<|lI!

7/08S

JES2 Installation Exits

Version 2 Release 1

SA32-0995-00

<|lI!

7/08S

JES2 Installation Exits

Version 2 Release 1

SA32-0995-00

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 431

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
FiguresXv
Tables Xvii

About thisdocument xix

Who should use this document xix
How this document is organized xix
Where to find more information xix
Additional informationXix

How to send your comments to IBM XXi
If you have a technical problem xxi

z/0OS Version 2 Release 1 summary of
changes Xxiii

Chapter 1. Introduction .1
What is a JES2 exit? . .3
Environment .5
Chapter 2. Writing an exit routine. 7
Language7
Operating environment . 7
JES2 environments7
Synchronization . . . P 1
Reentrant code c0n51derat1ons B A |
Linkage conventions . . . |
Addressing mode of JES2 ex1ts13
Addressing mode requirements.13
Residency mode requirements13
Received parameters13
Returncodes.14
Control blocks S
Determining the JES2 release level B [
Service routine usage19
Exit logic . . . B)
Exit-to-exit commumcatlon Lo
Exit point-to-exit routine Commumcatlon o000 20
Exit routine-to exit point communication20
Exit-to-operator communication20
Required mapping macros20
JES2 main task environment exits21
JES2 subtask environment exits.21
Functional subsystem address space environment
exits.22
User environment exits22
User environment exit considerations.24
Reentrancy24
Accessing CKPTed Data Area oo ... 24
Accessing $CATs25
Storage considerations.25
One time exit initialization code25
Tracing.26
Recovery26

© Copyright IBM Corp. 1988, 2013

Loading non-JES2 modules .

Chapter 3. Controlling the loading of

installation-defined load modules .

. 26

. 29

Loading and placement of installation load modules 29

Dynamic Load Modules . .
Dynamic Load Module Con51derat10ns .
$$$$SLOAD and $$$$DEL routines .
$$$$DEL Routine
Special Considerations for LPA Modules

Chapter 4. Enabling an exit .

Chapter 5. Gettlng I|st|ngs of JES2 data
. 43

areas
Chapter 6. Sample exit routines .

Chapter 7. Multiple exit routines in a
single module.

Chapter 8. Testing your exit routine
Packaging the exit . .
Initializing the exit in the system .

Passing control to exit routines .

Job-related exits .

Chapter 9. Tracing status.

Chapter 10. Establishing
installation-defined exits .

Chapter 11. Hints for codlng JES2 exit

routines

Assembler instructions
Constants .

DSECTs.

Registers
Miscellaneous

Chapter 12. IBM-defined exits .

Exit selection table .
Exit implementation table

Chapter 13. Exit 0: Pre-initialization
Function
Environment .
Task .
AMODE/ RMODE reqmrements
Supervisor/problem program
Recovery .
Job exit mask.

.31
.32
. 33
. 36
. 38

. 4

. 45

. 47

. 51
.51
. 52
. 55
. 55

. 57

. 59

. 61
. 61
. 61
. 61
. 62
. 62

. 65
. 65
.75

. 79
.79
.79
.79
.79
.79
.79
.79

iii

Mapping macros normally required79

Point of processing.79
Programming considerations80
Register contents when Exit 0 gets control oL 8l
Register contents when Exit 0 passes control back to

JEs2.08
Coded example8

Chapter 14. Exit 1: Print/punch
separators83

Function83
Environment8
Task. . . . 2
AMODE/ RMODE requlrements R,
Restrictions84
Recovery84
Job exit mask. P . 7
Mapping macros normally requ1red B L
Point of processing.84
Programming considerations . . B .
Register contents when Exit 1 gets control86
Register contents when control passes back to JES2: 88
Coded example88

Chapter 15. Exit 2: JOB JCL statement
scan (JES2 maintask) 89

Function89
Recommendatlons for 1mp1ement1ng Ex1t 2 .. .89
Environment9
Task. . . .) |
AMODE/ RMODE requ1rements F) |
Supervisor/problem program91
Restrictions91
Recovery9
Job exitmask.92
Storage recommendations a2
Mapping macros normally requlred e 092
Point of processing . . e s 92
Extending the JCT control block Lo e 92
Programming considerations93
Register contents on entry to exit2 93
Register contents when exit 2 passes control back to
JES2.9
Coded example9%

Chapter 16. Exit 3: JOB statement
accounting field scan (JES2 main task). 97

Function97
Related exits97
Environment97
Task. . . A V4
AMODE/ RMODE requlrements 4
Supervisor/problem program98
Restrictions98
Recovery98
Job exit mask.98
Mapping macros normally requlred98
Point of processing . . L.98
Extending the JCT control block100
Programming considerations 100

iv z/0S V2R1.0 JES2 Installation Exits

Register contents when Exit 3 gets control. . . . 102
Register contents when Exit 3 passes control back

toJES2103
Coded example.104

Chapter 17. Exit 4: JCL and JES2
control statement scan (JES2 main
task)105

Function105
Environment105
Task 105
AMODE/ RMODE requlrements . (1))
Supervisor/problem program 106
Restrictions106
Recovery.106
Job exit mask 106
Mapping macros normally requlred 106
Point of processing106
Programming considerations 106
Register contents when Exit 4 gets control ... 110
Register contents when Exit 4 passes control back
toJES213
Coded example.113

Chapter 18. Exit 5: JES2 command
preprocessor 115

Function 115
The JES2 Command translator mlgratlon a1d . 115
Environment17
Task . . . B b V4
AMODE/ RMODE requlrements B b V4
Supervisor/problem program 117
Recovery17
Job exit mask . . . P i V4
Mapping macros normally requlred S 4
Point of processing118
Programming considerations 118
Register contents when Exit 5 gets control ... 120
Register contents when Exit 5 passes control back
toJES2 121
Coded example.121

Chapter 19. Exit 6: JES2 converter
exit(subtask) 123

Function123
Related exits. 123
Recommendations for 1mplement1ng Ex1t 6 ... 123
Environment125
Task125
Restrictions125
AMODE/RMODE requlrements125
Supervisor/problem program 125
Recovery.125
Jobexitmask125
Storage recommendations 125
Mapping macros typically requlred ... 126
Point of processing 126
Programming considerations 126
Register contents when Exit 6 gets Control. .. . 126

Register contents when Exit 6 passes control back

to JES2 . 128
Coded example. . 129
Chapter 20. Exit 7: Control block 1/0
(JES2) . 131
Function . . 131
Related exits. . . 131
Recommendations for 1mp1ement1ng Ex1t 7 . 131
Programming considerations . 132
Point of processing . 132
Environment . 132
Task . . . 132
AMODE/ RMODE requlrements . . 132
Supervisor/problem program . . 132
Recovery . . 132
Job exit mask .o . 133
Mapping macros normally requlred . 133
Register contents on entry to Exit 7 . . . 133
Register contents when Exit 7 passes control back
to JES2 . 134
Coded example. . 134
Chapter 21. Exit 8: Control block
read/write (user, subtask, and FSS). . 135
Function . . 135
Related exits. . 135
Programming con51derat1ons . 135
Point of processing . 135
Environment . 136
Task . . . 136
AMODE/ RMODE requlrements . . 136
Restrictions . o . 136
Recovery . . 136
Job exit mask - . 136
Mapping macros normally reqmred . 136
Register contents on entry to Exit 8 . . 136
Register contents on return to JES2 . . 137
Coded example. . 138
Chapter 22. Exit 9: Output excession
options . . 139
Function . . 139
Related exits. . 139
Environment . 139
Task . . . 139
AMODE/ RMODE requlrements . . 139
Supervisor/problem program . . 139
Restrictions . . 139
Recovery . . 140
Job exit mask .o . 140
Mapping macros normally requlred . 140
Point of processing . 140
Programming con51derat10ns . 140
Register contents on entry to Exit 9 . . . 140
Register contents when Exit 9 passes control back
to JES2 . 142
Coded example. . 143

Chapter 23. Exit 10: $WTO screen . . 145

Function e)
Environment145
Task 145
AMODE/ RMODE requlrements I %}
Supervisor/problem program 145
Recovery.145
Job exit mask145
Mapping macros normally requlred 145
Point of processing145
Programming considerations: 146
Register contents when Exit 10 gets control .. . 146
Register contents when Exit 10 passes control back
toJES2 o ..o L. 147
Coded example.147

Chapter 24. Exit 11: Spool partitioning
allocation ($TRACK) e T

Function . . . B)
Related exits. 149
Recommendations for 1mplement1ng Ex1t 11 .. 0149
Environment150
Task150
AMODE/ RMODE requlrements B 1a10)
Supervisor/problem program 150
Restrictions150
Recovery.15
Job exit mask 150
Mapping macros normally requlred 150
Point of processing150
Programming considerations 151
Register contents when Exit 11 gets control .. 152
Register contents when Exit 11 passes control back
toJES2 152
Coded example.153

Chapter 25. Exit 12: Spool partitioning
allocation ($STRAK) . 1

Function . . . e 155
Related exits. 155
Recommendations for 1mplement1ng Ex1t 12 . . 155
Environment156
Task . . . S 10
AMODE/ RMODE requlrements156
Supervisor/problem program 156
Restrictions156
Job exit mask 156
Mapping macros normally requlred I 1574
Point of processing . . B (4
Programming c0n51derat10ns o .. . 157
Register contents when Exit 12 gets control .. . 158
Register contents when Exit 12 passes control back
toJES2158
Coded example.159

Chapter 26. Exit 14: Job queue work

select—$QGET . -1
Function . . . 4] |
Environment16l

Contents V

Task . . . 161
AMODE/ RMODE requ1rements . . lel
Supervisor/problem program . . 1ol
Recovery . . 161
Job exit mask . . 161
Mapping macros normally requlred . lel
Point of processing . 162
Programming con51derat10ns . . 162
Register contents when Exit 14 gets control . 164
Register contents when Exit 14 passes control back
to JES2 . 165
Coded example. . 166
Chapter 27. Exit 15: Output data
set/copy select. . 167
Function . . 167
Programming con51derat10ns . 167
Environment . 169
Task . . . 169
AMODE/ RMODE requ1rements . . 169
Recovery . . . 169
Job exit mask - . 169
Mapping macros normally requlred . 169
Point of processing . 169
Contents of registers on entry to Ex1t 15 . 169
Contents of register when Exit 15 returns to JES2 171
Coded example. .17
Chapter 28. Exit 16: Notlfy . 173
Function . . 173
Environment . 173
Task . . . 173
AMODE/ RMODE requ1rements . . 173
Supervisor/problem program . . 173
Recovery . . 173
Job exit mask . . 173
Mapping macros normally requlred . 173
Point of processing . . 173
Programming considerations . . 173
Register contents when Exit 16 gets control . 174
Register contents when Exit 16 passes control back
to JES2 . 174
Coded example. . 175
Chapter 29. Exit 17: BSC RJE
SIGNON/SIGNOFF . 177
Function . . 177
Environment . 177
Task . . . 177
AMODE/ RMODE requlrements . . 177
Supervisor/problem program . . 177
Recovery . . 177
Job exit mask . 177
Storage recommendations . . 177
Mapping macros normally requlred . 177
Point of processing . 177
Programming con51derat10ns . . 178
Register contents when Exit 17 gets control . 178
Register contents when Exit 17 passes control back
to JES2 . 179

Vi z/0S V2R1.0 JES2 Installation Exits

Coded example. . 180
Chapter 30. Exit 18: SNA RJE
LOGON/LOGOFF . . 181
Function . . 181
Environment . 181
Task . . . 181
AMODE/ RMODE requlrements . . 181
Supervisor/problem program . . 181
Recovery . . 181
Job exit mask .o . . 181
Mapping macros normally requlred . . 181
Point of processing . . 181
Programming considerations . . 182
Register contents when Exit 18 gets control . 182
Register contents when Exit 18 passes control back
to JES2 . 183
Coded example. . 183
Chapter 31. Exit 19: Initialization
statement . . 185
Function . . 185
Environment . 185
Task . . . 185
AMODE/ RMODE requlrements . . 185
Supervisor/problem program . . 185
Recovery . . 185
Job exit mask . . 185
Mapping macros normally requlred . 185
Point of processing . . 185
Programming considerations . . 186
Register contents when Exit 19 gets control . 187
Register contents when Exit 19 passes control back
to JES2 . 188
Coded example. . 188
Chapter 32. Exit 20: End of |nput . 189
Function . . 189
Environment . 189
Task . . . 189
AMODE/ RMODE requlrements . . 189
Supervisor/problem program . . 189
Recovery . . 189
Job exit mask . 189
Mapping macros normally requlred . 189
Point of processing . . 189
Programming considerations . . 190
Register contents when Exit 20 gets Control . 191
Register contents when Exit 20 passes control back
to JES2 . 193
Coded example. . 193
Chapter 33. Exit 21: SMF record . 195
Function . . 195
Environment . 195
Task . . . 195
AMODE/ RMODE requlrements . . 195
Supervisor/problem program . . 195
Recovery . . 195
Job exit mask . 195

Mapping macros normally required 195
Point of processing19
Programming considerations19
Register contents when Exit 21 gets control .. . 196
Register contents when Exit 21 passes control back
toJES219
Coded example.19

Chapter 34. Exit 22: Cancel/status . . 197

Function . . . T
Environment197
Task . . . B
AMODE/ RMODE requlrements B 4
Supervisor/problem program 197
Recovery.197
Job exit mask 2197
Mapping macros normally requlred ... 197
Point of processing197
Programming considerationso 197
Register contents when Exit 22 gets control ... 198
Register contents when Exit 22 passes control back
toJES2 o . . o o0 0199
Coded example.200

Chapter 35. Exit 23: FSS job separator
page (JSPA) processing. 201

Function 20
Recommendations for 1mplementmg Ex1t 23 .. 201
Environment201
Task . . . A0 |
AMODE/ RMODE requlrements L. .. 2;m
Supervisor/problem program201
Recovery.20
Job exitmask201
Restrictions 202
Mapping macros normally requlred L. 202
Point of processing202
Programming considerations 202
Register contents when Exit 23 gets Control .. 0202
Register contents when Exit 23 passes control back
toJES2203
Coded example.203

Chapter 36. Exit 24: Post—initialization 205

Function . . . Coe 205
Environment205
Task 0205
AMODE/ RMODE requlrements 205
Supervisor/problem program205
Recovery.205
Job exit mask 205
Mapping macros normally reqmred 206
Point of processing 206
Creating an information strlng through Ex1t 24 .. 206
Programming considerations 206
Register contents when Exit 24 gets control .. 0207
Register contents when Exit 24 passes control back
toJES2208
Coded example.208

Chapter 37. Exit 25: JCTread 209

Function20
Related exits.20
Environment20
Task 209
AMODE/ RMODE requlrements o209
Supervisor/problem program 209
Recovery.20
Job exit mask 209
Mapping macros normally requlred 209
Point of processing209
Programming considerations 210
Register contents when Exit 25 gets control ... 210
Register contents when Exit 25 passes control back
toJES2210
Coded example.21

Chapter 38. Exit 26:
Termination/resource release 213

Function213
Environment213
Task . . . A 6
AMODE/ RMODE reqmrements A 6
Supervisor/problem program213
Recovery.213
Job exit mask 213
Mapping macros normally requlred 213
Point of processing213
Programming considerations 214
Register contents when Exit 26 gets control ... 214
Register contents when Exit 26 passes control back
toJES2214
Coded example.215

Chapter 39. Exit 27: PCE
attach/detach 217

Function217
Environment217
Task . . . A V4
AMODE/ RMODE requlrements Lo L2217
Supervisor/problem program217
Recovery.217
Job exit mask B V4
Mapping macros normally requlred ... 2217
Point of processing . . o217
Programming con51derat10ns o .o L 217
Register contents when Exit 27 gets control ... 217
Register contents when Exit 27 passes control back
toJES2218
Coded example.218

Chapter 40. Exit 28: subsystem
interface (SSI) |ob termination 219

Function . . . A £
Environment219
Task219
AMODE/ RMODE requlrements ... 219
Supervisor/problem program219
Recovery.219

Contents Vil

Job exit mask L0219

Mapping macros normally requlred ... 2219
Point of processing . . A)
Programming c0n51derat10ns A
Expanding the JCT control block220
Register contents when Exit 28 gets control . . . 220
Register contents when Exit 28 passes control back
toJES20221
Coded example.221

Chapter 41. Exit 29: Subsystem
interface (SSI) end-of-memory 223

Function223
Environment223
Task223
AMODE/ RMODE requlrements L. 223
Supervisor/problem program223
Recovery.223
Job exit mask223
Mapping macros normally requlred223
Point of processing223
Programming considerations 223
Register contents when Exit 29 gets Control ... 223
Register contents when Exit 29 passes control back
toJES222
Coded example.225

Chapter 42. Exit 30: Subsystem
interface (SSI) data set OPEN and
RESTART227

Function227
Environment227
Task . . . o227
AMODE/ RMODE requlrements o227
Supervisor/problem program227
Recovery.227
Job exit mask . . . L. L0227
Mapping macros normally requlred o227
Point of processing227
Programming considerations 228
Register contents when Exit 30 gets control ... 228
Register contents when Exit 30 passes control back
toJES2 L. L. .229
Coded example.230

Chapter 43. Exit 31: Subsystem
interface (SSI) allocation 231

Function23
Environment231
Task . . . oo 00231
AMODE/ RMODE requ1rements Lo 023
Supervisor/problem program231
Recovery.23
Job exit mask L0231
Mapping macros normally requlred ... 2231
Point of processing231
Programming considerations 231
Register contents when Exit 31 gets control .. 0232

viil z/0S V2R1.0 JES2 Installation Exits

Register contents when Exit 31 passes control back
toJES2233
Coded example.234

Chapter 44. Exit 32: Subsystem
interface (SSI) job selection 235

Function23
Related exits.23
Environment23
Task23
AMODE/ RMODE requlrements23
Supervisor/problem program235
Recovery.23
Job exit mask23
Mapping macros normally requlred23
Point of processing L0235
Programming consu:leratlons .o .. .23
Register contents when Exit 32 gets control .. . 236
Register contents when Exit 32 passes control back
toJES2237
Coded example.237

Chapter 45. Exit 33: Subsystem
interface (SSI) data set CLOSE. . . . 239

Function 239
Related exits.239
Environment239
Task . . . 0239
AMODE/ RMODE requ1remer1ts ... 0239
Supervisor/problem program239
Recovery.239
Job exit mask 239
Mapping macros normally requlred ... 2239
Point of processing239
Programming considerations 0239
Register contents when Exit 33 gets control .. .240
Register contents when Exit 33 passes back control
toJES224
Coded example.242

Chapter 46. Exit 34: Subsystem
interface (SSI) data set unallocation . 243

Function243
Related exits.243
Environment243
Task243
AMODE/ RMODE reqmrements 243
Supervisor/problem program243
Recovery.243
Job exit mask 243
Mapping macros normally requlred 243
Point of processing243
Programming considerations 243
Register contents when Exit 34 gets control ... 244
Register contents when Exit 34 passes control back
toJES225
Coded example.245

Chapter 47. Exit 35: Subsystem
interface (SSI) end-of-task. 247

Function247
Environment247
Task . . . o247
AMODE/ RMODE requlrements o247
Supervisor/problem program 247
Recovery.247
Job exit mask 247
Mapping macros normally requlred ... 247
Point of processing247
Programming considerations 247
Register contents when Exit 35 gets control ... 247
Register contents when Exit 35 passes control back
toJES2248
Coded example.249

Chapter 48. Exit 36: Pre- securlty
authorization call. 251

Function25
Environment251
Task . . A |
AMODE/ RMODE requlrements25
Supervisor/problem program251
Recovery.251
Job exit mask 251
Mapping macros normally requlred 251
Point of processing252
Programming considerations 0252
Register contents when Exit 36 gets control ... 254
Register contents when Exit 36 passes control back
toJES2256
Coded example.256

Chapter 49. Exit 37: Post-securlty
authorizationcall. 257

Function257
Environment257
Task 257
AMODE/ RMODE requlrements oL L2657
Supervisor/problem program 257
Recovery.257
Job exit mask 257
Mapping macros normally requlred ... 257
Point of processing258
Programming considerations 258
Register contents when Exit 37 gets control .. . 258
Register contents when Exit 37 passes control back
toJES2261
Coded example.26l

