a chain was not in supervisor
state and PSW key zero; or the user provided an invalid address for the pointer
to the CIB chain, an invalid address for the CIB address, or an invalid CIB
number as input to the macro.

Example 1
Free the entire CIB chain, where register 8 contains the address of the pointer to
the CIB chain.
QEDIT ORIGIN=(8)

Example 2
Free the CIB whose address is in register 5 from the CIB chain. Register 8 contains
the address of the pointer to the CIB chain.
QEDIT ORIGIN=(8),BLOCK=(5)

QEDIT macro

238 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 32. RACF macros

See z/OS Security Server RACROUTE Macro Reference for the descriptions of the
following macros:
v FRACHECK
v RACDEF
v RACHECK
v RACINIT
v RACLIST
v RACROUTE
v RACSTAT
v RACXTRT

© Copyright IBM Corp. 1988, 2015 239



240 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 33. RESERVE — Reserve a device (shared DASD)

Description
The RESERVE macro reserves a device for use by a particular system; it must be
issued by each task needing to reserve a device shared with one or more systems.
The RESERVE macro protects the caller from interference by other tasks in the
system and locks out other systems. The reserve actually occurs when the first I/O
is done to the device after the RESERVE macro is issued. When the reserving
program no longer needs the reserved device, it should issue a DEQ macro to
release the resource. For information about the synchronous reserve feature, see
z/OS MVS Planning: Global Resource Serialization and z/OS MVS Initialization and
Tuning Guide.

For information about how to obtain the UCB address for a device, see the section
“Finding the UCB Address for the RESERVE Macro” in z/OS MVS Programming:
Authorized Assembler Services Guide.

If global resource serialization is active, the hardware RESERVE can be suppressed
leaving a SYSTEMS ENQ depending on the contents of the resource name lists. See
z/OS MVS Planning: Global Resource Serialization for information on resource name
lists.

A RESERVE used with the MASID and MTCB operands provides a special form of
the RESERVE macro that allows a further conditional control of a resource. One
task, called the “issuing task” can issue a RESERVE macro for a resource specifying
the ASID and TCB of another task, called the “matching task”.

The RESERVE macro is also described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP, with the exception of the MASID, MTCB, and ECB parameters.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key. For the MASID, MTCB,

and ECB parameters, one of the following:

v Supervisor state

v PSW key 0-7

v APF-authorized.
Dispatchable unit mode: Task
Cross memory mode: For LINKAGE=SVC: PASN=HASN=SASN

For LINKAGE=SYSTEM: PASN=HASN=SASN or
PASN¬=HASN¬=SASN

AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: If the caller's AMODE is 24-bit, all parameters must reside

below 16 megabytes.

© Copyright IBM Corp. 1988, 2015 241



Programming requirements
Before issuing the RESERVE macro with a UCB address, an authorized caller must
serialize the UCB against dynamic I/O reconfiguration requests. The caller can
accomplish this serialization by allocating or pinning the UCB. Such serialization
ensures that a dynamic I/O reconfiguration request does not delete or reuse the
UCB before the RESERVE macro uses the address.

Restrictions
If a task issues two RESERVE macros for the same device without an intervening
DEQ macro, the task ends abnormally unless the second RESERVE specifies the
keyword parameter RET or ECB. (If a restart occurs after the caller successfully
issued the RESERVE macro for a resource, the system does not reserve the device
again; the caller must reissue the RESERVE macro.) If a DEQ macro is not issued
for a particular resource, the system releases the reserved resource when the task
ends.

The system counts and limits the number of concurrent resource requests in an
address space. If an unconditional RESERVE (a RESERVE macro with RET=NONE)
causes the number of global resource serialization requests to exceed the limit, the
caller is abnormally terminated with a system code of X'538'. For further
information about limiting concurrent requests for resources, see in z/OS MVS
Programming: Assembler Services Guide. For further information about limiting global
resource serialization requests, see z/OS MVS Programming: Authorized Assembler
Services Guide.

Input register information
Before issuing the RESERVE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 One of the following:
v If you specify RET=TEST, RET=USE, RET=HAVE, or the ECB parameter:
v If all return codes for the resources named in the RESERVE macro are 0,

register 15 contains 0. If any of the return codes are not 0, register 15
contains the address of a storage area containing the return codes.

v Otherwise: used as a work register by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

RESERVE macro

242 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax
The standard form of the RESERVE macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede RESERVE.

RESERVE

� One or more blanks must follow RESERVE.

qname addr qname addr: A-type address, or register (2) - (12).

,rname addr rname addr: A-type address, or register (2) - (12).

, Default: E

,E

,S

,

,rname length rname length: symbol, decimal digit, or register (2) - (12).

,SYSTEMS

)

,RET=TEST

,RET=USE

,RET=HAVE

,RET=NONE

,ECB=ecb addr ecb addr: A-type address, or register (2) - (12).

,UCB=ucb addr ucb addr: A-type address, or register (2) - (12).

,LOC=BELOW Default: LOC=BELOW

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 243



Syntax Description

,LOC=ANY

,MASID=matching-asid addr matching-asid addr: A-type address, or register (2) - (12).

,MTCB=matching-tcb addr matching-tcb addr: A-type address, or register (2) - (12).

,RELATED=value value: any valid macro keyword specification.

,LINKAGE=SVC DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

Parameters
The parameters are explained as follows:

( Specifies the beginning of the resource description.

qname addr
Specifies the address in virtual storage of an 8-character name. The name
should not start with SYS, so that it will not conflict with system names. Every
task issuing RESERVE against the same resource must use the same qname
and rname to represent the resource.

,rname addr
Specifies the address in virtual storage of the name used together with qname
to represent a single resource. The name can be qualified, and must be from 1
to 255 bytes long.

,
,E
,S Specifies whether the request is for exclusive (E) or shared (S) control of the

resource. If the resource is modified while under control of the task, the
request must be for exclusive control; if the resource is not modified, the
request should be for shared control.

,
,rname length

Specifies the length of the rname. If this parameter is omitted, the system uses
the assembled length of the rname. To override the assembled length, specify
this parameter; the value you can code depends on whether or not you also
specify MASID and MTCB:
v If you specify MASID and MTCB, you can code a value between 1 and 128.
v If you do not specify MASID and MTCB, you can code a value between 1

and 255.

In either case, you can specify 0, which means that the length of the rname
must be contained in the first byte at the rname addr.

,SYSTEMS
Specifies that the resource is shared among systems.

) Specifies the end of the resource description.

,RET=TEST
,RET=USE

RESERVE macro

244 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



,RET=HAVE
,RET=NONE

RET=TEST, RET=USE, and RET=HAVE specify a conditional request for the
resource named on the macro, as follows:

RET=TEST
The availability of the resource is to be tested, but control of the
resource is not requested.

RET=USE
Control of the resource is to be assigned to the active task only if the
resource is immediately available.

RET=HAVE
Control of the resource is requested only if the same task does not
already control or have an outstanding request for the same resource.

RET=NONE specifies an unconditional request for the resource named on the
macro.

,ECB=ecb addr
Specifies the address of an ECB, and conditionally requests the resource named
in the macro. A return code of 4 is returned if contention on the ENQ resource
exits or if the hardware reserve is done synchronously. The hardware reserve
cannot be done if the request was converted to only a global ENQ.

If the return code for one or more requested resources is 4 and the request is
not nullified by a corresponding DEQ, the ECB is posted when all the
requested resources (specifically, those that initially received a return code of 4)
are assigned to the requesting task.

Note:

1. The ECB must reside in storage that is addressable from the caller's home
address space.

2. The ECB can also be used to measure the contention time on the ENQ or
hardware resource. For more information, see "Timing Contention" section
in z/OS MVS Programming: Authorized Assembler Services Guide.

See z/OS MVS Planning: Global Resource Serialization for more information about
RESERVE conversion to global ENQs and synchronous (SYNCHRES) reserve
processing.

,UCB=ucb addr
Specifies the address of a fullword that contains the address of the UCB for the
device to be reserved. The UCB does not need to be allocated to the job step
before RESERVE is issued.

Note: The UCB keyword might specify a UCB address for a UCB that resides
in storage above or below 16 megabytes. If the UCB address might point to a
UCB above 16 megabytes you must also specify LOC=ANY.

,MASID=matching-asid addr
Specifies the matching task (by defining a matching ASID) for the RESERVE.
MASID defines the ASID of a task that may be using a resource desired by the
issuer of the RESERVE macro.

Note: MASID can be specified only if MTCB is also specified.

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 245



,MTCB=matching-tcb addr
Specifies the matching task (by defining a matching TCB) for the RESERVE.
MTCB defines the TCB of a task that may be using a resource desired by the
issuer of the RESERVE macro.

Note: MTCB can be specified only if MASID is also specified.

If the task specified by the MASID and MTCB parameters is not using the
resource, global resource serialization gives control to the issuer of the
RESERVE and returns a return code indicating whether the resource can be
used. If the task specified by MASID and MTCB parameters is using the
resource, global resource serialization records a request for the resource,
suspends the issuing task until the resource is available, or optionally returns a
return code indicating that an ECB will be posted when the resource can be
used.

The MASID and MTCB parameters are specified with the RET=HAVE,
RET=TEST, or ECB parameters to elicit additional return codes that provide
information about the owner of the resource.

See the description of rname length for information about specifying rname
length with MASID and MTCB.

,LOC=BELOW
,LOC=ANY

Specifies the location of the input UCB address. ANY specifies that the input
UCB address is to be treated as a 31-bit address. BELOW specifies that the
input UCB address is to be treated as a 24-bit address. The default is
LOC=BELOW.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
values.

,LINKAGE=SVC
,LINKAGE=SYSTEM

Specifies the type of linkage the caller is using to invoke the RESERVE service.

For LINKAGE=SVC, the linkage is through an SVC instruction. This linkage is
valid only when the caller is in primary mode and the primary, home, and
secondary address spaces are the same.

For LINKAGE=SYSTEM, the linkage uses a non-SVC entry. This linkage is
valid in cross memory mode or in non-cross memory mode.
LINKAGE=SYSTEM is intended to be used by programs in cross memory
mode.
v If ECB= is specified, the ECB (not the address of the ECB) must be

addressable from the home address space.

The default is LINKAGE=SVC.

ABEND codes
For unconditional requests only, the caller might encounter abend code X'138' or
X'538'. For unconditional or conditional requests, the caller might encounter one of
the following abend codes:
v X'238'
v X'338'

RESERVE macro

246 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



v X'438'
v X'738'
v X'838'
v X'938'

See z/OS MVS System Codes for explanations and responses for these codes.

Return and reason codes
Return codes are provided by the system only if you specify RET=TEST, RET=USE,
RET=HAVE, or ECB; for RET=NONE, return to the task indicates that control of
the resource has been assigned to the task. If the return code for the resource
named in the RESERVE macro is 0, register 15 contains 0. If the return code is not
0, register 15 contains the address of a 12-byte storage area containing the return
code, as shown in Figure 4.

The return codes for the RESERVE macro with the RET=TEST parameter are
described in Table 36.

Table 36. Return Codes for the RESERVE Macro with the RET=TEST Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The resource is immediately available.

Action: None required. However, you might take some action based on
your application.

4 Meaning: The resource is not immediately available or There might be
contention on the reservethe hardware reserve is done synchronously.
There might be contention on the reserve.

Action: None required. However, you might take some action based on
your application.

8 Meaning: A previous request for control of the same resource has been
made for the same task. The task has control of the resource.

Action: None required. However, you might take some action based on
your application.

To determine whether the task has exclusive control or shared control
of the resource, check bit 3 of Byte 0 as shown in Figure 4. If bit 3 is off,
the task has exclusive control; If bit 3 is on, the task has shared control.

BYTE 0

Address
Returned in
Register 15

BYTE 1 BYTE 2

0 1 2 3 4 12

12

Return
Code

Figure 4. Return Code Area Used by RESERVE

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 247



Table 36. Return Codes for the RESERVE Macro with the RET=TEST
Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

14 Meaning: A previous request for control of the same resource has been
made for the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on
your application.

20 Meaning: The matching task (the task specified in the MASID and
MTCB parameters) owns the resource.

Action: None required. However, you might take some action based on
your application.

The return codes for the RESERVE macro with the RET=USE parameter are
described in Table 37.

Table 37. Return Codes for the RESERVE Macro with the RET=USE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: None.

4 Meaning: The resource is not immediately available.

Action: None required. However, you might take some action based on
your application.

8 Meaning: A previous request for control of the same resource has been
made for the same task. The task has control of the resource.

Action: None required. However, you might take some action based on
your application.

To determine whether the task has exclusive control or shared control
of the resource, check bit 3 of Byte 0 as shown in Figure 4 on page 247.
If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14 Meaning: A previous request for control of the same resource has been
made for the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on
your application.

18 Meaning: Environmental error. The limit for the number of concurrent
resource requests has been reached. The task does not have control of
the resource unless some previous ENQ or RESERVE request caused
the task to obtain control of the resource.

Action: Retry the request one or more times. If the problem persists,
consult your system programmer, who might be able to tune the
system so that the limit is no longer exceeded.

The return codes for the RESERVE macro with the RET=HAVE parameter are
described in Table 38 on page 249.

RESERVE macro

248 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 38. Return Codes for the RESERVE Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: None.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of Byte 0 as shown in Figure 4 on page 247. If bit 3 is off,
the task has exclusive control; If bit 3 is on, the task has shared control.

14 Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

18 Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Retry the request one or more times. If the problem persists, consult
your system programmer, who might be able to tune the system so that the limit
is no longer exceeded.

20 Meaning: The matching task (the task specified in the MASID and MTCB
parameters) owns the resource.

Action: The caller can use the resource, but it must ensure that the owning task
does not terminate while the caller is using the resource. If the caller requested
exclusive control, then this return code indicates that the matching task is the
only task that currently owns the resource. If the caller requested shared control
and the owning task requested shared control, this return code might indicate
that a previous task had requested exclusive control. The caller must issue a
DEQ macro to cancel this RESERVE request.

28 Meaning: The caller cannot obtain exclusive control of the resource using the
RESERVE macro with the MASID and MTCB parameters. The matching task's
involvement with other tasks precludes control by the caller.

Action: This task must not issue a DEQ macro to cancel the RESERVE request.

44 Meaning: The caller is violating a restriction of using the RESERVE macro with
the MASID and MTCB parameters in one or more of the following ways:

v Another task has already issued the RESERVE macro for this resource
specifying the same values for the MASID and MTCB parameters

v The MASID and MTCB parameters specify a task that acquired control of the
resource by using the RESERVE macro with the MASID and MTCB
parameters

v The matching task requested ownership of the resource but has not yet been
granted ownership.

Action: Do not use the resource; the caller does not have control of it.

The return codes for the RESERVE macro with the ECB parameter are described in
Table 39 on page 250.

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 249



Table 39. Return Codes for the RESERVE Macro with the ECB Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: Do not wait on the ECB; it will not be posted.

4 Meaning: The ENQ resource is not immediately available or the
hardware reserve is done synchronously, so contention might exist on
the reserve.

Action: None required. However, you might take actions based on your
application. To measure the time you want to wait for resolving the
contention, you can set a timer with ECB and wait on both the
RESERVE ECB and the timer ECB.

8 Meaning: A previous request for control of the same resource has been
made for the same task. The task has control of the resource.

Action: Do not wait on the ECB; it will not be posted.

To determine whether the task has exclusive control or shared control
of the resource, check bit 3 of Byte 0 as shown in Figure 4 on page 247.
If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14 Meaning: A previous request for control of the same resource has been
made for the same task. The task does not have control of the resource.

Action: Do not wait on the ECB; it will not be posted.

18 Meaning: Environmental error. The limit for the number of concurrent
resource requests has been reached. The task does not have control of
the resource unless some previous ENQ or RESERVE request caused
the task to obtain control of the resource.

Action: Do not wait on the ECB; it will not be posted. Retry the request
one or more times. If the problem persists, consult your system
programmer, who might be able to tune the system so that the limit is
no longer exceeded.

20 Meaning: The matching task (the task specified in the MASID and
MTCB parameters) owns the resource.

Action: Do not wait on the ECB; it will not be posted. The caller can
use the resource, but it must ensure that the owning task does not
terminate while the caller is using the resource. If the caller requested
exclusive control, then this return code indicates that the matching task
is the only task that currently owns the resource. If the caller requested
shared control and the owning task requested shared control, this
return code might indicate that a previous task had requested exclusive
control. The caller must issue a DEQ macro to cancel this RESERVE
request.

24 Meaning: The caller that specifies the RESERVE macro with the MASID
and MTCB parameters will have exclusive control after the ECB is
posted.

Action: Wait on the ECB. Once the ECB is posted, the caller may use
the resource, but must ensure that the matching task does not terminate
while the caller is using the resource. The caller must issue a DEQ
macro to cancel the RESERVE request.

RESERVE macro

250 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 39. Return Codes for the RESERVE Macro with the ECB Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

28 Meaning: The caller cannot obtain exclusive control of the resource
using the RESERVE macro with the MASID and MTCB parameters. The
matching task's involvement with other tasks precludes control by the
caller.

Action: Do not wait on the ECB; it will not be posted. The caller must
not issue a DEQ macro to cancel the RESERVE request.

44 Meaning: The caller is violating a restriction of using the RESERVE
macro with the MASID and MTCB parameters in one or more of the
following ways:

v Another task has already issued the RESERVE macro for this
resource specifying the same values for the MASID and MTCB
parameters

v The MASID and MTCB parameters specify a task that acquired
control of the resource by using the RESERVE macro with the
MASID and MTCB parameters

v The matching task requested ownership of the resource but has not
yet been granted ownership.

Action: Do not wait on the ECB; it will not be posted. Do not use the
resource; the caller does not have control of it.

Example
Unconditionally reserve exclusive control of a device. The length of the rname is
allowed to default.
RESERVE (MAJOR3,MINOR3,E,,SYSTEMS),UCB=(R3)

RESERVE—List form
The list form of the RESERVE macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede RESERVE.

RESERVE

� One or more blanks must follow RESERVE.

(

qname addr qname addr: A-type address.

, rname addr: A-type address.

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 251



Syntax Description

,rname addr

,

,E

,S

, rname length: symbol or decimal digit.

,rname length

,

,SYSTEMS

)

,RET=TEST

,RET=USE

,RET=HAVE

,RET=NONE

,ECB=ecb addr ecb addr: A-type address.

,UCB=ucb addr ucb addr: A-type address or 0.

,LOC=BELOW Default: LOC=BELOW

,LOC=ANY

,MASID=0

,MTCB=0

,RELATED=value value: A-type address.

,MF=L

Parameters
The parameters are explained under the standard form of the RESERVE macro,
with the following exception:

,MF=L
Specifies the list form of the RESERVE macro.

RESERVE macro

252 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



The list form of this macro generates a prefix followed by the parameter list;
however, the label specified in MF=L does not include an offset prefix area. If
MASID, MTCB, or ECB are specified, these labels are offset; allowance must be
made for the parameter list prefix.

Note: If the ECB parameter is specified on the execute form of the macro, it also
must be specified on the list form of the macro. If MASID and MTCB also are
specified on the execute form, MASID=0 and MTCB=0 must be specified in the list
form.

RESERVE - Execute form
The execute form of the RESERVE macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede RESERVE.

RESERVE

� One or more blanks must follow RESERVE.

( Note: ( and ) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired, the (, ), and all parameters between
( and ) should not be specified. If something in the list is desired, then (, ),
and all parameters in the list should be specified as indicated at the left.

qname addr qname addr: RX-type address, or register (2) - (12).

, rname addr: RX-type address, or register (2) - (12).

,rname addr

,

,E

,S

, rname length: symbol, decimal digit, or register (2) - (12).

,rname length Note: rname length must be coded if a register is specified for rname addr
above.

,

,SYSTEMS

)

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 253



Syntax Description

,RET=TEST

,RET=USE

,RET=HAVE

,RET=NONE

,ECB=ecb addr ecb addr: RX-type address, or register (2) - (12).

,UCB=ucb addr ucb addr: RX-type address, or register (2) - (12).

,LOC=BELOW Default: LOC=BELOW

,LOC=ANY

,MASID=matching-asid addr matching-asid addr: A-type address, or register (2) - (12).

,MTCB=matching-tcb addr matching-tcb addr: A-type address, or register (2) - (12).

,RELATED=value value: any valid macro keyword specification.

,LINKAGE=SVC DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

,MF=(E, list addr) list addr: RX-type address, or register (1) - (12).

Parameters
The parameters are explained under the standard form of the RESERVE macro,
with the following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the RESERVE macro.

list addr specifies the area that the system uses to contain the parameters.

Note: If the ECB parameter is specified on the execute form of the macro, it also
must be specified on the list form of the macro. If MASID and MTCB also are
specified on the execute form, MASID=0 and MTCB=0 must be specified in the list
form.

RESERVE macro

254 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 34. RESMGR — Add or delete a resource manager

Description
RESMGR allows an authorized program to add (ADD parameter) or delete
(DELETE parameter) a resource manager routine.

Upon completion of RESMGR ADD, the resource manager is established for a task
or address space. On the TYPE parameter, you choose whether the resource
manager routine receives control when a task (TYPE=TASK) or an address space
(TYPE=ADDRSPC) terminates. On the ROUTINE parameter, you designate the
routine and choose the kind of linkage the routine has with RTM:
v LINK macro
v Branch instruction
v PC instruction
v Reusable LX PC instruction

For information about the uses of resource managers, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM allowing key 0 - 7
Dispatchable unit mode: Task or SRB. However, you cannot issue TCB=CURRENT in

SRB mode.
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller can hold the local lock, depending on whether the

caller is in noncross memory mode or cross memory mode:

v In noncross memory mode, the caller can hold the local
lock for the home (that is, primary) address space.

v In cross memory mode, the caller can hold the local lock
for the primary address space but not for the home
address space.

If the caller holds a local lock, it can also hold the CMS lock.
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 255



Input register information
Before issuing the RESMGR macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
The LINK option on the ROUTINE parameter might degrade the performance of
the system during task and address space termination.

If you specify TCB=ALL and ASID=ALL, the system invokes the resource manager
program for every task termination initiated by the system. You can improve
system performance by specifying a particular task or ASID.

Syntax
The standard form of the RESMGR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede RESMGR.

RESMGR

� One or more blanks must follow RESMGR.

RESMGR macro

256 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

ADD

DELETE

,TOKEN=tokaddr tokaddr: A-type address or register (2) - (12).

,TYPE=ADDRSPC

,TYPE=TASK

,ASID=CURRENT asid: A constant or register (2) - (12).

,ASID=ALL

,ASID=asid

,TCB=CURRENT

,TCB=ALL

,TCB=tcbaddr tcbaddr: A-type address or register (2) - (12).

,TTOKEN=ttoken ttoken: A-type address or register (2) - (12).

,ROUTINE=(LINK, pgname) pgname: C-type constant, A-type address, or register (2) - (12).

,ROUTINE=(BRANCH, pgaddr) pgaddr: A-type address or register (2) - (12).

,ROUTINE=(PC, pcnum) pcnum: A constant or register (2) - (12).

,ROUTINE=(RLXPC,
seqnumpcnum)

seqnumpcnum: A-type address or register (2) - (12).

,ECB=ecbaddr ecbaddr: A-type address or register (2) - (12).

,PARAM=paddr paddr: A-type address or register (2) - (12).

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

ADD
DELETE

Specifies whether a resource manager is to be added or deleted. You must
specify the same values for TYPE, TCB, TTOKEN, and ASID on DELETE as
you specified on those parameters for ADD. On DELETE, you must specify the
token that ADD returned so the system can identify the resource manager that
you want to delete.

Note that you can use RESMGR to delete a resource manager from the
resource manager routine itself.

RESMGR macro

Chapter 34. RESMGR — Add or delete a resource manager 257



,TOKEN=tokaddr
Specifies the address of the fullword where you want the system to store the
token that it returns after an ADD. The token represents the resource manager
that the system added. On DELETE, however, you store the token in this
fullword before invoking the delete function. TOKEN is required for both ADD
and DELETE.

,TYPE=ADDRSPC
,TYPE=TASK

Specifies whether the resource manager is an address space resource manager
(ADDRSPC) or a task resource manager (TASK). The default is address space.
If you specify TYPE=ADDRSPC, you cannot specify TTOKEN=ttoken.

,ASID=CURRENT
,ASID=ALL
,ASID=asid

Specifies the ID of the address space or spaces to be monitored for termination
(TYPE=ADDRSPCE) or the home address space or the primary address space
(TYPE=TASK). If you want to monitor:
v The home address space, specify ASID=CURRENT
v All address spaces, specify ASID=ALL
v A specific address space, specify ASID=asid.

If TYPE=TASK, asid must be the home or primary address space.

,TCB=CURRENT
,TCB=ALL
,TCB=tcbaddr
,TTOKEN=ttoken

Specifies the task that the system is to monitor for termination. If you want to
monitor:
v The current task, specify TCB=CURRENT. Note that a program in SRB mode

or in cross memory mode cannot issue TCB=CURRENT.
If your program is in cross memory mode and you want to monitor a task
in the primary address space, do not specify TCB=CURRENT. In this case,
specify the primary address space through ASID=asid and the task through
TCB=tcbaddr or TTOKEN=ttoken.

v All tasks in the specified address space, specify TCB=ALL. If you specify
TCB=ALL with ASID=ALL, the system monitors all tasks in all address
spaces.

v A task in the primary or home address space, specify TCB=tcbaddr or
TTOKEN=ttoken. Note that TTOKEN is not valid on TYPE=ADDRSPC.
If your program is in cross memory mode and it holds the local lock for the
primary address space, it cannot request monitoring of a task in the home
address space.

,ROUTINE=(LINK, pgname)
,ROUTINE=(BRANCH, pgaddr)
,ROUTINE=(PC, pcnum)
,ROUTINE=(RLXPC, seqnumpcnum)

Specifies:
v the type of linkage to be used by the system when giving control to the

resource manager
v the resource manager to receive control when the task or address space

terminates.

RESMGR macro

258 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



The section on resource managers in z/OS MVS Programming: Authorized
Assembler Services Guide describes the registers on entry, the resource manager
parameter list (RMPL), and some of the responsibilities of the resource
manager.

If you specify LINK, the system uses the LINK service. The resource manager
routine must reside within the Link Pack Area (LPA) or an APF-authorized
library in the LNKLST set that is active when the LINK is issued. The resource
manager receives control in the addressing mode defined for that routine.
pgname is one of the following:
v A character constant of up to 8 characters.
v The address of an eight-byte field. If the name is less than eight characters,

left-justify the name and pad with blanks on the right to make up the eight
characters.

If you specify PC, the resource manager receives control through a PC
instruction. pcnum is the PC number of the PC instruction that gives control to
the resource manager. The address space from which the resource manager is
called must have the authority to issue the PC.

If you specify RLXPC, the resource manager receives control through a
reusable LX PC instruction. pcnumseqnum is the 8-byte area that identifies the
PC instruction that gives control to the resource manager. This 8-byte area
consists of the following:
v The 4-byte sequence number of the LX with which the PC number is

associated (returned within the output area of the LXRES macro when
REUSABLE=YES and EXLIST were specified) followed by

v The 4-byte PC number

The address space from which the resource manager is called must have the
authority to issue the PC.

To code: Specify the 8-byte area, or its address in register (2) - (12).

If you specify BRANCH, the resource manager receives control in 31-bit
addressing mode and in primary ASC mode through a branch instruction, and
the resource manager (whether address space termination resource manager or
task termination resource manager) must reside in storage addressable from all
address spaces in which it can get control. Note that for address space
termination, resource managers run in master's address space (ASID 1). pgaddr
is the address of the resource manager.

ROUTINE is required on the ADD request.

