
z/OS

JES2 Installation Exits
Version 2 Release 1

SA32-0995-00

���

z/OS

JES2 Installation Exits
Version 2 Release 1

SA32-0995-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 431.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xv

Tables xvii

About this document xix
Who should use this document xix
How this document is organized xix
Where to find more information xix
Additional information xix

How to send your comments to IBM xxi
If you have a technical problem xxi

z/OS Version 2 Release 1 summary of
changes xxiii

Chapter 1. Introduction 1
What is a JES2 exit? 3

Environment 5

Chapter 2. Writing an exit routine 7
Language 7
Operating environment 7
JES2 environments 7
Synchronization 10
Reentrant code considerations 11
Linkage conventions 11
Addressing mode of JES2 exits 13

Addressing mode requirements. 13
Residency mode requirements 13

Received parameters 13
Return codes 14
Control blocks 14
Determining the JES2 release level 16
Service routine usage 19
Exit logic 19
Exit-to-exit communication 19
Exit point-to-exit routine communication 20
Exit routine-to exit point communication 20
Exit-to-operator communication 20
Required mapping macros 20

JES2 main task environment exits 21
JES2 subtask environment exits 21
Functional subsystem address space environment
exits 22
User environment exits 22

User environment exit considerations. 24
Reentrancy 24
Accessing CKPTed Data Area 24
Accessing $CATs 25
Storage considerations 25

One time exit initialization code 25
Tracing 26
Recovery 26

Loading non-JES2 modules 26

Chapter 3. Controlling the loading of
installation-defined load modules . . . 29
Loading and placement of installation load modules 29
Dynamic Load Modules 31

Dynamic Load Module Considerations 32
$$$$LOAD and $$$$DEL routines 33
$$$$DEL Routine 36
Special Considerations for LPA Modules. . . . 38

Chapter 4. Enabling an exit 41

Chapter 5. Getting listings of JES2 data
areas 43

Chapter 6. Sample exit routines 45

Chapter 7. Multiple exit routines in a
single module. 47

Chapter 8. Testing your exit routine . . 51
Packaging the exit 51
Initializing the exit in the system 52
Passing control to exit routines 55
Job-related exits 55

Chapter 9. Tracing status 57

Chapter 10. Establishing
installation-defined exits 59

Chapter 11. Hints for coding JES2 exit
routines 61
Assembler instructions 61
Constants 61
DSECTs. 61
Registers 62
Miscellaneous 62

Chapter 12. IBM-defined exits 65
Exit selection table 65
Exit implementation table 75

Chapter 13. Exit 0: Pre-initialization . . 79
Function 79
Environment 79

Task 79
AMODE/RMODE requirements 79
Supervisor/problem program 79
Recovery 79
Job exit mask 79

© Copyright IBM Corp. 1988, 2013 iii

Mapping macros normally required 79
Point of processing 79
Programming considerations 80
Register contents when Exit 0 gets control 81
Register contents when Exit 0 passes control back to
JES2 81
Coded example 82

Chapter 14. Exit 1: Print/punch
separators 83
Function 83
Environment 84

Task 84
AMODE/RMODE requirements 84
Restrictions 84
Recovery 84
Job exit mask 84
Mapping macros normally required 84

Point of processing 84
Programming considerations 84
Register contents when Exit 1 gets control 86
Register contents when control passes back to JES2: 88
Coded example 88

Chapter 15. Exit 2: JOB JCL statement
scan (JES2 main task) 89
Function 89
Recommendations for implementing Exit 2 89
Environment 91

Task 91
AMODE/RMODE requirements 91
Supervisor/problem program 91
Restrictions 91
Recovery 92
Job exit mask 92
Storage recommendations 92
Mapping macros normally required 92

Point of processing 92
Extending the JCT control block 92
Programming considerations 93
Register contents on entry to exit 2 93
Register contents when exit 2 passes control back to
JES2 95
Coded example 96

Chapter 16. Exit 3: JOB statement
accounting field scan (JES2 main task). 97
Function 97
Related exits 97
Environment 97

Task 97
AMODE/RMODE requirements 97
Supervisor/problem program 98
Restrictions 98
Recovery 98
Job exit mask 98
Mapping macros normally required 98

Point of processing 98
Extending the JCT control block 100
Programming considerations 100

Register contents when Exit 3 gets control 102
Register contents when Exit 3 passes control back
to JES2 103
Coded example. 104

Chapter 17. Exit 4: JCL and JES2
control statement scan (JES2 main
task) 105
Function 105
Environment 105

Task 105
AMODE/RMODE requirements 105
Supervisor/problem program 106
Restrictions 106
Recovery 106
Job exit mask 106
Mapping macros normally required 106

Point of processing 106
Programming considerations 106
Register contents when Exit 4 gets control 110
Register contents when Exit 4 passes control back
to JES2 113
Coded example. 113

Chapter 18. Exit 5: JES2 command
preprocessor 115
Function 115

The JES2 command translator migration aid: . . 115
Environment 117

Task 117
AMODE/RMODE requirements 117
Supervisor/problem program 117
Recovery 117
Job exit mask 117
Mapping macros normally required 117

Point of processing 118
Programming considerations 118
Register contents when Exit 5 gets control 120
Register contents when Exit 5 passes control back
to JES2 121
Coded example. 121

Chapter 19. Exit 6: JES2 converter
exit (subtask) 123
Function 123
Related exits. 123
Recommendations for implementing Exit 6 . . . 123
Environment 125

Task 125
Restrictions 125
AMODE/RMODE requirements 125
Supervisor/problem program 125
Recovery 125
Job exit mask 125
Storage recommendations 125
Mapping macros typically required 126

Point of processing 126
Programming considerations 126
Register contents when Exit 6 gets control 126

iv z/OS V2R1.0 JES2 Installation Exits

Register contents when Exit 6 passes control back
to JES2 128
Coded example. 129

Chapter 20. Exit 7: Control block I/O
(JES2) 131
Function 131
Related exits. 131
Recommendations for implementing Exit 7 . . . 131
Programming considerations 132
Point of processing 132
Environment 132

Task 132
AMODE/RMODE requirements 132
Supervisor/problem program 132
Recovery 132
Job exit mask 133
Mapping macros normally required 133

Register contents on entry to Exit 7 133
Register contents when Exit 7 passes control back
to JES2 134
Coded example. 134

Chapter 21. Exit 8: Control block
read/write (user, subtask, and FSS) . . 135
Function 135
Related exits. 135
Programming considerations 135
Point of processing 135
Environment 136

Task 136
AMODE/RMODE requirements 136
Restrictions 136
Recovery 136
Job exit mask 136
Mapping macros normally required 136

Register contents on entry to Exit 8 136
Register contents on return to JES2 137
Coded example. 138

Chapter 22. Exit 9: Output excession
options 139
Function 139
Related exits. 139
Environment 139

Task 139
AMODE/RMODE requirements 139
Supervisor/problem program 139
Restrictions 139
Recovery 140
Job exit mask 140
Mapping macros normally required 140

Point of processing 140
Programming considerations 140
Register contents on entry to Exit 9 140
Register contents when Exit 9 passes control back
to JES2 142
Coded example. 143

Chapter 23. Exit 10: $WTO screen . . 145
Function 145
Environment 145

Task 145
AMODE/RMODE requirements 145
Supervisor/problem program 145
Recovery 145
Job exit mask 145
Mapping macros normally required 145

Point of processing 145
Programming considerations: 146
Register contents when Exit 10 gets control . . . 146
Register contents when Exit 10 passes control back
to JES2 147
Coded example. 147

Chapter 24. Exit 11: Spool partitioning
allocation ($TRACK) 149
Function 149
Related exits. 149
Recommendations for implementing Exit 11 . . . 149
Environment 150

Task 150
AMODE/RMODE requirements 150
Supervisor/problem program 150
Restrictions 150
Recovery 150
Job exit mask 150
Mapping macros normally required 150

Point of processing 150
Programming considerations 151
Register contents when Exit 11 gets control . . . 152
Register contents when Exit 11 passes control back
to JES2 152
Coded example. 153

Chapter 25. Exit 12: Spool partitioning
allocation ($STRAK) 155
Function 155
Related exits. 155
Recommendations for implementing Exit 12 . . . 155
Environment 156

Task 156
AMODE/RMODE requirements 156
Supervisor/problem program 156
Restrictions 156
Job exit mask 156
Mapping macros normally required 157

Point of processing 157
Programming considerations 157
Register contents when Exit 12 gets control . . . 158
Register contents when Exit 12 passes control back
to JES2 158
Coded example. 159

Chapter 26. Exit 14: Job queue work
select – $QGET 161
Function 161
Environment 161

Contents v

Task 161
AMODE/RMODE requirements 161
Supervisor/problem program 161
Recovery 161
Job exit mask 161
Mapping macros normally required 161

Point of processing 162
Programming considerations 162
Register contents when Exit 14 gets control . . . 164
Register contents when Exit 14 passes control back
to JES2 165
Coded example. 166

Chapter 27. Exit 15: Output data
set/copy select. 167
Function 167
Programming considerations 167
Environment 169

Task 169
AMODE/RMODE requirements 169
Recovery 169
Job exit mask 169
Mapping macros normally required 169

Point of processing 169
Contents of registers on entry to Exit 15 169
Contents of register when Exit 15 returns to JES2 171
Coded example. 171

Chapter 28. Exit 16: Notify 173
Function 173
Environment 173

Task 173
AMODE/RMODE requirements 173
Supervisor/problem program 173
Recovery 173
Job exit mask 173

Mapping macros normally required 173
Point of processing 173
Programming considerations 173
Register contents when Exit 16 gets control . . . 174
Register contents when Exit 16 passes control back
to JES2 174
Coded example. 175

Chapter 29. Exit 17: BSC RJE
SIGNON/SIGNOFF 177
Function 177
Environment 177

Task 177
AMODE/RMODE requirements 177
Supervisor/problem program 177
Recovery 177
Job exit mask 177
Storage recommendations 177
Mapping macros normally required 177

Point of processing 177
Programming considerations 178
Register contents when Exit 17 gets control . . . 178
Register contents when Exit 17 passes control back
to JES2 179

Coded example. 180

Chapter 30. Exit 18: SNA RJE
LOGON/LOGOFF 181
Function 181
Environment 181

Task 181
AMODE/RMODE requirements 181
Supervisor/problem program 181
Recovery 181
Job exit mask 181
Mapping macros normally required 181

Point of processing 181
Programming considerations 182
Register contents when Exit 18 gets control . . . 182
Register contents when Exit 18 passes control back
to JES2 183
Coded example. 183

Chapter 31. Exit 19: Initialization
statement 185
Function 185
Environment 185

Task 185
AMODE/RMODE requirements 185
Supervisor/problem program 185
Recovery 185
Job exit mask 185
Mapping macros normally required 185

Point of processing 185
Programming considerations 186
Register contents when Exit 19 gets control . . . 187
Register contents when Exit 19 passes control back
to JES2 188
Coded example. 188

Chapter 32. Exit 20: End of input . . . 189
Function 189
Environment 189

Task 189
AMODE/RMODE requirements 189
Supervisor/problem program 189
Recovery 189
Job exit mask 189
Mapping macros normally required 189

Point of processing 189
Programming considerations 190
Register contents when Exit 20 gets control . . . 191
Register contents when Exit 20 passes control back
to JES2 193
Coded example. 193

Chapter 33. Exit 21: SMF record . . . 195
Function 195
Environment 195

Task 195
AMODE/RMODE requirements 195
Supervisor/problem program 195
Recovery 195
Job exit mask 195

vi z/OS V2R1.0 JES2 Installation Exits

Mapping macros normally required 195
Point of processing 195
Programming considerations 195
Register contents when Exit 21 gets control . . . 196
Register contents when Exit 21 passes control back
to JES2 196
Coded example. 196

Chapter 34. Exit 22: Cancel/status . . 197
Function 197
Environment 197

Task 197
AMODE/RMODE requirements 197
Supervisor/problem program 197
Recovery 197
Job exit mask 197
Mapping macros normally required 197

Point of processing 197
Programming considerations 197
Register contents when Exit 22 gets control . . . 198
Register contents when Exit 22 passes control back
to JES2 199
Coded example. 200

Chapter 35. Exit 23: FSS job separator
page (JSPA) processing 201
Function 201
Recommendations for implementing Exit 23 . . . 201
Environment 201

Task 201
AMODE/RMODE requirements 201
Supervisor/problem program 201
Recovery 201
Job exit mask 201
Restrictions 202
Mapping macros normally required 202

Point of processing 202
Programming considerations 202
Register contents when Exit 23 gets control . . . 202
Register contents when Exit 23 passes control back
to JES2 203
Coded example. 203

Chapter 36. Exit 24: Post–initialization 205
Function 205
Environment 205

Task 205
AMODE/RMODE requirements 205
Supervisor/problem program 205
Recovery 205
Job exit mask 205
Mapping macros normally required 206

Point of processing 206
Creating an information string through Exit 24 . . 206
Programming considerations 206
Register contents when Exit 24 gets control . . . 207
Register contents when Exit 24 passes control back
to JES2 208
Coded example. 208

Chapter 37. Exit 25: JCT read 209
Function 209
Related exits. 209
Environment 209

Task 209
AMODE/RMODE requirements 209
Supervisor/problem program 209
Recovery 209
Job exit mask 209
Mapping macros normally required 209

Point of processing 209
Programming considerations 210
Register contents when Exit 25 gets control . . . 210
Register contents when Exit 25 passes control back
to JES2 210
Coded example. 211

Chapter 38. Exit 26:
Termination/resource release 213
Function 213
Environment 213

Task 213
AMODE/RMODE requirements 213
Supervisor/problem program 213
Recovery 213
Job exit mask 213
Mapping macros normally required 213

Point of processing 213
Programming considerations 214
Register contents when Exit 26 gets control . . . 214
Register contents when Exit 26 passes control back
to JES2 214
Coded example. 215

Chapter 39. Exit 27: PCE
attach/detach 217
Function 217
Environment 217

Task 217
AMODE/RMODE requirements 217
Supervisor/problem program 217
Recovery 217
Job exit mask 217
Mapping macros normally required 217

Point of processing 217
Programming considerations 217
Register contents when Exit 27 gets control . . . 217
Register contents when Exit 27 passes control back
to JES2 218
Coded example. 218

Chapter 40. Exit 28: subsystem
interface (SSI) job termination 219
Function 219
Environment 219

Task 219
AMODE/RMODE requirements 219
Supervisor/problem program 219
Recovery 219

Contents vii

Job exit mask 219
Mapping macros normally required 219

Point of processing 219
Programming considerations 219
Expanding the JCT control block 220
Register contents when Exit 28 gets control . . . 220
Register contents when Exit 28 passes control back
to JES2 221
Coded example. 221

Chapter 41. Exit 29: Subsystem
interface (SSI) end-of-memory 223
Function 223
Environment 223

Task 223
AMODE/RMODE requirements 223
Supervisor/problem program 223
Recovery 223
Job exit mask 223
Mapping macros normally required 223

Point of processing 223
Programming considerations 223
Register contents when Exit 29 gets control . . . 223
Register contents when Exit 29 passes control back
to JES2 224
Coded example. 225

Chapter 42. Exit 30: Subsystem
interface (SSI) data set OPEN and
RESTART 227
Function 227
Environment 227

Task 227
AMODE/RMODE requirements 227
Supervisor/problem program 227
Recovery 227
Job exit mask 227
Mapping macros normally required 227

Point of processing 227
Programming considerations 228
Register contents when Exit 30 gets control . . . 228
Register contents when Exit 30 passes control back
to JES2 229
Coded example. 230

Chapter 43. Exit 31: Subsystem
interface (SSI) allocation 231
Function 231
Environment 231

Task 231
AMODE/RMODE requirements 231
Supervisor/problem program 231
Recovery 231
Job exit mask 231
Mapping macros normally required 231

Point of processing 231
Programming considerations 231
Register contents when Exit 31 gets control . . . 232

Register contents when Exit 31 passes control back
to JES2 233
Coded example. 234

Chapter 44. Exit 32: Subsystem
interface (SSI) job selection 235
Function 235
Related exits. 235
Environment 235

Task 235
AMODE/RMODE requirements 235
Supervisor/problem program 235
Recovery 235
Job exit mask 235
Mapping macros normally required 235

Point of processing 235
Programming considerations 235
Register contents when Exit 32 gets control . . . 236
Register contents when Exit 32 passes control back
to JES2 237
Coded example. 237

Chapter 45. Exit 33: Subsystem
interface (SSI) data set CLOSE 239
Function 239
Related exits. 239
Environment 239

Task 239
AMODE/RMODE requirements 239
Supervisor/problem program 239
Recovery 239
Job exit mask 239
Mapping macros normally required 239

Point of processing 239
Programming considerations 239
Register contents when Exit 33 gets control . . . 240
Register contents when Exit 33 passes back control
to JES2 241
Coded example. 242

Chapter 46. Exit 34: Subsystem
interface (SSI) data set unallocation . 243
Function 243
Related exits. 243
Environment 243

Task 243
AMODE/RMODE requirements 243
Supervisor/problem program 243
Recovery 243
Job exit mask 243
Mapping macros normally required 243

Point of processing 243
Programming considerations 243
Register contents when Exit 34 gets control . . . 244
Register contents when Exit 34 passes control back
to JES2 245
Coded example. 245

viii z/OS V2R1.0 JES2 Installation Exits

Chapter 47. Exit 35: Subsystem
interface (SSI) end-of-task 247
Function 247
Environment 247

Task 247
AMODE/RMODE requirements 247
Supervisor/problem program 247
Recovery 247
Job exit mask 247
Mapping macros normally required 247

Point of processing 247
Programming considerations 247
Register contents when Exit 35 gets control . . . 247
Register contents when Exit 35 passes control back
to JES2 248
Coded example. 249

Chapter 48. Exit 36: Pre-security
authorization call 251
Function 251
Environment 251

Task 251
AMODE/RMODE requirements 251
Supervisor/problem program 251
Recovery 251
Job exit mask 251
Mapping macros normally required 251

Point of processing 252
Programming considerations 252
Register contents when Exit 36 gets control . . . 254
Register contents when Exit 36 passes control back
to JES2 256
Coded example. 256

Chapter 49. Exit 37: Post-security
authorization call 257
Function 257
Environment 257

Task 257
AMODE/RMODE requirements 257
Supervisor/problem program 257
Recovery 257
Job exit mask 257
Mapping macros normally required 257

Point of processing 258
Programming considerations 258
Register contents when Exit 37 gets control . . . 258
Register contents when Exit 37 passes control back
to JES2 261
Coded example. 261

Chapter 50. Exit 38: TSO/E receive
data set disposition 263
Function 263
Environment 263

Task 263
AMODE/RMODE requirements 263
Supervisor/problem program 263
Recovery 263

Job exit mask 263
Mapping macros normally required 264

Point of processing 264
Programming considerations 264
Register contents when Exit 38 gets control . . . 264
Register contents when Exit 38 passes control back
to JES2 265
Coded example. 265

Chapter 51. Exit 39: NJE SYSOUT
reception data set disposition 267
Function 267
Environment 267

Task 267
AMODE/RMODE requirements 267
Supervisor/problem program 267
Recovery 267
Job exit mask 267
Mapping macros normally required 267

Point of processing 267
Programming considerations 267
Register contents when Exit 39 gets control . . . 268
Register contents when Exit 39 passes control back
to JES2 269
Coded example. 269

Chapter 52. Exit 40: Modifying
SYSOUT characteristics 271
Function 271
Environment 271

Task 271
AMODE/RMODE requirements 271
Supervisor/problem program 271
Recovery 271
Job exit mask 271
Mapping macros normally required 271

Point of processing 271
Programming considerations 271
Contents of registers when Exit 40 gets control . . 272
Register contents when Exit 40 passes control back
to JES2 273
Coded example. 274

Chapter 53. Exit 41: Modifying output
grouping key selection 275
Function 275
Environment 275

Task 275
AMODE/RMODE requirements 275
Supervisor/problem program 275
Recovery 275
Job exit mask 275
Mapping macros normally required 276

Point of processing 276
Programming considerations 276
Register contents when Exit 41 gets control . . . 276
Register contents when Exit 41 passes control back
to JES2 277
Coded example. 277

Contents ix

Chapter 54. Exit 42: Modifying a notify
user message 279
Function 279
Environment 279

Task 279
AMODE/RMODE requirements 279
Supervisor/problem program 279
Recovery 279
Job exit mask 279
Mapping macros normally required 279

Point of processing 279
Programming considerations 280
Register contents when Exit 42 gets control . . . 280
Register contents when Exit 42 passes control back
to JES2 281
Coded example. 283

Chapter 55. Exit 43: APPC/MVS TP
selection/change/termination. 285
Function 285
Related exits. 285
Recommendations for implementing Exit 43 . . . 285
Environment 286

Task 286
AMODE/RMODE requirements 286
Supervisor/problem program 286
Locks held before entry 286
Restrictions 286
Recovery 286
Job exit mask 286
Storage recommendations 286
Mapping macros normally required 286

Point of processing 286
Programming considerations 287
Register contents when Exit 43 gets control . . . 287
Register contents when Exit 43 passes control back
to JES2 288
Coded example. 288

Chapter 56. Exit 44: JES2 converter
exit (JES2 main) 289
Function 289
Related exits. 289
Recommendations for implementing Exit 44 . . . 289
Environment 289

Task 289
AMODE/RMODE requirements 290
Supervisor/problem program 290
Recovery 290
Job exit mask 290
Mapping macros normally required 290

Point of processing 290
Programming considerations 290
Register contents when Exit 44 gets control . . . 290
Register contents when Exit 44 passes control back
to JES2 292
Coded example. 292

Chapter 57. Exit 45: Pre-SJF service
request 293
Function 293
Environment 293

Task 293
AMODE/RMODE requirements 293
Supervisor/problem program 293
Recovery 293
Job exit mask 293
Storage recommendations 293
Mapping macros normally required 293

Point of processing 293
Programming considerations 294
Register contents when Exit 45 gets control . . . 294
Register contents when Exit 45 passes control back
to JES2 296
Coded example. 297

Chapter 58. Exit 46: Modifying an NJE
data area before its transmission . . . 299
Function 299
Related exits. 299
Recommendations for implementing Exit 46 . . . 299
Environment 300

Task 300
AMODE/RMODE requirements 300
Supervisor/problem program 300
Recovery 300
Job exit mask 300
Mapping macros normally required 300

Point of processing 300
Programming considerations 300
Register contents when Exit 46 gets control . . . 301
Register contents when Exit 46 passes control back
to JES2 302
Coded example. 303

Chapter 59. Exit 47: Modifying an NJE
data area before receiving the rest of
the NJE job 305
Function 305
Related exits. 305
Environment 305

Task 305
AMODE/RMODE requirements 305
Supervisor/problem program 305
Recovery 306
Job exit mask 306
Mapping macros normally required 306

Point of processing 306
Programming considerations 306
Register contents when Exit 47 gets control . . . 306
Register contents when Exit 47 passes control back
to JES2 308
Coded example. 308

x z/OS V2R1.0 JES2 Installation Exits

Chapter 60. Exit 48: Subsystem
interface (SSI) SYSOUT data set
unallocation 309
Function 309
Environment 309

Task 309
AMODE/RMODE requirements 309
Supervisor/problem program 309
Recovery 309
Job exit mask 309
Mapping macros normally required 309

Point of processing 309
Programming considerations 309
Register contents when Exit 48 gets control . . . 310
Register contents when Exit 48 passes control back
to JES2 311
Coded example. 311

Chapter 61. Exit 49: Job queue work
select - QGOT 313
Function 313
Environment 313

Task 313
AMODE/RMODE requirements 313
Supervisor/problem program 313
Recovery 314
Job exit mask 314
Mapping macros normally required 314

Point of processing 314
Programming considerations 314
Register contents when Exit 49 gets control . . . 314
Register contents when Exit 49 passes control back
to JES2 316
Coded example. 316

Chapter 62. Exit 50: End of input . . . 317
Function 317
Recommendations for implementing Exit 50 . . . 317
Environment 317

Task 317
AMODE/RMODE requirements 317
Supervisor/problem program 317
Recovery 317
Job exit mask 318
Mapping macros normally required 318

Point of processing 318
Programming considerations 318
Register contents when Exit 50 gets control . . . 320
Register contents when Exit 50 passes control back
to JES2 322
Coded example. 322

Chapter 63. Exit 51: Job phase
change exit ($QMOD) 323
Function 323
Environment 323

Task 323
AMODE/RMODE requirements 323
Supervisor/problem program 323

Restrictions 323
Recovery 323
Job exit mask 323
Mapping macros normally required 323

Point of processing 324
Programming considerations 324
Register contents when Exit 51 gets control . . . 325
Register contents when Exit 51 passes control back
to JES2 327
Coded example. 327

Chapter 64. Exit 52: JOB JCL
statement scan (JES2 user
environment) 329
Function 329
Recommendations for implementing Exit 52 . . . 329
Environment 332

Task 332
AMODE/RMODE requirements 332
Supervisor/problem program 332
Restrictions 332
Recovery 332
Job exit mask 332
Storage recommendations 332
Mapping macros normally required 332

Point of processing 332
Extending the JCT control block 333
Programming considerations 333
Register contents on entry to Exit 52. 334
Register contents when Exit 52 passes control back
to JES2 337
Coded example. 337

Chapter 65. Exit 53: JOB statement
accounting field scan (JES2 user
environment) 339
Function 339
Related exits. 339
Recommendations for implementing Exit 53 . . . 339
Environment 340

Task 340
AMODE/RMODE requirements 340
Supervisor/problem program 340
Restrictions 340
Recovery 340
Job exit mask 340
Mapping macros normally required 340

Point of processing 340
Extending the JCT control block 342
Programming considerations 343
Register contents when Exit 53 gets control . . . 345
Register contents when Exit 53 passes control back
to JES2 346
Coded example. 347

Chapter 66. Exit 54: JCL and JES2
control statement scan (JES2 user
environment) 349
Function 349

Contents xi

Recommendations for implementing Exit 54 . . . 349
Environment 350

Task 350
AMODE/RMODE requirements 350
Supervisor/problem program 350
Restriction 350
Recovery 350
Job exit mask 350
Mapping macros normally required 350

Point of processing 350
Programming considerations 351
Register contents when Exit 54 gets control . . . 356
Register contents when Exit 54 passes control back
to JES2 358
Coded example. 358

Chapter 67. Exit 55: NJE SYSOUT
reception data set disposition 359
Function 359
Environment 359

Task 359
AMODE/RMODE requirements 359
Supervisor/problem program 359
Recovery 359
Job exit mask 359
Mapping macros normally required 359

Point of processing 359
Programming considerations 359
Register contents when Exit 55 gets control . . . 360
Register contents when Exit 55 passes control back
to JES2 361
Coded example. 361

Chapter 68. Exit 56: Modifying an NJE
data area before its transmission . . . 363
Function 363
Related exits. 363
Recommendations for implementing Exit 56 . . . 363
Environment 363

Task 363
AMODE/RMODE requirements 364
Supervisor/problem program 364
Recovery 364
Job exit mask 364
Mapping macros normally required 364

Point of processing 364
Programming considerations 364
Register contents when Exit 56 gets control . . . 365
Register contents when Exit 56 passes control back
to JES2 367
Coded example. 368

Chapter 69. Exit 57: Modifying an NJE
data area before receiving the rest of
the NJE job 369
Function 369
Related exits. 369
Environment 369

Task 369

AMODE/RMODE requirements 369
Supervisor/problem program 369
Recovery 369
Job exit mask 370
Mapping macros normally required 370

Point of processing 370
Programming considerations 370
Register contents when Exit 57 gets control . . . 371
Register contents when Exit 57 passes control back
to JES2 372
Coded example. 373

Chapter 70. Exit 58: Subsystem
interface (SSI) end-of-step 375
Function 375
Environment 375

Task 375
AMODE/RMODE requirements 375
Supervisor/problem program 375
Recovery 375
Job exit mask 375
Mapping macros normally required 375

Point of processing 375
Programming considerations 375
Register contents when Exit 58 gets control . . . 375
Register contents when Exit 58 passes control back
to JES2 377

Chapter 71. Exit 59: Post
interpretation 379
Function 379
Related exits. 379
Recommendations for implementing Exit 59 . . . 379
Environment 379

Task 379
Restrictions 379
AMODE/RMODE requirements 380
Supervisor/problem program 380
Recovery 380
Job exit mask 380
Storage recommendations 380
Mapping macros typically required 380

Point of processing 380
Programming considerations 380
Register contents when Exit 59 gets control . . . 381
Register contents when Exit 59 passes control back
to JES2 382

Chapter 72. Exit 60: JES2 converter
exit (user) 383
Function 383
Related exits. 383
Recommendations for implementing Exit 60 . . . 383
Environment 385

Task 385
Restrictions 385
AMODE/RMODE requirements 385
Supervisor/problem program 385
Recovery 385
Job exit mask 386

xii z/OS V2R1.0 JES2 Installation Exits

Storage recommendations 386
Mapping macros typically required 386

Point of processing 386
Programming considerations 386
Register contents when Exit 60 gets control . . . 387
Register contents when Exit 60 passes control back
to JES2 389
Coded example. 389

Chapter 73. JES2 exit migration
considerations 391
JES2 z/OS V1R11 migration details 391

JES2 z/OS V1R11 checkpoint activation . . . 391
JES2 z/OS V1R11 exits and macros 391

JES2 z/OS V2R1 migration details 392
JES2 z/OS 2.1 input phase processing 392
JES2 z/OS 2.1 conversion phase processing . . 393
JES2 z/OS 2.1 data structure processing . . . 394
JES2 z/OS 2.1 Exit 6 considerations 394
JES2 z/OS 2.1 Exit 7 and Exit 8 considerations 395
JES2 z/OS 2.1 Exit 36 and Exit 37 considerations 395
JES2 z/OS 2.1 Exit 44 considerations 395
JES2 z/OS 2.1 Exit 59 considerations 395

Appendix A. JES2 exit usage
limitations 397

Appendix B. Sample code for Exit 17
and Exit 18 399

Appendix C. Job-related exit
scenarios 403
Exit sequence 403

Selected exits 404
SPOOL control blocks 406

Checkpoint control blocks 407
$JCT/JMR relationship 411
Input phase 412

Job input sources 412
Job input service processing 413

Conversion phase 415
Execution phase 418
Spin phase 421
Output phase 421
Hardcopy phase 422
NJE hardcopy phase exits 424
Purge phase 424

Appendix D. Accessibility 427
Accessibility features 427
Using assistive technologies 427
Keyboard navigation of the user interface 427
Dotted decimal syntax diagrams 427

Notices 431
Policy for unsupported hardware. 432
Minimum supported hardware 433
Programming Interface Information 433
Trademarks 433

Index 435

Contents xiii

xiv z/OS V2R1.0 JES2 Installation Exits

Figures

1. Support statements 1
2. Areas of JES2 modification 2
3. A JES2 Exit 4
4. EXIT Point Variations 4
5. JES2 and FSS Address Spaces 10
6. Methods of Packaging an Exit Routine . . . 30
7. Example of Assembly and Link-Edit of a

Installation-Written Routine 41
8. Example of an Exit Routine Employing a User

Defined Exit 42

9. Example of Providing Multiple Exits within a
Single Load Module. 48

10. Exit Routines Load Module 52
11. Exit Placement 54
12. JCL example from z/OS 1.13 and earlier

releases 392
13. JCL example from z/OS 2.1 and later releases 393
14. JESJCLIN data set example from z/OS 2.1

and later releases 393
15. Job Input Sources 412

© Copyright IBM Corp. 1988, 2013 xv

xvi z/OS V2R1.0 JES2 Installation Exits

Tables

1. JES2-Provided Global Assembler Variables
(&VERSION and &J2VRSN) for Currently
Supported JES2 Releases 16

2. Directed Load and Use of Modules Based on
LOADMOD(jxxxxxxx) STORAGE=
Specification 29

3. Exit Selection Table 65
4. Exit Implementation Table 75
5. Selected JES2 Job Control Table Fields. . . . 98
6. Old/New Comparison of JES2 Commands 116
7. Comparison of Exit 11 and Exit 12 149
8. Comparison of Exit 12 and Exit 11 155
9. Security Function Codes 252

10. Security Function Codes 259

11. Selected JES2 Job Control Table Fields 340
12. Reader and converter exits usage 397
13. Job-Related Exits 404
14. $JCT/JMR Definitions. 411
15. Job Input Service Exits - Main Task 413
16. Job Input Service Exits - User Environment 414
17. Conversion phase processing 416
18. Execution Phase Exits 418
19. Spin Phase Processing 421
20. Output Phase Processing. 421
21. Hardcopy Phase Processing 423
22. NJE Hardcopy Phase Processing 424
23. Purge Phase Exits 424

© Copyright IBM Corp. 1988, 2013 xvii

xviii z/OS V2R1.0 JES2 Installation Exits

About this document

This document supports z/OS® (5650-ZOS).

This document provides system programming information concerning the use of
IBM-defined and installation-defined JES2 exit routines. It describes how to
establish JES2 exit routines to tailor JES2 without in-line source code modification.

Who should use this document
This document is intended for JES2 system programmers or for anyone responsible
for customizing JES2.

How this document is organized
The organization and content of this document is as follows:
v Chapter 1 describes the processing concepts of JES2 exits.
v Chapter 2 describes how to write an exit.
v Chapter 3 lists the IBM-defined exits, describes how to choose which exits to

implement, and what to consider when writing an exit routine.
v Appendix A describes JES2 exit usage limitations.
v Appendix B provides sample code for Exits 17 and Exit 18.
v Appendix C describes job-related exit scenarios.
v Appendix D describes z/OS product accessibility.

Where to find more information
This document references the following documents for further details about
specific topics. Abbreviated forms of these are used throughout this document. The
following table lists all abbreviated titles, full titles, and their order numbers that
are not listed in z/OS Information Roadmap. See that document for all z/OS
documents.

Short Title Used in This
document Title Order Number

CICS/ESA Customization Guide CICS/ESA Customization Guide SC33-1165

A Structured Approach to Describing
and Searching Problems

SC34-2129

Additional information
Additional information about z/OS elements can be found in the following
documents.

Title
Order
Number Description

z/OS Introduction and Release
Guide

GA32-0887 Describes the contents and benefits of z/OS
as well as the planned packaging and
delivery of this new product.

© Copyright IBM Corp. 1988, 2013 xix

Title
Order
Number Description

z/OS Planning for Installation GA32-0890 Contains information that lets users:

v Understand the content of z/OS

v Plan to get z/OS up and running

v Install the code

v Take the appropriate migration actions

v Test the z/OS system

z/OS Information Roadmap SA23-2299 Describes the information associated with
z/OS including z/OS documents and
documents for the participating elements.

z/OS Summary of Message and
Interface Changes

SA23-2300 Describes the changes to messages for
individual elements of z/OS.
Note: This document is provided in
softcopy only on the message bookshelf of
the z/OS collection kit.

xx z/OS V2R1.0 JES2 Installation Exits

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 JES2 Installation Exits
SA32-0995-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1988, 2013 xxi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xxii z/OS V2R1.0 JES2 Installation Exits

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1988, 2013 xxiii

xxiv z/OS V2R1.0 JES2 Installation Exits

Chapter 1. Introduction

JES2 is a general job entry subsystem of z/OS and sometimes cannot satisfy all
installation-specific needs at a given installation. If you modify JES2 code to
accomplish your specific functions, you then are susceptible to the migration and
maintenance implications that result from installing new versions of JES2. JES2
exits allow you to modify JES2 processing without directly affecting JES2 code. In
this way, you keep your modifications independent of JES2 code, making
migration to new JES2 versions easier and making maintenance less troublesome.

Figure 2 on page 2, and the text that follows it, illustrates many of those areas
where you can modify JES2 processing using the JES2 exit facility:

Attention!

Defining exits and writing installation exit routines is intended to be accomplished by experienced system
programmers; the reader is assumed to have knowledge of JES2.

If you want to customize JES2, IBM suggests that you use JES2 installation exits to accomplish this task.

IBM does not recommend or support alteration of JES2 source code. If you assume the risk of modifying JES2,
then also assure your modifications do not impact JES2 serviceability using IPCS. Otherwise, IBM® Level 2
Support might not be able to read JES2 dumps taken for problems unrelated to the modifications.

Avoid expanding JES2 control blocks. Use alternatives such as:

1. Use fields dedicated for installation use that appear in many major control blocks. Place your data, or a
pointer to your data, in these fields. However, beware of setting storage addresses in checkpointed or
SPOOL–resident control blocks.

2. Use $JCTX services rather than modifying $JCT.

3. Use table pairs and dynamic tables. For example, use dynamic $BERTTABs with CBOFF=* instead of
modifying $JQE.

This is a partial list. Evaluate your specific situation and take appropriate action.

Figure 1. Support statements. The figure includes support statements for JES2.

Note!

JES2 operates in full–function mode (z2 mode under z/OS). All discussion in this document assumes JES2 is running
in z2 mode. Refer to Chapter 73, “JES2 exit migration considerations,” on page 391 for migration topics.

© Copyright IBM Corp. 1988, 2013 1

v Initialization Processing

You can modify the JES2 initialization process and incorporate your own
installation-defined initialization statements in the initialization process. Also,
you can change JES2 control blocks before the end of JES2 initialization.

v Job Input Processing

You can modify how JES2 scans and interprets a job's JCL and JES2 control
statements. Also, you can establish a job's affinity, execution node, and priority
assignments before the job actually runs.

v Subsystem Interface (SSI) Processing

You can control how JES2 performs SSI processing in the following areas: job
selection and termination, subsystem data set OPEN, RESTART, allocation,
CLOSE, unallocation, end-of-task, and end-of-memory.

v JES2-to-Operator Communications

You can tailor how JES2 communicates with the operator and implement
additional operator communications for various installation-specific conditions.
Also, you can preprocess operator commands and alter, if necessary, subsequent
processing.

v Spool Processing

You can alter how JES2 allocates spool space for jobs.
v Output Processing

You can selectively create your own unique print and punch separator pages for
your installation output on a job, copy, or data set basis.

v JES2-SMF Processing

You can supply to SMF added information in SMF records.
v RJE Processing

Job Input
Processing

Subsystem
Interface (SSI)

Output
Processing

JES2 - SMF
Processing

JES2-To-Operator
Communications

Initialization
Processing

JES2

Spool
Processing

RJE
Processing

Figure 2. Areas of JES2 modification

2 z/OS V2R1.0 JES2 Installation Exits

You can implement additional security checks to control your RJE processing
and gather statistics about signons and signoffs.

What is a JES2 exit?
JES2 exits provide a clean, convenient, relatively stable interface between JES2 and
your installation-written code. Installation-written exit routines are invoked from
standard JES2 processing at various strategic locations in JES2 source code. These
strategic locations in JES2 source code are called exit points. A JES2 exit is
established by one or more exit points.

An exit point is defined by the $EXIT macro and, as illustrated in Figure 3 on page
4, is the exact location in JES2 code where JES2 can pass control to your exit routine
(that is, your installation-written code). The JES2 exit, identified by the “exit-id
code” of nnn, is defined by one exit point at label JLBL in the JES2 code. It is at
JLBL in JES2 processing that JES2 passes control to your exit routine.

To use the exit facility you perform the following steps, as illustrated in Figure 3
on page 4.
1. Package your code into one or more exit routines, identifying each exit routine

with an entry point name. (In Figure 3 on page 4 there is a series of exit
routines noted as entry points X1...Xn.) Then include the exit routine in a load
module. In this case LMOD is the load module containing the exit routine.

2. In the JES2 initialization stream include the LOADmod(jxxxxxxx) initialization
statement, which causes your exit routine's load module to be loaded into
either private (PVT), common (CSA), or to locate the module in link pack area
(LPA) storage. The linkage editor RMODE attribute determines whether the
system loads the module above or below 16 megabytes.
Also include the EXIT(nnn) initialization statement, which associates your exit
routines' entry point with the exit point in the JES2 code. The EXIT(nnn)
initialization statement matches the exit point “nnn” at label JLBL for the $EXIT
macro in the JES2 code. The EXIT(nnn) initialization statement identifies the
label “X1” as the entry point of the exit routine for exit point “nnn”. The LOAD
initialization statement identifies LMOD as the load module to be loaded into
storage.

Chapter 1. Introduction 3

JES2 can have up to 256 exits, each identified by a number from 0 to 255. You
specify the number on the required “exit-id code” parameter on the $EXIT macro.

This exit-id code identifies the JES2 exit. When more than one exit point is defined
for a single exit, the $EXIT macros that defined the multiple exit points have
unique labels but are all specified with the same exit-id code – see Figure 4.

JES2 Initialization Statements

LOADMOD(LMOD)

EXIT(nnn) ROUTINE = (X1,...,Xn)

(Exit Routine Code)

LMOD $MODULE

JLBL $EXIT nnn

X1 $ENTRY

Xn $ENTRY

LMOD - Load Module
JES2 Code

$MODEND

Figure 3. A JES2 Exit

JES2 Code

XXX $EXIT 87
CCC $EXIT 87

YYY $EXIT 87
ZZZ $EXIT 88

AAA $EXIT 93

More than one
exit pt. per exit.

A single exit pt.
per exit.

.....

.....

.....

.....

.....

Figure 4. EXIT Point Variations

4 z/OS V2R1.0 JES2 Installation Exits

JES2 code includes a number of IBM-defined exits. That is, various exit points –
through the $EXIT macro – have already been strategically placed in the JES2 code.
The intended purpose of each of these exits is summarized in Table 3 on page 65.
For these IBM-defined exits you need only write your own exit routines and
incorporate them through the EXIT(nnn) initialization statement and the
LOADmod(jxxxxxxx). The selection of the point in JES2 code where the exit point
should be placed has already been done for you. To ensure a proper
implementation, you should thoroughly understand the IBM-defined exit and its
JES2 operating environment. A comprehensive description of each exit is presented
in Chapter 12, “IBM-defined exits,” on page 65.

Also, the JES2 exit facility allows you to establish your own exits, should the
IBM-defined exits not suffice. Exits established by you are modifications to JES2
and are called installation-defined exits, and you define them by placing the $EXIT
macro yourself at appropriate points in the JES2 code (or in your own exit routine
code). Note, however, that implementing your own exit can be considerably more
difficult than writing an exit routine for an IBM-defined exit. You should realize
that in establishing your own exits, you run a greater risk of disruption when
installing a new version of JES2 code. The new JES2 code into which you have
placed your exits may have significantly changed since your $EXIT macros were
inserted. For more information, see Chapter 10, “Establishing installation-defined
exits,” on page 59.

Every exit, both IBM-defined and installation-defined, has a status of enabled or
disabled which is set at initialization through the EXIT(nnn) initialization statement
and which can be dynamically altered by the $T EXIT(nnn) operator command.
When an exit is enabled, JES2 checks for the existence of an associated exit routine
and then passes control to the exit routine. If no associated exits are found,
standard JES2 processing continues. For certain exits, called job-related exits, (see
“Job-related exits” on page 55) the status can be altered on a job-by-job basis by
the action of an exit routine. When an exit is disabled for a particular job (by use
of the job mask), it is automatically bypassed by standard JES2 processing.

Environment
The following topics describe the environment in which the JES2 exits run.