Chapter 50. Exit 38: TSO/E receive
data set disposition 263

Function263
Environment263
Task 263
AMODE/ RMODE requlrements263
Supervisor/problem program 263
Recovery.263

Job exit mask263

Mapping macros normally requlred 204
Point of processing 264
Programming c0n51derat10ns o ... 264
Register contents when Exit 38 gets control ... 264
Register contents when Exit 38 passes control back
toJES2265
Coded example.265

Chapter 51. Exit 39: NJE SYSOUT
reception data set disposition 267

Function267
Environment267
Task . . . o267
AMODE/ RMODE requlrements o207
Supervisor/problem program 267
Recovery.267
Job exit mask L 267
Mapping macros normally requlred ... L 207
Point of processing . . o207
Programming con51derat10ns .o .. 207
Register contents when Exit 39 gets control .. . 268
Register contents when Exit 39 passes control back
toJES2269
Coded example.269

Chapter 52. Exit 40: Modifying
SYSOUT characteristics. 271

Function . . . o s .2
Environment271
Task27
AMODE/ RMODE requlrements oo 0.2
Supervisor/problem program271
Recovery.271
Job exit mask21
Mapping macros normally requlred27
Point of processing271
Programming considerations 271
Contents of registers when Exit 40 gets control .. 272
Register contents when Exit 40 passes control back
toJES2273
Coded example.274

Chapter 53. Exit 41: Modifying output

grouping key selection 275
Function275
Environment275
Task 275
AMODE/ RMODE requlrements275
Supervisor/problem program275
Recovery.275
Job exit mask275
Mapping macros normally requlred ... 276
Point of processing276
Programming considerations 276
Register contents when Exit 41 gets control ... 276
Register contents when Exit 41 passes control back
toJES2 277
Coded example.277

Contents 1X

Chapter 54. Exit 42: Modlfylng a notlfy

user message 279
Function279
Environment279
Task 02D9
AMODE/ RMODE requlrements L. ... 0279
Supervisor/problem program279
Recovery.279
Job exit mask . . . L0279
Mapping macros normally requlred L. . 0279
Point of processing279
Programming considerations 280
Register contents when Exit 42 gets control .. .280
Register contents when Exit 42 passes control back
toJES2o.28
Coded example.283

Chapter 55. Exit 43: APPC/MVS TP
selection/change/termination. 285

Function285
Related exits.285
Recommendations for 1mp1ement1ng Ex1t 43 .. 285
Environment286
Task 286
AMODE/ RMODE requlrements L0286
Supervisor/problem program 286
Locks held beforeentry286
Restrictions286
Recovery.286
Jobexitmask286
Storage recommendations 286
Mapping macros normally requ1red 286
Point of processing286
Programming considerations 287
Register contents when Exit 43 gets control ... 287
Register contents when Exit 43 passes control back
toJES2288
Coded example.288

Chapter 56. Exit 44: JES2 converter

exit (JES2 maln) c e 289
Function . . . o289
Related exits. 289
Recommendations for 1mp1ement1ng Ex1t 44 .. 289
Environment28
Task . . . o289
AMODE/ RMODE requlrements L. .. .29
Supervisor/problem program290
Recovery.29
Job exit mask 290
Mapping macros normally requlred29
Point of processing29
Programming considerations29
Register contents when Exit 44 gets control .. .29
Register contents when Exit 44 passes control back
toJES2 L L L L 292
Coded example.29

X z/0S V2R1.0 JES2 Installation Exits

Chapter 57. Exit 45: Pre-SJF service
request293

Function29
Environment293
Task . . . B
AMODE/ RMODE requlrements293
Supervisor/problem program293
Recovery.293
Jobexitmask293
Storage recommendations 293
Mapping macros normally requlred 293
Point of processing293
Programming considerations29
Register contents when Exit 45 gets control .. .29
Register contents when Exit 45 passes control back
toJES229
Coded example.297

Chapter 58. Exit 46: Modifying an NJE
data area before its transmission. . . 299

Function29
Related exits. 299
Recommendations for 1mplement1ng Ex1t 46 .. 299
Environment300
Task300
AMODE/ RMODE requlrements300
Supervisor/problem program 300
Recovery.300
Job exit mask300
Mapping macros normally requlred300
Point of processing300
Programming considerations300
Register contents when Exit 46 gets control ... 301
Register contents when Exit 46 passes control back
toJES2302
Coded example.303

Chapter 59. Exit 47: Modifying an NJE
data area before receiving the rest of
the NOEjob 305

Function305
Related exits.305
Environment305
Task305
AMODE/ RMODE requlrements B [012)
Supervisor/problem program 305
Recovery.306
Job exit mask306
Mapping macros normally requlred 306
Point of processing306
Programming considerations 306
Register contents when Exit 47 gets control .. . 306
Register contents when Exit 47 passes control back
toJES2308
Coded example.308

Chapter 60. Exit 48: Subsystem
interface (SSI) SYSOUT data set
unallocation. 309

Function309
Environment309
Task . . . B ()
AMODE/ RMODE requlrernents o309
Supervisor/problem program 309
Recovery.309
Job exit mask 309
Mapping macros normally requlred ... 2309
Point of processing309
Programming considerations 309
Register contents when Exit 48 gets control .. .310
Register contents when Exit 48 passes control back
toJES231
Coded example.31

Chapter 61. Exit 49: Job queue work
select-QGOT313

Function313
Environment313
Task . . . B) K
AMODE/ RMODE requ1rements313
Supervisor/problem program313
Recovery.34
Job exit mask314
Mapping macros normally requlred ... 314
Point of processing34
Programming considerations34
Register contents when Exit 49 gets control .. . 314
Register contents when Exit 49 passes control back
toJES236
Coded example.36

Chapter 62. Exit 50: End of input . . . 317

Function L0317
Recommendations for 1mp1ement1ng Ex1t 50 . . 317
Environment317
Task . . . B 1 V4
AMODE/ RMODE requlrements G 1 V4
Supervisor/problem program317
Recovery.317
Job exit mask318
Mapping macros normally requlred 318
Point of processing318
Programming con51derat10ns o .. .318
Register contents when Exit 50 gets control .. .320
Register contents when Exit 50 passes control back
toJES2 L322
Coded example.322

Chapter 63. Exit 51: Job phase

change exit ($QMOD) 323
Function323
Environment323
Task323
AMODE/ RMODE requlrements oo .0323
Supervisor/problem program323

Restrictions323
Recovery.323
Job exit mask323
Mapping macros normally requlred 323
Point of processing324
Programming considerations 324
Register contents when Exit 51 gets control .. . 325
Register contents when Exit 51 passes control back
toJES2327
Coded example.327

Chapter 64. Exit 52: JOB JCL
statement scan (JES2 user
environment) 329

Function 0329
Recommendations for 1mplement1ng Ex1t 52 .. 329
Environment332
Task 0332
AMODE/ RMODE reqmrements 0332
Supervisor/problem program 332
Restrictions332
Recovery.332
Jobexitmask332
Storage recommendations 332
Mapping macros normally requlred ... 2332
Point of processing 0332
Extending the JCT control block333
Programming considerations 333
Register contents on entry to Exit 52. 334
Register contents when Exit 52 passes control back
toJES233
Coded example.337

Chapter 65. Exit 53: JOB statement
accounting field scan (JES2 user
environment) 339

Function339
Related exits. 339
Recommendations for 1mplementmg Ex1t 53 .. 339
Environment340
Task L340
AMODE/ RMODE requlrements L340
Supervisor/problem program 340
Restrictions340
Recovery.340
Job exit mask 2340
Mapping macros normally requlred ... L340
Point of processing L340
Extending the JCT control block P)
Programming considerations343
Register contents when Exit 53 gets control .. . 345
Register contents when Exit 53 passes control back
toJES2346
Coded example.347

Chapter 66. Exit 54: JCL and JES2
control statement scan (JES2 user

environment) 349
Function34

Contents X1

Recommendations for implementing Exit 54 . . . 349

Environment350
Task350
AMODE/ RMODE requlrements35
Supervisor/problem program 350
Restriction350
Recovery.350
Job exit mask35
Mapping macros normally requlred350

Point of processing350

Programming considerations 351

Register contents when Exit 54 gets control .. .356

Register contents when Exit 54 passes control back

toJES2358

Coded example.358

Chapter 67. Exit 55: NJE SYSOUT
reception data set disposition 359

Function35
Environment35
Task . . . B
AMODE/ RMODE requlrements35
Supervisor/problem program 359
Recovery.35
Job exit mask35
Mapping macros normally requlred 359
Point of processing35
Programming considerations 359
Register contents when Exit 55 gets control .. .360
Register contents when Exit 55 passes control back
toJES2361
Coded example.36l

Chapter 68. Exit 56: Modifying an NJE
data area before its transmission. . . 363

Function363
Related exits. 363
Recommendations for 1mplement1ng Ex1t 56 . . 363
Environment363
Task363
AMODE/ RMODE requlrements 364
Supervisor/problem program 364
Recovery.364
Job exit mask 364
Mapping macros normally requlred 364
Point of processing364
Programming considerations 364
Register contents when Exit 56 gets Control . . .365
Register contents when Exit 56 passes control back
toJES2367
Coded example.368

Chapter 69. Exit 57: Modifying an NJE
data area before receiving the rest of
the NOEjob 369

Function369
Related exits.369
Environment369

Task36

Xii z/0S V2R1.0 JES2 Installation Exits

AMODE/RMODE requirements 369
Supervisor/problem program 369
Recovery.369
Job exit mask370
Mapping macros normally requlred370
Point of processing370
Programming considerations370
Register contents when Exit 57 gets control .. 0371
Register contents when Exit 57 passes control back
toJES2372
Coded example.373

Chapter 70. Exit 58: Subsystem
interface (SSI) end-of-step I ¥ £

Function37
Environment37
Task37
AMODE/ RMODE requ1rements N V)
Supervisor/problem program375
Recovery.37
Job exit mask37
Mapping macros normally requlred37
Point of processing375
Programming considerations37
Register contents when Exit 58 gets control . . .375
Register contents when Exit 58 passes control back
toJES2377

Chapter 71. Exit 59: Post
interpretation 379

Function379
Related exits. 2379
Recommendations for 1mplement1ng Ex1t 59 . . 379
Environment379
Task37
Restrictions 039
AMODE/RMODE requlrements ... 380
Supervisor/problem program 380
Recovery.380
Jobexitmask380
Storage recommendations380
Mapping macros typically requlred38
Point of processing380
Programming considerations380
Register contents when Exit 59 gets control .. . 381
Register contents when Exit 59 passes control back
toJES238

Chapter 72. Exit 60: JES2 converter
exit(user).383

Function383
Related exits.383
Recommendations for 1mplement1ng Ex1t 60 . . 383
Environment385
Task38
Restrictions38
AMODE/RMODE requlrements38
Supervisor/problem program 385
Recovery.38
Jobexitmask386

Storage recommendations .

Mapping macros typically requlred
Point of processing .
Programming con51derat10ns .

Register contents when Exit 60 gets Control
Register contents when Exit 60 passes control back

to JES2
Coded example.

Chapter 73. JES2 exit migration
considerations . .
JES2 z/OS V1R11 migration detalls .
JES2 z/OS V1R11 checkpoint activation
JES2 z/OS V1R11 exits and macros .
JES2 z/OS V2R1 migration details

JES2 z/OS 2.1 input phase processing .
JES2 z/0S 2.1 conversion phase processing
JES2 z/0OS 2.1 data structure processing

JES2 z/0OS 2.1 Exit 6 considerations .

JES2 z/0OS 2.1 Exit 7 and Exit 8 Con51derat10ns

JES2 z/0S 2.1 Exit 36 and Exit 37 considerations
. 395
. 395

JES2 z/0S 2.1 Exit 44 considerations
JES2 z/0S 2.1 Exit 59 considerations

Appendix A. JES2 exit usage
limitations.

Appendix B. Sample code for Exit 17

and Exit 18

Appendix C. Job-related exit
scenarios .
Exit sequence

. 386
. 386
. 386
. 386
. 387

. 389
. 389

. 391
. 391
. 391
. 391
. 392
. 392
. 393
. 39
. 394

395
395

. 397

. 399

. 403
. 403

Selected exits
SPOOL control blocks .
Checkpoint control blocks .
$JCT/JMR relatlonshlp .
Input phase .
Job input sources . .
Job input service processing
Conversion phase .
Execution phase
Spin phase
Output phase
Hardcopy phase .
NJE hardcopy phase exits .
Purge phase .

Appendix D. Accessmlllty
Accessibility features .
Using assistive technologies

Keyboard navigation of the user mterface .

Dotted decimal syntax diagrams .

Notices .

Policy for unsupported hardware
Minimum supported hardware
Programming Interface Information .
Trademarks .

Index .

Contents

. 404
. 406
. 407
. 411
. 412
. 412
. 413
. 415
. 418
. 421
. 421
. 422
. 424
. 424

. 427
. 427
. 427
. 427
. 427

. 431
. 432
. 433
. 433
. 433

. 435

xiii

Xiv z/0S V2R1.0 JES2 Installation Exits

Figures

Support statements .

Areas of JES2 modification .

A JES2 Exit . .

EXIT Point Variations .

JES2 and FSS Address Spaces

Methods of Packaging an Exit Routme
Example of Assembly and Link-Edit of a
Installation-Written Routine .

8. Example of an Exit Routine Employmg a User
Defined Exit Lo

NGk whD =

© Copyright IBM Corp. 1988, 2013

SO BN

W =

.42

10.
11.
12.

13.
14.

15.

Example of Providing Multiple Exits within a

Single Load Module.48
Exit Routines Load Module52
Exit Placement54
JCL example from z/ OS 1. 13 and earller

releases . . . 392

JCL example from z / OS 2 1 and later releases 393
JESJCLIN data set example from z/OS 2.1

and later releases393
Job Input Sources412
XV

XVi z/0S V2R1.0 JES2 Installation Exits

© 0PN

—_

Tables

JES2-Provided Global Assembler Variables
(&VERSION and &J2VRSN) for Currently
Supported JES2 Releases . .

Directed Load and Use of Modules Based on
LOADMOD(]xxxxxxx) STORAGE=
Specification R

Exit Selection Table .

Exit Implementation Table .
Selected JES2 Job Control Table Flelds
Old/New Comparison of JES2 Commands
Comparison of Exit 11 and Exit 12
Comparison of Exit 12 and Exit 11
Security Function Codes .

Security Function Codes .

© Copyright IBM Corp. 1988, 2013

. 16

.29
. 65
.75
. 98

116

. 149
. 155
. 252
. 259

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

Selected JES2 Job Control Table Fields
Reader and converter exits usage .
Job-Related Exits

$JCT/JMR Definitions. .
Job Input Service Exits - Main Task .
Job Input Service Exits - User Environment
Conversion phase processing
Execution Phase Exits.

Spin Phase Processing

Output Phase Processing.

Hardcopy Phase Processing . .
NJE Hardcopy Phase Processing .
Purge Phase Exits . .

340

. 397
. 404
. 411
. 413

414

. 416
. 418
. 421
. 421
. 423
. 424
. 424

xvii

XViil z/0S V2R1.0 JES2 Installation Exits

About this document

This document supports z/OS® (5650-ZOS).

This document provides system programming information concerning the use of
IBM-defined and installation-defined JES2 exit routines. It describes how to
establish JES2 exit routines to tailor JES2 without in-line source code modification.

Who should use this document

This document is intended for JES2 system programmers or for anyone responsible
for customizing JES2.

How this document is organized

The organization and content of this document is as follows:
* Chapter 1 describes the processing concepts of JES2 exits.
* Chapter 2 describes how to write an exit.

¢ Chapter 3 lists the IBM-defined exits, describes how to choose which exits to
implement, and what to consider when writing an exit routine.

* Appendix A describes JES2 exit usage limitations.

* Appendix B provides sample code for Exits 17 and Exit 18.
* Appendix C describes job-related exit scenarios.

* Appendix D describes z/OS product accessibility.

Where to find more information

This document references the following documents for further details about
specific topics. Abbreviated forms of these are used throughout this document. The
following table lists all abbreviated titles, full titles, and their order numbers that
are not listed in |z/OS Information Roadmap| See that document for all z/OS
documents.

Short Title Used in This
document Title Order Number

CICS/ESA Customization Guide CICS/ESA Customization Guide SC33-1165

A Structured Approach to Describing | SC34-2129
and Searching Problems

Additional information

Additional information about z/OS elements can be found in the following

documents.
Order
Title Number Description
|z/0S Introduction and Releasd |GA32-0887 Describes the contents and benefits of z/OS
|Guidg| as well as the planned packaging and
| delivery of this new product.

© Copyright IBM Corp. 1988, 2013 xix

XX

Title

Order
Number

Description

lz/OS Planning for Installation]

GA32-0890

Contains information that lets users:

* Understand the content of z/OS

¢ Plan to get z/OS up and running

* Install the code

* Take the appropriate migration actions
¢ Test the z/OS system

lz/0S Information Roadmap|

SA23-2299

Describes the information associated with
z/0S including z/OS documents and
documents for the participating elements.

2/0S Summary of Message and|

[nterface Changes|

SA23-2300

Describes the changes to messages for
individual elements of z/OS.

Note: This document is provided in
softcopy only on the message bookshelf of
the z/OS collection kit.

z/0OS V2R1.0 JES2 Installation Exits

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.

2. Send an email from the['Contact us" web page for z/OS (http:// |
[www.ibm.com /systems /z/0s/zos/webgs.html)|

3. Malil the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department HGMA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
us

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
* Your name and address.
* Your email address.
* Your telephone or fax number.
* The publication title and order number:
z/0OS V2R1.0 JES2 Installation Exits
SA32-0995-00
* The topic and page number that is related to your comment.
* The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:

* Contact your IBM service representative.
* Call IBM technical support.

* Visit the IBM Support Portal at [z/OS support page (http://www.ibm.com /|
[systems/z/support/)}

© Copyright IBM Corp. 1988, 2013 xxi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

XXii z/0S V2R1.0 JES2 Installation Exits

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):

* |z/0S Migmtionl

* |2/OS Planning for Installation|
* [2/0S Summary of Message and Interface Changes|
e 1z/OS Introduction and Release Guid

© Copyright IBM Corp. 1988, 2013 xxiii

XXiV z/OS V2R1.0 JES2 Installation Exits

Chapter 1. Introduction

JES2 is a general job entry subsystem of z/OS and sometimes cannot satisfy all
installation-specific needs at a given installation. If you modify JES2 code to
accomplish your specific functions, you then are susceptible to the migration and
maintenance implications that result from installing new versions of JES2. JES2
exits allow you to modify JES2 processing without directly affecting JES2 code. In
this way, you keep your modifications independent of JES2 code, making
migration to new JES2 versions easier and making maintenance less troublesome.

Attention!

Defining exits and writing installation exit routines is intended to be accomplished by experienced system
programmers; the reader is assumed to have knowledge of JES2.

If you want to customize JES2, IBM suggests that you use JES2 installation exits to accomplish this task.

IBM does not recommend or support alteration of JES2 source code. If you assume the risk of modifying JES2,
then also assure your modifications do not impact JES2 serviceability using IPCS. Otherwise, IBM® Level 2
Support might not be able to read JES2 dumps taken for problems unrelated to the modifications.

Avoid expanding JES2 control blocks. Use alternatives such as:

1. Use fields dedicated for installation use that appear in many major control blocks. Place your data, or a
pointer to your data, in these fields. However, beware of setting storage addresses in checkpointed or
SPOOL-resident control blocks.

2. Use $JCTX services rather than modifying $JCT.
3. Use table pairs and dynamic tables. For example, use dynamic $BERTTABs with CBOFF=* instead of
modifying $JQE.

This is a partial list. Evaluate your specific situation and take appropriate action.

Figure 1. Support statements. The figure includes support statements for JES2.

Note!

JES2 operates in full-function mode (z2 mode under z/0OS). All discussion in this document assumes JES2 is running
in z2 mode. Refer to|Chapter 73, “JES2 exit migration considerations,” on page 391| for migration topics.