,ECB=ecbaddr
The processing to delete a resource manager might not be complete when
RESMGR returns. If you require notification after DELETE has completed, code
ECB. The ECB will be posted when DELETE is completed. Note, however, that
DELETE may already be complete upon return, in which case the system does
not post any completion ECB. Check the return code from RESMGR before you
wait on the ECB.

The system associates the completion ECB with the home address space of the
DELETE requestor. ECB is valid only for DELETE. You must specify either of
the following when you specify ECB:
v TYPE=ADDRSPC and ASID=ALL
v TYPE=TASK and ASID=ALL and TCB=ALL.

RESMGR macro

Chapter 34. RESMGR — Add or delete a resource manager 259



,PARAM=paddr
Specifies the address of an 8-byte field containing parameter data to be used
by the resource manager when it receives control. The parameter data must
reside in the caller's primary address space. PARAM is valid only with ADD. A
copy of the 8-byte field is passed to the resource manager as the second
parameter.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ABEND codes
None.

Return codes from the ADD function
Return codes from the ADD function follow. A return code greater than 4 indicates
that RESMGR did not establish a resource manager.

Table 40. Return Codes from the ADD Function

Decimal Return
Code

Meaning and Action

0 Meaning: The resource manager was successfully established. The
word provided by the TOKEN parameter contains the token required to
delete the resource manager.

Action: None.

12 Meaning: Program error. The caller did not provide the address of a
word to contain the token of the new resource manager.

Action: Issue the macro again with the TOKEN parameter.

16 Meaning: Program error. The caller did not provide the resource
manager description through the ROUTINE parameter.

Action: Issue the macro again with the ROUTINE parameter.

20 Meaning: Program error. The TCB address provided did not represent a
valid TCB.

Action: Issue the macro again and ensure that the TCB address
represents a valid TCB.

24 Meaning: Program error. The ASID provided did not represent a valid
ASCB.

Action: Issue the macro again and ensure that the ASCB address
represents a valid ASCB.

28 Meaning: Program error. The request type was not ADD or DELETE.

Action: Ensure that the parameter list created by the RESMGR macro is
not inadvertently overlaid or the contents lost due to an assembler
coding error.

RESMGR macro

260 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 40. Return Codes from the ADD Function (continued)

Decimal Return
Code

Meaning and Action

32 Meaning: Environmental error. RESMGR was unable to obtain storage
for a work area it needed to process the request.

Action: Rerun your program one or more times. If the problem persists,
check with the operator to see if another user in the installation is
causing the problem, or if the entire installation is experiencing storage
constraint problems.

36 Meaning: Program error. The caller held an incorrect lock.

Action: Ensure only the allowable locks are held before the macro is
issued.

40 Meaning: Program error. It is not valid to establish a task resource
manager for a specific task that is not in the home or primary address
space of the requestor.

Action: Issue the RESMGR macro for a task within the home or
primary address space.

44 Meaning: System error. An unrecoverable error occurred while
processing the request.

Action: Rerun your program one or more times. If the problem persists,
record the return code and supply it to the appropriate IBM support
personnel.

48 Meaning: Environmental error. RESMGR was unable to obtain storage
to maintain information about RESMGR.

Action: Rerun your program one or more times. If the problem persists,
check with the operator to see if another user in the installation is
causing the problem, or if the entire installation is experiencing storage
constraint problems.

52 Meaning: Program error. The caller is not authorized to use RESMGR.

Action: Ensure that your program has the proper authorization.

56 Meaning: Environmental error. The TCB was already terminating and
no more dynamic resource managers can be established for it.

Action: Attempt to establish the resource manager before the task starts
to terminate.

60 Meaning: Environmental error. The ASCB was already in termination
and no more dynamic resource managers can be established for it.

Action: Attempt to establish the resource manager before the address
space starts to terminate.

64 Meaning: Program error. The TTOKEN parameter specified a task in an
address space other than the home address space.

Action: Issue the RESMGR macro from within the address space of the
task represented by the specified TTOKEN.

Return codes from the DELETE function
Return codes from the DELETE function follow. A return code greater than 8
indicates that RESMGR did not delete a resource manager.

RESMGR macro

Chapter 34. RESMGR — Add or delete a resource manager 261



Table 41. Return Codes from the DELETE Function

Decimal Return
Code

Meaning and Action

0 Meaning: The resource manager was successfully deleted. An ECB is
never posted for this return code.

Action: None.

4 Meaning: The resource manager is currently in use. It has been queued
for deletion. The ECB, if provided, will be posted when the delete
process has completed.

Action: None.

8 Meaning: The resource manager was queued for deletion by a previous
request. It is still active and will be deleted as soon as it is no longer in
use.

Action None.

12 Meaning: Program error. The caller did not provide a token to
RESMGR.

Action: Specify the TOKEN parameter and value that represents the
resource manager to be deleted.

16 Meaning: Program error. The token provided did not represent a
currently established resource manager.

Action: Ensure that the token was properly saved after the resource
manager was established. Also ensure that the resource manager had
not previously been deleted either directly through RESMGR or
indirectly through task or address space termination.

20 Meaning: Program error. The TCB address provided did not represent a
valid TCB.

Action: Ensure that the TCB represents a valid TCB within the home
address space.

24 Meaning: Program error. The ASID provided did not represent a valid
ASCB.

Action: Ensure that the ASCB address represents a valid ASCB.

28 Meaning: Program error. The request type was not ADD or DELETE.

Action: Ensure that the parameter list created by the RESMGR macro
was not inadvertently overlaid or its contents lost due to an assembler
coding error.

32 Meaning: Environmental error. RESMGR was unable to obtain storage
for a work area it needed to process the request.

Action: Rerun your program one or more times. If the problem persists,
check with the operator to see if another user in the installation is
causing the problem, or if the entire installation is experiencing storage
constraint problems.

36 Meaning: Program error. The caller held an incorrect lock.

Action: Ensure only the allowable system locks are held prior before
the macro is issued.

RESMGR macro

262 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 41. Return Codes from the DELETE Function (continued)

Decimal Return
Code

Meaning and Action

40 Meaning: Program error. It is not valid to delete a task resource
manager for a specific task that is not in the home or primary address
space of the requestor.

Action: Issue the RESMGR macro again for a task within the home or
primary address space.

44 Meaning: System error. An unrecoverable error occurred while
processing the request.

Action: Rerun your program one or more times. If the problem persists,
record the return code and supply it to the appropriate IBM support
personnel.

48 Meaning: Program error. The ECB parameter was specified but is not
supported for the particular type of delete request.

Action: Refer to the ECB parameter description to ensure proper usage
of this parameter.

52 Meaning: The caller is not authorized to use RESMGR.

Action: Ensure that your program has the proper authorization.

64 Meaning: Program error. The TTOKEN parameter specified a task in an
address space other than the home address space.

Action: Issue the RESMGR macro from within the address space of the
task represented by the specified TTOKEN.

Example 1
Establish a resource manager that receives control for every address space
termination and every task termination. This resource manager is equivalent to
having included the name IAMARESM in the IEAVTRML table.
RESMGR ADD,TOKEN=MYTOKEN,TYPE=ADDRSPC,ASID=ALL,

ROUTINE=(LINK,’IAMARESM’)

RESMGR ADD,TOKEN=MYTOKEN,TYPE=TASK,ASID=ALL,TCB=ALL,
ROUTINE=(LINK,’IAMARESM’)

Example 2
Establish a resource manager for the current task, using a branch interface and
specifying the routine using register notation:

L R2,RMADDR Obtain address of resource manager routine
RESMGR ADD,TOKEN=MYTOKEN,TYPE=TASK,ASID=ALL,

TCB=ALL,ROUTINE=(BRANCH,(R2))

EXTRN RMROUTIN
RMADDR DC A(RMROUTIN) Address of resource manager routine

RESMGR - List form
Use the list form of RESMGR together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area
of storage, which the execute form of the macro uses to store the parameters.

RESMGR macro

Chapter 34. RESMGR — Add or delete a resource manager 263



Syntax
The list form of the RESMGR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede RESMGR

RESMGR

� One or more blanks must follow RESMGR

ADD

DELETE

,TOKEN=tokaddr tokaddr: A-type address or register (2) - (12).

,TYPE=ADDRSPC

,TYPE=TASK

,ASID=CURRENT asid: A constant.

,ASID=ALL

,ASID=asid

,TCB=CURRENT

,TCB=ALL

,TCB=tcbaddr tcbaddr: A-type address

,TTOKEN=ttoken ttoken: A-type address

,ROUTINE=(LINK, pgname) pgname: C-type constant or A-type address.

,ROUTINE=(BRANCH, pgaddr) pgaddr: A-type address.

,ROUTINE=(PC, pcnum) pcnum: A constant.

,ROUTINE=(RLXPC,
seqnumpcnum)

seqnumpcnum: A-type address.

,ECB=ecbaddr ecbaddr: A-type address.

,PARAM=paddr paddr: A-type address.

,RELATED=value value: Any valid macro keyword specification.

,MF=L

RESMGR macro

264 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

Parameters
The parameters are explained under the standard form of the RESMGR macro with
the following exceptions:

,MF=L
Specifies the list form of the RESMGR macro.

RESMGR - Execute form
Use the execute form of RESMGR together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form. You do not have to
specify any parameters except MF on the execute form. For the parameters you do
not specify on the execute form, RESMGR uses the parameters on the list form or
their defaults.

Syntax
The execute form of the RESMGR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede RESMGR

RESMGR

� One or more blanks must follow RESMGR

MF=(E,listaddr) listaddr: RX-type address or register (2) - (12).

,ADD

,DELETE

,TOKEN=tokaddr tokaddr: A-type address or register (2) - (12).

,TYPE=ADDRSPC

,TYPE=TASK

,ASID=CURRENT asid: A constant or register (2) - (12).

,ASID=ALL

,ASID=asid

RESMGR macro

Chapter 34. RESMGR — Add or delete a resource manager 265



Syntax Description

,TCB=CURRENT

,TCB=ALL

,TCB=tcbaddr tcbaddr: RX-type address or register (2) - (12).

,TTOKEN=ttoken ttoken: RX-type address or register (2) - (12).

,ROUTINE=(LINK, pgname) pgname: a C-type constant, RX-type address, or register (2) - (12).

,ROUTINE=(BRANCH, pgaddr) pgaddr: RX-type address or register (2) - (12).

,ROUTINE=(PC, pcnum) pcnum: A constant, an expression, or register (2) - (12).

,ROUTINE=(RLXPC,
seqnumpcnum)

seqnumpcnum: RX-type address or register (2) - (12).

,ECB=ecbaddr ecbaddr: RX-type address or register (2) - (12).

,PARAM=paddr paddr: RX-type address or register (2) - (12).

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained under the standard form of the RESMGR macro with
the following exceptions:

MF=(E,listaddr)
E specifies the execute form of the RESMGR macro and listaddr specifies the
address of the parameter list.

RESMGR macro

266 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 35. RESUME — Resume execution of a suspended
RB

Description

Note: To resume or purge a suspended SRB, use the variation of the RESUME
macro described under Chapter 36, “RESUME — Resume or purge a suspended
SRB,” on page 271.

To resume a request block (RB) that was suspended through the SUSPEND macro,
use this variation of the RESUME macro.

Environment
Requirements for the calling program's environment are:

Environmental factor Requirement
Minimum authorization: Supervisor state with PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: Any
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Can be either enabled or disabled
Locks: For RETURN=N, cannot hold local lock
Control parameters: Must be in the caller's primary address space

Programming requirements
The task to be resumed must be in the primary address space.

The caller must include the IHAPSA and CVT mapping macros.

Restrictions
The list and execute forms of the RESUME macro are not valid for resuming
execution of a suspended RB.

Input register information
Before issuing the RESUME macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

© Copyright IBM Corp. 1988, 2015 267



Register
Contents

0 Reason code

1 Used as a work register by the system

2-3 Unchanged

4-5 Used as work registers by the system

6-10 Unchanged

11-14 Used as work registers by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The RESUME macro is coded as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede RESUME.

RESUME

� One or more blanks must follow RESUME.

TCB=(4) Default: Register 4 contains TCB address.

TCB=tcbaddr tcbaddr: A-type address or registers (2) - (12).

,RB=(5) Default: Register 5 contains RB address.

,RB=rbaddr rbaddr: A-type address or registers (2) - (12).

,RETURN=Y Default: RETURN=Y

,RETURN=N

,MODE=UNCOND Default: MODE=UNCOND

RESUME macro for RBs

268 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,MODE=COND

,ASYNC=Y Default: ASYNC=N

,ASYNC=N

,ASCB=ascbaddr Default: ASCB address of the home address space.

ascbaddr: RX-type address or registers (1) or (2) - (3) or (6) - (12).

Parameters
The parameters are explained as follows:

TCB=(4)
TCB=tcbaddr

Specifies the TCB address of the task to be resumed. Register 4 is the default; it
is assumed to contain the TCB address.

Note: The TCB resides in storage below 16 megabytes.

,RB=(5)
,RB=rbaddr

Specifies the address of the RB to be resumed. Register 5 is the default; it is
assumed to contain the address of the RB to be resumed.

Note: The RB resides in storage below 16 megabytes.

,RETURN=Y
,RETURN=N

Specifies whether control is to be returned to the caller (RETURN=Y) or not
(RETURN=N). RETURN=N causes RESUME to make the specified TCB/RB
dispatchable and gives the specified TCB/RB control directly. Only programs
running under an SRB in primary ASC mode can issue RETURN=N. If you
specify RETURN=N, you must also specify MODE=UNCOND and ASYNC=N
and must not specify ASCB.

,MODE=UNCOND
,MODE=COND

If MODE=COND is specified, the action RESUME takes if the function cannot
be completed synchronously depends on the ASYNC option. If ASYNC=Y is
specified, RESUME makes a conditional attempt to acquire an SRB. If an SRB is
available, it is scheduled to complete the RESUME function asynchronously. If
ASYNC=N is specified explicitly or as a default and the RESUME cannot
immediately complete the function, the system places return code 04 in register
15 and returns to the caller.

If MODE=UNCOND is specified, the action RESUME takes also depends on
the ASYNC option. If ASYNC=Y is specified, RESUME makes an unconditional
request for an SRB, and completes the RESUME function asynchronously. If
ASYNC=N is specified explicitly or as a default, RESUME unconditionally
obtains the CML lock of the ASCB whose TCB or RB is to be resumed. The
TCB or RB is resumed before control returns to the caller.

,ASYNC=Y

RESUME macro for RBs

Chapter 35. RESUME — Resume execution of a suspended RB 269



,ASYNC=N
Specifies whether the RESUME is to be completed asynchronously (Y) or not
(N).

,ASCB=ascbaddr
Specifies the address of the ASCB whose TCB or RB is to be resumed. The
caller must establish current addressability to the address space before calling
RESUME. If this option is not specified, the home address space is assumed.
This option must be specified if ASYNC=Y is specified.

Note: The ASCB resides in storage below 16 megabytes.

ABEND codes
070

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return codes
When the RESUME macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 42. Return Codes for the RESUME Macro for RBs

Return Code Meaning and Action

00 Meaning: A normal, synchronous RESUME completed the function.

Action: None.

04 Meaning: Environmental error. For MODE=COND and ASYNC=N, the RESUME
cannot complete the function.

For MODE=COND or MODE=UNCOND and ASYNC=Y, an SRB is completing
the function asynchronously.

Action: None required. However, you might take some action based upon your
application.

08 Meaning: Environmental error. For MODE=COND and ASYNC=Y the SRB
cannot be acquired and RESUME cannot complete the function.

Action: None required. However, you might take some action based upon your
application.

Example
Resume execution of the task specified in the address labeled CURRTCB. Use the
request block address in register 5. Pass control back to the task (the issuer is
currently in SRB mode and this step terminates SRB mode processing).
RESUME TCB=CURRTCB,RB=(5),RETURN=N

RESUME macro for RBs

270 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 36. RESUME — Resume or purge a suspended SRB

Description

Note: To resume an RB, use the variation of the RESUME macro described under
Chapter 35, “RESUME — Resume execution of a suspended RB,” on page 267.

To resume or purge a suspended supervisor request block (SRB), use this variation
of the RESUME macro. Optionally, the RESUME macro enables the caller to
provide a fullword of data (the resume code) to the suspended SRB routine.

Environment
Requirements for the calling program are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW key 0 - 7
Dispatchable unit mode: SRB or task
Cross memory mode: Any
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Can be enabled or disabled for interrupts
Locks: Can hold no locks or can hold the local lock, the CML lock,

the CMS lock, or the CPU lock
Control parameters: Must be in the caller's primary address space or addressable

through the caller's dispatchable unit access list (DU-AL)

Programming requirements
Programming requirements for the calling program are:
v Before issuing the RESUME macro, ensure that the global symbol &SYSASCE is

correctly set to indicate the ASC mode of your program. To test or set this global
symbol, use the SYSSTATE macro.

v Programs in AR ASC mode must ensure that parameter addresses are
ALET-qualified.

Restrictions
None.

Input register information
Before issuing the RESUME macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers

© Copyright IBM Corp. 1988, 2015 271



containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

When control returns to the caller, the access registers contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14-15 Used as work registers by the macro

Syntax
The standard form of the RESUME macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede RESUME.

RESUME

� One or more blanks must follow RESUME.

SPTOKEN=sptoken addr sptoken addr: RX-type address.

,PURGE=NO Default: PURGE=NO.

,PURGE=YES

,RSCODE=rscode addr rscode addr: RX-type address.

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained as follows:

RESUME Macro for SRBs

272 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



SPTOKEN=sptoken addr
Specifies the address of an 8-byte location that contains the system-provided
suspend token. The suspend token identifies the SRB that is to be resumed or
purged.

,PURGE=NO
,PURGE=YES

Indicates whether the system is to resume (PURGE=NO) or purge
(PURGE=YES) the SRB. The default is PURGE=NO. A purged SRB never
regains control and cannot be resumed. Do not use RSCODE with
PURGE=YES.

,RSCODE=rscode addr
Specifies the address of a fullword where you can place a value that the
system will return to the resumed SRB routine. Code RSCODE only if you also
code PURGE=NO or take the default. If you omit RSCODE, the system returns
a resume code of zero to the resumed SRB routine.

,RELATED=value
Provides information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and content of the
information provided is at the discretion of the user and may be any valid
coding values.

ABEND codes
17

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return codes
When the RESUME macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 43. Return Codes for the RESUME Macro for SRBs

Return Code Meaning and Action

00 Meaning: The system has scheduled the suspended SRB to be resumed.

Action: None.

04 Meaning: The address space in which the suspended SRB would have executed
has been scheduled for termination. The system will purge the suspended SRB.

Action: None required. However, you might take some action based upon your
application.

08 Meaning: The suspend token (SPTOKEN) does not identify a currently
suspended SRB routine. The SRB may have already been resumed or purged.

Action: None required. However, you might take some action based upon your
application.

24 Meaning: System error. An error occurred while trying to resume the suspended
SRB. The SRB cannot be resumed.

Action: Retry the request.

Example
Resume the execution of a suspended SRB.

RESUME Macro for SRBs

Chapter 36. RESUME — Resume or purge a suspended SRB 273



...
RESUME SPTOKEN=TOKEN,PURGE=NO,RSCODE=RCODE...
DS F

RCODE DC X’99999999’
TOKEN DS CL8...

RESUME - Resume or purge an SRB (List form)
For programs that require reentrant code, use the list form of the RESUME macro
together with the execute form of the macro. The list form of the macro defines an
area of storage that the execute form of the macro uses to store parameter values.

Syntax
The list form of the RESUME macro is valid only for resuming an SRB. It is
written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede RESUME.

RESUME

� One or more blanks must follow RESUME.

MF=L

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained under the standard form of the RESUME macro with
the following exception:

MF=L
Requests the list form of RESUME.

RESUME - Resume or purge an SRB (Execute form)
For programs that require reentrant code, use the execute form of the RESUME
macro together with the list form. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the RESUME macro is valid only for resuming an SRB. It is
written as follows:

RESUME Macro for SRBs

274 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede RESUME.

RESUME

� One or more blanks must follow RESUME.

SPTOKEN=sptoken addr sptoken addr: RX-type address.

,MF=(E,cntl addr) cntl addr: RX-type address or register (2) - (12)

,RSCODE=rscode addr rscode addr: RX-type address.

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained under the standard form of the RESUME macro with
the following exceptions:

,MF=(E,cntl addr)
Requests the execute form of RESUME. cntl addr must be the address of the
parameter list provided by the list form of the macro.

RESUME Macro for SRBs

Chapter 36. RESUME — Resume or purge a suspended SRB 275



RESUME Macro for SRBs

276 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 37. RISGNL — Issue remote immediate signal

Description
The RISGNL macro uses the emergency signal (EMS) order code of the signal
processor (SIGP) instruction to invoke the execution of a specified software
program on a specific processor in a multiprocessing configuration. The program
may be requested to execute in parallel or serially with the function requesting the
program. The specified software program (receiving routine) gets control disabled,
in key 0, and supervisor state. The receiving routine cannot enable for I/O or
external interrupts, request locks, or issue SVCs. In addition, the receiving routine
must return via the address in register 14.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or secondary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks required
Control parameters: None

Programming requirements
v The receiving routine must be loaded into page-fixed, common storage.
v The caller must include the CVT mapping macro.

Restrictions
If the receiving routine establishes an FRR, the FRR should not depend on the
storage areas passed to it by the signalling routine. When alternate CPU recovery
(ACR) is active, the signalling routine might receive control from RISGNL before
the receiving routine's FRR gets control. IBM recommends that the receiving
routine's FRR access only storage areas owned independently of the signalling
routine. If the receiving routine's FRR attempts to access storage and the signalling
routine has already freed the storage, the FRR might abnormally end.

Input register information
Before issuing the RISGNL macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers

© Copyright IBM Corp. 1988, 2015 277



containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-10 Unchanged

11-12 Used as work registers by the system

13 Unchanged

14 Address of calling program

15 Return code

Performance implications
None.

Syntax
The RISGNL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede RISGNL.

RISGNL

� One or more blanks must follow RISGNL.

PARALLEL

SERIAL

,CPU=PCCA addr PCCA addr: RX-type address, or register (1).

,EP=entry name addr entry name addr: RX-type address, or register (12).

,PARM=parm addr parm addr: RX-type address, or register (11).

Parameters
The parameters are explained as follows:

PARALLEL

RISGNL macro

278 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



SERIAL
Specifies that control is to be returned to the caller when the specified
receiving routine has been given control (PARALLEL) or has completed
execution (SERIAL) on the designated processor.

,CPU=PCCA addr
Specifies the address of the physical configuration communication area (PCCA)
of the processor on which the function is to be performed.

Note: The PCCA must reside in 24-bit addressable storage.

,EP=entry name addr
Specifies the address of the receiving routine to be executed on the specified
processor. The receiving routine will get control in the same addressing mode
as the macro issuer.

,PARM=parm addr
Specifies the address of a user-defined fullword parameter to be passed to the
receiving routine. When the receiving routine receives control, general purpose
register one points to a fullword parameter.

ABEND codes
07B

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return codes
When the RISGNL macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 44. Return Codes for the RISGNL Macro

Return Code Meaning and Action

00 Meaning: Specified receiving routine has been given control or has completed
execution, as requested.

Action: None.

04 Meaning: Environmental error. Function not initiated because addressed
processor not online. If it appeared to be online, it is no longer in the
configuration.

Action: None required. However, you might take some action based upon your
application.

14 Meaning: Environmental error. Function not initiated because addressed
processor was taken offline during RISGNL processing.

Action: None required. However, you might take some action based upon your
application.

Example 1
The routine whose address is in register 12 is to be given control on the processor
whose PCCA address is in register 1. Return control to the caller when the
specified receiving routine has been given control.
RISGNL PARALLEL,CPU=(1),EP=(12)

RISGNL macro

Chapter 37. RISGNL — Issue remote immediate signal 279



Example 2
The routine whose address is in register 12 is to be given control on the processor
whose PCCA address is in register 1. The routine will complete before the caller of
RISGNL receives control again. Register 11 contains the address of a parameter to
be passed to the receiving routine.
RISGNL SERIAL,CPU=(1),EP=(12),PARM=(11)

RISGNL macro

280 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 38. SCHEDIRB — Schedule IRB

Description
Use the SCHEDIRB macro to initialize and schedule asynchronous exits.

Using the SCHEDIRB macro, you can:
v Schedule the asynchronous exit to run under any task in the current address

space.
v Schedule the asynchronous exit to run prior to any RB under the current task in

the current address space.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task or SRB. Task mode is required if the RBPTR keyword is

specified.
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: Local lock must be held for the address space where the

asynchronous exit will get control.
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the SCHEDIRB macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

© Copyright IBM Corp. 1988, 2015 281



When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the SCHEDIRB macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SCHEDIRB.

SCHEDIRB

� One or more blanks must follow SCHEDIRB.

EPPTR=ep addr ep addr: RX-type address or address in register (2) - (12).

,TCBPTR=tcb addr tcb addr: RX-type address or address in register (2) - (12).

,RBPTR=rb addr rb addr: RX-type address or address in register (2) - (12).

,IQEPTR=iqe addr iqe addr: RX-type address or address in register (2) - (12).

RETCODE is the only parameter you can specify with IQEPTR.

,MODE=PROB Default: MODE=PROB

,MODE=SUPR

,KEY=PROP Default: KEY=PROP

,KEY=SUPR

,SVAREA=NO Default: SVAREA=NO

,SVAREA=YES SVAREA=YES can only be specified with TCBPTR

SCHEDIRB macro

282 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,PARAMPTR=parm addr parm addr: RX-type address or address in register (2) - (12).

,RETCODE=ret code ret code: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

EPPTR=ep addr
Specifies a required input parameter containing the 31-bit entry point address
of the asynchronous exit routine. The exit routine will get control in 31-bit
addressing mode.

,TCBPTR=tcb addr
,RBPTR=rb addr
,IQEPTR=iqe addr

TCBPTR specifies an input parameter containing the address of a TCB in the
current address space. The asynchronous exit will run under the TCB specified.
Use TCBPTR when you want your asynchronous exit to run under a particular
task.

RBPTR specifies an input parameter containing the address of an RB under the
current TCB in the current address space. The asynchronous exit will run
directly prior to the specified RB. Use RBPTR when you want your
asynchronous exit to run before a particular RB.

IQEPTR specifies an input parameter containing the address of an IQE
initialized using the CIRB macro. If you specify IQEPTR, SCHEDIRB will not
obtain a new IQE/IRB pair for scheduling the asynchronous exit.

This option is only valid if you use the CIRB macro to create and initialize an
IRB for the asynchronous exit. For more information on using the CIRB macro,
see the z/OS MVS Programming: Authorized Assembler Services Guide.

RETCODE is the only optional parameter you can specify with IQEPTR.

Note:

1. The caller must be in task mode to use the RBPTR parameter.
2. You cannot specify the current RB (the RB of the calling program), or an RB

that is not on the current task's RB chain on the RBPTR parameter.
3. For best results with the RBPTR parameter, make sure that the calling

program is running under an IRB. If the calling program is not running
under an IRB, and the system has suppressed asynchronous exits or is in
process-must-complete mode, the calling program will get a nonzero return
code.
You can make sure that the calling program is running under an IRB by
first invoking the SCHEDIRB macro with the TCBPTR option, or by
invoking the STIMER macro.

,MODE=PROB
,MODE=SUPR

Specifies whether the asynchronous exit routine is to operate in problem
program (PROB) or supervisor (SUPR) state.

,KEY=PROP

SCHEDIRB macro

Chapter 38. SCHEDIRB — Schedule IRB 283



,KEY=SUPR
Specifies that the asynchronous exit routine run in the key propagated from
the target TCB (PROP) or in supervisor key zero (SUPR).

,SVAREA=NO
,SVAREA=YES

Specifies whether to obtain a 72-byte register save area from the virtual storage
assigned to the task specified by the TCBPTR keyword. SVAREA=YES can only
be specified with TCBPTR.