General
JES2 operates in four environments: JES2 main task, JES2 subtask, user
environment, and functional subsystem (FSS) environment. Your exit routine
receives control as fully-authorized extensions of JES2, and as such receives control
in one of these four environments depending on where the associated exit point is
placed. JES2 main task and subtask exit points exist in the HASJES20 load module.

Program authority
Your exit routine has access to various control blocks and service routines to which
the standard JES2 code has access at the exit point, and it runs with the same
authorization as the JES2 code from which your exit routine was invoked. Exit
routines invoked from the JES2 address space run in supervisor state in either the
JES2 main task or JES2 subtask environment with a protect key of “1”. Exit
routines invoked from the user environment execute in key 0. Exit routines
invoked from the functional subsystem (FSS) address space run in the FSS
environment and typically run in protect key 1 (as set by the FSS). Also, exit
routines invoked from the FSS address space have access to all service routines
supported by HASPFSSM.

Chapter 1. Introduction 5

Exit linkage
A JES2 exit effector provides linkage services between an exit point and exit
routines. It locates and passes control to your exit routines and returns control to
JES2. There are two exit effectors: one provides linkage to exit routines that run as
extensions to the JES2 main task and the other provides linkage to exit routines
that run as extensions to JES2 subtasks or as extensions to routines in the user
address space or the FSS.

Return codes
Your exit routines can affect JES2 processing by directly manipulating JES2 data
areas and by passing back return codes. You can have up to 256 individual exit
routines associated with a single exit on the EXIT(nnn) initialization statement.
These multiple exit routines are all called consecutively in the order of their
appearance on the EXIT(nnn) initialization statement. Consider the following
example:

EXIT(175) ROUTINE=(X1,X2,X3,X4,X5,...)

For Exit 175, the exit routine identified by label X1 is called before the exit routine
identified by X2, and so forth, until all of them (X1 through X5) are called or until
one of them generates a nonzero return code, which causes the exit effector to
return to the JES2 mainline after the exit point.

Installation
IBM suggests that any modifications to JES2 code or the installation of JES2 exits
be performed utilizing the functions of SMP/E (System Modification Program
Extended). This requires the preparation of SMP/E control statements and
constructs suitable for SMP/E processing. Applying changes in an
SMP/E-controlled environment prevents down-leveling or the application of
release incompatible maintenance.

In the case of JES2 exits, if the application of PTF maintenance changes any macros
or other components used by the exits, then the affected modules will
automatically be reassembled by SMP/E.

For more information about SMP/E, see SMP/E for z/OS User's Guide

Note: No exit routines are ever required as part of standard JES2 processing. The
JES2 exit facility is fully optional. If you have not implemented an exit—that is, if
you have not written an exit routine for it, or have not included the exit routine in
a load module, or have not associated the routine with the exit at initialization
time—the presence of the exit point or points that establish the exit is transparent
during standard JES2 processing.

6 z/OS V2R1.0 JES2 Installation Exits

Chapter 2. Writing an exit routine

When you are planning to write a JES2 exit routine, you need to consider the
environment in which the exit routine runs and other general programming
considerations (such as, the programming language to use to code your exit
routine, linkage conventions that are required, return codes to set, and reentrant
code requirements to follow). Chapter 12, “IBM-defined exits,” on page 65 provides
the specific programming considerations you need for writing exit routines for the
IBM-defined exits. You should use Chapter 12, “IBM-defined exits,” on page 65
with the information in this chapter when writing your exit routine. Should you
decide to implement your own installation-defined exit in JES2, you need to
investigate all the exit-specific programming considerations yourself. See
Chapter 10, “Establishing installation-defined exits,” on page 59 for more
information.

Note: All exit modules must be in APF authorized libraries.

Language
You must write JES2 installation exit routines in basic assembled language. To
assemble JES2 or installation exit routines, use High-Level Assembler or any
compatible IBM assembler.

Operating environment
For security reasons, the caller of an installation-defined exit in the user's address
space must be either in supervisor state or be an authorized program. JES2 will
terminate a calling routine with neither of these attributes with a privileged
operation exception.

JES2 environments
When writing an exit routine, you must consider the calling JES2 environment,
because your exit routine runs as an extension of that calling environment (JES2
main task, JES2 subtask, user address space, and functional subsystem). The calling
environment has broad implications to your exit routine; it determines the JES2
system services available to your exit routine, the reentry considerations you
should consider, the linkage conventions that are necessary, and several other
essential factors (such as, control block access, synchronization, recovery, and JES2
programmer macro usage). Specifically, the use of macros in exit routines is
limited. Before attempting to use a particular macro in an exit routine, be certain to
check the “Environment” section of each macro description in Chapter 4 to
determine the environments in which the macro can be used.

Every exit is explicitly defined to JES2 as belonging to one of the four execution
environments. The ENVIRON= operand of the $MODULE macro is specified as
either “JES2”, “SUBTASK,” “USER,” or “FSS”. This specification determines which
of two exit effectors (the JES2 subroutines that establish the linkage between JES2
and an exit routine) will be called when the exit is enabled. One exit effector
establishes linkage to an exit routine from the JES2 main task environment; the
other establishes linkage to an exit routine from either the JES2 subtask
environment, the user environment or the FSS. In all environments (JES2 main

© Copyright IBM Corp. 1988, 2013 7

task, functional subsystem, subtask, and user environment) JES2 linkage
conventions (that is, $SAVE and $RETURN) are used.

You cannot define an exit “across” environments. That is, when an exit is required
to serve the same purpose in two distinct environments, two separate exits must
be defined, each with its own identification number. For example, Exit 11, an
IBM-defined exit that can give you control to reset the spool partitioning mask,
belongs to the JES2 main task environment. Exit 12, which serves the same
functional purpose, belongs to the user environment. In implementing these exits,
you must write a separate exit routine for each defined exit and adapt the routine
to its calling environment.

To stress again, whether defining an exit or writing an exit routine, you must be
aware of the operating environment; it influences where your exit is to be defined
or what processing your exit routine can really perform. In the descriptions of the
following general programming considerations for writing an exit routine, specific
environmental influences are described.

JES2 has four execution environments - maintask, subtask, user, and functional
subsystem (FSS).
1. JES2 Main Task - The JES2 main task is the most common operating

environment for JES2 exits. The JES2 main task routines are included in the
JES2 load module HASJES20 which is loaded in the private area of the JES2
address space. JES2 main task routines run under the control of the JES2
dispatcher (in HASPNUC). The load module, HASPINIT, which performs JES2
initialization, runs under the main task but is not controlled by the JES2
dispatcher.
The execution of maintask routines, with the exception of asynchronous
routines such as I/O appendages, are controlled by the JES2 dispatcher and are
represented by a dispatching unit called processor control elements ($PCEs).
$PCEs, which are analogous to task control blocks (TCBs) in MVS™, are the
dispatchable elements in JES2 maintask.
There are two important coding considerations in the JES2 maintask
environment.
v JES2 Reentrancy - An exit routine called from the JES2 main task must be

reentrant in the JES2 sense. Because JES2 processors ($PCEs) do not
relinquish control to another JES2 processor involuntarily, an exit routine,
invoked out of a main task processor may use a JES2 nonreentrant work
area. Therefore, the work area is serialized unless the exit routine issues a
$WAIT macro (or service called from an exit routine issues the $WAIT
macro). When the exit routine issues the $WAIT macro directly or through a
called routine, control returns to the JES2 dispatcher and the serialization on
the nonreentrant work area ceases. The nonreentrant work area may also be
passed between exit routines, or between an exit routine and JES2, before a
$WAIT macro call. Work areas to be used “across” a $WAIT must either be
within the processor's work area established as part of the $PCE or else must
be directly owned by the processor. In the same JES2 reentrant sense, an exit
routine may search or manipulate a JES2 queue (for example, job queue or
job output table) providing it has ownership of the queue (through the
$QSUSE macro) and doesn't issue a $WAIT macro until the search routine is
completed.

v MVS WAITs - The JES2 dispatcher controls all processing within the
maintask environment; therefore, no routine or exit may issue any macro or

8 z/OS V2R1.0 JES2 Installation Exits

call any service that could result in the execution of an MVS WAIT macro.
Issuing MVS WAITs in JES2 maintask is contrary to the design of JES2 and
will cause performance problems.
An exception to this rule is JES2 initialization and JES2 termination. During
initialization and termination, maintask processing is essentially single
threaded. That is, there is only one $PCE dispatched so that JES2 reentrancy
is not a factor. This also removes the concern about MVS WAITs causing a
performance problem because during JES2 initialization and termination JES2
is not providing system services for other subsystems, started tasks, time
sharing sessions and batch jobs. Therefore, there are no restrictions about
MVS WAITs and MVS macros that can result in MVS WAITs in JES2 exits 0,
19, 24, and 26.
If it is necessary to invoke MVS services from JES2 maintask exits that may
cause MVS waits, these services should be invoked from a subtask
environment. The $SUBIT macro can be used to cause a routine to execute in
a subtask environment. The WAIT/POST synchronization of the subtask is
provided as part of this service.

2. JES2 Subtask - JES2 subtasks run in the private area of the JES2 address space
but run asynchronously with the JES2 main task. Subtasks run under the
control of the MVS dispatcher (not the JES2 dispatcher) and their asynchronous
operation allows them to perform the WAIT/POST type processing without
imposing the same WAIT/POST operations on the JES2 main task. System-wide
MVS services are available to programs in this environment.
Many JES2 maintask data areas are directly addressable, but users of these
resources must understand when and where serialization of these resources is
relevant. Most importantly, subtask should not directly reference the checkpoint
area (job queue, job output table, and so on), because in certain portions of the
checkpoint cycle this storage area is not addressable. If a subtask requires a
view of the checkpoint, use the JES2 checkpoint versioning facility and the
appropriate SSI calls.

3. User Environment - Some JES2 routines are loaded into common storage
(located either in extended or non-extended LPA, PLPA, or CSA) execute in the
user's address space. This environment, which permits user programs to
interface with JES2, differs greatly from the JES2 maintask environment.
System-wide MVS services are available to programs in this environment, but
the environment is also more complex. It involves many integrity,
synchronization, locking and cross-address space communications
considerations. JES2 services in the user environment are limited.
A special operating environment you can use called (USER,ANY). It is intended
for environments where a routine is able to be invoked in the USER run-time
environment, or under the JES2 main task. For example, Use (USER,ANY) to
write a common routine invoked by both Exit 2 and Exit 52. To use it, you can
code ENVIRON=(USER,ANY) on your $MODULE statement or on a
$ENVIRON macro invocation. The (USER,ANY) environment is similar to the
USER environment (for instance, R11 is the HCCT address) except for the
following differences in the way that $SAVE and $RETURN services are
implemented:
a. If the routine is called by the JES2 main task, JES2 main task

$SAVE/$RETURN services are called. This allows the possibility of a
$WAIT within the routine. With a user-environment $SAVE that uses the
linkage stack, this processing is not possible.

b. In any environment, a PSV-type save area is obtained rather than using a
BAKR to save the registers and environment. This allows services such as
$STORE and $RESTORE to be used in any environment.

Chapter 2. Writing an exit routine 9

4. FSS Environment - The functional subsystem (FSS) resides in the functional
subsystem address space. This environment is similar to the user environment
in that JES2 services are limited. You must consider task interaction within the
FSS. All data areas and control blocks are not accessible from the FSS. The
accessible control blocks are the job output element ($JOE) JOE information
block ($JIB), FSS control block (FSSCB), and FSA control block (FSACB).
System-wide MVS services are available to programs in this environment.

Synchronization
An exit routine must use synchronization services appropriate to its calling
environment.

An exit routine called from the JES2 main task must use the JES2 $WAIT macro to
wait for a JES2 event, resource, or post of a MVS ECB. An exit routine called from
a JES2 subtask or from the user environment must use the MVS WAIT macro to
wait for a system event. An exit routine called from a functional subsystem must
also use MVS WAIT; $WAIT and $POST are not valid in this environment.

A JES2 main task exit routine should not invoke operating system services which
may wait (WAIT), either voluntarily or involuntarily. Be aware of any product that

Figure 5. JES2 and FSS Address Spaces

10 z/OS V2R1.0 JES2 Installation Exits

interfaces with JES2 and attempts to issue MVS services such as STIMER,
STIMERM, WAIT, or TTIMER under the JES2 main task, or which invoke MVS
services such as allocation, which may issue such macros. An MVS wait from a
JES2 main task exit routine would stop all of the JES2 main task processors,
including any devices—such as readers, printers, and remote terminals—under
their control.

Reentrant code considerations
Reentrant code considerations are contingent on the calling environment.

An exit routine called from the JES2 main task must be reentrant in the JES2 sense.
The JES2 dispatching unit, commonly called JES2 processors, running under a
processor control element (PCE) perform the processing for the JES2 main task.
The JES2 dispatcher controls what PCE is currently active (that is, what JES2
processor is currently running). Because a JES2 processor doesn't relinquish control
to another JES2 processor involuntarily, an exit routine, invoked out of a JES2 main
task processor may use a nonreentrant work area; the work area is serialized if the
exit routine doesn't issue a $WAIT macro or until the exit routine or service called
from an exit routine does issue the $WAIT macro. When the exit routine issues the
$WAIT macro directly or through a called routine, control returns to the JES2
dispatcher and the serialization on the nonreentrant work area ceases. The
nonreentrant work area may also be passed between exit routines, or between an
exit routine and JES2, before a $WAIT macro call. Work areas to be used “across” a
$WAIT must either be within the processor work area established as part of the
processor control element (PCE) or else must be directly owned by the processor.
In the same JES2 reentrant sense, an exit routine may search or manipulate a JES2
queue providing it has ownership of the queue and doesn't issue a $WAIT macro
until this action is completed.

An exit routine called from a JES2 subtask, from the user environment, or from the
FSS environment must be reentrant in the MVS sense. The exit routine must be
capable of taking an MVS interrupt at any point in its processing. The exit routine
must be able to handle the simultaneity of execution with other subtasks and user
address space, or functional subsystem (FSS) routines and with the JES2 main task.

The following actions may produce unpredictable results:
v Modifying control block fields designed for use by the JES2 main task only (for

example, $DOUBLE, $GENWORK, and so on.)
v Accessing checkpointed data from the subtask, user, or FSS environment.

Linkage conventions
When control is passed to an exit routine, certain general registers contain linkage
information. Register 15 always contains the entry point address of the exit routine,
and can be used to establish addressability for the exit routine's code. Register 14
contains the address (in the exit effector) to which the exit routine must return
control. In the JES2 main task environment, register 13 always contains the address
of the processor control element (PCE) of the processor that invoked the exit. In the
JES2 subtask environment or the user environment, register 13 always contains the
address of an 18-word save area. In the JES2 main task and subtask environments,
register 11 always contains the address of the HCT; and in the functional
subsystem environment (HASPFSSM), register 11 always contains the address of
the HASP functional subsystem communications table (HFCT). In the user
environment, register 11 always contains the address of the HASP common

Chapter 2. Writing an exit routine 11

communication table (HCCT). Depending on the exit, registers 0 and 1 might be in
use as parameter registers. The use of registers 2 through 10 and 12, typically used
as pointer registers, is also exit-dependent.

Some JES2 services are running in 64-bit addressing mode. These services,
regardless of whether they are called directly or invoked by a macro, need register
11 to contain a 64-bit pointer to the HCT, HCCT, or HFCT. When JES2 invokes an
exit, it ensures that register 11 is a valid 64-bit pointer. Because exits should not
need to know which services are running in 64-bit addressing mode, the invoked
exit should not corrupt the high order 33 bits of register 11 before invoking any
JES2 service.

The use of registers 0 through 15 is documented, for each IBM-defined exit, in the
category REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE. Note that if you install an optional installation-defined exit, you are
responsible for modifying JES2 code, preceding your exit, to load any parameters
in registers 0 and 1 and any pointers in registers 2 through 10 and 12 that are
required by your exit routine.

For multiple exit routines, the exit effector passes registers 2 through 13 to each
succeeding exit routine just as they were originally loaded by JES2 when the exit
was first invoked. However, register 15 contains the entry point address of the
current exit routine and, again, can be used to establish addressability for the exit
routine's code. Register 14 contains the address to which the exit routine must
return control. This allows you to pass the information to consecutive exit routines.
For more information, see Chapter 7, “Multiple exit routines in a single module,”
on page 47.

When any exit routine receives control, it must save the caller's registers. An exit
routine called from any environment can save the caller's registers by issuing the
JES2 $SAVE macro.

When any exit routine relinquishes control, it must restore the caller's registers,
except for registers 0, 1, and 15. An exit routine called from any environment must
restore the caller's registers by issuing the JES2 $RETURN macro.

Just before returning control to JES2, an exit routine must place a return code in
register 15 and must place any parameters that it intends to pass, either back to
JES2 or to the next consecutive exit routine, in registers 0 and 1. If the return code
is greater than zero, or if the current exit routine is the last or only exit routine
associated with its exit, this return code is passed back to JES2 at the point of
invocation, along with any parameters placed in registers 0 and 1. If, however, the
return code is zero and the current exit routine is not the last or only exit routine
associated with its exit, the exit effector passes control to the next consecutive exit
routine, along with any parameters placed in registers 0 and 1.

IBM suggests that when using BAKR/PR instructions for routine linkage, that you
do not use the JES2 dispatching service, $WAIT, or call any other routines that may
result in a $WAIT. JES2 uses a process of sub-dispatching units of work (PCEs),
under a single task.

BAKR is an instruction where a linkage-stack branch stat entry is formed. If a stack
entry is created while a unit of work (PCE) is in control and that unit of work is
suspended by use of the $WAIT macro, then the next unit of work to get control
could change the state of these stack. Unpredictable results will occur when the
PCE that was $WAITED gets control back and issues a PR instruction.

12 z/OS V2R1.0 JES2 Installation Exits

Special processing in the JES2 dispatcher detects when a PCE issues a $WAIT
while there is something on the linkage stack. An abend, with reason code $DP2,
will be issued to prevent this logic error from propagating more problems. Note
that you can use the $STORE macro before the $RETURN macro to modify the
returned values of registers 0 and 1.

Addressing mode of JES2 exits
All JES2 code (except those sections of code associated with restricted MVS
services) runs in 31-bit addressing mode. In this manner, JES2 is able to take
advantage of the increased virtual storage provided by the operating system 31-bit
addressing mode. (See z/OS MVS Programming: Assembler Services Guide for a more
complete discussion of 31-bit addressing and required operating systems
considerations.)

Addressing mode requirements
All JES2 exit routines:
v are entered in 31-bit addressing mode
v return in 31-bit addressing mode
v must have all input address parameters to the exit in 31-bit fields. (Although

some addresses may be restricted to below a 16-megabyte address for example,
the $PRPUT, $PBLOCK, and $SEPPDIR service routines. These should use the
$GETBUF macro to obtain HASP-type buffers because of this restriction.)

v must be compatible with all referenced control blocks

The addressing mode may be changed within an exit by using the $AMODE
macro. It is the user's responsibility to understand the addressing mode
considerations of each exit and control the mode accordingly. See the $AMODE
macro description for more information.

Residency mode requirements
All JES2 installation exits can have a residency mode (RMODE) of ANY. To set the
residency mode of an exit assembly module, use the RMODE= parameter on the
$MODULE macro. To set the residency mode of a load module, use the linkage
editor's MODE statement.

Received parameters
Received parameters, passed by either JES2 or the preceding exit routine in
registers 0 and 1, provide a method of passing information to an exit routine and
of informing an exit routine of the current point of processing. For any
IBM-defined exit that passes parameters (to the first or only associated exit
routine), the specific parameters are documented in the REGISTER CONTENTS
WHEN CONTROL IS PASSED TO THE EXIT ROUTINE category of the exit's
description. IBM-defined Exit 6, which allows you to receive control both during
and after the conversion of a job's JCL to converter/interpreter (C/I) text, presents
a typical example. After a single JCL statement has been converted to an C/I text
image, Exit 6 places a zero in register 0. After all of the JCL for a particular job has
been converted to C/I text, Exit 6 places a 4 in register 0. Your exit routine can
determine what action to take by checking this code when it first receives control.

For some exits, the parameter registers also contain pointers to control blocks, to
certain control block fields, or to other parameter lists. For a discussion of an exit
routine's use of control blocks, see the “Control Blocks” section below.

Chapter 2. Writing an exit routine 13

The received parameters are passed, as modified, from routine to routine. Note
that if you install an installation-defined exit, you must ensure that JES2 passes any
parameters required by your exit routine in registers 0 and 1; this may require
some modification of JES2 source code.

Return codes
A return code provides a convenient way for an exit routine to affect the course of
following JES2 processing.

The standard return codes are 0 and 4. If 0 is returned by an exit routine that is
not the last or the only exit routine associated with its exit, the exit effector calls
the next consecutive exit routine. However, a 0 returned by the last or only exit
routine associated with its exit directs JES2 to proceed with standard processing. A
4 returned by any exit routine directs JES2 to proceed unconditionally with
standard processing; any succeeding exit routines remain uncalled.

Note that a standard return code does not necessarily suggest that an exit routine
has opted to take no action. You can write an exit routine to manipulate certain
JES2 data areas and then, by generating a standard return code, direct JES2 to
continue with normal processing based on this altered data.

The definition of return codes that are greater than 4 is exit-dependent. The
specific implementation of return of return codes greater than 4 is documented for
each exit under the category, RETURN CODES in each exit's description. A brief
indication of the standard processing that results from the return of 0 or 4 is also
included for each exit. Note that if you install an optional installation-defined exit,
you are responsible for modifying JES2 code, following your exit, to receive and
act on any return code greater than 4 generated by your exit routine.

A return code is always a multiple of 4. If your exit routine passes a return code
other than 0 or another multiple of 4 to JES2, results are unpredictable. Also, the
$EXIT exit-point definition macro has a MAXRC= operand that specifies the exit's
maximum acceptable return code. If your exit routine generates a return code that
exceeds this specification and the exit was called from the JES2 main task, the exit
effector issues the $ERROR macro. If the exit was called from a JES2 subtask, from
the user environment, or from the FSS environment, the exit effector issues the
ABEND macro.

Control blocks
An exit routine has access to various control blocks available in the environment
from which it was called.

To simplify exit coding IBM-defined exit routines provide in registers 0-13 pointers
to control blocks currently in main storage. Register 1 can contain a pointer to a
parameter list, which contains the addresses of control blocks currently in main
storage. For a list of the specific pointers provided by an IBM-defined exit, see the
REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT ROUTINE
category of the particular exit's description. Note that if you install an
installation-defined exit, you have to ensure that any pointers required by your exit
routine have been placed in the call registers by JES2 before invocation of your
exit; this may require some modification of JES2 source code.

An exit routine can access information available in control blocks. For example,
IBM-defined Exit 5, which allows you to perform your own JES2 command

14 z/OS V2R1.0 JES2 Installation Exits

preprocessing, passes the address of the PCE to an associated exit routine. You can
write your own command validation algorithm by writing an exit routine that
checks various command-information fields in the PCE.

CAUTION:
Because an exit routine runs fully authorized, it is free to alter any field in any
control block to which it has access. By altering specific fields in specific JES2
control blocks, an exit routine can pass information to JES2 and to succeeding
exit routines and can thereby affect the course of later JES2 processing. Note that
JES2 has no protection against any change made to any control block by an exit
routine. If you modify a checkpointed control block, you must ensure that it is
written to the checkpoint data set either by your exit routine or by JES2. For this
reason, you should exercise extreme caution in making control block alterations.

Avoid expanding JES2 control blocks. Use alternatives such as:
v Use fields dedicated for installation use that appear in many major control

blocks. Place your data, or a pointer to your data, in these fields. However,
beware of setting storage address in checkpointed or SPOOL resident control
blocks.

v Use $JCTX services rather than modifying $JCT.
v Use table pairs and dynamic tables. For example, use dynamic $BERTTABs with

CBOFF=* instead of modifying $JQE.

This is a partial list. Evaluate your specific situation and take appropriate action.

Except where it would seriously degrade system performance, JES2 provides a
reasonable amount of space in its standard control blocks for use by your exit
routines. Some storage-resident control blocks, such as PCEs and DCTs, have
storage reserved for exit routine use. You can use this storage to establish your
own exit-related field or fields within a standard control block or, if you require
more storage, you can use four of the bytes as a pointer to a work area acquired
by an exit routine using the JES2 $GETMAIN, $GETBUF, and $GETWORK macros
or the MVS GETMAIN macro. Disk-resident control blocks provide considerably
more space for exit routine use. For performance reasons, no checkpoint-resident
control blocks reserve space for use by exit routines.

In addition to using reserved space in the standard JES2 control blocks, you can
define and use your own installation-specific control blocks by using the JES2 exit
facility. An exit routine can use the JES2 $GETMAIN, $GETBUF, and $GETWORK
macros or the MVS GETMAIN macro to acquire storage and build a control block
at the appropriate point in processing. For example, a job-related control block can
be built by an exit routine associated with IBM-defined Exit 2. You can then use
IBM-defined Exits 7 and 8 to write your exit. installation-defined control blocks to
spool and to read them from spool into main storage.

Note that if an exit routine references the symbolic name of a control block field,
the DSECT for that control block must be requested in the exit routine's module at
assembly time (through the $MODULE macro). Each exit description includes a list
of DSECTs normally required at assembly.

An exit routine that needs to access checkpoint control blocks must use appropriate
access services. See “Checkpoint control blocks” on page 407 for more information.

Chapter 2. Writing an exit routine 15

Determining the JES2 release level
Other code, whether other IBM program product code, Solution Developer code, or
installation-written code might need to determine what level of JES2 is installed.
This can be important so that such code can determine what support is required
within that code or what support JES2 provides for a particular release. The
JES2-provided global assembler variables, &VERSION and &J2VRSN, provide this
indication. Table 1 provides the variable string associated with currently supported
releases of JES2.

Table 1. JES2-Provided Global Assembler Variables (&VERSION and &J2VRSN) for
Currently Supported JES2 Releases

JES2 Version and Release &VERSION and &J2VRSN String

SP5.1.0 'SP 5.1.0'

SP5.2.0 'SP 5.2.0'

OS/390® V1 R1 and higher 'SP 5.3.0'

Based on the &VERSION or &J2VRSN value, the value of the string increases for
each successive JES2 release. Note that for OS/390 R1 JES2 IBM uses a string value
of ‘SP 5.3.0’ to protect this collating sequence. Consider this value stable and not to
be changed or incremented in the future.

To accommodate future JES2 releases, use the following assembly-time variables
(also valid for JES2-supported releases if you have installed APAR OW17462):

Variable
Description and Use

&J2LEVEL

v Value: Same as listed in Table 1 except for:

Release
Value

OS/390 R1
‘OS 1.1.0’

OS/390 R3
‘OS 1.3.0’

OS/390 R4
‘OS 2.4.0’

OS/390 R5
‘OS 2.5.0’

OS/390 R7
‘OS 2.7.0’

OS/390 R8
‘OS 2.8.0’

OS/390 R10
‘OS 2.10’

z/OS V1R2
‘z/OS 1.2’

z/OS V1R4
‘z/OS 1.4’

16 z/OS V2R1.0 JES2 Installation Exits

z/OS V1R5
‘z/OS 1.5’

z/OS V1R7
‘z/OS 1.7’

z/OS V1R8
‘z/OS 1.8’

z/OS V1R9
z/OS 1.9 'z/OS 1.9'

z/OS V1R10
z/OS 1.10 'z/OS1.10'

z/OS V1R11
z/OS 1.11 'z/OS1.11'

z/OS V1R12
z/OS 1.12 'z/OS1.12'

z/OS V1R13
z/OS 1.13 'z/OS1.13'

z/OS V2R1
z/OS 2.1 'z/OS 2.1'

v Description: 8-byte string defined as are &VERSION and &J2VRSN
v HCT Field: $LEVEL is &J2LEVEL (OS/390 only)
v HCCT Field: CCTLEVEL is &J2LEVEL (OS/390 only)
v Note: The format of this field is an 8-byte EBCDIC string; however, do

not rely upon the string data for release-to-release comparisons, use
&J2PLVL for that purpose.

&J2PLVL

v Value: A numeric value that increases by at least a value of 1 for each
successive JES2 release.

v Description: A value that corresponds to a specific JES2 product release
level as follows:

JES2 Version/ Release
&J2PLVL Value

SP5.1.0
24

SP5.2.0
25

OS/390 R1
26

OS/390 R3
27

OS/390 R4
28

OS/390 R5
29

OS/390 R7
30

Chapter 2. Writing an exit routine 17

OS/390 R8
31

OS/390 R10
32

z/OS 1.2
33

z/OS 1.4
34

z/OS 1.5
35

z/OS 1.7
36

z/OS 1.8
37

z/OS 1.9
38

z/OS 1.10
39

z/OS 1.11
40

z/OS 1.12
41

z/OS 1.13
42

z/OS 2.1
43

v HCT Field: $PLVL is &J2PLVL (OS/390 only)
v HCCT Field: CCTPLVL is &J2PLVL (OS/390 only)
v Note: The value itself has no inherent meaning.

&J2SLVL

v Value: 0 when a new &J2PLVL is created
v Description: A service level within the product level updated for

significant JES2 updates
v HCT Field: $SLVL is &J2SLVL(OS/390 only)
v HCCT Field: CCTSLVL is &J2SLVL (OS/390 only)
v Note: This value will never decrease within a specific value of &J2PLVL

Programming Notes:
v OS/390

Run-time field SSCTSUSE points to a 10-byte field structured as follows:

Byte 1-8
CCTLEVEL

Byte 9-10
CCTPLVL and CCTSLVL (concatenated)

v Pre-OS/390

18 z/OS V2R1.0 JES2 Installation Exits

Run-time field SSCTSUSE points to an 8-byte field structured as follows:

Byte 1-8
CCTPVRSM

Run-time field CCTPVRSM in the HCCT is an 8-byte field that provides the
&VERSION / &J2VRSN String as listed in Table 1 on page 16 or stabilized to ‘SP
5.3.0’ for OS/390.

Service routine usage
Many service routines available to the JES2 main task are also available on an exit
routine called from the JES2 main task. You can include an executable JES2 macro
instruction at any appropriate point in a JES2 main task exit routine. Not all
service routines are available to the functional subsystem environment; those that
can be called must be appropriate. Depending on the macro, it provides inline
code expansion at assembly time or else calls a JES2 service routine, as a
subroutine, in execution.

An exit routine called from a JES2 subtask or from the user environment can use
any JES2 service routine that can be called from its environment and any MVS
service routine (SVC) that can be called from its environment. You can include a
JES2- or MVS-executable macro instruction at any appropriate point in the subtask
or user routine. Again, depending on the macro, it provides inline code expansion
at assembly time or else calls a JES2 or MVS service routine, as a subroutine, in
execution.

Exit logic
Using an exit for other than its intended purpose can increase the risk of degraded
performance and system failure and may cause migration problems.

Within the scope of an exit's intended purpose, you have a wide degree of
flexibility in devising exit algorithms. For example, you can base spool partitioning
on a simple factor, such as job class, or on a complex comparison of several job
attributes and current spool volume usage. However, you should remember that as
you increase an algorithm's sophistication, you also increase overhead and the risk
of error. Exit-specific logic considerations are provided in the “Other Programming
Considerations” category for each exit description.

Logic considerations for installing installation-defined exits and for implementing
them are provided in Chapter 10, “Establishing installation-defined exits,” on page
59.

Note, for both IBM-defined and installation-defined exits, that the ability to
associate multiple exit routines with a single exit allows you to devise modular
logic segments. Each separate function to be performed after exit invocation can be
isolated in its own exit routine. This can be especially useful when you need to
provide alternate types of exit processing for different received parameters.

Exit-to-exit communication
Communication among exit routines must be accomplished through mutually
accessible control blocks.

Chapter 2. Writing an exit routine 19

Exit point-to-exit routine communication
Several JES2 installation exits, such as installation exits 27 through 35 contain a
condition byte that provide a means of passing information to your exit routine.
JES2 sets this byte to indicate the status of the environment at the time the exit is
called. Check the bit settings in this byte to determine what (if any) processing
should be done by your exit routine. See the “Register Contents When The Exit
Routine Gets Control” section of each exit description for the meaning of the
condition byte.

Exit routine-to exit point communication
These same exits provide an interface for your exit routine to inform the caller of
your exit of the results of your exit's processing. You turn on bits in the response
byte to pass this information to the caller. This gives the caller a cumulative
response from all exit routines invoked to help the caller determine how to
proceed when control is returned to it. Your exit should not turn bits in the
response byte off, as there are some occasions when some bits of the response byte
are turned on initially before control is given to your exit.

Exit-to-operator communication
Except for exit routines called from the HASPCOMM module of HASJES20 and
exit routines called from JES2 initialization and termination, exit routines called
from the JES2 main task environment can communicate with the operator through
the $WTO macro. Exit routines called from the HASPCOMM module can
communicate with the JES2 operator through the $CWTO macro. Exit routines
called from a JES2 subtask or during JES2 initialization and termination can
communicate with the operator through the $$WTO and $$WTOR macros or
through the MVS WTO and WTOR macros. Exit routines called from the user
environment or functional subsystem environment can communicate with the
operator through the MVS WTO and WTOR macros. Note that, if a message is to
be associated with jobs processed by a functional subsystem, the job id must be
included with the message. notification. Exits 2, 3, and 4 allow you to send an
exit-generated message to the operator along with certain return codes by setting a
flag in the RXITFLAG byte. Exit 5 allows you to control the standard $CRET macro
“OK” message and to send your own exit-generated message text through the
$CRET macro. Exit 9 allows you to control the standard output overflow message.
Exit 10 allows you control over the text and routing of all $WTO messages. For
details, see the individual exit descriptions.

Required mapping macros
Depending on the environment in which an exit executes, you will need to provide
the appropriate set of mapping macros to map storage areas. Below, listed by
environment, are the standard mapping macros required in order that your exit
routine will assemble properly. The DSECTID for the mapping macro should be
specified on the $MODULE macro. You should also note that individual exits also
require other specific mapping macros. These are listed under the “DSECTIDs TO
BE SPECIFIED ON $MODULE” heading provided for each exit.

Note: The addition of $MODULE in each exit will cause JES2 to pull in required
mapping macros. However, all macros should be explicitly coded to prevent the
return of MNOTEs and the possibility of assembly errors. Be certain your exit
routines conform to JES2 coding conventions. This will allow easier diagnosis if an
error should occur.

20 z/OS V2R1.0 JES2 Installation Exits

JES2 main task environment exits
v 0-5
v 7
v 10-11
v 14-22
v 24
v 26-27
v 38
v 39
v 40
v 44
v 46-47
v 49
v 51

Assuming you minimally code the following for each exit
v COPY $HASPGBL
v $MODULE
v $ENTRY
v $SAVE
v $RETURN
v $MODEND
v END

Required macros
v $CADDR (required by $MODULE)
v $HASPEQU (required by $MODULE)
v $HCT (required by $MODULE)
v $MIT (required by $MODULE)
v $PADDR (required by $MODULE)
v $PARMLST (required by $MODULE)
v $PSV (required by $MODULE)
v $PCE (required by $MODULE)
v $USERCBS (required by $MODULE)

JES2 subtask environment exits
v 6
v 8
v 12

Assuming you minimally code the following for each exit
v COPY $HASPGBL
v $MODULE
v $ENTRY
v $SAVE
v $RETURN
v $MODEND

Chapter 2. Writing an exit routine 21

v END

Required macros
v $CADDR (required by $MODULE)
v $HASPEQU (required by $MODULE)
v $HCT (required by $MODULE)
v $MIT (required by $MODULE)
v $PADDR (required by $MODULE)
v $PARMLST (required by $MODULE)
v $PSV (required by $MODULE)
v $USERCBS (required by $MODULE)

Functional subsystem address space environment exits
v 23
v 25

Assuming you minimally code the following for each exit
v COPY $HASPGBL
v $MODULE
v $ENTRY
v $SAVE
v $RETURN
v $MODEND
v END

Required macros
v $CADDR (required by $MODULE)
v ETD (required to support $HFCT)
v FSIP (required to support $HFCT)
v $HASPEQU (required by $MODULE)
v $HFCT (required by $MODULE)
v $MIT (required by $MODULE)
v $PADDR (required by $MODULE)
v $PARMLST (required by $MODULE)
v $PSV (required by $MODULE)

User environment exits
v 8-9
v 12
v 28-37
v 41-43
v 45
v 48
v 50
v 52-60

22 z/OS V2R1.0 JES2 Installation Exits

Assuming you minimally code the following for each exit
v COPY $HASPGBL
v $MODULE
v $ENTRY
v $SAVE
v $RETURN
v $MODEND
v END

Required macros
v $CADDR (required by $MODULE)
v $HASPEQU (required by $MODULE)
v $HCCT (required by $MODULE)
v $MIT (required by $MODULE)
v $PADDR (required by $MODULE)
v $PSV (required by $MODULE)
v $USERCBS (required by $MODULE)

The following programming considerations describe some specific requirements for
coding your exit routine:
v Naming and Identifying an Exit Routine

You must begin each exit routine with the JES2 $ENTRY macro, which you use
to name the routine and to identify it to JES2.
For more information, see “Packaging Exit Routines” later in this chapter.
Note that you have flexibility in naming your exit routines, under standard
labeling conventions except for Exit 0 (see the description of Exit 0 in
Chapter 12, “IBM-defined exits,” on page 65 for more detail).

v Exit Addressability
The $ENTRY macro is also used to generate a USING statement for your exit
routine. The BASE= operand is used to specify the register or registers which
provide addressability when the exit routine gets control. However, the $ENTRY
macro does not load the base register.

v Source Module Conventions
The construction of a source module must follow certain conventions depending
on how you intend to package the exit routine. Through these conventions, JES2
is able to locate both exit routines and exit points within a module.

v Security
When deciding on whether to implement a specific exit routine, you should
consider whether installing a security product with your other system software
could satisfy your requirements. You should also consider the affect an exit
routine could have in terms of your installation's security policy. Your security
auditing may be inaccurate if you change security information in a control block
in an exit that occurs after access to a resource has already been granted without
additional validation. Similarly, changes made to security information by an exit
that occurs before validation, could cause the validation to fail.

v DBCS Assembly Option
DBCS (Double-byte Character Set) is an option that may be invoked when doing
assemblies. DBCS is a means of providing support for languages which contain
too many symbols to be represented by a single byte character set such as
EBCDIC. JES2 supports the High-Level Assembler DBCS option for JES2 exit

Chapter 2. Writing an exit routine 23

routines. All JES2 macros integral in a customer's JES2 exit will abide by DBCS
option rules, including the continuation line logic. JES2 macros will not have the
same characters specified in both columns 71 and 72. This would be interpreted
as a special DBCS continuation character. IBM does not support the DBCS
option for reassembly of its modules.

User environment exit considerations

Reentrancy
JES2 main task exits do not need to be reentrant because there is only one task
running in the module at a time. However, multiple tasks can be running code in a
user environment exit simultaneously. All user environment exits should be
reentrant. The following are some reentrancy problems often overlooked in JES2
exits:
v Building messages directly in data constants in the local CSECT instead of using

a work area.
v $$WTO processing that sets the command character at the start of a message,

even though the message does not have any replaceable text.
v Inline parameter lists used by MVS macros, such as ENQ and DEQ.
v Storing routine addresses into local (CSECT) storage areas.

Accessing CKPTed Data Area
If you are running code in one of the user environment exits, you might need to
access data that is in the JES2 checkpoint data set. To facilitate this, JES2 maintains
a “live checkpoint version” in the checkpoint version data space. This live version
is an IARVSERV shared copy of the instorage checkpoint data set. It is updated by
the main task as your exit is looking at the data. It is not advisable to run chains in
the live version because the chains can be altered by the main task as you run
them. However, if you know where a needed data area is located (a JQE or a JOE
for example), and the data area is not going away (it is busy on your device),
using a live version is a way to obtain the latest checkpoint data.

If you are in a user environment exit working with a NJE/TCP device (that is you
are running in a NETSERV address space), the following code accesses an
IASDSERV data area that points to the live version (xx in xxWNSST is SR, ST, JR,
or JT for the appropriate device dependent area) :
USING DSERV,R5 Est DSERV addressability
SPACE 1
L R5,xxWNSST Get NSST address
LAE R5,0(R5) Clear access register
L R5,NSSNSCT-NSST(,R5) Get NSCT address
L R5,NSCDSERV-NSCT(,R5) Get live DSERV addr

If you are not sure whether or not you are in a NETSERV address space, you can
obtain an IAZDSERV for the live version using the $DSERV macro. For example:
$DSERV FUNC=GET, Get DSERV

LIVE=YES, Use “live” version
DSERV=(R2) Save address in R2

:
Code using DSERV in R2
:
$DSERV FUNC=FREE, Free DSERV

DSERV=(R2) Address of DSERV to free

24 z/OS V2R1.0 JES2 Installation Exits

Accessing $CATs
Input processing exits might need to access a $CAT to get values for a job being
received or being submitted. To access a $CAT, you need to get an IAZDSERV for
a live version, and then obtain a $CAT from that live version. For example:
$DSERV FUNC=GET, Get DSERV

LIVE=YES, Use “live” version
DSERV=(R2) Save address in R2

SPACE 1
$DOGCAT ACTION=(FETCH,READ), Get CAT for job class

JOBCLASS=JRWDBLE,
DSERV=(R2)

LR R3,R1 Get CAT address
SPACE 1
USING CAT,R3 DECLARE CAT ADDRESSABILITY
:
Process $CAT in R3
:

$DOGCAT ACTION=RETURN,CAT=CAT Return CAT storage
SPACE 1
$DSERV FUNC=FREE, Free DSERV

DSERV=(R2) Address of DSERV to free
SPACE 1
DROP R3 DROP CAT ADDRESSABILITY

If you are implementing code that will only be running in a NETSERV address
space, you can replace the $DSERV calls with the code from the “Accessing
CKPTed Data Area” example to obtain the IAZDSERV from the $NSCT.

Storage considerations
If an exit requires additional storage, use a subpool other than 0, 240 or 250.
Storage allocated in subpool 0 (or in subpools 240 and 250, which are converted to
subpool 0 requests) are given a storage key of 0 and SHARED with the jobstep
TCB. This can cause any program running in a key other than 0 under the jobstep
TCB to experience protection exceptions (abend0c4 rc04) if the program obtained
storage in subpool 0 and attempt to modify it.

One time exit initialization code
Some exits want to perform initialization code the first time they are called, for
example loading a service module or building a table needed for processing.
However, if this is a user environment exit, it is not running in the JES2 address
space and is not main task serialized. Without some special serialization (such as
an ENQ), it is possible that the code is actually being run simultaneously by two
exit invocations. Also, if a data area is being obtained or a module is being loaded,
it is possible that the storage is freed when the current address space terminates.

It is easiest to place any one time initialization logic in the post initialization exit
24. If data addresses need to be passed to other exits, either a $CUCT (an area
pointed to by CCTCUCT in the $HCCT) can be used for a data address or a
$UCADDR (an area pointed to by CCTUCADD and used by $CALL) can be used
for a routine address. Another option is to use a named token. $TOKENSR
provides a JES2 interface to the MVS Name/Token service. You can use tokens to
store data that is needed at some later point in processing.