[Figure 2 on page 2} and the text that follows it, illustrates many of those areas
where you can modify JES2 processing using the JES2 exit facility:

© Copyright IBM Corp. 1988, 2013 1

2

Job Input

Processing
A
Subsystem
Interface (SSI)
Initialization JES2-To-Operator
Processing Communications
JES2
RJE Spool
Processing Processing
JES2 - SMF Output
Processing Processing

Figure 2. Areas of JES2 modification

Initialization Processing

You can modify the JES2 initialization process and incorporate your own
installation-defined initialization statements in the initialization process. Also,
you can change JES2 control blocks before the end of JES2 initialization.

Job Input Processing

You can modify how JES2 scans and interprets a job's JCL and JES2 control
statements. Also, you can establish a job's affinity, execution node, and priority
assignments before the job actually runs.

Subsystem Interface (SSI) Processing

You can control how JES2 performs SSI processing in the following areas: job
selection and termination, subsystem data set OPEN, RESTART, allocation,
CLOSE, unallocation, end-of-task, and end-of-memory.

JES2-to-Operator Communications

You can tailor how JES2 communicates with the operator and implement
additional operator communications for various installation-specific conditions.
Also, you can preprocess operator commands and alter, if necessary, subsequent
processing.

Spool Processing
You can alter how JES2 allocates spool space for jobs.
Output Processing

You can selectively create your own unique print and punch separator pages for
your installation output on a job, copy, or data set basis.

JES2-SMF Processing
You can supply to SMF added information in SMF records.
RJE Processing

z/0OS V2R1.0 JES2 Installation Exits

You can implement additional security checks to control your RJE processing
and gather statistics about signons and signoffs.

What is a JES2 exit?

JES2 exits provide a clean, convenient, relatively stable interface between JES2 and
your installation-written code. Installation-written exit routines are invoked from
standard JES2 processing at various strategic locations in JES2 source code. These
strategic locations in JES2 source code are called exit points. A JES2 exit is
established by one or more exit points.

An exit point is defined by the $EXIT macro and, as illustrated in [Figure 3 on page|

is the exact location in JES2 code where JES2 can pass control to your exit routine
(that is, your installation-written code). The JES2 exit, identified by the “exit-id
code” of nnn, is defined by one exit point at label JLBL in the JES2 code. It is at
JLBL in JES2 processing that JES2 passes control to your exit routine.

To use the exit facility you perform the following steps, as illustrated in

on page 4]

1. Package your code into one or more exit routines, identifying each exit routine
with an entry point name. (In [Figure 3 on page 4| there is a series of exit
routines noted as entry points X1...Xn.) Then include the exit routine in a load
module. In this case LMOD is the load module containing the exit routine.

2. In the JES2 initialization stream include the LOADmod (jxxxxxxx) initialization
statement, which causes your exit routine's load module to be loaded into
either private (PVT), common (CSA), or to locate the module in link pack area
(LPA) storage. The linkage editor RMODE attribute determines whether the
system loads the module above or below 16 megabytes.

Also include the EXIT(nnn) initialization statement, which associates your exit
routines' entry point with the exit point in the JES2 code. The EXIT(nnn)
initialization statement matches the exit point “nnn” at label JLBL for the $EXIT
macro in the JES2 code. The EXIT(nnn) initialization statement identifies the
label “X1” as the entry point of the exit routine for exit point “nnn”. The LOAD
initialization statement identifies LMOD as the load module to be loaded into
storage.

Chapter 1. Introduction 3

JES?2 Initialization Statements

LOADMOD(LMOD)

EXIT(nnn) ROUTINE = (X1,...,Xn)
A A

\/

LMOD - Load Module
JES2 Code

(Exit Routine Code)
LMOD $MODULE

JLBL $EXIT nnn <

»X1 $ENTRY

__________________________________>

«--Xn $ENTRY

$MODEND

Figure 3. A JES2 Exit

JES2 can have up to 256 exits, each identified by a number from 0 to 255. You
specify the number on the required “exit-id code” parameter on the $EXIT macro.

This exit-id code identifies the JES2 exit. When more than one exit point is defined
for a single exit, the $EXIT macros that defined the multiple exit points have
unique labels but are all specified with the same exit-id code — see

JES2 Code
XXX $EXIT 87
CCC $EXIT 87..... More than one
exit pt. per exit.

YYY $EXIT 87
Z7ZZ $SEXIT 88

> A single exit pt.
AAA $EXIT 93 per exit.

Figure 4. EXIT Point Variations

4 z/0S V2R1.0 JES2 Installation Exits

JES2 code includes a number of IBM-defined exits. That is, various exit points —
through the $EXIT macro — have already been strategically placed in the JES2 code.
The intended purpose of each of these exits is summarized in [Table 3 on page 65
For these IBM-defined exits you need only write your own exit routines and
incorporate them through the EXIT(nnn) initialization statement and the
LOADmod(jxxxxxxx). The selection of the point in JES2 code where the exit point
should be placed has already been done for you. To ensure a proper
implementation, you should thoroughly understand the IBM-defined exit and its
JES2 operating environment. A comprehensive description of each exit is presented
in [Chapter 12, “IBM-defined exits,” on page 65

Also, the JES2 exit facility allows you to establish your own exits, should the
IBM-defined exits not suffice. Exits established by you are modifications to JES2
and are called installation-defined exits, and you define them by placing the $EXIT
macro yourself at appropriate points in the JES2 code (or in your own exit routine
code). Note, however, that implementing your own exit can be considerably more
difficult than writing an exit routine for an IBM-defined exit. You should realize
that in establishing your own exits, you run a greater risk of disruption when
installing a new version of JES2 code. The new JES2 code into which you have
placed your exits may have significantly changed since your $EXIT macros were
inserted. For more information, see [Chapter 10, “Establishing installation-defined|
fexits,” on page 59

Every exit, both IBM-defined and installation-defined, has a status of enabled or
disabled which is set at initialization through the EXIT(nnn) initialization statement
and which can be dynamically altered by the $T EXIT(nnn) operator command.
When an exit is enabled, JES2 checks for the existence of an associated exit routine
and then passes control to the exit routine. If no associated exits are found,
standard JES2 processing continues. For certain exits, called job-related exits, (see
[‘Job-related exits” on page 55) the status can be altered on a job-by-job basis by
the action of an exit routine. When an exit is disabled for a particular job (by use
of the job mask), it is automatically bypassed by standard JES2 processing.

Environment
The following topics describe the environment in which the JES2 exits run.

General

JES2 operates in four environments: JES2 main task, JES2 subtask, user
environment, and functional subsystem (FSS) environment. Your exit routine
receives control as fully-authorized extensions of JES2, and as such receives control
in one of these four environments depending on where the associated exit point is
placed. JES2 main task and subtask exit points exist in the HASJES20 load module.

Program authority

Your exit routine has access to various control blocks and service routines to which
the standard JES2 code has access at the exit point, and it runs with the same
authorization as the JES2 code from which your exit routine was invoked. Exit
routines invoked from the JES2 address space run in supervisor state in either the
JES2 main task or JES2 subtask environment with a protect key of “1”. Exit
routines invoked from the user environment execute in key 0. Exit routines
invoked from the functional subsystem (FSS) address space run in the FSS
environment and typically run in protect key 1 (as set by the FSS). Also, exit
routines invoked from the FSS address space have access to all service routines
supported by HASPFSSM.

Chapter 1. Introduction 5

6

Exit linkage

A JES2 exit effector provides linkage services between an exit point and exit
routines. It locates and passes control to your exit routines and returns control to
JES2. There are two exit effectors: one provides linkage to exit routines that run as
extensions to the JES2 main task and the other provides linkage to exit routines
that run as extensions to JES2 subtasks or as extensions to routines in the user
address space or the FSS.

Return codes

Your exit routines can affect JES2 processing by directly manipulating JES2 data
areas and by passing back return codes. You can have up to 256 individual exit
routines associated with a single exit on the EXIT(nnn) initialization statement.
These multiple exit routines are all called consecutively in the order of their
appearance on the EXIT(nnn) initialization statement. Consider the following
example:

EXIT(175) ROUTINE=(X1,X2,X3,X4,X5,...)

For Exit 175, the exit routine identified by label X1 is called before the exit routine
identified by X2, and so forth, until all of them (X1 through X5) are called or until
one of them generates a nonzero return code, which causes the exit effector to
return to the JES2 mainline after the exit point.

Installation

IBM suggests that any modifications to JES2 code or the installation of JES2 exits
be performed utilizing the functions of SMP/E (System Modification Program
Extended). This requires the preparation of SMP/E control statements and
constructs suitable for SMP/E processing. Applying changes in an

SMP /E-controlled environment prevents down-leveling or the application of
release incompatible maintenance.

In the case of JES2 exits, if the application of PTF maintenance changes any macros
or other components used by the exits, then the affected modules will
automatically be reassembled by SMP/E.

For more information about SMP/E, see|SMP/E for z/OS User’s Guidd

Note: No exit routines are ever required as part of standard JES2 processing. The
JES2 exit facility is fully optional. If you have not implemented an exit—that is, if
you have not written an exit routine for it, or have not included the exit routine in
a load module, or have not associated the routine with the exit at initialization
time—the presence of the exit point or points that establish the exit is transparent
during standard JES2 processing.

z/0OS V2R1.0 JES2 Installation Exits

Chapter 2. Writing an exit routine

When you are planning to write a JES2 exit routine, you need to consider the
environment in which the exit routine runs and other general programming
considerations (such as, the programming language to use to code your exit
routine, linkage conventions that are required, return codes to set, and reentrant
code requirements to follow). [Chapter 12, “IBM-defined exits,” on page 65| provides
the specific programming considerations you need for writing exit routines for the
IBM-defined exits. You should use [Chapter 12, “IBM-defined exits,” on page 65
with the information in this chapter when writing your exit routine. Should you
decide to implement your own installation-defined exit in JES2, you need to
investigate all the exit-specific programming considerations yourself. See

(Chapter 10, “Establishing installation-defined exits,” on page 59 for more
information.

Note: All exit modules must be in APF authorized libraries.

Language

You must write JES2 installation exit routines in basic assembled language. To
assemble JES2 or installation exit routines, use High-Level Assembler or any
compatible IBM assembler.

Operating environment

For security reasons, the caller of an installation-defined exit in the user's address
space must be either in supervisor state or be an authorized program. JES2 will
terminate a calling routine with neither of these attributes with a privileged
operation exception.

JES2 environments

When writing an exit routine, you must consider the calling JES2 environment,
because your exit routine runs as an extension of that calling environment (JES2
main task, JES2 subtask, user address space, and functional subsystem). The calling
environment has broad implications to your exit routine; it determines the JES2
system services available to your exit routine, the reentry considerations you
should consider, the linkage conventions that are necessary, and several other
essential factors (such as, control block access, synchronization, recovery, and JES2
programmer macro usage). Specifically, the use of macros in exit routines is
limited. Before attempting to use a particular macro in an exit routine, be certain to
check the “Environment” section of each macro description in Chapter 4 to
determine the environments in which the macro can be used.

Every exit is explicitly defined to JES2 as belonging to one of the four execution
environments. The ENVIRON= operand of the $SMODULE macro is specified as
either “JES2”, “SUBTASK,” “USER,” or “FSS”. This specification determines which
of two exit effectors (the JES2 subroutines that establish the linkage between JES2
and an exit routine) will be called when the exit is enabled. One exit effector
establishes linkage to an exit routine from the JES2 main task environment; the
other establishes linkage to an exit routine from either the JES2 subtask
environment, the user environment or the FSS. In all environments (JES2 main

© Copyright IBM Corp. 1988, 2013 7

8

task, functional subsystem, subtask, and user environment) JES2 linkage
conventions (that is, $SAVE and $RETURN) are used.

You cannot define an exit “across” environments. That is, when an exit is required
to serve the same purpose in two distinct environments, two separate exits must
be defined, each with its own identification number. For example, Exit 11, an
IBM-defined exit that can give you control to reset the spool partitioning mask,
belongs to the JES2 main task environment. Exit 12, which serves the same
functional purpose, belongs to the user environment. In implementing these exits,
you must write a separate exit routine for each defined exit and adapt the routine
to its calling environment.

To stress again, whether defining an exit or writing an exit routine, you must be
aware of the operating environment; it influences where your exit is to be defined
or what processing your exit routine can really perform. In the descriptions of the
following general programming considerations for writing an exit routine, specific
environmental influences are described.

JES2 has four execution environments - maintask, subtask, user, and functional
subsystem (FSS).

1. JES2 Main Task - The JES2 main task is the most common operating
environment for JES2 exits. The JES2 main task routines are included in the
JES2 load module HASJES20 which is loaded in the private area of the JES2
address space. JES2 main task routines run under the control of the JES2
dispatcher (in HASPNUC). The load module, HASPINIT, which performs JES2
initialization, runs under the main task but is not controlled by the JES2
dispatcher.

The execution of maintask routines, with the exception of asynchronous
routines such as I/O appendages, are controlled by the JES2 dispatcher and are
represented by a dispatching unit called processor control elements (3PCEs).
$PCEs, which are analogous to task control blocks (TCBs) in MVS", are the
dispatchable elements in JES2 maintask.

There are two important coding considerations in the JES2 maintask
environment.

* JES2 Reentrancy - An exit routine called from the JES2 main task must be
reentrant in the JES2 sense. Because JES2 processors ($PCEs) do not
relinquish control to another JES2 processor involuntarily, an exit routine,
invoked out of a main task processor may use a JES2 nonreentrant work
area. Therefore, the work area is serialized unless the exit routine issues a
$WAIT macro (or service called from an exit routine issues the $WAIT
macro). When the exit routine issues the $WAIT macro directly or through a
called routine, control returns to the JES2 dispatcher and the serialization on
the nonreentrant work area ceases. The nonreentrant work area may also be
passed between exit routines, or between an exit routine and JES2, before a
$WAIT macro call. Work areas to be used “across” a $WAIT must either be
within the processor's work area established as part of the $PCE or else must
be directly owned by the processor. In the same JES2 reentrant sense, an exit
routine may search or manipulate a JES2 queue (for example, job queue or
job output table) providing it has ownership of the queue (through the
$QSUSE macro) and doesn't issue a SWAIT macro until the search routine is
completed.

e MVS WAITs - The JES2 dispatcher controls all processing within the
maintask environment; therefore, no routine or exit may issue any macro or

z/0OS V2R1.0 JES2 Installation Exits

call any service that could result in the execution of an MVS WAIT macro.
Issuing MVS WAITs in JES2 maintask is contrary to the design of JES2 and
will cause performance problems.

An exception to this rule is JES2 initialization and JES2 termination. During
initialization and termination, maintask processing is essentially single
threaded. That is, there is only one $PCE dispatched so that JES2 reentrancy
is not a factor. This also removes the concern about MVS WAITs causing a
performance problem because during JES2 initialization and termination JES2
is not providing system services for other subsystems, started tasks, time
sharing sessions and batch jobs. Therefore, there are no restrictions about
MVS WAITs and MVS macros that can result in MVS WAITs in JES2 exits 0,
19, 24, and 26.

If it is necessary to invoke MVS services from JES2 maintask exits that may
cause MVS waits, these services should be invoked from a subtask
environment. The $SUBIT macro can be used to cause a routine to execute in
a subtask environment. The WAIT/POST synchronization of the subtask is
provided as part of this service.

2. JES2 Subtask - JES2 subtasks run in the private area of the JES2 address space
but run asynchronously with the JES2 main task. Subtasks run under the
control of the MVS dispatcher (not the JES2 dispatcher) and their asynchronous
operation allows them to perform the WAIT/POST type processing without
imposing the same WAIT/POST operations on the JES2 main task. System-wide
MVS services are available to programs in this environment.

Many JES2 maintask data areas are directly addressable, but users of these
resources must understand when and where serialization of these resources is
relevant. Most importantly, subtask should not directly reference the checkpoint
area (job queue, job output table, and so on), because in certain portions of the
checkpoint cycle this storage area is not addressable. If a subtask requires a
view of the checkpoint, use the JES2 checkpoint versioning facility and the
appropriate SSI calls.

3. User Environment - Some JES2 routines are loaded into common storage
(located either in extended or non-extended LPA, PLPA, or CSA) execute in the
user's address space. This environment, which permits user programs to
interface with JES2, differs greatly from the JES2 maintask environment.
System-wide MVS services are available to programs in this environment, but
the environment is also more complex. It involves many integrity,
synchronization, locking and cross-address space communications
considerations. JES2 services in the user environment are limited.

A special operating environment you can use called (USER,ANY). It is intended

for environments where a routine is able to be invoked in the USER run-time

environment, or under the JES2 main task. For example, Use (USER,ANY) to
write a common routine invoked by both Exit 2 and Exit 52. To use it, you can

code ENVIRON=(USER,ANY) on your $MODULE statement or on a

$ENVIRON macro invocation. The (USER,ANY) environment is similar to the

USER environment (for instance, R11 is the HCCT address) except for the

following differences in the way that $SAVE and $RETURN services are

implemented:

a. If the routine is called by the JES2 main task, JES2 main task
$SAVE/$RETURN services are called. This allows the possibility of a
$WAIT within the routine. With a user-environment $SAVE that uses the
linkage stack, this processing is not possible.

b. In any environment, a PSV-type save area is obtained rather than using a

BAKR to save the registers and environment. This allows services such as
$STORE and $RESTORE to be used in any environment.

Chapter 2. Writing an exit routine 9

4. FSS Environment - The functional subsystem (FSS) resides in the functional

subsystem address space. This environment is similar to the user environment
in that JES2 services are limited. You must consider task interaction within the
FSS. All data areas and control blocks are not accessible from the FSS. The
accessible control blocks are the job output element ($JOE) JOE information
block ($JIB), FSS control block (FSSCB), and FSA control block (FSACB).
System-wide MVS services are available to programs in this environment.

ECSA

EPUT 2G

(3) ﬂ
EPLPA HASCxxxx User Exits I

ENUC
NUC

SQA

(Functional Subsystem Address Space)

(3
PLPA HASCHAM ﬁ HASPFSSM 0
'

CSA
¥

HASJES20 address space

@ JES2 Main Task and Subtasks @

e (... [

PSA

Figure 5. JES2 and FSS Address Spaces

Synchronization

10

An exit routine must use synchronization services appropriate to its calling
environment.

An exit routine called from the JES2 main task must use the JES2 $WAIT macro to
wait for a JES2 event, resource, or post of a MVS ECB. An exit routine called from
a JES2 subtask or from the user environment must use the MVS WAIT macro to
wait for a system event. An exit routine called from a functional subsystem must
also use MVS WAIT; $WAIT and $POST are not valid in this environment.

A JES2 main task exit routine should not invoke operating system services which
may wait (WAIT), either voluntarily or involuntarily. Be aware of any product that

z/0OS V2R1.0 JES2 Installation Exits

interfaces with JES2 and attempts to issue MVS services such as STIMER,
STIMERM, WAIT, or TTIMER under the JES2 main task, or which invoke MVS
services such as allocation, which may issue such macros. An MVS wait from a
JES2 main task exit routine would stop all of the JES2 main task processors,
including any devices—such as readers, printers, and remote terminals—under
their control.

Reentrant code considerations

Reentrant code considerations are contingent on the calling environment.

An exit routine called from the JES2 main task must be reentrant in the JES2 sense.
The JES2 dispatching unit, commonly called JES2 processors, running under a
processor control element (PCE) perform the processing for the JES2 main task.
The JES2 dispatcher controls what PCE is currently active (that is, what JES2
processor is currently running). Because a JES2 processor doesn't relinquish control
to another JES2 processor involuntarily, an exit routine, invoked out of a JES2 main
task processor may use a nonreentrant work area; the work area is serialized if the
exit routine doesn't issue a $WAIT macro or until the exit routine or service called
from an exit routine does issue the $WAIT macro. When the exit routine issues the
$WAIT macro directly or through a called routine, control returns to the JES2
dispatcher and the serialization on the nonreentrant work area ceases. The
nonreentrant work area may also be passed between exit routines, or between an
exit routine and JES2, before a $WAIT macro call. Work areas to be used “across” a
$WAIT must either be within the processor work area established as part of the
processor control element (PCE) or else must be directly owned by the processor.
In the same JES2 reentrant sense, an exit routine may search or manipulate a JES2
queue providing it has ownership of the queue and doesn't issue a $WAIT macro
until this action is completed.