,PARAMPTR=parm addr
Specifies an input parameter containing the address of the parameter list to be
passed to the asynchronous exit routine.

RETCODE=ret code
Specifies a storage location or register where the system is to store the return
code. The return code is also in GPR 15.

ABEND codes
The SCHEDIRB macro issues the X'AC7' abend code. See z/OS MVS System Codes
for more information.

Return and reason codes
When the SCHEDIRB macro returns control to your program, GPR 15 and retcode,
if you specified RETCODE, contains a return code. The return codes are shown in
the following table.

Table 45. Return Codes for the SCHEDIRB Macro

Return Code
Hexadecimal
(Decimal)

Meaning and Action

00 Meaning: Successful completion.

Action: None.

08
(8)

Meaning: Program error. The caller invoked SCHEDIRB with the RBPTR
parameter, but RBPTR is not valid when the system has suppressed
asynchronous exits unless the calling program is running under an IRB.

Action: Ensure that the calling program is running under an IRB when you
invoke SCHEDIRB by first invoking the SCHEDIRB macro with the TCBPTR
option or by invoking the STIMER macro.

0C
(12)

Meaning: Program error. The caller invoked SCHEDIRB with the RBPTR
parameter, but RBPTR is not valid when the current task is in
process-must-complete mode unless the calling program is running under an
IRB.

Action: Ensure that the calling program is running under an IRB when you
invoke SCHEDIRB by first invoking the SCHEDIRB macro with the TCBPTR
option or by invoking the STIMER macro.

10
(16)

Meaning: Program error. See Action.

Action: Make sure that your program does not specify one of the following on
the RBPTR parameter:

v The current RB (the RB of the caller).

v An RB that is not on the current task's RB chain.

SCHEDIRB macro

284 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



SCHEDIRB - List form
Use the list form of the SCHEDIRB macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the SCHEDIRB macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SCHEDIRB macro.

SCHEDIRB macro

� One or more blanks must follow SCHEDIRB macro.

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the SCHEDIRB macro
with the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the SCHEDIRB macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

SCHEDIRB - Execute form
Use the execute form of the SCHEDIRB macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

SCHEDIRB macro

Chapter 38. SCHEDIRB — Schedule IRB 285



Syntax
The execute form of the SCHEDIRB macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SCHEDIRB macro.

SCHEDIRB macro

� One or more blanks must follow SCHEDIRB macro.

EPPTR=ep addr ep addr: RX-type address or address in register (2) - (12).

,TCBPTR=tcb addr tcb addr: RX-type address or address in register (2) - (12).

,RBPTR=rb addr rb addr: RX-type address or address in register (2) - (12).

,IQEPTR=iqe addr iqe addr: RX-type address or address in register (2) - (12).

RETCODE is the only parameter you can specify with IQEPTR.

,MODE=PROB Default: MODE=PROB

,MODE=SUPR

,KEY=PROP Default: KEY=PROP

,KEY=SUPR

,SVAREA=NO Default: SVAREA=NO

,SVAREA=YES SVAREA=YES can only be specified with TCBPTR

,PARAMPTR=parm addr parm addr: RX-type address or address in register (2) - (12).

,RETCODE=ret code ret code: RX-type address or address in register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the SCHEDIRB macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the SCHEDIRB macro.

SCHEDIRB macro

286 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

SCHEDIRB macro

Chapter 38. SCHEDIRB — Schedule IRB 287



SCHEDIRB macro

288 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 39. SCHEDULE — Schedule a service request block
(SRB)

IBM recommends that you use the IEAMSCHD macro rather than SCHEDULE.

Description
Use the SCHEDULE macro to schedule a service request block (SRB) for
asynchronous execution. The SRB may be scheduled for execution in any address
space and may be scheduled at either global or local priorities.

A global SRB has a priority that is greater than, and independent of, any address
space priority. A local SRB has a priority within the specific address space in which
it executes, but still has a priority greater than that of any task within the address
space.

On the SRB parameter, you specify the address of the SRB. See the section on
scheduling SRBs in z/OS MVS Programming: Authorized Assembler Services Guide for
information about obtaining storage for the SRB and initializing the fields in the
SRB.

Environment
The requirements for the caller when MODE=FULLXM is specified on the
SCHEDULE macro are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key zero
Dispatchable unit mode: Task or SRB
Cross memory mode: Any
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: Any locks may be held
Storage requirements: The SRB to be scheduled must be in fixed, commonly

addressable storage, with any storage key (0-7).

The requirements for the caller when MODE=NONXM is specified on the
SCHEDULE macro are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key zero
Dispatchable unit mode: Task or SRB
Cross memory mode: Any
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: Any locks may be held
Storage Requirements: The SRB to be scheduled must be in fixed, key 0, common

storage.

© Copyright IBM Corp. 1988, 2015 289



Programming requirements
The scheduling program must obtain 44 bytes of storage for the SRB and initialize
certain fields, as described in the section on scheduling SRBs in z/OS MVS
Programming: Authorized Assembler Services Guide.

The scheduling program that builds the SRB must include the IHASRB mapping
macro, the CVT mapping macro with DSECT=YES specified, and the IHAPSA
mapping macro.

Restrictions
Address space resource managers cannot use the STOKEN parameter.

Input register information
Before issuing the SCHEDULE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The SCHEDULE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

SCHEDULE macro

290 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

� One or more blanks must precede SCHEDULE.

SCHEDULE

� One or more blanks must follow SCHEDULE.

SRB=SRB addr SRB addr: RX-type address, or register (1) or (2) - (12).

,SCOPE=LOCAL Default: SCOPE=LOCAL

,SCOPE=GLOBAL

,LLOCK=NO Default: LLOCK=NO

,LLOCK=YES

,MODE=NONXM Default: MODE=NONXM

,MODE=FULLXM Do not specify DISABLED or STOKEN when specifying MODE=FULLXM.

,FRR=NO Default: FRR=NO

,FRR=YES

,DISABLED

,STOKEN=stoken addr stoken addr: RX-type address

,FEATURE=CRYPTO

Parameters
The parameters are explained as follows:

SRB=SRB addr
Specifies the address of the service request block (SRB).

,SCOPE=LOCAL
,SCOPE=GLOBAL

Specifies whether the service is to be scheduled at a local or global priority.

,LLOCK=NO
,LLOCK=YES

Specifies whether the SRB is to receive control with the LOCAL lock held.

Note: CML (cross memory local) lock means the local lock of an address space
other than the home address space. LOCAL lock means the local lock of the
home address space. When written in lower case, local lock means any
local-level lock, either the LOCAL or a CML lock.

,MODE=NONXM

SCHEDULE macro

Chapter 39. SCHEDULE — Schedule a service request block (SRB) 291



,MODE=FULLXM
Specifies whether or not the SRB routine receives a copy of the scheduling
program's dispatchable unit access list (DU-AL), and it receives control in the
scheduling program's current cross memory environment.

When you specify NONXM, the SRB routine receives control in noncross
memory mode, and it receives an empty DU-AL. The SRB's primary,
secondary, and home address spaces are all equal to the contents of SRBASCB.

When you specify FULLXM:
v The SRB routine will be able to access a copy of the scheduling program's

DU-AL, with the exception of any subspace entries in the scheduling
program's DU-AL. The system does not copy subspace entries. If the
scheduling program establishes addressability to any new data spaces after
the SRB is scheduled, the SRB routine will not have access to the new data
space. See the discussion on access lists in z/OS MVS Programming: Extended
Addressability Guide for more details about how the system copies a DU-AL.

v The SRB routine will receive control in the scheduling program's current
cross memory environment.

v Addressing is the following:
– Primary is the scheduling program's primary
– Secondary is the scheduling program's secondary
– Home is the scheduling program's home

When you specify FULLXM, a DU-AL with more than 256 entries is not
available to the scheduled SRB routine until the SRB routine is dispatched. If
an error occurs before the SRB routine is dispatched, the DU-AL might not be
available to the SRB routine's FRR.

When you specify FULLXM, you cannot:
v Specify STOKEN or DISABLED with this parameter.
v Use the contents of SRBASCB because it does not contain relevant

information for this type of SCHEDULE invocation.

,FRR=NO
,FRR=YES

Specifies whether the SRB is to receive control with recovery established. If
FRR=YES is specified, the user must place the address of the FRR in the field
SRBFRRA of the SRB. Before the SRB receives control, the system adds the FRR
to the FRR stack. When you specify YES, the system passes a 24-byte FRR
parameter area address to the SRB routine in register 2. If the scheduling
program specifies MODE=FULLXM and FRR=YES, the recovery routine will be
established with SETFRR MODE=FULLXM. If the scheduling program specifies
MODE=NONXM and FRR=YES, the recovery routine will be established with
SETFRR MODE=HOME.

,DISABLED
Specifies that the calling program is running disabled. DISABLED should be
specified only when the calling program is disabled for I/O or external
interrupts.

,STOKEN=stoken addr
Specifies the address of the 8-byte STOKEN of the address space in which the
SRB routine is to run. SCHEDULE verifies that SRBASCB represents the same
address space that the STOKEN identifies and that the address space is still
active. If the address space is different or the address space is not active, the

SCHEDULE macro

292 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



system abends the caller. This action prevents a scheduled SRB from running
in an address space other than the one intended.

,FEATURE=CRYPTO
Specifies that the SRB routine must run on a processor that has an Integrated
Cryptographic Feature (ICRF) associated with it. When you specify this
parameter, the system assigns the correct processor affinity for the routine and
overrides any affinity assigned for the routine in the SRBCPAFF field of the
SRB. Use this parameter only for routines whose exclusive purpose is to
encrypt or decrypt data.

ABEND codes
If STOKEN is specified, the caller might encounter a X'075' abend. If STOKEN is
not specified, the caller might encounter a X'08C' abend. See z/OS MVS System
Codes for an explanation and programmer responses for these codes.

Return and reason codes
There are no return codes from the SCHEDULE macro. If the SCHEDULE fails, an
abnormal termination may occur.

Example 1
Schedule an SRB at a global priority.
SCHEDULE SRB=(1),SCOPE=GLOBAL

Example 2
Schedule an SRB at a local priority.
SCHEDULE SRB=(1),SCOPE=LOCAL

Example 3
Schedule an SRB at a global priority specifying that the SRB is to receive control
with the LOCAL lock held and recovery established. The issuer of the SCHEDULE
macro is disabled.
SCHEDULE SRB=(1),SCOPE=GLOBAL,LLOCK=YES,FRR=YES,DISABLED

Example 4
Schedule an SRB at a local priority specifying that the SRB is to receive control
with the LOCAL lock held and recovery established. The SRBASCB field of the
SRB points to the home address space ASCB. The STOKEN parameter also
identifies the home address space.

MVC SRBASCB,PSAAOLD
ALESERV EXTRACTH,STOKEN=MYSTOKEN
SCHEDULE SRB=(1),LLOCK=YES,FRR=YES,STOKEN=MYSTOKEN

.

.
MYSTOKEN DS 2F

Example 5
Schedule an SRB at a local priority specifying that the SRB is to receive control
with the scheduling program's cross memory environment, a copy of the caller's
DU-AL, and recovery established. The SRB will have addressability to the data
space represented by DSSTOKEN.

SCHEDULE macro

Chapter 39. SCHEDULE — Schedule a service request block (SRB) 293



ALESERV ADD,STOKEN=DSSTOKEN,ALET=DSALET
SCHEDULE SRB=(1),MODE=FULLXM,FRR=YES

.

.
DSSTOKEN DS 2F
DSALET DS 1F

Example 6
Schedule an SRB at a local priority specifying that the SRB routine is to run on a
processor with an ICRF associated with it.
SCHEDULE SRB=(1),SCOPE=LOCAL,FEATURE=CRYPTO

SCHEDULE macro

294 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 40. SCHEDXIT — Schedule an exit routine for
execution

Description

Note: IBM recommends that you use the SCHEDIRB macro rather than SCHEDXIT
to request asynchronous exits.

The SCHEDXIT macro schedules an asynchronous exit routine for execution under
a specific task.

Before using this macro, read the description of using asynchronous exits in the
z/OS MVS Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state with PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN or PASN¬=HASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Local lock held
Control parameters: None

Programming requirements
If the IQE resides below 16 megabytes, the IQE address that is passed must be a
31-bit address with the high-order byte of the address set to zero.

The caller must have addressability to the address space on which the exit routine
is to be dispatched.

Restrictions
None.

Input register information
Before issuing the SCHEDXIT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the caller issued the macro. Therefore, if the caller depends on these

© Copyright IBM Corp. 1988, 2015 295



registers containing the same value before and after issuing the macro, the caller
must save these registers before issuing the macro and restore them after the
system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Used as a work register by the system

1 IQE address

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the SCHEDXIT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SCHEDXIT.

SCHEDXIT

� One or more blanks must follow SCHEDXIT.

IQE=iqe-address iqe-address: RX-type address or register (2) - (12).

Parameters
The parameter is explained as follows:

IQE=iqe-address
Specifies the address of the interrupt queue element (IQE) that defines the task
under which the exit routine will execute.

ABEND codes
00A

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return and reason codes
None.

SCHEDXIT macro

296 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 41. SDUMP — Dump virtual storage

Description

Note: IBM recommends that you use the SDUMPX macro, rather than the SDUMP
macro, for all newly written code. Since MVS/ESA, new features and
enhancements are added only to the SDUMPX parameters. However, code that
invokes the SDUMP macro may benefit from enhancements made to SVC dump
processing. For instance, some 64-bit storage is dumped because of an SDUMP
macro invocation, even though none of its parameters allow 64-bit address
specification. See the SDUMPX macro for information about SVC dump interfaces
and behavior.

The SDUMP macro invokes SVC dump to provide a fast unformatted dump of
virtual storage to a data set. It is intended for use by authorized routines that
encounter errors. If your program is in primary ASC mode, you can use either
SDUMP or SDUMPX. If your program runs in access register (AR) mode, use
SDUMPX instead of SDUMP. SDUMPX provides all of the functions of SDUMP, as
well as some that SDUMP does not offer, but generates code and addresses that
are appropriate for AR mode.

You cannot use the SDUMP macro to dump data space storage. To dump data
space storage, issue SDUMPX.

There are two phases in SVC dump processing:
v The capture phase, in which all the data for the dump is captured.
v The writing phase, in which the data is written to the dump data set.

The caller can initiate an SVC dump in an address space other than the primary. A
branch entry is available for callers who wish a dump of their own or another
address space, but cannot issue an SVC.

When you request a dump of virtual storage, the combination of parameters you
code determines whether MVS produces either a scheduled (asynchronous) or a
synchronous SVC dump. You might make different design decisions for your
program based on the type of dump that MVS produces. Read the information
about dumping virtual storage in z/OS MVS Programming: Authorized Assembler
Services Guide for the parameter combinations that produce each type of dump, and
for guidance about designing your program to handle each type.

Except for the data control block (DCB) parameter, all input parameters to this
macro can reside in storage above 16 megabytes if the caller is executing in 31-bit
addressing mode.

You can produce reentrant code using the standard form of SDUMP if you do not
specify parameters other than the following:
v SDATA
v TYPE
v HDR
v ID
v BRANCH

© Copyright IBM Corp. 1988, 2015 297



v SUSPEND
v QUIESCE
v BUFFER
v PLISTVER

Programs in page-protected storage (such as the nucleus, PLPA, and MLPA) can
issue the standard form of the SDUMP macro without causing a protection
exception. However, IBM recommends using the list and execute forms of SDUMP
for programs in page-protected storage.

Environment
The requirements for the caller with BRANCH=NO are:

Environmental factor Requirement
Minimum authorization: Any one or more of the following:

v Supervisor state

v PSW keys 0 - 7

v APF-authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters and all areas the parameter list points to

(except the DCB, ECB, and SRB) must be addressable from
the current address space. The DCB must be addressable in
the home address space. The ECB and SRB must be
addressable from each address space included in the dump.
The SRB must be addressable from the address space in
which it will run.

The requirements for the caller with BRANCH=YES are:
v Be in SRB mode
v Hold any lock
v Have an enabled-unlocked-task FRR on the FRR stack

Assuming that one of the above conditions has been satisfied, other requirements
for callers with BRANCH=YES are:

Environmental factor Requirement
Minimum authorization: All of the following:

v Supervisor state

v PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No requirement

SDUMP macro

298 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Environmental factor Requirement
Control parameters: Control parameters and all areas the parameter list points to

(except the DCB, ECB, and SRB) must be addressable from
the current address space. The DCB must be addressable in
the home address space. The ECB and SRB must be
addressable from each address space included in the dump.
The SRB must be addressable from the address space in
which it will run.

Programming requirements
To generate reentrant code, code the list and execute forms of the SDUMP macro.
Because the execute form of the macro is dependent on the length determined by
the list form, the list form must appear before the execute form in a reentrant
program.

Callers can determine the length of the parameter list by using the following
programming technique to calculate the amount of storage needed for only those
options specified for the SDUMP macro:
SDUMPBEG SDUMP SDATA=(SUM),SUMLIST=SLIST,MF=L
SDUMPEND EQU *
SDUMPLEN DC A(SDUMPEND-SDUMPBEG)

Callers that issue SDUMP with BRANCH=YES must include the CVT mapping
macro.

Restrictions
For SVC entry, the caller cannot have an EUT FRR established.

Input register information
Upon invocation, general purpose register (GPR) 13 must contain the address of a
72-byte savearea if BRANCH=YES is specified.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in bits 24-31. If the return code is X’08’, and you specified the
FAILRC parameter, GPR 15 also contains a reason code in bits 16-23.

When control returns to the caller, the access registers (ARs) contain:

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 299



Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the SDUMP macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SDUMP.

SDUMP

� One or more blanks must follow SDUMP.

HDR=‘dump title’ dump title: From 1 to 100 characters.

HDRAD=dump title addr dump title addr: A-type address, or register (2) - (12).

,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

,ASID=ASID addr ASID addr: A-type address, or register (2) - (12).

,ASIDLST=list addr list addr: RX-type address, or register (2) - (12).

,TYPE=(type code) type code: Any of the following, separated by commas:

XMEM, XMEME, NOLOCAL, FAILRC

Note: XMEM and XMEME are mutually exclusive codes.

,PLISTVER=1 decimal digit 1: Use up to a 68-byte parameter list.

,PLISTVER=2 decimal digit 2: Use 128-byte parameter list.

Default: PLISTVER=1, unless you specify SYMREC, ID, IDAD, PSWREGS,
SDATA=DEFS, SDATA=NODEFS, or SDATA=IO, in which case the default
is PLISTVER=2.

,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

,ID=‘identifier’ identifier: From 1 to 50 characters.

,IDAD=identifier addr. identifier addr: RX-type address, or register (2) - (12).

SDUMP macro

300 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

,ECB=(ecb addr) ecb addr: A-type address, or register (2) - (12).

,SRB=(srb addr) srb addr: A-type address, or register (2) - (12).

Note:

1. SVC dump posts the ECB at the completion of the capture phase unless
the DCB parameter is specified with the ECB parameter. If you specify
both the DCB and ECB parameters, the ECB is posted at the completion
of the writing phase.

2. SVC dump schedules the SRB at the completion of the capture phase
unless the DCB parameter is specified with the SRB parameter. If you
specify both the DCB and SRB parameters, the SRB is scheduled at the
completion of the writing phase.

,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

ALLNUC, ALLPSA, CSA, GRSQ, LPA, LSQA,

NOALLPSA/NOALL, NOSQA, NOSUMDUMP/NOSUM,

NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA, TRT

DEFAULTS/DEFS, NODEFAULTS/NODEFS, IO
Note:

1. Executing SDUMP causes ALLPSA, SQA, IO, and SUMDUMP storage
areas to be dumped unless excluded by NOALLPSA, NOSQA,
NODEFAULTS, or NOSUMDUMP.

2. The PSA and IO options are not required unless NODEFAULTS is
specified, because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

,STORAGE=(strt addr,end strt addr: A-type address, or register (2) - (12).

addr) end addr: A-type address, or register (2) - (12).

,LIST=list addr list addr: A-type address, or register (2) - (12).

,LISTA=list addr Note: Specify one or more pairs of addresses, separated by commas.

,SUBPLST=subpool id list subpool id list addr: RX-type address, or register (2) - (12).

addr

,KEYLIST=storage key list storage key list addr: RX-type address, or register (2) - (12).

addr Note: KEYLIST cannot be specified without SUBPLST.

,BUFFER=NO Default: BUFFER=NO

,BUFFER=YES

,QUIESCE=YES Default: QUIESCE=YES

,QUIESCE=NO

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 301



Syntax Description

,BRANCH=NO Default: BRANCH=NO

,BRANCH=YES Note: If BRANCH=YES is specified, ASID or ASIDLST must also be
specified.

,SUSPEND=NO Default: SUSPEND=NO

,SUSPEND=YES

,SUMLIST=list addr list addr: RX-type address, or register (2) - (12).

,SUMLSTA=list addr

Parameters
The parameters are explained as follows:

,ASID=ASID addr
,ASIDLST=list addr

Specifies the address of a halfword or a list of halfwords containing the
hexadecimal address space identifier of an address space to be dumped. If
register notation is used, the low-order halfword of the register contains the
address space identifier of the address space to be dumped. If both parameters
are omitted, the primary address space is dumped. If 0 is specified for the
address space identifier, a dump is scheduled for the home address space of
the issuer of the SDUMP macro. No private area storage is included in the
dump for the specified address space if either of the following events occurred:
v No SDATA parameters were specified that apply to the private area of the

requested address space.
v The CHNGDUMP operator command was used to set an overriding

parameter in the system dump options list that limits SVC dumps to areas
outside of the private area.

The ASID list can contain a maximum of 15 address space identifiers. The
high-order bit of the halfword containing the last identifier of the list must be
set to 1, and all other high-order bits must be set to 0.

,BRANCH=NO
,BRANCH=YES

Specifies that a branch entry is to be used for interfacing with SVC dump to
schedule a dump (YES), or that an SVC instruction is to be generated for
interfacing with SVC dump (NO).

For BRANCH=YES, MVS produces a scheduled (asynchronous) SVC dump.
For BRANCH=NO, the parameters you code to identify storage determine
whether MVS produces a scheduled or synchronous SVC dump. MVS
produces a scheduled dump when you code BRANCH=NO with one or more
of the following:
v ASIDLIST
v ASID=asid addr

v TYPE=XMEM or TYPE=XMEME
v LISTA

SDUMP macro

302 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



v LISTD=list addr, when the STOKEN represents either an address space other
than the primary address space, or a SCOPE=SINGLE data space owned by
a program that is not running in the primary address space.

v SUBPLST=subpool id list addr, when the list of address spaces with associated
subpool IDs contains at least one address space other than the primary
address space.

You might make different design decisions for your program based on the type
of dump MVS produces. See z/OS MVS Programming: Authorized Assembler
Services Guide for guidance about designing your program to handle each type
of dump. If BRANCH=YES is specified and the caller has not specified at least
one of the following keywords: ASID, ASIDLST, TYPE=XMEM,
TYPE=XMEME, or LISTA, the dump is scheduled to the home address space.
Routines that issue SDUMP with BRANCH=YES must provide a 72-byte save
area pointed to by register 13, and must include the CVT mapping macro.

For BRANCH=YES entry by reentrant recovery routines, SDUMP processing
moves the data supplied by the following parameters to a system area:
v HDR
v HDRAD
v ID
v IDAD
v ASIDLIST
v STORAGE
v LIST
v LISTA
v SUBPLST
v KEYLIST

This enables the recovery routine to free its storage on return from SDUMP
although the dump has not completed.

,BUFFER=NO
,BUFFER=YES

Specifies that the contents of the SQA buffer is (YES) or is not (NO) to be
included in the dump. This is an archaic interface so consider obtaining a
summary dump instead. Details about summary dump invocations are
associated with the SUMDUMP parameter of the SDUMPX macro description.
(The SQA buffer does not include the SDUMP parameter list or any data
pointed to by the parameter list.) Callers who specify BUFFER=YES on the
SDUMP macro will obtain a dump of a 4KB buffer reserved in the SQA for the
callers of SVC dump. You can reserve the buffer by setting the high-order bit
of the CVTSDBF field in the communications vector table (CVT). Once you
have reserved the buffer, you can fill it with data before issuing SDUMP.
Programs that are involved with data that might change before SDUMP can
dump it should instead use the SUMDUMP parameter to request a summary
dump. Some of the problems associated with using the BUFFER=YES
parameter are addressed using the SUMDUMP interface.

The CVTSDBF field of the CVT points to the buffer. Before using the buffer,
use compare and swap logic to serialize on the high-order bit of CVTSDBF. If
the bit was on (B’1’), the buffer is in use, and you should continue processing
as though a dump could not be taken. If the bit was off (B’0’), the bit is set to
B’1’ by the compare and swap instruction. You must also set the ASCBSDBF
bit of the home address space ASCB immediately after setting the CVTSDBF
high-order bit to B’1’, also by the compare and swap instruction. You can then

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 303



fill the buffer and issue SDUMP. If the compare and swap instruction sets the
CVTSDBF bit, SDUMP resets both CVTSDBF and ASCBSDBF for you. If you
do not take the SDUMP, you must reset both bits (resetting ASCBSDBF first, by
the compare and swap instruction). SDUMP resets the CVTSDBF bit if your
home address space terminates.

,DCB=dcb addr
Specifies the address of a previously opened data control block (DCB) for the
data set that is to contain the dump. If this parameter is omitted, one of the
SYS1.DUMP data sets is used. When you specify the DCB parameter, the dump
contains data from only the requestor's home address space. The DCB must be
addressable from the home address space. The control blocks built by OPEN
must also be addressable from the home address space. The DCB must support
EXCP. You must specify the following parameters on the DCB macro:
RECFM=FB, LRECL=4160, and BLKSIZE=4160.

The DCB must reference device types supported by SVC dump. Eligible device
types are unlabeled 9-track 2400-series tape devices (or tape devices compatible
with the 2400-series) and any direct access devices supported by the system
that have a track size of at least 4160 bytes. (4160 bytes equals 1 SVC dump
output record.) SVC dump does not support secondary extents on DCB data
sets.

SVC dump does not close the dump data set. Use the CLOSE macro to close
the data set and cause an end-of-file mark or a tape mark to be placed after the
dump data. SVC dump sets up the DCB so that CLOSE works correctly and
positions the end-of-file mark or tape mark at the correct place on the data set.
For tape data sets, you can write a tape mark to separate multiple dumps
without using the CLOSE macro.

Because it is the caller's responsibility to close the dump data set and the data
set may be closed only after all the data has been written to it, the caller needs
to receive notification when the dump writing phase is complete. Therefore, if
you specify the DCB parameter with the ECB parameter, the system posts the
ECB at the completion of the dump writing phase. The ECB parameter is
required when a DCB is provided for scheduled dumps. If an ECB is not
provided with the DCB for a synchronous dump, SVC dump returns to the
caller at the completion of the dump writing phase. See z/OS MVS
Programming: Authorized Assembler Services Guide for descriptions of scheduled
and synchronous dumps.

,ECB=(ecb addr)
,SRB=(srb addr)

Specifies how the system should synchronize your program with dump
processing. Note that these interfaces will not be driven if the call to SDUMP
results in a non-zero return code.

ECB specifies that the system should post the event control block (ECB)
indicated by ecb addr. The system normally posts the ECB at the completion of
the capture phase. However, if you specify the DCB parameter with the ECB
parameter, the system posts the ECB at the completion of the dump writing
phase. If the capture phase is not successful, the system posts the ECB at the
completion of SVC dump processing.

If an A-type address is specified, ecb addr specifies the address of a fullword
containing the address of the ECB. If a register operand is used, the register
must contain the actual address of the ECB. If this parameter is omitted, the
caller is not notified of the completion of the capture phase. The fullword and

SDUMP macro

304 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



the ECB must be addressable from the home address space. The fullword
address that points to the ECB must be a 24-bit or 31-bit address.