Chapter 2. Writing an exit routine 25

Tracing
Minimal tracing of exit invocation can be performed automatically as part of the
exit facility. For this tracing to occur, three conditions are necessary:
1. The trace ID for exit tracing (ID 13) must be enabled.
2. The EXIT(nnn) initialization statement or the $T EXIT(nnn) operator command

must have enabled tracing. For more information, see Chapter 9, “Tracing
status,” on page 57.

3. Tracing must be active (TRACEDEF ACTIVE=YES).

This automatic tracing produces a limited trace entry containing such general
information as exit point identification, register contents at the time of exit
invocation, and the contents of the $XPL (if part of the $EXIT interface).

Also, to further trace execution of exit routine code, issue the standard JES2
$TRACE macro call within an exit routine. This results in a full trace record of exit
routine processing.

It is recommended that you use tracing to its fullest extent only in your testing
cycle, and that you limit its use in those areas of the standard processing
environment—for example, in conversion processing—where it is most likely to
degrade system performance.

Recovery
An exit routine should not depend on JES2 for recovery. JES2 cannot anticipate the
exact purpose of an exit routine and, therefore, any standard JES2 recovery that
happens to be in effect when your exit routine is called is, at best, minimal for
your particular needs. In other areas of processing, no JES2 recovery environment
is in effect, and an exit routine error has the potential to cause JES2 to fail.
Consequently, you should provide your own recovery mechanisms within your exit
routines.

For all exits routines for which you provide an $ESTAE routine, also be certain to
add the error recovery area DSECT, $ERA, to the $MODULE macro. On entry into
the recovery routine set up by $ESTAE, register 1 points to the ERA.

You can use the standard JES2 $ESTAE recovery mechanisms in implementing
your own recovery within the JES2 main task. You can use the MVS ESTAE
recovery mechanism in implementing your own recovery in the SUBTASK, USER,
or FSS environments. When recovering in the SUBTASK environment, JES2 frees
the save areas associated with the abending subtask. Your recovery should not
depend on the presence of a particular save area.

At minimum, a recovery mechanism should place a 0 or 4 return code in register
15. Beyond this, recovery depends on the particular purpose of an exit routine.

Loading non-JES2 modules
The $MODLOAD service of JES2 allows for the directed load of modules. It loads
all the modules that JES2 needs for processing. Directed loading allows for
modules to be placed in requestor obtained storage. Modules loaded using the
directed load service do not get the normal contents directory entries (CDE) and

26 z/OS V2R1.0 JES2 Installation Exits

thus cannot be found by other LOADs. However, this implies that these modules
are not deleted as part of task or address space termination unless the storage they
were loaded into is freed.

With logic moving into common storage, non-JES2 modules might need to be
available to JES2 code (and exit code) in common storage. The JES2 $MODLOAD
service supports directed loading non-JES2 modules. This includes placing
non-JES2 modules in common storage. An exit can load a necessary module into
common storage during exit 24 (post initialization) processing, and then use it as
needed. JES2 then deletes the module during JES2 shutdown ($PJES2) processing
when it deletes the other JES2 common storage modules.

Non-JES2 modules can be loaded dynamically after initialization completes. See
“Dynamic Load Modules” on page 31 for more information.

Chapter 2. Writing an exit routine 27

28 z/OS V2R1.0 JES2 Installation Exits

Chapter 3. Controlling the loading of installation-defined load
modules

Loading and placement of installation load modules
Use the LOADmod(jxxxxxxx) initialization statement or the $ADD
LOADmod(jxxxxxxx) command to direct the loading of all installation-defined load
modules (such as user-defined exits). Exit routines must be loaded in this manner,
rather than linking to JES2 load modules. JES2 only searches for
installation-defined exit routines in user modules defined by the
LOADmod(jxxxxxxx) initialization statement or the $ADD LOADmod(jxxxxxxx)
command, in the reserved module names HASPXJ00 – J31, or in HASPXIT0; JES2
does not search for such routines in IBM-defined modules. The STORAGE=
parameter specifies the area of storage where the load module is to be loaded. This
is the copy that JES2 will use. Table 2 presents a summary of the manner in which
JES2 directs the load of a load module based on initial placement of that load
module and the LOADmod(jxxxxxxx) STORAGE= specification.

Note the following restrictions:
v STORAGE=LPA is invalid if the load module is initially placed in STEPLIB only,

LINKLIST only, or both STEPLIB and LINKLIST. JES2 issues message $HASP003
RC(31), MODULE COULD NOT BE LOADED.

v All other STORAGE= requests are valid, but you may not receive the expected
result (see Table 2).

v You cannot load a module into the link pack area (LPA) following MVS
initialization. You may only request that the copy of the module in LPA be used
if multiple copies are found.

Table 2. Directed Load and Use of Modules Based on LOADMOD(jxxxxxxx) STORAGE=
Specification

Location of Module
is:

STORAGE=PVT,
module is found in

STORAGE=CSA,
module is found in

STORAGE=LPA,
module is found in

STEPLIB Only PVT CSA $HASP003

RC=31

LPA Only LPA LPA LPA

LNKLST Only PVT CSA $HASP003

RC=31

STEPLIB and LPA PVT

(STEPLIB)

CSA

(STEPLIB)

LPA

STEPLIB and
LNKLST

PVT CSA

(STEPLIB)

$HASP003

RC=31

LPA and LNKLST LPA LPA LPA

STEPLIB, LPA and
LNKLST

PVT

(STEPLIB)

CSA

(STEPLIB)

LPA

© Copyright IBM Corp. 1988, 2013 29

To place the load module either above or below 16 megabytes, use the linkage
editor MODE statement or specify the RMODE= parameter on the $MODULE
macro.

Figure 6 illustrates two ways to package an exit routine:

A JES2 $MODULE macro must be the first code-generating statement (immediately
preceded by COPY $HASPGBL) in a source module to be assembled and either
link edited separately and loaded at initialization or a source module to be added
to a standard JES2 load module.

Note: The $MODULE macro call must occur prior to the first use of $ENTRY or
$EXIT, and a JES2 $MODEND macro must be coded at the end of both types of
source modules.

You can only code one $MODULE and one $MODEND macro in each source
module. Further, when link editing exits into their own load modules (other than
HASJES20), each source module must be linked into its own load module.

To locate the MITs of modules that are added to the standard JES2 load modules,
JES2 uses weak external address constants. To locate the MITs of modules that are
linked in their own load modules, JES2 assumes that the MIT, generated by
$MODULE, is located at the front of the load module to which it points. The
MITETBL, generated by $MODULE, is located at the end of a module loaded at
initialization.

LINKEDIT

LINKEDIT

JES2

HASPXITO

JES2

HASPXITO

EXIT
ROUTINE

EXIT
ROUTINE

EXIT
ROUTINE

EXIT
ROUTINE

OBJLIB

OBJLIB

As a totally separate load module

As part of HASPXITO

LINKLIB

LINKLIB

1

1

2

2

Figure 6. Methods of Packaging an Exit Routine

30 z/OS V2R1.0 JES2 Installation Exits

Note: For all exit routine source modules, that if an exit routine references the
symbolic name of a control block field, the mapping macro for that control block
must be included in the $MODULE macro list in the same source module as the
exit routine at assembly time.

Furthermore, see Appendix C, “Hints for Coding JES2 Exit Routines” for a list of
required mapping macros for individual exits. These macros are environment
dependent and must be coded to prevent assembly errors and error messages.

The ENVIRON= operand of the $MODULE macro should be used to specify which
JES2 operating environment the exit routine(s) is to execute. Each exit description
in the “IBM-Defined Exits” reference section in Chapter 12, “IBM-defined exits,” on
page 65 includes a list of mapping macros normally required at assembly.

Dynamic Load Modules
Dynamic load modules provide the following functions:
v Load, refresh, and delete installation load modules, which are not part of the

IBM base JES2 code, after JES2 initialization processing. The dynamic table pairs
and exit routine addresses are updated as needed. The load modules provide
load and delete routines to perform any processing that might be needed to
adjust data pointers JES2 does not process.

Note: This function does not support base JES2 modules, so it can NOT be used
to apply IBM service.

v Alter the list of routines associated with an exit point through operator
command.

When building a load module with exit routines and dynamic tables, you must
decide whether you want to support dynamically loading or deleting these
modules after initialization. This is especially useful in a test environment where
new versions of a failing exit can be activated without a restart. Depending on the
processing done in your exits, supporting dynamic loading and deleting might
require no additional code or only a reorganization of your existing logic.

Making load modules dynamically loadable will increase the amount of testing
you need to do. You need to not only test the function implemented by your
modules, but also ensure that everything works after the module is dynamically
loaded, refreshed or deleted. The advantage of dynamic load modules is that when
you find a problem in your module, you can correct the problem and get a new
version of your code running without major disruptions. If the problem is bad
enough, you can delete the module, fix it, and load the fixed version.

If the code is tested and placed in a production environment, IBM suggests that
you do not make loading, refreshing, or deleting load modules as a part of your
normal operations. This is because it is not always possible to delete old modules
from storage. JES2 only deletes a module from storage if it will surely not be used.
Some of these old modules will take up space until JES2 or z/OS is restarted
(depending on where the module is loaded). Loading, refreshing, and deleting load
modules in a production environment must be reserved for emergency situations
(if it would save or delay an IPL) or for modules that IBM service has provided to
collect additional diagnostic information. If a production environment needs to be
altered on a regular basis, it would be better to alter the list of routines associated
with an exit point rather than altering what modules are loaded.

Chapter 3. Controlling the loading of installation-defined load modules 31

Dynamic Load Module Considerations
When writing new load module or updating an existing module to support
dynamic processes, you need to consider the following things:
v The data areas that the modules access. You need to consider the following

questions:
– Does the module accesses a data area that has been created by the

installation?
– How are these data areas created?
– What points to the data area?
– Is the area dynamically obtained or is it an area within the load module?

If the exits and tables only access JES2 and z/OS data areas, this is not a
concern. Also, if the data area is contained within the module and there are no
external pointers to the data area, then that also is not a concern. However, if the
data area is installation specific and the address is obtained using a pointer
external to the load module (such as the $UCT pointer in the $HCT), then you
need to consider:
– How is the data area set up? If it is only used by this module, then is a

$$$$LOAD routine needed to initialize it?

Note: See “$$$$LOAD Routine” on page 33 for a description of the
$$$$LOAD routine.

– Does the code deal with the case where the data area already exists (or does
it create a second data area)?

– Is the data area in common storage?
– Does it need to be deleted when this module is deleted or when JES2

terminates? Is a $$$$DEL routine needed to free the data area?

Note: See “$$$$DEL Routine” on page 36 for a description of the $$$$DEL
routine.

– Does anything special need to be done if the module is refreshed instead of
being deleted?

– If the data area is in the load module, are there pointers that need to be
cleared if the module is deleted or refreshed?

– If the data area is managed by an exit 24 (JES2 initialization) and exit 26 (JES2
termination) pair, should that processing be moved to a $$$$LOAD and a
$$$$DEL routine?

In general, $$$$LOAD and $$$$DEL routines can solve most data area problems
to enssure the proper flexibility to alter the data area as needed.

v The creation of installation PCEs (subdispatchable units in the JES2 address
space) or DTEs (subtasks in the JES2 address space). If the PCEs or DTEs are
defined using dynamic tables or traditional table pairs, the appropriate PCE or
subtask is started as part of normal JES2 initialization. However, with dynamic
load modules, the installation code decides attaching and detaching the PCEs or
DTEs as needed. In general, the simplest way to deal with PCEs and DTEs is to
use the appropriate $PCEDYN or $DTEDYN macro to detach the old (existing)
PCEs or DTEs in the $$$$DEL routine and reattach them in the $$$$LOAD
routine. To ensure that the PCEs can be attached after initialization, be sure to
code the DYNAMIC=YES keyword on the $PCETAB macro that defines the PCE.

You also need to consider some other things when creating dynamic load modules:

32 z/OS V2R1.0 JES2 Installation Exits

v If you are converting an existing exit to be dynamic, is there logic in exit 24
(post initialization) that should be moved to a $$$$LOAD routine?

v If you are converting an existing exit to be dynamic, is there logic in exit 26
(JES2 termination) that should be moved to a $$$$DEL routine?

v Does the installation module include code that front ends or replaces a JES2
service? Front ending is the process of replacing the address of a JES2 service in
the $CADDR, $PADDR, $HCT or other data area, with the address of a routine
in the module and then calling the JES2 service only after the installation routine
runs. If so, care must be taken to ensure that the routine addresses are updated
if the installation load module is refreshed or deleted. This is especially true at
JES2 termination processing since some are called after installation load modules
are deleted at JES2 termination.

Note: IBM recommends that you do not front end IBM services. Designing a
function that requires front ending IBM services could limit your ability to
exploit future IBM functionality to refresh IBM services dynamically.

v Traditional (non-dynamic) tables that are set in the $MCT data area (or other
table pairs) must be updated as modules are loaded or deleted. In general, use
of non-dynamic tables can be converted to dynamic tables (which JES2 will
automatically process). Otherwise, code can be added to the $$$$LOAD and
$$$$DEL routines to handle updating these pointers.

If your load module cannot support dynamic processes, there are a number of
options to prevent unintended processing:
v Setting DYNAMIC=NO on the $MODULE statement of the load module will

prevent all dynamic processing for this load module. Initialization processing is
not affected. Any $$$$LOAD or $$$$DEL routines in the module will be called
out of JES2 initialization and termination processing.

v From a $$$$LOAD routine, set the LMT2NDYN bit in flag byte LMTFLG2. The
LMT of the module being loaded is passed to the $$$$LOAD routine in the
$CSVPARM data area. If done during initialization, this has the same effect as
setting DYNAMIC=NO on the $MODULE. However, if the module was not
loaded during initialization, using this technique allows the module to be loaded
after initialization but not deleted or refreshed later.

v If you can support dynamic processes but there are tables or routines in your
module that cannot be deleted, then you can set a return code 8 from a $$$$DEL
routine. This prevents the module from being physically deleted. You should be
careful not to set it for every call to the $$$$DEL routine since if the module is
refreshed multiple times, you only need to keep the first copy of the load
module in storage. The $$$$DEL processing should determine if the specific
copy of the module that being deleted is the one that needs to remain.

$$$$LOAD and $$$$DEL routines
$$$$LOAD and $$$$DEL are reserved routine names on the EXIT
ROUTINES=xxxxx initialization statement and the $T EXIT,ROUTINES=xxxx
command. The two reserved routines process when a module is loaded at
initialization or is logically deleted at normal JES2 termination.

$$$$LOAD Routine
When a load module is loaded by the LOADMOD initialization statement, the
$ADD LOADMOD command, or the $T LOADMOD,REFRESH command, JES2
searches the load module for a $ENTRY macro with the name $$$$LOAD. If the
module is found, JES2 calls it after all dynamic tables are linked in.

Chapter 3. Controlling the loading of installation-defined load modules 33

If the load module is loaded by the $T LOADMOD,REFRESH command, JES2
processes the following steps:
1. Load new copy of module into storage and verify it is valid.
2. Call the $$$$DEL routine for the old module.
3. Replace any exit routine addresses that point into the old module with

corresponding addresses in the new load module. If no corresponding routine
is found in the new module, the routine address is nullified (the routine is not
called).

4. Replace dynamic tables that point into the old module with corresponding
tables in the new module.

5. Delete any dynamic tables that still point to the old module.
6. Connect any dynamic tables in the new module that have not been connected

yet.
7. Call the $$$$LOAD routine for the new module.
8. Attempt to delete the old module from storage.

Note: The $T LOADMOD,REFRESH command can be issued for an LPA module
that is not altered. The new and the old modules are at the same address with two
LMTs representing the two modules correspondingly. In this case, the $$$$LOAD
and $$$$DEL routines are called.

Environment: $$$$LOAD is called in the JES2 main task limited environment (JES2
initialization) and the JES2 main task environment.

Recovery: $ESTAE recovery is in effect. However, the $$$$LOAD routine should not
depend on JES2 for recovery. You should provide your own recovery within your
$$$$LOAD routine.

Point of processing: After module has been loaded but before control is returned
to the requestor of the load.

Register contents when $$$$LOAD gets control:

R0 Not applicable

R1 Address of a parameter list mapped by $CSVPARM

R2-R10
Not applicable

R11
Address of the HCT

R12
Not applicable

R13
Address of current PCE (may be initialization PCE)

R14
Return address

R15
Entry address

$CSVPARM (pointed to by register 1 on entry) contains the following bits:

34 z/OS V2R1.0 JES2 Installation Exits

CSVPID
Eye catcher ('CSVP')

CSVPSIZE
Size of parameter list

CSVPVER
Current version of base section (1)

CSVPTYPE
Routine identifier

CSVPLOAD
Indicates $$$$LOAD routine

CSVPLMT
Address of LMT being loaded

CSVPMIT
Address of module/MIT being loaded

CSVPLCMD
Reason for load:

CSVPLCJS
JES2 performing load

CSVPLCIN
LOADMOD init statement

CSVPLCAL
$ADD LOADMOD command

CSVPLCRL
$T LOADMOD,REFRESH command

CSVPLLOC
Where the module was loaded:

CSVPLPVT
Loaded to JES2 private

CSVPLCSA
Loaded to common storage

CSVPLLPA
Loaded to LPA

CSVPLOLD
Address of LMT being replaced (for the $T LOAD,REFRESH command)

CSVPL$DR
Address of an additional $$$$DEL routine (see LPA processing below). This
routine gets control before a $$$$DEL routine in the module is processed.

Register contents when $$$$LOAD passes control back to JES2:

R0-R1
Not applicable (ignored)

R2-R13
Not applicable (unchanged)

R14
Not applicable (ignored)

Chapter 3. Controlling the loading of installation-defined load modules 35

R15
Zero (CSVPLROK)

JES2 does not recognize any return codes from this routine. However, IBM
suggests setting R15 to zero to indicate successful processing in case future
development adds a return code to this routine.

$$$$DEL Routine
When a load module is deleted because of the $DEL LOADMOD command, the $T
LOADMOD,REFRESH command, or a second LOADMOD initialization statement
for the same module, JES2 searches the load module for a $ENTRY macro with the
name $$$$DEL. If the module is found, JES2 calls it as the first step in the delete
processing for the module.

If the load module is deleted by the $T LOADMOD,REFRESH command, JES2
processes the following steps:
1. Load new copy of module into storage and verify it is valid.
2. Call the $$$$DEL routine for the old module.
3. Replace any exit routine addresses that point into the old module with

corresponding addresses in the new load module. If no corresponding routine
is found in the new module, the routine address is nullified (the routine is not
called).

4. Replace dynamic tables that point into the old module with corresponding
tables in the new module.

5. Delete any dynamic tables that still point to the old module.
6. Connect any dynamic tables in the new module that have not been connected

yet.
7. Call the $$$$LOAD routine for the new module.
8. Attempt to delete the old module from storage.

Note: The $T LOADMOD,REFRESH command can be issued for an LPA module
that is not altered. The new and the old modules are at the same address with two
LMTs representing the two modules correspondingly. In this case, the $$$$LOAD
and $$$$DEL routines are called.

Environment: $$$$DEL is called in the JES2 main task limited environment (JES2
initialization) and the JES2 main task environment.

Recovery: $ESTAE recovery is in effect. However, the $$$$DEL routine should not
depend on JES2 for recovery. You should provide your own recovery within your
$$$$DEL routine.

Point of processing: As the first step in the processes of deleting a module, before
any tables have been unplugged or routine addresses cleared.

Register contents when $$$$DEL gets control:

R0 Not applicable

R1 Address of a parameter list mapped by $CSVPARM

R2-R10
Not applicable

36 z/OS V2R1.0 JES2 Installation Exits

R11
Address of the HCT

R12
Not applicable

R13
Address of current PCE (may be initialization PCE)

R14
Return address

R15
Entry address

$CSVPARM (pointed to by register 1 on entry) contains the following bits:

CSVPID
Eye catcher ('CSVP')

CSVPSIZE
Size of parameter list

CSVPVER
Current version of base section (1)

CSVPTYPE
Routine identifier

CSVPDEL
Indicates $$$$DEL routine

CSVPLMT
Address of LMT being deleted

CSVPMIT
Address of module/MIT being deleted

CSVPLCND
Reason for delete:

CSVPDCJS
JES2 performing delete

CSVPDCIN
LOADMOD init statement

CSVPDCDL
$DEL LOADMOD command

CSVPDCRL
$T LOADMOD,REFRESH command

CSVPDCTR
$PJES2 processing

CSVPDCSC
Secondary call

CSVPDIND
Call flags:

CSVPDSND
Second call after a RC 4/8

Chapter 3. Controlling the loading of installation-defined load modules 37

CSVPDFRC
Module being force deleted

CSVPDFRE
Storage for module has been freed

CSVPDNEW
Address of LMT for new module that was loaded (for the $T LOAD,REFRESH
command)

Register contents when $$$$DEL passes control back to JES2:

R0-R1
Not applicable (ignored)

R2-R13
Not applicable (unchanged)

R14
Not applicable (ignored)

R15
Return code (ignored if this is a force delete)

Return code processing: Return codes from the $$$$DEL routine are ignored if the
module is being force deleted (CSVPDFRC bit on). Otherwise the following
processing occurs based on the return code:

CSVPDROK (0)
Continue deletion normally. This routine will not be called again.

CSVPDRNN (4)
Do not delete the module now. JES2 will delete dynamic tables and exit
routines without freeing the storage. $$$$DEL will be called again if all users
of the module are gone (with CSVPDSND set). If the second call give a return
code 4, $$$$DEL will be called again at about a five minute interval. However,
if needed, JES2 can make a force delete call prior to the timer expiring.

CSVPDRND (8)
Process the same as RC=4 except that JES2 will not call the $$$$DEL routine
again except for the following two cases:
v A force delete of the module is required because of a JES2 termination or an

LPA deletion.
v A JES2 hot start and the load module is in CSA or LPA. In this case, any

processing for this module on a hot start is allowed though this is a call to
the $$$$DEL routine. Normal return code processing occurs.

Special Considerations for LPA Modules
Special considerations need to be given to installation load modules placed in LPA.
These modules are not actually loaded, deleted or refreshed by JES2. Instead they
are managed by MVS using dynamic LPA services and commands.

When JES2 loads a module in LPA, it simply locates the address of the module
with a specified name in LPA. If this loading is caused by a $T
LOADMOD,REFRESH command, the LPA module might not be changed and JES2
will reset all its pointers. Therefore, there will be two LMTs, one representing the
module being deleted and one representing the same module being loaded. The
appropriate $$$$DEL and $$$$LOAD routines are called. Special logic might be
needed in these routines to properly handle the fact that the new and old modules

38 z/OS V2R1.0 JES2 Installation Exits

are at the same address. In particular, if there is a code in the $$$$DEL routine that
examines pointers to see if they point into the module being deleted, then in this
case, there will be pointers into the old module. However, these pointers are not
residual and need to be maintained.

Another consideration with dynamic LPA is the ability for a module to be deleted
out from under JES2 using the MVS dynamic LPA commands. It is not expected
that this would happen under normal circumstances but JES2 attempts to deal with
this situation, should it arise. JES2 is notified after a module has been physically
deleted from storage. It marks the LMT to indicate the module has been freed and
schedules the module for logical deletion (removal of pointers to the deleted
module). Normally logical deletion occurs first but in this case JES2 has no control
over the physical deletion. As part of logical deletion JES2 will attempt to call a
$$$$DEL routine. Unfortunately, since the module is no longer in storage, the
module cannot be searched for a normal $$$$DEL routine. However, at the time a
module is loaded, the $$$$LOAD routine has the ability to specify the address of
an additional $$$$DEL routine in the $CSVPARM data area (field CSVPL$DR).
This routine cannot be in the module since it is intended for the case when module
has been deleted. Instead, it should be in code the $$$$LOAD routine has obtained
and copied a routine into. It is expected that this routine would set some indicator
that the function implemented by this routine is no longer active. Or issue a
message that things are no longer functioning.

Chapter 3. Controlling the loading of installation-defined load modules 39

40 z/OS V2R1.0 JES2 Installation Exits

Chapter 4. Enabling an exit

Figure 7 shows how an exit routine (HASPUEX) can be assembled and link-edited,
and how to use the load module name. The source is in SYS1.JESEXITS, and the
load module is linked into SYS1.SHASLNKE with the name of HASPUEX. This
name must also appear on the LOADmod(jxxxxxxx) initialization statement.

The following JES2 initialization statements can be used to load and associate Exit
1 with the above routine. Note that the name on the LOADmod(jxxxxxxx)
statement must match the load module specified to the linkage editor, and the
name on the ROUTINE= parameter on the EXIT(nnn) statement must be the
same name as on the $ENTRY macro.

LOADMOD(HASPUEX) STORAGE=PVT
EXIT(1) ROUTINE=UEXIT1,STATUS=ENABLED,TRACE=NO

Figure 8 on page 42 shows an example exit routine for a user defined exit
(UEXIT1). The source is in SYS9.TECH, and the load module is linked into
SYS9.TECH.LINKLIB with the name of UEXIT1. This name must also appear on
the LOADmod(jxxxxxxx) initialization statement.

//ASM EXEC PGM=IEV90,PARM=’OBJECT,NODECK,XREF(SHORT)’
//SYSLIB DD DSN=SYS1.VnRnMn.ahassrc,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.AMODGEN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(1200,300))
//SYSPRINT DD SYSOUT=A
//SYSIN DD DSN=SYS1.JESEXITS(HASPUEX),DISP=SHR
//SYSLIN DD DSN=&&OBJ,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(CYL,(1,1))
//LINK EXEC PGM=HEWL,COND=(0,LT,ASM),
// PARM=’XREF,LET,REUS’
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=SYS1.SHASLNKE,DISP=OLD
//SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE)
// DD *
NAME HASPUEX(R)
/*

Figure 7. Example of Assembly and Link-Edit of a Installation-Written Routine

© Copyright IBM Corp. 1988, 2013 41

//STEP1 EXEC PROC=SMPE
//SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB
// DD DISP=SHR,DSN=SYS1.MODGEN
// DD DISP=SHR,DSN=SYS1.V2R10M0.SHASMAC
//SOURCECD DD DISP=SHR,DSN=SYS9.TECH.SOURCE
//SYSPRINT DD SYSOUT=*
//SMPSTS DD DISP=SHR,DSN=SMPE.MVST110.SMPSTS
//TARGET DD DISP=SHR,DSN=SYS9.TECH.LINKLIB
//TECHTX DD DSN=SYS9.TECH.SOURCE,DISP=SHR
//SMPCSI DD DISP=SHR,DSN=SMPE.MVS.GLOBAL.CSI
//SMPPTFIN DD DATA,DLM=$$
++USERMOD(HASXT01) /* IDENTIFY USERMOD */.
++VER(Z038) FMID(HJE7703).
++JCLIN.
//NPL102RA JOB (0020900),’TECH SVCS’,CLASS=Z,MSGCLASS=Y,NOTIFY=NPL102
//ASM1 EXEC PGM=ASMA90,REGION=2M,
// PARM=’DECK,NOOBJECT,XREF(SHORT)’
//SYSIN DD DISP=OLD,DSN=SYS9.TECH.LINKLIB(UEXIT1)
//SYSLIN DD DISP=OLD,DSN=SYS9.TECH.OBJLIB(UEXIT1)
//*
//LINK1 EXEC PGM=IEWL,PARM=’XREF,LIST,NORENT’
//SYSLIN DD DISP=OLD,DSN=SYS9.TECH.OBJLIB(UEXIT1)
//SYSLMOD DD DISP=SHR,DSN=SYS9.TECH.LINKLIB
//SYSLIN DD *

INCLUDE TECH(UEXIT1)
ENTRY UEXIT1
NAME UEXIT1(R)

//*
++SRC(UEXIT1) SYSLIB(SMPSTS) DISTLIB(LINKLIB) TXLIB(TECHTX).
$$
//SMPCNTL DD *

SET BDY(MVST110).
RESTORE SELECT(HASXT01) COMPRESS(ALL).

RESETRC.
SET BDY(GLOBAL).

REJECT SELECT(HASXT01) BYPASS(APPLYCHECK) COMPRESS(ALL).
RESETRC.
RECEIVE SELECT(HASXT01) SYSMODS LIST.

SET BDY(MVST110).
APPLY SELECT(HASXT01) REDO ASSEM BYPASS(ID) .

//

Figure 8. Example of an Exit Routine Employing a User Defined Exit

42 z/OS V2R1.0 JES2 Installation Exits

Chapter 5. Getting listings of JES2 data areas

When writing and debugging an installation exit, it is sometimes useful to get
listings of JES2 data areas similar to what is available in the z/OS data areas
books. There are a number of ways to do this depending on what data you need.

To get a listing of all the JES2 data areas, you can assemble the module HASPDOC;
the JES2 source code distribution library SYS1.SHASSRC provides this module. You
can assemble this module by using either SMP/E, the sample JES2 assembly PROC
HASIASM in SYS1.SHASSAMP, or using your own assembly procedure. The
output listing contains all the JES2 data areas. If you request the assembler produce
a full cross reference using the XREF(FULL) parameter, you will get an alphabetic
listing of all the symbols.

You can also use the same source module to get a listing of the z/OS data areas
that JES2 uses. To do this, include the assembler parameter
SYSPARM((,,,GEN,GEN)) on the assembly. You can find the operands of SYSPARM
for any JES2 module in z/OS JES2 Macros under the SYSP= operand of the
$MODULE macro.

If you need a listing of just one data area (either JES2 or z/OS), you can create an
assembler module with only a $MODULE statement listing the data areas you
want listings for and an END statement. The following is an example of an
assembler module that creates a listing of the JES2 $HCT data area. The assembler
listing produced will have only the $MODULE expansion and the $HCT data area:

$MODULE ($HCT,GEN)
END

This method works for any mapping macro supported by $MODULE. All required
macros for the assembly are automatically included and only the requested data
area is generated in the listing. You can get more than one data area by just adding
it to the $MODULE list:

$MODULE ($HCT,GEN),($PCE,GEN)
END

This gets the $HCT and the $PCE data areas.

You can also add the GEN operand to data area specifications in the $MODULEs
in your exits. This puts any requested data areas on to the listing for your exits.

If there is no label on the $MODULE and the only operands specified are the data
areas to generate, $MODULE will not generate the JES2 $MIT data structure. If you
do place a label on the $MODULE invocation or add any other operands,
$MODULE will attempt to build a JES2 load module. Without other structures, it
might get assembly errors. Using a $MODULE without operands or a label can be
useful when you need to include JES2 mapping macros in code that is not going to
be run as a JES2 exit.

© Copyright IBM Corp. 1988, 2013 43

44 z/OS V2R1.0 JES2 Installation Exits

Chapter 6. Sample exit routines

For most exits, IBM provides sample exit routines in SYS1.SHASSAMP. The
documentation for each exit indicates whether a sample routine has been provided.

© Copyright IBM Corp. 1988, 2013 45

46 z/OS V2R1.0 JES2 Installation Exits

Chapter 7. Multiple exit routines in a single module

When developing and testing installation exits, it is probably easier to keep each
exit routine in its own source and load module. In this manner, the routines can be
assembled, loaded, and tested independently. If there are many routines, you may
want to eventually combine them into a single source and load module for easier
maintenance procedures.

Figure 9 on page 48 shows three exit routines in a single module with a general
structure that you may want to follow.

© Copyright IBM Corp. 1988, 2013 47

XITS TITLE ’SAMPLE JES2 INSTALLATION EXITS - PREAMBLE’
* *
* COMMENT BLOCK FOR MODULE GOES HERE *
* *

COPY $HASPGBL COPY HASP GLOBALS
HASPUEX $MODULE ENVIRON=JES2, REQ’D BY $BUFFER C

RPL, C
$BUFFER, C
$CAT, C
$DCT, C
$HASPEQU, REQUIRED FOR REG CONVENTIONS C
$HCT, REQ’D BY $SAVE,$RETURN,ETC. C
$JCT, C
$JOE, REQ’D TO GET SYSOUT CLASS C
$JQE, C
$MIT, REQ’D BY HCT C
$PCE, REQ’D BY HCT C
$PDDB, REQ’D BY $PPPWORK C
$PPPWORK, REQ’D TO FIND JOE C
$RDRWORK

* *
* ADDITIONAL MAPPING MACROS GO HERE *
* *

TITLE ’SAMPLE SEPARATOR PAGE EXIT - ROUTINE 1’

* *
* COMMENT BLOCK FOR EXIT 1 GOES HERE *
* *

XIT1RTN1 $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$SAVE
LR R12,R15 LOAD BASE REGISTER

* *
* INSTALLATION EXIT CODE FOR EXIT 1 ROUTINE 1 GOES HERE *
* *

LA R15,8 SET RETURN CODE
RETURN1 $RETURN RC=(R15) RETURN TO HASPPRPU

TITLE ’SAMPLE SEPARATOR PAGE EXIT - ROUTINE 2’
XIT1RTN2 $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$SAVE
LR R12,R15 LOAD BASE REGISTER

TITLE ’SAMPLE SEPARATOR PAGE EXIT - ROUTINE 1’

* *
* INSTALLATION EXIT CODE FOR EXIT 1 ROUTINE 2 GOES HERE *
* *

LA R15,8 SET RETURN CODE
RETURN2 $RETURN RC=(R15) RETURN TO HASPPRPU

LTORG
TITLE ’JOB CARD SCAN EXIT’

* *
* COMMENT BLOCK FOR EXIT 2 ROUTINE 1 GOES HERE *
* *

XIT2RTN1 $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$SAVE
LR R12,R15 LOAD BASE REGISTER

* *
* INSTALLATION EXIT CODE FOR EXIT 2 ROUTINE 1 GOES HERE *
* *

LA R15,8 SET RETURN CODE
$RETURN RC=(R15) RETURN TO HASPRDR
LTORG
$MODEND

48 z/OS V2R1.0 JES2 Installation Exits

The following JES2 initialization statements can be used to load and associate exit
points 1 and 2 with the above routines.

LOADMOD(HASPUEX) STORAGE=PVT
EXIT(1) ROUTINE=(XIT1RTN1,XIT1RTN2),STATUS=ENABLED,TRACE=NO
EXIT(2) ROUTINE=XIT2RTN1,STATUS=ENABLED,TRACE=NO

Chapter 7. Multiple exit routines in a single module 49

50 z/OS V2R1.0 JES2 Installation Exits

Chapter 8. Testing your exit routine

To test your exit routine you need to integrate your exit routine in the system,
ensure that it gets control and executes, and verify that the functions it is intended
to perform are performed. Verifying that the exit routine performed its function is
exit routine-dependent and unique for each exit routine.

You should test and debug your exit routine by running it on a secondary JES2
first. In this way, any errors that occur do not directly affect your main JES2
production system. When the errors in the exit routine are fixed and tested, you
can then integrate it into the production JES2 system. Note that the following
restrictions apply to JES2 functions when using a secondary JES2:
v Started tasks (STCs) can be directed to either a primary or secondary JES.

However, following an IPL, started tasks do not complete start processing until
the primary subsystem has been started and completed initialization.

v Time-sharing users (TSUs) may only interface with the primary JES2.
v The MVS I/O attention table can only be associated with the primary JES.

Therefore, secondary JESs cannot receive the “unsolicited interrupt” required to
support pause-mode for print and punch devices and “hot readers” (that is,
readers started through the physical start button without the $S RDRn JES2
command).

v The MVS log console (SYSLOG) can only be associated with the primary JES.
v Secondary subsystems are started individually rather than automatically during

IPL by a start command in the master scheduler JCL (MSTJCL) as is the primary
subsystem.

Dynamic loading of modules can simplify the testing of exit routines. JES2
commands allow you to incorporate a new version of your exit routine without the
need for an IPL (for user or FSS environment exits), or a restart of JES2 (for JES2
main task or subtask exits). Installation modules can be dynamically loaded,
deleted, and refreshed using the $ADD LOADmod(jxxxxxxx), $DEL
LOADmod(jxxxxxxx), and $T LOADmod(jxxxxxxx),REFRESH commands. The list
of routines associated with a JES2 exit can be dynamically changed with the $T
EXIT(nnn),ROUtines= or the $T EXIT(nnn),REFRESH command. See “Dynamic
Load Modules” on page 31 for more detailed information about the dynamic
loading of modules. See z/OS JES2 Commands for more information about the
commands mentioned above.

Packaging the exit
Exit routines need to be packaged into load modules before they can be loaded
into the system and tested.

Modules that contain exit routines which execute in the JES2 main task or subtask
environment can be linkedited into a load module; these exits should be loaded
into private storage. Modules that contain exits in the user or functional subsystem
environment can be linkedited together and must be in either LPA or CSA; these
exits must be loaded into common storage. Do not linkedit multiple exit points
that must be loaded into different areas of storage into the same load module.

© Copyright IBM Corp. 1988, 2013 51

You can also link edit your exit routines with HASJES20. When you package your
exit routines in this manner, it is required that you use a collection of weak
external names for the module names. These names should be the same as the
label used on the $MODULE macro of your exit routine. For HASJES20 the “weak
external names” are as follows: HASPXJ00, HASPXJ01, ..., HASPXJ31.

You may choose to use one of these packaging techniques exclusively, or you may
choose to use both methods in combination, assembling and link editing some
routines into the standard JES2 load modules and assembling and link editing
others separately and then loading them at initialization. Creating separate load
modules for your exit routines is recommended. JES2 never makes unconditional direct
references to external addresses or entry points in installation-written code. The
association between exit routines and JES2 source code is resolved during
initialization, or when processing JES2 commands that dynamically change the
installation exit environment (for example, $T EXIT(nnn)).

Figure 10 illustrates a separately linkedited load module for an exit routine and the
MIT and MITETBL structure associated with it. JES2 initialization uses this load
module and the information in the MIT and MITETBL to initialize the exit routine
in the system. The next topic describes this initialization process.

Initializing the exit in the system
Initializing an exit and its exit routines involve the use of the following JES2
initialization statements or JES2 commands:
v LOADMOD(jxxxxxxx) or $ADD LOADmod(jxxxxxx)

Use the LOADMOD(jxxxxxxx) initialization statement or the $ADD
LOADmod(jxxxxxx) command to load the modules containing your exit
routines. The subscript of the LOADMOD initialization statement or the $ADD
LOADmod(jxxxxxx) command specifies the name of the module to be loaded as
defined on the NAME control statement for the linkage editor. The module must

NAME

BIT MAP

MITETBL

EXIT ROUTINE 1

EXIT ROUTINE 2

NAME
NAME

MITETBL

MIT

V-CON
V-CON

{

{
Figure 10. Exit Routines Load Module

52 z/OS V2R1.0 JES2 Installation Exits

be named according to MVS naming conventions. Exit routines to be called from
the user or FSS environment can be loaded into CSA or you can request the LPA
version be used by specifying the STORAGE=LPA | CSA parameter specification
on the LOADMOD(jxxxxxxx) initialization statement or the $ADD
LOADmod(jxxxxxx) command. Exit routines to be called from the JES2 main
task and subtask environments should be loaded in the private area of the JES2
address space. To place the load module either above or below 16 megabytes,
use the linkage editor MODE statement or specify the RMODE= parameter on
the $MODULE macro.

v $DEL LOADmod(jxxxxxxx) or $T LOADmod(jxxxxxxx),REFRESH
Use the $DEL LOADmod(jxxxxxxx) or the $T LOADmod(jxxxxxxx),REFRESH
command to delete or refresh the modules that contain your exit routines. The
subscript of the commands specifies the name of the module that was previously
loaded by a $ADD LOADmod(jxxxxxx) command, or a LOADMOD(jxxxxxxx)
initialization statement.

v EXIT(nnn) or $T EXIT(nnn),ROUtines=(xxxxxxxx) command
Use the EXIT(nnn) initialization statement or the $T
EXIT(nnn),ROUtines=(xxxxxxxx) command to associate one or more exit routines
with an exit.
Replace nnn, the exit number, with the corresponding exit identification number
specified on the $EXIT macro or macros that define the exit point or points that
establish the exit. The ROUTINES= parameter can then specify 1 to 255 exit
routine names, as specified on the $ENTRY macro symbol field or macros that
identify the corresponding exit routines. For example, you can specify EXIT(123)
ROUTINES=(rtn1, rtn2, rtn3). The JES2 exit effector calls multiple exit routines in
the sequence of their specification on the EXIT(nnn) statement. If you specify
more than one EXIT(nnn) statement with the same identification number, JES2
honors the last statement it encounters during initialization. This specification
can be changed post-initialization with the $T EXIT(nnn),ROUtines=(xxxxxxxx)
command. This command not only allows the complete replacement of the list of
routines associated with an exit, but also allows routines to be added to or
removed from the existing list. See z/OS JES2 Commands for more information
about changing the list of routines associated with an exit.

Note: The LOADMOD(jxxxxxxx) and EXIT(nnn) initialization statements are not
positional and do not have to be specified in any required order.

JES2 associates an exit with a routine in the module that was most recently loaded
(by either a LOADMOD(jxxxxxxx) initialization statement or a $ADD
LOADmod(jxxxxxxx) command).

Note: A $ADD LOADmod(jxxxxxxx) command does not automatically update the
exits which refer to routines in the newly loaded module. The exits must be
refreshed (by a $T EXIT(nnn),REFRESH command) or changed (by a $T
EXIT(nnn),ROUtines= command) to use those routines.

However, a refresh is not needed to update dynamic tables. Dynamic tables are
automatically added, deleted, or refreshed when the applicable JES2 command is
issued. In addition, a refresh is not needed to update exits that refer to routines in
a deleted or refreshed module. When an exit is associated with a routine that
resides in a deleted module, even if the module resides in LPA, the routine will no
longer be invoked for the exit (routine address of the exit is nullified). When an
exit is associated with a routine that resides in a refreshed module, if the routine
exists in the newly loaded module, the routine in the newly loaded module will be

Chapter 8. Testing your exit routine 53

invoked for the exit; if the routine is absent in the newly loaded module, the
routine will no longer be invoked for the exit.

In all cases, a $T EXIT(nnn),REFRESH command refreshes those exits so that they
will invoke routines in the most recently loaded module.

Figure 11 illustrates the primary parts of JES2 and their location in storage when
initialization completes.

A User environment

B User environment

C JES2 main task and subtasks

Figure 11. Exit Placement

54 z/OS V2R1.0 JES2 Installation Exits

Passing control to exit routines
Every exit has a status of enabled or disabled. If an exit is enabled, JES2 calls its
associated exit routine(s) whenever one of the exit's exit points is encountered in
processing JES2 code. (Note: The TYPE=TEST form of the $EXIT macro is an
exception; a TEST-type exit point occurs before a TYPE=ENTER exit point to allow
JES2 to determine whether the exit is implemented and enabled. If the exit is not
both implemented and enabled, JES2 saves processing time by bypassing the call to
the exit effector when it encounters the ENTER-type exit point.) When an exit is
disabled, its exit points are transparent during JES2 processing and JES2 does not
call the exit's associated exit routine(s).

An exit's status is first set at initialization. You can specify either
STATUS=ENABLED or STATUS=DISABLED on the EXIT(nnn) initialization
statement. If you leave the status of the exit unspecified, STATUS=ENABLED is the
default.