An exit routine called from a JES2 subtask, from the user environment, or from the
FSS environment must be reentrant in the MVS sense. The exit routine must be

capable of taking an MVS interrupt at any point in its processing. The exit routine
must be able to handle the simultaneity of execution with other subtasks and user
address space, or functional subsystem (FSS) routines and with the JES2 main task.

The following actions may produce unpredictable results:

* Modifying control block fields designed for use by the JES2 main task only (for
example, $DOUBLE, $GENWORK, and so on.)

* Accessing checkpointed data from the subtask, user, or FSS environment.

Linkage conventions

When control is passed to an exit routine, certain general registers contain linkage
information. Register 15 always contains the entry point address of the exit routine,
and can be used to establish addressability for the exit routine's code. Register 14
contains the address (in the exit effector) to which the exit routine must return
control. In the JES2 main task environment, register 13 always contains the address
of the processor control element (PCE) of the processor that invoked the exit. In the
JES2 subtask environment or the user environment, register 13 always contains the
address of an 18-word save area. In the JES2 main task and subtask environments,
register 11 always contains the address of the HCT; and in the functional
subsystem environment (HASPFSSM), register 11 always contains the address of
the HASP functional subsystem communications table (HFCT). In the user
environment, register 11 always contains the address of the HASP common

Chapter 2. Writing an exit routine 11

12

communication table (HCCT). Depending on the exit, registers 0 and 1 might be in
use as parameter registers. The use of registers 2 through 10 and 12, typically used
as pointer registers, is also exit-dependent.

Some JES2 services are running in 64-bit addressing mode. These services,
regardless of whether they are called directly or invoked by a macro, need register
11 to contain a 64-bit pointer to the HCT, HCCT, or HFCT. When JES2 invokes an
exit, it ensures that register 11 is a valid 64-bit pointer. Because exits should not
need to know which services are running in 64-bit addressing mode, the invoked
exit should not corrupt the high order 33 bits of register 11 before invoking any
JES2 service.

The use of registers 0 through 15 is documented, for each IBM-defined exit, in the
category REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE. Note that if you install an optional installation-defined exit, you are
responsible for modifying JES2 code, preceding your exit, to load any parameters
in registers 0 and 1 and any pointers in registers 2 through 10 and 12 that are
required by your exit routine.

For multiple exit routines, the exit effector passes registers 2 through 13 to each
succeeding exit routine just as they were originally loaded by JES2 when the exit
was first invoked. However, register 15 contains the entry point address of the
current exit routine and, again, can be used to establish addressability for the exit
routine's code. Register 14 contains the address to which the exit routine must
return control. This allows you to pass the information to consecutive exit routines.
For more information, see [Chapter 7, “Multiple exit routines in a single module,’]

When any exit routine receives control, it must save the caller's registers. An exit
routine called from any environment can save the caller's registers by issuing the
JES2 $SAVE macro.

When any exit routine relinquishes control, it must restore the caller's registers,
except for registers 0, 1, and 15. An exit routine called from any environment must
restore the caller's registers by issuing the JES2 $RETURN macro.

Just before returning control to JES2, an exit routine must place a return code in
register 15 and must place any parameters that it intends to pass, either back to
JES2 or to the next consecutive exit routine, in registers 0 and 1. If the return code
is greater than zero, or if the current exit routine is the last or only exit routine
associated with its exit, this return code is passed back to JES2 at the point of
invocation, along with any parameters placed in registers 0 and 1. If, however, the
return code is zero and the current exit routine is not the last or only exit routine
associated with its exit, the exit effector passes control to the next consecutive exit
routine, along with any parameters placed in registers 0 and 1.

IBM suggests that when using BAKR/PR instructions for routine linkage, that you
do not use the JES2 dispatching service, SWAIT, or call any other routines that may
result in a $WAIT. JES2 uses a process of sub-dispatching units of work (PCEs),
under a single task.

BAKR is an instruction where a linkage-stack branch stat entry is formed. If a stack
entry is created while a unit of work (PCE) is in control and that unit of work is
suspended by use of the $WAIT macro, then the next unit of work to get control
could change the state of these stack. Unpredictable results will occur when the
PCE that was $WAITED gets control back and issues a PR instruction.

z/0OS V2R1.0 JES2 Installation Exits

Special processing in the JES2 dispatcher detects when a PCE issues a $WAIT
while there is something on the linkage stack. An abend, with reason code $DP2,
will be issued to prevent this logic error from propagating more problems. Note
that you can use the $STORE macro before the SRETURN macro to modify the
returned values of registers 0 and 1.

Addressing mode of JES2 exits

All JES2 code (except those sections of code associated with restricted MVS
services) runs in 31-bit addressing mode. In this manner, JES2 is able to take
advantage of the increased virtual storage provided by the operating system 31-bit
addressing mode. (See /OS MVS Programming: Assembler Services Guide for a more
complete discussion of 31-bit addressing and required operating systems
considerations.)

Addressing mode requirements
All JES2 exit routines:
e are entered in 31-bit addressing mode
* return in 31-bit addressing mode

* must have all input address parameters to the exit in 31-bit fields. (Although
some addresses may be restricted to below a 16-megabyte address for example,
the $PRPUT, $PBLOCK, and $SEPPDIR service routines. These should use the
$GETBUF macro to obtain HASP-type buffers because of this restriction.)

* must be compatible with all referenced control blocks

The addressing mode may be changed within an exit by using the $AMODE
macro. It is the user's responsibility to understand the addressing mode
considerations of each exit and control the mode accordingly. See the $AMODE
macro description for more information.

Residency mode requirements

All JES2 installation exits can have a residency mode (RMODE) of ANY. To set the
residency mode of an exit assembly module, use the RMODE= parameter on the
$MODULE macro. To set the residency mode of a load module, use the linkage
editor's MODE statement.

Received parameters

Received parameters, passed by either JES2 or the preceding exit routine in
registers 0 and 1, provide a method of passing information to an exit routine and
of informing an exit routine of the current point of processing. For any
IBM-defined exit that passes parameters (to the first or only associated exit
routine), the specific parameters are documented in the REGISTER CONTENTS
WHEN CONTROL IS PASSED TO THE EXIT ROUTINE category of the exit's
description. IBM-defined Exit 6, which allows you to receive control both during
and after the conversion of a job's JCL to converter/interpreter (C/I) text, presents
a typical example. After a single JCL statement has been converted to an C/I text
image, Exit 6 places a zero in register 0. After all of the JCL for a particular job has
been converted to C/I text, Exit 6 places a 4 in register 0. Your exit routine can
determine what action to take by checking this code when it first receives control.

For some exits, the parameter registers also contain pointers to control blocks, to
certain control block fields, or to other parameter lists. For a discussion of an exit
routine's use of control blocks, see the “Control Blocks” section below.

Chapter 2. Writing an exit routine 13

The received parameters are passed, as modified, from routine to routine. Note
that if you install an installation-defined exit, you must ensure that JES2 passes any
parameters required by your exit routine in registers 0 and 1; this may require
some modification of JES2 source code.

Return codes

A return code provides a convenient way for an exit routine to affect the course of
following JES2 processing.

The standard return codes are 0 and 4. If 0 is returned by an exit routine that is
not the last or the only exit routine associated with its exit, the exit effector calls
the next consecutive exit routine. However, a 0 returned by the last or only exit
routine associated with its exit directs JES2 to proceed with standard processing. A
4 returned by any exit routine directs JES2 to proceed unconditionally with
standard processing; any succeeding exit routines remain uncalled.

Note that a standard return code does not necessarily suggest that an exit routine
has opted to take no action. You can write an exit routine to manipulate certain
JES2 data areas and then, by generating a standard return code, direct JES2 to
continue with normal processing based on this altered data.

The definition of return codes that are greater than 4 is exit-dependent. The
specific implementation of return of return codes greater than 4 is documented for
each exit under the category, RETURN CODES in each exit's description. A brief
indication of the standard processing that results from the return of 0 or 4 is also
included for each exit. Note that if you install an optional installation-defined exit,
you are responsible for modifying JES2 code, following your exit, to receive and
act on any return code greater than 4 generated by your exit routine.

A return code is always a multiple of 4. If your exit routine passes a return code
other than 0 or another multiple of 4 to JES2, results are unpredictable. Also, the
$EXIT exit-point definition macro has a MAXRC= operand that specifies the exit's
maximum acceptable return code. If your exit routine generates a return code that
exceeds this specification and the exit was called from the JES2 main task, the exit
effector issues the $ERROR macro. If the exit was called from a JES2 subtask, from
the user environment, or from the FSS environment, the exit effector issues the
ABEND macro.

Control blocks

An exit routine has access to various control blocks available in the environment
from which it was called.

To simplify exit coding IBM-defined exit routines provide in registers 0-13 pointers
to control blocks currently in main storage. Register 1 can contain a pointer to a
parameter list, which contains the addresses of control blocks currently in main
storage. For a list of the specific pointers provided by an IBM-defined exit, see the
REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT ROUTINE
category of the particular exit's description. Note that if you install an
installation-defined exit, you have to ensure that any pointers required by your exit
routine have been placed in the call registers by JES2 before invocation of your
exit; this may require some modification of JES2 source code.

An exit routine can access information available in control blocks. For example,
IBM-defined Exit 5, which allows you to perform your own JES2 command

14 z/0S V2R1.0 JES2 Installation Exits

preprocessing, passes the address of the PCE to an associated exit routine. You can
write your own command validation algorithm by writing an exit routine that
checks various command-information fields in the PCE.

CAUTION:

Because an exit routine runs fully authorized, it is free to alter any field in any
control block to which it has access. By altering specific fields in specific JES2
control blocks, an exit routine can pass information to JES2 and to succeeding
exit routines and can thereby affect the course of later JES2 processing. Note that
JES2 has no protection against any change made to any control block by an exit
routine. If you modify a checkpointed control block, you must ensure that it is
written to the checkpoint data set either by your exit routine or by JES2. For this
reason, you should exercise extreme caution in making control block alterations.

Avoid expanding JES2 control blocks. Use alternatives such as:

* Use fields dedicated for installation use that appear in many major control
blocks. Place your data, or a pointer to your data, in these fields. However,
beware of setting storage address in checkpointed or SPOOL resident control
blocks.

* Use $JCTX services rather than modifying $JCT.

* Use table pairs and dynamic tables. For example, use dynamic $BERTTABs with
CBOFF=* instead of modifying $JQE.

This is a partial list. Evaluate your specific situation and take appropriate action.

Except where it would seriously degrade system performance, JES2 provides a
reasonable amount of space in its standard control blocks for use by your exit
routines. Some storage-resident control blocks, such as PCEs and DCTs, have
storage reserved for exit routine use. You can use this storage to establish your
own exit-related field or fields within a standard control block or, if you require
more storage, you can use four of the bytes as a pointer to a work area acquired
by an exit routine using the JES2 $GETMAIN, $GETBUF, and $GETWORK macros
or the MVS GETMAIN macro. Disk-resident control blocks provide considerably
more space for exit routine use. For performance reasons, no checkpoint-resident
control blocks reserve space for use by exit routines.

In addition to using reserved space in the standard JES2 control blocks, you can
define and use your own installation-specific control blocks by using the JES2 exit
facility. An exit routine can use the JES2 $GETMAIN, $GETBUE, and $GETWORK
macros or the MVS GETMAIN macro to acquire storage and build a control block
at the appropriate point in processing. For example, a job-related control block can
be built by an exit routine associated with IBM-defined Exit 2. You can then use
IBM-defined Exits 7 and 8 to write your exit. installation-defined control blocks to
spool and to read them from spool into main storage.

Note that if an exit routine references the symbolic name of a control block field,
the DSECT for that control block must be requested in the exit routine's module at
assembly time (through the $MODULE macro). Each exit description includes a list
of DSECTs normally required at assembly.

An exit routine that needs to access checkpoint control blocks must use appropriate
access services. See [“Checkpoint control blocks” on page 407] for more information.

Chapter 2. Writing an exit routine 15

Determining the JES2 release level

Other code, whether other IBM program product code, Solution Developer code, or
installation-written code might need to determine what level of JES2 is installed.
This can be important so that such code can determine what support is required
within that code or what support JES2 provides for a particular release. The
JES2-provided global assembler variables, &VERSION and &J2VRSN, provide this
indication. provides the variable string associated with currently supported
releases of JES2.

Table 1. JES2-Provided Global Assembler Variables (& VERSION and &J2VRSN) for
Currently Supported JES2 Releases

JES2 Version and Release &VERSION and &J2VRSN String
SP5.1.0 'SP 5.1.0'
SP5.2.0 'SP 5.2.0'
0S/390% V1 R1 and higher 'SP 5.3.0'

Based on the &VERSION or &J2VRSN value, the value of the string increases for
each successive JES2 release. Note that for OS5/390 R1 JES2 IBM uses a string value
of ‘SP 5.3.0” to protect this collating sequence. Consider this value stable and not to
be changed or incremented in the future.

To accommodate future JES2 releases, use the following assembly-time variables
(also valid for JES2-supported releases if you have installed APAR OW17462):

Variable
Description and Use

&J2LEVEL
* Value: Same as listed in [Table 1f except for:

Release
Value

0S/390 R1
‘0S 1.1.00

0S/390 R3
‘OS 1.3.07

0S/390 R4
‘OS 24.0

0S/390 R5
‘OS 2.5.0

0S/390 R7
‘0S 2.7.00

0S/390 R8
‘OS 2.8.0°

0S/390 R10
‘OS 2.10

z/OS V1R2
‘'z/0OS 1.2

z/OS V1R4
‘2/0OS 1.4

16 z/0S V2R1.0 JES2 Installation Exits

z/0OS VIR5
‘'z/0OS 1.5

z/OS V1R7
‘z/OS 1.7

z/OS V1R8
‘z/OS 1.8

z/OS V1R9
z/0S 1.9 'z/0S 1.9'

z/OS V1R10
z/0S 1.10 'z/OS1.10'

z/OS VIR11
z/0S 1.11 'z/0OS1.11'

z/OS VIR12
z/0S 1.12 'z/0S51.12'

z/OS V1R13
z/0S 1.13 'z/0S1.13'

z/OS V2R1
z/0S 2.1 'z/0S 2.1'
* Description: 8-byte string defined as are &VERSION and &J2VRSN
* HCT Field: $LEVEL is &J2LEVEL (OS/390 only)
* HCCT Field: CCTLEVEL is &J2LEVEL (OS/390 only)

* Note: The format of this field is an 8-byte EBCDIC string; however, do
not rely upon the string data for release-to-release comparisons, use
&J2PLVL for that purpose.

&J2PLVL

* Value: A numeric value that increases by at least a value of 1 for each
successive JES2 release.

* Description: A value that corresponds to a specific JES2 product release
level as follows:

JES2 Version/ Release
&J2PLVL Value

SP5.1.0
24

SP5.2.0
25

0S/390 R1
26

0S/390 R3
27

0S/390 R4
28

0S/390 R5
29

0S/390 R7
30

Chapter 2. Writing an exit routine 17

0S/390 R8
31

0S/390 R10
32

z/OS 1.2
33

z/OS 1.4
34

z/OS 1.5
35

z/OS 1.7
36

z/OS 1.8
37

z/OS 1.9
38

z/OS 1.10
39

z/0S 1.11
40

z/OS 1.12
41

z/0S 1.13
42

z/OS 2.1
43
* HCT Field: $PLVL is &J2PLVL (OS/390 only)
¢ HCCT Field: CCTPLVL is &J2PLVL (OS/390 only)
* Note: The value itself has no inherent meaning.

&J2SLVL
* Value: 0 when a new &J2PLVL is created

* Description: A service level within the product level updated for
significant JES2 updates

* HCT Field: $SLVL is &J2SLVL(OS/390 only)
HCCT Field: CCTSLVL is &J2SLVL (OS/390 only)
¢ Note: This value will never decrease within a specific value of &J2PLVL

Programming Notes:

« 0S5/390
Run-time field SSCTSUSE points to a 10-byte field structured as follows:

Byte 1-8
CCTLEVEL

Byte 9-10
CCTPLVL and CCTSLVL (concatenated)

e Pre-OS/390

18 z/0S V2R1.0 JES2 Installation Exits

Run-time field SSCTSUSE points to an 8-byte field structured as follows:

Byte 1-8

CCTPVRSM
Run-time field CCTPVRSM in the HCCT is an 8-byte field that provides the
&VERSION / &J2VRSN String as listed in|Table 1 on page 16| or stabilized to ‘SP
5.3.0" for OS/390.

Service routine usage

Many service routines available to the JES2 main task are also available on an exit
routine called from the JES2 main task. You can include an executable JES2 macro
instruction at any appropriate point in a JES2 main task exit routine. Not all
service routines are available to the functional subsystem environment; those that
can be called must be appropriate. Depending on the macro, it provides inline
code expansion at assembly time or else calls a JES2 service routine, as a
subroutine, in execution.

An exit routine called from a JES2 subtask or from the user environment can use
any JES2 service routine that can be called from its environment and any MVS
service routine (SVC) that can be called from its environment. You can include a
JES2- or MVS-executable macro instruction at any appropriate point in the subtask
or user routine. Again, depending on the macro, it provides inline code expansion
at assembly time or else calls a JES2 or MVS service routine, as a subroutine, in
execution.

Exit logic

Using an exit for other than its intended purpose can increase the risk of degraded
performance and system failure and may cause migration problems.

Within the scope of an exit's intended purpose, you have a wide degree of
flexibility in devising exit algorithms. For example, you can base spool partitioning
on a simple factor, such as job class, or on a complex comparison of several job
attributes and current spool volume usage. However, you should remember that as
you increase an algorithm's sophistication, you also increase overhead and the risk
of error. Exit-specific logic considerations are provided in the “Other Programming
Considerations” category for each exit description.

Logic considerations for installing installation-defined exits and for implementing
them are provided in [Chapter 10, “Establishing installation-defined exits,” on page]

Note, for both IBM-defined and installation-defined exits, that the ability to
associate multiple exit routines with a single exit allows you to devise modular
logic segments. Each separate function to be performed after exit invocation can be
isolated in its own exit routine. This can be especially useful when you need to
provide alternate types of exit processing for different received parameters.

Exit-to-exit communication

Communication among exit routines must be accomplished through mutually
accessible control blocks.

Chapter 2. Writing an exit routine 19

Exit point-to-exit routine communication

Several JES2 installation exits, such as installation exits 27 through 35 contain a
condition byte that provide a means of passing information to your exit routine.
JES2 sets this byte to indicate the status of the environment at the time the exit is
called. Check the bit settings in this byte to determine what (if any) processing
should be done by your exit routine. See the “Register Contents When The Exit
Routine Gets Control” section of each exit description for the meaning of the
condition byte.

Exit routine-to exit point communication

These same exits provide an interface for your exit routine to inform the caller of
your exit of the results of your exit's processing. You turn on bits in the response
byte to pass this information to the caller. This gives the caller a cumulative
response from all exit routines invoked to help the caller determine how to
proceed when control is returned to it. Your exit should not turn bits in the
response byte off, as there are some occasions when some bits of the response byte
are turned on initially before control is given to your exit.

Exit-to-operator communication

Except for exit routines called from the HASPCOMM module of HASJES20 and
exit routines called from JES2 initialization and termination, exit routines called
from the JES2 main task environment can communicate with the operator through
the $WTO macro. Exit routines called from the HASPCOMM module can
communicate with the JES2 operator through the $CWTO macro. Exit routines
called from a JES2 subtask or during JES2 initialization and termination can
communicate with the operator through the $$WTO and $$WTOR macros or
through the MVS WTO and WTOR macros. Exit routines called from the user
environment or functional subsystem environment can communicate with the
operator through the MVS WTO and WTOR macros. Note that, if a message is to
be associated with jobs processed by a functional subsystem, the job id must be
included with the message. notification. Exits 2, 3, and 4 allow you to send an
exit-generated message to the operator along with certain return codes by setting a
flag in the RXITFLAG byte. Exit 5 allows you to control the standard $CRET macro
“OK” message and to send your own exit-generated message text through the
$CRET macro. Exit 9 allows you to control the standard output overflow message.
Exit 10 allows you control over the text and routing of all $WTO messages. For
details, see the individual exit descriptions.