SRB specifies that the system should schedule the service request block (SRB)
indicated by srb addr. The system normally schedules the SRB at the
completion of the capture phase. However, if you specify the DCB parameter
with the SRB parameter, the system schedules the SRB at the completion of the
dump writing phase. If the capture phase is not successful, the system
schedules the SRB at the completion of SVC dump processing.

When the caller builds the SRB, the caller may pass the address of a status area
in the SRBPARM field. This status area, SDSTATUS, is mapped by IHASDST.
SVC dump passes information about the dump to the SRB routine by means of
this status area. If SVC dump schedules the SRB at the completion of the
capture phase, the name of the dump data set is not passed to the caller.

Note: If you want SVC dump to pass the name of the dump data set to the
caller, use the SDUMPX macro and specify SRB=(srb addr,WRITE).

HDR=’dump title’
HDRAD=dump title addr

Specifies the title or address of the title to be used for the dump. If HDR is
specified, the title must be 1-100 characters enclosed in apostrophes, although
the apostrophes do not appear in the actual title. If HDRAD is specified, the
first byte at the indicated address specifies the length of the title in bytes.

If the length of the title is greater than 100, SVC dump issues an abend with a
completion code of X’233’, reason code X’14’, then returns to the caller with a
return code of 8. If the length of the title is zero, SVC dump continues
processing as if the HDR or HDRAD parameter was not specified.

If these keywords are specified with BRANCH=YES or ASID/ASIDLST (that is,
to cause a scheduled dump), the system moves the title to SVC dump storage
before it returns control to the caller. There is no requirement to synchronize
with the completion of the dump.

,ID=’identifier’
,IDAD=identifier addr

Specifies an identifier that is included in the dump message IEA911E or
IEA611I, which is issued at the completion of the dump. The identifier must be
from one to 50 printable characters. If ID is specified, the identifier must be
enclosed in apostrophes, although the apostrophes do not appear in the actual
identifier. If IDAD is specified, the first byte at the indicated address specifies
the length of the identifier in bytes. If the length of the identifier is greater
than 50, SVC dump issues an abend with a completion code of X’233’, reason
code X’8C’, then returns to the caller with a return code of 8. If the length of
the identifier is zero, SVC dump continues processing as if the ID or IDAD
parameter was not specified.

,KEYLIST=storage key list addr
Specifies the address of a list of storage keys associated with the virtual storage
to be dumped. If the key of a subpool specified in SUBPLST does not match a
key in this list, the data in the subpool is not dumped. SUBPLST must be
specified if the KEYLIST option is used. If you do not specify KEYLIST, all
storage (regardless of key) associated with the requested subpools is included
in the dump. Therefore, if you want to dump the storage corresponding to all
16 keys, do not specify this parameter.

The list contains one-byte entries and starts on a halfword boundary. The first
byte indicates the length of the list (including this byte). The list has a

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 305



maximum length of 16 bytes so that up to 15 keys can be specified. Specify
each key in the left-most four bits of each byte, except the length byte.

,PLISTVER=1
,PLISTVER=2

Specifies the length of the parameter list used. When PLISTVER=1 is specified,
SDUMP uses a parameter list of up to 68 bytes. PLISTVER=2 specifies a
128-byte parameter list. The default is PLISTVER=1, unless you specify
SYMREC, ID, IDAD, PSWREGS, SDATA=DEFAULTS, SDATA=NODEFAULTS,
or SDATA=IO, in which case the default is PLISTVER=2.

,PSWREGS=list addr
Specifies a PSW or register area to be passed to SVC dump. This area may
contain a PSW, control registers 3 and 4, all the general purpose registers
(GPRs), and all the access registers (ARs). When PSWREGS is specified, SVC
dump includes the following information in the summary dump portion of the
dump:
v The PSWREGS parameter list.
v If the PSW is provided, 4K of storage before and 4K after the PSW address

from the primary address space.
v 4K of storage before and 4K of storage after each of the GPRs from the

primary and secondary address spaces.
v If the ARs are provided, they qualify the addresses of the area that includes

the 4K of storage before and 4K of storage after each of the GPRs. GPRs will
be used to locate storage; ARs (if provided along with a PSW in AR mode)
will be used to identify the source address space or data space.

Note: If the control registers are provided, they will be used to determine the
primary and secondary address spaces. If no control registers are provided,
then the storage will be dumped from the caller's primary and secondary
address spaces.

The PSWREGS parameter allows programs running in a nonabend
environment, where there is no SDWA, to request SVC dump and dump
suppression services similar to those available in an abend environment, where
an SDWA is present.

The parameter list for the PSWREGS parameter must reside in the address
space currently addressable by SVC dump. The caller must provide at least the
length and the mask field. Each bit in the mask refers to a data area.
v If a mask bit is set, SVC dump expects that the data area and the

appropriate size in the length field to be supplied.
v If a mask bit is off , but any lower-order mask bit is on, the corresponding

storage area must still be included in the parameter list, and the total length
specified must match the entire area. For instance, if only general purpose
registers are specified. Set bit 3 on, store the register values starting at X'14'
into the parameter list, and set the total length to 84 (64+8+8+2+2). This total
length is the same whether or not the user wants to supply PSW or control
registers 3 and 4 information.

The following describes the expected length of the entire parameter list relative
to the highest bit set in the mask:
v If bit 4 is set (indicating ARs are included), the length must be 148.
v If bit 3 is set (GPRs are included), the length must be 84.
v If bit 2 is set (CRs are included), the length must be 20.
v If bit 1 is set (PSW is included), the length must be 12.

SDUMP macro

306 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



v If none of the bits are to be set ('nothing' is indicated), the length must be 4.

The following table describes the parameter list:

Table 46. PSWREGS parameter list

Offset in Hex Length Field Description

00 2 The total length of the PSWREGS parameter list

02 2 Bit mask describing data areas included in the
PSW/register area

1... Bit 1: On - The PSW is included in the PSW/register
area

.1.. Bit 2: On - Control registers 3 and 4 are included in
the PSW/register area

..1. Bit 3: On - General purpose registers are included in
the PSW/register area

...1 Bit 4: On - ARs are included in the PSW/register area.

Bits 5 - 16: Initialize these bits to zero.

04 8 PSW: Data only supplied if the PSW mask bit is set

0C 8 Control registers 3 and 4: Data only supplied if mask
bit is set.

14 64 General purpose registers 0 - 15: Data only supplied if
mask bit is set.

54 64 ARs 0 - 15: Data only supplied if mask bit is set.

,QUIESCE=YES
,QUIESCE=NO

Specifies that the system is to be set nondispatchable until the contents of the
SQA and the CSA are dumped (YES), or that the system is to be left
dispatchable (NO). If the SDATA parameter does not specify SQA or CSA, the
QUIESCE=YES request is ignored.

Notes:

1. Summary dumps (SUMDUMP) for branch entries (BRANCH=YES) always
cause the system to be set nondispatchable until the summary dump is
written.

2. A Q=YES|NO setting for the CHNGDUMP command overrides this
parameter. For the use of the CHNGDUMP command, see z/OS MVS
System Commands.

,SDATA=(sdata options)
Specifies the system is to dump the following:

Option Data to be dumped

ALLNUC The DAT-ON and DAT-OFF nuclei. The read-only (page-protected) area
of the nucleus and the DAT-OFF nucleus is not included in the dump
unless this keyword is specified.

ALLPSA All of the prefixed storage areas (PSAs) in the system.

CSA Dumps the following storage:
v The CSA and ECSA subpools (subpools 227, 228, 231, and 241)

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 307



Only those obtained pages that have something stored into them are
dumped. The dump does not include pages of storage that are in a
freshly-obtained state.

v Virtual storage for 64-bit addressable memory objects created using
one of the following services:
– IARV64 REQUEST=GETCOMMON,DUMP=LIKECSA
– IARCP64 COMMON=YES,DUMP=LIKECSA
– IARST64 COMMON=YES,TYPE=PAGEABLE

GRSQ Global resource serialization control blocks.

LPA The active link pack area modules and SVCs for each address space
being dumped.

LSQA Dumps the following storage:
v The LSQA and ELSQA for each address space being dumped

(subpools 203-205, 213-215, 223-225, 233-235, and 253-255)
v Virtual storage for 64-bit addressable memory objects created using

one of the following services:
– IARV64 REQUEST=GETSTOR,DUMP=LIKELSQA
– IARCP64 COMMON=NO,DUMP=LIKELSQA
– IARST64 COMMON=NO

NOALLPSA
NOALL The PSA for one processor is dumped. This is either the processor at

the time of the error or the processor at the time of the dump.

NOSQA The system queue area is not dumped.

NOSUMDUMP
NOSUM A summary dump is not included in the SVC dump.

NUC The non-page-protected areas of the DAT-ON nucleus. (The ALLNUC
parameter must be specified to obtain the entire nucleus, including the
page-protected areas of the DAT-ON nucleus and the DAT-OFF
nucleus.)

PSA The PSA for one processor is dumped. This is either the processor at
the time of the error or the processor at the time of the dump.

RGN Dumps the following storage:
v The allocated pages in the private area of each address space being

dumped. This includes the following areas:

Subpools Storage

0-127, 129-132, 229, 230, 240, 244, 249,
250-252

All storage allocated to these subpools

203-205, 213-215, 223-225, 233-235, 253-255 All storage allocated to the LSQA and
ELSQA

236, 237 All storage allocated to the SWA and ESWA

Only those obtained pages that have something stored into them are
dumped. The dump does not include pages of storage that are in a
freshly-obtained state. This reduces the number of page faults that
occur during SVC dump processing, decreases the time required to
take a dump, and reduces the size of the dump.

v Virtual storage for 64-bit user region memory objects created using
one of the following services:

SDUMP macro

308 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU

|
|
|
|
|

|
|
|
|
|

|
|



– IARV64 REQUEST=GETSTOR,DUMP=LIKERGN
– IARV64 REQUEST=GETSTOR,SVCDUMPRGN=YES
– IARCP64 COMMON=NO,DUMP=LIKERGN
– IARST64 COMMON=NO

v Data-in-virtual (DIV) pages are dumped when they have been
changed since the last DIV macro (that specified the SAVE service)
executed. DIV pages that have not been changed, are considered to
be in a freshly-obtained state.

SQA Dumps the following storage:
v The SQA and ESQA subpools (226, 239, 245, 247, and 248)

Only those obtained pages that have something stored into them are
dumped. The dump does not include pages of storage that are in a
freshly-obtained state.

v Virtual storage for 64-bit addressable memory objects created using
one of the following services:
– IARV64 REQUEST=GETCOMMON,DUMP=LIKESQA
– IARCP64 COMMON=YES,DUMP=LIKESQA
– IARST64 COMMON=YES,TYPE=FIXED
– IARST64 COMMON=YES,TYPE=DREF

SUMDUMP
SUM A summary dump is to be included with the SVC dump output. The

trace table is included in the nonsummary portion of the dump if this
option is specified or used as a default.

The type of summary dump depends on how you specify the
BRANCH and SUSPEND parameters:
v If you specify BRANCH=YES and SUSPEND=NO, you get a

disabled summary dump.
v If you specify BRANCH=YES and SUSPEND=YES, you get a

suspend summary dump.
v If you specify BRANCH=NO, you get an enabled summary dump.

For a description of the dump contents, see z/OS MVS Diagnosis: Tools
and Service Aids.

SWA The scheduler work area subpools for each address space being
dumped (subpools 236 and 237). This includes all storage allocated
above and below 16 megabytes.

TRT The system trace table, the GTF trace records, and master trace data if
these types of traces are active.

DEFAULTS
DEFS The following default SDATA options are included in the SVC dump:

v ALLPSA
v SQA
v SUMDUMP
v IO
v Any default SDATA options specified by the CHNGDUMP

command when CHNGDUMP is in ADD mode.

Note:

1. DEFAULTS is not required. All SVC dumps include the default
SDATA options unless NODEFAULTS is specified.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 309

|
|
|
|

|
|
|
|
|
|



2. DEFAULTS and NODEFAULTS are mutually exclusive.

NODEFAULTS
NODEFS The SDATA defaults are NOT included in the SVC dump. Specifying

NODEFAULTS reduces the size of an SVC dump by excluding the
following default SDATA options:
v ALLPSA
v SQA
v SUMDUMP
v IO
v Any default SDATA options specified by the CHNGDUMP

command when CHNGDUMP is in ADD mode.

If a data area relating to an SDATA option is required in the dump, the
programmer can code that SDATA option on the SDUMP macro
invocation. All keywords and SDATA options are valid when NODEFS
is coded.

If you specify NODEFAULTS, the dump still contains some default
system areas that are included in all dumps.

IO The IO data areas are included in the SVC dump.

,STORAGE=(strt addr,end addr)
,LIST=list addr
,LISTA=listaddr

Specifies one or more pairs of starting and ending addresses (STORAGE), a list
of starting and ending addresses (LIST), or a list of ASIDs and storage ranges
(LISTA). Each starting address must be less than its corresponding ending
address.

When LIST or STORAGE is specified, the list must contain an even number of
addresses, and each address must occupy one fullword. In the list, the
high-order bit of the fullword containing the last ending address of the list
must be set to 1; all other high-order bits must be set to 0.

When LISTA is specified, the first fullword of the storage list contains the
number of bytes (including the first word) in the list. LISTA specifies a list of
ASIDs and storage ranges as follows:

SDUMP macro

310 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Note: If LISTA or SUBPLST is specified for a scheduled dump request and if
the list does not exceed 484 bytes in size, SVC dump will move the list to SVC
dump storage. The caller can free or reuse this space on return from SVC
dump. No synchronization with SVC dump completion is required. If the list
exceeds 484 bytes, SVC dump will not move the list and synchronization with
SVC dump completion is required.

,SUBPLST=subpool id list address
Specifies a list of ASIDs with associated subpool ids corresponding to subpools
of virtual storage that are to be included in the SVC dump.

The first fullword of the list contains the number of bytes (including the first
word) in the list. The list can contain a maximum of 200 bytes consisting of
unique ASIDs and subpool IDs. If the list contains duplicate ASIDs or subpool
IDs, the length can exceed 200 bytes because SDUMP stores the unique
subpool IDs in a 200-byte work area.

The structure of the list for each ASID follows:
v The first word contains the ASID in bits 0-15 and the number of subpools

associated with this ASID (n) in bits 16 - 31. If 0 is specified as the ASID, the
caller's home ASID is used.

v The next n halfwords contain the subpool IDs (right justified) corresponding
to the virtual storage to be included in the SVC dump. The manner in which
these subpools are dumped depends on whether they are private or
common area subpools.
– If a private area subpool (related to a TCB) is specified, all virtual storage

associated with this subpool, for all TCBs in the specified address space,
is dumped.

– If a common area subpool is specified, all of the virtual storage allocated
in the subpool is dumped.

SVC dump does not dump all the obtained storage in an address space if the
SUBPLST list keyword for private subpools is coded. This reduces the number
of page faults that occur during SVC dump processing and the time required
to take a dump. It also reduces the size of dumps on tape or DASD.

Length of the list (X4848 bytes)

First ASID

Last ASID Number of ranges to be
dumped - this ASID

Range 1 starting address
Range 1 ending address
Range 2 starting address
Range 2 ending address

Range 1 starting address
Range 1 ending address

4 bytes

Number of ranges to be
dumped - this ASID

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 311



For storage that is not related to data-in-virtual, only obtained pages that have
something stored into them are dumped. This eliminates the pages of storage
that are in a freshly obtained state.

For storage that is related to data-in-virtual, only pages that are in central
storage are dumped, as well as pages that have been changed since the last
data-in-virtual SAVE operation.

Notes:

1. SVC dump ignores unassigned subpool IDs and ASIDs.
2. If an invalid subpool or ASID (ASID greater than ASVTMAXU) is specified,

the caller receives a 233 ABEND and SDUMP processing terminates the
dump.

3. If all ASIDs specified in SUBPLST are the current ASID, SUBPLST does not
force a scheduled dump. However, if any of the ASIDs are different, a
scheduled (or asynchronous) dump results.

4. SDUMP callers executing in key 0 and supervisor state, who request
storage from subpool 0 via GETMAIN obtain that storage from subpool 252
instead. Therefore, when these callers want to dump this storage, they must
specify subpool 252 rather than subpool 0.

,SUMLIST=list addr
,SUMLSTA=list addr

Specifies a list of starting and ending addresses of areas to be included in a
summary dump (SUMLIST) or specifies a combined list of ASIDs and storage
ranges (SUMLSTA). SUMDUMP must be specified as an SDATA parameter and
each starting address must be less than its corresponding ending address.

For SUMLIST, the storage list must contain an even number of addresses, and
each address must occupy one fullword. In the list, the high-order bit of the
fullword containing the last ending address of the list must be set to 1, and all
other high-order bits must be set to 0.

For SUMLSTA, the first fullword of the list contains the number of bytes
(including the first word) in the list. SUMLSTA specifies a list of ASIDs and
storage ranges as follows:

SDUMP macro

312 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Restriction: The maximum number of ASIDs that the combined
TYPE=XMEM, TYPE=XMEME, LISTA, ASIDLST, ASID, and SUBPLST
parameters can specify is fifteen.

Note: There is no restriction on the number of ASIDs that the SUMLSTA can
specify.

When BRANCH=YES and SUSPEND=NO are also specified, the list must be
addressable using the addressability established when SVC dump was entered.
The lists themselves and all ranges specified must reference paged-in data.
Paged-out data is not dumped by summary dump.

When BRANCH=YES and SUSPEND=YES are also specified, the lists must be
addressable using the addressability established when SVC dump was entered.
The lists and referenced data can either be in paged in or paged out areas. The
maximum amount of summary dump data with this type of dump is 8M.

When BRANCH=NO is also specified, the lists must be addressable in all
address spaces in which the dump will be taken (those address spaces
specified by ASID, ASIDLST, LISTA, or TYPE=XMEM, TYPE=XMEME, or
SUBPLST). Synchronization with the capture phase via the SRB or ECB option
is also required, as you cannot free the storage containing these lists until the
capture phase is completed. The lists and referenced data can be in paged-in or
paged-out areas. The maximum amount of summary dump data possible with
this type of dump is dependent only on the size of the dump data set.

Each ASID specified with SUMLSTA must represent a valid, swapped-in
address space in order for the data to be dumped.

Programming Notes: The total number of distinct ASIDs that can be specified
by TYPE=XMEM, TYPE=XMEME, LISTA, ASID, SUBPLST and ASIDLST is
fifteen. If more than fifteen are requested, only the first fifteen are processed.
There is no restriction on the number of ASIDs specified by the SUMLSTA
parameter, nor do SUMLSTA ASIDs contribute toward the fifteen ASID limit.

,SUSPEND=NO
,SUSPEND=YES

Specifies that a suspend summary dump is requested (YES) or not requested

4 bytes

First ASID

Last ASID

Length of the list

Number of ranges to be
dumped - this ASID

Number of ranges to be
dumped - this ASID

Range 1 starting address
Range 1 ending address
Range 2 starting address
Range 2 ending address

Range 1 starting address
Range 1 ending address

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 313



(NO). SUSPEND=YES must be used together with the BRANCH=YES and
SDATA=SUMDUMP parameters. This keyword should be used by routines
that can experience page faults but that want to save dump information in a
virtual storage buffer.

In releases prior to z/OS V1R7, when SUSPEND=YES is specified with
SDATA=TRT, an immediate attempt is made to capture system trace table
status. If this fails, the capture is retried toward the end of the dumping
process. z/OS V1R7 adds an earlier retry to the process, reacting to a blockage
when the initial attempt is made by immediately scheduling an SRB to request
the capture.

RTCTSDSU is supported in z/OS V1R7 and above to indicate the amount of
enabled summary dump space is available.

,SYMREC=symrec addr
Specifies the address of a valid symptom record for DAE to use for dump
suppression. DAE suppresses the SVC dump if the primary symptom string
found in the symptom record matches previously known symptoms, and,
suppression has been enabled by the installation.

The caller must build the symptom record and fill in at least the ‘SR’ identifier
and the primary symptom string, which should uniquely identify the error.

SVC dump issues an abend with a completion code of X’233’, reason code
X’9C’, then returns to the caller with a return code of 8 if the symptom record
identifier is not ’SR’, if the offset and length of the primary symptom string
are not initialized, or if the first byte of the symptom record and the last byte
of the secondary symptom string are not addressable.

SVC dump does not include the symptom record in the dump. The caller can
use the SUMLIST keyword to include the symptom record in the dump.

See the dump analysis and elimination (DAE) section in z/OS MVS
Programming: Authorized Assembler Services Guide for more information on
symptom strings and how to build them.

The ADSR macro maps the symptom record. See z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for a
macro mapping of the ADSR.

,TYPE=XMEM
,TYPE=XMEME
,TYPE=NOLOCAL
,TYPE=FAILRC

Specifies that the caller's cross memory mode determines the address spaces to
dump (XMEM or XMEME) or that the caller cannot allow SDUMP to obtain a
local lock (NOLOCAL) or that SVC dump should return a reason code with
the return code to the DUMP command processor when the requested dump
was not taken (FAILRC).

XMEM
Requests SVC dump to use the caller's cross memory mode at the time the
SDUMP macro is executed.

XMEME
Requests SVC dump to use the caller's cross memory mode at the time of
the error for which the dump is being taken. The home address space is
dumped for both keywords. The relevant primary and secondary address
spaces are also dumped if they are unique. If a cross memory local lock
was held, the address space whose local lock is held is also dumped.

SDUMP macro

314 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU

http://www.ibm.com/systems/z/os/zos/bkserv/


NOLOCAL
Indicates that the caller is in an environment where SDUMP cannot hold a
local lock. This option has meaning only when BRANCH=YES is specified
and the caller is enabled and unlocked (for example, the caller has an
enabled unlocked task FRR established or is in SRB or cross memory
mode).

FAILRC
Requests that the caller receive special information from SVC dump
whenever the dump fails. Some information is already placed in
SDWASDRC as a result of the SVC dump failure. When the caller receives
control again after a dump failure (return code 8) and the caller has
specified TYPE=FAILRC, the reason code is combined with the return code
and passed to the caller in either register 15 or the ECB, or through the
IHASDST mapping macro if the SRBPARM area was provided for an SRB.
The reason code is in bits 16 - 23; the return code is in bits 24 - 31. When
the return code is in the ECB, the POST flag is set on. SDUMP passes back
a return code in register 15 and places the reason code in the SDWA. The
reason code explains why the dump failed.

Return and reason codes
The following tables identify return codes and reason codes, tell what each means,
and recommend actions that you should take.

Register 15 return codes
If BRANCH=NO was specified and no ASIDs other than the current ASID were
requested, register 15 contains one of the following hexadecimal return codes when
control is returned at the completion of the capture phase:

Table 47. Return Codes for the SDUMP Macro when BRANCH=NO

Return Code Meaning and Action

00 Meaning: A complete dump was taken.

Action: For scheduled dumps, the ECB will be POSTed, or the SRB will receive
control.

04 Meaning: A partial dump was taken because the dump data set did not have
sufficient space.

Action: Examine the reason code that explains why a partial dump was taken.
The reason code is contained in message IEA911E. For scheduled dumps, the
ECB will be POSTed,or if you specified, the routine can include the IHASDRSN
mapping macro to map the reason code information.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see
“Reason codes for return code 08” on page 317). For scheduled dumps,
programs must not wait on the ECB, or expect the SRB to receive control.

If BRANCH=YES or any ASID other than the current ASID was requested, register
15 contains one of the following hexadecimal return codes when control is
returned after the system has scheduled the dump:

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 315



Table 48. Return Codes for the SDUMP Macro when BRANCH=YES

Return Code Meaning and Action

00 Meaning: A dump was scheduled.

Action: For scheduled dumps, the ECB will be posted, or the SRB will receive
control.

08 Meaning: The system was unable to schedule a dump.

Action: Examine the reason code that explains why no dump was taken (see
“Reason codes for return code 08” on page 317). Programs must not wait on the
ECB, or expect the SRB to receive control.

ECB and SRB return codes
If you specify the ECB or SRB parameter without the DCB parameter, the system
also returns one of following hexadecimal codes in the ECB or SRB at the
completion of the capture phase:

Table 49. Return Codes for the ECB Parameter and SRB Parameter

Return Code Meaning and Action

00 Meaning: All the requested data was captured and the dump writing phase was
successfully initiated.

Action: None

04 Meaning: Some of the requested data could not be captured and one or more
partial dump indicators have been set in SDRSN. The dump writing phase was
successfully initiated.

Action: Examine the reason code that explains why a partial dump was taken.
The reason code is contained in message IEA911E. If you specified the SRB
parameter, you can include the IHASDRSN mapping macro to map the reason
code information.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see
“Reason codes for return code 08” on page 317).

If you specify the DCB parameter with the ECB or SRB parameter, the system also
returns one of the following hexadecimal codes in the ECB or SRB at the
completion of the dump writing phase:

Table 50. Return Codes for the ECB or SRB Parameter with the DCB Parameter

Return Code Meaning and Action

00 Meaning: All the requested data was captured and then written to the dump
data set.

Action: None

04 Meaning: Some of the requested data could not be captured or could not be
written to the dump data set.

Action: Examine the reason code that explains why a partial dump was taken.
The reason code is contained in message IEA911E. If you specified the SRB
parameter, you can include the IHASDRSN mapping macro to map the reason
code information. The reason codes might also be passed to the SRB routine in
the SDSTPDRC field of SDSTATUS.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see
“Reason codes for return code 08” on page 317)

SDUMP macro

316 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Note: The ECB will not be posted unless the return code from SDUMP is 0.

Reason codes for return code 08
When a return code of 08 is received, a hexadecimal reason code is returned. The
reason code is in the following locations:
v In the SDWASDRC field of the SDWA if you issued SDUMP in a recovery

routine, and the system provided an SDWA.
v In the ECB or register 15 (bits 16-23), provided that the FAILRC parameter is

specified.
v In the SDSTATUS field. This field is pointed to by the SRBPARM field that is in

the SRB parameter list. The parameter list is passed to SDUMP by using the SRB
keyword.

The reason codes are as follows:

Table 51. Reason Codes for Return Code 08

Reason Code Meaning and Action

0 Meaning: No SVC dump was requested.

Action: None

2 Meaning: An SVC dump was suppressed because the capture phase of another
SVC dump was in progress.

Action: Wait until the dump in progress has been captured (as identified by
message IEA794I) and reissue SDUMP.

3 Meaning: An SVC dump was suppressed by a request by the installation (for
example: DUMP=NO at IPL or CHNGDUMP SET,NODUMP).

Action: Issue CHNGDUMP SET,SDUMP or CHNGDUMP RESET,SDUMP and
reissue SDUMP.

4 Meaning: An SVC dump was suppressed by a SLIP NODUMP command.

Action: Delete SLIP trap with SLIP DEL command and reissue SDUMP.

5 Meaning: An SVC dump was suppressed because a SYS1.DUMP data set was
not available.

Action: If MSGTIME expired, increase MSGTIME limit with CD
SET,SDUMP,MSGTIME= command. Make a dump dataset available via the
DUMPDS ADD,DSN= and/or DUMPDS CLEAR,DSN= commands and reissue
SDUMP.

6 Meaning: An SVC dump was suppressed because an I/O error occurred during
the initialization of the SYS1.DUMP data set.

Action: Reissue SDUMP.

8 Meaning: An SVC dump was suppressed because an SRB could not be
scheduled to activate the dump tasks in the requested address spaces.

Action: None

9 Meaning: An SVC dump was suppressed because a terminating error occurred
in SVC dump before the first dump record was written.

Action: Reissue SDUMP.

A Meaning: An SVC dump was suppressed because a status stop SRB condition
was detected.

Action: None

B Meaning: An SVC dump was suppressed by DAE.