An exit's status can then be dynamically controlled by the operator, using the $T
EXIT(nnn) command. Again, the operator has the option of identifying any exit by
number, a range of exits, or all exits, and specifying either STATUS=ENABLED or
STATUS=DISABLED. The operator can display an exit's status by identifying the
exit by number on the $D EXIT(nnn) command.

When you suspect that an exit routine associated with a particular exit is causing
an error, a simple way of isolating the problem is to disable the exit, through an
operator command ($T EXIT(nnn)), to determine if the error still occurs when the
exit routine is not allowed to execute. You can also enable tracing as a debugging
aid.

An exit can also be dynamically controlled on a job-related basis, using the exit
facility.

Job-related exits
Certain exits are identified as job-related exits. For these exits, the JOBMASK
parameter is specified on the $EXIT macro or macros defining their exit point or
points. JOBMASK is specified with the address of the job exit mask, a 256-bit mask
in the job control table (JCT), of which each bit corresponds to an exit identification
number; bit 0 corresponds to Exit 0, bit 1 corresponds to Exit 1, bit 2 to Exit 2, and
so on. (This means, of course, that bit 2 corresponding to Exit 2 is really the third
bit in the mask, and so on.) Initially, when the JCT is created, all the bits in the job
exit mask are set to one.

For a job-related exit, the status of its corresponding bit in the job-exit mask
becomes an additional factor in determining its exit status. If an exit has been
enabled in the standard way, by either the EXIT(nnn) initialization statement or the
$T EXIT(nnn) command, and its corresponding bit in the job exit mask is set to
one, the exit has a status of enabled and the exit effector calls its associated exit
routine(s). If, however, the exit has been enabled in the standard way but its
corresponding bit in the job exit mask is set to zero, the exit has a status of
disabled and the exit effector does not call its associated exit routine(s) for that
particular job. If the exit has been disabled in the standard way, the status of its
corresponding bit in the job exit mask is not taken into account; the exit remains
disabled. Note that if JOBMASK is not specified on the $EXIT macro, or if the JCT
is not in storage, the job exit mask can have no effect on the status of an exit.

Chapter 8. Testing your exit routine 55

Bits in the job exit mask can be manipulated by an exit routine on a job-by-job
basis. The recommended IBM-defined exits for setting the job exit mask are Exit 2
and Exit 52. Exit 2 or Exit 52 is, in most cases, the first exit to be taken for a job,
and provides access to most of the job's attributes specified in its JCL and placed in
its JCT. For more information, see the descriptions of Exit 2 and Exit 52 in “The
IBM-Defined Exits” reference section in Chapter 12, “IBM-defined exits,” on page
65.

For each exit description in “The IBM-Defined Exits”, the JOB EXIT MASK
category lists the exit as either job-related or not job-related. Note that Exits 11 and
12 present special cases.

Appendix C, “Job-related exit scenarios,” on page 403 provides scenarios for
job-related exits.

56 z/OS V2R1.0 JES2 Installation Exits

Chapter 9. Tracing status

You can also control the status of exit invocation tracing.

Initially, for the tracing to occur automatically, three conditions are necessary:
1. The trace ID for exit tracing (ID 13) must be enabled.
2. The TRACE= operand of the EXIT(nnn) initialization statement must be

specified as, or allowed to default to, TRACE=YES.
3. Tracing must be active (TRACEDEF ACTIVE=YES).

If one of these conditions is absent, tracing does not occur.

The status of exit tracing can then be dynamically controlled by the operator, using
the $T EXIT(nnn) command. The operator has the option of identifying any exit by
number, a range of exits, or all exits, and specifying either TRACE=YES or
TRACE=NO. The operator can display the status of exit tracing by identifying the
exit by number on the $D EXIT(nnn) command.

The status of exit tracing cannot be controlled on a job-related basis.

© Copyright IBM Corp. 1988, 2013 57

58 z/OS V2R1.0 JES2 Installation Exits

Chapter 10. Establishing installation-defined exits

JES2 can contain up to 256 exits. IBM has defined some of these. If none of the
IBM-defined exits is suited to a particular modification you would like to make,
you can consider installing an optional installation-defined exit.

Typically, establishing your own exit is much more difficult than writing an exit
routine for an existing IBM-defined exit; it requires a thorough knowledge of the
area of processing in which you would like your exit to occur. You should attempt
to place a installation-defined exit in a stable area of processing; the risk of error
increases with the complexity of the JES2 code in which you place the exit. If
possible, you should use your exit in replacing a JES2 function that is already
isolated. As an example, IBM-defined Exit 3 allows you to provide an exit routine
to completely replace the standard HASPRSCN accounting field scan routine.

You must consider whether the exit will require a single exit point or more than
one. You can determine this based on the requirements of your intended
modification and on the structure of the IBM code in the area of processing that
you intend to modify. You must also consider whether the function you want to
modify is contained within a single JES2 execution environment. If it occurs in a
second environment, you may have to install a second exit as well.

When you have determined the exact point of processing at which an exit point
must occur, use the $EXIT macro to define it.

First, you should specify the positional ID parameter with the exit's identification
number. It is recommended that you begin numbering installation-defined exits
with 255 and work down. (If additional IBM-defined exits are added later, your
exit numbers will not conflict with the new IBM-defined exit numbers.)

You must define the exit's environment to JES2 using the ENVIRON= operand on
the $MODULE macro. This is specified as either JES2, SUBTASK, USER, or FSS.

If the exit is to be job-related, specify the address of the job exit mask for the
JOBMASK= operand. Note that if the JCT is not in storage you will have to point
to a copy of the job exit mask.

Use the TYPE= operand to specify the mode of $EXIT macro operation. To avoid
special processing overhead, you can define a TYPE=TEST $EXIT macro at some
location shortly before a TYPE=ENTER $EXIT macro in JES2 code. A TEST-type
$EXIT macro tests the status of the exit and sets a condition code (not a return
code):

cc=0 No exit routines are to be called

cc=1 Call exit routines, without tracing

cc=2 Call exit routines, with tracing

When JES2 encounters the TYPE=ENTER $EXIT macro, it does not have to retest
the exit's status; it just checks the condition code and either bypasses the exit point
or calls the exit effector, with or without tracing. Note that a TYPE=TEST $EXIT
macro and a TYPE=ENTER $EXIT macro must always be used together. If you

© Copyright IBM Corp. 1988, 2013 59

omit the TYPE= parameter, the resulting exit point causes JES2 to both determine
the status of the exit and then, depending on the status, either to bypass the exit
point or to call the exit effector.

Use the AUTOTR= operand to specify that automatic exit effector tracing should
(AUTOTR=YES) or should not (AUTOTR=NO) occur.

For more information about exit effector tracing, see “Tracing” in “Writing an Exit
Routine” and “Tracing Status” in “Controlling Exit Status” earlier in this chapter.

Along with inserting the $EXIT macro in JES2 source code, you may have to
modify the code before the exit point to pass parameters and pointers to the exit
routines, and you may have to modify the code following the exit point to receive
exit-generated parameters and to receive any return code greater than 4. For more
information, see “Linkage Conventions,” “Received Parameters,” and “Return
Codes” in “Writing an Exit Routine” earlier in this chapter.

Note: When using the $EXIT macro, you may need to include additional control
block DSECT mappings in that module. If, for example, the module you are
modifying did not previously require the mapping provided by the $XIT macros,
but this macro is required to map the exit parameter list and exit information table
(XIT), you must add it ($XIT) to the $MODULE macro coded at the beginning of
the module.

60 z/OS V2R1.0 JES2 Installation Exits

Chapter 11. Hints for coding JES2 exit routines

Following these hints can help you in the following ways:
v Improve your code's readability and simplify debugging of your exit code.
v Ease migration to a new release or maintenance level.
v Reduce the number of errors in your exit code.

Assembler instructions
v All USING/DROP statements should be paired. No overriding USINGs should

be used except when PUSH/POP is used. This helps prevent errors caused by
incorrect base registers.

v All TM (test-under-mask) instructions should use BO/BOR/BNO/BNOR/BM/
BMR branch instructions rather than BZ/BZR/BNZ/BNZR branch instructions.
If this technique is used, the logic of the branch instruction does not have to be
modified when adding or deleting flags in the instruction mask.

v Branches to *- or *+ should not be used except in macro code. This reduces the
possibility of causing errors when inserting new lines of code that change the
offset of the instruction to which the code is branching.

v Branch tables should be fully coded and documented. Branches to a non-labeled
line immediately after the branch table should not be used.

v To increase code readability, all branch instructions should use the extended
mnemonic instructions for both RX and RR machine instruction formats.

v All flag bits in flag-byte fields should be defined by equated symbols. Explicit
hexadecimal constants should not be used within instructions to represent
flag-bit settings. This allows easy reference to a given flag setting. The SI format
instructions TM, OI, NI, and XI should also use equated symbols. To provide
easy reference, these instructions should use equated symbols for their masks.

v When the implied length of the target field cannot be used, instructions
containing length fields should use equated symbols, not hard-coded lengths.
Therefore, only a reassembly is necessary if the length of the field is changed.

Constants
v Rather than using literals, the HCT/HCCT/HFCT DSECTs define many

constants which you should use whenever possible. The following are a few
examples from the HCT:
– $ZEROES – doubleword of binary zeroes
– $F1 – fullword binary one
– $H4 – halfword binary four
– $BLANKS – doubleword of EBCDIC blanks (X'40')

DSECTs
v For ease of migration, mapping DSECTs used as templates should not be

explicitly duplicated within source code. An example of this technique is the use
of JES2 $PDDB macro.

v Whenever possible, the use of locally-defined DSECTs, macros, or equated
symbols should be avoided. This technique helps to avoid future migration
problems.

© Copyright IBM Corp. 1988, 2013 61

v If you leave a control section (CSECT or RSECT) to define a DSECT, to return to
the control section, use the &J2SECTN and &J2SECTT; assembly variables.
– &J2SECTN contains the control section name.
– &J2SECTT contains the control section type, either CSECT or RSECT.
For example:
MYMOD $MODULE ENVIRON=USER,........
**
* *
* DEFINE DATA *
* *
**
MYDATA DSECT

DCs...
**
* *
* RETURN TO CONTROL SECTION *
* *
**
&J2SECTN &J2SECTT...

Registers
v Equated symbols for general purpose registers 0 to 15 (R0-R15) should be used.
v The general-purpose register equates used throughout JES2 are as follows:

R0 Parameter passing

R1 Parameter passing

R11 HCT addressability (JES2 main task)

R11 HCT addressability (JES2 subtasks)

R11 HFCT addressability (FSS)

R11 HCCT addressability

R12 Local addressability if $SAVE/$RETURN

R13 PCE addressability (JES2 main task)

R13 Save area address (FSS)

R13 Save area address

R14 Return address

R15 Entry address/return code

Miscellaneous
v Returned information used for routines and subroutines should use return

codes, not condition codes. All return codes should be passed in register 15.
v Except in critical performance areas, the use of dynamic work areas rather than

PCE work areas (for example, using $GETCMB to obtain a message building
work area) is recommended. Dynamic work areas should be used to prevent
unnecessary wasted storage caused by defining many unique PCE work area
fields.

v The inclusive OR instruction (OC) should not be used to test whether a field is
zero or non-zero. The OC can cause unnecessary page-outs, thus incurring

62 z/OS V2R1.0 JES2 Installation Exits

needless system overhead. Rather, the CLC (compare logical) instruction can be
used to compare the field with an appropriate constant (for example, $ZEROES).

v All code should be documented clearly and concisely. A good rule is to
document every line of code. In addition, block comments should be used to
document every module, routine, and subroutine. These comments should
include detailed information about the function of the routine, register values
required on entry and exit, register usage within the routine, and possible return
codes.

Chapter 11. Hints for coding JES2 exit routines 63

64 z/OS V2R1.0 JES2 Installation Exits

Chapter 12. IBM-defined exits

This reference chapter provides the information you need to write exit routines for
the IBM-defined exits.

The exits are described in the order of their identification numbers, the ID numbers
assigned to them on their respective $EXIT macros. Each exit description begins
with a discussion of its recommended use, followed by a breakdown of
environmental considerations, linkage conventions, and other programming
considerations specific to the particular exit being described. (Note: For
convenience, except where single or multiple exit routines are mentioned
specifically, the following descriptions imply either one or more exit routines by
the inclusive term “exit routine.” For example, “your exit routine may replace the
standard routine” should be understood to mean “your exit routine or exit
routines may replace the standard routine.”) Table 4 on page 75 summarizes for
each exit the CSECT in JES2 from which your exit routine can get control.

Exit selection table
When considering an alteration to a standard JES2 function, you should determine
whether one of the IBM-defined exits accommodates your intended change.

The exit selection table (Table 3) summarizes the available exits and their
functions. If you use an IBM-defined exit for other than its intended purpose, you
increase the risk of performance degradation and system failure.

Appendix C, “Job-related exit scenarios,” on page 403 contains some scenarios
relating to job-related exits. The scenarios may be helpful to you in deciding what
exits to use in particular situations.

Table 3. Exit Selection Table

Exit Exit Title Purpose Some specific uses

0 PRE-
INITIALIZATION

Control the initialization process v Provide verification of JES2 initialization
options, specifically $HASP426 and
$HASP427 messages.

v Acquire user control blocks and user
work areas for use in initialization (such
as the user control table (UCT)).

v Provide addresses of user tables in the
master control table (MCT).

v Determine whether JES2 initialization is to
continue.

v Allow implementation of
installation-defined initialization options
and parameters.

© Copyright IBM Corp. 1988, 2013 65

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

1 JES2 PRINT/PUNCH
JOB SEPARATOR

Create you own print and punch
job separators and control
production of standard
separators.

v Selectively produce unique separators or
variations on the standard separators.

v Unconditionally produce standard
separators.

v Unconditionally suppress production of
the standard separators.

v Selectively produce separators for
particular users or particular job classes.

v Provide a different separator card on a
punch device.

v Place the company's logo on header page.

v Provide accounting information on the
trailer page.

2 JOB STATEMENT
SCAN (Main Task)

Scan the complete JOB statement
image and set corresponding
fields in the appropriate JES2
control blocks.

v Alter JOB statement parameters including
a job's class, priority, and other attributes.

v Supply additional JOB statement
parameters.

v Selectively cancel or purge jobs.

v Set the job exit mask in the JCT for
subsequent exits.

v Set the spool partitioning mask in the JCT.

v Initialize or modify other fields in the JCT,
including your own installation defined
fields.

v Modify other job-related control blocks.

v Build your own installation-defined
job-related control blocks.

v Enforce security and standards.

v Initialize or modify the user portion of the
job correlator.

3 JOB STATEMENT
ACCOUNTING
FIELD SCAN (Main
Task)

Scan the JOB statement
accounting field and set
corresponding fields in the
appropriate JES2 control blocks.

v Alter accounting field information.

v Supply additional accounting field
information.

v Perform your own accounting field scan.

v Process nonstandard accounting fields.

v Selectively cancel jobs.

v Set the job exit mask in the JCT for future
exits.

v Initialize or modify other fields in the JCT,
including your own installation-defined
fields.

v Pass information to subsequent exits
through the JCT user fields.

v Modify other job-related control blocks.

v Enforce security and standards.

66 z/OS V2R1.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

4 JCL AND JES2
CONTROL
STATEMENT SCAN
(Main Task)

Scan JCL (not including JOB
statements).

v Alter JCL parameters and JES2 control
statements.

v Supply additional JCL parameters.

v Supply a JCL continuation statement.

v Alter JES2 control statements.

v Supply an additional JES2 control
statement.

v Perform your own JES2 control statement
processing.

v Suppress standard JES2 processing.

v Process your own installation defined
JES2 control statement subparameters.

v Selectively cancel or purge jobs.

v Enforce security and standards.

5 JES2 COMMAND
PREPROCESSOR

Process JES2 commands received
by the JES2 command processor.

v Alter received commands

v Alter particular fields, such as those
pertaining to command authority, in the
command processor work area for the
PCE to affect subsequent command
processing.

v Perform your own command validation
checking.

v Process your own installation-defined
commands, operands, and suboperands.

v Selectively terminate command processing
and notify the operator of command
cancellation.

6 CONVERTER/
INTERPRETER TEXT
SCAN (Subtask
Environment)

Scan converter/interpreter text
after conversion from individual
JCL images and after all of the
converter/interpreter text for a
particular job has been created.
Exit 6 is called when the
converter is run in the JES2
address space. See exit 60 when
the converter is run in the JES2CI
address space.

v Scan the resolved JCL, including
PROCLIB expansion that will be used by
the job.

v Modify individual converter/interpreter
text images.

v Enforce security and standards.

7 CONTROL BLOCK
READ/WRITE (JES2)

Receive control whenever control
block I/O is performed by the
JES2 main task.

v Read or write your own
installation-defined job-related control
blocks to spool along with the reading
and writing of JES2 control blocks.

8 CONTROL BLOCK
READ/WRITE
(USER)

Receive control whenever control
block (CB) I/O is performed by a
JES2 subtask or by a routine
running in the user address
space.

v Read or write installation-defined
job-related control blocks to spool along
with reading and writing of the JES2
control block.

Chapter 12. IBM-defined exits 67

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

9 JOB OUTPUT
OVERFLOW

Receive control whenever an
executing job is producing more
output than was estimated.

v Selectively allow JES2 to follow the
defined output overflow error procedure.

v Selectively direct JES2 to take special
action for the current job only to:

– Cancel the job

– Cancel the job with a dump

– Allow the job to continue

– Extend the job's estimated output to a
specific new limit

– Control how often the output overflow
message is displayed

– Suppress the default error message

10 $WTO SCREEN Receive control whenever JES2 is
ready to queue a $WTO message.

v Scan messages.

v Change the text of a message.

v Alter a message's console routing.

v Selectively suppress messages.

11 SPOOL
PARTITIONING
ALLOCATION –
$TRACK

Receive control from the main
task when there are no more
track groups available on the
spool volumes from which the
current job is permitted to
allocate space.

v Expand the spool partitioning mask.

v Suppress spool partitioning by allowing
JES2 to use the allocation default.

12 SPOOL
PARTITIONING
ALLOCATION –
$STRAK

Receive control from the JES2
subtask or user address space
when there are no more track
groups available on the spool
volumes from which the current
job is permitted to allocate space.

v Expand the spool partitioning mask.

v Suppress spool partitioning by allowing
JES2 to use the allocation default.

14 JOB QUEUE WORK
SELECT

Receive control to search the job
queue for work.

v Use tailored search algorithms to select
work from the job queue.

v Selectively bypass searching the job queue
for work.

15 OUTPUT DATA
SET/COPY

Receive control to handle the
creation of separator pages on a
data set or copy basis.

v Selectively generate separator pages for
each data set to be printed.

v Selectively generate separator pages for
each copy made of a data set.

v Selectively vary the number of copies
made of a data set.

v Selectively pick data sets and generate
separator pages for them.

v Change default print translation tables.

68 z/OS V2R1.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

16 NOTIFY Receive control to examine or
modify messages that are sent.

v Alter routing of the notify message.

v Examine the notify message before it is
sent to the receiver and make selective
changes.

v Suppress sending the notify message to
the receiver.

v Replace the notify message before it is
sent to the receiver with an entirely new
one.

17 BSC RJE
SIGN-ON/SIGN-OFF

Receive control to manage and
monitor RJE operations for BSC.

v Selectively perform additional security
checks over and above the standard
password processing of the signon card
image.

v Selectively limit both the number and
types of remote devices that can be on the
system at any one time.

v Selectively bypass security checks.

v Implement installation-defined scanning
of signon card images.

v Collect statistics concerning RJE
operations on the BSC line and report the
results of the activity.

18 SNA RJE
LOGON/LOGOFF

Receive control to manage and
monitor RJE operations for SNA.

v Selectively perform additional security
checks over and above the standard
password processing of the logon image.

v Selectively limit both the number and
types of remote devices that can be on the
system at any one time.

v Selectively bypass security checks.

v Implement installation-defined scanning
of images.

v Collect statistics concerning RJE
operations on the line and report the
results of the activity.

19 INITIALIZATION
STATEMENT

Receive control for each
initialization statement.

v Insert installation initialization statements.

v Scan an initialization statement before the
JES2 scan and perform parameter
checking.

v Selectively alter values supplied on an
initialization statement to meet specific
installation needs.

v Optionally cause JES2 to bypass a
particular initialization statement.

v Optionally cause JES2 to terminate.

Chapter 12. IBM-defined exits 69

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

20 END OF JOB INPUT
(Main Task)

Alter the status of the job at the
end of job input

v Selectively assign a job's system affinity,
execution node, and priority based on an
installation's unique requirements and
processing workload.

v Based on an installation's own defined
criteria, terminate a job's normal
processing and selectively print or not
print its output.

v JCT is available for updating.

v Provide job tracking.

v Initialize or modify the user portion of the
job correlator.

21 SMF RECORD Receive control when JES2 is
about to queue an SMF buffer.

v Selectively queue or not queue the SMF
record for processing by SMF.

v Obtain and create SMF control blocks
before queuing.

v Alter content and length of SMF control
blocks before queuing.

22 CANCEL/STATUS Receive control to implement an
installation's own algorithms
governing job selection and
ownership for TSO/E
CANCEL/STATUS.

v Allow an installation to implement its
own algorithms for job queue searching
and for TSO/E CANCEL/STATUS.

23 FSS JOB SEPARATOR Receive control to modify the job
separator page area (JSPA) that is
used by page-mode printers such
as the AFP printer to generate
the job separator page for an
output group.

v Control what information is passed to a
page-mode printer functional subsystem
application (FSA) through the JSPA.

v Suppress the printing of job separator
pages.

v Suppress the printing of the JESNEWS
data set.

24 POST
INITIALIZATION

Receive control to make
modifications to JES2 control
blocks before the end of JES2
initialization.

v Make final modifications to selected JES2
control blocks before the end of JES2
initialization.

v Initialize any special installation-defined
control blocks.

v Terminate JES2 during the initialization
process.

25 JCT READ (FSS) Receive control whenever JCT
read I/O is performed by a JES2
functional subsystem address
space (HASPFSSM).

v Read or write your own
installation-defined job-related control
blocks to spool along with the reading of
the JCT.

26 TERMINATION /
RESOURCE RELEASE

Free resources obtained during
previous installation exit routine
processing during any JES2
termination.

v Free resources obtained by user-exit
routine processing that JES2 continues to
hold following a $P JES2 command, JES2
initialization termination, or JES2 abend.

27 PCE
ATTACH/DETACH

Allocate and deallocate resources.
Deny a PCE attach.

v Obtain resources whenever a PCE is
attached.

v Free resources before the detach of a PCE.

v Deny the attach of a PCE.

70 z/OS V2R1.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

28 SSI JOB
TERMINATION

Receive control before the freeing
of job-related control blocks.

v Free resources obtained by Exit 32.

v Suppress job termination-related
messages.

v Replace JES2 job termination messages
with installation-defined messages.

29 SSI
END-OF-MEMORY

Free resources obtained on the
address space level.

v Free resources obtained by Exit 32.

30 SSI DATA SET
OPEN/RESTART

Receive control during SSI data
set OPEN and RESTART
processing.

v Examine data set characteristics for
validity checking, authorization, and
alteration.

31 SSI DATA SET
ALLOCATION

Receive control during SSI data
set allocation.

v Affect how JES2 processes data set
characteristics.

v Fail an allocation.

32 SSI JOB SELECTION Receive control during SSI job
selection processing.

v Perform job-related processing such as
allocation of resources and I/O for
installation-defined control blocks.

v Suppress job selection-related messages.

v Replace job selection-related messages
with installation-defined messages.

33 SSI DATA SET CLOSE Receive control during SSI data
set CLOSE processing.

v Examine data set characteristics for
validity checking, authorization, or
alteration.

v Free resources obtained at OPEN.

34 SSI DATA SET
UNALLOCATION

Receive control during SSI
unallocation processing.

v Free resources obtained by Exit 30

v Undo processing performed by Exit 30,
such as changing data set characteristics.

35 SSI END-OF-TASK Receive control during end of
task processing.

v Free task-related resources.

36 Pre-security
Authorization Call

Receive control before calling
SAF.

v Provide additional information to SAF

v Change information provided to SAF

v eliminate call to SAF

v Perform additional security authorization
checking above what SAF provides

37 Post-security
Authorization Call

Receive control after calling SAF. v Change the result of SAF verification

v Perform additional security authorization
checking above what SAF provides

38 TSO/E Receive Data
Set Disposition

Receive control during
processing of a TSO/E RECEIVE
command

v Change the default processing (delete) if a
TSO/E user cannot receive a data set with
any security information in the user
profile.

39 NJE SYSOUT
Reception Data Set
Disposition (Main
Task)

Receive control when your
system receives a data set from
another node that fails security
checks.

v Override the security decision and accept
the data set

v Change the security information and
accept the data set

v Delete the data set

Chapter 12. IBM-defined exits 71

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

40 Modifying SYSOUT
characteristics

Receives control before JOEs are
created for the job.

v Change the class of a SYSOUT data set to
affect grouping.

v Change the destination of a SYSOUT data
set.

41 Modifying Output
Grouping Key
Selection

Receives control during JES2
initialization after the default
output grouping keys have been
selected, but before any grouping
is done.

v Change which OUTPUT JCL keywords
JES2 uses for generic grouping.

42 Modifying a Notify
User Message

Receives control after input has
been validated and authorization
checking has been done for the
userid and node.

v Cancel the message

v Change the destination of the message

v Change the message text

43 Transaction Program
Select/Terminate
Change

Receives control during
transaction:

v select processing

v termination processing

v change processing

v Create installation-specific control blocks
for the TP

v Modify output limits associated with any
SYSOUT data sets created by the TP

v Issue messages to the TP's message log

44 Exit for Converter
Main Task

Receives control after the
converter subtask has converted
the job's JCL and before JES2
writes the job-related control
blocks to spool.

v Change fields in the $JQE and $JCT

v Detect and hold duplicate TSO logons

45 Pre-SJF Service
Request

Receives control from a request
for scheduler JCL facility (SJF)
services.

v Examine the request to determine if the
system should continue to process the
request for SJF services.

v Redirect error messages for a request.

46 Transmitting an NJE
Data Area

Receives control before JES2
transmitting an NJE job header,
NJE data set header, or a NJE job
trailer.

v Remove installation-defined sections that
were previously added to an NJE data
area

v Add or change information in an NJE
data area before transmitting it to another
node in the network.

47 Receiving an NJE
Data Area

Receives control before receiving
an NJE job header, NJE data set
header, or an NJE job trailer.

v Add or remove installation-defined
sections that were previously added to an
NJE data area

v Add or change information in an NJE
data area before transmitting it to another
node in the network.

48 SSI SYSOUT data set
unallocation

Receive control after JES2 has
merged the characteristics from
the SSOB into the PDDB.

v Control whether JES2 spins the SYSOUT
data set.

49 Job Queue Work
Select - QGOT

Receives control whenever JES2
work selection has located a
pre-execution job for a device.

v Provide an algorithm to accept or not
accept a JES2-selected job.

v Control WLM initiator job selection.

72 z/OS V2R1.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

50 END OF JOB INPUT
(User Environment)

Alter the status of the job at the
end of job input

v Selectively assign a job's system affinity,
execution node, and priority based on an
installation's unique requirements and
processing workload.

v Based on an installation's own defined
criteria, terminate a job's normal
processing and selectively print or not
print its output.

v JCT is available for updating.

v Provide job tracking.

v Initialize or modify the user portion of the
job correlator.

51 Job phase change exit
($QMOD)

Change job phase v Track jobs as they move from phase to
phase.

v Perform main task processing for jobs that
arrive through the internal reader or
NJE/TCP

v Cause or prevent re-execution of jobs

v Implement phase change rules for jobs

52 JOB STATEMENT
SCAN (User
Environment)

Scan the complete JOB statement
image and set corresponding
fields in the appropriate JES2
control blocks.

v Alter JOB statement parameters including
a job's class, priority, and other attributes.

v Supply additional JOB statement
parameters.

v Selectively cancel or purge jobs.

v Set the job exit mask in the JCT for
subsequent exits.

v Set the spool partitioning mask in the JCT.

v Initialize or modify other fields in the JCT,
including your own installation defined
fields.

v Modify other job-related control blocks.

v Build your own installation-defined
job-related control blocks.

v Enforce security and standards.

v Initialize or modify the user portion of the
job correlator.

Chapter 12. IBM-defined exits 73

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

53 JOB STATEMENT
ACCOUNTING
FIELD SCAN (User
Environment)

Scan the JOB statement
accounting field and set
corresponding fields in the
appropriate JES2 control blocks.

v Alter accounting field information.

v Supply additional accounting field
information.

v Perform your own accounting field scan.

v Process nonstandard accounting fields.

v Selectively cancel jobs.

v Set the job exit mask in the JCT for future
exits.

v Initialize or modify other fields in the JCT,
including your own installation-defined
fields.

v Pass information to subsequent exits
through the JCT user fields.

v Modify other job-related control blocks.

v enforce security and standards.

54 JCL AND JES2
CONTROL
STATEMENT SCAN
(User Environment)

Scan JCL (not including JOB
statements).

v Alter JCL parameters and JES2 control
statements.

v Supply additional JCL parameters.

v Supply a JCL continuation statement.

v Alter JES2 control statements.

v Supply an additional JES2 control
statement.

v Perform your own JES2 control statement
processing.

v Suppress standard JES2 processing.

v Process your own installation defined
JES2 control statement subparameters.

v Selectively cancel or purge jobs.

v Enforce security and standards.

55 NJE SYSOUT
Reception Data Set
Disposition (User
Environment)

Receive control when your
system receives a data set from
another node that fails security
checks.

v Override the security decision and accept
the data set

v Change the security information and
accept the data set

v Delete the data set

56 Transmitting an NJE
Data Area (User
Environment)

Receives control before JES2
transmitting an NJE job header,
NJE data set header, or a NJE job
trailer.

v Remove installation-defined sections that
were previously added to an NJE data
area

v Add or change information in an NJE
data area before transmitting it to another
node in the network.

57 Receiving an NJE
Data Area (User
Environment)

Receives control before receiving
an NJE job header, NJE data set
header, or an NJE job trailer.

v Add or remove installation-defined
sections that were previously added to an
NJE data area

v Add or change information in an NJE
data area before transmitting it to another
node in the network.

74 z/OS V2R1.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

58 End of Step (User
environment)

Receives control when a step in a
job completes execution (does
not get control for steps that are
skipped).

v Alter the step return code or job return
code processing

v Cause or prevent the job from being
restarted after this step.

59 Post interpretation
(User Environment)

Receives control when
INTERPRET=JES is specified
after the interpreter has been run
but before the SWA control
blocks are written.

v Examine SWA blocks for the job

v Perform locate processing for data sets
used by job

v Enforce security and standards

60 CONVERTER/
INTERPRETER TEXT
SCAN (USER
environment)

Scan converter/interpreter text
after conversion from individual
JCL images and after all of the
converter/interpreter text for a
particular job has been created.
Exit 60 is called when the
converter is run in the JES2CI
address space. See exit 6 when
the converter is run in the JES2
address space.

v Scan the resolved JCL, including
PROCLIB expansion that will be used by
the job.

v Modify individual converter/interpreter
text images.

v Enforce security and standards.

Exit implementation table
The following table is a reference to the various CSECTs from which IBM-defined
exits can be taken and the JES2 environment in which the exit may be taken,
including an indication regarding whether the exit is subject to job exit mask
suppression. Use this table to help you implement your exit routines. See the
$MODULE macro for descriptions of the environments.

Table 4. Exit Implementation Table

Exit Exit Title Containing CSECT
Environment ($MODULE
ENVIRON=)

0 PRE-INITIALIZATION HASPIRMA JES2 (Initialization) Job Exit
Mask – N/A

1 PRINT/PUNCH SEPARATOR HASPPRPU JES2 Job Exit Mask

2 JOB STATEMENT SCAN HASPRDR JES2 Job Exit Mask

3 JOB STATEMENT
ACCOUNTING FIELD SCAN

HASPRDR JES2 Job Exit Mask

4 JCL AND JES2 CONTROL
STATEMENT SCAN

HASPRDR JES2 Job Exit Mask

5 JES2 COMMAND
PREPROCESSOR

HASPCOMM JES2 Job Exit Mask – N/A

6 CONVERTER/INTERPRETER
TEXT SCAN (Subtask)

HOSCNVT subtask of
HASCCNVS

SUBTASK Job Exit Mask

7 CONTROL BLOCK
READ/WRITE (JES2)

HASPNUC JES2 Job Exit Mask

8 CONTROL BLOCK
READ/WRITE (USER)

HASCSRDS USER Job Exit Mask

9 JOB OUTPUT OVERFLOW HASCHAM USER Job Exit Mask

10 $WTO SCREEN HASPCON JES2 Job Exit Mask – N/A

Chapter 12. IBM-defined exits 75

Table 4. Exit Implementation Table (continued)

Exit Exit Title Containing CSECT
Environment ($MODULE
ENVIRON=)

11 SPOOL PARTITIONING
ALLOCATION – $TRACK

HASPTRAK JES2 Job Exit Mask

12 SPOOL PARTITIONING
ALLOCATION – $STRAK

HASCSRIC USER Job Exit Mask

14 JOB QUEUE WORK SELECT HASPJQS JES2 Job Exit Mask – N/A

15 OUTPUT DATA SET/COPY
SEPARATORS

HASPPRPU JES2 Job Exit Mask

16 NOTIFY HASPHOPE JES2 Job Exit Mask

17 BSC RJE SIGN-ON/SIGN-OFF HASPBSC JES2 Job Exit Mask – N/A

18 SNA RJE LOGON/LOGOFF HASPSNA JES2 Job Exit Mask – N/A

19 INITIALIZATION STATEMENT HASPIRPL JES2 (Initialization) Job Exit
Mask – N/A

20 END OF JOB INPUT HASCSRIP JES2 Job Exit Mask

21 SMF RECORD HASPNUC JES2 Job Exit Mask – N/A

22 CANCEL/STATUS HASPSTAC JES2 Job Exit Mask – N/A

23 JOB SEPARATOR
PROCESSING (JSPA)

HASPFSSM FSS Job Exit Mask

24 POST INITIALIZATION HASPIRA JES2 (Initialization) Job Exit
Mask – N/A

25 JCT READ I/O (FSS) HASPFSSM FSS Job Exit Mask

26 TERMINATION/RESOURCE
RELEASE

HASPTERM JES2 (Termination) Job Exit
Mask – N/A

27 PCE ATTACH/DETACH HASPDYN JES2 Job Exit Mask – N/A

28 SSI JOB TERMINATION HASCJBST USER Job Exit Mask

29 SSI END-OF-MEMORY HASCJBTR USER Job Exit Mask – N/A

30 SSI DATA SET OPEN and
RESTART

HASCDSOC USER Job Exit Mask

31 SSI DATA SET ALLOCATION HASCDSAL USER Job Exit Mask

32 SSI JOB SELECTION HASCJBST USER Job Exit Mask

33 SSI DATA SET CLOSE HASCDSOC USER Job Exit Mask

34 SSI DATA SET UNALLOCATE HASCDSAL USER Job Exit Mask

35 SSI END-OF-TASK HASCJBTR USER Job Exit Mask – N/A

36 Pre-Security Authorization Call HASCSRIC USER Job Exit Mask

37 Post-Security Authorization
Call

HASCSRIC USER Job Exit Mask

38 TSO/E Receive Data Set
Disposition

HASPPSO JES2 Job Exit Mask – N/A

39 NJE SYSOUT Reception Data
Set Disposition

HASPNET JES2 Job Exit Mask – N/A

40 Modifying SYSOUT
Characteristics

HASPHOPE HASPXEQ JES2 Job Exit Mask – N/A

41 Modifying Output Grouping
Key Selection

HASCGGKY USER Job Exit Mask – N/A

76 z/OS V2R1.0 JES2 Installation Exits

Table 4. Exit Implementation Table (continued)

Exit Exit Title Containing CSECT
Environment ($MODULE
ENVIRON=)

42 Modifying a Notify User
Message

HASCSIRQ USER Job Exit Mask – N/A

43 Transaction Program
Select/Terminate/Change

HASCTP USER

Job Exit Mask

44 JES2 Converter Exit HASPCNVT JES2

Job Exit Mask

45 Pre-SJF Exit Request HASCSJFS USER

Job Exit Mask

46 Transmitting an NJE Data Area HASPNET JES2

Job Exit Mask

47 Receiving an NJE Data Area HASPNET JES2

Job Exit Mask

48 SSI SYSOUT Data Set
Unallocation

HASCDSAL USER

Job Exit Mask

49 Job Queue Work Select - QGOT HASPJQS JES2 Job Exit Mask – N/A

50 END OF JOB INPUT (User
Environment)

HASCSRIP USER

Job Exit Mask

51 Job phase change exit
($QMOD)

HASPJQS JES2

Job Exit Mask

52 JOB STATEMENT SCAN (User
Environment)

HASCINJR USER

Job Exit Mask

53 JOB STATEMENT
ACCOUNTING FIELD SCAN
(User Environment)

HASCINJR USER

Job Exit Mask

54 JCL AND JES2 CONTROL
STATEMENT SCAN (User
Environment)

HASCINJR USER

Job Exit Mask

55 NJE SYSOUT Reception Data
Set Disposition (User
Environment)

HASCNJSR USER

Job Exit Mask

56 Transmitting an NJE Data Area
(User Environment)

HASCNJE USER

Job Exit Mask

57 Receiving an NJE Data Area
(User Environment)

HASCNJE USER

Job Exit Mask

58 End of Step (User environment) HASCJBTR USER
Job Exit Mask - N/A

Chapter 12. IBM-defined exits 77

Table 4. Exit Implementation Table (continued)

Exit Exit Title Containing CSECT
Environment ($MODULE
ENVIRON=)

59 Post interpretation (User
environment)

HASCCNVS USER
Job Exit Mask

60 CONVERTER/ INTERPRETER
TEXT SCAN (USER
environment)

HASCCNVS USER
Job Exit Mask

78 z/OS V2R1.0 JES2 Installation Exits

Chapter 13. Exit 0: Pre-initialization

Function
This exit allows you to control the start of the initialization process through
various means, such as:
v Processing JES2 initialization options, specifically the JES2 cataloged procedure

parameter field or the replies to the $HASP426 and $HASP427 WTORs. The
options can optionally be altered or bypassed.

v Acquiring installation-defined control blocks and installation work areas for later
initialization

v Providing user fields and addresses of installation-defined tables in the MCT.
The table pointers in the master control table (MCT) allow your installation to
extend JES2 processing of user tables to define JES2 initialization to extend or
tailor certain table-driven JES2 functions. Define user table pointers in the MCT
as MCTstmTU, where ‘stm’ is the JES2 initialization statement that you are
replacing. See “Defining JES2 Tables” for a list of the MCT names.

v Determining whether JES2 initialization is to continue.

Environment

Task
JES2 main task (Initialization) – JES2 dispatcher disabled. You must specify
ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 0 in supervisor state and PSW key 1

Recovery
JES2 does not have a recovery environment established at the processing point for
Exit 0 (the JES2 ESTAE will process termination but not recover).

Job exit mask
Exit 0 is not subject to suppression.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE, $CIRWORK

Point of processing
This exit is taken in the initialization routine that processes the initialization
options (IROPTS, in module HASPIRMA). The initialization options are taken from
the parameter field specified through the JES2 procedure or START command, or
are requested from the operator through the $HASP426 WTOR message if
necessary. The point of processing for this exit is just before parsing and analyzing

© Copyright IBM Corp. 1988, 2013 79

the options and setting appropriate flags. Exit 0 may be called a multiple number
of times, because new options may be requested repetitively through the
$HASP427 WTOR message until valid options are specified or the exit directs JES2
to bypass the options analysis.

The exit control blocks and the exit effector are not initialized at this point in
IROPTS when Exit 0 gets control. Therefore, the normal JES2 exit facility
initialization parameters cannot be used. IROPTS searches for module HASPXIT0
in the HASPINIT load module and then, if necessary, in the HASJES20 load
module. The name HASPXIT0 is defined as a weak external reference (WXTRN) in
both load modules. If HASPXIT0 is not found through this search, JES2 attempts to
locate a separate load module named HASPXIT0. Creating separate load modules for
your exit routines is recommended. If HASPXIT0 is found in STEPLIB or LINKLIST, a
temporary XIT and XRT are built for the exit facility and the $EXIT macro. The
HASPXIT0 module's MIT is searched for all entry point names of the form
'EXIT0nnn' and the entry point names found and the associated addresses are
placed in the temporary XRT in the order they are found.

If HASPXIT0 is found during JES2 initialization, an entry for that module is placed
in the exit facility LMT as if a LOADmod(jxxxxxxx) initialization statement had
been processed for it and the module is not deleted. Therefore other exit routines
(e.g., for Exits 19 and 24) and installation-defined tables (e.g., initialization
statement $SCANTAB tables) can be assembled in the same module with the Exit 0
routines without having them deleted by JES2 after initialization completes. Note,
however, that HASPXIT0 will be deleted from storage with HASPINIT if
HASPXIT0 is linkedited with the HASPINIT load module. Exit 0 can also be
invoked using the MVS Dynamic exit facility. JES2 invokes exit HASP.$EXIT0
immediately after the call to routines in HASPXIT0. The interface to any routines
called in this fashion is identical to those invoked from HASPXIT0.

Programming considerations
1. Tracing for this exit is disabled because of its sequence in the initialization

process.
2. Because Exit 0 is called early in JES2 initialization, some main task services may

not be functional and most control blocks and interfaces are not yet established.
The JES2 dispatcher is not yet functional, so MVS protocol should be used in
Exit 0 routines (such as, WAIT rather than $WAIT, ESTAE rather than $ESTAE.).

3. If Exit 0 returns a return code of 12, IROPTS issues message $HASP864
indicating that Exit 0 terminated initialization. IROPTS then returns to the
IRLOOP with return code 8, indicating that the $HASP428 message should be
issued before final termination.

4. The initialization options string passed to Exit 0 is first ‘folded’, that is all the
characters are ‘folded’ up to their capitalized versions.

5. The processing that JES2 does for the initialization options string after calling
Exit 0 is performed using the JES2 $SCAN facility and a table that defines the
options input allowed and how to process it. The table is actually composed of
two tables, an installation-defined table followed by a JES2-defined table.
By specifying installation-defined tables, an installation can implement its own
initialization options or replace the JES2 definition for existing options. Thus
this function can be accomplished without implementing Exit 0, or with an
implementation of Exit 0. Also, the $SCAN facility itself can be used from an
Exit 0 to process initialization options.

6. If HASPXIT0 contains dynamic tables, the tables will automatically be used
when HASPXIT is loaded. It is also possible to include dynamic tables in a

Exit 0

80 z/OS V2R1.0 JES2 Installation Exits

module invoked by HASP.$EXIT0. However, when using HASP.$EXIT0, include
any tables in a separate load module and invoke the $MODLOAD service to
access the modules. If HASP.$EXIT0 is refreshed, any tables that the load
module contains might move to a different storage location without JES2's
knowledge, resulting in unpredictable results.

Attention: This exit should be thoroughly tested in an environment that is totally
inaccessible to your production JES2 environment (the data set containing the test
version of the module that contains exit 0 should not be in the link list).

This exit cannot be disabled other than by replacing or removing the load module.
A situation where JES2 cannot be initialized may occur if the exit is improperly
coded. This risk can be minimized by using Exit 24 to define user tables for
commands, rather than Exit 0. However, for installation defined installation
statements, Exit 0 must be used.