Required mapping macros

20

Depending on the environment in which an exit executes, you will need to provide
the appropriate set of mapping macros to map storage areas. Below, listed by
environment, are the standard mapping macros required in order that your exit
routine will assemble properly. The DSECTID for the mapping macro should be
specified on the $MODULE macro. You should also note that individual exits also
require other specific mapping macros. These are listed under the “DSECTIDs TO
BE SPECIFIED ON $MODULE” heading provided for each exit.

Note: The addition of $SMODULE in each exit will cause JES2 to pull in required
mapping macros. However, all macros should be explicitly coded to prevent the
return of MNOTEs and the possibility of assembly errors. Be certain your exit
routines conform to JES2 coding conventions. This will allow easier diagnosis if an
error should occur.

z/0OS V2R1.0 JES2 Installation Exits

JES2 main task environment exits
* 05
e 7
* 10-11
° 14-22
e 24
o 26-27
38
.« 39
* 40
e 44
e 46-47
e 49
. 51

Assuming you minimally code the following for each exit
+ COPY $HASPGBL

+ $MODULE

« $ENTRY

+ $SAVE

+ $RETURN

+ $MODEND

« END

Required macros

* $CADDR (required by $SMODULE)

* $HASPEQU (required by $MODULE)
* $HCT (required by $SMODULE)

* $MIT (required by $MODULE)

¢ $PADDR (required by $SMODULE)

* $PARMLST (required by $MODULE)
* $PSV (required by $MODULE)

* $PCE (required by $MODULE)

* $USERCBS (required by $MODULE)

JES2 subtask environment exits
-6
* 8
e 12

Assuming you minimally code the following for each exit
+ COPY $HASPGBL

+ $MODULE

« $ENTRY

+ $SAVE

+ $RETURN

+ $MODEND

Chapter 2. Writing an exit routine 21

END

Required macros

$CADDR (required by $MODULE)
$HASPEQU (required by $MODULE)
$HCT (required by $MODULE)

$MIT (required by $MODULE)
$PADDR (required by $MODULE)
$PARMLST (required by $MODULE)
$PSV (required by $MODULE)
$USERCBS (required by $MODULE)

Functional subsystem address space environment exits

23
25

Assuming you minimally code the following for each exit

COPY $HASPGBL
$MODULE
$ENTRY

$SAVE

$RETURN
$MODEND

END

Required macros

$CADDR (required by $MODULE)
ETD (required to support $HFCT)
FSIP (required to support $HFCT)
$HASPEQU (required by $MODULE)
$HFCT (required by $MODULE)
$MIT (required by $MODULE)
$PADDR (required by $MODULE)
$PARMLST (required by $MODULE)
$PSV (required by $MODULE)

User environment exits

8-9
12
28-37
41-43
45

48

50
52-60

22 z/0S V2R1.0 JES2 Installation Exits

Assuming you minimally code the following for each exit

COPY $HASPGBL
$MODULE
$ENTRY

$SAVE

$RETURN
$MODEND

END

Required macros

$CADDR (required by $MODULE)
$HASPEQU (required by $MODULE)
$HCCT (required by $MODULE)
$MIT (required by $MODULE)
$PADDR (required by $MODULE)
$PSV (required by $MODULE)
$USERCBS (required by $MODULE)

The following programming considerations describe some specific requirements for
coding your exit routine:

Naming and Identifying an Exit Routine

You must begin each exit routine with the JES2 $ENTRY macro, which you use
to name the routine and to identify it to JES2.

For more information, see “Packaging Exit Routines” later in this chapter.
Note that you have flexibility in naming your exit routines, under standard
labeling conventions except for Exit 0 (see the description of Exit 0 in

[Chapter 12, “IBM-defined exits,” on page 65| for more detail).

Exit Addressability

The $ENTRY macro is also used to generate a USING statement for your exit
routine. The BASE= operand is used to specify the register or registers which
provide addressability when the exit routine gets control. However, the $ENTRY
macro does not load the base register.

Source Module Conventions

The construction of a source module must follow certain conventions depending
on how you intend to package the exit routine. Through these conventions, JES2
is able to locate both exit routines and exit points within a module.

Security

When deciding on whether to implement a specific exit routine, you should
consider whether installing a security product with your other system software
could satisfy your requirements. You should also consider the affect an exit
routine could have in terms of your installation's security policy. Your security
auditing may be inaccurate if you change security information in a control block
in an exit that occurs after access to a resource has already been granted without
additional validation. Similarly, changes made to security information by an exit
that occurs before validation, could cause the validation to fail.

DBCS Assembly Option
DBCS (Double-byte Character Set) is an option that may be invoked when doing
assemblies. DBCS is a means of providing support for languages which contain

too many symbols to be represented by a single byte character set such as
EBCDIC. JES2 supports the High-Level Assembler DBCS option for JES2 exit

Chapter 2. Writing an exit routine 23

routines. All JES2 macros integral in a customer's JES2 exit will abide by DBCS
option rules, including the continuation line logic. JES2 macros will not have the
same characters specified in both columns 71 and 72. This would be interpreted
as a special DBCS continuation character. IBM does not support the DBCS
option for reassembly of its modules.

User environment exit considerations

24

Reentrancy

JES2 main task exits do not need to be reentrant because there is only one task
running in the module at a time. However, multiple tasks can be running code in a
user environment exit simultaneously. All user environment exits should be
reentrant. The following are some reentrancy problems often overlooked in JES2
exits:

* Building messages directly in data constants in the local CSECT instead of using
a work area.

* $$WTO processing that sets the command character at the start of a message,
even though the message does not have any replaceable text.

* Inline parameter lists used by MVS macros, such as ENQ and DEQ.
* Storing routine addresses into local (CSECT) storage areas.

Accessing CKPTed Data Area

If you are running code in one of the user environment exits, you might need to
access data that is in the JES2 checkpoint data set. To facilitate this, JES2 maintains
a “live checkpoint version” in the checkpoint version data space. This live version
is an IARVSERV shared copy of the instorage checkpoint data set. It is updated by
the main task as your exit is looking at the data. It is not advisable to run chains in
the live version because the chains can be altered by the main task as you run
them. However, if you know where a needed data area is located (a JQE or a JOE
for example), and the data area is not going away (it is busy on your device),
using a live version is a way to obtain the latest checkpoint data.

If you are in a user environment exit working with a NJE/TCP device (that is you
are running in a NETSERV address space), the following code accesses an
IASDSERYV data area that points to the live version (xx in xxWNSST is SR, ST, JR,
or JT for the appropriate device dependent area) :

USING DSERV,R5 Est DSERV addressability
SPACE 1

L R5,xxXWNSST Get NSST address

LAE R5,0(R5) Clear access register

L R5,NSSNSCT-NSST(,R5) Get NSCT address
L R5,NSCDSERV-NSCT(,R5) Get Tive DSERV addr

If you are not sure whether or not you are in a NETSERV address space, you can
obtain an IAZDSERV for the live version using the $DSERV macro. For example:

$DSERV FUNC=GET, Get DSERV
LIVE=YES, Use "Tive" version
DSERV=(R2) Save address in R2

Code using DSERV in R2

$DSERV FUNC=FREE, Free DSERV
DSERV=(R2) Address of DSERV to free

z/0OS V2R1.0 JES2 Installation Exits

Accessing $CATs

Input processing exits might need to access a $CAT to get values for a job being
received or being submitted. To access a $CAT, you need to get an IAZDSERV for
a live version, and then obtain a $CAT from that live version. For example:

$DSERV FUNC=GET, Get DSERV
LIVE=YES, Use "Tive" version
DSERV=(R2) Save address in R2
SPACE 1

$DOGCAT ACTION=(FETCH,READ), Get CAT for job class
JOBCLASS=JRWDBLE,

DSERV=(R2)
LR R3,R1 Get CAT address
SPACE 1

USING CAT,R3 DECLARE CAT ADDRESSABILITY
Process $CAT in R3

$DOGCAT ACTION=RETURN,CAT=CAT Return CAT storage

SPACE 1
$DSERV FUNC=FREE, Free DSERV
DSERV=(R2) Address of DSERV to free
SPACE 1
DROP R3 DROP CAT ADDRESSABILITY

If you are implementing code that will only be running in a NETSERV address
space, you can replace the $DSERV calls with the code from the “Accessing
CKPTed Data Area” example to obtain the IAZDSERV from the $NSCT.

Storage considerations

If an exit requires additional storage, use a subpool other than 0, 240 or 250.
Storage allocated in subpool 0 (or in subpools 240 and 250, which are converted to
subpool 0 requests) are given a storage key of 0 and SHARED with the jobstep
TCB. This can cause any program running in a key other than 0 under the jobstep
TCB to experience protection exceptions (abendOc4 rc04) if the program obtained
storage in subpool 0 and attempt to modify it.

One time exit initialization code

Some exits want to perform initialization code the first time they are called, for
example loading a service module or building a table needed for processing.
However, if this is a user environment exit, it is not running in the JES2 address
space and is not main task serialized. Without some special serialization (such as
an ENQ), it is possible that the code is actually being run simultaneously by two
exit invocations. Also, if a data area is being obtained or a module is being loaded,
it is possible that the storage is freed when the current address space terminates.

It is easiest to place any one time initialization logic in the post initialization exit
24. If data addresses need to be passed to other exits, either a $CUCT (an area
pointed to by CCTCUCT in the $HCCT) can be used for a data address or a
$UCADDR (an area pointed to by CCTUCADD and used by $CALL) can be used
for a routine address. Another option is to use a named token. $TOKENSR
provides a JES2 interface to the MVS Name/Token service. You can use tokens to
store data that is needed at some later point in processing.

Chapter 2. Writing an exit routine 25

Tracing

Minimal tracing of exit invocation can be performed automatically as part of the
exit facility. For this tracing to occur, three conditions are necessary:

1. The trace ID for exit tracing (ID 13) must be enabled.

2. The EXIT(nnn) initialization statement or the $T EXIT(nnn) operator command
must have enabled tracing. For more information, see [Chapter 9, “Tracing]
[status,” on page 57

3. Tracing must be active (TRACEDEF ACTIVE=YES).

This automatic tracing produces a limited trace entry containing such general
information as exit point identification, register contents at the time of exit
invocation, and the contents of the $XPL (if part of the $EXIT interface).

Also, to further trace execution of exit routine code, issue the standard JES2
$TRACE macro call within an exit routine. This results in a full trace record of exit
routine processing.

It is recommended that you use tracing to its fullest extent only in your testing
cycle, and that you limit its use in those areas of the standard processing
environment—for example, in conversion processing—where it is most likely to
degrade system performance.

Recovery

An exit routine should not depend on JES2 for recovery. JES2 cannot anticipate the
exact purpose of an exit routine and, therefore, any standard JES2 recovery that
happens to be in effect when your exit routine is called is, at best, minimal for
your particular needs. In other areas of processing, no JES2 recovery environment
is in effect, and an exit routine error has the potential to cause JES2 to fail.
Consequently, you should provide your own recovery mechanisms within your exit
routines.

For all exits routines for which you provide an $ESTAE routine, also be certain to
add the error recovery area DSECT, $ERA, to the $MODULE macro. On entry into
the recovery routine set up by $ESTAE, register 1 points to the ERA.

You can use the standard JES2 $ESTAE recovery mechanisms in implementing
your own recovery within the JES2 main task. You can use the MVS ESTAE
recovery mechanism in implementing your own recovery in the SUBTASK, USER,
or FSS environments. When recovering in the SUBTASK environment, JES2 frees
the save areas associated with the abending subtask. Your recovery should not
depend on the presence of a particular save area.

At minimum, a recovery mechanism should place a 0 or 4 return code in register
15. Beyond this, recovery depends on the particular purpose of an exit routine.

Loading non-JES2 modules

The $MODLOAD service of JES2 allows for the directed load of modules. It loads
all the modules that JES2 needs for processing. Directed loading allows for
modules to be placed in requestor obtained storage. Modules loaded using the
directed load service do not get the normal contents directory entries (CDE) and

26 z/0S V2R1.0 JES2 Installation Exits

thus cannot be found by other LOADs. However, this implies that these modules
are not deleted as part of task or address space termination unless the storage they
were loaded into is freed.

With logic moving into common storage, non-JES2 modules might need to be
available to JES2 code (and exit code) in common storage. The JES2 $SMODLOAD
service supports directed loading non-JES2 modules. This includes placing
non-JES2 modules in common storage. An exit can load a necessary module into
common storage during exit 24 (post initialization) processing, and then use it as
needed. JES2 then deletes the module during JES2 shutdown ($PJES2) processing
when it deletes the other JES2 common storage modules.

Non-JES2 modules can be loaded dynamically after initialization completes. See
[“Dynamic Load Modules” on page 31| for more information.

Chapter 2. Writing an exit routine 27

28 z/0S V2R1.0 JES2 Installation Exits

Chapter 3. Controlling the loading of installation-defined load

modules

Loading and placement of installation load modules

Use the LOADmod (jxxxxxxx) initialization statement or the $ADD

LOADmod (jxxxxxxx) command to direct the loading of all installation-defined load
modules (such as user-defined exits). Exit routines must be loaded in this manner,
rather than linking to JES2 load modules. JES2 only searches for
installation-defined exit routines in user modules defined by the
LOADmod(jxxxxxxx) initialization statement or the $ADD LOADmod (jxxxxxxx)
command, in the reserved module names HASPX]J00 — J31, or in HASPXITO; JES2
does not search for such routines in IBM-defined modules. The STORAGE=
parameter specifies the area of storage where the load module is to be loaded. This
is the copy that JES2 will use. presents a summary of the manner in which
JES2 directs the load of a load module based on initial placement of that load
module and the LOADmod (jxxxxxxx) STORAGE= specification.

Note the following restrictions:

* STORAGE=LPA is invalid if the load module is initially placed in STEPLIB only,
LINKLIST only, or both STEPLIB and LINKLIST. JES2 issues message $HASP003
RC(31), MODULE COULD NOT BE LOADED.

 All other STORAGE= requests are valid, but you may not receive the expected
result (see|Table 2).

* You cannot load a module into the link pack area (LPA) following MVS
initialization. You may only request that the copy of the module in LPA be used
if multiple copies are found.

Table 2. Directed Load and Use of Modules Based on LOADMOD (jxxxxxxx) STORAGE=
Specification

Location of Module |STORAGE=PVT, STORAGE=CSA, STORAGE=LPA,
is: module is found in |module is found in |module is found in
STEPLIB Only PVT CSA $HASP003
RC=31
LPA Only LPA LPA LPA
LNKLST Only PVT CSA $HASP003
RC=31
STEPLIB and LPA PVT CSA LPA
(STEPLIB) (STEPLIB)
STEPLIB and PVT CSA $HASP003
LNKLST
(STEPLIB) RC=31
LPA and LNKLST LPA LPA LPA
STEPLIB, LPA and PVT CSA LPA
LNKLST
(STEPLIB) (STEPLIB)

© Copyright IBM Corp. 1988, 2013 29

30

To place the load module either above or below 16 megabytes, use the linkage
editor MODE statement or specify the RMODE= parameter on the $MODULE
macro.

illustrates two ways to package an exit routine:

1 As a totally separate load module
@ As part of HASPXITO

OBJLIB LINKLIB
JES2 JES2
S\ AN
(1 > LUNKEDIT >
EXIT EXIT
ROUTINE ROUTINE
OBJLIB LINKLIB
HASPXITO
HASPXITO
A\
(5> > LINKEDIT @
EXIT EXIT
ROUTINE ROUTINE

Figure 6. Methods of Packaging an Exit Routine

A JES2 $MODULE macro must be the first code-generating statement (immediately
preceded by COPY $HASPGBL) in a source module to be assembled and either
link edited separately and loaded at initialization or a source module to be added
to a standard JES2 load module.

Note: The $MODULE macro call must occur prior to the first use of $ENTRY or
$EXIT, and a JES2 $MODEND macro must be coded at the end of both types of
source modules.

You can only code one $MODULE and one $MODEND macro in each source
module. Further, when link editing exits into their own load modules (other than
HASJES20), each source module must be linked into its own load module.

To locate the MITs of modules that are added to the standard JES2 load modules,
JES2 uses weak external address constants. To locate the MITs of modules that are
linked in their own load modules, JES2 assumes that the MIT, generated by
$MODULE, is located at the front of the load module to which it points. The
MITETBL, generated by $MODULE, is located at the end of a module loaded at
initialization.

z/0OS V2R1.0 JES2 Installation Exits

Note: For all exit routine source modules, that if an exit routine references the
symbolic name of a control block field, the mapping macro for that control block
must be included in the $MODULE macro list in the same source module as the
exit routine at assembly time.

Furthermore, see Appendix C, “Hints for Coding JES2 Exit Routines” for a list of
required mapping macros for individual exits. These macros are environment
dependent and must be coded to prevent assembly errors and error messages.

The ENVIRON= operand of the $MODULE macro should be used to specify which
JES2 operating environment the exit routine(s) is to execute. Each exit description
in the “IBM-Defined Exits” reference section in [Chapter 12, “IBM-defined exits,” on|

includes a list of mapping macros normally required at assembly.

Dynamic Load

Modules

Dynamic load modules provide the following functions:

* Load, refresh, and delete installation load modules, which are not part of the
IBM base JES2 code, after JES2 initialization processing. The dynamic table pairs
and exit routine addresses are updated as needed. The load modules provide
load and delete routines to perform any processing that might be needed to
adjust data pointers JES2 does not process.

Note: This function does not support base JES2 modules, so it can NOT be used
to apply IBM service.

* Alter the list of routines associated with an exit point through operator
command.

When building a load module with exit routines and dynamic tables, you must
decide whether you want to support dynamically loading or deleting these
modules after initialization. This is especially useful in a test environment where
new versions of a failing exit can be activated without a restart. Depending on the
processing done in your exits, supporting dynamic loading and deleting might
require no additional code or only a reorganization of your existing logic.

Making load modules dynamically loadable will increase the amount of testing
you need to do. You need to not only test the function implemented by your
modules, but also ensure that everything works after the module is dynamically
loaded, refreshed or deleted. The advantage of dynamic load modules is that when
you find a problem in your module, you can correct the problem and get a new
version of your code running without major disruptions. If the problem is bad
enough, you can delete the module, fix it, and load the fixed version.

If the code is tested and placed in a production environment, IBM suggests that
you do not make loading, refreshing, or deleting load modules as a part of your
normal operations. This is because it is not always possible to delete old modules
from storage. JES2 only deletes a module from storage if it will surely not be used.
Some of these old modules will take up space until JES2 or z/OS is restarted
(depending on where the module is loaded). Loading, refreshing, and deleting load
modules in a production environment must be reserved for emergency situations
(if it would save or delay an IPL) or for modules that IBM service has provided to
collect additional diagnostic information. If a production environment needs to be
altered on a regular basis, it would be better to alter the list of routines associated
with an exit point rather than altering what modules are loaded.

Chapter 3. Controlling the loading of installation-defined load modules 31

Dynamic Load Module Considerations
When writing new load module or updating an existing module to support
dynamic processes, you need to consider the following things:
* The data areas that the modules access. You need to consider the following
questions:
— Does the module accesses a data area that has been created by the
installation?
— How are these data areas created?
— What points to the data area?
— Is the area dynamically obtained or is it an area within the load module?

If the exits and tables only access JES2 and z/OS data areas, this is not a
concern. Also, if the data area is contained within the module and there are no
external pointers to the data area, then that also is not a concern. However, if the
data area is installation specific and the address is obtained using a pointer
external to the load module (such as the $UCT pointer in the $HCT), then you
need to consider:

— How is the data area set up? If it is only used by this module, then is a
$$$$LOAD routine needed to initialize it?

Note: See [‘$$$$LOAD Routine” on page 33| for a description of the
$$$$LOAD routine.