Action: None.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 317



Table 51. Reason Codes for Return Code 08 (continued)

Reason Code Meaning and Action

C Meaning: The DUMPSRV primary task is unavailable to process SVC dumps.

Action: DUMPSRV may be restarting after processing a CANCEL request. Try
reissuing the SDUMP at a later time. If the condition persists, notify the system
programmer that DUMPSRV is unavailable and that they may require IBM
assistance to get it restarted.

15 Meaning: The parameter list address is zero.

Action: Supply a parameter list address in register 1 and reissue SDUMP.

16 Meaning: The parameter list is not a valid SVC or SNAP parameter list.

Action: Provide the address of a valid SVC dump parameter list in register 1
and reissue SDUMP.

17 Meaning: The caller-supplied data set is not supported.

Action: Supply a dataset with LRECL >= 4160 open with EXCP on a device
supported by SVC dump (or use a system dump dataset) and reissue SDUMP.

18 Meaning: The start address is greater than or equal to the end address in a
storage list.

Action: Correct the address range that is not valid and reissue SDUMP.

19 Meaning: The caller-supplied header is longer than 100 characters.

Action: Supply a shorter header and reissue SDUMP.

1A Meaning: The caller requested a 4K buffer, but did not reserve it.

Action: Consider converting the SDUMP invocation to generate a summary
dump instead of using the BUFFER=YES parameter. Otherwise, refer to the
information for the BUFFER=YES parameter in the SDUMPX macro description
and reissue the SDUMPX after the correction is made.

1B Meaning: A storage list overlaps the 4K buffer.

Action: Move the storage list so that it does not overlap the SVC dump 4K
buffer pointed to by CVTSDBF. Reissue SDUMP.

1C Meaning: The caller-supplied DCB is not valid.

Action: Make sure DCB is open, does not overlap 4K buffer, and represents a
tape or DASD dataset, then reissue SDUMP.

1E Meaning: An ASID in the ASID list is syntactically not valid.

Action: Supply a valid ASID (<= ASVTMAXU) and reissue SDUMP.

22 Meaning: The 4K buffer was requested with an SVC dump already in progress.

Action: Wait until the dump in progress has been captured and reissue SDUMP.

25 Meaning: A nonvalid subpool ID was specified in the subpool list.

Action: Supply a valid subpool id (<= 255) and reissue SDUMP.

28 Meaning: Part of the parameter list is inaccessible.

Action: Make sure the parameter list is addressable from the caller's current
address space. Reissue SDUMP.

29 Meaning: The caller-supplied DCB is inaccessible.

Action: Make sure the DCB is addressable from the caller's current address
space. Reissue SDUMP.

2A Meaning: The caller-supplied storage list is inaccessible.

Action: Make sure the storage list is addressable from the caller's current
address space. Reissue SDUMP.

SDUMP macro

318 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 51. Reason Codes for Return Code 08 (continued)

Reason Code Meaning and Action

2B Meaning: The caller-supplied header data is inaccessible.

Action: Make sure the header is addressable from the caller's current address
space. Reissue SDUMP.

2C Meaning: The caller-supplied ECB is inaccessible.

Action: Make sure the ECB is addressable from the caller's current address
space. Reissue SDUMP.

2D Meaning: The caller's ASID list is inaccessible.

Action: Make sure the ASID list is addressable from the caller's current address
space. Reissue SDUMP.

2E Meaning: The caller's SUMLIST/SUMLSTA is inaccessible.

Action: Make sure the SUMLIST/SUMLSTA is addressable from the caller's
current address space. Reissue SDUMP.

2F Meaning: The caller's SUBPLST list is inaccessible.

Action: Make sure the SUBPLST is addressable from the caller's current address
space. Reissue SDUMP.

30 Meaning: The caller's KEYLIST is inaccessible.

Action: Make sure the KEYLIST is addressable from the caller's current address
space. Reissue SDUMP.

31 Meaning: Copies of the SLIP register and PSW are inaccessible.

Action: None

32 Meaning: The caller-supplied SRB is inaccessible.

Action: Make sure the SRB is addressable from the caller's current address space.
Reissue SDUMP.

33 Meaning: The version number in the parameter list is not valid.

Action: Supply a parameter list with a valid version number and reissue
SDUMP.

34 Meaning: The caller's LISTD is inaccessible.

Action: Make sure the LISTD is addressable from the caller's current address
space. Reissue SDUMP.

35 Meaning: The caller's SUMLISTL is inaccessible.

Action: Make sure the SUMLISTL is addressable from the caller's current
address space. Reissue SDUMP.

36 Meaning: The parameter list contains conflicting parameters.

Action: Remove the conflicting parameters (for example, both ECB and SRB
specified) and reissue SDUMP.

37 Meaning: The ID is longer than 50 characters.

Action: Supply a shorter ID and reissue SDUMP.

38 Meaning: The ID is not addressable.

Action: Make sure the ID is addressable from the caller's current address space.
Reissue SDUMP.

39 Meaning: The PSWREGS area is an incorrect length.

Action: Correct the length of the PSWREGS area and reissue SDUMP.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 319



Table 51. Reason Codes for Return Code 08 (continued)

Reason Code Meaning and Action

3A Meaning: The PSWREGS area is not addressable.

Action: Make sure the PSWREGS area is addressable from the caller's current
address space. Reissue SDUMP.

3B Meaning: The symptom record is not valid.

Action: Supply a valid symptom record and reissue SDUMP.

3C Meaning: The symptom record is not addressable.

Action: Make sure the symptom record is addressable from the caller's current
address space. Reissue SDUMP.

3D Meaning: The DEB for the caller-supplied DCB is inaccessible.

Action: Make sure the DEB for the caller-supplied DCB is addressable from the
caller's current address space. Reissue SDUMP.

3E Meaning: SVC dump is already using the maximum amount of virtual storage
(as determined by the installation, using the MAXSPACE parameter on the
CHNGDUMP command) to process other dumps.

Action: Make a dump dataset available via the DUMPDS ADD,DSN= or
DUMPDS CLEAR,DSN= command, reply DELETE to an outstanding IEA793A
message, or increase the amount of virtual storage that SDUMP is allowed to
use via the CHNGDUMP SET,SDUMP,MAXSPACE= command, then reissue
SDUMP.

46 Meaning: SVC dump processing has determined that its threshold for using
auxiliary storage (AUX) has been exceeded. If the threshold was exceeded while
an SVC dump was in progress, that processing will be stopped and the resulting
dump will be partial. Also, as long as the threshold is exceeded, no new dumps
will be allowed to start. If the DUMPSRV address space is the largest consumer
of AUX, then either captured SVC dumps are not being written to DASD quickly
enough, or the size of the current dump request is considerable.

Action: Ensure that enough DASD resource is available for accommodating the
captured SVC dumps. Because other applications might be using the paging
resource, more paging space might be required. When SVC dump processing has
detected a shortage, the auxiliary storage utilization must drop below 35%
before new SVC dump requests are honored. See the system programmer
response for message IRA201E to determine how to relieve the shortage. Then
redrive the SVC dump. You can use the AUXMGMT and MAXSPACE
parameters of the CHNGDUMP SET command to manage the use of virtual and
auxiliary storage by SVC dump processing. See z/OS MVS System Commands for
more details about the CHNGDUMP command.

FF Meaning: An SVC dump was suppressed for some other unspecified reason.

Action: None

Example 1
This example shows how SVC dump can be branch entered to initiate a dump in
an address space by callers who cannot issue an SVC. Areas to be dumped are
requested via three parameters (BUFFER, SDATA, and STORAGE). The dump has
the title indicated in the HDR parameter, the caller requests to be notified of the
completion of the scheduled dump via the ECB parameter, and the dump is going
to a private data set (indicated by the DCB option).
SDUMP HDR=’USER DATA FOR TEST A’,DCB=TESTADCB,BUFFER=YES, X

ASID=TSTAASID,ECB=(8),QUIESCE=YES,BRANCH=YES, X
STORAGE=(A,B,C,D,(9),E),SDATA=(ALLPSA,SQA,LSQA)

SDUMP macro

320 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Example 2
This example shows how SVC dump can be invoked via a branch entry to initiate
a dump of several address spaces by callers who cannot issue an SVC. Areas to be
dumped are requested via four parameters (BUFFER, SDATA, LIST, and
SUMLIST). The address spaces to be dumped are described by the ASIDLST
parameter. Note that areas specified by SUMLIST only apply to the primary
address space. The LIST addressed by the LIST keyword must be addressable from
any address space. The dump has the title indicated in the HDR parameter, and
the caller requests to be notified of the completion of the scheduled dump via the
ECB parameter.
SDUMP HDR=’USER DATA FOR TEST B’, X

BUFFER=YES,ASIDLST=TSTALIST,ECB=(8), X
QUIESCE=YES,BRANCH=YES,LIST=(9), X
SDATA=(ALLPSA,NUC,SQA,SUMDUMP), X
SUMLIST=TSTSLIST
.
.
.
TSTALIST DC X’0000000A800B’
TSTSLIST DC X’0000000080400000’

SDUMP - List form
Use the list form of the SDUMP macro to construct a control program parameter
list. You can specify any number of storage addresses using the STORAGE
parameter. Therefore, the number of starting and ending address pairs in the list
form of SDUMP must be equal to the maximum number of addresses specified in
the execute form of the macro.

Syntax
The list form of the SDUMP macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SDUMP.

SDUMP

� One or more blanks must follow SDUMP.

HDR=‘dump title’ dump title: From 1 to 100 characters.

HDRAD=dump title addr dump title addr: A-type address.

,DCB=dcb addr dcb addr: A-type address.

,PLISTVER=1 decimal digit 1: Use up to 68-byte parameter list

,PLISTVER=2 decimal digit 2: Use 128-byte parameter list. Default: PLISTVER=1, unless
you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFS,
SDATA=NODEFS, or SDATA=IO, in which case the default is PLISTVER=2.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 321



Syntax Description

,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

,ID=‘identifier’ identifier: From 1 to 50 characters.

,IDAD=identifier addr identifier addr: RX-type address, or register (2) - (12).

,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

ALLNUC, ALLPSA, CSA, GRSQ, LPA, LSQA, NOALLPSA/NOALL,
NOSQA, NOSUMDUMP/NOSUM, NUC, PSA, RGN, SQA,
SUMDUMP/SUM, SWA, TRT DEFAULTS/DEFS, NODEFAULTS/NODEFS,
IO

Note:

1. Executing the SDUMP macro causes ALLPSA, SQA, IO, and SUMDUMP
storage areas to be dumped unless excluded by NOALLPSA, NOSQA,
NODEFAULTS, or NOSUMDUMP.

2. The PSA and IO options are not required unless NODEFAULTS is
specified, because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

,STORAGE=(strt addr,end strt addr: A-type address.

addr) end addr: A-type address.

,LIST=list addr list addr: A-type address

,LISTA=list addr Note: Specify one or more pairs of addresses, separated by commas.

,SUBPLST=subpool id list subpool id list addr: A-type address, or register (2) - (12).

addr

,KEYLIST=storage key list storage key list addr: A-type address, or register (2) - (12).

addr Note: KEYLIST cannot be specified without SUBPLST.

,BUFFER=NO Default: BUFFER=NO

,BUFFER=YES

,QUIESCE=YES Default: QUIESCE=YES

,QUIESCE=NO

,TYPE=(type code) type code: Any combination of the following, separated by commas: XMEM
or XMEME, NOLOCAL.

,MF=L

SDUMP macro

322 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

Parameters
The parameters are explained under the standard form of the SDUMP macro, with
the following exception:

,MF=L
Specifies the list form of the SDUMP macro.

Note: If SYMREC, ID, IDAD, PSWREGS, SDATA=NODEFS, SDATA=DEFS or
SDATA=IO is not used on the list form of the macro, but is coded on the execute
form, use PLISTVER=2 when specifying MF=L to generate a 128-byte parameter
list.

SDUMP - Execute form
A remote control program parameter list is referred to and can be modified by the
execute form of the SDUMP macro.

If you code one or more of the SDATA parameters on the execute form of the
macro, any SDATA parameters coded on the list form are lost.

Syntax
The execute form of the SDUMP macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SDUMP.

SDUMP

� One or more blanks must follow SDUMP.

HDR=‘dump title’ dump title: From 1 to 100 characters.

HDRAD=dump title addr dump title addr: A-type address, or register (2) - (12).

,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

,ASID=ASID addr ASID addr: A-type address, or register (2) - (12).

,ASIDLST=list addr list addr: RX-type address, or register (2) - (12).

,TYPE=(type code) type code: Any of the following, separated by commas: XMEM, XMEME,
NOLOCAL, FAILRC

Note: XMEM and XMEME are mutually exclusive codes.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 323



Syntax Description

,PLISTVER=1 decimal digit 1: Use up to a 68-byte parameter list.

,PLISTVER=2 decimal digit 2: Use 128-byte parameter list.

Default: PLISTVER=1, unless you specify SYMREC, ID, IDAD, PSWREGS,
SDATA=DEFS, SDATA=NODEFS, or SDATA=IO, in which case the default
is PLISTVER=2.

,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

,ID=‘identifier’ identifier: From 1 to 50 characters.

,IDAD=identifier addr. identifier addr: RX-type address, or register (2) - (12).

,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

,ECB=(ecb addr) ecb addr: A-type address, or register (2) - (12).

,SRB=(srb addr) srb addr: A-type address, or register (2) - (12).

Note:

1. SVC dump posts the ECB at the completion of the capture phase unless
the DCB parameter is specified with the ECB parameter. If you specify
both the DCB and ECB parameters, the ECB is posted at the completion
of the writing phase.

2. SVC dump schedules the SRB at the completion of the capture phase
unless the DCB parameter is specified with the SRB parameter. If you
specify both the DCB and SRB parameters, the SRB is scheduled at the
completion of the writing phase.

,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

ALLNUC, ALLPSA, CSA, GRSQ, LPA, LSQA, NOALLPSA/NOALL,
NOSQA, NOSUMDUMP/NOSUM, NUC, PSA, RGN, SQA,
SUMDUMP/SUM, SWA, TRT DEFAULTS/DEFS, NODEFAULTS/NODEFS,
IO

Note:

1. Executing SDUMP causes ALLPSA, SQA, IO, and SUMDUMP storage
areas to be dumped unless excluded by NOALLPSA, NOSQA,
NODEFAULTS, or NOSUMDUMP.

2. The PSA and IO options are not required unless NODEFAULTS is
specified, because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

,STORAGE=(strt addr,end strt addr: A-type address, or register (2) - (12).

addr) end addr: A-type address, or register (2) - (12).

,LIST=list addr list addr: A-type address, or register (2) - (12).

,LISTA=list addr Note: Specify one or more pairs of addresses, separated by commas.

,SUBPLST=subpool id list subpool id list addr: RX-type address, or register (2) - (12).

SDUMP macro

324 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

addr

,KEYLIST=storage key list addr storage key list addr: RX-type address, or register (2) - (12).

Note: KEYLIST cannot be specified without SUBPLST.

,BUFFER=NO Default: BUFFER=NO

,BUFFER=YES

,QUIESCE=YES Default: QUIESCE=YES

,QUIESCE=NO

,BRANCH=NO Default: BRANCH=NO

,BRANCH=YES Note: If BRANCH=YES is specified, ASID or ASIDLST must also be
specified.

,SUSPEND=NO Default: SUSPEND=NO

,SUSPEND=YES

,SUMLIST=list addr list addr: RX-type address, or register (2) - (12).

,SUMLSTA=list addr

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the SDUMP macro, with
the following exception:

,MF=(E, ctrl addr)
Specifies the execute form of the SDUMP macro using a remote control
program parameter list.

Example 1
The execute form is used to change SDATA areas, BUFFER, and QUIESCE options
in the SDUMP parameter list. The list form of SDUMP was previously used to
create the basic SDUMP parameter list located by register 1.
SDUMP SDATA=(SQA,LPA),BUFFER=NO,QUIESCE=NO,MF=(E,(1))

Example 2
Operation: This example shows a dump request from SUBSYSTEM1. This dump
will be suppressed if the symptoms in the symptom record match a previous
dump's symptoms, and if the installation has enabled dump suppression. The
dump does not include the SDATA options specified on CHNGDUMP or the
ALLPSA or SQA data areas. The dump does include the IO data areas and a
summary dump which contains PSW/register data.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 325



SDUMP ID=’SUBSYSTEM1’,SYMREC=(8),SDATA=(NODEFS,IO),PSWREGS=(9)

SDUMP macro

326 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Chapter 42. SDUMPX — Dump virtual storage

Description
The SDUMPX macro invokes SVC dump to provide a fast unformatted dump of
virtual storage or Coupling facility structure information to a data set. Programs
that run in either primary or access register (AR) mode can use SDUMPX.

SDUMPX is similar to SDUMP, except that SDUMPX can generate code and
addresses that are appropriate for AR mode, whereas SDUMP cannot. All
parameters on SDUMP are valid for SDUMPX.

Parameters available only on SDUMPX are: HCSAByASID, HCSANoOwner,
HCSASysOwner, LISTD; LIST64; SUMLSTL; SUMLIST64; STRLIST; COUPLE,
WLM, and XESDATA options on SDATA; options on ECB and SRB; REMOTE;
INTOKEN; PROBDESC; JOBLIST; DSPLIST; and PLISTVER=3.

To dump data space storage, issue SDUMPX and specify one of the following
parameters: DSPLIST, LISTD, LIST64, SUMLSTL or SUMLIST64.

There are two phases in SVC dump processing:
v The capture phase, in which all the volatile data for the dump is copied into

DUMPSRV data spaces.
v The writing phase, in which the data is written to the dump data set.

The caller can initiate an SVC dump in an address space other than the primary. A
branch entry is available for callers who wish a dump of their own or another
address space, but cannot issue an SVC.

When you request a dump of virtual storage, the combination of parameters you
code determines whether MVS produces either a scheduled (asynchronous) or a
synchronous SVC dump. You might make different design decisions for your
program based on the type of dump that MVS produces. Read the information
about dumping virtual storage in z/OS MVS Programming: Authorized Assembler
Services Guide for the parameter combinations that produce each type of dump, and
for guidance about designing your program to handle each type.

Except for the data control block (DCB) parameter, all input parameters to this
macro can reside in storage above 16 megabytes if the caller is executing in 31-bit
addressing mode.

You can produce reentrant code using the standard form of SDUMPX if you do not
specify parameters other than the following:
v SDATA
v TYPE
v HDR
v ID
v BRANCH
v SUSPEND
v QUIESCE
v BUFFER

© Copyright IBM Corp. 1988, 2015 327

|
|



v PLISTVER

SVC dump allows programs in page-protected storage (such as the nucleus, PLPA,
and MLPA) to issue the standard form of the SDUMPX macro without causing a
protection exception. However, IBM recommends using the list and execute forms
of SDUMPX for programs in page-protected storage.

Wildcards
You can use wildcards to identify multiple names. On an SDUMPX macro, you can
specify wildcards in job names, data space names, and system names. The
parameter descriptions tell you when you can use wildcards. The wildcards are:

Wildcards
Meaning

* Zero or more characters, up to the maximum length of the string. An * can
start the string, end it, appear in the middle, or appear in several places in
the string. A single * for the name indicates that all job names, data space
names, or system names will match.

? One character. One or more ? can start the string, end it, appear in the
middle, or appear in several places in the string. A single ? indicates all
names consisting of one character.

Note: You can mix wildcards in any combination.

Examples are:
v *A* specifies all names that contain an A, including the name A.
v *A*B specifies all names that contain an A followed by and ending with a B,

with or without any intervening characters. The name can have characters before
the A.

v ?A? specifies all 3-character names with an A as the second character.
v ?A?B specifies all 4-character names with A as the second character and B as the

fourth character.
v ?A* specifies all names of 2 or more characters with A as the second character.

Environment
The requirements for the caller with BRANCH=NO are:

Environmental factor Requirement
Minimum authorization: Any one or more of the following:

v Supervisor state

v PSW keys 0 - 7

v APF-authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

SDUMPX macro

328 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Environmental factor Requirement
Control parameters: Control parameters and all areas the parameter list points

to, except the DCB, ECB, and SRB, must be in an
address/data space that is addressable from the current
address space. The DCB must be addressable in the home
address space. The ECB and SRB must be addressable from
each address space included in the dump. The SRB must be
addressable from the address space in which it will run.

The requirements for the caller with BRANCH=YES are:

Environmental factor Requirement
Minimum authorization: All of the following:

v Supervisor state

v PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any
Control parameters: Control parameters and all areas the parameter list points

to, except the DCB, ECB, and SRB, must be in an
address/data space that is addressable from the current
address space. The DCB must be addressable in the home
address space. The ECB and SRB must be addressable from
each address space included in the dump. The SRB must be
addressable from the address space in which it will run.

Programming requirements
v To run in 64-bit addressing mode, issue the SYSSTATE AMODE64 variable set to

'YES' prior to invoking SDUMPX.
v For AR mode callers:

– Issue the SYSSTATE ASCENV=AR macro before SDUMPX. SYSSTATE
ASCENV=AR tells the system to generate code appropriate for AR mode.

– The parameter list address must be qualified by an ALET of zero.
v To generate reentrant code, code the list and execute forms of the SDUMPX

macro. Because the execute form of the macro is dependent on the length
determined by the list form, the list form must appear before the execute form
in a reentrant program.
Callers can determine the length of the parameter list by using the following
programming technique to calculate the amount of storage needed for only those
options specified for the SDUMPX macro:
SDMPXBEG SDUMPX SDATA=(SUM),SUMLIST=SLIST,MF=L
SDMPXEND EQU *
SDMPXLEN DC A(SDMPXEND-SDMPXBEG)

Callers that issue SDUMPX with BRANCH=YES must include the CVT mapping
macro.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 329



Restrictions
The parameter list and all non-register notation keyword address parameters must
reside in 31-bit addressable virtual storage, including for invokers that are
executing in 64-bit addressing mode.

Note: This restriction applies to macro keyword values that address the
invoker-specified SDUMPX control information. For certain parameters, the content
of the virtual storage addressed by a run-time keyword value may include virtual
storage addresses above 2 gigabytes. For example, the LIST64 parameter must
address a storage location residing in 31-bit addressable virtual storage, but the list
content at that storage location may, in turn, address 64-bit addressable virtual
storage.

Input register information
If BRANCH=YES is specified, before issuing the SDUMPX macro, the caller must
ensure that the following general purpose register (GPR) contains the specified
information.

Register
Contents

13 The address of a 72-byte save area

Before issuing the SDUMPX macro, the caller does not have to place any
information into an access register (AR).

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in bits 24-31. If the return code is X'08', and you specified the
FAILRC parameter, GPR 15 also contains a reason code in bits 16-23.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

SDUMPX macro

330 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax
The standard form of the SDUMPX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SDUMPX.

SDUMPX

� One or more blanks must follow SDUMPX.

,ASID=ASID addr ASID addr: A-type address, or register (2) - (12).

,ASIDLST=list addr list addr: RX-type address, or register (2) - (12).

,BRANCH=NO Default: BRANCH=NO

,BRANCH=YES Note: If BRANCH=YES is specified, ASID or ASIDLST must also be
specified.

,BUFFER=NO Default: BUFFER=NO

,BUFFER=YES

,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

,DSPLIST=list addr list addr: RX-type address, or register (2) - (12).

,ECB=(ecb addr) ecb addr: A-type address, or register (2) - (12).

,ECB=(ecb addr,CAPTURE) Note: If you code ECB=(ecb addr), without specifying CAPTURE or WRITE,
SVC dump posts the ECB at the completion of the capture phase unless you
also specify the DCB parameter. If you specify both the ECB and DCB
parameters, the ECB is posted at the completion of the writing phase.

,ECB=(ecb addr,WRITE)

HDR=‘dump title’ dump title: From 1 to 100 characters.

HDRAD=dump title addr dump title addr: A-type address, or register (2) - (12).

,ID=‘identifier’ identifier: From 1 to 50 characters.

,IDAD=identifier addr identifier addr: RX-type address, or register (2) - (12).

,INTOKEN=token addr token addr: RX-type address, or register (2) - (12).

,JOBLIST=list addr list addr: RX-type address, or register (2) - (12).

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 331



Syntax Description

,KEYLIST=storage key list addr storage key list addr: RX-type address, or register (2) - (12).

Note: KEYLIST cannot be specified without SUBPLST.

,LIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

end addr: A-type address, or register (2) - (12).

Note: Specify one or more pairs of addresses, separated by commas.

,LISTA=list addr list addr: RX-type address, or register (2) - (12).

,LISTD=list addr

,LIST64=list addr

,PLISTVER=1 decimal digit 1: Use up to 112-byte parameter list.

,PLISTVER=2 decimal digit 2: Use 128-byte parameter list.

,PLISTVER=3 decimal digit 3: Use 184-byte parameter list.

Defaults are as follows:

PLISTVER=2, if you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFS,
SDATA=NODEFS, or SDATA=IO.

PLISTVER=3, if you specify STRLIST, REMOTE, INTOKEN, DSPLIST,
JOBLIST, PROBDESC, LIST64 or SUMLIST64.

PLISTVER=1, in all other cases.

,PROBDESC=area addr area addr: RX-type address, or register (2) - (12).

,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

,QUIESCE=YES Default: QUIESCE=YES

,QUIESCE=NO

,REMOTE=area addr area addr: RX-type address, or register (2) - (12).

,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

ALLNUC, ALLPSA, COUPLE, CSA, GRSQ, HCSAByASID, HCSANoOwner,
HCSASysOwner, LPA, LSQA, NOALLPSA/NOALL, NOSQA,
NOSUMDUMP/NOSUM, NUC, PSA, RGN, SERVERS, SQA,
SUMDUMP/SUM, SWA, TRT, XESDATA, DEFAULTS/DEFS,
NODEFAULTS/NODEFS, IO

SDUMPX macro

332 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU

|
|



Syntax Description

Note:

1. Executing SDUMPX causes ALLPSA, SQA, IO, and SUMDUMP storage
areas to be dumped unless excluded by the NOALLPSA, NOSQA,
NODEFAULTS, or NOSUMDUMP parameter.

2. The PSA and IO options are not required unless NODEFS is specified,
because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

4. SDATA=SERVERS results in a scheduled (asynchronous) dump.

,SRB=(srb addr) srb addr: A-type address, or register (2) - (12).

,SRB=(srb addr,CAPTURE) Note: If you code SRB=(srb addr), without specifying CAPTURE or WRITE,
SVC dump schedules the SRB at the completion of the capture phase unless
you also specify the DCB parameter. If you specify both the SRB and DCB
parameters, the SRB is scheduled at the completion of the writing phase.

,SRB=(srb addr,WRITE)

,STORAGE=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

end addr: A-type address, or register (2) - (12).

Note: Specify one or more pairs of addresses, separated by commas.

,STRLIST=structure list addr structure list addr: RX-type address or register (2) - (12).

Use the IHABLDP macro to build the structure list address.

,SUBPLST=subpool id list addr subpool id list addr: RX-type address, or register (2) - (12).

,SUMLIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

end addr: A-type address, or register (2) - (12).

Note: Specify one or more pairs of addresses, separated by commas.

,SUMLSTA=list addr list addr: RX-type address or register (2) - (12).

,SUMLSTL=list addr

,SUMLIST64=list addr

,SUSPEND=NO Default: SUSPEND=NO

,SUSPEND=YES

,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

,TYPE=(type code) type code: Any of the following, separated by commas: XMEM, XMEME,
NOLOCAL, FAILRC

Note: XMEM and XMEME are mutually exclusive codes.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 333



Parameters
The parameters are explained as follows:

,ASID=ASID addr
,ASIDLST=list addr

Specifies the address of a halfword or a list of halfwords containing the
hexadecimal address space identifier of an address space to be dumped. If
register notation is used, the low-order halfword of the register contains the
address space identifier of the address space to be dumped. If both parameters
are omitted, the primary address space is dumped. If 0 is specified for the
address space identifier, a dump is scheduled for the home address space of
the issuer of the SDUMPX macro. No private area storage is included in the
dump for the specified address space if either of the following events occurred:
v No SDATA parameters were specified that apply to the private area of the

requested address space.
v The CHNGDUMP operator command was used to set an overriding

parameter in the system dump options list that limits SVC dumps to areas
outside of the private area.