Also, if the MCT table entries are modified, the associated tables must not be in
the HASPINIT load module. This is because the HASPINIT load module is deleted
after initialization, and the tables will become inaccessible. Note that this restriction
applies regardless of whether the tables define initialization statements, commands,
or messages.

Register contents when Exit 0 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 A code indicating where the initialization options were specified

0 Options passed are from the EXEC card, the PARM field

4 Options passed are from the $HASP426 message WTOR reply

8 Options passed are from a $HASP427 message WTOR reply

1 Address of a 2-word parameter list with the following structure:

Word 1 (+0)
address of the initialization options string

Word 2 (+4)
length of the initialization options string

2-10 Not applicable

11 Address of $HCT

12 Not applicable

13 Address of the initialization $PCE – the PCE work area for this $PCE is the
common initialization routine work area, mapped by the $CIRWORK
macro.

14 Return address

15 Entry address

Register contents when Exit 0 passes control back to JES2
Upon return from this exit, the register contents must be:

Exit 0

Chapter 13. Exit 0: Pre-initialization 81

Register
Contents

0-13 Not applicable

14 Return Address

15 A return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no additional exit routines are
associated with this exit, continue with normal IROPTS processing.

4 Tells JES2 to ignore any additional exit routines associated with this exit
and to continue with normal IROPTS processing.

8 Tells JES2 to bypass processing of the options string and assume the
current values for the JES2 initialization options flags are correct.

12 Tells JES2 to terminate processing. This results in the $HASP864 error
message to the operator.

Coded example
Modules HASX00A and HASX00B in SYS1.SHASSAMP contain samples of exit 0.

Exit 0

82 z/OS V2R1.0 JES2 Installation Exits

Chapter 14. Exit 1: Print/punch separators

Function
This exit allows you to:
v Produce your own print/punch separators
v Control production of standard print/punch separators for batch jobs or

transaction programs (TP)
v Create separators that include the security label for the job output for JES2

managed printers, if your security policy requires it.

When using this exit to control the production of standard separators, you can:
v Unconditionally suppress production of standard separators
v Direct JES2 to unconditionally produce standard separators
v Allow JES2 to produce any standard separators that are in effect.

JES2 determines whether standard separators are in effect for any particular device
by using the initialization statement or the operator command separator options
provided by your installation at any given time; “Programming considerations” on
page 84 describes these options.

For punch devices, JES2 provides the option of producing start-of-job header cards
and trailer cards. For printers, JES2 provides the option of producing start-of-job
header pages, continuation-of-job header pages, and trailer pages. Start-of-job
header pages are produced at each output data set group (represented by a work
JOE) within a job. Continuation-of-job header pages are produced for the
continuation of a data set group if printing has been interrupted. Therefore, you
are able to control the production of separators on a job-by-job basis and, for
printers/punches on a data set group basis. See z/OS JES2 Initialization and Tuning
Guide for a sample separator page.

Each time your exit routine is called, you can direct JES2:
v To produce only your own separator (unconditionally suppressing production of

the standard separator)
v To produce only the standard separator, if it is in effect (without producing your

own separator)
v To produce the standard separator unconditionally
v To produce your own separator followed by the standard separator, if the

standard separator is in effect (for example, your own start-of-job header page
followed by the standard start-of-job header page)

v To produce your own separator and then to produce the standard separator
unconditionally

v To produce no separator (by not producing your own separator and by
suppressing production of the standard separator)

v To print or suppress the JESNEWS data set, regardless of whether a separator is
produced

© Copyright IBM Corp. 1988, 2013 83

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Restrictions
You cannot use this exit to modify the standard separator routines directly. If you
intend to produce a modified version of a standard separator, your exit routine
must replace the standard separator routine entirely, and is responsible for
producing the standard separator elements that you want to retain and your new
or modified separator elements.

Recovery
$ESTAE recovery is in effect. If a program check occurs in the exit, JES2 interrupts
the output currently processing on the device. The recovery routine does not create
a trailing separator and will not call Exit 1 to free allocated resources. JES2 places
the interrupted output groups in system hold with an indication that a failure
occurred during separator exit processing. As with every exit, you should supply
your own recovery within your exit routine.

Job exit mask
Exit 1 is subject to job exit mask suppression. The installation can implement exit 2
to set the 1st bit in the job exit suppression mask (JCTXMASK) or the installation
can indicate the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$BUFFER, $DCT, $DSCT, $HASPEQU, $HCT, $JCT, $JCTX, $JOE, $JQE, $PCE,
$PDDB, $XPL

Point of processing
JES2 calls Exit 1 during print/punch processing before the check for standard
separator pages. The exit is called for job header and job trailer separators.

Programming considerations
1. This exit is available to provide a user-written separator page for local or RJE

printers only. There is no separator page for JES2 or user-supplied networking
output. If you require separator pages for networking output jobs, the
destination node must supply them (through use of this exit) when the output
prints.

2. For each device, initialization statements first determine whether standard
separators are in effect--that is, whether without an exit routine, JES2 would
normally produce or suppress standard separators.
For a local printer, the SEP=NO parameter of the PRT(nnnn) statement
instructs JES2 not to produce separator pages, and the SEP=YES parameter
instructs JES2 to produce separator pages. However, even if you specify
SEP=YES, if SEPPAGE=(LOCAL=NONE) appears on the PRINTDEF
statement, JES2 does not produce separator pages.

Exit 1

84 z/OS V2R1.0 JES2 Installation Exits

For a remote printer, the SEP=NO parameter of the R(nnnn).PR(m) statement
instructs JES2 not to produce separator pages, and the SEP=YES parameter
instructs JES2 to produce separator pages. However, even if you specify
SEP=YES, if SEPPAGE=(REMOTE=NONE) appears on the PRINTDEF
statement, JES2 does not produce separator pages.
For a local card punch, the SEP=NO parameter of the PUN(nn) statement
instructs JES2 not to produce separator cards, and the SEP=YES parameter
instructs JES2 to produce separator cards.
For a remote card punch, the SEP=NO parameter of the R(nnnn).PU(m)
statement instructs JES2 not to produce separator cards, and the SEP=YES
parameter instructs JES2 to produce separator cards.
After you start JES2, the operator uses the S option of the $T PRT(nnnn) or $T
PUN(nnn) command to change the status of any printer or card punch. For
any device, if the operator issues the $T command with S=Y, JES2 produces
standard separators; with S=N, JES2 does not produce standard separators.

3. Use the $PRPUT macro to produce any new separators your exit routine
creates. $PRPUT passes back a return code of 4 in register 15 if the creation of
the separator page is suspended or terminated.

4. Use the $PBLOCK macro to create block letters on any new separator page
your exit routine creates.

5. If you are using the spooling capabilities of a remote SNA device such as the
3790, use the $SEPPDIR macro to send a peripheral data information record
(PDIR) to the device.

6. Locating Extensions to the JCT Control Block: You can use the $JCTXGET
macro to locate extensions to the job control table ($JCT) control block from
Exit 1.

7. Using Buffers in this Exit Routine: JES2 provides this exit with a buffer to
use for I/O. JES2 page-fixes the buffer, when needed, so the buffer can be
used by the $PRPUT, $PBLOCK, and $SEPPDIR macros. The exit routine
accesses the buffer by coding a USING statement for label BFPDSECT. The
exit routine must not free the supplied buffer.
Although IBM suggests using the buffer that JES2 provides, the installation
has the option of obtaining its own buffer. Use the $GETBUF macro if your
routine obtains its own buffer and the $FREEBUF macro to free the buffer.
Code the following on the $GETBUF macro for any buffers you are using with
$PBLOCK, $PRPUT, and $SEPPDIR:
v TYPE=HASP
v FIX=YES for buffers used for local devices
v FIX=NO for buffers used for remote devices.
Although you could page-fix all buffers using the FIX parameter on $GETBUF,
this may lead to performance problems.
When using $PRPUT with WAIT=NO, I/O does not occur synchronously. The
device does not physically process the buffer until either you issue a $PRPUT
macro specifying WAIT=YES or the CCW area fills. Therefore, issue $PRPUT
with WAIT=YES before freeing the buffer.

8. If a hardware error or intervention situation interrupts $PRPUT processing,
Exit 1 relinquishes control. When this occurs, JES2 can not deallocate any
resources your exit routine allocated. You can prevent this situation from
occurring by saving the addresses of allocated resources in a PCE field such as
PCEUSER0 and checking for the address(es) on entry to the exit routine. Your
routine can then reuse previously allocated resources and before returning to
JES2, the routine can release the resources and zero the pointer field(s).

Exit 1

Chapter 14. Exit 1: Print/punch separators 85

9. Some printers do not reposition to “top of forms” after the trailer page. To
avoid feeding blank pages through your printer, include a page eject
statement in your exit routine following the trailer separator page.

10. Use SWBTUREQ REQUEST=RETRIEVE to retrieve any parameters a user
specifies on the OUTPUT JCL statement you need to build your separator
page. See z/OS MVS Programming: Authorized Assembler Services Guide for
additional information about using the SWBTUREQ macro.

11. You can determine if Exit 1 is being invoked for transaction program by
examining field X001DSCT. If it contains an address, Exit 1 was invoked on
behalf of a TP. Zeroes in this field indicate Exit 1 was invoked on behalf of a
batch job.

12. For a TP, you will need to obtain the owner's userid from the $JOE instead of
the $JQE. You can continue to obtain the owner's userid from the $JQE for
batch jobs.

Register contents when Exit 1 gets control
The contents of the registers on entry to this exit are:

0 Not applicable

1 Address of a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher - $XPL

XPLLEVEL
The version level of $XPL

XPLXITID
The exit ID number - 1

XPLIND
Indicator byte. This byte indicates whether the exit was invoked
for a job header, a job trailer, or a continuation.

X001JHDR
If this bit setting is on, then Exit 1 was invoked for a job
header.

X001JTLR
If this bit setting is on, then Exit 1 was invoked for a job
trailer.

X001JCNT
If this bit setting is on, then Exit 1 was invoked for a
continuation.

X001RESP
Response byte. This response byte will indicate whether JES2 will
produce standard separator pages or not, and whether it will
produce JESNEWS or not. The response byte on entry can have the
following values:

X001DFSP
If this bit setting is on, then the production of the standard
separator page will be suppressed. Otherwise, the standard
separator page will be produced.

Exit 1

86 z/OS V2R1.0 JES2 Installation Exits

X001JNWS
If this bit setting is on, then the production of JESNEWS
will be suppressed. Otherwise, JESNEWS will be printed.

X001DCT
Address of $DCT

X001JCT
Address of $JCT

X001DSCT
Contains the address of the $DSCT for TPs or zeros for batch jobs.

X001JQE
Address of $JQE

X001JOA
Address of the artificial JOE (JOA). The JOA contains both the
Work-JOE and the Characteristics-JOE.

Note: If the exit must update JOE fields, it should obtain and
return an update mode JOA. For more information, see
“Checkpoint control blocks for JOEs” on page 409.

X001PDDB
Address of the first PDDB in the JOE. This field is zero for job
trailers.

X001SWBT
Address of the scheduler work block text unit (SWBTU) pointer list
for the first PDDB in the JOE. The SWBTU pointer list is mapped
by SJTRSBTL DSECT in the IEFSJTRP parameter list. This field is
zero if there is no OUTPUT JCL statement associated with the first
PDDB. JES2 uses the SWBTU associated with the first PDDB to
retrieve the output identification and delivery information for the
entire output group. From this information, JES2 builds the detail
box in the default standard separator page.

X001NSWB
Number of SWBTUs JES2 despooled. z/OS MVS Programming:
Assembler Services Reference ABE-HSP contains additional
information about SWBTU and the IEFSJTRP parameter list.

X001HBUF
Address of a HASP buffer for this exit's use. Mapping macro
$BUFFER maps the buffer and label BUFSTART points to the
beginning of the buffer work area. You must have a USING on
field BFPDSECT. Field $BUFSIZE in the $HCT contains the size of
the buffer work area. The exit routine should not update any other
fields in the buffer as errors will occur when control returns to
JES2.

2-10 Not applicable

11 Address of $HCT

12 Not applicable

13 Address of $PCE

14 Return address

15 Entry address

Exit 1

Chapter 14. Exit 1: Print/punch separators 87

Register contents when control passes back to JES2:
0 Unchanged

1 Pointer to a parameter list mapped by $XPL:

Field Name
Description

X001RESP
This response byte can be set by the exit before returning to JES2 if
you want to change the value on entry. Set the response byte as
follows:

X001DFSP
Turn this bit setting on to suppress the standard separator
page.

X001JNWS
Turn this bit setting on to suppress production of
JESNEWS.

2-14 Unchanged

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine.

4 Tells JES2 to ignore any additional exit routines associated with this exit.

Coded example
Modules HASX01A and HASX01B in SYS1.SHASSAMP contain a sample of Exit 1.

Exit 1

88 z/OS V2R1.0 JES2 Installation Exits

Chapter 15. Exit 2: JOB JCL statement scan (JES2 main task)

Function
Exit 2 allows you to process information specified on the JOB JCL statement for
jobs submitted through card readers, RJE, SNA and BSC NJE, and SPOOL reload.
(For jobs submitted through internal readers or TCP/IP NJE, exit 52 is called for
JOB JCL statements.) Exit 2 is invoked for the initial JOB statement each
continuation of the JOB card. The initial JOB card and all continuations are read
before invoking the exit.

Using Exit 2 you can:
v Add, delete, change information specified on the JOB statement. If you are

adding information, such as accounting information, you can create an
additional JOB continuation statements.

v Indicate which spool volumes from which a job or transaction program should
allocate spool space, if the installation did not implement spool partitioning
through the JES2 initialization stream.

v Add JCL statements or JES2 control statements (JECL) to the job.
v Cancel, purge, or continue processing the job.
v Indicate whether additional job-related exits should be invoked for the job.
v Override the value of the user portion of the job correlator.

Recommendations for implementing Exit 2
Exit 2 is called for each card in the job statement (the original card and all
continuations). Each time the exit is called, it will pass the current card image and
the statement buffer. The statement buffer includes all the operands for the JOB
statement concatenated in a single buffer. For example:
//TEST JOB (ACCOUNT),’PROGRAMMER’, COMMENT 1
// CLASS=A,MSGCLASS=A, COMMENT 2
// USER=TEST,PASSWORD=TEST COMMENT 3

In this case the exit will be called 3 times, once for each
card and will pass (on all 3 calls) the following data in
the statement buffer (pointed to by X002STMT):

(ACCOUNT),’PROGRAMMER’,CLASS=A,MSGCLASS=A,USER=TEST,PASSWORD=TEST

To alter the processing of the JOB card, the exit can:
v Update the card image passed in X002CARD. This change shows up in the

listing of the job.
v Update the statement buffer in X002STMT to add or modify the operands. This

change does not show up in the listing of the job and is not passed to
conversion processing (it only affects keywords input processing scans from the
JOB card). If you update the statement buffer (X002STMT) in Exit 2 and change
the length of the buffer, you must update the field X002STME to indicate the
new end of buffer (one byte past the last meaningful character).

v Add additional card images to the JCL stream.

You can add card images to the JCL stream by either queuing a single RJCB or a
chain of RJCBs to the XPL, or by placing a card image after the current card into

© Copyright IBM Corp. 1988, 2013 89

the area pointed to by X002JXWR and setting X002XSNC. In either case, when a
card is added, the current card is re-scanned and the statement buffer is re-built.
Exit 2 is driven again for the updated statement, with X002SEC set to indicate this
card has been presented to the exit previously.

When adding cards using RJCBs, use the RGETRJCB service (located in
HASCSRIP) to obtain a free RJCB; then add it to one of the three RJCB queues in
the XPL. Use the $CALL macro to invoke the RGETRJCB service. Register 1 on
entry must be the JRW address. The RJCB address is returned in register 1.

The 80-byte card image to be added is placed into the field RJCBCARD. RJCBs are
chained together using the RJCBRJCB field in the $RJCB. They are added to the job
stream in the order they exist in the chain. To add an element to the chain you
would move the current RJCB queue head in the $XPL into the RJCBRJCB field of
the last RJCB you are adding and then set the address of the first RJCB element
into the $XPL queue head. Be aware that multiple exit 2s might be using these
queues to ensure that you do not lose existing entries on the queue.

X002RJCP
Adds the card images before the first card in the current JOB statement.

X002RJCA
Adds the card images after the last card in the current JOB statement. In
this case, the card(s) are assumed to not be a continuation of the current
job statement and the job card is not re-scanned.

X002RJCC
Adds the card images after the current card. It is the callers' responsibility
to ensure that the proper continuation processing will occur.

When processing the last card in a JOB statement, the difference between adding a
card to the X002RJCA queue and the X002RJCC queue is that the first will not
re-scan the job card and the second will. You can also add a single card image after
the current card using the X002JXWR field. In this case, the job card will be
re-scanned just as if the card was added to the X002RJCC queue. To add
information to the job JCL statement:
1. Move a comma into the last byte of the job statement image exit 2 is currently

processing. The comma indicates that additional information follows on the job
statement.

2. Move the information you want to add to the job statement to the area pointed
to by X002JXWR and set the X002XSNC bit in the X002RESP byte to one.
Setting X002RESP to X002XSNC indicates that the installation has supplied an
additional job statement image.

3. Set register 15 to X'00' or X'04' depending on whether you want to invoke
additional installation exits to process the job.

You can also add an additional job level JCL statement to the job as follows:
1. Ensure that the job statement image exit 2 is currently processing is the last.

Exit 2 is processing the last job statement image if a comma is not in the last
byte of the job statement image.

2. Place the job-level JCL statement in the are pointed to by X002JXWR and set
the X002XSNC bit in the X002RESP byte to one. Setting X002RESP to
X002XSNC indicates that the installation has supplied an additional job
statement image.

3. Set register 15 to X'00' or X'04' depending on whether you want to invoke
additional installation exits to process the job.

Exit 2

90 z/OS V2R1.0 JES2 Installation Exits

If you want to issue messages when you cancel or purge the job:
1. Generate the message text in exit 2.
2. Move the message text to area pointed to by X002JXWR and set the X002XSEM

bit in X002RESP to one. Setting X002RESP to X002XSEM indicates that the
installation exit has supplied an error message that will be added to the JCL
listing.

3. Set register 15 to X‘08’ to indicate JES2 should cancel or purge the job.

The following indicators in the XPL can assist you in adding a card image to the
current job statement:

X002LOPR
Current card has the last operand in the job statement. There may be
additional continued comments after the current card.

X002QUOT
A quoted string is being continued from the current card to the next card.
Pay attention if a card is being added after this card.

X002CCMT
The current card is a continued comment. Operand added to this card or
after this card will not be processed.

X002LAST
This is the last card image in the JOB statement.

To assist you in processing the operands on a statement, you can use either of the
following services to parse the statement buffer passed in X004STMT:
v Use the $SCAN facility to parse the operands with the standard $SCAN rules for

statements. This give you the flexibility of $SCAN, but the parsing rules are not
the same as normal JCL. See the $SCAN and $SCANTAB macros for additional
information.

v Use the RCARDSCN service and $STMTTAB macro to parse the operands with
standard JCL rules. This is the service used by JES2 input processing to parse the
statement buffer. However, the RCARDSCN service only parses the operands
and calls a processing routine to do all the conversions and storing of data.
Conversion of data to binary to store into data areas is the responsibility of the
processing routines. See the $STMTTAB macro for more information.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places exit 2 in supervisor state and PSW key 1.

Restrictions
v See Appendix A, “JES2 exit usage limitations,” on page 397 for a listing of

specific instances when this exit will be invoked or not invoked.

Exit 2

Chapter 15. Exit 2: JOB JCL statement scan (JES2 main task) 91

v Installation Exit 2 is not invoked for jobs such as SYSLOG, $TRCLOG, or
JESMSG.

v Do not use this exit to set fields in the JCT; they will likely be overwritten by
future processing.

v Installation Exit 2 is not invoked for jobs submitted through the internal reader
or TCP/IP NJE

Recovery
$ESTAE is in effect and provides minimal recovery. Input Services will attempt to
recover from any program check errors experienced by exit 2. However, you
should not depend on JES2 for recovery.

Job exit mask
Exit 2 and all subsequent job-related installation exits can be suppressed after Exit
2 processes the initial job statement image. You can set the 2nd bit in the job exit
suppression mask (JCTXMASK) or you can indicate the exit is disabled in the JES2
initialization stream.

Storage recommendations
If exit 2 requires work areas or additional storage, you can:
v Use the 80-byte work area, JCTXWRK, in the JCT
v Issue $GETMAIN to obtain additional storage

Mapping macros normally required
$PCE, $RDRWORK, $JCT, $JCTX, $HCT, $BUFFER, $MIT, $HASPEQU, $JRW

Point of processing
Installation Exit 2 can be invoked when JES2 encounters either:
v the JOB statement, this is called the initial job statement image.
v or a continuation of the JOB statement, this is called an additional JOB

continuation statement image.

Module HASPRDR invokes installation Exit 2 for initial JOB statement images.
Input service has obtained and initialized the job control table (JCT) and the IOT
before calling installation Exit 2. After performing the processing you coded in Exit
2, input services complete scanning the JOB statement and allocate spool space for
the job.

Module HASPRDR invokes installation Exit 2 for continuation JOB statement
images.

Extending the JCT control block
1. You can use the $JCTX macro extension service to add, expand, locate, and

delete extensions to the job control table ($JCT) control block from this exit. For
example, you can use these extensions to store job-related information.
Extensions that are added can be SPOOLed extensions that are available to all
exits that read the JCT or local extension that are available only to input
processing exits (2, 3, 4, and 20) and the $QMOD exit (51). The size of
SPOOLed extensions is based on the SPOOL buffer size and is less than 3K.
You can have up to 8K of local extension regardless of SPOOL buffer size.

Exit 2

92 z/OS V2R1.0 JES2 Installation Exits

2. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

Programming considerations
1. Be aware that when a JOB card image is passed to Exit 2, any //* comment

cards embedded within that statement are also passed to the exit. For example,
all of the following are passed:

//ABC JOB
//* COMMENT CARD
// CLASS=A

If within a //* comment you embed valid JOB card parameters, there is
potential to cause confusion in your scan routine and lead to unpredictable
results. Consider the following:

//* CHANGED CLASS FROM ORIGINAL CLASS=B

2. When this exit adds or modifies cards, whether the change is sent over NJE
(including SPOOL offload) depends on the statement type and the setting of
option flags in the $XPL or $RJCB. Modified JECL cards (original and modified
card are both JECL) are not sent over NJE. By default, all other changes are sent
over NJE. To limit changes to only the local node, you can set the X002RLOC in
the XPL (affects the current card) or set the RJCB3LOC bit in any RJCBs that
are added.

3. Updating the statement buffer is only valid for parameters that have
$STMTTABs in HASCSRIP.

4. Updates to the statement buffer are not passed to the converter and will not be
seen by Exit 6 or Exit 60.

Register contents on entry to exit 2
Register

Contents

0 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
Eyecatcher

XPLLEVEL
Version level for base XPL

XPLXITID
Exit ID number

XPLEXLEV
Version number for exit

X002IND
Indicator byte

X002JOBC
JOB card detected (always set for exit 2)

X002COND
Condition byte

Exit 2

Chapter 15. Exit 2: JOB JCL statement scan (JES2 main task) 93

X002CONT
Card is a continuation (not first card of JOB statement)

X002SEC
This card has been passed to the exit previously for this job
(set if cards added before this card)

X002RESP
Response byte

X002XSNC
Exit supplied next card in X002JXWR

X002XSEM
Exit supplied error message in X002JXWR

X002JCMT
Skip processing card

X002KILL
Kill current job (queue job to OUTPUT processing)

X002PURG
Purge current job

X002RLOC
Changed or added cards are not sent through NJE (set
RJCB3LOC in current RJCB)

XPLSIZE
Size of parameter list, including base section

X002CARD
80-byte card image address

X002FLGX
Pointer to exit flags (same as JRWFLAGX)

X002JXWR
80-byte exit work area address (same as JCTXWRK)

X002JCT
JCT address

X002JQE
JQE address

X002AREA
JRW address

X002STMT
Concatenated statement buffer. This is all the operands on all
continuations cards for this statement

X002STME
End of statement+1 pointer (in buffer)

X002STML
Statement label (job name)

X002STMV
Statement verb (JOB)

X002RJCP
RJCBs to add before this JOB statement

Exit 2

94 z/OS V2R1.0 JES2 Installation Exits

X002RJCA
RJCBs to add after this JOB statement

X002RJCC
RJCBs to add after the current card

X002FLG1
Statement flag byte

X002LOPR
Last operand is on the current card

X002QUOT
Unfinished quote at end of current card

X002CCMT
Current card is a continued comment

X002LAST
Last card in job statement

X002OCLS
Override job class (batch jobs only)

X002OJNM
Override job name. Specifying a non-zero value in this field will
alter the job name that is used when processing the job. The exit
must ensure that the provided job name is valid (such as proper
characters with blank padded on the right).

Note: This does not alter the job name in the JCL that is printed
with the output of the job.

X002UCOR
Override user portion of the job correlator

1 Address of a 3-word parameter list with the following structure:

Word 1
(+0) points to the JOB statement image buffer

Word 2
(+4) points to the exit flag byte, JRWFLAGX, in the $JRW

Word 3
(+8) points to the JCTXWRK field in the $JCT

2-9 Not applicable

10 Address of the $JCT

11 Address of the HCT

12 Not applicable

13 Address of the PCE

14 Return address

15 Entry address

Register contents when exit 2 passes control back to JES2
Upon return from this exit, the register contents must be:

0-13 Not applicable

Exit 2

Chapter 15. Exit 2: JOB JCL statement scan (JES2 main task) 95

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no additional exit
routines associated with this exit, continue with normal HASPRDR
processing.

4 Tells JES2 to ignore any additional exit routines associated with this exit
and to continue with normal HASPRDR processing.

8 Tells JES2 to cancel the job; output (the incomplete JCL images listing) is
produced.

12 Tells JES2 to purge the job; no output is produced.

Note: If register 10 contains 0 (the JCT is unavailable), JES2 ignores any return
code greater than 4.

Coded example
Module HASX02A in SYS1.SHASSAMP contains a sample of exit 2.

Exit 2

96 z/OS V2R1.0 JES2 Installation Exits

Chapter 16. Exit 3: JOB statement accounting field scan
(JES2 main task)

Function
This exit allows you to provide an exit routine for scanning the JOB statement
accounting field and for setting the corresponding fields in the appropriate JES2
control blocks. Exit 3 get control for jobs submitted though card readers, RJE, SNA
and BSC NJE and SPOOL reload. For jobs submitted through internal readers or
TCP/IP NJE exit 53 is called to JOB statement accounting field.

You can use your exit routine to interpret the variables in the accounting field and,
based on this interpretation, decide whether to cancel the job.

Use this exit to record alterations to the accounting field; they will not appear on
the user's output but are reflected in the JCT and when the SMF type 6 record is
written.

This exit is associated with the existing HASPRSCN accounting field scan
subroutine. You can write your exit routine as a replacement for HASPRSCN or
you can use a return code to input processing to call HASPRSCN after your exit
routine has executed. In either case, when this exit is implemented and enabled,
JES2 treats your exit routine as the functional equivalent of HASPRSCN. The
specification of the ACCTFLD parameter on the JOBDEF initialization statement,
which normally determines whether JES2 is to call HASPRSCN, becomes an
additional factor in determining whether your exit routine is to be called. The exit
is taken only if the ACCTFLD= parameter on the JOBDEF initialization statement
is specified as either REQUIRED or OPTIONAL. The exit is not taken if
ACCTFLD=IGNORE is specified. When it is called, your exit routine, rather than
the ACCTFLD parameter, determines whether HASPRSCN is to be executed as an
additional scan of the accounting field. For a complete explanation of how the
ACCTFLD parameter is specified, see z/OS JES2 Initialization and Tuning Reference.
The relationship of HASPRSCN to this exit is described in greater detail in the
“Other Programming Considerations” below.

You can use this exit for input processing - Accounting field.

Related exits
Use Exit 2 to alter the accounting information and supply new accounting
information at the time the entire JOB statement is first scanned.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

© Copyright IBM Corp. 1988, 2013 97

Supervisor/problem program
JES2 places Exit 3 in supervisor state and PSW key 1.

Restrictions
See Appendix A, “JES2 exit usage limitations,” on page 397 for a listing of specific
instances when this exit will be invoked or not invoked.

Recovery
$ESTAE recovery is in effect. Input processing recovery routine will attempt to
recover from program check errors, including program check errors in the exit
routine. However, as with every exit, your exit routine for this exit should not
depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your exit
routine. Therefore, it can provide no more than minimal recovery. You should
provide your own recovery within your exit routine.

Job exit mask
Exit 3 is subject to suppression. You can suppress Exit 3 by either implementing
exit 2 to set the 3rd bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$PCE, $RDRWORK, $JCT, $JCTX, $HCT, $MIT, $BUFFER, $HASPEQU, $JRW

Point of processing
This exit is taken from the JES2 main task, from the JOB statement processing
routine of HASPRDR.The exit occurs after JES2 has scanned the entire JOB
statement, but before the execution of the HASPRSCN accounting field scan
subroutine, if HASPRSCN is to be called. The JCT has been initialized with the
JES2 and installation defaults; in addition, those fields of the JCT that correspond
to JOB statement parameters other than accounting field parameters have been set.
The accounting field image is passed in X003ACCT and the length in X003ACTL.

Table 5 lists some of the fields in the JCT that you can modify.

Table 5. Selected JES2 Job Control Table Fields

Field Name in
JCT

Length
(Bytes) Field Bit Meaning Notes

JCTSMFLG 1 SMF Flags 0–1 These bits are not part of the interface –

2 If set, IEFUSO exit not taken 1,2

3–4 These bits are not part of the interface –

5 If set, no type 6 SMF records produced 1,2

6 If set, IEFUJP exit not taken 1,2

7 If set, no type 26 SMF record produced 1,2

JCTJOBFL 1 Job Flags 0 Background job –

1 TSO/E (foreground) job –

2 Started task –

3 No job journaling 1,2

4 No output 1,2

Exit 3

98 z/OS V2R1.0 JES2 Installation Exits

Table 5. Selected JES2 Job Control Table Fields (continued)

Field Name in
JCT

Length
(Bytes) Field Bit Meaning Notes

5 TYPRUN=SCAN 1,2,3

6 TYPRUN=COPY 2,3

7 Job restartable 1,2,8

JCTJBOPT 1 Job Options 0 /*PRIORITY card was read and value is
in priority field (JCTIPRIO)

–

1 /*SETUP card was read –

2 TYPRUN=HOLD was specified 1,2,4

3 No job log for this job 1,2,6,8

4 Execution batch job 1,2

5 The job was read through an internal
reader

–

6 The job was rerun –

7 This bit is not part of the interface –

JCTJOBID 8 JES2 JOB identifier –

JCTJNAME 8 Job name 3

JCTPNAME 20 Programmer name 3

JCTMCLAS 1 Message class 1,4

JCTJCLAS 1 Job class 1,4

JCTIPRIO 1 Priority 1,5

JCTROUTE 4 Route code of input
device (binary)

–

JCTINDEV 8 Input device name –

JCTACCTN 4 Account number 1,6

JCTROOMN 4 Room number 1,6,8

JCTETIME 4 Estimated real–time job
will run

1,6,8

JCTESTLN 4 Estimated count of
output lines (in
thousands)

1,6,8

JCTESTPU 4 Estimated number of
output cards punched

1,6,8

JCTESTBY 4 Estimated number of
SYSOUT bytes

8

JCTESTPG 4 Estimated number of
output pages

8

JCTFORMS 8 Job Forms 1,6,8

JCTCPYCT 1 Job copy count (binary) 1,6,8

JCTLINCT 1 Lines per page (binary) 1,6,8

JCTPROUT 4 Default print routing
(binary)

1,7

JCTPUOUT 4 Default punch routing
(binary)

1,7

Exit 3

Chapter 16. Exit 3: JOB statement accounting field scan (JES2 main task) 99

Table 5. Selected JES2 Job Control Table Fields (continued)

Field Name in
JCT

Length
(Bytes) Field Bit Meaning Notes

JCTPROCN 8 Procedure DD name 1,2,8

Note:

1. Can be modified by installation routine.
2. Preset from JOBCLASS(v) initialization statement according to job class
3. Preset from JOB statement
4. From JOB statement, if specified; otherwise according to input device as

established at JES2 initialization (for example, in RDR(nn)).
5. Exit 3 can use field JCTIPRIO to force a priority for a job subject to the

limitations of the input device's priority increment and priority limit values.
When exit 3 receives control, a value of C'*' in JCTIPRIO indicates a priority
has not been forced by an exit routine. If you want to force a priority in exit 3,
set JCTIPRIO to a value between 0 and 15 in the low-order four bits on the
field.

Note: Whether you may set field JCTIPRIO and the allowable values depend
on the specific exit.

6. Set by the routine (HASPRSCN) used by JES2 to scan the account field of the
JOB statement. Exit 3 can specify that JES2 cannot call HASPRSCN.

7. Preset according to an input device initialization parameter (for example
RDR(nn)). If not set at initialization the parameter defaults to the job input
source value (LOCAL or RMT(nnnn)). Can be modified by a /*ROUTE
statement after the scan exit.

8. Can be modified by a /*JOBPARM statement after the scan exit.

Extending the JCT control block
You can use the $JCTX macro extension service to add, expand, locate, and delete
extensions to the job control table ($JCT) control block from this exit. For example,
you can use these extensions to store job-related information. Extensions that are
added can be SPOOLed extensions that are available to all exits that read the JCT
or local extension that are available only to input processing exits (2, 3, 4, and 20)
and the $QMOD exit (51). The size of SPOOLed extensions is based on the SPOOL
buffer size and is less than 3K. You can have up to 8K of local extension
(regardless of SPOOL buffer size).

Programming considerations
1. The accounting field resides in a 144-byte work area pointed to by X003ACCT

in the XPL passed to the exit in register 0.
2. If you need to verify the existence of a JOB rather than a started task (STC) or

TSO/E logon, this can be done by comparing the JCTJOBID field to a “J”. The
presence of a “J” indicates the existence of a JOB.

3. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

4. The ACCTFLD parameter on the JOBDEF statement indicates whether JES2
should scan the accounting field of a JOB statement. For further details
concerning the use of the ACCTFLD parameter, see z/OS JES2 Initialization and
Tuning Reference.

Exit 3

100 z/OS V2R1.0 JES2 Installation Exits

If the ACCTFLD parameter indicates that the scan is to be performed, and if
this exit is implemented and enabled, input processing will call your exit
routine to perform the scan. If your exit routine passes a return code of 0 or 4
to JES2, input processing will call the existing HASPRSCN accounting field
scan subroutine after your routine has executed. Note that if both routines are
to be called, your routine should not duplicate HASPRSCN processing. For
example, your routine should not set the fields in the JCT that are set by
HASPRSCN. However, if your routine passes a return code of 8 or 12 to JES2,
JES2 suppresses execution of HASPRSCN. If the ACCTFLD parameter
indicates that the scan is to be performed but the exit is disabled, JES2 calls
only HASPRSCN; your exit routine is not called and is not given the
opportunity to allow or suppress HASPRSCN execution. If the ACCTFLD
parameter indicates that a scan is not to be performed, your exit routine is not
called, even if this exit is enabled, and execution of HASPRSCN is also
suppressed.

5. The ACCTFLD parameter on the JOBDEF statement indicates whether JES2
will cancel a job if the accounting field on the JOB statement is invalid or if a
JCL syntax error has been detected during input processing. Note that your
exit routine can affect this termination processing. For example,
ACCTFLD=REQUIRED indicates that JES2 should scan the accounting field,
that the job should be canceled if the accounting field is invalid, and that the
job should be canceled if a JCL syntax error has been found. If you pass a
return code of 8 to JES2, HASPRSCN is not called, therefore cannot terminate
a job with an invalid accounting field, even though ACCTFLD=REQUIRED.
Also note that HASPRSCN scans the accounting field passed in X003ACCT.
Therefore, if your routine alters this field, you affect HASPRSCN processing.

6. The specification of the ACCTFLD parameter is stored in the HCT, in field
$RJOBOPT. If your exit routine is meant to completely replace HASPRSCN,
you may want to access this field for use by your algorithm.

7. Typically, use this exit, rather than Exit 2, to alter the JCT directly. If you use
Exit 2 to alter the JCT, later processing might override your changes. The job
exit mask and the spool partitioning mask are exceptions. See note 2 of Exit 2
for more information.

8. An 80-byte work area pointed to by X003JXWR in the XPL is available for use
by your routine. If your routine requires additional work space, use the
$GETMAIN macro to obtain storage (and the $FREEMAIN macro to return it
to the system when your routine has completed).

9. When passing a return code of 12, your exit routine can pass an
installation-defined error message to JES2 to be added to the JCL data set
rather than the standard error message. To send an error message, generate
the message text in your exit routine, move it to area pointed to by
X003JXWR, and set the X003XSEM bit in X003RESP to one.

Note: The standard error message, $HASP110, still appears in SYSLOG on this
path, in addition to the installation-defined message. However, only the
installation message will be placed in the JCL data set and no WTO will be
issued for the installation-defined message unless Exit 3 issues the WTO itself.

10. If there is no accounting field on a JOB statement, the length passed by JES2
to the exit routine in X003ACTL is zero. Your exit routine should take this
possibility into account.

11. If you intend to use this exit to process nonstandard accounting field
parameters, you should either suppress later execution of HASPRSCN or code
your exit routine to delete nonstandard parameters before passing control to
HASPRSCN. If you do neither, that is, if you allow HASPRSCN to receive the

Exit 3

Chapter 16. Exit 3: JOB statement accounting field scan (JES2 main task) 101

nonstandard parameters, it might cancel the job because of an illegal
accounting field (depending on how the ACCTFLD parameter on the JOBDEF
statement is specified).
If you change the length of the accounting field, you must reload the length
into field JRWACCTL.

12. There are three job class fields (JCTJCLAS, JCTCLASS, and JCTAXCLS) in the
JCT. JCTJCLAS is the initial job execution class as set during input processing
and used when building the JQE during that processing. JCTCLASS is the
actual execution class. After input processing it contains the same value as
JCTJCLAS, but it might be updated when the job executes if a $T command
was used to update the job's class before execution. Therefore, JCTJCLAS and
JCTCLASS could be different. JCTAXCLS is a copy of the actual execution
class (JCTCLASS) that is propagated into the network JOB trailer. Do not use
any exit routine to set the JCTAXCLS field.
If you intend to use an exit 3 routine to change the execution class of a job, be
certain to set both the JCTJCLAS and JCTCLASS fields.

Register contents when Exit 3 gets control
0 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
Eyecatcher

XPLLEVEL
Version level for base XPL

XPLXITID
Exit ID number

XPLEXLEV
Version number for exit

X003IND
Indicator byte

X003COND
Condition byte

X003RESP
Response byte

X003XSEM
Exit supplied error message in X003JXWR

X003SKIP
Skip default accounting field

X003KILL
Kill current job (queue job to OUTPUT processing)

XPLSIZE
Size of parameter list, including base section

X003ACCT
Address of accounting field

X003FLGX
Pointer to exit flags (same as JRWFLAGX)

Exit 3

102 z/OS V2R1.0 JES2 Installation Exits

X003JXWR
80-byte exit work area address (same as JCTXWRK)

X003JCT
JCT address

X003JQE
JQE address

X003AREA
JRW address

1 Address of a 3-fullword parameter list

Word 1 (+0)
points to the accounting field (JCTWORK in the JCT)

Word 2 (+4)
points to the exit flag byte, JRWFLAGX in the JRW

Word 3 (+8)
points to the JCTXWRK field in the JCT

2-10 Not applicable

10 Address of the JCT

11 Address of the HCT

12 Not applicable

13 Address of the HASPRDR PCE

14 Return address

15 Entry address

Register contents when Exit 3 passes control back to JES2
0-13 Not applicable

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no additional exit
routines associated with this exit, use the current setting of the ACCTFLD
parameter on the JOBDEF statement to determine whether to execute the
HASPRSCN subroutine.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
use the current setting of the ACCTFLD parameter on the JOBDEF
statement to determine whether to execute HASPRSCN.

8 Tells JES2 to suppress execution of HASPRSCN and to complete job card
processing.

12 Tells JES2 to cancel the job because an illegal accounting field has been
detected. Tells JES2 to suppress execution of HASPRSCN and to queue the
job for output; output (the incomplete JCL images listing) is produced.

Exit 3

Chapter 16. Exit 3: JOB statement accounting field scan (JES2 main task) 103

Coded example
Module HASX03A in SYS1.SHASSAMP contains a sample of Exit 3.

Exit 3

104 z/OS V2R1.0 JES2 Installation Exits

Chapter 17. Exit 4: JCL and JES2 control statement scan
(JES2 main task)

Function
This exit allows you to provide an exit routine for scanning JCL and JES2 control
statements for jobs submitted through card readers, RJE, SNA and BSC NJE, and
SPOOL reload. For jobs submitted through internal readers or TCP/IP NJE, exit 54
is called to process JCL and JES2 control statements (JECL). If this exit is
implemented and enabled, it is taken whenever JES2 encounters a JCL or JES2
control statement. (Note: JOB statements are not included in the scan).

For JCL statements, your exit routine can interpret JCL parameters and, based on
this interpretation, decide whether JES2 should cancel the job, purge the job, or
allow the job to continue normally. Your routine can also alter JCL parameters and
supply additional JCL parameters. If necessary, in supplying expanded JCL data,
your routine can pass a JCL continuation statement back to JES2 or add statements
before or after the current JCL statement.

For JES2 control statements, your routine can interpret the JES2 control parameters
and sub-parameters and, based on this interpretation, decide whether JES2 should
cancel the job, purge the job, or allow the job to continue normally. For any JES2
control statement, you can write your exit routine as a replacement for the
standard JES2 control statement processing , suppressing execution of the standard
JES2 scan, or you can perform your own (partial) processing and then allow JES2
to execute the standard control statement routine processing. Also, your routine
can alter a JES2 control statement and then pass the modified statement back to
JES2 for standard processing, or your routine can pass an entirely new JES2 control
statement back to JES2, to be read (and processed) before or after the current
control statement.

This exit also allows you to process your own installation-specific JES2 control
statements or to implement new, installation-specific sub-parameters for existing
JES2 control statements.

This exit gets control when JES2 detects a JES2 control statement or JCL statement
within a job. JES2 also gives control to your exit routine when JES2 detects a JES2
control statement or JCL statement outside a job. JES2 also gives control to your
exit routine when it detects a JCL continuation statement.

This exit allows you to input processing - JCL/JECL.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

© Copyright IBM Corp. 1988, 2013 105

Supervisor/problem program
JES2 places Exit 4 in supervisor state and PSW key 1.

Restrictions
JES2 does not invoke this exit for JCL from cataloged procedures. See Appendix A,
“JES2 exit usage limitations,” on page 397 for other specific instances when this
exit is invoked or not invoked.