— Does the code deal with the case where the data area already exists (or does
it create a second data area)?

— Is the data area in common storage?

— Does it need to be deleted when this module is deleted or when JES2
terminates? Is a $$$$DEL routine needed to free the data area?

Note: See [‘$$$$DEL Routine” on page 36| for a description of the $$$$DEL
routine.

— Does anything special need to be done if the module is refreshed instead of
being deleted?

— If the data area is in the load module, are there pointers that need to be
cleared if the module is deleted or refreshed?

— If the data area is managed by an exit 24 (JES2 initialization) and exit 26 (JES2

termination) pair, should that processing be moved to a $$$$LOAD and a
$$$$DEL routine?

In general, $$$$LOAD and $$$$DEL routines can solve most data area problems
to enssure the proper flexibility to alter the data area as needed.

* The creation of installation PCEs (subdispatchable units in the JES2 address
space) or DTEs (subtasks in the JES2 address space). If the PCEs or DTEs are
defined using dynamic tables or traditional table pairs, the appropriate PCE or
subtask is started as part of normal JES2 initialization. However, with dynamic
load modules, the installation code decides attaching and detaching the PCEs or
DTEs as needed. In general, the simplest way to deal with PCEs and DTEs is to
use the appropriate $PCEDYN or $DTEDYN macro to detach the old (existing)
PCEs or DTEs in the $$$3DEL routine and reattach them in the $$$$LOAD
routine. To ensure that the PCEs can be attached after initialization, be sure to
code the DYNAMIC=YES keyword on the $PCETAB macro that defines the PCE.

You also need to consider some other things when creating dynamic load modules:

32 z/0S V2R1.0 JES2 Installation Exits

 If you are converting an existing exit to be dynamic, is there logic in exit 24
(post initialization) that should be moved to a $$$$LOAD routine?

* If you are converting an existing exit to be dynamic, is there logic in exit 26
(JES2 termination) that should be moved to a $$$$DEL routine?

* Does the installation module include code that front ends or replaces a JES2
service? Front ending is the process of replacing the address of a JES2 service in
the $CADDR, $PADDR, $HCT or other data area, with the address of a routine
in the module and then calling the JES2 service only after the installation routine
runs. If so, care must be taken to ensure that the routine addresses are updated
if the installation load module is refreshed or deleted. This is especially true at
JES2 termination processing since some are called after installation load modules
are deleted at JES2 termination.

Note: IBM recommends that you do not front end IBM services. Designing a
function that requires front ending IBM services could limit your ability to
exploit future IBM functionality to refresh IBM services dynamically.

¢ Traditional (non-dynamic) tables that are set in the $MCT data area (or other
table pairs) must be updated as modules are loaded or deleted. In general, use
of non-dynamic tables can be converted to dynamic tables (which JES2 will
automatically process). Otherwise, code can be added to the $$$$LOAD and
$$$$DEL routines to handle updating these pointers.

If your load module cannot support dynamic processes, there are a number of
options to prevent unintended processing:

* Setting DYNAMIC=NO on the SMODULE statement of the load module will
prevent all dynamic processing for this load module. Initialization processing is
not affected. Any $$$$LOAD or $$$$DEL routines in the module will be called
out of JES2 initialization and termination processing.

¢ From a $$$$LOAD routine, set the LMT2NDYN bit in flag byte LMTFLG2. The
LMT of the module being loaded is passed to the $$$$LOAD routine in the
$CSVPARM data area. If done during initialization, this has the same effect as
setting DYNAMIC=NO on the $SMODULE. However, if the module was not
loaded during initialization, using this technique allows the module to be loaded
after initialization but not deleted or refreshed later.

 If you can support dynamic processes but there are tables or routines in your
module that cannot be deleted, then you can set a return code 8 from a $$$$DEL
routine. This prevents the module from being physically deleted. You should be
careful not to set it for every call to the $$$$DEL routine since if the module is
refreshed multiple times, you only need to keep the first copy of the load
module in storage. The $$$$DEL processing should determine if the specific
copy of the module that being deleted is the one that needs to remain.

$$SSLOAD and $$$$SDEL routines

$$$$LOAD and $$$$DEL are reserved routine names on the EXIT
ROUTINES=xxxxx initialization statement and the $T EXIT,ROUTINES=xxxx
command. The two reserved routines process when a module is loaded at
initialization or is logically deleted at normal JES2 termination.

$$$SLOAD Routine

When a load module is loaded by the LOADMOD initialization statement, the
$ADD LOADMOD command, or the $T LOADMOD,REFRESH command, JES2
searches the load module for a $ENTRY macro with the name $$$$LOAD. If the
module is found, JES2 calls it after all dynamic tables are linked in.

Chapter 3. Controlling the loading of installation-defined load modules 33

34

If the load module is loaded by the $T LOADMOD,REFRESH command, JES2
processes the following steps:

1. Load new copy of module into storage and verify it is valid.
2. Call the $$$$DEL routine for the old module.

3. Replace any exit routine addresses that point into the old module with
corresponding addresses in the new load module. If no corresponding routine
is found in the new module, the routine address is nullified (the routine is not
called).

4. Replace dynamic tables that point into the old module with corresponding
tables in the new module.

5. Delete any dynamic tables that still point to the old module.

6. Connect any dynamic tables in the new module that have not been connected
yet.

7. Call the $$$$LOAD routine for the new module.
8. Attempt to delete the old module from storage.

Note: The $T LOADMOD,REFRESH command can be issued for an LPA module
that is not altered. The new and the old modules are at the same address with two
LMTs representing the two modules correspondingly. In this case, the $$$$LOAD
and $$$$DEL routines are called.

Environment: $$$$LOAD is called in the JES2 main task limited environment (JES2
initialization) and the JES2 main task environment.

Recovery: $ESTAE recovery is in effect. However, the $$$$LOAD routine should not
depend on JES2 for recovery. You should provide your own recovery within your
$$$$SLOAD routine.

Point of processing: After module has been loaded but before control is returned
to the requestor of the load.

Register contents when $$$$LOAD gets control:
RO Not applicable
R1 Address of a parameter list mapped by $CSVPARM

R2-R10
Not applicable

R11
Address of the HCT

R12
Not applicable

R13
Address of current PCE (may be initialization PCE)

R14
Return address

R15
Entry address

$CSVPARM (pointed to by register 1 on entry) contains the following bits:

z/0OS V2R1.0 JES2 Installation Exits

CSVPID
Eye catcher ('CSVP')

CSVPSIZE
Size of parameter list

CSVPVER
Current version of base section (1)

CSVPTYPE
Routine identifier

CSVPLOAD
Indicates $$$$LOAD routine

CSVPLMT
Address of LMT being loaded

CSVPMIT
Address of module/MIT being loaded

CSVPLCMD
Reason for load:

CSVPLCJS
JES2 performing load

CSVPLCIN
LOADMOD init statement

CSVPLCAL
$ADD LOADMOD command

CSVPLCRL
$T LOADMOD,REFRESH command

CSVPLLOC
Where the module was loaded:

CSVPLPVT
Loaded to JES2 private

CSVPLCSA
Loaded to common storage

CSVPLLPA
Loaded to LPA

CSVPLOLD
Address of LMT being replaced (for the $T LOAD,REFRESH command)

CSVPL$DR
Address of an additional $$$$DEL routine (see LPA processing below). This
routine gets control before a $$$$DEL routine in the module is processed.

Register contents when $$$$LOAD passes control back to JES2:

RO-R1
Not applicable (ignored)

R2-R13
Not applicable (unchanged)

R14
Not applicable (ignored)

Chapter 3. Controlling the loading of installation-defined load modules 35

36

R15
Zero (CSVPLROK)

JES2 does not recognize any return codes from this routine. However, IBM
suggests setting R15 to zero to indicate successful processing in case future
development adds a return code to this routine.

$$SSDEL Routine

When a load module is deleted because of the $DEL LOADMOD command, the $T
LOADMOD,REFRESH command, or a second LOADMOD initialization statement
for the same module, JES2 searches the load module for a $ENTRY macro with the
name $$$SDEL. If the module is found, JES2 calls it as the first step in the delete
processing for the module.

If the load module is deleted by the $T LOADMOD,REFRESH command, JES2
processes the following steps:

1. Load new copy of module into storage and verify it is valid.
2. Call the $$$$DEL routine for the old module.

3. Replace any exit routine addresses that point into the old module with
corresponding addresses in the new load module. If no corresponding routine

is found in the new module, the routine address is nullified (the routine is not
called).

4. Replace dynamic tables that point into the old module with corresponding
tables in the new module.

5. Delete any dynamic tables that still point to the old module.

6. Connect any dynamic tables in the new module that have not been connected

yet.
7. Call the $$$$LOAD routine for the new module.

8. Attempt to delete the old module from storage.

Note: The $T LOADMOD,REFRESH command can be issued for an LPA module
that is not altered. The new and the old modules are at the same address with two
LMTs representing the two modules correspondingly. In this case, the $$$$LOAD
and $$$$DEL routines are called.

Environment: $$$$DEL is called in the JES2 main task limited environment (JES2
initialization) and the JES2 main task environment.

Recovery: $ESTAE recovery is in effect. However, the $$$$DEL routine should not
depend on JES2 for recovery. You should provide your own recovery within your
$$$$DEL routine.

Point of processing: As the first step in the processes of deleting a module, before
any tables have been unplugged or routine addresses cleared.

Register contents when $$$$DEL gets control:

RO Not applicable

R1 Address of a parameter list mapped by $CSVPARM

R2-R10
Not applicable

z/0OS V2R1.0 JES2 Installation Exits

R11
Address of the HCT

R12
Not applicable

R13
Address of current PCE (may be initialization PCE)

R14
Return address

R15
Entry address

$CSVPARM (pointed to by register 1 on entry) contains the following bits:

CSVPID
Eye catcher ('CSVP')

CSVPSIZE
Size of parameter list

CSVPVER
Current version of base section (1)

CSVPTYPE
Routine identifier

CSVPDEL
Indicates $$$$DEL routine

CSVPLMT
Address of LMT being deleted

CSVPMIT
Address of module/MIT being deleted

CSVPLCND
Reason for delete:

CSVPDCJS
JES2 performing delete

CSVPDCIN
LOADMOD init statement

CSVPDCDL
$DEL LOADMOD command

CSVPDCRL
$T LOADMOD,REFRESH command

CSVPDCTR
$PJES2 processing

CSvpPDCSC
Secondary call

CSVPDIND
Call flags:

CSVPDSND
Second call after a RC 4/8

Chapter 3. Controlling the loading of installation-defined load modules 37

38

CSVPDFRC
Module being force deleted

CSVPDFRE
Storage for module has been freed

CSVPDNEW
Address of LMT for new module that was loaded (for the $T LOAD,REFRESH
command)

Register contents when $$$$DEL passes control back to JES2:

RO-R1
Not applicable (ignored)

R2-R13
Not applicable (unchanged)

R14
Not applicable (ignored)

R15
Return code (ignored if this is a force delete)

Return code processing: Return codes from the $$$$DEL routine are ignored if the
module is being force deleted (CSVPDFRC bit on). Otherwise the following
processing occurs based on the return code:

CSVPDROK (0)
Continue deletion normally. This routine will not be called again.

CSVPDRNN (4)
Do not delete the module now. JES2 will delete dynamic tables and exit
routines without freeing the storage. $$$$DEL will be called again if all users
of the module are gone (with CSVPDSND set). If the second call give a return
code 4, $$$$DEL will be called again at about a five minute interval. However,
if needed, JES2 can make a force delete call prior to the timer expiring.

CSVPDRND (8)
Process the same as RC=4 except that JES2 will not call the $$$$DEL routine
again except for the following two cases:

* A force delete of the module is required because of a JES2 termination or an
LPA deletion.

e A JES2 hot start and the load module is in CSA or LPA. In this case, any
processing for this module on a hot start is allowed though this is a call to
the $$$$DEL routine. Normal return code processing occurs.

Special Considerations for LPA Modules

Special considerations need to be given to installation load modules placed in LPA.
These modules are not actually loaded, deleted or refreshed by JES2. Instead they
are managed by MVS using dynamic LPA services and commands.

When JES2 loads a module in LPA, it simply locates the address of the module
with a specified name in LPA. If this loading is caused by a $T
LOADMOD,REFRESH command, the LPA module might not be changed and JES2
will reset all its pointers. Therefore, there will be two LMTs, one representing the
module being deleted and one representing the same module being loaded. The
appropriate $$$$DEL and $$$$LOAD routines are called. Special logic might be
needed in these routines to properly handle the fact that the new and old modules

z/0OS V2R1.0 JES2 Installation Exits

are at the same address. In particular, if there is a code in the $$$$DEL routine that
examines pointers to see if they point into the module being deleted, then in this
case, there will be pointers into the old module. However, these pointers are not
residual and need to be maintained.

Another consideration with dynamic LPA is the ability for a module to be deleted
out from under JES2 using the MVS dynamic LPA commands. It is not expected
that this would happen under normal circumstances but JES2 attempts to deal with
this situation, should it arise. JES2 is notified after a module has been physically
deleted from storage. It marks the LMT to indicate the module has been freed and
schedules the module for logical deletion (removal of pointers to the deleted
module). Normally logical deletion occurs first but in this case JES2 has no control
over the physical deletion. As part of logical deletion JES2 will attempt to call a
$$$$DEL routine. Unfortunately, since the module is no longer in storage, the
module cannot be searched for a normal $$$$DEL routine. However, at the time a
module is loaded, the $$$$LOAD routine has the ability to specify the address of
an additional $$$$DEL routine in the $CSVPARM data area (field CSVPL$DR).
This routine cannot be in the module since it is intended for the case when module
has been deleted. Instead, it should be in code the $$$$LOAD routine has obtained
and copied a routine into. It is expected that this routine would set some indicator
that the function implemented by this routine is no longer active. Or issue a
message that things are no longer functioning.

Chapter 3. Controlling the loading of installation-defined load modules 39

40 2z/0S V2R1.0 JES2 Installation Exits

Chapter 4. Enabling an exit

shows how an exit routine (HASPUEX) can be assembled and link-edited,
and how to use the load module name. The source is in SYS1.JESEXITS, and the
load module is linked into SYS1.SHASLNKE with the name of HASPUEX. This
name must also appear on the LOADmod (jxxxxxxx) initialization statement.

//ASM EXEC PGM=IEV90,PARM="'0BJECT,NODECK,XREF (SHORT)"
//SYSLIB DD DSN=SYS1.VnRnMn.ahassrc,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=SYS1.AMODGEN,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(1700, (1200,300))
//SYSPRINT DD SYSOUT=A

//SYSIN DD DSN=SYS1.JESEXITS(HASPUEX),DISP=SHR
//SYSLIN DD DSN=&&0BJ,DISP=(,PASS),UNIT=SYSDA,

// SPACE=(CYL, (1,1))
//LINK EXEC PGM=HEWL,COND=(0,LT,ASM),
// PARM="'XREF,LET,REUS'

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD ~ DD DSN=SYS1.SHASLNKE,DISP=0LD
//SYSLIN DD DSN=&&0BJ,DISP=(OLD,DELETE)

// DD *
NAME HASPUEX(R)
/*

Figure 7. Example of Assembly and Link-Edit of a Installation-Written Routine

The following JES2 initialization statements can be used to load and associate Exit
1 with the above routine. Note that the name on the LOADmod (jxxxxxxx)
statement must match the load module specified to the linkage editor, and the
name on the ROUTINE= parameter on the EXIT(nnn) statement must be the
same name as on the $SENTRY macro.

LOADMOD (HASPUEX) STORAGE=PVT
EXIT(1) ROUTINE=UEXIT1,STATUS=ENABLED,TRACE=NO

[Figure 8 on page 42| shows an example exit routine for a user defined exit
(UEXIT1). The source is in SYS9.TECH, and the load module is linked into
SYS9.TECH.LINKLIB with the name of UEXIT1. This name must also appear on
the LOADmod (jxxxxxxx) initialization statement.

© Copyright IBM Corp. 1988, 2013 41

//STEP1 EXEC PROC=SMPE
//SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB
// DD DISP=SHR,DSN=SYS1.MODGEN
// DD DISP=SHR,DSN=SYS1.V2R10MO.SHASMAC
//SOURCECD DD DISP=SHR,DSN=SYS9.TECH.SOURCE
//SYSPRINT DD SYSOUT=+
//SMPSTS DD DISP=SHR,DSN=SMPE.MVST110.SMPSTS
//TARGET DD DISP=SHR,DSN=SYS9.TECH.LINKLIB
//TECHTX DD DSN=SYS9.TECH.SOURCE,DISP=SHR
//SMPCSI DD DISP=SHR,DSN=SMPE.MVS.GLOBAL.CSI
//SMPPTFIN DD DATA,DLM=$$
++USERMOD (HASXTO1) /* IDENTIFY USERMOD */.
++VER(Z038) FMID(HJE7703).
++JCLIN.
//NPL102RA JOB (0020900),'TECH SVCS',CLASS=Z,MSGCLASS=Y,NOTIFY=NPL102
//ASM1 EXEC PGM=ASMA90,REGION=2M,
// PARM="DECK,NOOBJECT , XREF (SHORT) '
//SYSIN DD DISP=0LD,DSN=SYS9.TECH.LINKLIB(UEXIT1)
//SYSLIN DD DISP=0LD,DSN=SYS9.TECH.OBJLIB(UEXIT1)
/1*
//LINK1 EXEC PGM=IEWL,PARM='XREF,LIST,NORENT'
//SYSLIN DD DISP=0LD,DSN=SYS9.TECH.0BJLIB(UEXIT1)
//SYSLMOD ~ DD DISP=SHR,DSN=SYS9.TECH.LINKLIB
//SYSLIN DD *
INCLUDE TECH(UEXIT1)
ENTRY UEXIT1
NAME UEXITI1(R)
/1%
++SRC(UEXIT1) SYSLIB(SMPSTS) DISTLIB(LINKLIB) TXLIB(TECHTX).
$$
//SMPCNTL DD =*
SET BDY(MVST110).
RESTORE SELECT(HASXTO1) COMPRESS(ALL).
RESETRC.
SET BDY(GLOBAL).
REJECT SELECT(HASXTO1) BYPASS(APPLYCHECK) COMPRESS(ALL).
RESETRC.
RECEIVE SELECT(HASXTO1) SYSMODS LIST.
SET BDY(MVST110).
APPLY SELECT(HASXTO1) REDO ASSEM BYPASS(ID) .
//

Figure 8. Example of an Exit Routine Employing a User Defined Exit

42 z/0S V2R1.0 JES2 Installation Exits

Chapter 5. Getting listings of JES2 data areas

When writing and debugging an installation exit, it is sometimes useful to get
listings of JES2 data areas similar to what is available in the z/OS data areas
books. There are a number of ways to do this depending on what data you need.

To get a listing of all the JES2 data areas, you can assemble the module HASPDOC;
the JES2 source code distribution library SYS1.SHASSRC provides this module. You
can assemble this module by using either SMP/E, the sample JES2 assembly PROC
HASIASM in SYS1.SHASSAMP, or using your own assembly procedure. The
output listing contains all the JES2 data areas. If you request the assembler produce
a full cross reference using the XREF(FULL) parameter, you will get an alphabetic
listing of all the symbols.

You can also use the same source module to get a listing of the z/OS data areas
that JES2 uses. To do this, include the assembler parameter
SYSPARM((,,,GEN,GEN)) on the assembly. You can find the operands of SYSPARM
for any JES2 module in I/OS JES2 Macros|under the SYSP= operand of the
$MODULE macro.

If you need a listing of just one data area (either JES2 or z/0S), you can create an
assembler module with only a $SMODULE statement listing the data areas you
want listings for and an END statement. The following is an example of an
assembler module that creates a listing of the JES2 $SHCT data area. The assembler
listing produced will have only the $SMODULE expansion and the $HCT data area:

$MODULE ($HCT,GEN)
END

This method works for any mapping macro supported by $MODULE. All required
macros for the assembly are automatically included and only the requested data
area is generated in the listing. You can get more than one data area by just adding
it to the SMODULE list:

$MODULE ($HCT,GEN), ($PCE,GEN)
END

This gets the $HCT and the $PCE data areas.