The ASID list can contain a maximum of 15 address space identifiers. The
high-order bit of the halfword containing the last identifier of the list must be
set to 1, and all other high-order bits must be set to 0.

If the combined address spaces from the following exceed 15, the system
dumps the first 15.
v Specified by the ASID or ASIDLST parameter
v Associated with the jobs specified in the JOBLIST parameter
v Associated with each data space specified in the DSPLIST, LISTD, or LIST64

parameter when the data space was created by a DSPSERV CREATE macro
with SCOPE=SINGLE

v Associated with the address ranges specified in the LISTD or LIST64
parameter

Wildcards used in the parameters can result in multiple address spaces.

,BRANCH=NO
,BRANCH=YES

Specifies that a branch entry is to be used for interfacing with SVC dump to
schedule a dump (YES), or that an SVC instruction is to be generated for
interfacing with SVC dump (NO).

For BRANCH=YES, MVS produces a scheduled (asynchronous) SVC dump.
For BRANCH=NO, the parameters you code to identify storage determine
whether MVS produces a scheduled or synchronous SVC dump. MVS
produces a scheduled dump when you code BRANCH=NO with one or more
of the following:
v ASIDLST
v ASID=asid addr

v TYPE=XMEM or TYPE=XMEME
v LISTA
v LISTD=list addr, when the STOKEN represents either an address space other

than the primary address space, or a SCOPE=SINGLE data space owned by
a program that is not running in the primary address space

SDUMPX macro

334 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



v LIST64=list addr, when the STOKEN represents either an address space other
than the primary address space, or a SCOPE=SINGLE data space owned by
a program that is not running in the primary address space

v SUBPLST=subpool id list addr, when the list of address spaces with associated
subpool IDs contains at least one address space other than the primary
address space.

You might make different design decisions for your program based on the type
of dump MVS produces. See z/OS MVS Programming: Authorized Assembler
Services Guide for guidance about designing your program to handle each type
of dump.

If BRANCH=YES is specified and the caller has not specified at least one of the
following keywords: ASID, ASIDLST, TYPE=XMEM, TYPE=XMEME, or LISTA,
the dump is scheduled to the home address space.

Routines that issue SDUMPX with BRANCH=YES must provide a 72-byte save
area pointed to by register 13, and must include the CVT mapping macro.

For BRANCH=YES entry by reentrant recovery routines, SDUMPX processing
moves the data supplied by the following parameters to a system area:
v HDR
v HDRAD
v ID
v IDAD
v ASIDLST
v STORAGE
v LIST
v LISTA
v SUBPLST
v KEYLIST

This enables the recovery routine to free its storage on return from SDUMPX
although the dump has not completed.

,BUFFER=NO
,BUFFER=YES

Specifies that the contents of a 4096 byte SQA buffer is (YES) or is not (NO)
reserved and used by the caller before SDUMP processing was invoked. Callers
who specify BUFFER=YES on the SDUMPX macro must have reserved it for
usage and properly initialized it before the SVC dump processing is invoked. If
the caller is using the buffer to dump data that might change before normal
SVC dump processing can dump it, the caller should instead consider using
the SUMDUMP option of the SDATA parameter and one of the SUMLIST
related parameters to dump that data. SUMDUMP provides far greater
capacity for data capture.

The SQA buffer is pointed to by the CVTSDBF field of the Communications
Vector Table (CVT). To reserve the SQA buffer area, use the compare and swap
(CS) instruction to serialize the setting of the high-order bit of
the CVTSDBF field. Setting of that bit prevents any other SDUMP requests
from being processed. It essentially indicates the beginning of SVC dump
processing, and only one SVC dump can be active in the system at a time. If
the CS fails to set the bit on (B'1'), the buffer is already in use; processing
should neither attempt to use the buffer, nor issue the SDUMPX request. If the
bit was successfully set to B'1' by the CS instruction, the caller must also set
the ASCBSDBF bit of the home address space ASCB (Address Space Control

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 335



Block) using a CS instruction. When both operations were successful, the
caller can place data into the buffer and issue the SDUMPX request. If the
caller sets either bit, and then fails to invoke SDUMPX, it must reset the bit(s)
that it set (resetting the ASCBSDBF bit first, then the CVTSDBF high order bit).
If the home address space of the caller terminates after the setting of the
ASCBSDBF bit, or once SVC dump processing has begun, SVC dump
processing will reset both bits appropriately.

When the dump is being processed by IPCS, the contents of the SQA buffer is
accessible for BUFFER=YES dumps by using the IPCS LIST 0
DOMAIN(SDUMPBUFFER) LENGTH(4096) command.

,DCB=dcb addr
Specifies the address of a previously opened data control block (DCB) for the
data set that is to contain the dump. If this parameter is omitted, one of the
SYS1.DUMP data sets is used. When you specify the DCB parameter, the dump
contains data from only the requestor's home address space. The DCB must be
addressable from the home address space. The control blocks built by OPEN
must also be addressable from the home address space. The DCB must support
EXCP. You must specify the following parameters on the DCB macro:
RECFM=FB, LRECL=4160, and BLKSIZE=4160.

The DCB must reference device types supported by SVC dump. Eligible device
types are unlabeled 9-track 2400-series tape devices (or tape devices compatible
with the 2400-series) and any direct access devices supported by the system
that have a track size of at least 4160 bytes. (4160 bytes equals 1 SVC dump
output record.) SVC dump does not support secondary extents on DCB data
sets.

SVC dump does not close the dump data set. Use the CLOSE macro to close
the data set and cause an end-of-file mark or a tape mark to be placed after the
dump data. SVC dump sets up the DCB so that CLOSE works correctly and
positions the end-of-file mark or tape mark at the correct place on the data set.
For tape data sets, you can write a tape mark to separate multiple dumps
without using the CLOSE macro.

Because it is the caller's responsibility to close the dump data set and the data
set may be closed only after all the data has been written to it, the caller needs
to receive notification when the dump writing phase is complete. Therefore, if
you specify the DCB parameter with the ECB parameter, the system posts the
ECB at the completion of the dump writing phase, no matter what has been
specified on the ECB parameter. The ECB parameter is required when a DCB is
provided for scheduled dumps. If an ECB is not provided with the DCB for a
synchronous dump, SVC dump returns to the caller at the completion of the
dump writing phase. See z/OS MVS Programming: Authorized Assembler Services
Guide for descriptions of scheduled and synchronous dumps.

,DSPLIST=list addr
Specifies the address of an area that identifies the data space information to be
dumped. Hiperspaces are not supported so they will not be dumped. If the
area exceeds 512 bytes, the area must be in common storage and the caller
must not free the area until data capture for the dump is completed. For an
asynchronous dump, use the ECB or SRB parameter to be notified when data
capture is completed or use the SUSPEND parameter to suspend other
processing until data capture is completed. For a synchronous dump (only one
address space and its data spaces involved), you do not need to worry about
freeing the area too soon because the system does not return control to the
caller until data capture is completed. Additionally, the number of data spaces
that can be handled is limited to 256. If wildcard specifications are used, only

SDUMPX macro

336 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



the first 256 data spaces that match can be dumped. Also, each data space
reduces the number of LISTD entries available by one. If register notation is
used, the register contains the address of the area. If the parameter is omitted,
data spaces are not dumped.

The area consists of:
v A 4-byte header, which indicates the total length of the area. The length

includes the four bytes of the header.
If the length is less than four bytes, the system ignores the DSPLIST
parameter.

v One or more 16-byte data space identifiers for data spaces to be included in
the dump. An identifier is an ASID or jobname in the left 8 bytes and the
data space name in the right 8 bytes:

ASID
An 8-byte field containing an explicit hexadecimal address space
identifier in bytes 7 and 8. Bytes 1 through 6 must be hexadecimal zeros.

jobname
A 1 to 8 character job name left-justified in the 8-byte field. Pad it on the
right with blanks, if needed. The job name can be specified with
wildcards. See “Wildcards” on page 328.

data space name
The 1 to 8 character name associated with the data space at its creation.
Left justified in the 8-byte field. Padded on the right with blanks if
needed. The data space name can be specified with wildcards. See
“Wildcards” on page 328.

See the ASID parameter for the limit on address spaces that can be specified.

,ECB=(ecb addr)
,ECB=(ecb addr,CAPTURE)
,ECB=(ecb addr,WRITE)

Specifies how the system should synchronize your program with dump
processing. Note that these interfaces will not be driven if the call to SDUMPX
results in a non-zero return code.

ECB specifies that the system should post the event control block (ECB)
indicated by ecb addr. For ECB=ecb addr and ECB=(ecb addr,CAPTURE), the
system posts the ECB at the completion of the capture phase unless you have
also specified the DCB parameter. If you specify both the DCB and ECB
parameters, the system posts the ECB at the completion of the writing phase,
no matter what has been specified on the ECB parameter. For ECB=(ecb

4 bytes

Length of the area
ASID

Jobname

data space name

data space name

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 337



addr,WRITE), the system posts the ECB at the completion of the dump writing
phase. If the capture phase is not successful, the system posts the ECB at the
completion of SVC dump processing.

If an A-type address is specified, ecb addr specifies the address of a fullword
containing the address of an ECB that is posted on completion of a scheduled
dump. If a register operand is used, the register must contain the actual
address of the ECB. If this parameter is omitted, the caller is not notified of the
completion of the capture phase. The fullword and the ECB must be
addressable from the home address space. The fullword address that points to
the ECB must be a 24-bit or 31-bit address.

HDR=‘dump title’
HDRAD=dump title addr

Specifies the title or address of the title to be used for the dump. If HDR is
specified, the title must be 1-100 characters enclosed in apostrophes, although
the apostrophes do not appear in the actual title. If HDRAD is specified, the
first byte at the indicated address specifies the length of the title in bytes.

If the length of the title is greater than 100, SVC dump issues an abend with a
completion code of X'233', reason code X'14', then returns to the caller with a
return code of 8. If the length of the title is zero, SVC dump continues
processing as if the HDR or HDRAD parameter was not specified.

If these keywords are specified with BRANCH=YES or ASID/ASIDLST (that is,
to cause a scheduled dump), the system moves the title to SVC dump storage
before it returns control to the caller. There is no requirement to synchronize
with the completion of the dump.

,ID='identifier'
,IDAD=identifier addr

Specifies an identifier that is included in the dump message IEA911E or
IEA611I, which is issued at the completion of the dump. The identifier must be
from one to 50 printable characters. If ID is specified, the identifier must be
enclosed in apostrophes, although the apostrophes do not appear in the actual
identifier. If IDAD is specified, the first byte at the indicated address specifies
the length of the identifier in bytes. If the length of the identifier is greater
than 50, SVC dump issues an abend with a completion code of X'233', reason
code X'8C', then returns to the caller with a return code of 8. If the length of
the identifier is zero, SVC dump continues processing as if the ID or IDAD
parameter was not specified.

,INTOKEN=token addr
Specifies the address of a 32-byte area that contains an incident token
previously built by an IEAINTKN macro. If register notation is used, the
register contains the address of the area.

The system associates the token with the SVC dump on this system and with
any SVC dumps requested by the REMOTE parameter on other sysplex
systems. If the parameter is omitted, the system generates an incident token.

,JOBLIST=list addr
Specifies the address of an area that identifies jobs to be dumped. If register
notation is used, the register contains the address of the area. If the parameter
is omitted, the current job is dumped.

The area, which should never be larger than 124 bytes (8 bytes * 15 entries +
4–byte header) consists of:
v A 4-byte header, which indicates the total length of the area. The length

includes the 4 bytes of the header.

SDUMPX macro

338 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



If the area exceeds 256 bytes, the caller must not free the area until data
capture for the dump is completed. For an asynchronous dump, use an ECB
or SRB parameter to be notified when data capture is complete or use a
SUSPEND parameter to suspend other processing until data capture is
completed. (For a synchronous dump on the local system, you do not have
to worry about freeing the area too soon because the system does not return
control to the caller until processing completes.)
If the length is less than 4 bytes, the system ignores the JOBLIST parameter.

v One or more 8-character job names for jobs to be included in the dump.
Left justify each name in its 8-character field; pad it on the right with blanks,
if needed. A job name can be specified with wildcards. See “Wildcards” on
page 328.

You can specify a maximum of 15 job names. See the ASID parameter for the
limit on address spaces that can be specified.

,KEYLIST=storage key list addr
Specifies the address of a list of storage keys associated with the virtual storage
to be dumped. If the key of a subpool specified in SUBPLST does not match a
key in this list, the data in the subpool is not dumped. SUBPLST must be
specified if the KEYLIST option is used. If you do not specify KEYLIST, all
storage (regardless of key) associated with the requested subpools is included
in the dump. Therefore, if you want to dump the storage corresponding to all
16 keys, do not specify this parameter.

The list contains one-byte entries and starts on a halfword boundary. The first
byte indicates the length of the list (including this byte). The list has a
maximum length of 16 bytes so that up to 15 keys can be specified. Specify
each key in the left-most four bits of each byte, except the length byte.

,LIST=(strt addr,end addr)
,LISTA=list addr
,LISTD=list addr
,LIST64=listaddr

Specifies one of the following:
v a list of starting and ending addresses (LIST)
v a list of ASIDs and storage ranges (LISTA)
v a list of address ranges, qualified by STOKENs, of areas to be included in

the SVC dump (LISTD)
v a list of virtual storage address ranges, qualified by STOKENs, of areas to be

included in the dump (LIST64).

Each starting address must be less than its corresponding ending address.

LIST: When LIST is specified, the list must contain an even number of
addresses, and each address must occupy one fullword. In the list, the

Length of the area

Jobname

Jobname

4 bytes

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 339



high-order bit of the fullword containing the last ending address of the list
must be set to 1; all other high-order bits must be set to 0.

LISTA: When LISTA is specified, the first fullword of the storage list contains
the number of bytes (including the first word) in the list. LISTA specifies a list
of ASIDs and storage ranges as follows:

Note: If LISTA or SUBPLST is specified for a scheduled dump request and if
the list does not exceed 484 bytes in size, SVC dump will move the list to SVC
dump storage. The caller can free or reuse this space on return from SVC
dump. No synchronization with SVC dump completion is required. If the list
exceeds 484 bytes, SVC dump will not move the list and synchronization with
SVC dump completion is required.

LISTD: When LISTD is specified, the first fullword of the list contains the
number of bytes (including the first word) in the list. The list can be up to 5124
bytes (for a possible 256 single range entries). The number of entries processed
will be fewer than 256, if either data spaces are requested using the DSPLIST
parameter, or multiple ranges are specified for an STOKEN. For LISTD, specify
the STOKENs and address ranges as follows:

Length of the list (X4848 bytes)

First ASID

Last ASID Number of ranges to be
dumped - this ASID

Range 1 starting address
Range 1 ending address
Range 2 starting address
Range 2 ending address

Range 1 starting address
Range 1 ending address

4 bytes

Number of ranges to be
dumped - this ASID

SDUMPX macro

340 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



STOKEN refers to any address/data space. SVC dump does not dump data
space storage that has not been referenced.

LISTD causes a scheduled dump when the caller performs one of the following
actions:
v Requests a SCOPE=SINGLE data space that is owned by a task in an

address space other than the caller's primary address space.
v Requests an address space other than the primary

See the ASID parameter for the limit on address spaces that can be specified.

Dumps on Other Systems in a Sysplex: If the SDUMPX macro specifies
SDRMT_IDCON_STORAGE_COPY in the area specified by the REMOTE
parameter, the dumps requested by REMOTE contain areas specified by LISTD
on this macro; the dumps do not contain areas specified by LIST and LISTA. If
an STOKEN is all zeros in the area specified by the REMOTE parameter, the
dumps include the indicated address range within all address spaces included
in the dump.

If the LISTD area exceeds 484 bytes, only the data requested in the first 484
bytes is included in the dumps requested by REMOTE.

LIST64: specifies a storage location describing a list of STOKEN-qualified
virtual storage address ranges to be included in the dump.

The address ranges are described with 64-bit starting and ending addresses
and may refer to any address space virtual storage, including virtual storage
above the 2 gigabyte bar and any data space storage.

The LIST64 parameter is mutually exclusive with the LISTD parameter.

When LIST64=list addr is specified, the first fullword of the storage list contains
the number of bytes, including the first word, in the list.

4 bytes

Length of list

First STOKEN (8 bytes)

Number of ranges to be dumped - this STOKEN

Range 1 starting address

Range 1 ending address

Range n starting address

Range n ending address

Last STOKEN (8 bytes)

Number of ranges to be dumped this STOKEN

Range 1 starting address

Range 1 ending address

Range n starting address

Range n ending address

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 341



SDUMPX behavior for the LIST64 keyword is the same as LISTD behavior
when REMOTE is also specified. Prior releases will ignore 64-bit addresses in a
remote list.

The LIST64 storage list format is exactly analogous to the LISTD storage list
format, and the STOKENs and address ranges as follows:
v A range's ending address must be greater than its starting address for each

specified range.
v The ending address for any data space range cannot exceed hexadecimal

'000000007FFFFFFF'.
v If any STOKEN in the list describes a SCOPE=SINGLE data space, or is for

an address space other than the SDUMPX invoker's primary address space,
then a scheduled dump is performed.

See the ASID parameter for the limit on the number of differing address spaces
that can own virtual storage included in the dump.

,PLISTVER=1
,PLISTVER=2
,PLISTVER=3

Specifies the length of the parameter list used:
v For PLISTVER=1, the length is up to 112 bytes
v For PLISTVER=2, the length is 128 bytes
v For PLISTVER=3, the length is 184 bytes.

Defaults are as follows:
v When you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFS,

SDATA=NODEFS, or SDATA=IO, the default is PLISTVER=2.
v When you specify STRLIST, REMOTE, INTOKEN, PROBDESC, JOBLIST,

DSPLIST, LIST64 or SUMLIST64, the default is PLISTVER=3.
v For other specifications, the default is PLISTVER=1.

,PROBDESC=area addr
Specifies the address of an area that contains information describing the
problem. If register notation is used, the register contains the address of the
area.

The area can be passed to any SVC dump, but is primarily intended for dumps
requested by the REMOTE parameter. When a dump is requested through
REMOTE, the system being dumped calls an IEASDUMP.QUERY routine. The
routine uses the area to determine if its system should be dumped and, if so,
what storage areas should be added to the dump.

The area is mapped by the IHASDPD mapping macro and must be in common
storage. The area consists of:
v A 4-byte header, which indicates the total length of the area. The length

includes the 4 bytes of the header.
v Key, length, data entries. Each entry consists of:

– Key: An 8-byte key, which you can use to identify the application or the
problem or both. You might use the key field, for example, to contain a
3-byte identifier for the application and a 5-byte area for application
information.
The key corresponds to the SDPD_KLD_KEY field in the IHASDPD
mapping macro. The key must not begin with A through I or SYS; these
are reserved for IBM use. IBM-supplied values for key are:

SDUMPX macro

342 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



- SYSDCOND: Suppresses a dump on another system in a sysplex if the
other system does not have an IEASDUMP.QUERY routine or if no
IEASDUMP.QUERY routine returns a code of 0.

- SYSDLOCL: Requests a second, deferred dump of the local system, if
the area for the REMOTE parameter specifies the local system. The
deferred dump contains areas added by IEASDUMP.QUERY,
IEASDUMP.GLOBAL, and IEASDUMP.LOCAL exit routines, if any
routines had been associated with those exits.

– Length: A 2-byte field that gives the length of the data portion. The length
does not include the length of this field itself or of the key field. A length
of zero is valid.

– Data: The data portion, which consists of the number of bytes specified in
the preceding field. You can place in the data portion any information
you desire in any format.

If the area exceeds 1024 bytes, the caller must not free the area until data
capture for the dump is completed. For an asynchronous dump, use an ECB or
SRB parameter to be notified when data capture is complete or use a
SUSPEND parameter to suspend other processing until data capture is
completed. (For a synchronous dump on the local system, you do not have to
worry about freeing the area too soon because the system does not return
control to the caller until processing completes.) If the area exceeds 32,768
bytes, the system places in the dump only the first 32,768 bytes.

If the length is less than 4 bytes, the system ignores the PROBDESC parameter.

,PSWREGS=list addr
Specifies a PSW or register area to be passed to SVC dump. This area may
contain a PSW, control registers 3 and 4, all the general purpose registers
(GPRs), and all access registers (ARs). When PSWREGS is specified, SVC dump
includes the following information in the summary dump portion of the
dump:

4 bytes
Length of the area

Length of data

Key

data

Length of data

Key

data

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 343



v The PSWREGS parameter list
v If the PSW is provided, 4K of storage before and 4K after the PSW address

from the primary address space.
v 4K of storage before and 4K of storage after each of the GPRs from the

primary and secondary address spaces.
v If the ARs are provided, they qualify the addresses of the area that includes

the 4K of storage before and 4K of storage after each of the GPRs. GPRs will
be used to locate storage; ARs (if provided along with a PSW in AR mode)
will be used to identify the source address space or data space.

Note: If the control registers are provided, they will be used to determine the
primary and secondary address spaces. If no control registers are provided,
then the storage will be dumped from the caller's primary and secondary
address spaces.

Note: The content of the storage location specified by PSWREGS parameter
can include both the high-order and low-order halves of the GPRs.

The PSWREGS parameter allows programs running in a nonabend
environment, where there is no SDWA, to request SVC dump and dump
suppression services similar to those available in an abend environment, where
an SDWA is present.

The parameter list for the PSWREGS parameter must reside in the address
space currently addressable by SVC dump. The caller must provide at least the
length and the mask field. Each bit in the mask refers to a data area.
v If a mask bit is set, SVC dump expects that the data area and the

appropriate size in the length field to be supplied.
v If a mask bit is off , but any lower-order mask bit is on, the corresponding

storage area must still be included in the parameter list, and the total length
specified must match the entire area. For instance, if only general purpose
registers are specified. Set bit 3 on, store the register values starting at X'14'
into the parameter list, and set the total length to 84 (64+8+8+2+2). This total
length is the same whether or not the user wants to supply PSW or control
registers 3 and 4 information.

The following describes the expected length of the entire parameter list relative
to the highest bit set in the mask:
v If bit 5 is set (indicating that the high halves of the general purpose registers

are included in the PSW/register area), the length must be 212 bytes, even if
bit 3 is the only other bit set.

v If bit 4 is set (indicating ARs are included), the length must be 148.
v If bit 3 is set (GPRs are included), the length must be 84.
v If bit 2 is set (CRs are included), the length must be 20.
v If bit 1 is set (PSW is included), the length must be 12.
v If none of the bits are to be set ('nothing' is indicated), the length must be 4.

The following diagram describes the parameter list:

Table 52. PSWREGS Parameter List

Offset in Hex Length Field Description

00 2 The total length of the PSWREGS parameter list

02 2 Bit mask describing data areas included in the
PSW/register area

SDUMPX macro

344 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 52. PSWREGS Parameter List (continued)

Offset in Hex Length Field Description

1... .... Bit 1: On - The PSW is included in the PSW/register
area

.1.. .... Bit 2: On - Control registers 3 and 4 are included in
the PSW/register area

..1. .... Bit 3: On - General purpose registers are included in
the PSW/register area

...1 .... Bit 4: On - ARs are included in the PSW/register area.

....1 ... Bit 5: On - High halves of general purpose registers
are included in the PSW/register area.

Bits 6 - 16: Initialize these bits to zero.

04 8 PSW: Data only supplied if the PSW mask bit is set

0C 8 Control registers 3 and 4: Data only supplied if mask
bit is set.

14 64 General purpose registers 0 - 15: Data only supplied if
mask bit is set.

54 64 ARs 0 - 15: Data only supplied if mask bit is set.

94 64 High halves of general purpose registers 0 - 15: Data
only supplied if mask bit is set

In addition to dumping virtual storage areas around the general purpose
registers using 31-bit addresses, if the high order register halves are also
specified then SDUMP will also dump the anologous virtual storage areas
addressed by the resulting 64-bit register contained addresses using the same
guidelines for dumping areas in the primary, secondary, home and access
register qualified storage locations.

,QUIESCE=YES
,QUIESCE=NO

Specifies that the system is to be set nondispatchable until the contents of the
SQA and the CSA are dumped (YES), or that the system is to be left
dispatchable (NO). If the SDATA parameter does not specify SQA or CSA, the
QUIESCE=YES request is ignored.

Note: Summary dumps (SUMDUMP) for branch entries (BRANCH=YES)
always cause the system to be set nondispatchable until the summary dump is
written.

Note: A Q=YES|NO setting for the CHNGDUMP command overrides this
parameter. For the use of the CHNGDUMP command, see z/OS MVS System
Commands.

,REMOTE=area addr
Specifies the address of an area that identifies other systems in the sysplex to
be dumped by this SDUMPX macro. If register notation is used, the register
contains the address of the area. If the parameter is omitted, only the current
system is dumped.

The area is mapped by the IHASDRMT mapping macro and must be in
common storage. Through IHASDRMT, you can identify the systems to be
dumped and specify the content of the dumps on individual systems. The area
consists of:

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 345



v A 4-byte header, which indicates the total length of the area. The length
includes the 4 bytes of the header.

v ID, length, contents entries. Each entry consists of:
– ID: A 2-byte field, whose value identifies the type of the contents. The

values are declared by the constants with names beginning with
SDRMT_IDCON in the IHASDRMT mapping.

– Length: A 2-byte field that gives the length of the contents portion. The
length includes the 2 bytes of this length field and the 2 bytes of the ID
field.

– Contents: A variable field that gives the contents identified in the ID field.
The contents you can specify are the system names, job names, XCF
group and member names, data space names, address space identifiers,
SDATA options, storage ranges, subpools, and keys. Within the contents,
you can specify items explicitly or, for the following, use wildcards.
- System name
- Job name
- XCF group name
- XCF member name
- Data space name and its qualifying job name

See “Wildcards” on page 328.

If the area exceeds 1024 bytes, the caller must not free the area until data
capture for the dump is completed. For an asynchronous dump, use an ECB or
SRB parameter to be notified when data capture is complete or use a
SUSPEND parameter to suspend other processing until data capture is
completed. (For a synchronous dump on the local system, you do not have to
worry about freeing the area too soon because the system does not return
control to the caller until processing completes.)

If the length of the area is less than 4 bytes, the system ignores the REMOTE
parameter. If the length of any of its entries is less than 4 bytes, the dump
request returns with an error return code.

The dumps requested through REMOTE are affected by other parameters on
the SDUMPX macro: LISTD, SDATA, ASIDLST, JOBLIST, DSPLIST, SUBPLST,
and KEYLIST; you can specify that the values of these parameters be copied
for the dumps requested through REMOTE. The dumps requested through
REMOTE do not contain information for the LIST and LISTA parameters.

4 bytes
Length of the area

Contents

Contents

ID

ID

Length

Length

SDUMPX macro

346 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



,SDATA=(sdata options)
Specifies the system is to dump the following:

Option Data to be dumped

ALLNUC The DAT-ON and DAT-OFF nuclei. The read-only (page-protected) area
of the nucleus and the DAT-OFF nucleus is not included in the dump
unless this keyword is specified.

ALLPSA All of the prefixed storage areas (PSAs) in the system.

COUPLE Cross-system coupling facility (XCF) information

CSA Dumps the following storage:
v The CSA and ECSA subpools (subpools 227, 228, 231, and 241)

Only those obtained pages that have something stored into them are
dumped. The dump does not include pages of storage that are in a
freshly-obtained state.

v Virtual storage for 64-bit addressable memory objects created using
one of the following services:
– IARV64 REQUEST=GETCOMMON,DUMP=LIKECSA
– IARCP64 COMMON=YES,DUMP=LIKECSA
– IARST64 COMMON=YES,TYPE=PAGEABLE

GRSQ Global resource serialization control blocks.