Recovery
$ESTAE recovery is in effect. The recovery routine established by JES2 attempts to
recover from program check errors, including program check errors in the exit
routine itself. However, as with every exit, your exit routine should not depend on
JES2 for recovery. JES2 cannot anticipate the exact purpose of your exit routine.
Therefore, it can provide no more than minimal recovery. Provide your own
recovery within your exit routine.

Job exit mask
Exit 4 is subject to suppression. You can suppress exit 4 by either implementing
exit 2 to set the 4th bit in the job exit suppression mask (JCTXMASK) or disabling
the exit in the JES2 initialization stream.

Mapping macros normally required
$HCT, $JCT, $JCTX, $MIT, $PCE, $RDRWORK, $BUFFER, $HASPEQU, $JRW

Point of processing
This exit is taken from HASPRDR in the JES2 main task. The exit occurs in the
main processing loop of HASPRDR, after HASPRDR has read an entire JES2
control statement or JCL statement (including JCL continuations) but before it has
processed any keywords on the statement. The statement may be outside a valid
job (that is, when there is no current job structure active on the reader).

This exit is invoked for jobs submitted though card readers, RJE, SNA and BSC
NJE, and SPOOL reload. It is not invoked for jobs submitted through the internal
reader or TCP/IP NJE

Programming considerations
1. This exit is taken once for each control statement (except for JOB statements)

encountered by JES2. X004IND indicates whether the current statement is a
JCL statement or a JES2 control statement. Your exit routine gets control for
//* comment, /* (generated), and /* PRIORITY JES2 control statements.

2. During input processing, JES2 writes the JCL records to a JCL data set. If an
error occurs during input processing, it is the JCL data set that is printed
when the job goes through output processing. If the job is successfully
processed by input processing, the JCL data set is the input for the converter.
The converter produces a JCL images data set that is printed when the job
goes to output processing after being successfully processed by input
processing.

3. Exit 4 is called for each card in a JCL statement (the original card and all
continuations) and for each JES2 control statement. Each time the exit is
called, it is passed the current card image and the statement buffer. The

Exit 4

106 z/OS V2R1.0 JES2 Installation Exits

statement buffer is all the operands for the JCL statement or JES2 control
statement concatenated in a single buffer. For example:
//OUTSET DD SYSOUT=H,OUTPUT=*.OUT1, COMMENT1
// DCB=(LRECL=8000,RECFM=FB,BLKSIZE=8000) COMMENT2

In this case the exit will be called 2 times, once for each card and will be
passed (on both calls) the following data in the statement buffer
(pointed to by X004STMT):

SYSOUT=H,OUTPUT=*.OUT1,DCB=(LRECL=8000,RECFM=FB,BLKSIZE=8000)

To alter the processing of the JCL statement or JES2 control card, the exit can:
v Update the card image passed in X004CARD. This change shows up in the

listing of the job
v Update the statement buffer in X004STMT to add or modify the operands.

This change does not show up in the listing of the job and is not passed to
conversion processing (it only affects keywords input processing scans from
the JOB card). If you update the statement buffer (X004STMT) in Exit 4 and
change the length of the buffer, you must update the field X004STME to
indicate the new end of buffer (one byte past the last meaningful character).

v Add additional card images to the JCL stream
You can Add card images to the JCL stream by either queuing a single RJCB
or a chain of RJCBs to the XPL, or by placing a card image to be placed after
the current card into the area pointed to by X004JXWR and setting X004XSNC.
In either case, when a card is added, the current card is re-scanned and the
statement buffer is re-built. Exit 4 is driven again for the updated statement,
with X004SEC set to indicate this card has been presented to the exit
previously.
When adding cards using RJCBs, use the RGETRJCB service (located in
HASCSRIP) to obtain a free RJCB; then add it to one of the three RJCB queues
in the XPL. Use the $CALL macro to invoke the RGETRJCB service. Register 1
on entry must be the JRW address. The RJCB address is returned in register 1.
The 80-byte card image to be added is placed into the field RJCBCARD. RJCBs
are chained together using the RJCBRJCB field in the $RJCB. They are added
to the job stream in the order they exist in the chain. To add an element to the
chain you would move the current RJCB queue head in the $XPL into the
RJCBRJCB field of the last RJCB you are adding, and then set the address of
the first RJCB element into the $XPL queue head. Be aware that multiple exit
4s might be using these queues, so ensure that you do not lose existing entries
on the queue.

X004RJCP
Adds the card images before the first card in the current JCL
statement or before the JES2 control card.

X004RJCA
Adds the card images after the last card in the current JCL statement.
In this case, the card(s) are assumed to not be a continuation of the
current JCL statement and the JCL cards are not re-scanned.

X004RJCC
Adds the card images after the current card. It is the callers'
responsibility to ensure that the proper continuation processing will
occur.

Exit 4

Chapter 17. Exit 4: JCL and JES2 control statement scan (JES2 main task) 107

When processing the last card in a JCL statement or when processing a JES2
control statement, the difference between adding a card to the X004RJCA
queue and the X004RJCC queue is that the first will not rescan the current
statement and the second will.
Add the card images after the current card. It is the callers' responsibility to
ensure that the proper continuation processing will occur.
a. Move a comma into the last byte of the operand on the JCL card image

(X004CARD) that exit 4 is currently processing. The comma indicates
additional information follows this JCL statement.

b. Move the information you want to add to the JCL statement to the area
pointed to by X004JXWR and set the X004XSNC bit in the X004RESP byte
to one. Setting X004RESP to X004XSNC indicates that the installation has
supplied an additional JCL statement image.

c. Set register 15 to X'00' or X'04' depending on whether you want to invoke
additional installation exits to process the statement.

You can also add an additional JCL statement to the job as follows:
a. Ensure that the JCL card image that exit 4 is currently processing is the

last for the current statement (X004LOPR is on). Exit 4 is processing the
last JCL statement image if a comma is not in the last byte of the JCL
operand on the card image.

b. Place the JCL statement in the are pointed to by X004JXWR and set the
X004XSNC bit in the X004RESP byte to one. Setting X004RESP to
X004XSNC indicates that the installation has supplied an additional JCL
statement image.

c. Set register 15 to X'00' or X'04' depending on whether you want to invoke
additional installation exits to process the JCL or JECL card.

For JECL statements, because there are no formal rules for the format of the
statement, the statement buffer will contain all the text after the VERB on the
JECL statement. The following is an example of a JOBPARM JECL statement
and the associated statement buffer:

/*JOBPARM SYSAFF=(IBM1),COPIES=2 This is a comment

The statement buffer for this statement would contain:

SYSAFF=(IBM1),COPIES=2 This is a comment

The statement buffer contains the comment in this case (and any trailing
blanks) because there is no formal rule stating where a JECL statement ends.

4. Updating the statement buffer is only valid for parameters that have
$STMTTABs in HASCSRIP.

5. Updates to the statement buffer are not passed to the converter and will not
be seen by Exit 6 or Exit 60.

6. The following indicators in the XPL can assist you in adding a card image to
the current JCL statement:

X004LOPR
Current card has the last operand in the JCL statement. There can be
additional continued comments after the current card.

X004QUOT
A quoted sting is being continued from the current card to the next
card. Pay attention if a card is being added after this card.

Exit 4

108 z/OS V2R1.0 JES2 Installation Exits

X004CCMT
The current card is a continued comment. Operand added to this card
or after this card will not be processed.

X004LAST
This is the last card image in the JCL or JECL statement.

7. To assist you in processing the operands on a statement, you can use either of
the following services to parse the statement buffer passed in X004STMT:
v Use the $SCAN facility to parse the operands with the standard $SCAN

rules for statements. This give you the flexibility of $SCAN but the parsing
rules are not the same as normal JCL. See the $SCAN and $SCANTAB
macros for additional information.

v Use the RCARDSCN service and $STMTTAB macro to parse the operands
with standard JCL rules. This is the service used by JES2 input processing
to parse the statement buffer. However, the RCARDSCN service only parses
the operands and calls a processing routine to do all the conversions and
storing of data. Conversion of data to binary to store into data areas is the
responsibility of the processing routines. See the $STMTTAB macro for more
information.

8. To entirely replace standard JES2 control card processing (HASPRCCS) for a
particular JES2 control statement, write your routine as a replacement version
of the standard HASPRCCS routine; then pass a return code of 8 back to JES2
to suppress standard processing. Note that your routine becomes responsible
for duplicating any HASPRCCS function you want to retain. If you merely
want to supplement standard HASPRCCS processing, you can write your exit
routine to perform the additional function and then, by passing a return code
of 0 or 4, direct JES2 to execute the standard HASPRCCS routine.

9. To nullify a JES2 control statement, pass a return code of 8 to JES2 without
using your exit routine to perform the function requested by the statement.
Note that, based on what appears in the JCL images output data set, the user
is not informed that the statement was nullified.

10. To modify a JES2 control statement, also use return code 8. Place the altered
statement in the area pointed to by X004JXWR and set X004XSNC to one. If
input processing is successful, the user will see in the output of the JCL
images file the original statement, and the altered statement. Note, that if you
modify a JES2 control statement and then pass a return code of 0 or 4, JES2
carries out normal input (HASPRCCS) processing, and the modified version of
the statement will appear on the user's output in the JCL images file, but the
original statement will not appear unless you go directly to output phase
(bypassing the converter); then, the user will see the original statement when
the JCL data set is printed.

11. Also use return code 8 in processing your own installation-specific JES2
control statements. Write your exit routine to perform the function requested
by the statement and then pass return code 8 to JES2 to suppress standard
processing and thereby prevent JES2 from detecting the statement as "illegal."

12. Extending the JCT Control Block

You can use the $JCTX macro extension service to add, expand, locate, and
delete extensions to the job control table ($JCT) control block from this exit.
For example, you can use these extensions to store job-related information.
Extensions that are added can be SPOOLed extensions that are available to all
exits that read the JCT or local extension that are available only to input
processing exits (2, 3, 4, and 20) and the $QMOD exit (51). The size of
SPOOLed extensions is based on the SPOOL buffer size and is less than 3k.
You can have up to 8K of local extension regardless of SPOOL buffer size.

Exit 4

Chapter 17. Exit 4: JCL and JES2 control statement scan (JES2 main task) 109

13. To process your own installation-specific JES2 control statement
subparameters, you should generally write your exit routine to replace
standard HASPRCCS processing entirely. That is, write your exit routine to
perform the function(s) requested by the standard parameters and
subparameters and those requested by any unique installation-defined
subparameters on a statement. Then, from your exit pass a return code of 8
back to JES2. Typically, because the parameters and subparameters on a JES2
control statement are interdependent, you will be limited to this method.
However, if you have defined an installation-specific subparameter which can
be processed independently of the rest of the control statement on which it
appears, you can write your exit routine to process this subparameter alone,
delete it, and pass a return code of 0 or 4 to JES2. JES2 can then process the
remainder of the statement as a standard JES2 control statement.

14. When passing a return code of 12 or 16, it is also possible for your exit routine
to pass an error message to JES2 for display at the operator's console. To send
an error message, generate the message text in your exit routine, move it to
the area pointed to by X004JXWR, and set the X004XSEM bit in X004RESP to
one.

15. If you intend to use this exit to affect the JCT, your exit routine must ensure
the existence of the JCT on receiving control. If the JCT has not been created
when your exit routine receives control, the pointer to X004JXWR is zero. For
example, when your exit routine receives control for a /*PRIORITY statement,
the JCT doesn't exist yet. In this case, your routine must store any data to be
placed in the JCT until JES2 creates the JCT.

16. Your exit routine does not have access to the previous control card image. You
should take this into account when devising your algorithm.

17. An 80-byte work area, pointed to by X004JXWR, is available for use by your
exit routine. If your routine requires additional work space, use the
$GETMAIN macro to obtain storage (and the $FREMAIN macro to return it to
the system when your routine has completed).

18. Exit 4 can use field JCTIPRIO to force a priority for a job subject to the
limitations of the input device's priority increment and priority limit values.
When exit 4 receives control, a value of C'*' in JCTIPRIO indicates a priority
has not been forced by an exit routine. If you want to force a priority in exit 4,
set JCTIPRIO to a value between 0 and 15 in the low-order four bits on the
field.

Note: Whether you may set field JCTIPRIO and the allowable values depend
on the specific exit.

19. When this exit adds or modifies cards, whether the change is sent over NJE
(including SPOOL offload) depends on the statement type and the setting of
option flags in the $XPL or $RJCB. Modified JECL cards (original and
modified card are both JECL) are not sent over NJE. By default, all other
changes are sent over NJE. To limit changes to only the local node, you can
set the X004RLOC in the XPL (affects the current card) or set the RJCB3LOC
bit in any RJCBs that are added.

Register contents when Exit 4 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Pointer to a parameter list with the following structure, mapped by $XPL:

Exit 4

110 z/OS V2R1.0 JES2 Installation Exits

Field Name
Description

XPLID
Eyecatcher

XPLLEVEL
Version level for base XPL

XPLXITID
Exit ID number

XPLEXLEV
Version number for exit

X004IND
Indicator byte

00 JCL card detected

04 JECL card detected

X004COND
Condition byte

X004CONT
Card is a continuation (not first card of statement)

X004JOBP
/*JOBPARM card detected

X004CMND
/*$ command card detected

X004SEC
This card has been passed to the exit previously for this job
(set if cards added before this card)

X004PREJ
Card encountered outside a job structure

X004RESP
Response byte

X004XSNC
Exit supplied next card in X004JXWR

X004XSEM
Exit supplied error message in X004JXWR

X004JCMT
Skip processing card

X004KILL
Kill current job (queue job to OUTPUT processing)

X004PURG
Purge current job

X004RLOC
Changed or added cards are not sent through NJE (set
RJCB3LOC in current RJCB)

XPLSIZE
Size of parameter list, including base section

Exit 4

Chapter 17. Exit 4: JCL and JES2 control statement scan (JES2 main task) 111

X004CARD
80-byte card image address

X004FLGX
Pointer to exit flags (same as JRWFLAGX)

X004JXWR
80-byte exit work area address (same as JCTXWRK)

X004JCT
JCT address

X004JQE
JQE address

X004AREA
JRW address

X004STMT
Concatenated statement buffer. This is all the operands on all
continuations cards for this statement

X004STME
End of statement+1 pointer (in buffer)

X004STML
Statement label

X004STMV
Statement verb

X004RJCP
RJCBs to add before the current JCL/JECL statement

X004RJCA
RJCBs to add after the current JCL/JECL statement

X004RJCC
RJCBs to add after the current card

X004FLG1
Statement flag byte

X004LOPR
Last operand is on the current card

X004QUOT
Unfinished quote at end of current card

X004CCMT
Current card is a continued comment

X004LAST
Last card in JCL or JECL statement

1 Pointer to a 3-word parameter list with the following structure:

Word 1
(+0) address of the control statement image buffer

Word 2
(+4) address of the exit flag byte, JRWFLAGX, in the $JRW

Word 3
(+8) address of the JCTXWRK field in the $JCT

2-10 Not applicable

Exit 4

112 z/OS V2R1.0 JES2 Installation Exits

11 Address of the HCT

12 Not applicable

13 Address of the PCE

14 Return address

15 Entry address

Register contents when Exit 4 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 Not applicable

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no additional exit
routines associated with this exit, perform standard input processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
perform standard input processing.

8 For JES2 control statements and JCL statements, tells JES2 not to perform
standard processing and just write the statement to the JCL data set.

12 Tells JES2 to cancel the job because an illegal control statement has been
detected; output (the incomplete JCL images listing) is produced.

16 Tells JES2 to purge the job because an illegal control statement has been
detected; no output is produced.

Note: For all JES2 control statements preceding the JOB card (X004PREJ on), a
return code higher than 4 is ignored.

Coded example
Module HASX04A in SYS1.SHASSAMP contains a sample of Exit 4.

Exit 4

Chapter 17. Exit 4: JCL and JES2 control statement scan (JES2 main task) 113

114 z/OS V2R1.0 JES2 Installation Exits

Chapter 18. Exit 5: JES2 command preprocessor

Function
This exit allows you to preprocess most JES2 commands. If this exit is
implemented and enabled, all but the following commands are available for
preprocessing.
v $Mnn
v $Nnnnn
v $P JES2,ABEND,FORCE
v $T CKPTDEF,RECONFIG=YES
v Monitor commands –

– $JD DETAILS
– $JD HISTORY
– $JD JES
– $JD MONITOR
– $JD STATUS
– $J STOP

You can use your exit routine to perform your own command validation and,
based on the checking performed by your validation algorithm, decide whether
JES2 should terminate processing for the command or allow normal JES2 command
processing to continue. If you use your exit routine to terminate processing for a
command, the command subprocessor is bypassed and the requested action is not
taken.

This exit also permits you to implement your own installation-specific JES2
command operands and suboperands, and nonstandard JES2 commands unique to
your installation. Your exit routine must process nonstandard, installation-specific
operands, suboperands, and commands itself, and then suppress standard JES2
command processing. Nonstandard command processing is considered in greater
detail in the “Other Programming Considerations” below.

When suppressing standard JES2 command processing, you have the option of
directing JES2 to send the standard “OK” return message to the operator, sending
your own exit-generated message to the operator, or of suppressing standard JES2
command processing without operator notification.

Macro $CFSEL can help you process command operand strings.

The JES2 command translator migration aid:
JES2 provided a compatibility and migration aid in the form of an automatically
invoked Exit 5 routine in OS/390 Version 2 Release 4 and up. However, this exit 5
command translation routine is no longer automatically loaded and enabled as of
z/OS V1R2. The command translation module, HASX05C, is shipped (unchanged)
in SYS1.SHASSAMP as of z/OS V1R2.

© Copyright IBM Corp. 1988, 2013 115

IBM suggests that you use the most current command syntax. However, if this is
not possible, install the JES2 command translation exit (member HASX05C in
SYS1.SHASSAMP). On the next JES2 restart, supply the following initialization
statements:

LOAD(HASX05C)
EXIT(5) ROUTINES=(HASX5CTR)

If additional EXIT(5) statements are found in the initialization stream, they will
override this default. To include the translation function in this case, HASX5CTR
should be added to the list of routines on the EXIT(5) statement.

The following table lists those commands translated by the exit routine:

Table 6. Old/New Comparison of JES2 Commands. Pre-HJE6604 Format and Translated
Command

Pre-HJE6604 Format Translated Command

$D'name',... $DJOBQ'name',CMDAUTH=*,...

$T'name',... $TJOBQ'name',...

NOTE: Similar for $A, $C, $E, $H, $L, $O, $P, $T, $TO

$DJ1,2,... $DJ(1, 2),...

NOTE: J can be J, JOB, S, STC, T, TSU.

NOTE: Similar for $a, $C, $E, $H, $L, $O, $P, $TO

$DJ1–2, J3–4,... $DJ(1–2, 3–4)...

NOTE: Similar for $A, $C, $E, $H, $L, $O, $P, $TO

$LJnnn,ALL $DOJnnn

$LJnnn,H $DOJnnn,HELD

$LJnnn,READY $DOJnnn,READY

$LJnnn,OUTGRP=xxx $DOJnnn,OUTGRP=xxx

$CJnnn,OUTGRP=xxx $COJnnn,OUTGRP=xxx

$PJnnn,OUTGRP=xxx $POJnnn,OUTGRP=xxx

$PJnnn,Q=x $POJnnn,Q=x Unless Q= is a valid job queue
(XEQ, PPU, etc.)

$vJnnnn,A=|DAYS=|Hours= $vJnnnn,A>|Days>|Hours>

$TJnnnn,S=sid1,sid2,... $TJnnnn,S=(sid1, sid2,...)

$DSPL,JOBS=nn $DJOBQ,SPOOL=(PERCENT>=nn)

$DSPL,V=xxxxxx, JOBS=nn $DJOBQ,SPOOL=(PERCENT>=nn,
VOLUME=xxxxxx)

$SSPL,V=xxxxxx,... $SSPL(xxxxxx),...

$vIxx $vI(xx)

$TIxx,class-list $TI(xx),C=class-list

$HQ,ALL $TJOBCLASS(*),QHELD=Y

$HQ,C=xyz $TJOBCLASS(x,y,z),QHELD=Y

$AQ,ALL $TJOBCLASS(*),QHELD=N

$AQ,C=xyz $TJOBCLASS(x,y,z),QHELD=N

$PQ,ALL,... $POJOBQ,READY,...

Exit 5

116 z/OS V2R1.0 JES2 Installation Exits

Table 6. Old/New Comparison of JES2 Commands (continued). Pre-HJE6604 Format and
Translated Command

Pre-HJE6604 Format Translated Command

$PQ,Q=xyz,... $POJOBQ,READY,Q=XYZ,...

$OQ,ALL,... $OJOBQ,/R=LOCAL.*,...

$OQ,Q=xyz,... $OJOBQ,/R=LOCAL.*,/Q=xyz,...

$TALL,sid1,sid2,... $TJOBQ(*),/S=(sid1),S=(sid2,...)

$LSYS $DMEMBER

$ESYS,sid $EMEMBER(sid)

$ESYS,RESET=sid $ECKPTLOCK,HELDBY=sid

$TSYS,IND=Y/N $TMEMBER(local),IND=Y/N

Note: For ease of coding, some commands which work without translation may be
translated to an equivalent form. For example, RDJ1 is translated to $DJ(1).

For further information about this pre-R4 to post-R4 migration aid, see the Exit 5
documentation in the z/OS Migration document for the release that you are
migrating from.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 5 in supervisor state and PSW key 1.

Recovery
$ESTAE recovery is not in effect while an exit routine associated with this exit is
being processed. However, you can implement $ESTAE recovery within your
routine. As with all exits, you are responsible for your own recovery within your
exit routine, whether you choose to implement $ESTAE recovery or other recovery
procedures.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE, $COMWORK

Exit 5

Chapter 18. Exit 5: JES2 command preprocessor 117

Point of processing
This exit is taken from the JES2 main task, from the HASPCOME command edit
routine of HASPCOMM. The exit point occurs after the command has been edited
but before lookup in the command selection tables (COMFASTR and COMTAB),
before console authority checking, and before the call to the command
subprocessor.

If your exit routine processes the command, the exit routine is responsible for
performing any necessary security validation or auditing. Also, if your exit routine
sets a return code of 8 or greater, auditing will not occur. If you want to audit
commands that your exit routine would fail, you must call SAF in your exit
routine to perform the auditing.

Programming considerations
1. For a multiple command, this exit is taken once for each command verb.
2. The same command can be presented to Exit 5 on multiple members of the

MAS. If the command is operating on a job executing on a different member
than where the command originated, JES2 will send the command to the target
system where it will be reissued. Therefore, to distinguish between the original
command and a reissued command your exit must check the contents of the
COMFLAG3 field of the PCE pointed to by register 13. If the CMB3INTC bit is
on, the command is a reissued command.
It is recommended that one member be chosen to process the command, and
ignore the command on the other members.

3. To preprocess a standard JES2 command, a typical exit routine would perform
some type of validation checking. This validation checking would determine
whether JES2 should terminate command processing or allow standard
command processing to continue. You can base a validation algorithm on
various factors. The fields of the command processor work area of the PCE
contain extensive command-related information that can be used in validation
checking. Note, however, that even if your exit routine validates a command, it
is still possible for JES2 to reject the command based on its standard validation
checking.

4. In processing your own installation-specific JES2 commands, your exit routine
should perform its own validation checking to replace the functions normally
performed by HASPCOME. Your routine should validate the command verb,
contained in the COMVERB field of the PCE's command processor work area,
with the equivalent of the command table lookup performed by HASPCOME.
This check should determine whether the command has a valid
installation-specific command verb and what action your exit routine should
take based on the verb. Your routine should also perform console authority
checking by testing the COMAUTH field, of the PCE's command processor
work area, which contains the command's restriction bits. COMAUTH has the
following structure:

COMS
(X'01') when on indicates that the command should be rejected unless
authorized for the system.

COMD
(X'02') when on indicates that the command should be rejected unless
authorized for the device.

Exit 5

118 z/OS V2R1.0 JES2 Installation Exits

COMJ (X'04') when on indicates that the command should be rejected unless
authorized for the job.

COMR
(X'08') when on indicates that the command should be rejected if it was
entered from a remote work station.

If your routine validates the command, it can then perform the requested
function, serving as the equivalent to a standard command subprocessor. If,
however, your routine determines that the command is not valid, it must
terminate processing for the command internally before returning control to
JES2. Then, it should pass a return code (of 8, 12, or 16) to terminate standard
HASPCOMM processing, with or without an accompanying message to the
operator.

5. When issuing job-related messages, IBM suggests that you have a $CWTO for a
control line if you also specify a console area (L=area). Issue job-related
messages independently from any other messages in your exit; do not include
JOB= or LAST=. Because JES2 inserts the message identifier and a time stamp,
your message should not exceed 16 characters.
There is only one control line for a multi-line WTO, and the remaining lines
(referred to as data lines) cannot exceed 70 characters in length.
When you have issued any job-related messages, you can then issue all
remaining messages. Structure your logic to reduce dependencies on whether a
console area is specified. Use the following guidelines:
v Assume JES2 issues each single-line and multi-line message independently,

that is, as if no console area was specified.
– Code LAST=YES on a $CWTO for a single-line message. Keep in mind the

message isn't really a single line if a console area was specified and JES2
ignores LAST=YES.

– Code LAST=NO on the first and middle lines and LAST=YES on the last
line of multi-line messages.

v If you code JOB=YES on a multi-line message, code it for each line of that
message. For a single or multi-line message with JOB=YES, place the
8-character JOBID followed by a blank in the first nine characters of the
message text of the first or only message line. If a console area wasn't
specified, JES2 removes the JOBID from the message text, shifts the
remaining text to the left, and issues a WTO with the specified JOBID. If you
are issuing a multi-line message, place nine blanks at the beginning of the
text of all subsequent lines.

v Observe the following line length restrictions to reduce dependencies on
whether an area was specified:
– Place only the JOBID and job name on the first line of a job-related,

multi-line message and not more than 25 characters on the first line of a
non-job-related, multi-line message.

– If JOB=YES, limit the length of subsequent message lines to 61 characters.
– If JOB=NO, limit the length of subsequent message lines to 70 characters.

See z/OS JES2 Macros for more information about the use of the $CWTO macro.
6. Typically, to process nonstandard operands and suboperands, you must write

your exit routine to replace standard JES2 processing entirely. That is, your exit
routine must process both the nonstandard operands or suboperands and the
standard portion of the command, by performing the function of the standard
command subprocessor. This is typically because the command verb and the

Exit 5

Chapter 18. Exit 5: JES2 command preprocessor 119

accompanying operands and suboperands are interdependent; the operands
and suboperands modify the action of the command verb and cannot be
processed independently.

7. When passing a return code of 16 and issuing an exit-generated message to the
operator, move the text of the message to the COMMAND field of the
command processor work area in the PCE. Place the length of the message in
R0. Also, be certain to issue the $STORE (R0) macro after loading the message
length in R0 but before issuing the $RETURN macro because $RETURN macro
destroys the contents on register 0. (When passing a return code of 12, to cause
JES2 to issue the standard “OK” return message, you do not have to supply the
message length in R0.)

8. Use the $CWTO macro instruction in this exit to communicate to the operator.
If you use the $CWTO macro, you must do all the processing required by the
specified command within your exit routine and provide a return code
indicating that JES2 should bypass any further processing of the specified
command.
If the command being processed is a reissued command (the CMB3INTC bit in
the COMFLAG3 field of the PCE pointed to by register 13 is on) the message
issued by $CWTO will be displayed in the system log only.
See z/OS JES2 Macros for more information about the use of the $CWTO macro.

9. When this exit routine operates in a networking environment, your exit must
check the contents of the COMGFLG1 flag byte of the PCE pointed to by
register 13. If the COMG1SSI bit is on, the current command is in subsystem
independent format, and registers 5, 6, and 7 do not contain pertinent
information. (Note: These subsystem-independent commands are also known as
formatted commands and can be issued through $G commands.) The structure
of the subsystem-independent commands is located at COSICMDA in the
mapping macro $COMWORK.

Register contents when Exit 5 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0-4 N/A

5 Pointer to the address of the current operand*

6 Increment value of 4*

7 Pointer to the address of the last operand*

8-10 N/A

11 Address of the HCT

12 N/A

13 Address of the HASPCOMM PCE

14 Return address

15 Entry address

Note: *See "Programming Considerations" for use of these registers in a
networking environment.

Exit 5

120 z/OS V2R1.0 JES2 Installation Exits

Register contents when Exit 5 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 If an exit-generated message is to be passed, this register contains the
length of the message; otherwise, it is not applicable.

1 - 13 N/A

14 Return address

15 Return code

A return code:

0 Tells JES2 that if any additional exit routines are associated with this exit,
execute the next consecutive exit routine. If there are no other exit routines
associated with this exit, continue with normal command processing.

4 Tells JES2 to ignore any other exit routines associated with this exit point
and to continue with normal command processing.

8 Tells JES2 to terminate standard processing for the command and to issue
the $CRET macro to return control to the main command processor; the
command subprocessors are bypassed.

12 Tells JES2 to terminate standard processing for the command and to issue
the $CRET macro, specifying the standard $HASP000 “OK” message, to
return control to the main command processor. The “OK” message is
issued and the command subprocessors are bypassed.

16 Tells JES2 to terminate standard processing for the command and to issue
the $CRET macro, specifying a message generated by your exit routine, to
return control to the main command processor. The exit-generated message
is issued and the command subprocessors are bypassed.

Coded example
Modules HASX05A and HASX05C in SYS1.SHASSAMP contain examples of Exit 5.

Exit 5

Chapter 18. Exit 5: JES2 command preprocessor 121

122 z/OS V2R1.0 JES2 Installation Exits

Chapter 19. Exit 6: JES2 converter exit (subtask)

Function
This exit gets control when conversion processing occurs in the JES2 address space.
It allows you to provide an exit routine for scanning resolved Converter/
Interpreter (C/I) text. If this exit is implemented and enabled, it is taken after the
converter has converted each JCL statement into C/I text and once after all of the
JCL for a particular job has been converted to C/I text. If you are running
conversion in the JES2CI address space (because JOBDEF INTERPRET=JES is set),
then exit 60 is taken at the same point in processing as this exit.

You can use your exit routine to:
v Interpret C/I text and, based on this interpretation, decide whether JES2 should

either cancel the job at the end of conversion processing or allow it to continue
with normal execution.

v Pass messages to the converter that it will write to the JCLMSG data set for the
job.

v Modify the C/I text.

After the converter has processed the entire job, this exit again allows you to direct
JES2 either to cancel the job or to allow it to continue with normal execution.

C/I text is represented by ‘keys’ that identify the various JCL parameters. These
keys are documented in the JES2 assembly, HASPDOC, which calls macros
IEFVKEYS and IEFTXTFT, which are distributed in SYS1.MODGEN. Specifying
KEYS on $MODULE causes IEFVKEYS to be expanded; specifying TEXT on
$MODULE causes IEFTXTFT to be expanded. IEFVKEYS contains the definition of
the values for each key, and IEFTXTFT contains the definition of the format of the
Converter/Interpreter text. For more information about C/I text, see z/OS MVS
Installation Exits.

Related exits
Exit 6 only gets control when the converter is called in the JES2 address space. If
conversion is being run with the interpreter in the JES2CI address space, use exit
60 to perform the equivalent exit 6 function.

Use exit 44 if you need to alter any fields in the job queue element ($JQE). Altering
fields in the $JQE in Exit 6 will not be successful because you are in the subtask
environment.

Recommendations for implementing Exit 6
It is important to remember that Exit 6 is invoked because either:
v The converter just completed converting a JCL statement to C/I text
v The converter completed processing the entire job.

You could implement Exit 6 to keep certain counters—for instance, the number of
DD cards received. Then, when the JCL for the entire job has been processed, the
second part of your routine, the part that receives control when the code in R0 is 4

© Copyright IBM Corp. 1988, 2013 123

(or X006IND is set to X006CEND), can determine whether to allow the job to
continue based on the contents of these counters.

You should use extreme caution when modifying C/I text. If any of your changes
cause a job to fail (because of an interpreter error), there will be no correlation of
the error with the resulting abend on the user's output. To modify or examine the
C/I text:
v Ensure register 0 contains a X'00' (or X006IND is set to X006TEXT) to indicate

the invocation of Exit 6 is to process a converted JCL statement.
v Use any information from the C/I text for any installation-written control blocks.
v Make any necessary modifications to the C/I text. z/OS MVS Installation Exits

describes the rules for changing C/I text to ensure the changes you make will
not cause the other problems in your installation, such as loss of data, loss of
integrity and performance.

Note:

– You can issue messages to the JCLMSG data set to track the changes that you
make to the C/I text, because none of your changes will be reflected in the
job output. However, the changes you make will be reflected in the job's SWA
control blocks.

– The current job class for a job is passed to the exit in XPL field X006JCLS. You
can modify this field to alter the job class for the job. Alternately, you can use
the JCTJCLAS and JCXJCLA8 fields in the JCT. When conversion and all Exit
6 processing is completed for a job, JES2 uses these fields to update the
corresponding JQE fields JQEJCLAS and JQXJCLAS. JES2 also ensures that
these changes are checkpointed. Ensure that the specified job class exists to
avoid a resulting job failure.

– If you need to change the job priority, use the JCTIPRIO fields in the JCT.
When conversion and all Exit 6 processing is completed for a job, JES2 will
use this field to update the corresponding JQE field JQEPRIO. JES2 also
ensures that these changes are checkpointed.

– The current scheduling environment for a job is passed to the exit in the XPL
field X006SCHE. You can modify this field to alter the scheduling
environment for the job. Alternatively, you can supply a scheduling
environment directly in the JCTSCHEN field in the JCT, which overrides any
value that is specified on the job card.
The converter validates the scheduling environment after Exit 6 receives
control. If the scheduling environment is not valid, JES2 fails the job with a
JCL error. Alternatively, you can update the internal text for the job card to
specify a new scheduling environment.
The current hold state of the job is passed to the exit in bit X006HOLD of the
XPL. You can modify this bit to alter the current hold status of the job.
Alternatively, you can set bit JCTTHOLD in the JCT.

v Set the appropriate return code in register 15 or perform additional processing.

If you decide to fail the job, you should issue error messages to the operator and
to the user. You can fail the job in Exit 6 by either:
v Setting flag CNMBFJOB in byte CNMBOPTS of the CNMB. See z/OS MVS

Installation Exits for information about obtaining and initializing the CNMB. If
you set this flag, the converter continues to convert the job's JCL and will fail
the job after it has completely processed the job. You can only fail the job in this
manner when register 0 contains a X'00'.

v Setting a return code of 8 in register 15 before returning to JES2.

Exit 6

124 z/OS V2R1.0 JES2 Installation Exits

If you want to issue messages to the:
v JCLMSG data set, you must obtain a CNMB and initialize it with the message

text. You can not issue any messages to the JCLMSG data set, if this is the last
invocation of the exit (register 0 contains a 4). See z/OS MVS Installation Exits for
additional information about how to initialize the CNMB.

v Operator or user, issue a $WTO macro.

Environment
The following environment requirements apply to Exit 6.

Task
JES2 subtask. You must specify ENVIRON=SUBTASK on the $MODULE or
$ENVIRON macro.

Restrictions
v Do not attempt to modify checkpointed data from this exit.
v See Appendix A, “JES2 exit usage limitations,” on page 397 for a listing of

specific instances when this exit will be invoked or not invoked.
v Exit 6 must be MVS reentrant. See “Reentrant Code Considerations” in Chapter

2 for more information.
v Do not alter any fields in the $JQE. The changes will not be successful because

you are in the subtask environment.
v Do not attempt to control the processing of the MVS converter by changing the

C/I text at Exit 6. The converter does not examine the C/I text returned from
the exit to determine what changes have been made. For example, you cannot
use this exit to execute a procedure other than the one initially named on the
EXEC statement, nor can you use this exit to control the printing of JCL
statement images by altering the MSGLEVEL parameter on the JOB statement.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 6 in supervisor state and PSW key 1.

Recovery
ESTAE recovery is in effect. However, no exit routine should depend on JES2 for
recovery, because JES2 cannot identify the exact purpose of your exit routine and
can therefore provide only minimal recovery. Your exit routine must provide its
own recovery; if JES2 recovery is entered, the current job is failed.

Job exit mask
Exit 6 is subject to suppression. The installation can implement exit 2 to set the 6th
bit in the job exit suppression mask (JCTXMASK) or the installation can indicate
the exit is disabled in the JES2 initialization stream.

Storage recommendations
v Private subpool that resides below 16-megabytes
v Word 1 in register 1 (or X006WORK) contains the address of a 16-byte work area

Exit 6

Chapter 19. Exit 6: JES2 converter exit (subtask) 125

Mapping macros typically required
$CIWORK, $CIPARM, $DTE, $DTECNV, $HASPEQU, $HCT, $JCT, $JCTX, $MIT,
$XIT, CNMB, KEYS, TEXT

Point of processing
This exit is taken from HOSCNVT, the JCL conversion processor subtask, from
within HASCCNVS at the following two times:
1. JES2 first gives your exit control after the converter has successfully converted

a complete JCL job into its equivalent C/I text. The exit receives control once
for each complete JCL statement unless the converter determines that any JCL
statement for this job is in error. A complete JCL statement is considered to be a
single JCL statement with all of its continuations. When Exit 6 is invoked, the
user's JCL has been merged with the expanded JCL from PROCLIB, and all
substitutions for symbolic parameters have been made. Therefore, all of the
standard modifications that JES2 will make to the C/I text are complete when
the exit receives control.

2. JES2 also gives your exit control after all of the JCL for a particular job has
been converted to C/I text even if the converter did detect a JCL statement that
was in error. It occurs at the return from the link to the converter, before JES2
creates the scheduler work area (SWA) control blocks. JES2 will not create the
scheduler work area (SWA) control blocks until all the JCL for a particular job
has been converted to C/I text.

Programming considerations
1. If you suspect that an exit routine associated with this exit is causing a

problem, the most expedient method of debugging is to disable the exit to
determine whether the problem still occurs when your exit routine is not
executed. Then, if the problem seems to be within your exit routine, you can
test the routine by turning on the tracing facility.
The trace record serves as a valuable debugging aid because it contains two
copies of each C/I text, one before the call to your exit routine and one after
the call to your exit routine. However, do not turn on tracing in your normal
production environment or you will seriously degrade the performance of your
system.

2. Extending the JCT Control Block

You can use the $JCTX macro extension service to add, expand, locate, and
delete extensions to the job control table ($JCT) control block from this exit. For
example, you can use these extensions to store job-related information.

3. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

4. Be sure to take into account when you manage any resources for the exit that
the final call to the exit cannot be made if the converter task abends.

Register contents when Exit 6 gets control
The interface to this exit is the same as the interface to exit 60, with the exception
of the contents of register 11. The contents of the registers on entry to this exit are:

Register
Contents

0 A code indicating the status of conversion processing

Exit 6

126 z/OS V2R1.0 JES2 Installation Exits

0 Indicates that a JCL statement has been converted to C/I text.

4 Indicates that the converter has completed converting the job to
C/I text. This is the final invocation of Exit 6 for the job.

1 Address of a 6-word parameter list

Word 1 (+0)
Address of a 16-byte work area available to the installation.

Word 2 (+4)
If the code passed in R0 is:
v 0, this word points to the address of a 8192 (2000 hex) byte

buffer that contains the C/I text of the converted JCL statement.
v 4, this word contains the address of the converter's return code.

Word 3 (+8)
Address of the $DTE

Word 4 (+12)
Address of the $JCT

Word 5 (+16)
JES2 sets this to 0 before it passes control to the exit routine.

Word 6 (+20)
Address of the $CIWORK are for this subtask

2 Parameter list address mapped by $XPL. Register 1 points into this area for
compatibility with existing exits that do not understand the $XPL data
structure. The parameter list has the following structure:

XPLID
Eyecatcher ('$XPL')

XPLLEVEL
Indicates the version number of Exit 6

XPLXITID
Exit identifier - 6

XPLEXLEV
Version level of the exit

X006IND
Indicator byte:

X006TEXT
Internal text exit

X006CEND
End of conversion

X006COND
Condition byte:

X006TSU
Converting a TSO user

X006STC
Converting a started task

X006JOB
Converting a batch job

Exit 6

Chapter 19. Exit 6: JES2 converter exit (subtask) 127

X006RESP
Response byte:

X006HOLD
Batch job hold indicator. Set on input as the current hold
state and can be modified by the exit.

X006PLUS
Exit 06 parameter list (register 1 points here)

X006WORK
16 byte work area address

X006ITXT
Internal text image address (when X006IND = X006TEXT)

X006CRET
Address of Converter RC (when X006IND = X006CEND)

X006CNVW
JES2 DTE work area address

X006JCT
JCT address

X006CNMB
Address of message buffer

X006CIW
CIWORK data area address

X006JCLS
Current job class that is associated with the job. For batch jobs, the
exit can update this field to alter the job class that is associated
with the job.

X006SCHE
Current scheduling environment (SCHENV) that is associated with
the job. For batch jobs, the exit can update this field to alter the
scheduling environment that is associated with the job.

3-10 Not applicable

11 Address of the $HCT

12 N/A

13 Address of an 18-word OS-style save area

14 Return address

15 Entry address

Register contents when Exit 6 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable on return

1 Address of a 6-word parameter list

Word 5 (+16)
Address of a CNMB to be processed by the converter. If you want

Exit 6

128 z/OS V2R1.0 JES2 Installation Exits

to pass a message(s) that the C/I will include in the JCLMSG data
set for the job, this must contain the address of the CNMB (see
z/OS MVS Data Areas for information about the IEFCNMB macro).

2-13 Not applicable

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
execute the next consecutive exit routine. If there are no more exit routines
associated with this exit point, continue with normal JES2 processing. If the
exit routine was called when register 0 contains a X'00", normal processing
is the conversion of the next JCL statement. If the exit routine was called
when register 0 contains a X'04', normal processing is to queue the job for
execution.

4 Tells JES2 to ignore any additional exit routines associated with this exit for
this C/I text and continue with normal processing. If the exit routine was
called when register 0 contains a X'00' normal JES2 processing is the
conversion of the next JCL statement. If the exit routine was called when
register 0 contained a X'04', normal JES2 processing is to queue the job for
execution.

8 Tells JES2 to bypass execution and cancel the job; the job is queued for
output rather than for execution. Conversion will continue until all JCL has
been converted.

Coded example
v Module HASX06A contains a sample of Exit 6.
v Module HASX60B contains the same sample exit 60 but also includes two

samples of exit 6 that call the common sample of Exit 60:
1. Routine HASX06B is a sample exit 6 that switches to the user assembly

environment and calls the single sample exit 60 routine.
2. Routine HASX06R is a sample exit 6 that switches to the user assembly

environment that uses the $EXIT facility to invoke all exit 60 routines.
v

Exit 6

Chapter 19. Exit 6: JES2 converter exit (subtask) 129

Exit 6

130 z/OS V2R1.0 JES2 Installation Exits

Chapter 20. Exit 7: Control block I/O (JES2)

Function
This exit allows you to provide an exit routine to:
v Receive control whenever control block I/O is performed by the JES2 main task.
v Perform I/O for any installation-specific control blocks you may have created.

This exit uses JES2 main task control block I/O.

Related exits
Whenever control block I/O is performed by a JES2 subtask or by a routine
running in the user environment, Exit 8 provides the same function. In the
HASPFSSM address space, Exit 25 provides this function.