You can also add the GEN operand to data area specifications in the $MODULEs
in your exits. This puts any requested data areas on to the listing for your exits.

If there is no label on the $MODULE and the only operands specified are the data
areas to generate, SMODULE will not generate the JES2 $MIT data structure. If you
do place a label on the $MODULE invocation or add any other operands,
$MODULE will attempt to build a JES2 load module. Without other structures, it
might get assembly errors. Using a $SMODULE without operands or a label can be
useful when you need to include JES2 mapping macros in code that is not going to
be run as a JES2 exit.

© Copyright IBM Corp. 1988, 2013 43

44 z/0S V2R1.0 JES2 Installation Exits

Chapter 6. Sample exit routines

For most exits, IBM provides sample exit routines in SYSI.SHASSAMP. The
documentation for each exit indicates whether a sample routine has been provided.

© Copyright IBM Corp. 1988, 2013 45

46 z/0S V2R1.0 JES2 Installation Exits

Chapter 7. Multiple exit routines in a single module

When developing and testing installation exits, it is probably easier to keep each
exit routine in its own source and load module. In this manner, the routines can be
assembled, loaded, and tested independently. If there are many routines, you may
want to eventually combine them into a single source and load module for easier
maintenance procedures.

[Figure 9 on page 48 shows three exit routines in a single module with a general
structure that you may want to follow.

© Copyright IBM Corp. 1988, 2013 47

XITS TITLE 'SAMPLE JES2 INSTALLATION EXITS - PREAMBLE'

* *
* COMMENT BLOCK FOR MODULE GOES HERE *
* *
S e e o o ook o o koo ok ok ok o o e oo ek e e ok

COPY $HASPGBL COPY HASP GLOBALS
HASPUEX $MODULE ENVIRON=JES2, REQ'D BY $BUFFER

RPL,

$BUFFER,

$CAT,

$DCT,

$HASPEQU, REQUIRED FOR REG CONVENTIONS

$HCT, REQ'D BY $SAVE,$RETURN,ETC.

$JCT,

$JOE, REQ'D TO GET SYSOUT CLASS

$JQE,

$MIT, REQ'D BY HCT

$PCE, REQ'D BY HCT

$PDDB, REQ'D BY $PPPWORK

$PPPWORK, REQ'D TO FIND JOE

$RDRWORK
S e o ko ook e ko ek o ok ko ek ook ek ok ko ke ok koo ek ook ek ok
* *
* ADDITIONAL MAPPING MACROS GO HERE *
* *

R e e o o TS T T T T T e T T et

TITLE 'SAMPLE SEPARATOR PAGE EXIT - ROUTINE 1'

R e e e e T S T T T T T e T T et T

* *
* COMMENT BLOCK FOR EXIT 1 GOES HERE *
* *
khhkkhkhhhkhhhhkhhhhhhhhhhkhhhhhhhhhhhhkhhhhkhhhhhhhhhhhhhhhhhhhhhkrkhkxx
XITIRTNI ~ $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT
$SAVE
LR RI2,R15 LOAD BASE REGISTER
Rk ok ko o o o o o o o o o o o o o e e Rk E E Ek ok
* *
* INSTALLATION EXIT CODE FOR EXIT 1 ROUTINE 1 GOES HERE *
* *
R o o o o o o o o o o o o o o o o o o o R R R R R Rk ok ok
LA R15,8 SET RETURN CODE
RETURN1 $RETURN RC=(R15) RETURN TO HASPPRPU
TITLE 'SAMPLE SEPARATOR PAGE EXIT - ROUTINE 2
XITIRTNZ ~ $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT
$SAVE
LR RI2,R15 LOAD BASE REGISTER
TITLE 'SAMPLE SEPARATOR PAGE EXIT - ROUTINE 1'
""""""" R e T2
* *
* INSTALLATION EXIT CODE FOR EXIT 1 ROUTINE 2 GOES HERE =
* *
Lk R Rk R R R R R R Rk R R R R R R R R R R R e R R R R R R e R R R R R R ko
LA R15,8 SET RETURN CODE
RETURN2 SRETURN RC=(R15) RETURN TO HASPPRPU
LTORG
TITLE 'JOB CARD SCAN EXIT'
khhkkkhkhhhkhhhhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhhhhhhhhhhhhhhhhhhhhhkrkhhxx
* *
* COMMENT BLOCK FOR EXIT 2 ROUTINE 1 GOES HERE *
* *
Rk o ko o o o o o e e o e R ko Ek ok
XIT2RTN1 ~ $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT
$SAVE
LR RI2,R15 LOAD BASE REGISTER
R o o o o o o o o o o o o o o o o o o e e R R R Rk ok ok
* *
* INSTALLATION EXIT CODE FOR EXIT 2 ROUTINE 1 GOES HERE =
* *
2/0S V2R1.0 JES2 Instalbetiuhic BT 45 s EERR RS ER AR RARRAR w
LA RI15,8 SET RETURN CODE
$RETURN RC=(R15) RETURN TO HASPRDR
LTORG

CMANCNN

OOOOOOOOOO0O0O 00

The following JES2 initialization statements can be used to load and associate exit
points 1 and 2 with the above routines.
LOADMOD (HASPUEX) STORAGE=PVT

EXIT(1) ROUTINE=(XITIRTN1,XITIRTN2),STATUS=ENABLED,TRACE=NO
EXIT(2) ROUTINE=XIT2RTN1,STATUS=ENABLED,TRACE=NO

Chapter 7. Multiple exit routines in a single module 49

50 z/0S V2R1.0 JES2 Installation Exits

Chapter 8. Testing your exit routine

To test your exit routine you need to integrate your exit routine in the system,
ensure that it gets control and executes, and verify that the functions it is intended
to perform are performed. Verifying that the exit routine performed its function is
exit routine-dependent and unique for each exit routine.

You should test and debug your exit routine by running it on a secondary JES2
first. In this way, any errors that occur do not directly affect your main JES2
production system. When the errors in the exit routine are fixed and tested, you
can then integrate it into the production JES2 system. Note that the following
restrictions apply to JES2 functions when using a secondary JES2:

* Started tasks (STCs) can be directed to either a primary or secondary JES.
However, following an IPL, started tasks do not complete start processing until
the primary subsystem has been started and completed initialization.

* Time-sharing users (TSUs) may only interface with the primary JES2.

* The MVS I/0O attention table can only be associated with the primary JES.
Therefore, secondary JESs cannot receive the “unsolicited interrupt” required to
support pause-mode for print and punch devices and “hot readers” (that is,
readers started through the physical start button without the $S RDRn JES2
command).

* The MVS log console (SYSLOG) can only be associated with the primary JES.

¢ Secondary subsystems are started individually rather than automatically during
IPL by a start command in the master scheduler JCL (MSTJCL) as is the primary
subsystem.

Dynamic loading of modules can simplify the testing of exit routines. JES2
commands allow you to incorporate a new version of your exit routine without the
need for an IPL (for user or FSS environment exits), or a restart of JES2 (for JES2
main task or subtask exits). Installation modules can be dynamically loaded,
deleted, and refreshed using the $ADD LOADmod (jxxxxxxx), $DEL

LOADmod (jxxxxxxx), and $T LOADmod (jxxxxxxx),REFRESH commands. The list
of routines associated with a JES2 exit can be dynamically changed with the $T
EXIT(nnn),ROUtines= or the $T EXIT(nnn),REFRESH command. See ['Dynamid
[Load Modules” on page 31| for more detailed information about the dynamic
loading of modules. See [z/0OS JES2 Commands|for more information about the
commands mentioned above.

Packaging the exit

Exit routines need to be packaged into load modules before they can be loaded
into the system and tested.

Modules that contain exit routines which execute in the JES2 main task or subtask
environment can be linkedited into a load module; these exits should be loaded
into private storage. Modules that contain exits in the user or functional subsystem
environment can be linkedited together and must be in either LPA or CSA; these
exits must be loaded into common storage. Do not linkedit multiple exit points
that must be loaded into different areas of storage into the same load module.

© Copyright IBM Corp. 1988, 2013 51

You can also link edit your exit routines with HASJES20. When you package your
exit routines in this manner, it is required that you use a collection of weak
external names for the module names. These names should be the same as the
label used on the SMODULE macro of your exit routine. For HASJES20 the “weak
external names” are as follows: HASPXJ00, HASPX]JO01, ..., HASPX]J31.

You may choose to use one of these packaging techniques exclusively, or you may
choose to use both methods in combination, assembling and link editing some
routines into the standard JES2 load modules and assembling and link editing
others separately and then loading them at initialization. Creating separate load
modules for your exit routines is recommended. JES2 never makes unconditional direct
references to external addresses or entry points in installation-written code. The
association between exit routines and JES2 source code is resolved during
initialization, or when processing JES2 commands that dynamically change the
installation exit environment (for example, $T EXIT(nnn)).

illustrates a separately linkedited load module for an exit routine and the
MIT and MITETBL structure associated with it. JES2 initialization uses this load
module and the information in the MIT and MITETBL to initialize the exit routine
in the system. The next topic describes this initialization process.

NAME

MIT BIT MAP

A MITETBL

EXIT ROUTINE 1

A

EXIT ROUTINE 2

NAME V-CON
NAME V-CON

A

MITETBL {

Figure 10. Exit Routines Load Module

Initializing the exit in the system

52

Initializing an exit and its exit routines involve the use of the following JES2

initialization statements or JES2 commands:

* LOADMOD(jxxxxxxx) or $ADD LOADmod (jxxxxxx)
Use the LOADMOD (jxxxxxxx) initialization statement or the $ADD
LOADmod(jxxxxxx) command to load the modules containing your exit
routines. The subscript of the LOADMOD initialization statement or the $ADD
LOADmod(jxxxxxx) command specifies the name of the module to be loaded as
defined on the NAME control statement for the linkage editor. The module must

z/0OS V2R1.0 JES2 Installation Exits

be named according to MVS naming conventions. Exit routines to be called from
the user or FSS environment can be loaded into CSA or you can request the LPA
version be used by specifying the STORAGE=LPA | CSA parameter specification
on the LOADMOD(jxxxxxxx) initialization statement or the $ADD
LOADmod(jxxxxxx) command. Exit routines to be called from the JES2 main
task and subtask environments should be loaded in the private area of the JES2
address space. To place the load module either above or below 16 megabytes,
use the linkage editor MODE statement or specify the RMODE= parameter on
the $SMODULE macro.

* $DEL LOADmod(jxoxxxx) or $T LOADmod (jxxoooxx), REFRESH

Use the $DEL LOADmod (jxxxxxxx) or the $T LOADmod (jxxxxxxx),REFRESH
command to delete or refresh the modules that contain your exit routines. The
subscript of the commands specifies the name of the module that was previously
loaded by a $ADD LOADmod(jxxxxxx) command, or a LOADMOD(jxxxxxxx)
initialization statement.

e EXIT(nnn) or $T EXIT(nnn),ROUtines=(xxxxxxxx) command

Use the EXIT(nnn) initialization statement or the $T
EXIT(nnn),ROUtines=(xxxxxxxx) command to associate one or more exit routines
with an exit.

Replace nnn, the exit number, with the corresponding exit identification number
specified on the $EXIT macro or macros that define the exit point or points that
establish the exit. The ROUTINES= parameter can then specify 1 to 255 exit
routine names, as specified on the $ENTRY macro symbol field or macros that
identify the corresponding exit routines. For example, you can specify EXIT(123)
ROUTINES=(rtn1, rtn2, rtn3). The JES2 exit effector calls multiple exit routines in
the sequence of their specification on the EXIT(nnn) statement. If you specify
more than one EXIT(nnn) statement with the same identification number, JES2
honors the last statement it encounters during initialization. This specification
can be changed post-initialization with the $T EXIT(nnn),ROUtines=(xxxxxxxx)
command. This command not only allows the complete replacement of the list of
routines associated with an exit, but also allows routines to be added to or
removed from the existing list. See [z/OS JES2 Commands| for more information
about changing the list of routines associated with an exit.

Note: The LOADMOD(jxxxxxxx) and EXIT(nnn) initialization statements are not
positional and do not have to be specified in any required order.

JES2 associates an exit with a routine in the module that was most recently loaded
(by either a LOADMOD(jxxxxxxx) initialization statement or a $ADD
LOADmod (jxxxxxxx) command).

Note: A $ADD LOADmod (jxxxxxxx) command does not automatically update the
exits which refer to routines in the newly loaded module. The exits must be
refreshed (by a $T EXIT(nnn),REFRESH command) or changed (by a $T
EXIT(nnn),ROUtines= command) to use those routines.

However, a refresh is not needed to update dynamic tables. Dynamic tables are
automatically added, deleted, or refreshed when the applicable JES2 command is
issued. In addition, a refresh is not needed to update exits that refer to routines in
a deleted or refreshed module. When an exit is associated with a routine that
resides in a deleted module, even if the module resides in LPA, the routine will no
longer be invoked for the exit (routine address of the exit is nullified). When an
exit is associated with a routine that resides in a refreshed module, if the routine
exists in the newly loaded module, the routine in the newly loaded module will be

Chapter 8. Testing your exit routine 53

54

invoked for the exit; if the routine is absent in the newly loaded module, the
routine will no longer be invoked for the exit.

In all cases, a $T EXIT(nnn),REFRESH command refreshes those exits so that they

will invoke routines in the most recently loaded module.

illustrates the primary parts of JES2 and their location in storage when
initialization completes.

A User environment
B User environment
C JES2 main task and subtasks
ECSA
EPUT

EPLPA

ENUC
NUC

SQA

PLPA

CSA

Private

PSA

0 ﬁ

(B)
HASCHAM =I

2G

(Functional Subsystem Address Space)
HASPFSSM

HASJES20 address space

C]

JES2 Main Task and Subtasks

0 Separate load modules
@ HASCHAM below the line common module
(C) Separate modules in HASJES20 load module

Figure 11. Exit Placement

z/0OS V2R1.0 JES2 Installation Exits

Passing control to exit routines

Every exit has a status of enabled or disabled. If an exit is enabled, JES2 calls its
associated exit routine(s) whenever one of the exit's exit points is encountered in
processing JES2 code. (Note: The TYPE=TEST form of the $EXIT macro is an
exception; a TEST-type exit point occurs before a TYPE=ENTER exit point to allow
JES2 to determine whether the exit is implemented and enabled. If the exit is not
both implemented and enabled, JES2 saves processing time by bypassing the call to
the exit effector when it encounters the ENTER-type exit point.) When an exit is
disabled, its exit points are transparent during JES2 processing and JES2 does not
call the exit's associated exit routine(s).

An exit's status is first set at initialization. You can specify either
STATUS=ENABLED or STATUS=DISABLED on the EXIT(nnn) initialization
statement. If you leave the status of the exit unspecified, STATUS=ENABLED is the
default.

An exit's status can then be dynamically controlled by the operator, using the $T
EXIT(nnn) command. Again, the operator has the option of identifying any exit by
number, a range of exits, or all exits, and specifying either STATUS=ENABLED or
STATUS=DISABLED. The operator can display an exit's status by identifying the
exit by number on the $D EXIT(nnn) command.

When you suspect that an exit routine associated with a particular exit is causing
an error, a simple way of isolating the problem is to disable the exit, through an
operator command ($T EXIT(nnn)), to determine if the error still occurs when the
exit routine is not allowed to execute. You can also enable tracing as a debugging
aid.

An exit can also be dynamically controlled on a job-related basis, using the exit
facility.

Job-related exits

Certain exits are identified as job-related exits. For these exits, the JOBMASK
parameter is specified on the $EXIT macro or macros defining their exit point or
points. JOBMASK is specified with the address of the job exit mask, a 256-bit mask
in the job control table (JCT), of which each bit corresponds to an exit identification
number; bit 0 corresponds to Exit 0, bit 1 corresponds to Exit 1, bit 2 to Exit 2, and
so on. (This means, of course, that bit 2 corresponding to Exit 2 is really the third
bit in the mask, and so on.) Initially, when the JCT is created, all the bits in the job
exit mask are set to one.

For a job-related exit, the status of its corresponding bit in the job-exit mask
becomes an additional factor in determining its exit status. If an exit has been
enabled in the standard way, by either the EXIT(nnn) initialization statement or the
$T EXIT(nnn) command, and its corresponding bit in the job exit mask is set to
one, the exit has a status of enabled and the exit effector calls its associated exit
routine(s). If, however, the exit has been enabled in the standard way but its
corresponding bit in the job exit mask is set to zero, the exit has a status of
disabled and the exit effector does not call its associated exit routine(s) for that
particular job. If the exit has been disabled in the standard way, the status of its
corresponding bit in the job exit mask is not taken into account; the exit remains
disabled. Note that if JOBMASK is not specified on the $EXIT macro, or if the JCT
is not in storage, the job exit mask can have no effect on the status of an exit.

Chapter 8. Testing your exit routine 55

56

Bits in the job exit mask can be manipulated by an exit routine on a job-by-job
basis. The recommended IBM-defined exits for setting the job exit mask are Exit 2
and Exit 52. Exit 2 or Exit 52 is, in most cases, the first exit to be taken for a job,
and provides access to most of the job's attributes specified in its JCL and placed in
its JCT. For more information, see the descriptions of Exit 2 and Exit 52 in “The
IBM-Defined Exits” reference section in |Chapter 12, “IBM-defined exits,” on page|

For each exit description in “The IBM-Defined Exits”, the JOB EXIT MASK
category lists the exit as either job-related or not job-related. Note that Exits 11 and
12 present special cases.

[Appendix C, “Job-related exit scenarios,” on page 403| provides scenarios for
job-related exits.

z/0OS V2R1.0 JES2 Installation Exits

Chapter 9. Tracing status

You can also control the status of exit invocation tracing.

Initially, for the tracing to occur automatically, three conditions are necessary:

1. The trace ID for exit tracing (ID 13) must be enabled.

2. The TRACE= operand of the EXIT(nnn) initialization statement must be
specified as, or allowed to default to, TRACE=YES.

3. Tracing must be active (TRACEDEF ACTIVE=YES).

If one of these conditions is absent, tracing does not occur.

The status of exit tracing can then be dynamically controlled by the operator, using
the $T EXIT(nnn) command. The operator has the option of identifying any exit by

number, a range of exits, or all exits, and specifying either TRACE=YES or

TRACE=NO. The operator can display the status of exit tracing by identifying the

exit by number on the $D EXIT(nnn) command.

The status of exit tracing cannot be controlled on a job-related basis.

© Copyright IBM Corp. 1988, 2013

57

58 z/0S V2R1.0 JES2 Installation Exits

Chapter 10. Establishing installation-defined exits

JES2 can contain up to 256 exits. IBM has defined some of these. If none of the
IBM-defined exits is suited to a particular modification you would like to make,
you can consider installing an optional installation-defined exit.

Typically, establishing your own exit is much more difficult than writing an exit
routine for an existing IBM-defined exit; it requires a thorough knowledge of the
area of processing in which you would like your exit to occur. You should attempt
to place a installation-defined exit in a stable area of processing; the risk of error
increases with the complexity of the JES2 code in which you place the exit. If
possible, you should use your exit in replacing a JES2 function that is already
isolated. As an example, IBM-defined Exit 3 allows you to provide an exit routine
to completely replace the standard HASPRSCN accounting field scan routine.

You must consider whether the exit will require a single exit point or more than
one. You can determine this based on the requirements of your intended
modification and on the structure of the IBM code in the area of processing that
you intend to modify. You must also consider whether the function you want to
modify is contained within a single JES2 execution environment. If it occurs in a
second environment, you may have to install a second exit as well.

When you have determined the exact point of processing at which an exit point
must occur, use the $EXIT macro to define it.

First, you should specify the positional ID parameter with the exit's identification
number. It is recommended that you begin numbering installation-defined exits
with 255 and work down. (If additional IBM-defined exits are added later, your
exit numbers will not conflict with the new IBM-defined exit numbers.)

You must define the exit's environment to JES2 using the ENVIRON= operand on
the SMODULE macro. This is specified as either JES2, SUBTASK, USER, or FSS.