HCSAByASID
High virtual CSA storage that is owned by the ASIDs for which
SDUMP captures data. See the ASID parameter for details about the
ASIDs that are dumped.

Attention: When this option is specified alone, it might result in the
inclusion of none of the above the bar CSA storage in the dump.

The following table describes how HCSAByASID, HCSANoOwner, and
HCSASysOwner affect the CSA storage that is captured in an SVC
dump:

Table 53. Affects on the CSA storage captured in an SVC dump

Specified SDATA option or options CSA storage that is included in the dump

CSA All above the bar and below the bar CSA
storage

CSA, HCSAByASID, HCSANoOwner,
HCSASysOwner

All below the bar CSA storage, high virtual
CSA storage that is owned by the ASIDs that
are included in the dump, high virtual CSA
storage for which the owner has ended, and
high virtual CSA storage that belongs to the
SYSTEM.

The dump does not include high virtual
CSA storage that is owned by the ASIDs that
are excluded from the dump.

HCSAByASID, HCSANoOwner,
HCSASysOwner

All high virtual CSA storage that is owned
by the ASIDs that are included in the dump,
high virtual CSA storage for which the
owner has ended, and high virtual CSA
storage that belongs to the SYSTEM

No below the bar CSA storage is included in
the dump.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 347

|
|
|
|
|

|
|
|
|

|
|

|
|
|

||

||

||
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|



Table 53. Affects on the CSA storage captured in an SVC dump (continued)

Specified SDATA option or options CSA storage that is included in the dump

(Neither CSA nor any of the HCSAxxxx
options)

None of the CSA storage is included in the
dump.

HCSANoOwner
High virtual CSA storage for which the owner has ended.

Attention: When this option is specified alone, it might result in the
inclusion of none of the above the bar CSA storage in the dump.

HCSASysOwner
High virtual CSA storage that belongs to the SYSTEM.

Attention: When this option is specified alone, it might result in the
inclusion of none of the above the bar CSA storage in the dump.

LPA The active link pack area modules and SVCs for each address space
being dumped.

LSQA Dumps the following storage:
v The LSQA and ELSQA for each address space being dumped

(subpools 203-205, 213-215, 223-225, 233-235, and 253-255)
v Virtual storage for 64-bit addressable memory objects created using

one of the following services:
– IARV64 REQUEST=GETSTOR,DUMP=LIKELSQA
– IARCP64 COMMON=NO,DUMP=LIKELSQA
– IARST64 COMMON=NO

NOALLPSA
NOALL The PSA for one processor is dumped. This is either the processor at

the time of the error or the processor at the time of the dump.

NOSQA The system queue area is not dumped.

NOSUMDUMP
NOSUM A summary dump is not included in the SVC dump.

NUC The non-page-protected areas of the DAT-ON nucleus. (The ALLNUC
parameter must be specified to obtain the entire nucleus, including the
page-protected areas of the DAT-ON nucleus and the DAT-OFF
nucleus.)

PSA The PSA for one processor is dumped. This is either the processor at
the time of the error or the processor at the time of the dump.

RGN Dumps the following storage:
v The allocated pages in the private area of each address space being

dumped. This includes the following areas:

Subpools Storage

0-127, 129-132, 229, 230, 240, 244, 249,
250-252

All storage allocated to these subpools

203-205, 213-215, 223-225, 233-235, 253-255 All storage allocated to the LSQA and
ELSQA

236, 237 All storage allocated to the SWA and ESWA

SDUMPX macro

348 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU

|

||

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|



Only those obtained pages that have something stored into them are
dumped. The dump does not include pages of storage that are in a
freshly-obtained state. This reduces the number of page faults that
occur during SVC dump processing, decreases the time required to
take a dump, and reduces the size of the dump.

v Virtual storage for 64-bit user region memory objects created using
one of the following services:
– IARV64 REQUEST=GETSTOR,DUMP=LIKERGN
– IARV64 REQUEST=GETSTOR,SVCDUMPRGN=YES
– IARCP64 COMMON=NO,DUMP=LIKERGN
– IARST64 COMMON=NO

v Data-in-virtual (DIV) pages are dumped when they have been
changed since the last DIV macro (that specified the SAVE service)
executed. DIV pages that have not been changed, are considered to
be in a freshly-obtained state.

SERVERS
Client-related data in address spaces and dataspaces other than the
client's should be added to the dump via IEASDUMP.SERVERS exit
invocations. Note that this will convert synchronous dumps to
asynchronous dumps.

SQA Dumps the following storage:
v The SQA and ESQA subpools (226, 239, 245, 247, and 248)

Only those obtained pages that have something stored into them are
dumped. The dump does not include pages of storage that are in a
freshly-obtained state.

v Virtual storage for 64-bit addressable memory objects created using
one of the following services:
– IARV64 REQUEST=GETCOMMON,DUMP=LIKESQA
– IARCP64 COMMON=YES,DUMP=LIKESQA
– IARST64 COMMON=YES,TYPE=FIXED
– IARST64 COMMON=YES,TYPE=DREF

SUMDUMP
SUM A summary dump is to be included with the SVC dump output. The

trace table is included in the non-summary portion of the dump if this
option is specified or used as a default.

The type of summary dump depends on how you specify the
BRANCH and SUSPEND parameters:
v If you specify BRANCH=YES and SUSPEND=NO, you get a

disabled summary dump.
v If you specify BRANCH=YES and SUSPEND=YES, you get a

suspend summary dump.
v If you specify BRANCH=NO, you get an enabled summary dump.

For a description of the dump contents, see z/OS MVS Diagnosis: Tools
and Service Aids.

SWA The scheduler work area subpools for each address space being
dumped (subpools 236 and 237). This includes all storage allocated
above and below 16 megabytes.

TRT The system trace table, the GTF trace records, and master trace data if
these types of traces are active

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 349

|
|
|
|
|
|

|
|
|
|
|
|



XESDATA
Cross-system extended services (XES) information.

DEFAULTS
DEFS The following default SDATA options are included in the SVC dump:

v ALLPSA
v SQA
v SUMDUMP
v IO
v Any default SDATA options specified by the CHNGDUMP

command when CHNGDUMP is in ADD mode.

Notes:

1. DEFAULTS is not required. All SVC dumps include the default
SDATA options unless NODEFAULTS is specified.

2. DEFAULTS and NODEFAULTS are mutually exclusive.

NODEFAULTS
NODEFS The SDATA defaults are NOT included in the SVC dump. Specifying

NODEFAULTS reduces the size of an SVC dump by excluding the
following default SDATA options:
v ALLPSA
v SQA
v SUMDUMP
v IO
v Any default SDATA options specified by the CHNGDUMP

command when CHNGDUMP is in ADD mode.

If a data area relating to an SDATA option is required in the dump, the
programmer can code that SDATA option on the SDUMPX macro
invocation. All keywords and SDATA options are valid when NODEFS
is coded.

If you specify NODEFAULTS, the dump still contains some default
system areas that are included in all dumps.

IO The IO data areas are included in the SVC dump.

,SRB=(srb addr)
,SRB=(srb addr,CAPTURE)
,SRB=(srb addr,WRITE)

Specifies how the system should synchronize your program with dump
processing. Note that these interfaces will not be driven if the call to SDUMPX
results in a non-zero return code.

SRB specifies that the system should schedule the service request block (SRB)
indicated by srb addr. For SRB=srb addr and SRB=(srb addr,CAPTURE), the
system schedules the SRB at the completion of the capture phase unless you
have also specified the DCB parameter. If you specify both the DCB and SRB
parameters, the system schedules the SRB at the completion of the writing
phase, no matter what has been specified on the SRB parameter. For SRB=(srb
addr,WRITE), the system schedules the SRB at the completion of the dump
writing phase. If the capture phase is not successful, the system schedules the
SRB at the completion of SVC dump processing.

When the caller builds the SRB, the caller may pass the address of a status area
in the SRBPARM field. This status area, SDSTATUS, is mapped by IHASDST.

SDUMPX macro

350 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



SVC dump passes information about the dump to the SRB routine by means of
this status area. If SVC dump schedules the SRB at the completion of the
capture phase, the name of the dump data set is not passed to the caller.

,STORAGE=(strt addr,end addr)
Specifies one or more pairs of starting and ending addresses. Each starting
address must be less than its corresponding ending address.

When STORAGE is specified, the list must contain an even number of
addresses, and each address must occupy one fullword. In the list, the
high-order bit of the fullword containing the last ending address of the list
must be set to 1. All other high-order bits must be set to 0.

,STRLIST=structure list addr
Specifies the address of an area that contains a dump parameter list. The list
can contain lists of structures, ranges, and options to be dumped from a
Coupling facility. Use the IHABLDP macro to build this list for input to
SDUMPX. If any structure specified is not accessible or not eligible to be
dumped, a partial dump occurs.

The size of the structure list can range from a minimum of 72 bytes to a
maximum of 8K.

,SUBPLST=subpool id list address
Specifies a list of ASIDs with associated subpool ids corresponding to subpools
of virtual storage that are to be included in the SVC dump.

The first fullword of the list contains the number of bytes (including the first
word) in the list. The list can contain a maximum of 200 bytes consisting of
unique ASIDs and subpool IDs. If the list contains duplicate ASIDs or subpool
IDs, the length can exceed 200 bytes because SDUMPX stores the unique
subpool IDs in a 200-byte work area.

The structure of the list for each ASID follows:
v The first word contains the ASID in bits 0-15 and the number of subpools

associated with this ASID (n) in bits 16-31. If 0 is specified as the ASID, the
caller's home ASID is used.

v The next n halfwords contain the subpool IDs (right justified) corresponding
to the virtual storage to be included in the SVC dump. The manner in which
these subpools are dumped depends on whether they are private or
common area subpools.
– If a private area subpool (related to a TCB) is specified, all virtual storage

associated with this subpool, for all TCBs in the specified address space,
is dumped.

– If a common area subpool is specified, all of the virtual storage allocated
in the subpool is dumped.

SVC dump does not dump all the obtained storage in an address space if the
SUBPLST list keyword for private subpools is coded. This reduces the number
of page faults that occur during SVC dump processing and the time required
to take a dump. It also reduces the size of dumps on tape or DASD.

For storage that is not related to data-in-virtual, only obtained pages that have
something stored into them are dumped. This eliminates the pages of storage
that are in a freshly obtained state.

For storage that is related to data-in-virtual, only pages that are in central
storage are dumped, as well as pages that have been changed since the last
data-in-virtual SAVE operation.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 351



Notes:

1. SVC dump ignores unassigned subpool IDs and ASIDs.
2. If an invalid subpool or ASID (ASID greater than ASVTMAXU) is specified,

the caller receives a 233 ABEND and SDUMP processing terminates the
dump.

3. If all ASIDs specified in SUBPLST are the current ASID, SUBPLST does not
force a scheduled dump. However, if any of the ASIDs are different, a
scheduled (or asynchronous) dump results.

4. SDUMPX callers executing in key 0 and supervisor state, who request
storage from subpool 0 via GETMAIN obtain that storage from subpool 252
instead. Therefore, when these callers want to dump this storage, they must
specify subpool 252 rather than subpool 0.

,SUMLIST=(strt addr,end addr)
,SUMLSTA=list addr
,SUMLSTL=list addr
,SUMLIST64=list addr

Specifies one of the following:
v A list of starting and ending addresses of areas to be included in a summary

dump (SUMLIST).
v A combined list of ASIDs and storage ranges (SUMLSTA).
v A list of address ranges, qualified by ALETs, of areas to be included in a

summary dump (SUMLSTL).
v A list of virtual address ranges, qualified by ALETs or STOKENs, of areas to

be included in a summary dump (SUMLIST64).

SUMDUMP must be specified as an SDATA parameter and each starting
address must be less than its corresponding ending address.

SUMLIST: For SUMLIST, the storage list must contain an even number of
addresses, and each address must occupy one fullword. In the list, the
high-order bit of the fullword containing the last ending address of the list
must be set to 1, and all other high-order bits must be set to 0.

SUMLSTA: For SUMLSTA, the first fullword of the list contains the number of
bytes (including the first word) in the list. SUMLSTA specifies a list of ASIDs
and storage ranges as follows:

SDUMPX macro

352 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Restriction:
v The maximum number of ASIDs that the combined TYPE=XMEM,

TYPE=XMEME, LISTA, ASIDLST, ASID, and SUBPLST parameters can
specify is fifteen.

Note: There is no restriction on the number of ASIDs that the SUMLSTA can
specify.

When BRANCH=YES and SUSPEND=NO are also specified, the list must be
addressable using the addressability established when SVC dump was entered.
The lists themselves and all ranges specified must reference paged-in data.
Paged-out data is not dumped by summary dump.

When BRANCH=YES and SUSPEND=YES are also specified, the lists must be
addressable using the addressability established when SVC dump was entered.
The lists and referenced data can either be in paged in or paged out areas. The
maximum amount of summary dump data with this type of dump is 8M.

When BRANCH=NO is also specified, the lists must be addressable in all
address spaces in which the dump will be taken (those address spaces
specified by ASID, ASIDLST, LISTA, or TYPE=XMEM, TYPE=XMEME, or
SUBPLST). Synchronization with the capture phase via the SRB or ECB option
is also required, as you cannot free the storage containing these lists until the
capture phase is completed. The lists and referenced data can be in paged-in or
paged-out areas. The maximum amount of summary dump data possible with
this type of dump is dependent only on the size of the dump data set.

Each ASID specified with SUMLSTA must represent a valid, swapped-in
address space in order for the data to be dumped.

Programming Notes: The total number of distinct ASIDs that can be specified
by TYPE=XMEM, TYPE=XMEME, LISTA, ASID, SUBPLST and ASIDLST is
fifteen. If more than fifteen are requested, only the first fifteen are processed.
There is no restriction on the number of ASIDs specified by the SUMLSTA
parameter, nor do SUMLSTA ASIDs contribute toward the fifteen ASID limit.

SUMLSTL: For SUMLSTL, the first fullword of the list contains the number of
bytes (including the first word) in the list. Specify the ALETs and address

4 bytes

First ASID

Last ASID

Length of the list

Number of ranges to be
dumped - this ASID

Number of ranges to be
dumped - this ASID

Range 1 starting address
Range 1 ending address
Range 2 starting address
Range 2 ending address

Range 1 starting address
Range 1 ending address

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 353



ranges as follows:

ALET refers to entries in either a DU-AL or a PASN-AL, and associated with
any address/data space that the caller has addressability to. SVC dump does
not dump data space storage that has not been referenced.

SUMLIST64=list addr
Specifies a storage location describing a list of virtual storage address ranges,
qualified by STOKEN or ALET, to be included in the dump.

The address ranges are described with 64-bit starting and ending addresses
and may refer to any address space virtual storage, including virtual storage
above the 2 gigabyte bar and any data space storage.

The SUMLIST64 parameter is mutually exclusive with the SUMLSTL
parameter.

When SUMLIST64=list addris specified, the first fullword of the storage list
contains the number of bytes, including the first word, in the list.

The SUMLIST64 storage list format is essentially analogous to the SUMLSTL
storage list format, and the STOKENs or ALETs and the address ranges can be
specified as follows:
v the flags field contains one byte of bit indicators.
v A flags value of X'80' indicates the STOKEN/ALET field contains a

STOKEN.
v a value of X'40' indicates the STOKEN/ALET field contains an ALET.
v the only values supported in the flags field are X'80' and X'40'.
v the ending address for any data space range cannot exceed hexadecimal

'000000007fffffff'.

The STOKEN/ALET field is specified as follows:

Length of list

First ALET (4 bytes)

Number of ranges to dump for this ALET

Range 1 starting address

Range 1 ending address

Range n starting address

Range n ending address

4 bytes

Last ALET (4 bytes)

Number of ranges to dump for this ALET

Range 1 starting address

Range 1 ending address

Range n starting address

Range n ending address

SDUMPX macro

354 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



If a STOKEN is specified, the address of data space represented by the stoken
must be addressable via PASN access list.

SUMLIST64 may only be specified in conjunction with SDATA=SUMDUMP.

,SUSPEND=NO
,SUSPEND=YES

Specifies that a suspend summary dump is requested (YES) or not requested
(NO). SUSPEND=YES must be used together with the BRANCH=YES and
SDATA=SUMDUMP parameters. This keyword should be used by routines
that can experience page faults but that want to save dump information in a
virtual storage buffer.

In z/OS V1R7 and subsequent releases, when SUSPEND=YES is specified with
SDATA=TRT, dumping of the trace table prior to suspend summary dump
processing is initiated. Prior releases did this in the opposite order, risking the
loss of valuable system trace table entries.

Applications that request the recording of a significant amount of data during
suspend summary dump processing can budget their requests using field
SMEWVSPC. SMEWVSPC is formally supported in z/OS V1R7 to indicate the
capacity of the suspend summary dump buffer.

,SYMREC=symrec addr
Specifies the address of a valid symptom record for DAE to use for dump
suppression. DAE suppresses the SVC dump if the primary symptom string
found in the symptom record matches previously known symptoms, and,
suppression has been enabled by the installation.

The caller must build the symptom record and fill in at least the ‘SR’ identifier
and the primary symptom string, which should uniquely identify the error.

SUMLIST64 Area

Start address of range
End address of range

Start address of range
End address of range

1
1

2
2

+18
+20

.

.

.

4 bytes reservedTotal Length of area

Start address of range
End address of range

n
n

# of ranges in this group    Flags  3 bytes Reserved

STOKEN2 or ALET2

# of ranges in this group    Flags  3 bytes Reserved

STOKEN1 or ALET1

Start address of range
End address of range

1
1

Start address of range
End address of range

n
n

+8

+0

+10

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 355



SVC dump issues an abend with a completion code of X'233', reason code
X'9C', then returns to the caller with a return code of 8 if the symptom record
identifier is not ‘SR’, if the offset and length of the primary symptom string are
not initialized, or if the first byte of the symptom record and the last byte of
the secondary symptom string are not addressable.

SVC dump does not include the symptom record in the dump. The caller can
use the SUMLIST keyword to include the symptom record in the dump.

See the dump analysis and elimination (DAE) section in z/OS MVS
Programming: Authorized Assembler Services Guide for more information on
symptom strings and how to build them.

The ADSR macro maps the symptom record. See z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for a
macro mapping of the ADSR.

,TYPE=XMEM
,TYPE=XMEME
,TYPE=NOLOCAL
,TYPE=FAILRC

Specifies that the caller's cross memory mode determines the address spaces to
dump (XMEM or XMEME) or that the caller cannot allow SDUMPX to obtain a
local lock (NOLOCAL) or that SVC dump should return a reason code with
the return code to the DUMP command processor when the requested dump
was not taken (FAILRC).

XMEM requests SVC dump to use the caller's cross memory mode at the time
the SDUMPX macro is executed.

XMEME requests SVC dump to use the caller's cross memory mode at the
time of the error for which the dump is being taken.

See the ASID, ASIDLST, or JOBLIST descriptions for the default behavior if
TYPE=XMEM or TYPE=XMEME is not specified.

The home address space is dumped for both keywords. The relevant primary
and secondary address spaces are also dumped if they are unique. If a cross
memory local lock was held, the address space whose local lock is held is also
dumped.

NOLOCAL indicates that the caller is in an environment where SDUMPX
cannot hold a local lock. This option has meaning only when BRANCH=YES is
specified and the caller is enabled and unlocked (for example, the caller has an
enabled unlocked task FRR established or is in SRB or cross memory mode).

FAILRC requests that the caller receive special information from SVC dump
whenever the dump fails. Some information is already placed in SDWASDRC
as a result of the SVC dump failure. When the caller receives control again
after a dump failure (return code 8) and the caller has specified TYPE=FAILRC,
the reason code is combined with the return code and passed to the caller in
either register 15 or the ECB, or through the IHASDST mapping macro if the
SRBPARM area was provided for an SRB. The reason code is in bits 16-23; the
return code is in bits 24-31. When the return code is in the ECB, the POST flag
is set on. SDUMPX passes back a return code in register 15 and places the
reason code in the SDWA. The reason code explains why the dump failed.

Return and reason codes
The following tables identify return codes and reason codes, tell what each means,
and recommend actions that you should take.

SDUMPX macro

356 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU

http://www.ibm.com/systems/z/os/zos/bkserv/


Register 15 return codes
If BRANCH=NO was specified and no ASIDs other than the current ASID were
requested, register 15 contains one of the following hexadecimal return codes when
control is returned at the completion of the capture phase:

Table 54. Return Codes for the SDUMPX Macro when BRANCH=NO

Hexadecimal
Return Code

Meaning and Action

00 Meaning: A complete dump was taken.

Action: For scheduled dumps, the ECB will be POSTed, or the SRB will receive
control.

04 Meaning: A partial dump was taken because the dump data set did not have
sufficient space.

Action: Examine the reason code that explains why a partial dump was taken.
The reason code is contained in message IEA911E. For scheduled dumps, the
ECB will be POSTed, or if specified, the routine can include the IHASDRSN
mapping macro to map the reason code information.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see
“Reason codes for return code 08” on page 358). For scheduled dumps,
programs must not wait on the ECB, or expect the SRB to receive control.

If BRANCH=YES or any ASID other than the current ASID was requested, register
15 contains one of the following hexadecimal return codes when control is
returned after the system has scheduled the dump:

Table 55. Return Codes for the SDUMPX Macro when BRANCH=YES

Hexadecimal
Return Code

Meaning and Action

00 Meaning: A dump was scheduled.

Action: An ECB will be POSTed, or the SRB will receive control.

08 Meaning: The system was unable to schedule a dump.

Action: Examine the reason code that explains why no dump was taken (see
“Reason codes for return code 08” on page 358). Programs must not wait on the
ECB, or expect the SRB to receive control.

ECB and SRB return codes
If ECB=(ecb addr), ECB=(ecb addr,CAPTURE), SRB=(srb addr), or SRB=(srb
addr,CAPTURE), was specified and the DCB parameter was not specified, the
system also returns one of following hexadecimal codes in the ECB or SRB at the
completion of the capture phase:

Table 56. Return Codes for the ECB Parameter and SRB Parameter

Hexadecimal
Return Code

Meaning and Action

00 Meaning: All the requested data was captured and the dump writing phase was
successfully initiated.

Action: None

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 357



Table 56. Return Codes for the ECB Parameter and SRB Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

04 Meaning: Some of the requested data could not be captured and one or more
partial dump indicators have been set in SDRSN. The dump writing phase was
successfully initiated.

Action: Examine the reason code that explains why a partial dump was taken.
The reason code is contained in message IEA911E. If you specified the SRB
parameter, you can include the IHASDRSN mapping macro to map the reason
code information.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see
“Reason codes for return code 08”).

If ECB=(ecb addr,WRITE) or SRB=(srb addr,WRITE) was specified, or if any of the
options on the ECB or SRB parameters were specified along with the DCB
parameter, the system also returns one of the following hexadecimal codes in the
ECB or SRB at the completion of the dump writing phase:

Table 57. Return Codes for the ECB or SRB Parameter with the DCB Parameter

Hexadecimal
Return Code

Meaning and Action

00 Meaning: All the requested data was captured and then written to the dump
data set.

Action: None

04 Meaning: Some of the requested data could not be captured or could not be
written to the dump data set.

Action: Examine the reason code that explains why a partial dump was taken.
The reason code is contained in message IEA911E. If you specified the SRB
parameter, you can include the IHASDRSN mapping macro to map the reason
code information. The reason codes might also be passed to the SRB routine in
the SDSTPDRC field of SDSTATUS.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see
“Reason codes for return code 08”).

Note: The ECB will not be posted unless the return code from SDUMPX is 0.

Reason codes for return code 08
When a return code of 08 is received, a hexadecimal reason code is returned. The
reason code is in the following locations:
v In the SDWASDRC field of the SDWA if you issued SDUMPX in a recovery

routine, and the system provided an SDWA.
v In the ECB or register 15 (bits 16-23), provided that the FAILRC parameter is

specified.
v In the SDSTATUS field. This field is pointed to by the SRBPARM field that is in

the SRB parameter list. The parameter list is passed to SDUMPX by using the
SRB keyword.

The reason codes are as follows:

SDUMPX macro

358 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 58. Reason Codes for Return Code 08

Hexadecimal
Reason Code

Meaning and Action

0 Meaning: SVC dump processing could not be serialized.

Action: None

1 Meaning: An SVC dump was successfully started.

Action: None

2 Meaning: An SVC dump was suppressed because the capture phase of another
SVC dump was in progress.

Action: Wait until the dump in progress has been captured (as identified by
message IEA794I) and reissue SDUMPX.

3 Meaning: An SVC dump was suppressed by a request by the installation (for
example: DUMP=NO at IPL or CHNGDUMP SET,NODUMP).

Action: Issue CHNGDUMP SET,SDUMP or CHNGDUMP RESET,SDUMP and
reissue SDUMPX.

4 Meaning: An SVC dump was suppressed by a SLIP NODUMP command.

Action: Delete SLIP trap with SLIP DEL command and reissue SDUMPX.

5 Meaning: An SVC dump was suppressed because a SYS1.DUMP data set was
not available.

Action: If MSGTIME expired, increase MSGTIME limit with CD
SET,SDUMP,MSGTIME= command. Make a dump dataset available via the
DUMPDS ADD,DSN= and/or DUMPDS CLEAR,DSN= commands and reissue
SDUMPX.

6 Meaning: An SVC dump was suppressed because an I/O error occurred during
the initialization of the SYS1.DUMP data set.

Action: Reissue SDUMPX.

8 Meaning: An SVC dump was suppressed because an SRB could not be
scheduled to activate the dump tasks in the requested address spaces.

Action: None

9 Meaning: An SVC dump was suppressed because a terminating error occurred
in SVC dump before the first dump record was written.

Action: Reissue SDUMPX.

A Meaning: An SVC dump was suppressed because a status stop SRB condition
was detected.

Action: None

B Meaning: An SVC dump was suppressed by DAE.

Action: None.

C Meaning: The DUMPSRV primary task is unavailable to process SVC dumps.

Action: DUMPSRV may be restarting after processing a CANCEL request. Try
reissuing the SDUMPX at a later time. If the condition persists, notify the system
programmer that DUMPSRV is unavailable and that they may require IBM
assistance to get it restarted.

15 Meaning: The parameter list address is zero.

Action: Supply a parameter list address in register 1 and reissue SDUMPX.

16 Meaning: The parameter list is not a valid SVC or SNAP parameter list.

Action: Provide the address of a valid SVC dump parameter list in register 1
and reissue SDUMPX.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 359



Table 58. Reason Codes for Return Code 08 (continued)

Hexadecimal
Reason Code

Meaning and Action

17 Meaning: The caller-supplied data set is not supported.

Action: Supply a dataset with LRECL >= 4160 open with EXCP on a device
supported by SVC dump (or use a system dump dataset) and reissue SDUMPX.

18 Meaning: The start address is greater than or equal to the end address in a
storage list.

v For the LIST, STORAGE and SUMLIST parameters, ensure that the high-order
bit of the last ending address is set to 1.

v For the LISTA, LISTD, LIST64, SUMLSTA, SUMLSTL and SUMLIST64
parameters, ensure that the length of the list or the number of ranges was
specified correctly.

Action: Correct the address range that is not valid and reissue SDUMPX.

19 Meaning: The caller-supplied header is longer than 100 characters.

Action: Supply a shorter header and reissue SDUMPX.

1A Meaning: The caller requested a 4K buffer, but did not reserve it.

Action: Consider converting the SDUMP invocation to generate a summary
dump instead of using the BUFFER=YES parameter. Otherwise, refer to the
information for the BUFFER=YES parameter in the SDUMPX macro description
and reissue the SDUMPX after the correction is made.