Recommendations for implementing Exit 7
If you are performing I/O for a $JCT, then you can use this exit to determine the
queue on which a job resides at any point of processing at which JCT I/O is
performed for the JES2 main task.

To determine which queue the job is currently on:
1. Ensure the control block is the $JCT by comparing the value in X007CBID with

the characters 'JCT'.
2. Take the offset in the JCTJQE field of the JCT and add the offset to $JOBQPTR

to locate the JQE.
3. Access the JQE and locate the JQETYPE field. JQETYPE can then be tested to

determine on which queue, out of ten general queues, the current job resides.
The following table lists the ten possible queues along with their corresponding
hexadecimal representations in JQETYPE:

$XEQ X'40'

$INPUT
X'20'

$XMIT
X'10'

$RECEIVE
X'04'

$OUTPUT
X'02'

$HARDCOPY
X'01'

$PURGE
X'00'

$FREE X'FF'

$SPIN X'80'

© Copyright IBM Corp. 1988, 2013 131

Note: The $XEQ queue is actually two general queues, the conversion queue
(which is X'40') and the execution queues. The class of each execution queue is
indicated by the low-order 6 bits. For example, execution class “A” is X'41'. The
scheme is similar to the EBCDIC character conversion chart in the MVS Reference
Summary

Programming considerations
The following are processing considerations for Exit 7:
v Use the PCEID field to determine which processor is reading or writing the JCT;

this avoids unnecessary processing.
v You can determine if Exit 7 is being invoked for a transaction program or a

batch job by either:
– Determining if a $DSCT is contained in the $IOT.
– Determining if byte JCTFLAG3 is set to JCT3TPI to indicate the job is a

transaction program.
v Bit X007CBIN in the parameter list indicates that the control block contains

either an incorrect eyecatcher or job key. When this bit is on, the exit should not
rely on the contents of the control block. After the exit returns, JES2 will issue a
disastrous error.

v Extending the JCT Control Block

If field X007CBID contains the 4-character string 'JCT ' (note the trailing blank),
you can add, expand, locate, and remove extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service for
all control block WRITEs.
For control block READs you should neither add nor expand extensions,
because JES2 might not write any modifications from control block READs to
spool. For more information about using the $JCTX macro extension service, see
z/OS JES2 Macros.

Point of processing
Exit 7 is taken from the JES2 main task in the HASPNUC module, just after the
control block is read from or just before the control block is written out to spool.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places Exit 7 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Exit 7

132 z/OS V2R1.0 JES2 Installation Exits

Job exit mask
Exit 7 is subject to suppression. The installation can suppress the exit by either
implementing exit 2 to set the 7th bit in the job exit suppression mask
(JCTXMASK) or by indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE, $XPL

Register contents on entry to Exit 7
Register

Contents

0 A pointer to a parameter list with the following structure, mapped by
$XPL:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
Maintenance level

XPLXITID
Exit number

XPLXLEV
Version number

XPLCOND
Condition byte JES2 sets the condition byte with one of the
following bit settings:

X007CBWR
Control block is to be written

X007CBUN
Unknown control block read

X007CBIN
Invalid control block read

X007RESP
Not applicable on entry to Exit 7

XPLSIZE
Length of parameter list

X007CBID
The 4-character EBCDIC control block identifier

1 Address of the buffer that contains the control block

2-10 N/A

11 Address of $HCT

12 N/A

13 Address of $PCE

14 The return address

Exit 7

Chapter 20. Exit 7: Control block I/O (JES2) 133

15 The entry address

Register contents when Exit 7 passes control back to JES2
Register

Contents

0 A pointer to a parameter list, mapped by $XPL:

Field Name
Description

XPLRESP
Response byte. Turn the X007IOER bit setting on in the response
byte if an I/O error occurred. Upon return to JES2, JES2 will issue
message $HASP096. If there are any other exits associated with this
exit, they are ignored, and normal processing continues.

1-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no other exit routines
associated with this exit, continue with normal processing, which is
determined by the particular exit point from which the exit was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

8 Tells JES2 that an I/O error was encountered. Message $HASP096 is
issued. If there are any other exit routines associated with this exit, ignore
them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX07A in SYS1.SHASSAMP contains a sample of Exit 7.

Exit 7

134 z/OS V2R1.0 JES2 Installation Exits

Chapter 21. Exit 8: Control block read/write (user, subtask,
and FSS)

Function
This exit allows you to provide an exit routine to receive control whenever a JES2
subtask, FSS printer, or a routine running in the user environment performs control
block I/O.

You can use this exit to perform I/O for any installation-specific control blocks you
may have created.

This exit uses Non-JES2 main task control block I/O.

Related exits
Whenever control block I/O is performed by the JES2 main task, Exit 7 serves the
purpose of this exit.

If you intend on updating information for a transaction program, you should
consider implementing Exit 31.

Programming considerations
The following are programming considerations for Exit 8:
v You can determine if Exit 8 is being invoked to process a transaction program by

either:
– Determining if a $DSCT is contained in the $IOT
– Determining if byte JCTFLAG3 is set to JCT3TPI

v If you need to alter information for a transaction program, you should make
changes in the $DSCT rather than the $JCT. If you update the $JCT for a
transaction program, the updates you make may not be applicable. You should
consider implementing exit 31 if you will be updating the $DSCT for a
transaction program.

v Extending the JCT Control Block

If field X008CBID contains the 4-character string 'JCT ' (note the trailing blank),
you can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro. For more information about using this service,
see z/OS JES2 Macros.

Point of processing
This exit is taken from the user address space (HASCSRDS).

JES2 gives control to your exit routine:
v Before it writes a control block and it writes the $CHK, $JCT, $IOT, $OCT, or

$SWBIT into storage.
v After it reads a control block and it reads the $CHK, $JCT, $IOT, $OCT or

$SWBIT into storage.

© Copyright IBM Corp. 1988, 2013 135

Environment

Task
v User address space
v JES2 subtask
v FSS address space using $CBIO.

You must specify ENVIRON=SUBTASK or ENVIRON=USER on the $MODULE
macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Restrictions
Exit 8 must be in common storage

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
Exit 8 is subject to job exit mask suppression unless $JCT unavailable.

Mapping macros normally required
$HASPEQU, $HCCT, $JCT, $JCTX, $MIT, $XPL

Register contents on entry to Exit 8
The registers contain the following on entry to Exit 8:

Register
Contents

0 A pointer to a parameter list with the following structure, mapped by
$XPL:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
Maintenance level

XPLXITID
Exit number

XPLXLEV
Version Number

XPLCOND
Condition byte JES2 sets the condition byte with one of the
following bit settings:

X008CBWR
Control block is to be written

Exit 8

136 z/OS V2R1.0 JES2 Installation Exits

X008CBUN
Unknown control block read

X008CBIN
Invalid control block read

X008FSSM
CBIO performed by FSSM

XPLRESP
Response byte

XPLSIZE
Length of parameter list

X008CBID
The 4-character EBCDIC control block identifier

1 Address of the control block

2-10 N/A

11 Address of the $HCCT

12 N/A

13 Address of an OS-style save area

14 Return address

15 Entry address

Register contents on return to JES2
Upon return to JES2, the contents of the registers must be:

Register
Contents

0 A pointer to a parameter list, mapped by $XPL

Field Name
Description

XPLCOND
Condition byte.

X008RESP
Response byte. Turn the X008IOER bit setting on in the response
byte if an I/O error occurred. After returning to JES2, JES2 issues
message $HASP370. If there are any other exits associated with this
exit, they are ignored, and normal processing continues.

1-14 Unchanged

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If there are no other
exit routines associated with this exit, continue with normal
processing, which is determined by the particular exit point from
which the exit was called.

4 Tells JES2 that even if additional exit routines are associated with

Exit 8

Chapter 21. Exit 8: Control block read/write (user, subtask, and FSS) 137

this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

8 Tells JES2 that an I/O error was encountered. Message $HASP370
is issued. If there are any other exit routines associated with this
exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX08A in SYS1.SHASSAMP contains a sample of Exit 8.

Exit 8

138 z/OS V2R1.0 JES2 Installation Exits

Chapter 22. Exit 9: Output excession options

Function
This exit allows you to choose how JES2 will process jobs or transaction programs
that have exceeded the estimates for either:
v Output records
v Lines of SYSOUT data
v Pages of SYSOUT data
v Bytes of SYSOUT data

A user submitting a job can specify the estimates on either the JES2 /*JOBPARM
JECL statement or the JOB JCL statement. If a job submitter does not specify the
estimates, JES2 obtains the estimates from the ESTLNCT, ESTPUN, ESTPAGE, or
ESTBYTE JES2 initialization statements.

Transaction programs obtain the output limits for SYSOUT data sets from TP
profiles.

Related exits
JES2 will not invoke Exit 9 for jobs that exceed the OUTLIM specification. You
should implement SMF exit IEFUSO - SYSOUT Limit Excession to process any jobs
that exceed the OUTLIM specification. See z/OS MVS Installation Exits for
additional information on SMF exit IEFUSO.

Exit 9 is invoked for a transaction program if your installation has implemented
exit 43 to set the excession limits for SYSOUT data set created by a transaction
program.

Environment

Task
USER task:
v User's address space
v JES2 address space - converter subtask

You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 9 in supervisor state and PSW key 0.

Restrictions
Exit 9 should be in either common storage (CSA) or in the link pack area (LPA).

© Copyright IBM Corp. 1988, 2013 139

Recovery
$ESTAE is in effect and provides minimal recovery. JES2 will attempt to recover
from any program check errors experienced by Exit 9. However, you should not
depend on JES2 for recovery and should implement a recovery procedure

Job exit mask
Exit 9 is subject to suppression.

Mapping macros normally required
$HASPEQU, $HCCT, $JCT, $JCTX, $MIT, $XPL

Point of processing
From the user's address space, JES2 invokes Exit 9 if the output limits have been
exceeded while writing records to a SYSOUT data set. The output limits for a job
are specified either in the:
v JES2 initialization stream
v job's JCL or JECL.

Programming considerations
The following are programming considerations for Exit 9:
v You can determine if JES2 invoked Exit 9 to process a transaction program by

determining if byte JCTFLAG3 is set to JCT3TPI.
v If exit 9 is processing a multi-transaction program, Exit 9 is invoked for every

transaction submitted under the multi-transaction program.
v If Exit 9 is invoked from the JES2 address space, you cannot change the output

excession limits for any of the following JES2 system data sets:
– JES2 job log
– JES2 messages
– JES2 images file

JES2 ignores any action taken in Exit 9 for the data sets.
v Extending the JCT Control Block

You can add, expand, locate, and remove extensions to the job control table
($JCT) control block through the $JCTX macro extension service.

v Exit 9 is entered for each PUT if the limit(s) have been exceeded. Ensure that
any increment provided takes this into account.

Register contents on entry to Exit 9
The contents of the registers on entry to this exit are:

Register
Contents

0 Not used

1 Pointer to a 12-byte parameter list with the following structure:

Field Name
Description

Exit 9

140 z/OS V2R1.0 JES2 Installation Exits

XPLID
Eyecatcher - $XPL

XPLLEVEL
Version level of $XPL

XPLXITID
Exit identifier number - 9

XPLEXLEV
Version level of the exit

X009IND
Indicates the environment from which Exit 9 was invoked. A value
of:
v X009USER indicates which address space invoked Exit 9. See

Programming Considerations for additional information.
v X009CNCL indicates CANCEL was specified on the job's JOB

statement.
v X009DUMP indicates DUMP was specified on the job's JOB JCL

statement.
v X009WARN indicates WARNING was specified on the job's JOB

JCL statement.

X009COND
Indicates which SYSOUT limit was exceeded. A value of:
v X009CEXC indicates the SYSOUT data set exceeded the cards

limit.
v X009LEXC indicates the SYSOUT data set exceeded the lines

limit.
v X009PEXC indicates the SYSOUT data set exceeded the pages

limit.
v X009BEXC indicates the SYSOUT data set exceeded the bytes

limit.

X009RESP
Response byte

X009JCT
Address of the $JCT.

X009LVAL
Number of lines specified for the job's output limit.

X009PVAL
Number of pages specified for the job's output limit.

X009BVAL
Number of bytes specified for the jobs output limit.

X009DLIN
The print/punch record count (in packed decimal format) for the
job.

X009DPAG
The page count (in packed decimal format) for the job.

X009DBYT
The byte count (in packed decimal format) for the job.

Exit 9

Chapter 22. Exit 9: Output excession options 141

XPLSIZE
Length of $XPL including base section

2-10 Not applicable

11 Address of the $HCCT

12 Not applicable

13 Address of a save area

14 Return address

15 Entry address

Register contents when Exit 9 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Unchanged from entry

1 Address of $XPL

Field Name
Description

XPLID
Eyecatcher - $XPL

XPLLEVEL
Version level of $XPL

XPLXITID
Exit identifier number - 9

XPLEXLEV
Version level of the exit

X009RESP
Indicates processing options for the job. To indicate Exit 9 changed
the processing options you must set X009USRB and if you want to:
v Suppress error messages indicating the job has exceeded its

specified output limits, you should set X009RESP to X009SDEM.
v Change how JES2 processes a job when a SYSOUT data set

created by a job exceeds its output limits. If you want to:
– Abend the job and produce a dump, set X009RESP to

X009XOVR and X009722D.
– Cancel the job, set X009RESP to X009XOVR and X009722N.
– Issue a warning message, set X009RESP to X009XOVR.

v Specify new increments for the output limits by setting
X009OLIR and increases in one or more of the following:
– X009RINC
– X009PINC
– X009BINC

XPLSIZE
Length of $XPL including base section

Exit 9

142 z/OS V2R1.0 JES2 Installation Exits

X009RINC
Exit 9's increase for records

X009PINC
Exit 9's increase for pages

X009BINC
Exit 9's increase for bytes

2-14 Unchanged from entry registers

15 Return code

A return code of:

0 Indicates JES2 should continue processing with the next exit routine if one
exists.

4 Indicates JES2 should continue processing but ignore any additional exit
routines.

Coded example
Module HASX09B in SYS1.SHASSAMP contains a sample of Exit 9.

Exit 9

Chapter 22. Exit 9: Output excession options 143

144 z/OS V2R1.0 JES2 Installation Exits

Chapter 23. Exit 10: $WTO screen

Function
This exit allows you to provide an exit routine to receive control every time that
JES2 is ready to queue a $WTO message for transmission. If this exit is
implemented and enabled, it receives control for all messages destined for remote
stations and for other systems, as well as for all messages with a destination of
local.

However, this exit does not receive control for messages generated by the
subsystem interface or functional subsystem modules.

You can use your exit routine to interrogate the message's console message buffer
(CMB) and, based on this interrogation, direct JES2 either to cancel the message or
to queue it for normal transmission. You can also use your exit routine to change
the text of the message or to alter its console routing.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 10 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$CMB, $HASPEQU, $HCT, $MIT, $PCE

Point of processing
This exit is taken from the JES2 main task, from the HASPWQUE (special purpose
CMB queuing) routine of the HASPCON (console support services) module, for all
JES2 main task $WTO messages. The exit occurs at the beginning of HASPWQUE,
after the $WTOR routine has processed the $WTO macro and before HASPWQUE
queues the CMB containing the message for transmission. If, by passing a return
code of 0 or 4, your routine allows the message to continue, control returns to
HASPWQUE, which then queues the message for transmission. If, however, your
exit routine cancels the message by passing a return code of 8, the transmission

© Copyright IBM Corp. 1988, 2013 145

queuing performed by HASPWQUE is bypassed and JES2 gives control to
$FRECMBR, the $FRECMB service routine.

Programming considerations:
1. This exit is taken only for $WTOs issued from the JES2 main task.
2. To cancel a message, pass a return code of 8 to JES2. This return code directs

JES2 to bypass the HASPWQUE routine, which normally queues the CMB for
the console service processor, and to give control directly to the $FRECMBR
routine, which then discards the message by freeing its CMB.

3. To change the text of a message, your routine must access either the CMBTEXT
field or the CMBJOBN field. If the message does not contain the job's name and
number, the message text starts in CMBJOBN. The length of the message is
always in the CMBML field. Your routine can either retrieve the existing
message text and modify it or else generate a completely new message and
then write the new or modified message over the original message. If the new
or modified message is longer or shorter than the original message, your
routine should alter the CMBML field accordingly. After altering the text of
the message, pass a return code of 0 or 4 to direct JES2 to queue the CMB for
transmission. JES2 will then send the new or modified message.
CAUTION:
Altering or deleting an end-line of a multi-line WTO can put JES2 command
processing in a Wait State and no more responses to commands will be
received.

4. To alter a message's console routing, your routine should first test the flag byte
CMBFLAG to determine whether the CMBFLAGW, CMBFLAGT, and
CMBFLAGU flags are off. If these three flags are off, the CMBROUT field
contains the MVS console routings. After altering CMBROUT, pass a return
code of 0 or 4 to direct JES2 to queue the CMB for transmission. JES2 will base
its console routing on the new contents of CMBROUT.

5. If register 0 contains a value of 4 when this exit is invoked, do not take any
action that will result in a wait. For example, do not issue a $WAIT or do not
invoke another service, such as $QSUSE, that might issue a $WAIT. A $WAIT
can cause problems such as line time-outs or cause JES2 to terminate.

Register contents when Exit 10 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Indicates whether JES2 can tolerate a $WAIT:
v If register 0 contains a value of 0, JES2 can tolerate a $WAIT.
v If register 0 contains a value of 4, JES2 cannot tolerate a $WAIT.

1 Address of the $CMB

2-10 N/A

11 Address of the $HCT

12 N/A

13 Address of the $PCE

14 Return address

15 Entry address

Exit 10

146 z/OS V2R1.0 JES2 Installation Exits

Register contents when Exit 10 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 N/A

1 Address of the $CMB

2-14 Unchanged

15 A return code

A return code of:

0 Tells JES2 that if any more exit routines are associated with this exit,
execute the next consecutive exit routine. If there are no more exit routines
associated with this exit, continue with normal processing by queuing the
CMB for transmission.

4 Tells JES2 to ignore any additional exit routines associated with this exit
and to continue with normal processing by queuing the CMB for
transmission.

8 Tells JES2 to discard the message by freeing the CMB; the message is not
queued for transmission.

Coded example
Module HASX10A in SYS1.SHASSAMP contains a sample of exit 10.

Exit 10

Chapter 23. Exit 10: $WTO screen 147

148 z/OS V2R1.0 JES2 Installation Exits

Chapter 24. Exit 11: Spool partitioning allocation ($TRACK)

Function
This exit allows you to provide an exit routine from the JES2 main task that selects
the spool volumes from which a job should allocate additional spool space when
JES2 determines that additional spool volumes should be added to the available
volumes for the job.

Before implementing this exit, you must determine if your installation uses spool
partitioning. Your installation uses spool partitioning if FENCE=ACTIVE=YES is
specified on the SPOOLDEF initialization statement.

Related exits
If you implement spool partitioning in Exit 11, you must also implement its
companion, Exit 12.

The following table identifies the similarities and differences between Exit 11 and
Exit 12.

Table 7. Comparison of Exit 11 and Exit 12

Exit 11 Exit 12

Spool
Partitioning
Mask

v Initializes and resets bits in the
mask.

v Can be used to define spool
partitioning for the job.

Can only reset bits in the mask to
allow spool space to be allocated
from additional spool volumes.

Invoked To Allocate spool space for the first
time for the job.

Allocate additional spool space
when JES2 determines the
spool-allowed mask of the job
should be expanded.

Recommendations for implementing Exit 11
To allow a job or transaction program to allocate spool space from another spool
volume:
1. Modifying a 32-byte work area passed in register 1. Each bit in the IOTSAMSK

corresponds to a spool volume defined to your installation and represents an
entry in the direct access spool data set DSECT ($DAS). When a bit in the work
area is set to:

0 It indicates the spool volume is not currently available to the job and is
a candidate for use by Exit 11.

1 It indicates the spool volume is already allocated to the job.
You must implement Exit 11 so that it sets at least one additional bit in the
work area to allow the job to allocate spool space from at least one additional
spool volume. If Exit 11 does not make at least one spool volume available,
JES2 will allocate spool space by either:
v Resetting all the bits to ones to allow the job to obtain spool space from any

spool volume defined to the system.

© Copyright IBM Corp. 1988, 2013 149

v Resetting a single bit as indicated by the FENCE=ACTIVE=YES parameter on
the SPOOLDEF initialization statement.

2. Place a X'08' in register 15 and return to JES2.
If your routine passes a return code of 8 to JES2 but hasn't actually expanded
the mask through the new mask returned in the spool mask work area, JES2
sets the spool partitioning mask as indicated by the FENCE= parameter on the
SPOOLDEF initialization statement and to reissue the $TRACK request.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
Exit 11 is placed in supervisor state and PSW key 1.

Restrictions
You should not change the definition of the spool space from which a
multi-transaction program allocates spool space. If you alter the volumes from
which the multi-transaction program can allocate spool space, you may experience
unpredictable results.

Recovery
Because Exit 11 is called from every stage in JES2 processing, there are significant
variations the recovery environments JES2 provides for Exit 11. For example, when
$TRACK is called from HASPRDR, an error in your exit routine may cause only
the current job to fail; however, when $TRACK is called from HASPNET, an error
in your exit routine may cause JES2 itself to fail. As with every exit, your exit
routine should not depend on JES2 for recovery. JES2 cannot anticipate the exact
purpose of your exit routine, and therefore any standard JES2 recovery that
happens to be in effect is, typically, minimal. You should provide your own
recovery within your exit routine.

Job exit mask
Exit 11 is subject to suppression. Exit 11 can be suppressed by either implementing
exit 2 to set the 11th bit in the exit suppression mask (JCTXMASK) or by disabling
the exit in the JES2 initialization stream.

Mapping macros normally required
$BUFFER, $DAS, $HASPEQU, $HCCT, $HCT, $IOT, $JCT, $JCTX, $MIT, $PCE,
$SCAT, $TAB, $XECB, RPL

Point of processing
This exit is taken from the JES2 main task, from the $TRACK subroutine in
HASPTRAK, when JES2 determines that the spools allowed mask for the job
(IOTSAMSK) needs to be updated. The spools allowed mask will be updated in
two different situations:

Exit 11

150 z/OS V2R1.0 JES2 Installation Exits

v The job is using the maximum number of volumes ($FNCCNT in HCT) and
there is no space available for allocation (that is, the volume is full, the volume
is not available for allocation or the volume does not have affinity for the
system) on the spool volumes from which the job is permitted to allocate space.

v The job is not yet using the maximum number of spool volumes (SPOOLDEF
FENCE=VOLUMES=nnnn) regardless of whether there is space available on the
spool volumes from which the job is permitted to allocate space.

Exit 11 is not invoked if any of the following are true:
v The job is permitted to allocate space from any spool volume, that is, the spool

partitioning mask (IOTSAMSK/JCTSAMSK) for the job is set to all ones (X'FF').
v Spool partitioning is in effect, the job is using the maximum number of spool

volumes and space is available on those spool volumes.

Initially when a job or transaction program is started, JES2:
1. Sets the JCTSAMSK to all zeros to prohibit the job from allocating space from

any spool volume
2. Determines if you have implemented spool partitioning. If you have not

implemented Exit 2, Exit 11, or Exit 12 and have specified the
FENCE=ACTIVE=NO parameter on the SPOOLDEF initialization statement,
JES2 automatically sets JCTSAMSK to all ones so that the job can allocate spool
space from any spool volume.

Programming considerations
The following are programming considerations for Exit 11:
v If you intend to base your allocation algorithm on values contained in fields of

the $JCT, you must consider that the $JCT is sometimes unavailable and write a
section of your exit routine to take control in these instances.

v Locating JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro.

v You can determine if a job or transaction program is requesting additional spool
space by either:
– Determining if a $DSCT is contained in the $IOT
– Determining if byte JCTFLAG3 is set to JCT3TPI.

v Determining whether a job is at its fencing limit or not
– Spool partitioning is active if $MVFENCE is on.
– The field $FNCCNT contains the fencing limit (SPOOLDEF

FENCE=VOLUMES=nnnn).
– CCTSPLAF contains the mask of spool volumes with affinity for this member.
– Only count the volumes that have affinity for this member and are in the IOT

spools allowed mask when checking to see if the job has reached the fencing
limit. To do this, 'and' CCTSPLAF with IOTSAMSK and then use the
$CNTBIT macro to obtain the number of volumes to compare with
$FNCCNT. The number of bits on in IOTSAMSK may be equal to or exceed
$FNCCNT and another volume should still be added if the job obtained some
of its spool space on another member which has affinity to different spool
volumes.

Exit 11

Chapter 24. Exit 11: Spool partitioning allocation ($TRACK) 151

– CCTVBLOB is the mask of spool volumes with space in the BLOB. Adding a
spool volume that is not in CCTVBLOB will do no good since there is no
space for it in the BLOB and therefore the job will not be able to allocate
space on the volume.

Register contents when Exit 11 gets control
Register

Contents

0 Not applicable

1 Address of the 3-word parameter list, having the following structure:

word 1 (+0)
Address of $IOT.

word 2 (+4)
Address of $JCT (if available); otherwise 0. For example, the $JCT
is unavailable when JES2 is acquiring:
v Space for the spooled remote messages or multi-access spool

messages.
v A record for the $IOT for the JESNEWS data set.

word 3 (+8)
Address of a 32-byte spool partitioning mask work area which is
copied from the IOTSAMSK field in the $IOT.

2-10 Not applicable

11 Address of $HCT

12 N/A

13 Address of $PCE

14 Return address

15 Entry address

Register contents when Exit 11 passes control back to JES2
Before returning to JES2, the contents of the registers must be:

Registers
Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
execute the next consecutive exit routine. If there are no additional exit
routines associated with this exit point, this return code tells JES2 to set the
spool partitioning mask as indicated by the FENCE parameter on the
SPOOLDEF initialization statement setting and to reissue the $TRACK
request.

4 Tells JES2 that even if additional exit routines are associated with this exit,

Exit 11

152 z/OS V2R1.0 JES2 Installation Exits

ignore them; instead, set the spool partitioning mask as indicated by the
FENCE parameter on the SPOOLDEF initialization statement setting and
reissue the $TRACK request.

8 Tells JES2 that an updated version of the spool partitioning mask—with at
least one additional bit turned on—has been passed to JES2 in the spool
mask work area and will now determine later spool allocation. It also tells
JES2 to reissue the $TRACK request.

Coded example
None provided.

Exit 11

Chapter 24. Exit 11: Spool partitioning allocation ($TRACK) 153

154 z/OS V2R1.0 JES2 Installation Exits

Chapter 25. Exit 12: Spool partitioning allocation ($STRAK)

Function
This exit allows you to provide an exit routine from a users address space or JES2
subtask that selects the spool volumes that a job or transaction program should
allocate additional spool space from when JES2 determines that additional spool
volumes should be added to the available volumes for the job.

Before implementing this exit, you must determine if your installation uses spool
partitioning. Your installation uses spool partitioning if FENCE=ACTIVE=YES is
specified on the SPOOLDEF initialization statement.

Related exits
If you implement spool partitioning in Exit 12, you must also implement its
companion, Exit 11.

The following table identifies the similarities and differences between Exit 12 and
Exit 11.

Table 8. Comparison of Exit 12 and Exit 11

Exit 12 Exit 11

Spool
Partitioning
Mask

Can only reset bits in the mask to
allow spool space to be allocated
from additional spool volumes.

v Initializes and resets bits in the
mask.

v Can be used to define spool
partitioning for the job.

Invoked To Allocate additional spool space
when JES2 determines the
spool-allowed mask of the job
should be expanded.

Allocate spool space for the first
time for the job.

Recommendations for implementing Exit 12
To allow a job or transaction program to allocate spool space from another spool
volume:
1. Modifying a 32-byte work area passed in register 1. The first $SPOLNUM bits

in the IOTSAMSK correspond to the number of spool volumes defined to your
installation. Each bit represents an entry in the direct access spool data set dsect
($DAS). When a bit in the work area is set to:

0 It indicates the spool volume is not currently available to the job and is
a candidate for use by Exit 12.

1 It indicates the spool volume is already allocated to the job.
You must implement Exit 12 so that it sets at least one bit in the work area to
allow the job to allocate spool space from at least one additional spool volume.
If Exit 12 does not make at least one spool volume available, JES2 will allocate
spool space by either:
v Resetting all the bits to ones to allow the job to obtain spool space from any

spool volume defined to the system.

© Copyright IBM Corp. 1988, 2013 155

v Resetting a single bit as indicated by the FENCE=ACTIVE=YES parameter on
the SPOOLDEF initialization statement.

2. Place a X‘08’ in register 15 and return to JES2.
If your routine passes a return code of 8 to JES2 but hasn't actually expanded
the mask through the new mask returned in the spool mask work area, JES2
sets the spool partitioning mask as indicated by the FENCE= parameter on the
SPOOLDEF initialization statement and to reissue the $STRAK request.

Environment

Task
USER task:
v Users address space
v JES2 subtask

You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places Exit 12 in supervisor state and PSW key:

Environment
Key

User 0

Subtask
1

Restrictions
You should not change the definition of the spool space from which a
multi-transaction program allocates spool space. If you alter the volumes from
which the multi-transaction program can allocate spool space, you may experience
unpredictable results.

Recovery
Because Exit 12 is called from every stage in JES2 processing, there are significant
variations the recovery environments JES2 provides for Exit 12. For example, when
$STRAK is called from HASPRDR, an error in your exit routine may cause only
the current job to fail; however, when $STRAK is called from HASPNET, an error
in your exit routine may cause JES2 itself to fail. As with every exit, your exit
routine should not depend on JES2 for recovery. JES2 cannot anticipate the exact
purpose of your exit routine, and therefore any standard JES2 recovery that
happens to be in effect is, typically, minimal. You should provide your own
recovery within your exit routine.

Job exit mask
Exit 12 is subject to suppression. You can suppress Exit 12 by either implementing
exit 2 to turn off the 12th bit in the job exit suppression mask (JCTXMASK) or you
can disable the exit suppressed.

Exit 12

156 z/OS V2R1.0 JES2 Installation Exits

Mapping macros normally required
$BUFFER, $DAS, $HASPEQU, $HCCT, $HCT, $IOT, $JCT, $JCTX, $MIT, $PCE,
$SCAT, $TAB, $XECB, RPL

Point of processing
This exit is taken from the $STRAK subroutine when JES2 determines that the
spools allowed mask for the job (IOTSAMSK) needs to be updated. The spools
allowed mask will be updated in two different situations:
v The job is using the maximum number of volumes (CCTFNCNT in HCCT) and

there is no space available for allocation (that is, the volume is full, the volume
is not available for allocation or the volume does not have affinity for the
system) on the spool volumes from which the job is permitted to allocate space.

v The job is not yet using the maximum number of spool volumes (SPOOLDEF
FENCE=VOLUMES=nnnn) regardless of whether there is space available on the
spool volumes from which the job is permitted to allocate space.

This exit will not be invoked if any of the following are true:
v The job is permitted to allocate space from any spool volume, that is, the spool

partitioning mask (IOTSAMSK) for the job is set to all ones (X'FF').
v Spool partitioning is in effect, the job is using the maximum number of spool

volumes and space is available on those spool volumes.

Programming considerations
The following are programming considerations for Exit 12:
v If you intend to base your allocation algorithm on values contained in fields of

the $JCT, you must consider that the $JCT is sometimes unavailable and write a
section of your exit routine to take control in these instances.

v Locating JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro.

v You can determine if a job or transaction program is requesting additional spool
space by either:
– Determining if a $DSCT is contained in the $IOT
– Determining if byte JCTFLAG3 is set to JCT3TPI

v Determining whether a job is at its fencing limit.
– Spool partitioning is active if CCTSMVFN is on.
– The field CCTFNCNT contains the fencing limit (SPOOLDEF

FENCE=VOLUMES=nnnn).
– CCTSPLAF contains the mask of spool volumes with affinity for this member.
– Only count the volumes that have affinity for this member and are in the IOT

spools allowed mask when checking to see if the job has reached the fencing
limit. To do this, 'and' CCTSPLAF with IOTSAMSK and then use the
$CNTBIT macro to obtain the number of volumes to compare with
CCTFNCNT. The number of bits on in IOTSAMSK may be equal or exceed
CCTFNCNT and another volume should still be added if the job obtained
some of its spool space on another member which has affinity to different
spool volumes.

Exit 12

Chapter 25. Exit 12: Spool partitioning allocation ($STRAK) 157

– CCTVBLOB is the mask of spool volumes with space in the BLOB. Adding a
spool volume that is not in CCTVBLOB will do no good since there is no
space for it in the BLOB and therefore the job will not be able to allocate
space on the volume.

Register contents when Exit 12 gets control
Register

Contents

0 Return Code:

RC = 0
Invoked from user address space.

RC = 1
Invoked by jes2 converter subtask.

RC = 2
Invoked by JES2 subtask.

1 Address of the 3-word parameter list, having the following structure:

word 1 (+0)
Address of $IOT

word 2 (+4)
Address of $JCT (if available); otherwise 0 For example, the $JCT is
unavailable when JES2 is acquiring:
v Space for the spooled remote messages or multi-access spool

messages
v A record for the $IOT for the JESNEWS data set.

word 3 (+8)
Address of a 32-byte spool partitioning mask work area which is
copied from the IOTSAMSK field in the $IOT.

2-9 Not applicable

10 Address of SJB/SJIOB.

11 Address of $HCCT.

12 N/A

13 Address of $PCE

14 Return address

15 Entry address

Register contents when Exit 12 passes control back to JES2
Before returning to JES2, the contents of the registers must be:

Registers
Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

Exit 12

158 z/OS V2R1.0 JES2 Installation Exits

0 Tells JES2 that if any additional exit routines are associated with this exit,
execute the next consecutive exit routine. If there are no additional exit
routines associated with this exit point, this return code tells JES2 to set the
spool partitioning mask as indicated by the FENCE parameter on the
SPOOLDEF initialization statement setting and to reissue the $STRAK
request.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; instead, set the spool partitioning mask as indicated by the
FENCE parameter on the SPOOLDEF initialization statement setting and
reissue the $STRAK request.

8 Tells JES2 that an updated version of the spool partitioning mask—with at
least one additional bit turned on—has been passed to JES2 in the spool
mask work area and will now determine later spool allocation. It also tells
JES2 to reissue the $STRAK request.

Coded example
None provided.

Exit 12

Chapter 25. Exit 12: Spool partitioning allocation ($STRAK) 159

160 z/OS V2R1.0 JES2 Installation Exits

Chapter 26. Exit 14: Job queue work select – $QGET

Function
This exit allows you to provide an exit routine that incorporates your own search
algorithms for finding work on the job queue. You use your exit routine to search
for an appropriate JQE on the job queue and to indicate when normal JES2 JQE
processing should resume.

Note:

This exit is not called for workload management (WLM) initiator work selection;
rather, you must use Exit 49 for that purpose. Also, you will find it easier to
implement because it does not require that you copy JES2 decision-making
algorithms into your exit routine. See Chapter 61, “Exit 49: Job queue work select -
QGOT,” on page 313.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

This exit is associated with the $QGET routine, in HASPJQS, which is entered to
acquire control of a job queue element (JQE).

The $QGET routine scans the appropriate queue for an element that:
v is not held
v is not already acquired by a previous request to the job queue service routines
v has affinity to the selecting JES2 member
v has independent mode set in agreement with the current mode of the selecting

member.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 14 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $JQE, $MIT, $PCE

© Copyright IBM Corp. 1988, 2013 161

Point of processing
This exit is taken from the JES2 main task, from the $QGET routine of HASPJQS,
after $QGET first obtains control of the shared queues and verifies that the
member is not draining but before it selects a JQE from the appropriate queue.

Programming considerations
You must adhere to the following programming considerations:
v The $QSUSE control of the checkpoint record is not maintained if your exit

routine issues a $WAIT or invokes a service that issues a $WAIT. You should
ensure in your exit routine that you retain control of the checkpoint record
before returning to JES2.

v You must ensure that the spool volumes, where this job allocated space, are
online. Also, the JQE cannot be busy, held, or on an inappropriate queue (such
as the hardcopy queue).

LH R15,$JQEMSKL Get JQE spool
EX R15,EXJQEMVC Get spools used by this job
NC $SPMSKWA,$SPLSLCT ’AND’ with qualifying spools
EX R15,EXJQECLC If all spool volumes are not
BNE NEXTJQE available, get next job

v Ensure the job affinity will allow the routine to run on this member.
$SETAFF REQUEST=TEST, Test for our affinity

AFFIELD=JQESAF, in the JQE to
AFTOKEN=$AFFINTY, see if we can run it.
REGAREA=$GENWORK,
FAIL=NEXTJOB No, go find next job

v Ensure the job's independent mode status matches the member status. If the
member is in independent mode then the job must be in independent mode.

TM $STATUS,$INDMODE Is this member in independent mode?
BO EXIND Yes, make sure job is too
TM JQEFLAG2,JQE2IND Is job in independent mode?
BO NEXTJQE Yes, get next job
B EXAFF No, check affinity

EXIND TM JQEFLAG2,JQE2IND Is job in independent mode?
BZ NEXTJQE No, get next job

v Ensure that if the job has a scheduling environment, that it is available on this
member.
TM JQASCHE,FF-C’ ’ Scheduling environment?
JZ EXSCHE No, select the job
$SETAFF REQUEST=TEST, Test for availability

AFFIELD=JQASCHAF, in the JQE to
AFTOKEN=$AFFINTY, see if we can run it.
FAIL=NEXTJQE No, get next job

v Ensure that the JQE1ARMH flag is not on. If JQE1ARMH is on, the job has
ended execution and is awaiting a possible restart by the automatic restart
manager; the job cannot be selected.
TM JQETYPE,$XEQ If job is on execution
BNO QGTCONTA queue and is held for
TM JQEFLAG7,JQE7SPIN spin processing in CSA
BO QNEXT bypass the job
TM JQEFLAG1,JQE1ARMH Job held for ARM restart?
BO QNEXT Yes, get next JQE

v The address returned in the QGET parameter list must be the address of a JQA
in update mode. That is, it must have been retrieved through $DOGJQE

Exit 14

162 z/OS V2R1.0 JES2 Installation Exits

ACTION=(FETCH,UPDATE), $DOGJQE ACTION=(FETCHNEXT,UPDATE), or at
some point changed from read mode to update mode through $DOGJQE
ACTION=(SETACCESS,UPDATE).

v If you use Exit 14 to replace the normal JES2 job selection for execution or
conversion and intend to use SECLABEL by system, then your exit routine must
take into account the new SECLABEL affinity field in selecting an eligible job to
run. If the RACF® SETROPT option for SECLABEL by system is active, then
JES2 honors any SECLABEL system affinity restrictions when selecting a job. A
new field, JQASCLAF, contains an affinity mask of JES2 MAS members where
the SECLABEL is available. SECLABEL affinity applies only to selection of job
for conversion and execution.
TM JQEFLAG3,JQE3JOB JQE a TSU or STC?
JM EXSLBL Yes, bypass SECLABEL aff
L R14,CVTPTR(,0) Get CVT address
ICM R14,B’1111’,CVTRAC-CVT(R14) Get RACF CVT addr
JZ EXSLBL None, skip next
TM RCVTML2F-RCVT(R14),RCVTSBYS SECLABEL by sys?
JNO EXSLBL No, skip SECLABEL aff
SPACE 1
$SETAFF REQUEST=TEST, Test if SECLABEL

AFFIELD=JQASCLAF, is active on
AFTOKEN=$AFFINTY, this member?
FAIL=NEXTJQE No, get next job

v Exit 14 can perform duplicate job name check and instruct JES2 to bypass the
normal duplicate job checks it would perform. You can also use the exit to allow
a duplicate jobname to execute under certain situations. Setting QGTFNDUP
causes JES2 checking for selected job to be bypassed.

v In Exit 14, JES2 sets the QGTFNOPT bit to NO by default and the exit-specified
selection criteria is used. If you want to use the class optimization as your
selection criteria, turn off the QGTFNOPT bit.

v JES2 is designed to prohibit the execution of multiple JOBs with the same name,
with the exception of TSUs and STCs. A callable routine can be used to
determine if the name of a candidate job is a duplicate of an executing job.
Exit 14 programming should be sensitive to duplicate jobnames. You can use any
of the following three methods to meet this requirement. Each method assumes
that the exit routine uses $QGET mapping to access the parameter list provided
to the exit:
– $CALL XDUPTEST,PARM=jqe/jqa address

This method uses XDUPTEST return codes to indicate whether the specified
jobname is a duplicate of an executing jobname. RC=0 indicates it is not a
duplicate; RC=4 indicates it is a duplicate.
If the job is a duplicate, the exit routine can reject the job and then resume the
search for a suitable job.
If the job is not a duplicate, Exit 14 can select the job and set flag
QGTFNDUP in byte QGTFRESP to indicate to JES2 processing that duplicate
jobname processing has completed and found no duplicates.
The following example code runs this method:
$CALL XDUPTEST,PARM=JQE, See if duplicate jobname C

ERRET=BADJOB
OI QGTFRESP,QGTFNDUP Tell JES2 duplicate test done
J GOODJOB Finished, return

BADJOB DS 0H Job is no good, select new C job

Exit 14

Chapter 26. Exit 14: Job queue work select – $QGET 163

Use this method as the final process in determining a job's eligibility to avoid
the following occurrence; if a job is rejected after calling XDUPTEST,
XDUPTEST processing must then be countered by running $CALL
NQRELSE,PARM=jqe/jqa.

– Do not perform any duplicate jobname processing – by not calling
XDUPTEST, and by not setting the flag QGTFNDUP in byte QGTFRESP.
Using this method, JES2 performs the duplicate jobname processing. If the
jobname is a duplicate, the JQA is returned ($DOGJQE ACTION=RETURN),
the job is rejected and Exit 14 is called again.
When Exit 14 is called again, it must examine field QGTJQE. If the field is
nonzero, scanning for a job must resume with the JQE that is next in the
queue.
If Exit 14 returns a JQE that fails duplicate jobname processing because the
same job was returned by the previous Exit 14 call (the prior call during the
same QGET), $ERROR QG3 is returned.

– Do not perform any duplicate jobname processing – by not calling
XDUPTEST, but by setting the flag QGTFNDUP in byte QGTFRESP.
Using this method, no duplicate jobname processing is performed by JES2.
The job will be selected with no further checks.

Register contents when Exit 14 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable

1 Pointer to a QGET parameter list having the following structure:

+0 (word 1)
Address of the node table

+4 (word 2)
Address of control block
v PIT – if INWS
v DCT – if OJTWS or OJTWSC

+8 (word 3)
Address of class list (if applicable)

+12 (word 4)
Address of the JQE

+16 (word 5)
each byte is set as follows:

+16 Length of the class list

+17 Queue type (see the $QGET macro description for a list of
these) This byte is set to ‘00’ for queue types INWS,
OJTWSC, and OJTWS. Byte 18 (the type flag) is used to
differentiate between these three queue types.