If the exit is to be job-related, specify the address of the job exit mask for the
JOBMASK= operand. Note that if the JCT is not in storage you will have to point
to a copy of the job exit mask.

Use the TYPE= operand to specify the mode of $EXIT macro operation. To avoid
special processing overhead, you can define a TYPE=TEST $EXIT macro at some
location shortly before a TYPE=ENTER $EXIT macro in JES2 code. A TEST-type
$EXIT macro tests the status of the exit and sets a condition code (not a return
code):

cc=0 No exit routines are to be called

cc=1 Call exit routines, without tracing

cc=2 Call exit routines, with tracing

When JES2 encounters the TYPE=ENTER $EXIT macro, it does not have to retest
the exit's status; it just checks the condition code and either bypasses the exit point

or calls the exit effector, with or without tracing. Note that a TYPE=TEST $EXIT
macro and a TYPE=ENTER $EXIT macro must always be used together. If you

© Copyright IBM Corp. 1988, 2013 59

60

omit the TYPE= parameter, the resulting exit point causes JES2 to both determine
the status of the exit and then, depending on the status, either to bypass the exit
point or to call the exit effector.

Use the AUTOTR= operand to specify that automatic exit effector tracing should
(AUTOTR=YES) or should not (AUTOTR=NO) occur.

For more information about exit effector tracing, see “Tracing” in “Writing an Exit
Routine” and “Tracing Status” in “Controlling Exit Status” earlier in this chapter.

Along with inserting the $EXIT macro in JES2 source code, you may have to
modify the code before the exit point to pass parameters and pointers to the exit
routines, and you may have to modify the code following the exit point to receive
exit-generated parameters and to receive any return code greater than 4. For more
information, see “Linkage Conventions,” “Received Parameters,” and “Return
Codes” in “Writing an Exit Routine” earlier in this chapter.

Note: When using the $EXIT macro, you may need to include additional control
block DSECT mappings in that module. If, for example, the module you are
modifying did not previously require the mapping provided by the $XIT macros,
but this macro is required to map the exit parameter list and exit information table
(XIT), you must add it ($XIT) to the SMODULE macro coded at the beginning of
the module.

z/0OS V2R1.0 JES2 Installation Exits

Chapter 11. Hints for coding JES2 exit routines

Following these hints can help you in the following ways:

Improve your code's readability and simplify debugging of your exit code.
Ease migration to a new release or maintenance level.

Reduce the number of errors in your exit code.

Assembler instructions

All USING/DROP statements should be paired. No overriding USINGs should
be used except when PUSH/POP is used. This helps prevent errors caused by
incorrect base registers.

All TM (test-under-mask) instructions should use BO/BOR/BNO/BNOR/BM/
BMR branch instructions rather than BZ/BZR/BNZ/BNZR branch instructions.
If this technique is used, the logic of the branch instruction does not have to be
modified when adding or deleting flags in the instruction mask.

Branches to *- or *+ should not be used except in macro code. This reduces the
possibility of causing errors when inserting new lines of code that change the
offset of the instruction to which the code is branching.

Branch tables should be fully coded and documented. Branches to a non-labeled
line immediately after the branch table should not be used.

To increase code readability, all branch instructions should use the extended
mnemonic instructions for both RX and RR machine instruction formats.

All flag bits in flag-byte fields should be defined by equated symbols. Explicit
hexadecimal constants should not be used within instructions to represent
flag-bit settings. This allows easy reference to a given flag setting. The SI format
instructions TM, OI, NI, and XI should also use equated symbols. To provide
easy reference, these instructions should use equated symbols for their masks.

When the implied length of the target field cannot be used, instructions
containing length fields should use equated symbols, not hard-coded lengths.
Therefore, only a reassembly is necessary if the length of the field is changed.

Constants

Rather than using literals, the HCT/HCCT/HFCT DSECTs define many
constants which you should use whenever possible. The following are a few
examples from the HCT:

$ZEROES - doubleword of binary zeroes

$F1 — fullword binary one

$H4 — halfword binary four

$BLANKS - doubleword of EBCDIC blanks (X'40")

DSECTs

For ease of migration, mapping DSECTs used as templates should not be
explicitly duplicated within source code. An example of this technique is the use
of JES2 $PDDB macro.

Whenever possible, the use of locally-defined DSECTs, macros, or equated
symbols should be avoided. This technique helps to avoid future migration
problems.

© Copyright IBM Corp. 1988, 2013 61

* If you leave a control section (CSECT or RSECT) to define a DSECT, to return to

the control section, use the &J2SECTN and &J2SECTT; assembly variables.
— &J2SECTN contains the control section name.

— &J2SECTT contains the control section type, either CSECT or RSECT.
For example:

MYMOD $MODULE ENVIRON=USER,.....

LR R R R Rk R R R R R kR R R R R R R R R R R R R R R

* *
* DEFINE DATA *
* *

EE R

MYDATA DSECT

DCs
------------------------------------ *hRKR*A KK
* *
* RETURN TO CONTROL SECTION *
* *

LR R

8J2SECTN &J2SECTT

Registers
Equated symbols for general purpose registers 0 to 15 (R0-R15) should be used.
The general-purpose register equates used throughout JES2 are as follows:
RO Parameter passing
R1 Parameter passing
R11 HCT addressability (JES2 main task)
R11 HCT addressability (JES2 subtasks)
R11 HFCT addressability (FSS)
R11 HCCT addressability
R12 Local addressability if $SAVE/$SRETURN
R13 PCE addressability (JES2 main task)
R13 Save area address (FSS)
R13 Save area address
R14 Return address
R15 Entry address/return code
Miscellaneous

Returned information used for routines and subroutines should use return
codes, not condition codes. All return codes should be passed in register 15.

Except in critical performance areas, the use of dynamic work areas rather than
PCE work areas (for example, using $GETCMB to obtain a message building
work area) is recommended. Dynamic work areas should be used to prevent
unnecessary wasted storage caused by defining many unique PCE work area
fields.

The inclusive OR instruction (OC) should not be used to test whether a field is
zero or non-zero. The OC can cause unnecessary page-outs, thus incurring

62 z/0S V2R1.0 JES2 Installation Exits

needless system overhead. Rather, the CLC (compare logical) instruction can be
used to compare the field with an appropriate constant (for example, $ZEROES).

All code should be documented clearly and concisely. A good rule is to
document every line of code. In addition, block comments should be used to
document every module, routine, and subroutine. These comments should
include detailed information about the function of the routine, register values
required on entry and exit, register usage within the routine, and possible return
codes.

Chapter 11. Hints for coding JES2 exit routines 63

64 z/0S V2R1.0 JES2 Installation Exits

Chapter 12. IBM-defined exits

This reference chapter provides the information you need to write exit routines for
the IBM-defined exits.

The exits are described in the order of their identification numbers, the ID numbers
assigned to them on their respective $EXIT macros. Each exit description begins
with a discussion of its recommended use, followed by a breakdown of
environmental considerations, linkage conventions, and other programming
considerations specific to the particular exit being described. (Note: For
convenience, except where single or multiple exit routines are mentioned
specifically, the following descriptions imply either one or more exit routines by
the inclusive term “exit routine.” For example, “your exit routine may replace the
standard routine” should be understood to mean “your exit routine or exit
routines may replace the standard routine.”) [Table 4 on page 75 summarizes for
each exit the CSECT in JES2 from which your exit routine can get control.

Exit selection table

When considering an alteration to a standard JES2 function, you should determine
whether one of the IBM-defined exits accommodates your intended change.

The exit selection table ([Table 3) summarizes the available exits and their
functions. If you use an IBM-defined exit for other than its intended purpose, you
increase the risk of performance degradation and system failure.

[Appendix C, “Job-related exit scenarios,” on page 403| contains some scenarios
relating to job-related exits. The scenarios may be helpful to you in deciding what
exits to use in particular situations.

Table 3. Exit Selection Table

Exit Exit Title Purpose Some specific uses
0 PRE- Control the initialization process |+ proyide verification of JES2 initialization
INITIALIZATION options, specifically $HASP426 and

$HASP427 messages.

* Acquire user control blocks and user
work areas for use in initialization (such
as the user control table (UCT)).

* Provide addresses of user tables in the
master control table (MCT).

* Determine whether JES2 initialization is to
continue.

e Allow implementation of
installation-defined initialization options
and parameters.

© Copyright IBM Corp. 1988, 2013 65

Table 3. Exit Selection Table (continued)

Exit

Exit Title

Purpose

Some specific uses

1

JES2 PRINT/PUNCH
JOB SEPARATOR

Create you own print and punch
job separators and control
production of standard
separators.

Selectively produce unique separators or
variations on the standard separators.

Unconditionally produce standard
separators.

Unconditionally suppress production of
the standard separators.

Selectively produce separators for
particular users or particular job classes.

Provide a different separator card on a
punch device.

Place the company's logo on header page.

Provide accounting information on the
trailer page.

JOB STATEMENT
SCAN (Main Task)

Scan the complete JOB statement
image and set corresponding
fields in the appropriate JES2
control blocks.

Alter JOB statement parameters including
a job's class, priority, and other attributes.

Supply additional JOB statement
parameters.

Selectively cancel or purge jobs.

Set the job exit mask in the JCT for
subsequent exits.

Set the spool partitioning mask in the JCT.

Initialize or modify other fields in the JCT,
including your own installation defined
fields.

Modify other job-related control blocks.

Build your own installation-defined
job-related control blocks.

Enforce security and standards.

Initialize or modify the user portion of the
job correlator.

JOB STATEMENT
ACCOUNTING
FIELD SCAN (Main
Task)

Scan the JOB statement
accounting field and set
corresponding fields in the
appropriate JES2 control blocks.

Alter accounting field information.

Supply additional accounting field
information.

Perform your own accounting field scan.
Process nonstandard accounting fields.
Selectively cancel jobs.

Set the job exit mask in the JCT for future
exits.

Initialize or modify other fields in the JCT,
including your own installation-defined
fields.

Pass information to subsequent exits
through the JCT user fields.

Modify other job-related control blocks.
Enforce security and standards.

66

z/0OS V2R1.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses
4 JCL AND JES2 Scan JCL (not including JOB * Alter JCL parameters and JES2 control
CONTROL statements). statements.
STATEMENT SCAN .\
(Main Task) * Supply additional JCL parameters.
* Supply a JCL continuation statement.
e Alter JES2 control statements.
* Supply an additional JES2 control
statement.
* Perform your own JES2 control statement
processing.
* Suppress standard JES2 processing.
* Process your own installation defined
JES2 control statement subparameters.
* Selectively cancel or purge jobs.
* Enforce security and standards.
5 JES2 COMMAND Process JES2 commands received |+ Alter received commands
PREPROCESSOR by the JES2 command processor. | Alter particular fields, such as those
pertaining to command authority, in the
command processor work area for the
PCE to affect subsequent command
processing.
* Perform your own command validation
checking.
* Process your own installation-defined
commands, operands, and suboperands.
* Selectively terminate command processing
and notify the operator of command
cancellation.
6 CONVERTER/ Scan converter/interpreter text + Scan the resolved JCL, including
INTERPRETER TEXT |after conversion from individual PROCLIB expansion that will be used by
SCAN (Subtask JCL images and after all of the the job.
Environment) converter /.mterpreter text fora |, Modify individual converter /interpreter
particular job has been created. text i
Exit 6 is called when the ext IMages.
converter is run in the JES2 * Enforce security and standards.
address space. See exit 60 when
the converter is run in the JES2CI
address space.
7 CONTROL BLOCK Receive control whenever control |. Read or write your own
READ/WRITE (JES2) |block 1/ O is performed by the installation-defined job-related control
JES2 main task. blocks to spool along with the reading
and writing of JES2 control blocks.
8 CONTROL BLOCK Receive control whenever control |. Read or write installation-defined
READ/WRITE block (CB) /0 is performed by a job-related control blocks to spool along
(USER) JES2 subtask or by a routine

running in the user address
space.

with reading and writing of the JES2
control block.

Chapter 12. IBM-defined exits 67

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

9 JOB OUTPUT Receivg antrql whenev'er an * Selectively allow JES2 to follow the
OVERFLOW executing job is producing more defined output overflow error procedure.

output than was estimated. . . .
Selectively direct JES2 to take special
action for the current job only to:

— Cancel the job

— Cancel the job with a dump

— Allow the job to continue

— Extend the job's estimated output to a
specific new limit

— Control how often the output overflow
message is displayed

— Suppress the default error message

10 $WTO SCREEN Rec;ive control wh‘i?;éer JES2 is Scan messages.

ready to queue a message. Change the text of a message.

Alter a message's console routing.
Selectively suppress messages.

11 SPOOL Receive control from the main Expand the spool partitioning mask.
PARTITIONING task when there are no more . .
ALLOCATION - track groups available on the Suppress spool partltlgnlng by allowing
$TRACK spool volumes from which the JES2 to use the allocation default.

current job is permitted to

allocate space.

12 SPOOL Receive control from the JES2 Expand the spool partitioning mask.
PARTITIONING subtask or user address space . .
ALLOCATION - when there are no more track Suppress spool part1t19n1ng by allowing
$STRAK groups available on the spool JES2 to use the allocation default.

volumes from which the current

job is permitted to allocate space.

14 JOB QUEUE WORK | Receive control to search the job Use tailored search algorithms to select
SELECT queue for work. work from the job queue.

Selectively bypass searching the job queue
for work.

15 OUTPUT DATA Receiye control to handle the Selectively generate separator pages for
SET/COPY creation of separator pages on a each data set to be printed.

data set or copy basis. .

Selectively generate separator pages for

each copy made of a data set.

Selectively vary the number of copies

made of a data set.

Selectively pick data sets and generate

separator pages for them.

Change default print translation tables.
68 z/0S V2R1.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

16 NOTIFY Receive control to examine or

! ¢ Alter routing of the notify message.
modify messages that are sent.

¢ Examine the notify message before it is
sent to the receiver and make selective
changes.

* Suppress sending the notify message to
the receiver.

* Replace the notify message before it is

sent to the receiver with an entirely new
one.

17 BSC RJE Receive control to manage and |+ gelectively perform additional security

SIGN-ON/SIGN-OFF | monitor RJE operations for BSC. checks over and above the standard
password processing of the signon card
image.

¢ Selectively limit both the number and
types of remote devices that can be on the
system at any one time.

* Selectively bypass security checks.

* Implement installation-defined scanning
of signon card images.

* Collect statistics concerning RJE
operations on the BSC line and report the
results of the activity.

18 SNA RJE Receive control to manage and * Selectively perform additional security
LOGON/LOGOFF monitor RJE operations for SNA. checks over and above the standard

password processing of the logon image.
* Selectively limit both the number and

types of remote devices that can be on the
system at any one time.

* Selectively bypass security checks.

* Implement installation-defined scanning
of images.

* Collect statistics concerning RJE
operations on the line and report the
results of the activity.

19 INITIALIZATION Receive control for each Insert installation initialization statements.

STATEMENT initialization statement. .
* Scan an initialization statement before the

JES2 scan and perform parameter
checking.

* Selectively alter values supplied on an
initialization statement to meet specific
installation needs.

* Optionally cause JES2 to bypass a
particular initialization statement.

¢ Optionally cause JES2 to terminate.

Chapter 12. IBM-defined exits 69

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses
20 END OF JOB INPUT | Alter the status of the job at the |, Selectively assign a job's system affinity,
(Main Task) end of job input execution node, and priority based on an
installation's unique requirements and
processing workload.

* Based on an installation's own defined
criteria, terminate a job's normal
processing and selectively print or not
print its output.

* JCT is available for updating.

* Provide job tracking.

* Initialize or modify the user portion of the
job correlator.

21 SMF RECORD Receive control when JES2 is + Selectively queue or not queue the SMF
about to queue an SMF buffer. record for processing by SMF.

* Obtain and create SMF control blocks
before queuing.

* Alter content and length of SMF control
blocks before queuing.

22 CANCEL/STATUS Receive control to implement an |. Ajlow an installation to implement its
installation’s own algorithms own algorithms for job queue searching
governing job selection and and for TSO/E CANCEL/STATUS.
ownership for TSO/E
CANCEL/STATUS.

23 FSS JOB SEPARATOR | Receive control to modify the job |« Control what information is passed to a
separator page area (JS_PA) that is page-mode printer functional subsystem
used by page-mode printers such | = ;pplication (FSA) through the JSPA.
as the AFP printer to generate . .

. * Suppress the printing of job separator
the job separator page for an
output group. pages.

* Suppress the printing of the JESNEWS
data set.

24 POST Receive control to make * Make final modifications to selected JES2

INITIALIZATION modifications to JES2 control control blocks before the end of JES2
blocks before the end of JES2 initialization.
initialization. * Initialize any special installation-defined
control blocks.

* Terminate JES2 during the initialization
process.

25 JCT READ (FSS) Receive control whenever JCT * Read or write your own
read V O is performed by a JES2 installation-defined job-related control
functional subsystem address blocks to spool along with the reading of
space (HASPFSSM). the JCT.

26 TERMINATION / Free resources obtained during |+ Pree resources obtained by user-exit

RESOURCE RELEASE | previous installation exit routine routine processing that JES2 continues to
processing during any JES2 hold following a $P JES2 command, JES2
termnation. initialization termination, or JES2 abend.

27 PCE Allocate and deallocate resources. |« Optain resources whenever a PCE is

ATTACH/DETACH | Deny a PCE attach. attached.

* Free resources before the detach of a PCE.

* Deny the attach of a PCE.

70 z/0S V2R1.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses
28 SSI JOB Receive control before the freeing |+ Free resources obtained by Exit 32.
TERMINATION of job-related control blocks. . L
Suppress job termination-related
messages.
Replace JES2 job termination messages
with installation-defined messages.
29 SSI Free resources obtained on the Free resources obtained by Exit 32.
END-OF-MEMORY address space level.
30 SSI DATA SET Receive control during SSI data Examine data set characteristics for
OPEN/RESTART set OPEN and RESTART validity checking, authorization, and
processing. alteration.
31 SSI DATA SET Receive control during SSI data Affect how JES2 processes data set
ALLOCATION set allocation. characteristics.
Fail an allocation.
32 SSI JOB SELECTION | Receive control during SSI job Perform job-related processing such as
selection processing. allocation of resources and I/O for
installation-defined control blocks.
Suppress job selection-related messages.
Replace job selection-related messages
with installation-defined messages.
33 SSI DATA SET CLOSE | Receive control during SSI data Examine data set characteristics for
set CLOSE processing. validity checking, authorization, or
alteration.
Free resources obtained at OPEN.
34 SSI DATA SET Receive control during SSI Free resources obtained by Exit 30
UNALLOCATION unallocation processing. . .
Undo processing performed by Exit 30,
such as changing data set characteristics.
35 SSI END-OF-TASK Receive control during end of Free task-related resources.
task processing.
36 Pre-security Receive control before calling Provide additional information to SAF
Authorization Call SAE Change information provided to SAF
eliminate call to SAF
Perform additional security authorization
checking above what SAF provides
37 Post-security Receive control after calling SAF. Change the result of SAF verification
Authorization Call o . N
Perform additional security authorization
checking above what SAF provides
38 TSO/ E Rec.e.ive Data Receive. control during Change the default processing (delete) if a
Set Disposition processing of a TSO/E RECEIVE TSO/E user cannot receive a data set with
command any security information in the user
profile.
39 NJE SYSOUT Receive control when your

Reception Data Set
Disposition (Main
Task)

system receives a data set from
another node that fails security
checks.

¢ Change the security information and

Override the security decision and accept
the data set

accept the data set
Delete the data set

Chapter 12. IBM-defined exits 71

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses
40 Modifying SYSOUT | Receives control before JOEs are |, Change the class of a SYSOUT data set to
characteristics created for the job. affect grouping.
* Change the destination of a SYSOUT data
set.
41 Modifying Output Receives control during JES2 + Change which OUTPUT JCL keywords
Grouping Key initialization after the default JES2 uses for generic grouping.
Selection output grouping keys have been
selected, but before any grouping
is done.
42 Modifying a Notify Receives control after input has |+ Cancel the message
User Message been validated and authorization | Ch the destinati f th
checking has been d