1B Meaning: A storage list overlaps the 4K buffer.

Action: Move the storage list so that it does not overlap the SVC dump 4K
buffer pointed to by CVTSDBF. Reissue SDUMPX.

1C Meaning: The caller-supplied DCB is not valid.

Action: Make sure DCB is open, does not overlap 4K buffer, and represents a
tape or DASD dataset, then reissue SDUMPX.

1E Meaning: An ASID in the ASID list is syntactically not valid.

Action: Supply a valid ASID (<= ASVTMAXU) and reissue SDUMPX.

22 Meaning: The 4K buffer was requested with an SVC dump already in progress.

Action: Wait until the dump in progress has been captured and reissue
SDUMPX.

25 Meaning: A subpool ID that was not valid was specified in the subpool list.

Action: Supply a valid subpool id (<= 255) and reissue SDUMPX.

28 Meaning: Part of the parameter list is inaccessible.

Action: Make sure the parameter list is addressable from the caller's current
address space. Reissue SDUMPX.

29 Meaning: The caller-supplied DCB is inaccessible.

Action: Make sure the DCB is addressable from the caller's current address
space. Reissue SDUMPX.

2A Meaning: The caller-supplied storage list is inaccessible.

Action: Make sure the storage list addressable from the caller's current address
space. Reissue SDUMPX.

2B Meaning: The caller-supplied header data is inaccessible.

Action: Make sure the header is addressable from the caller's current address
space. Reissue SDUMPX.

SDUMPX macro

360 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 58. Reason Codes for Return Code 08 (continued)

Hexadecimal
Reason Code

Meaning and Action

2C Meaning: The caller-supplied ECB is inaccessible.

Action: Make sure the ECB is addressable from the caller's current address
space. Reissue SDUMPX.

2D Meaning: The caller's ASID list is inaccessible.

Action: Make sure the ASID list is addressable from the caller's current address
space. Reissue SDUMPX.

2E Meaning: The caller's SUMLIST/SUMLSTA is inaccessible.

Action: Make sure the SUMLIST/SUMLSTA is addressable from the caller's
current address space. Reissue SDUMPX.

2F Meaning: The caller's SUBPLST list is inaccessible.

Action: Make sure the SUBPLST is addressable from the caller's current address
space. Reissue SDUMPX.

30 Meaning: The caller's KEYLIST is inaccessible.

Action: Make sure the KEYLIST is addressable from the caller's current address
space. Reissue SDUMPX.

31 Meaning: Copies of the SLIP register and PSW are inaccessible.

Action: None

32 Meaning: The caller-supplied SRB is inaccessible.

Action: Make sure the SRB is addressable from the caller's current address space.
Reissue SDUMPX.

33 Meaning: The version number in the parameter list is not valid.

Action: Supply a parameter list with a valid version number and reissue
SDUMPX.

34 Meaning: The caller's LISTD or LIST64 is inaccessible.

Action: Make sure the LISTD or LIST64 is addressable from the caller's current
address space. Reissue SDUMPX.

35 Meaning: The caller's SUMLSTL or SUMLIST64 is inaccessible.

Action: Make sure the SUMLSTL or SUMLIST64 is addressable from the caller's
current address space. Reissue SDUMPX.

36 Meaning: The parameter list contains conflicting parameters.

Action: Remove the conflicting parameters (for example, both ECB and SRB
specified) and reissue SDUMPX.

37 Meaning: The ID is longer than 50 characters.

Action: Supply a shorter ID and reissue SDUMPX.

38 Meaning: The ID is not addressable.

Action: Make sure the ID is addressable from the caller's current address space.
Reissue SDUMPX.

39 Meaning: The PSWREGS area is an incorrect length.

Action: Correct the length of the PSWREGS area and reissue SDUMPX.

3A Meaning: The PSWREGS area is not addressable.

Action: Make sure the PSWREGS area is addressable from the caller's current
address space. Reissue SDUMPX.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 361



Table 58. Reason Codes for Return Code 08 (continued)

Hexadecimal
Reason Code

Meaning and Action

3B Meaning: The symptom record is not valid.

Action: Supply a valid symptom record and reissue SDUMPX.

3C Meaning: The symptom record is not addressable.

Action: Make sure the symptom record is addressable from the caller's current
address space. Reissue SDUMPX.

3D Meaning: The DEB for the caller-supplied DCB is inaccessible.

Action: Make sure the DEB for the caller-supplied DCB is addressable from the
caller's current address space. Reissue SDUMPX.

3E Meaning: SVC dump is already using the maximum amount of virtual storage
(as determined by the installation, using the MAXSPACE parameter on the
CHNGDUMP command) to process other dumps.

Action: Make a dump dataset available via the DUMPDS ADD,DSN= or
DUMPDS CLEAR,DSN= command, reply DELETE to an outstanding IEA793A
message, or increase the amount of virtual storage that SDUMPX is allowed to
use via the CHNGDUMP SET,SDUMP,MAXSPACE= command, then reissue
SDUMPX.

3F Meaning: The caller-supplied STRLIST area is inaccessible.

Action: Make sure the STRLIST area is addressable from the caller's current
address space. Reissue SDUMPX.

40 Meaning: The caller-supplied INTOKEN area is inaccessible.

Action: Make sure the INTOKEN area is addressable from the caller's current
address space. Reissue SDUMPX.

41 Meaning: The caller-supplied REMOTE area is inaccessible.

Action: Make sure the REMOTE area is addressable from the caller's current
address space. Reissue SDUMPX.

42 Meaning: The caller-supplied PROBDESC area is inaccessible.

Action: Make sure the PROBDESC area is addressable from the caller's current
address space. Reissue SDUMPX.

43 Meaning: The caller-supplied JOBLIST area is inaccessible.

Action: Make sure the JOBLIST area is addressable from the caller's current
address space. Reissue SDUMPX.

44 Meaning: The caller-supplied DSPLIST area is inaccessible.

Action: Make sure the DSPLIST area is addressable from the caller's current
address space. Reissue SDUMPX.

45 Meaning: The caller-supplied REMOTE area is not valid. The length of a field in
the REMOTE area is specified as less than 4 bytes.

Note that, if the length of the entire REMOTE area is less than 4 bytes, the
REMOTE parameter is ignored.

Action: Correct the lengths specified in the area mapped by the IEASDRMT
macro. Reissue SDUMPX.

SDUMPX macro

362 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Table 58. Reason Codes for Return Code 08 (continued)

Hexadecimal
Reason Code

Meaning and Action

46 Meaning: SVC dump processing has determined that its threshold for using
auxiliary storage (AUX) has been exceeded. If the threshold was exceeded while
an SVC dump was in progress, that processing will be stopped and the resulting
dump will be partial. Also, as long as the threshold is exceeded, no new dumps
will be allowed to start. If the DUMPSRV address space is the largest consumer
of AUX, then either captured SVC dumps are not being written to DASD quickly
enough, or the size of the current dump request is considerable.

Action: Ensure that enough DASD resource is available for accommodating the
captured SVC dumps. Because other applications might be using the paging
resource, more paging space might be required. When SVC dump processing has
detected a shortage, the auxiliary storage utilization must drop below 35%
before new SVC dump requests are honored. See the system programmer
response for message IRA201E to determine how to relieve the shortage. Then
redrive the SVC dump. You can use the AUXMGMT and MAXSPACE
parameters of the CHNGDUMP SET command to manage the use of virtual and
auxiliary storage by SVC dump processing. See z/OS MVS System Commands for
more details about the CHNGDUMP command.

47 Meaning: A LIST64 range exceeds 2 gigabyte addressability in an ESA
environment.

Action: Remove the ranges from the LIST64 parameter that exceeds 2 gigabyte
addressability. Then reissue the SDUMPX macro.

SDUMPX - List form
Use the list form of the SDUMPX macro to construct a control program parameter
list. You can specify any number of storage addresses using the STORAGE
parameter. Therefore, the number of starting and ending address pairs in the list
form of SDUMPX must be equal to the maximum number of addresses specified in
the execute form of the macro.

Syntax
The list form of the SDUMPX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SDUMPX.

SDUMPX

� One or more blanks must follow SDUMPX.

HDR=‘dump title’ dump title: From 1 to 100 characters.

HDRAD=dump title addr dump title addr: A-type address.

,DCB=dcb addr dcb addr: A-type address.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 363



Syntax Description

,JOBLIST=list addr list addr: RX-type address, or register (2) - (12).

,DSPLIST=list addr list addr: RX-type address, or register (2) - (12).

,PLISTVER=1 decimal digit 1: Use up to 112-byte parameter list.

,PLISTVER=2 decimal digit 2: Use 128-byte parameter list.

,PLISTVER=3 decimal digit 3: Use 184-byte parameter list.

Defaults are as follows:

PLISTVER=2, if you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFS,
SDATA=NODEFS, or SDATA=IO.

PLISTVER=3, if you specify STRLIST, REMOTE, INTOKEN, DSPLIST,
JOBLIST, PROBDESC, LIST64 or SUMLIST64.

PLISTVER=1, in all other cases.

,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

,ID=‘identifier’ identifier: From 1 to 50 characters.

,IDAD=identifier addr identifier addr: RX-type address, or register (2) - (12).

,INTOKEN=token addr token addr: RX-type address, or register (2) - (12).

,REMOTE=area addr area addr: RX-type address, or register (2) - (12).

,STRLIST-structure list addr structure list addr: RX-type address or register (2) - (12).

,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

ALLNUC, ALLPSA, COUPLE, CSA, GRSQ, HCSAByASID, HCSANoOwner,
HCSASysOwner, LPA, LSQA, NOALLPSA/NOALL, NOSQA,
NOSUMDUMP/NOSUM, NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA,
TRT, XESDATA, DEFAULTS/DEFS, NODEFAULTS/NODEFS, IO

Note:

1. Executing the SDUMPX macro causes ALLPSA, SQA, IO, and
SUMDUMP storage areas to be dumped unless excluded by
NOALLPSA, NOSQA, NODEFAULTS, or NOSUMDUMP.

2. The PSA and IO options are not required unless NODEFAULTS is
specified, because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

,PROBDESC=area addr area addr: RX-type address, or register (2) - (12).

SDUMPX macro

364 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU

|
|



Syntax Description

,STORAGE=(strt addr,end addr) strt addr: A-type address.

end addr: A-type address.

,LIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

end addr: A-type address, or register (2) - (12).

Note: Specify one or more pairs of addresses, separated by commas.

,LISTA=list addr list addr: RX-type address, or register (2) - (12).

,LISTD=list addr

,LIST64=list addr

,SUMLIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

end addr: A-type address, or register (2) - (12).

Note: Specify one or more pairs of addresses, separated by commas.

,SUMLSTA=list addr list addr: RX-type address, or register (2) - (12).

,SUMLSTL=list addr

,SUMLIST64=list addr

,SUBPLST=subpool id list addr subpool id list addr: A-type address, or register (2) - (12).

,KEYLIST=storage key list addr storage key list addr: A-type address, or register (2) - (12).

Note: KEYLIST cannot be specified without SUBPLST.

,BUFFER=NO Default: BUFFER=NO

,BUFFER=YES

,QUIESCE=YES Default: QUIESCE=YES

,QUIESCE=NO

,TYPE=(type code) type code: Any combination of the following, separated by commas: XMEM
or XMEME, NOLOCAL.

,MF=L

Parameters
The parameters are explained under the standard form of the SDUMPX macro,
with the following exception:

,MF=L
Specifies the list form of the SDUMPX macro.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 365



Note: If SYMREC, ID, IDAD, PSWREGS, SDATA=NODEFS, SDATA=DEFS or
SDATA=IO is not used on the list form of the macro, but is coded on the execute
form, use PLISTVER=2 when specifying MF=L to generate a 128-byte parameter
list.

SDUMPX - Execute form
A remote control program parameter list is referred to and can be modified by the
execute form of the SDUMPX macro.

If you code one or more of the SDATA parameters on the execute form of the
macro, any SDATA parameters coded on the list form are lost.

Syntax
The execute form of the SDUMPX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SDUMPX.

SDUMPX

� One or more blanks must follow SDUMPX.

HDR=‘dump title’ dump title: From 1 to 100 characters.

HDRAD=dump title addr dump title addr: A-type address, or register (2) - (12).

,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

,ASID=ASID addr ASID addr: A-type address, or register (2) - (12).

,ASIDLST=list addr list addr: RX-type address, or register (2) - (12).

,JOBLIST=list addr list addr: RX-type address, or register (2) - (12).

,DSPLIST=list addr list addr: RX-type address, or register (2) - (12).

,TYPE=(type code) type code: Any of the following, separated by commas: XMEM, XMEME,
NOLOCAL, FAILRC

Note: XMEM and XMEME are mutually exclusive codes.

,PLISTVER=1 decimal digit 1: Use up to 112-byte parameter list.

,PLISTVER=2 decimal digit 2: Use 128-byte parameter list.

,PLISTVER=3 decimal digit 3: Use 184-byte parameter list.

SDUMPX macro

366 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

Defaults are as follows:

PLISTVER=2, if you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFS,
SDATA=NODEFS, or SDATA=IO.

PLISTVER=3, if you specify STRLIST, REMOTE, INTOKEN, DSPLIST,
JOBLIST, PROBDESC, LIST64 or SUMLIST64.

PLISTVER=1, in all other cases.

,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

,ID=‘identifier’ identifier: From 1 to 50 characters.

,IDAD=identifier addr identifier addr: RX-type address, or register (2) - (12).

,INTOKEN=token addr token addr: RX-type address, or register (2) - (12).

,REMOTE=area addr area addr: RX-type address, or register (2) - (12).

,STRLIST-structure list addr structure list addr: RX-type address or register (2) - (12).

,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

,ECB=(ecb addr) ecb addr: A-type address, or register (2) - (12).

,ECB=(ecb addr,CAPTURE)

,ECB=(ecb addr,WRITE)

,SRB=(srb addr) srb addr: A-type address, or register (2) - (12).

,SRB=(srb addr,CAPTURE) Note:

1. If you code ECB=(ecb addr), without specifying CAPTURE or WRITE,
SVC dump posts the ECB at the completion of the capture phase unless
you also specify the DCB parameter. If you specify both the ECB and
DCB parameters, the ECB is posted at the completion of the writing
phase.

2. If you code SRB=(srb addr), without specifying CAPTURE or WRITE,
SVC dump schedules the SRB at the completion of the capture phase
unless you also specify the DCB parameter. If you specify both the SRB
and DCB parameters, the SRB is scheduled at the completion of the
writing phase.

,SRB=(ecb addr,WRITE)

,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

ALLNUC, ALLPSA, COUPLE, CSA, GRSQ, HCSAByASID, HCSANoOwner,
HCSASysOwner, LPA, LSQA, NOALLPSA/NOALL, NOSQA,
NOSUMDUMP/NOSUM, NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA,
TRT, XESDATA, DEFAULTS/DEFS, NODEFAULTS/NODEFS, IO

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 367

|
|



Syntax Description

Note:

1. Executing SDUMPX causes ALLPSA, SQA, IO, and SUMDUMP storage
areas to be dumped unless excluded by the NOALLPSA, NOSQA,
NODEFAULTS, or NOSUMDUMP parameter.

2. The PSA and IO options are not required unless NODEFS is specified,
because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

,PROBDESC=area addr area addr: RX-type address, or register (2) - (12).

,STORAGE=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

end addr: A-type address, or register (2) - (12).

,LIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

end addr: A-type address, or register (2) - (12).

Note: Specify one or more pairs of addresses, separated by commas.

,LISTA=list addr list addr: RX-type address, or register (2) - (12).

,LISTD=list addr

,LIST64=list addr

,SUBPLST=subpool id list addr subpool id list addr: RX-type address, or register (2) - (12).

,KEYLIST=storage key list addr storage key list addr: RX-type address, or register (2) - (12).

Note: KEYLIST cannot be specified without SUBPLST.

,BUFFER=NO Default: BUFFER=NO

,BUFFER=YES

,QUIESCE=YES Default: QUIESCE=YES

,QUIESCE=NO

,BRANCH=NO Default: BRANCH=NO

,BRANCH=YES Note: If BRANCH=YES is specified, ASID or ASIDLST must also be
specified.

,SUSPEND=NO Default: SUSPEND=NO

,SUSPEND=YES

,SUMLIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

end addr: A-type address, or register (2) - (12).

Note: Specify one or more pairs of addresses, separated by commas.

SDUMPX macro

368 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Syntax Description

,SUMLSTA=list addr list addr: RX-type address, or register (2) - (12).

,SUMLSTL=list addr

,SUMLIST64=list addr

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the SDUMPX macro,
with the following exception:

,MF=(E, ctrl addr)
Specifies the execute form of the SDUMPX macro using a remote control
program parameter list.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 369



370 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Appendix. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 1988, 2015 371

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html


punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 \* FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* \* FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

372 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix. Accessibility 373



374 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2015 375



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

376 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This information is intended to help the customer to code macros that are available
to authorized assembler language programs. This information documents intended
programming interfaces that allow the customer to write programs to obtain
services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
Trademark information (http://www.ibm.com/legal/copytrade.shtml).

Notices 377

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


378 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU



Index

A
accessibility 371

contact IBM 371
features 371

addressing mode and the services 2
ALET qualification

of parameters 4
AR () mode

description 3
ASC (address space control) mode

defining 3
ASCB (address space control block)

locating 51
assistive technologies 371
asynchronous execution

scheduling system services 290

C
callable service

coding 16
coding the callable services 16
coding the macros 13
command input buffer

manipulating 237
contact

z/OS 371
continuation line 15
CVT (communications vector table)

CVTSDBF field 303

D
dynamic output

text unit
pointer list 144

E
event

signalling completion 217

F
fast path page service 213
FRACHECK macro 239

I
initialize asynchronous exits 281
internal START command 97
issue

remote immediate signal 277

K
keyboard

navigation 371

keyboard (continued)
PF keys 371
shortcut keys 371

L
linkage index

freeing 55
reserving 61

LLACOPY macro 27
LOAD macro 33
load module

bringing into virtual storage 33
LOADWAIT macro 45
LOCASCB macro 51
lock

providing
via an NI instruction 125
via an OI instruction 137

LXFRE macro 55
LXRES macro 61

M
macro

coding 13
forms 11
level

selecting 1
sample 14
selecting level 1
user parameter, passing 4
X-macros

using 11
MCSOPER macro 69
MCSOPMSG macro 87
MGCR macro 97
MGCRE macro 101
MIHQUERY macro 109
MODESET macro 117

N
navigation

keyboard 371
NIL macro 125
NML (nucleus module list) 129
NMLDEF macro 129
Notices 375
nucleus map lookup service 133
nucleus module list

description 129
NUCLKUP macro 133

O
OIL macro 137
OUTADD macro 141
OUTDEL macro 159

output descriptor
creating 141
deleting 159
system-generated name 144

P
page service 203
parameter list

length for SDUMP macro 299
length for SDUMPX macro 329

PCLINK macro 175
PGANY macro 185
PGFIX macro

contents
fixing 189

PGFIXA macro 193
PGFREE macro 197
PGFREEA macro 201
PGSER macro 203, 213
PGSER macro (fast path) 213
POST macro 217
program call

linkage information
EXTRACT 182
STACK 175
UNSTACK 178

PTRACE macro 227
PURGEDQ macro 231

Q
QEDIT macro 237

R
RACDEF macro 239
RACF macros 239
RACHECK macro 239
RACINIT macro 239
RACLIST macro 239
RACROUTE macro 239
RACSTAT macro 239
RACXTRT macro 239
RESERVE macro 241
RESMGR macro 255
RESUME macro for RBs 267
RESUME macro for SRBs 271
RISGNL macro 277

S
SCHEDIRB macro 281
schedule asynchronous exits 281
SCHEDULE macro 289
schedule system services for

asynchronous execution 290
SCHEDXIT macro 295
SDUMP macro 297

© Copyright IBM Corp. 1988, 2015 379



SDUMP macro (continued)
calculating parameter list length 299
in a reentrant program 299

SDUMPX macro 327
calculating parameter list length 329
in a reentrant program 329

sending comments to IBM xvii
service

ALET qualification 4
summary 17

services
addressing mode 2
ASC mode

defining 3
using 1

shared DASD
reserve a device 241

shortcut keys 371
SQA buffer

dumped by SDUMPX 303
SRB (service request block)

purging activity 231
START command

internal 97
Summary of changes xix
SYS1.NUCLEUS parmlib member

with NMLs 129
system status

changing 117

U
user interface

ISPF 371
TSO/E 371

user parameter
passing 4

V
virtual storage

bringing in a load module 33
contents

fix 193
free 197

dumping 297, 327
freeing contents 201

W
wait state

putting the system into 45

X
X-macros

using 11

380 z/OS V2R1.0 MVS Authorized Assembler Services Reference LLA-SDU





����

Product Number: 5650-ZOS

Printed in USA

SA23-1374-01


	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 1, as updated February 2015
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Using the services
	Compatibility of MVS macros
	Addressing mode (AMODE)
	Address space control (ASC) mode
	ALET qualification
	User parameters

	Telling the system about the execution environment
	Specifying a macro version number
	How to request a macro version using PLISTVER
	Hints for using PLISTVER


	Register use
	Handling return codes and reason codes
	Handling program errors
	Handling environmental and system errors

	Using X-macros
	Macro forms
	Conventional list form macros
	Alternative list form macros

	Coding the macros
	Continuation lines

	Coding the callable services
	Including equate (EQU) statements
	Link-editing linkage-assist routines

	Service summary

	Chapter 2. LLACOPY - Library lookaside refresh
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	LLACOPY - List form
	Syntax
	Parameters

	LLACOPY - Execute form
	Syntax
	Parameters


	Chapter 3. LOAD - Bring a load module into virtual storage
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2

	LOAD - List form
	Syntax
	Parameters

	LOAD - Execute form
	Syntax
	Parameters


	Chapter 4. LOADWAIT — Build a wait state parameter list for use with WTO
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications

	LOADWAIT - List form
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3

	LOADWAIT - Modify form
	Syntax
	Parameters
	Example 1
	Example 2


	Chapter 5. LOCASCB — Locate address space control block (ASCB) address
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2


	Chapter 6. LXFRE - Free a linkage index
	Description
	Related macro
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	LXFRE - List form
	Syntax
	Parameters

	LXFRE - Execute form
	Syntax
	Parameters


	Chapter 7. LXRES — Reserve a linkage index
	Description
	Related macro
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	LXRES - List form
	Syntax
	Parameters

	LXRES - Execute form
	Syntax
	Parameters


	Chapter 8. MCSOPER - Manage extended MCS operations
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	MCSOPER - List form
	Syntax
	Parameters

	MCSOPER - Modify form
	Syntax
	Parameters

	MCSOPER - Execute form
	Syntax
	Parameters


	Chapter 9. MCSOPMSG - Retrieve MCS operator messages
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	MCSOPMSG - List form
	Syntax
	Parameters

	MCSOPMSG - Execute form
	Syntax
	Parameters

	MCSOPMSG - Modify form
	Syntax
	Parameters


	Chapter 10. MGCR — Issue an internal START or REPLY command
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example


	Chapter 11. MGCRE — Issue internal commands
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	MGCRE - List form
	Syntax
	Parameters

	MGCRE - Execute form
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example


	Chapter 12. MIHQUERY — Retrieve MIH time interval
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	MIHQUERY - List form
	Syntax
	Parameters

	MIHQUERY - Execute form
	Syntax
	Parameters


	Chapter 13. MODESET — Change system status
	Description
	Inline code generation
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	SVC generation
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	MODESET - List form
	Syntax
	Parameters

	MODESET - Execute form
	Syntax
	Parameters


	Chapter 14. NIL — Provide a lock via an AND IMMEDIATE (NI) instruction
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example


	Chapter 15. NMLDEF — Customizing the nucleus
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3


	Chapter 16. NUCLKUP — Nucleus map lookup service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2
	Example 3


	Chapter 17. OIL — Provide a lock via an OR IMMEDIATE (OI) instruction
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example


	Chapter 18. OUTADD — Create an output descriptor
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	OUTADD - List form
	Syntax
	Example

	OUTADD - Execute form
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Reason codes for return code 04
	Reason codes for return code 08
	Reason codes for return code 0C
	Reason codes for return code 10
	Example


	Chapter 19. OUTDEL — Delete an output descriptor
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	OUTDEL - List form
	Syntax
	Parameters
	Example

	OUTDEL - Execute form
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Reason codes for return code 04
	Reason codes for return code 08
	Reason codes for return code 0C
	Reason codes for return code 10
	Example


	Chapter 20. PCLINK — Stack, unstack, or extract program call linkage information
	Description
	STACK option of PCLINK
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	UNSTACK option of PCLINK
	Environment
	Programming requirements
	Restrictions
	Input register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	EXTRACT option of PCLINK
	Environment
	Programming requirements
	Restrictions
	Input register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes


	Chapter 21. PGANY — Page anywhere
	Description
	Input register information
	Output register information
	Syntax
	Parameters
	Return and reason codes


	Chapter 22. PGFIX — Fix virtual storage contents
	Description
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3


	Chapter 23. PGFIXA — Fix virtual storage contents
	Description
	Output
	Restrictions
	Syntax
	Parameters
	Example 1
	Example 2


	Chapter 24. PGFREE — Free virtual storage contents
	Description
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3


	Chapter 25. PGFREEA — Free virtual storage contents
	Description
	Syntax
	Restrictions
	Output


	Chapter 26. PGSER — Page services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6


	Chapter 27. PGSER — Fast path page services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2


	Chapter 28. POST — Signal event completion
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2
	Example 3

	POST - List form
	Syntax
	Parameters

	POST - Execute form
	Syntax
	Parameters


	Chapter 29. PTRACE — Processor trace
	Description
	Environment
	Programming requirements
	Restrictions
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2


	Chapter 30. PURGEDQ — Purge SRB activity
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	PURGEDQ - List form
	Syntax
	Parameters
	Example

	PURGEDQ - Execute form
	Syntax
	Parameters
	Example


	Chapter 31. QEDIT — Command input buffer manipulation
	Description
	Environment
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2


	Chapter 32. RACF macros
	Chapter 33. RESERVE — Reserve a device (shared DASD)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	RESERVE—List form
	Parameters

	RESERVE - Execute form
	Parameters


	Chapter 34. RESMGR — Add or delete a resource manager
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes from the ADD function
	Return codes from the DELETE function
	Example 1
	Example 2

	RESMGR - List form
	Syntax
	Parameters

	RESMGR - Execute form
	Syntax
	Parameters


	Chapter 35. RESUME — Resume execution of a suspended RB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example


	Chapter 36. RESUME — Resume or purge a suspended SRB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	RESUME - Resume or purge an SRB (List form)
	Syntax
	Parameters

	RESUME - Resume or purge an SRB (Execute form)
	Syntax
	Parameters


	Chapter 37. RISGNL — Issue remote immediate signal
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2


	Chapter 38. SCHEDIRB — Schedule IRB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	SCHEDIRB - List form
	Syntax
	Parameters

	SCHEDIRB - Execute form
	Syntax
	Parameters


	Chapter 39. SCHEDULE — Schedule a service request block (SRB)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6


	Chapter 40. SCHEDXIT — Schedule an exit routine for execution
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes


	Chapter 41. SDUMP — Dump virtual storage
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Register 15 return codes
	ECB and SRB return codes
	Reason codes for return code 08
	Example 1
	Example 2

	SDUMP - List form
	Syntax
	Parameters

	SDUMP - Execute form
	Syntax
	Parameters
	Example 1
	Example 2


	Chapter 42. SDUMPX — Dump virtual storage
	Description
	Wildcards
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Register 15 return codes
	ECB and SRB return codes
	Reason codes for return code 08

	SDUMPX - List form
	Syntax
	Parameters

	SDUMPX - Execute form
	Syntax
	Parameters


	Appendix. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	A
	C
	D
	E
	F
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	U
	V
	W
	X