+18 Work selection type flag

+19 This byte is not part of the interface

2-10 Not applicable

Exit 14

164 z/OS V2R1.0 JES2 Installation Exits

11 Address of the HCT

12 Not applicable

13 Address of the PCE

14 The return address

15 The entry address

Register contents when Exit 14 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable

1 Address of a QGET parameter list having the following structure:

+0 (word 1)
Address of the node table

+4 (word 2)
Address of the control block

+8 Address of the class list

+12 (word 4)
Address of the JQE

+16 (word 5)
each byte is set as follows:

+16 Length of the class list

+17 Queue type (see the $QGET macro description for a list of
these) This byte is set to ‘00’ for queue types INWS,
OJTWSC, and OJTWS. Byte 18 (the type flag) is used to
differentiate between these three queue types.

+18 Work selection type flag

+19 Response byte flags: X'80' - Initiator class list optimization
not allowed

2-14 Not applicable

15 A return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no additional exit
routines associated with this exit continue normal queue scan processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
continue normal queue scan processing.

8 Tells JES2 to bypass normal queue scan processing because a JQE was
found by the exit routine. The address of the JQE the exit routine found is
provided in the fourth word of the QGET parameter list (the address of
which is returned in register 1).

12 Tells JES2 to bypass normal processing because a JQE was not found.

Exit 14

Chapter 26. Exit 14: Job queue work select – $QGET 165

Coded example
None provided.

Exit 14

166 z/OS V2R1.0 JES2 Installation Exits

Chapter 27. Exit 15: Output data set/copy select

Function
JES2 calls Exit 15 twice to allow you to instruct JES2 to:
v First: Change the number of copies of the output data set or bypass processing

the current data set when JES2 first selects that data set for output processing
v Second: Print (or not print) a data set separator page for each copy of the output

data set.

The data set separator page exit point allows the exit routine to place a separator
page between data sets. This is similar to the function provided by Exit 1, the
separator page exit. See z/OS JES2 Initialization and Tuning Guide for a sample
standard separator page. If your security policy requires it, use this exit to create
headers that include the security label for each output data set for JES2 managed
printers.

You could also use your exit routine to reset the addresses of the PRTRANS table
and the CCW translate tables. The parameter list passed to your exit routine
contains the default addresses for both the PRTRANS table and the CCW translate
tables. Change the defaults by changing the parameter list to point to your own
PRTRANS table and to point to your own CCW command code translate tables.

When translation is to occur for a local 1403 or a remote printer, the PRTRANS
table translates user data and changes each line to be printed. The default
PRTRANS table changes lowercase letters to uppercase and any characters that are
invalid on a specific universal character set (UCS) to blanks. To determine if
translation will occur, see item 9 on page 168

The CCW table translates user-specified channel commands into
installation-defined channel commands.

CAUTION:

Translation of initialization, diagnostic, or control CCWs may cause
unpredictable results.

Programming considerations
1. Change the following information by changing the values in the parameter

list:
a. Copies to be printed (255 maximum)
b. Pointer to translate table
c. CCW translate table

2. Do not produce separator pages if JES2 called this exit for data set select,
because printer setup processing has not occurred yet.

3. To determine if Exit 15 is to produce a data set separator, test bit X015SEPP in
condition byte X015COND of the $XPL. If X015SEPP is on, create a separator.
If X015SEPP is off, do not create a separator.
The SEPDS= parameter on the PRT(nnnn), PUN(nnnn), R(nnnn).PR(m), or
R(nnnn).PU(m) initialization statements indicates whether the installation

© Copyright IBM Corp. 1988, 2013 167

wants data set separators created. The operator has the option to change the
SEPDS= value by issuing the command $T device with the SEPDS= parameter
specified. Before invoking Exit 15, JES2 sets bit X015SEPP to correspond to the
current value of the SEPDS= parameter:
v If SEPDS=YES, JES2 turns on bit X015SEPP.
v If SEPDS=NO, JES2 turns off X015SEPP.

4. The data set copy count and copy group count cannot be changed on the
separator page call to Exit 15 because setup processing has already occurred.
Make these changes during the data set select call to Exit 15.

5. The data set copy group count affects separator pages this exit produces. JES2
sends the copy to the AFP printer before the calling Exit 15. The printer
repeats all pages, including separator pages, on the basis of the copy group
count.

6. If Exit 15 returns a copy count or a copy group count greater than 255, JES2
writes a symptom record to the LOGREC data set to a job log and reset(s) the
field(s) in error to 1.

7. If the spooling capabilities of a remote SNA device (such as the 3790) are
operating, use the $SEPPDIR macro to send a peripheral data information
record (PDIR) to the device. Use the $GETBUF macro to supply this routine
with HASP-type buffers and the $FREEBUF macro to release the buffers after
your routine creates the separator.

8. Use SWBTUREQ REQUEST=RETRIEVE to retrieve any parameters a user
specifies on the OUTPUT JCL statement you need to build your separator
page. See z/OS MVS Programming: Assembler Services Reference ABE-HSP for
more details about using the scheduler JCL facility and the SWBTUREQ
macro.

9. For local printers running in JES mode or for remote printers, the TRANS=
parameter on the printer's initialization statement (statement PRT(nnnn) for a
local printer, and statement R(nnnn).PR(m) for a remote printer) affects data
translation for that printer:
v If the initialization statement specifies TRANS=YES, JES2 translates each

line of output sent to the device regardless of the device type or the setting
of the PRINTDEF TRANS= parameter.

v If the initialization statement specifies TRANS=NO, JES2 does not translate
output sent to the device regardless of the device type or the setting of the
PRINTDEF TRANS= parameter.

v If the initialization statement specifies TRANS=DEFAULT or omits
TRANS=, and the PRINTDEF statement specifies TRANS=YES, and the
device is either a remote printer or a local printer other than an IBM 3211,
IBM 3800, or IBM 3203 printer, JES2 translates each line of output sent to
the device. Otherwise, JES2 does not translate output sent to the device.

10. You can determine whether JES2 invoked Exit 15 to process SYSOUT created
by a transaction program by:
v Determining if field X015DSCT contains the address of a $DSCT
v Determining if byte JCTFLAG3 is set to JCT3TPI

11. Locating JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from
this exit using the $JCTXGET macro. For example, you can use these
extensions to store job-related information. For more information, see z/OS
JES2 Macros.

Exit 15

168 z/OS V2R1.0 JES2 Installation Exits

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Recovery
$ESTAE recovery is in effect. If a program check occurs in the exit, JES2 interrupts
the output currently processing on the device. The recovery routine will not call
Exit 15 to free allocated resources. JES2 places the interrupted output groups in
system hold with an indication that a failure occurred during separator exit
processing. As with every exit, you should supply your own recovery within your
exit routine.

Job exit mask
Exit 15 is subject to job exit mask suppression.

Mapping macros normally required
$DCT, $HASPEQU, $HCT, $JCT, $JCTX, $JOE, $JQE, $PCE, $PDDB, $XPL

Point of processing
This exit is taken from the JES2 main task in HASPPRPU. The exit is taken once
for each output data set where the $PDDB matches the job output element ($JOE)
and once for each copy of the data set.

Contents of registers on entry to Exit 15
Register

Contents

0 Not applicable

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
The version level of $XPL

XPLXITID
The exit ID number

X015IND
Indicator byte. This byte indicates data set selection or data set
separator processing as follows:

X015DSEL
Bypass processing the current data set, or change the
number of copies of the data set to be produced. (These
functions are only available at data set selection time.)

Exit 15

Chapter 27. Exit 15: Output data set/copy select 169

X015DSEP
Produce a data set separator, change the print translate
table, and change the CCW translate table. (These functions
are only available at data set copy time.)

X015COND
Condition byte.

X015RFSW
Identifies whether the current PDDB has output
characteristics identical to characteristics pointed to by
X015SWBT.

X015SEPP
If X015SEPP is on, SEPDS=YES was specified for the device
and a separator is to be created. Otherwise, SEPDS=NO
was specified and no separator is to be created.

X015RESP
Response byte. If the X015BYPS bit setting is on in the response
byte, then the current PDDB will be bypassed. Otherwise, the
current PDDB will be processed.

X015DCT
Address of $DCT

X015JCT
Address of $JCT

X015DSCT
Address of $DSCT or zeros for a batch job

X015JQE
Address of the JQE

X015JOA
Address of the artificial JOE (JOA). The JOA contains both the
Work-JOE and the Characteristics-JOE.

Note: If the exit must update JOE fields, it should obtain and
return an update mode JOA. For more information, see
“Checkpoint control blocks for JOEs” on page 409.

X015PDDB
Address of the PDDB

X015SWBT
Address of the SWBTU pointer list mapped by the SJTRSBTL
DSECT in the IEFSJTRP parameter list for the first PDDB in the
JOE. This field is zero if there is no OUTPUT JCL statement
associated with the first PDDB. JES2 uses the SWBTU associated
with the first PDDB to retrieve the output identification and
delivery information for the entire output group.

X015NSWB
Number of SWBTUs JES2 despooled. z/OS MVS Programming:
Assembler Services Reference IAR-XCT contains additional
information about SWBTU, and the IEFSJTRP parameter list.

X015PRTR
Address of the print translate table

Exit 15

170 z/OS V2R1.0 JES2 Installation Exits

X015CCWT
Address of the CCW translate table

X015NCOP
The number of copies of this data set originally requested

X015CPRT
The number of copies currently printed

X015CPGP
Address of the current copy group

X015CGCT
Current copy group count

2-10 Not applicable

11 Address of $HCT

12 Not applicable

13 Address of $PCE

14 Return address

15 Entry address

Contents of register when Exit 15 returns to JES2
Register

Contents

0 Unchanged

1 Address of a parameter list mapped by $XPL:

XPLRESP
This response byte must be set by the exit before returning to JES2.
Set the response byte to X015BYPS to bypass processing of the
current PDDB. If this byte is equal to some other value, the current
PDDB will be processed.

2-14 Unchanged

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine.

4 Tells JES2 to ignore any other exit routines associated with this exit.

Coded example
Module HASX15A in SYS1.SHASSAMP contains a sample of Exit 15.

Exit 15

Chapter 27. Exit 15: Output data set/copy select 171

172 z/OS V2R1.0 JES2 Installation Exits

Chapter 28. Exit 16: Notify

Function
This exit allows you to change notify message routing and to examine and modify
$WTO messages before they are sent to the TSO/E user.

Use your exit routine and the CMB to access the intended message, change it in
place, or replace it with a new message.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 16 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
Exit 16 is subject to suppression. If the installation sets the 16th bit in the job exit
suppression mask, it should be done only once. All transactions submitted under
this initiator will not invoke Exit 16.

Mapping macros normally required
$CMB, $JCT, $JCTX, $HASPEQU, $HCT, $MIT, $PCE

Point of processing
This exit is taken from the output processor in HASPHOPE before sending the
$WTO notify message.

Programming considerations
1. The CMB maps the $WTO parameter list. You map the parameter list by

performing a USING on CMBWTOPL.
2. CMBML in the $WTO parameter list is the length of the message that is

intended to be sent. Whether your exit routine changes the messages in place
or replaces it, you must update CMBML with the length of the new message.
The intended message can be changed in place for up to a length of 86 bytes.

3. To change the node where the notify message is to be sent, move correct node
number NITNUM (of the NIT) to CMBTONOD.

© Copyright IBM Corp. 1988, 2013 173

4. To change the TSO/E user that the notify message is to go to store the TSO/E
user id (7-character id) in CMB user.

5. On return from the exit, JES2 uses the address of the message in the first word
of the parameter list.

6. For a return of 8 from your exit routine, JES2 resumes processing at OPNOTX
in HASPPRPU.

7. Locating JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro. For example, you can use these extensions to
store job-related information. For more information, see z/OS JES2 Macros.

Register contents when Exit 16 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 A code indicating if this is the first or succeeding $HASP165 (JOB nnnnn
ENDED – reason text) message

0 Indicates that this is the first (and possibly only) message
indicating the end of the job

4 Indicates that this is not the first message for this job going
through the output processor

Note: There is now only one HASP165 notify message for the job. The
indicator is always set to 0 for compatibility.

1 Address of a 3-word parameter list with the following structure:

Word 1 (+0)
address of the message that is to be sent

Word 2 (+4)
address of the $WTO parameter list

Word 3 (+8)
address of the $JCT

2-10 Not applicable

11 Address of the $HCT

12 Not applicable

13 Address of the output processor $PCE

14 Return address

15 Entry address

Register contents when Exit 16 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable

1 Address of the 3-word parameter list

Exit 16

174 z/OS V2R1.0 JES2 Installation Exits

2-13 Not applicable

14 Return address

15 A return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no additional exit
routines associated with exit continue normal notify processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
continue normal notify processing.

8 Tells JES2 not to issue the notify $WTO.

Coded example
None provided.

Exit 16

Chapter 28. Exit 16: Notify 175

176 z/OS V2R1.0 JES2 Installation Exits

Chapter 29. Exit 17: BSC RJE SIGNON/SIGNOFF

Function
This exit allows you to exercise more control over your BSC RJE remote devices.
With this exit you can implement exit routines to:
v Selectively perform additional security checks beyond the standard password

processing of the signon card image.
v Selectively limit both the number and types of remote devices that can be on the

system at any one time.
v Selectively bypass security checks.
v Implement installation-defined scanning of signon card images.
v Collect statistics concerning RJE operations on the BSC line and report the

results of the activity.

See Appendix B, “Sample code for Exit 17 and Exit 18,” on page 399 for a sample
code for Exit 17.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 17 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Storage recommendations

Mapping macros normally required
$DCT, $HASPEQU, $HCT, $MIT, $PCE, $RAT

Point of processing
This exit is taken from the JES2 main task, during BSC RJE signon and signoff
processing of HASPBSC. Three exit points are defined; two signon exit points for
performing additional security or checks and one signoff exit point for gathering
statistics about terminal usage.

© Copyright IBM Corp. 1988, 2013 177

The exit gets control during signon in the MSIGNON routines of HASPBSC, and
after signon and password processing.

The exit is given control before signon and password processing, allowing your
exit routine to scan the incoming signon card. Your exit routine may also bypass
both the JES2 syntax checking of the signon and the remote and line password
parameters on the signon card or just bypass only the signon syntax checking. JES2
also gives the exit control after signon and password processing, allowing your exit
routine to provide additional setup of the remote terminal environment.

JES2 also gives the exit control at sign off, after writing the disconnect message at
label MDSWTO.

Programming considerations
1. For exit point MSOXITA (R0=0) your exit routine has the option to return a

return code that allows the user to specify that the signon should be rejected. A
return code of 12 or 16 indicates that normal HASPBSC signon processing can
be bypassed. In this case your installation exit routine is responsible for
performing all the necessary syntax processing that HASPBSC does and for
returning a valid RAT entry pointer in R0.

2. For the signoff exit point your exit routine should return a return code of 0 or 4
so that normal processing can continue.

3. To define and implement an installation-defined remote name, change the
remote name to a standard JES2 remote name on the signon card and return
with a return code of 0, or supply a valid RAT pointer (valid for the
installation-defined remote name) and return with or return code of 12 or 16.

4. Your installation exit routine should not issue a $WAIT or invoke a service
routine that issues a $WAIT.

5. For the syntax of the signon card, see z/OS JES2 Initialization and Tuning Guide.
6. The $RETURN macro destroys the contents of register 0. Therefore, if you

return the RAT address in R0, be certain to have provided a $STORE R0
instruction before the $RETURN to place the contents of R0 in the current save
area before return to JES2.

Register contents when Exit 17 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Indicates whether signon or signoff processing is in effect. The following
values apply:

0 indicates a signon before signon parameters are processed.

4 indicates a signon after the signon parameters have been
processed.

8 indicates signoff processing.

1 Address of a 5-word parameter list, having the following structure:

Word 1 (+0)
address of the remote attribute table (RAT) (for R0=0 only)

address of the RAT entry (for R0=4 or 8)

Exit 17

178 z/OS V2R1.0 JES2 Installation Exits

Word 2 (+4)
address of the line DCT

Word 3 (+8)
zero (reserved for SNA)

Word 4 (+12)
address of the card image (for R0=0 only)

Otherwise not applicable

Word 5 (+16)
length of the card image for R0=0 only)

Otherwise not applicable

(The length is always 80.)

2-10 N/A

11 Address of the HCT

12 N/A

13 Address of the line manager or remote reader PCE

14 Return address

15 Entry address

Register contents when Exit 17 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Address of the remote's RAT entry when the return code in R15 is 12 or 16
and the signon indication in R0 is “0”

Otherwise not applicable

1 N/A

15 A return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no additional exit
routines associated with this exit continue normal signon/signoff
processing continues.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
continue normal signon/signoff processing.

8 Tells JES2 to terminate normal signon processing. No audit record is
produced in this case. If you require an audit of this failure, your exit
routine must issue a call to SAF to perform the audit.

12 Tells JES2 to call SAF with the remote id set in this exit and the password
received on the /*SIGNON statement.

16 Tells JES2 to call SAF with the remote id from the /*SIGNON statement
but do not verify the password.

Exit 17

Chapter 29. Exit 17: BSC RJE SIGNON/SIGNOFF 179

Note: RC 8, 12, and 16 are only valid for the exit when called from label
MSOXITA (that is, the first call to the exit, R0=0).

Coded example
See Appendix B, “Sample code for Exit 17 and Exit 18,” on page 399.

Exit 17

180 z/OS V2R1.0 JES2 Installation Exits

Chapter 30. Exit 18: SNA RJE LOGON/LOGOFF

Function
This exit allows you to exercise more control over your SNA RJE remote devices.
With this exit you can implement exit routines to:
v Selectively perform additional security checks beyond the standard password

processing of the signon card image.
v Selectively limit both the number and types of remote devices that can be on the

system at any one time.
v Selectively bypass security checks.
v Implement installation-defined scanning of signon card images.
v Collect statistics concerning RJE operations on the SNA line and report the

results of the activity.

For a sample code of Exit 18, see Appendix B, “Sample code for Exit 17 and Exit
18,” on page 399.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 18 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$DCT, $HASPEQU, $HCT, $ICE, $MIT, $PCE, $RAT

Point of processing
This exit is taken from the JES2 main task during the SNA RJE logon and logoff
processing of HASPSNA. Three exit points are defined for logon processing:
v At exit point MSNALXIT for a normal logon during REQ END processing after

label MSNALPAR, your exit routine can be invoked to:
– continue normal logon processing.
– terminate normal logon processing.
– perform password checking but not syntax checking.

© Copyright IBM Corp. 1988, 2013 181

– bypass syntax and password checking.
When using multiple logical units, JES2 invokes Exit 18 from MSNALXIT for
each logical unit on the remote when the logical unit logs on.

v At exit point MSNALXT2 your exit can get control when the remote terminal is
logged on.

v Just before checkpointing the remote autologon at exit point MALGXIT, your
exit can control autologon for the remote terminal.

One exit point (MICEXIT) is defined for logoff processing. This exit point is after
label MICEDMSG in the session control subroutines of HASPSNA before the
remote logoff message is issued. You can use this exit point for gathering statistics
and reporting remote device activity.

Programming considerations
1. In logoff processing, JES2 does not expect a return code from your exit routine.

Normal logoff processing proceeds.
2. Your installation exit routine should not issue a $WAIT or use a service routine

that issues a $WAIT.
3. To define and implement a installation-defined remote name, change the

remote name to a standard JES2 remote name on the remote logon card and
return with a return code of 0, or supply a valid RAT pointer (valid for the
installation-defined remote name) and return with a return code of 12 or 16.

Register contents when Exit 18 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 A logon or logoff indication having the following meanings:

0 indicates syntax processing for a normal logon

4 indicates logon processing for a normal logon after logon
parameters have been processed

8 indicates logoff processing

12 indicates autologon processing

1 Address of a 5-word parameter list having the following structure:

Word 1 (+0)
address of the remote attribute table (RAT) when R0 indicates a
normal logon process of “0”

address of a RAT entry when R0 indicates other than a normal
logon process (that is, R0 contains a value of 4, 8, or 12).

Word 2 (+4)

v 0 during syntax processing (that is, R0=0)
v address of the line DCT after logon is complete (that is, R0≠0)

Word 3 (+8)
address of the ICE

Word 4 (+12)
address of the bind user data when R0 indicates normal logon

Exit 18

182 z/OS V2R1.0 JES2 Installation Exits

processing (that is, R0=0). The format of the bind user data is
determined by installation VTAM® application programs that
define the bind user data.

Word 5 (+16)
length of the bind user data when R0 indicates normal logon
processing (that is, R0=0).

2-10 N/A

11 Address of the HCT

12 N/A

13 Address of the line manager PCE

14 Return address

15 Entry address

Register contents when Exit 18 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Address of the RAT entry when R15 contains a return code of 12 or 16 and
the logon indication in R0 is 0.

Otherwise register 0 is ignored.

1 N/A

15 A return code

A return code:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no additional exit
routines associated with this exit continue normal logon/logoff processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
continue normal logon/logoff processing.

8 Tells JES2 to terminate normal logon processing (R0=0 or 12 only). No
audit record is produced in this case. If you require an audit of this failure,
your exit routine must issue a call to SAF to perform the audit.

12 Tells JES2 to call SAF with the remote id set in this exit and the password
received during logon processing (R0=0 only).

16 Tells JES2 to call SAF with the remote id received during logon processing
but do not verify the password (R0=0 only).

Coded example
See Appendix B, “Sample code for Exit 17 and Exit 18,” on page 399.

Exit 18

Chapter 30. Exit 18: SNA RJE LOGON/LOGOFF 183

184 z/OS V2R1.0 JES2 Installation Exits

Chapter 31. Exit 19: Initialization statement

Function
This exit allows you to process each JES2 initialization statement before JES2
processes the statement. You can use your exit routine to do any of the following
functions:
v check or analyze each initialization statement.
v alter values supplied on an initialization statement.
v implement your own initialization statements.
v modify, replace, delete, or insert statements in the initialization statement stream.
v terminate JES2 initialization.
v tailor the initialization statement stream to provide for specific requirements of

this start of JES2 (e.g., add or delete parameters based on the period within
administrative cycles or the operator shift).

Environment

Task
JES2 main task (Initialization) – JES2 dispatcher disabled. You must specify
ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 19 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
Exit 19 is not subject to suppression.

Mapping macros normally required
$CIRWORK, $HASPEQU, $HCT, $MIT, $PCE

Point of processing
This exit is taken during JES2 initialization from the initialization routine (IR) that
processes parameter input (IRPL) in HASPIRPL. IRPL is called out of the
initialization routine processing loop (IRLOOP) in HASPIRA before most other IRs
have been called. Previously executed IRs have processed the initialization options,
analyzed the SSI status, and allocated a series of temporary and permanent control
blocks. Exit 0 routines, called during initialization options processing, may have
allocated installation control blocks that may be used now by Exit 19 routines.

© Copyright IBM Corp. 1988, 2013 185

HASPIRPL opens the initialization parameter data set (HASPPARM) and then
begins a loop; get an initialization statement from HASPPARM or the operator
console or a previous insertion by Exit 19, pass it to Exit 19, log the statement,
process the statement using the $SCAN facility if Exit 19 has not indicated it
should be deleted. When all input is exhausted, IRPL closes the parameter and log
data sets.

Programming considerations
1. Your EXIT(nnn) and LOADmod(jxxxxxxx) initialization statements for this exit

must be placed in the initialization deck ahead of those initialization statements
that your exit routine is to scan. The EXIT(nnn) statement must enable
(STATUS=ENABLED) the exit; the $T EXIT(nnn) command cannot be used to
enable (STATUS=ENABLED) the exit at a later time since the point of
processing for Exit 19 is before the time at which the command processor is
made functional.

2. Tracing for this exit is disabled because of its sequence in the initialization
process.

3. JES2 does not have a recovery environment established at the processing point
for Exit 19 (the JES2 ESTAE will process termination, but not recover).

4. Because Exit 19 is called early in JES2 initialization, some main task services
may not be functional and some control blocks and interfaces may not be
established. The JES2 dispatcher is not yet functional, so MVS protocol should
be used in Exit 19 routines (WAIT rather than $WAIT, ESTAE rather than
$ESTAE, and so forth).

5. The CONSOLE statement simulated after all other parameter input is
exhausted if the CONSOLE initialization option was specified is not presented
to Exit 19 exit routines.

6. Exit 19 routines may change the initialization statement passed or replace it by
changing the address and length in the exit parameter list. They may also
indicate, through a return code, that JES2 should bypass processing of the
statement (perhaps because the routine has processed the statement already).
Note that JES2 writes the statement (and any later diagnostics) to the log data
set and hardcopy console only after return from the exit. Therefore the exit
routines may want to log the statement passed from JES2, for diagnostic
purposes, before changing or replacing it. The $STMTLOG macro and service
routine is provided to perform the logging function.

7. Independent of the actions of the exit routine that effect the status of the
statement passed, a new initialization statement may be inserted into the
parameter stream by the exit routine by returning a statement address and
length in the exit parameter list. The inserted statement will be processed when
the current statement is completely processed. Note that the current statement
is not completely processed until either it is bypassed by exit 19, successfully
scanned and processed by JES2, or found to be in error by JES2 and the
resultant operator interaction by JES2 is complete. Since the operator interaction
may involve input of multiple new initialization statements from the operator,
the inserted statement may not be processed until after later calls to Exit 19.
Also, when there are multiple exit 19 routines, only one routine can perform a
statement insertion. For that reason, Exit 19 routines should verify that the
insertion statement address and length in the exit parameter list are zero before
using those fields to insert a statement.

8. The processing that JES2 does for each statement after calling Exit 19 is
performed using the JES2 $SCAN facility and a collection of tables. The tables
define the parameter input allowed and how to process it. The scan may

Exit 19

186 z/OS V2R1.0 JES2 Installation Exits

involve multiple levels of scanning, that is, parameters which have
sub-parameters, and so on. At each level, a new table is used. Each table is
actually composed of two tables, an installation-defined table followed by a
JES2-defined table.
By specifying installation-defined tables, an installation can implement its own
initialization parameters on existing JES2 statements, or replace the JES2
definition for existing statements or parameters. Thus this function can be
accomplished without implementing Exit 19, or with an implementation of Exit
19. Also, the $SCAN facility itself can be used from an Exit 19 routine to
process initialization statements.

Register contents when Exit 19 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 An indication of how the initialization input was supplied. The following
values in R0 are possible:

0 input came from the HASPARM parameter library file

4 input came from the console

8 input came from a previous insertion by an Exit 19 routine.

1 A 4-word parameter list having the following structure:

Word 1 (+0)
address of the initialization statement about to be processed. You
can modify the statement or replace the statement by altering this
field.

Word 2 (+4)
length of the complete initialization statement passed. If you alter
the passed statement or replace it, you should reset this field to the
correct new statement length.

Word 3 (+8)
a word that can be used by Exit 19 to specify the address of an
initialization statement you want to insert at the next possible
statement insertion point. JES2 will log an information diagnostic
indicating the statement was inserted by Exit 19.

Word 4 (+12)
length of the initialization statement pointed to by word 3.

2-10 N/A

11 Address of the HCT

12 N/A

13 Address of initialization PCE – the PCE work area for this PCE is the
common initialization routine work area, mapped by the $CIRWORK
macro

14 Return address

15 Entry address

Exit 19

Chapter 31. Exit 19: Initialization statement 187

Register contents when Exit 19 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If no additional exit routines are
associated with this exit, continue normal initialization statement
processing. The exit routines might have changed or replaced the
initialization statement passed.

4 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If no additional exit routines are
associated with this exit, continue normal initialization statement
processing. The exit routines might have changed or replaced the
initialization statement passed. However, JES2 should ignore any other exit
routines associated with this exit.

8 Tells JES2 to bypass this initialization statement and continue with the next
statement. JES2 will log the statement and a diagnostic information
message indicating it was bypassed by Exit 19.

12 Tells JES2 to terminate all initialization processing and exit the system.
HASPIRPL issues message $HASP864 and returns to the IRLOOP with
return code 8.

16 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If no additional exit routines are
associated with this exit, continue normal initialization statement
processing. The exit routines might have changed or replaced the
initialization statement passed. However, the system is not to substitute
text for system symbols that are specified in the initialization statement.

Coded example
None provided.

Exit 19

188 z/OS V2R1.0 JES2 Installation Exits

Chapter 32. Exit 20: End of input

Function
This exit allows you to do the following:
v Selectively assign a job's priority, affinity, execution node, SCHENV, and job

class, and influence next phase of job processing based on an installation's
unique requirements and processing workload.

v Based on installation-defined criteria, terminate a job's normal processing and
selectively print or not print its output.

v Exit 20 allows input processing - end of input.
v Override the value of the user portion of the job correlator.

Note: See Appendix A, “JES2 exit usage limitations,” on page 397 for a listing of
specific instances when this exit will be invoked or not invoked.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 20 in supervisor state and PSW key 1.

Recovery
$ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. You should
provide your own recovery within your exit routine.

Job exit mask
Exit 20 is subject to suppression. You can suppress Exit 20 by either setting the
20th bit in the job exit suppression mask (JCTXMASK) or by indicating the exit is
disabled in the initialization stream.

Mapping macros normally required
$JCT, $JCTX, $HCT, $PCE, $HASPEQU, $MIT, $JRW, $HCCT, $BUFFER, RPL,
$DCT

Point of processing
This exit is taken in the subroutine CJOBEND or in the subroutine CJOBKILL of
HASCSRIP in the JES2 main task.

© Copyright IBM Corp. 1988, 2013 189

Programming considerations
1. To change affinity, set the X020SAF field in the $XPL work area using the

$SETAFF macro.
To allow the job to run on any member:
$SETAFF REQUEST=ANY,AFFIELD=X020SAF

To allow the job to run on only this member:
$SETAFF REQUEST=CLEAR,AFFIELD=X020SAF

$SETAFF REQUEST=ADD,AFFIELD=X020SAF
AFTOKEN=$AFFINTY

2. If MVS submits a job through an internal reader, it can force a job's affinity to
the local member. This can occur when the automatic restart manager restarts a
job. The automatic restart manager expects the job to execute on a specific
member, and will change the job's affinity so the job can run on that specific
member, if necessary. If the automatic restart manager has changed the job's
affinity, the X0201ARM flag in the XPL is on. You can test this flag and
determine whether the affinity was changed. With that information, you can
then decide whether to avoid changing the affinity.

3. To set independent mode for a job, the installation must turn on the bit
X0201IND in X020FLG1.
To put jobs that start with the characters 'IND' into independent mode:
EXIT20 $ENTRY BASE=R12,SAVE=YES Set entry point

LTR R10,R10 If JCT not present
BZ RRET can’t check jobname

CLC =C’IND’,JCTJNAME Job want independent mode?
BNE RRET No, leave flags alone
OI X020FLG1, X0201IND Set independent mode

RRET $RETURN RC=0 Return to caller

4. To change the priority, set X020PRIO in the XPL. The priority is contained in
the 4 high-order bits of X020PRIO. For example, a value of 'C0' indicates
priority 12. (See z/OS JES2 Initialization and Tuning Reference for further details
on setting and changing job priority.)
v To change the execution node, update X020XNOD with the half word binary

value of the node. Use the $DEST macro to convert an EBCDIC node name
to the internal binary representation of the node number

v To change the job class, place the new job class in X020JCLS. This is honored
only if the job is a batch job, not if it is an STC or TSU job.

v The exit can influence the next phase of the job in most circumstances. Place
the next phase value in X020NEXT. X020NEXT is primed with the phase that
JES2 believes is the correct next phase when the exit is called. The exit can
place one of these values in X020NEXT:

$OUTPUT
Places the job in the OUTPUT queue unless JES2 has already
determined that the job should be purged. In that case, X020NEXT is
ignored.

$PURGE
Places the job in the PURGE queue.

Any other phase
JES2 honors the request unless it has already determined that the job
should be placed in the OUTPUT or PURGE phase.

Exit 20

190 z/OS V2R1.0 JES2 Installation Exits

The next phase can also be set through the return code in R15. If one or both of
the specifications specify PURGE; then PURGE will be the next phase. If neither
specify PURGE, but one or both specify OUTPUT; then the next phase will be
OUTPUT.

5. Extending the JCT Control Block

You can add, expand, locate, and remove extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service. For
example, you can use these extensions to store job-related information. For
more information, see z/OS JES2 Macros.

6. This exit will not be taken under the following circumstances:
v The JES2 input service processor fails the job because JES2 does not identify

a JOB card within the input stream.
7. If you need to change the scheduling environment, use the X020SENV field in

the XPL.
8. Setting the X020AVF response bit does NOT influence the next phase of the job.

To influence the next phase of the job, you must use the documented methods.

Register contents when Exit 20 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 A code indicating:

0 Normal end of input.

4 Job has a JES2 control statement error.

8 Job has an SAF (security) failure.

12 Job failed work selection criteria (OFFLOADER only)

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher.

XPLLEVEL
Version level for base XPL.

XPLXITID
The exit ID number.

XPLEXLEV
Version number for exit

X020IND
Indicator byte.

X020COND
Condition byte.

X020GJOB
Condition bit that specifies a normal job.

X020JECL
Condition bit that specifies a JECL error.

Exit 20

Chapter 32. Exit 20: End of input 191

X020BSAF
Condition bit that specifies an SAF failure.

X020WSEL
Condition bit that specifies the job failed to meet work
selection criteria.

X020RESP
Response byte.

X020NORM
Response bit that specifies to do normal process.

X020OUTP
Response bit that specifies to terminate with output.

X020PURG
Response bit that specifies to terminate job without
printing the output.

X020AVF
Response bit that indicates the exit's job verification failed.

XPLSIZE
Size of parm list, including base section.

X020JCT
Address of the JCT.

X020JQE
Address of update mode JQA.

X020DCT
Address of the DCT.

X020AREA
Address of the JRW

X020PRIO
Job priority (Input/Output field)

X020FLG1
Flags

X020XNOD
Execution Node (Input/Output field)

X020SAF
Full system affinity mask (Input/Output)

X020SENV
Scheduling Environment (Input/Output field)

X020JCLS
Job class (Input/Output field)

X020NEXT
Next job phase (Input/Output field)

X020UCOR
Override user portion of the job correlator

2-9 Not applicable

10 Address of the JCT.

11 Address of the HCT.

Exit 20

192 z/OS V2R1.0 JES2 Installation Exits

12 Not applicable

13 Address of the HASPRDR PCE.

14 Return address.

15 Entry address

Register contents when Exit 20 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 N/A

1 Address of a parameter list mapped by $XPL:

X020RESP
Response byte that may be set by the exit before returning to JES2.

15 Return code.

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no additional exit routines are
associated with this exit continue normal processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
continue normal processing.

8 Tells JES2 to terminate normal processing and print the output.

12 Tells JES2 to terminate normal processing without printing the output.

Coded example
Module HASX20A in SYS1.SHASSAMP contains a sample of Exit 20.

Exit 20

Chapter 32. Exit 20: End of input 193

194 z/OS V2R1.0 JES2 Installation Exits

Chapter 33. Exit 21: SMF record

Function
This exit allows you to do the following:
v Selectively queue or not queue the SMF record of JES2 control blocks for

processing by SMF.
v Obtain and create SMF control blocks before queuing.
v Alter content and length of SMF control block before queuing.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 21 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE, $SMF

Point of processing
This exit is taken in HASPNUC whenever a JES2 processor queues an SMF record
for eventual processing by the JES2-SMF subtask. The $QUESMFB routine in
HASPNUC places a JES2-SMF buffer on the queue of busy JES2-SMF buffers. (The
$SMFBUSY cell in the HCT points to the busy queue.)

Programming considerations
1. When modifying the SMF record, your exit routine can increase the size of the

SMF record up to a length of SMFLNG (bytes).
2. You can issue $GETSMFB and $QUESMFB in your exit routine.
3. The SMF record type is detected by examining the SMFHDRTY field, not the

SMFTYPE field of the SMF DSECT.
For more information about SMF, see z/OS MVS System Management Facilities
(SMF).

© Copyright IBM Corp. 1988, 2013 195

4. You can determine if JES2 invoked exit 21 to record information for a
transaction program by determining if byte JCTFLAG3 is set to JCT3TPI.

Register contents when Exit 21 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Zero (0)

1 SMF buffer address.

This buffer will contain either an SMF record or a job management record
(JMR) based on the value of field SMFTYPE.

Field Value
Record Type

X'00' SMF record

X'40' Large SMF record.

X'80' JMR record.

2-9 N/A

10 Address of the JCT or 0

11 Address of the HCT

12 N/A

13 Address of the caller's PCE

14 Return address

15 Entry address

Register contents when Exit 21 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 Not applicable

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If no additional exit routines are
associated with this exit continue normal SMF queue processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
continue normal SMF queue processing.

8 Tells JES2 to terminate normal SMF queue processing.

Coded example
None provided.

Exit 21

196 z/OS V2R1.0 JES2 Installation Exits

Chapter 34. Exit 22: Cancel/status

Function
This exit allows your installation to implement its own algorithms for job queue
searching and for TSO/E CANCEL/STATUS. Your exit routine can perform its
own search for a requested job or transaction program and indicate whether it has
found the job, or it can let JES2 perform the standard search.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 22 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE, $STAC, $XPL

Point of processing
This exit is taken just before searching the JES2 job queue for a “status” or “cancel”
request in HASPSTAC of the JES2 main task. The exit is given control twice in
HASPSTAC where HASPSTAC performs the cancel and status functions for the
TSO/E user (STCSTART).

The cancel and status functions execute when a Status/Cancel block (STAC) is
queued to the CCTCSHED FIFO queue in the HCCT. The cancel/status support
routine performs this queuing. JES2 then issues a WAIT (against SJBSECBS) to wait
for the completion of the cancel/status processing.

Programming considerations
1. The return code from your exit routine will cause HASPSTAC to pass back the

proper return code to JES2. JES2 propagates that return code to TSO/E to issue
the appropriate message.

© Copyright IBM Corp. 1988, 2013 197

2. For multiple cancel status requests, (your exit routine returned a return code of
12), HASPSTAC returns a 0 return code in the subsystem job block (SSJB). JES2
propagates that return code to TSO/E in SSOBRETN.

3. To end a multiple status request your exit routine must return a “0” JQE
address in R1 and issue a return code of 12.

4. The $JCAN macro can be used in your exit routine.
5. Message IKJ56216I can be misleading. The second level message tells the user

that the job queues were searched for job names consisting of the userid plus
one character. You can code your exit so that the job queue is searched for all of
the user's jobs.

6. First level messages such as IKJ56190I, IKJ56192I, IJK56197I, and IJK56211I can
also be misleading if the exit returned a JQE address in R1 and a return code of
12. The jobname in these messages is constructed by TSO/E using the TSO/E
user's userid and the last character of the job name in the JQE that was selected
by this exit. Depending on the job(s) selected by the exit, the jobname(s) taken
from the JQE may not begin with the userid; however, the jobid in the
message(s) is correct for the job processed.

7. You can determine if JES2 invoked exit 22 to process a transaction program by
determining if flag SJBFLGA is set to SJBATP. Otherwise, JES2 invoked exit 22
to process a batch job.

Register contents when Exit 22 gets control
The contents of the registers on entry to this exit are:

Register
Control

0 Not applicable.

1 Pointer to a parameter list with the following structure, mapped by $XPL:

XPLID
Eyecatcher

XPLLEVEL
Maintenance Level

XPLXITID
Exit Number

XPLEXLEV
Version Number

XPLIND
Indicator byte

JES2 sets the indicator byte to one of the following bit settings:

X022FRST
First call to exit Indicates a single cancel request or the
first status request determined by examining the function
bit (SACTFUNC) in the STAC.

X022MURE
Multiple recall Indicates a multiple status recall request.

X022MUST
Multiple status overflow Indicates a multiple status
overflow condition. The buffer that holds the status
information is too small.

Exit 22

198 z/OS V2R1.0 JES2 Installation Exits

XPLCOND
Condition byte

XPLRESP
Response byte

XPLSIZE
Size of parameter list

The STAC, mapped by the $STAC macro, is in a data space.
Perform $ARMODE ON before accessing the data and $ARMODE
OFF after finishing the access.

X022STAC
Address of STAC

X022STAA
ALET of stack

2-10 N/A

11 Address of the HCT

12 N/A

13 Address of the STATUS/CANCEL PCE

14 Return address

15 Entry address

Register contents when Exit 22 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable

1 Address of the JQE for return codes of 8 and 12; otherwise not applicable

2-13 Not applicable

14 Return address

15 A return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If no additional exit routines are
associated with this exit, continue normal processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
continue normal processing.

8 Tells JES2 to process a single request.

12 Tells JES2 to process a multiple request.

16 Tells JES2 that the exit routine has done all the processing requested.
HASPSTAC returns a code of 0.

20 Tells JES2 that the job is not found. HASPSTAC returns a code of 4.

24 Tells JES2 that an invalid combination was requested. HASPSTAC returns a
code of 8.

Exit 22

Chapter 34. Exit 22: Cancel/status 199

28 Tells JES2 that jobs with the same job name were found. HASPSTAC
returns a code of 12.

32 Tells JES2 that the status buffer is too small to hold all the data requested.
HASPSTAC returns a code of 16.

36 Tells JES2 that the job was not queuing because it is on the output queue.
HASPSTAC returns a code of 20.

40 Tells JES2 that an invalid cancel request was made. HASPSTAC returns a
code of 28.

Note: RC 12 – 40 are only valid for this exit when called from label
STCZEXIT (that is, R0=0 or 4 only).

44 Tells JES2 that the request should be failed for security reasons and
SSCSAUTH should be returned to the SSI caller.

The returned code causes the correct message to be presented to the TSO/E
interface. For multiple status requests (RC=12), register R1 must be returned with a
zero to end the processing and cause the messages to be issued.

Coded example
None provided.

Exit 22

200 z/OS V2R1.0 JES2 Installation Exits

Chapter 35. Exit 23: FSS job separator page (JSPA)
processing

Function
This exit allows you to modify the user-dependent section of the job separator
page data area (JSPA). When JES2 assigns an output group to a functional
subsystem application (FSA), it also creates a JSPA to provide job- and data
set-level information for that data set. The FSA uses this information to generate
the job header, job trailer, and data set header for an output group.

The JSPA contains three sections. HASPFSSM fills in two of these sections, the
JES-dependent section and common section, after this exit returns control to JES2.
Therefore, HASPFSSM overwrites any modifications you make to these sections at
that time. Use this exit to modify the user-dependent fields (JSPAUSR1 and
JSPAUSR2) in the third section, only.

Recommendations for implementing Exit 23
You can use Exit 23 to suppress the assignment of a JESNEWS data set by:
1. Turning off the flag bit in the JOE information block (JIB) that indicates

JESNEWS printing.
2. Setting a return code of 8 in register 15. This suppresses both the JESNEWS

data set and the separator pages.

Environment

Task
Functional subsystem (HASPFSSM). You must specify ENVIRON=FSS on the
$MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 23 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
Exit 23 is subject to suppression. You can suppress Exit 23 by either setting the
23rd bit in the job exit suppression mask (JCTXMASK) or by indicating the exit is
disabled in the initialization stream.

© Copyright IBM Corp. 1988, 2013 201

Restrictions
You should ensure that your exit routine does not violate your installations
security policy by:
v Overlaying the PSF-defined security label area
v Suppressing required separator pages.

Mapping macros normally required
$FSACB, $FSSCB, $HASPEQU, $HFCT, $JIB, JSPA, ETD, FSIP

Point of processing
This exit is invoked through the exit effector during GETDS processing. Whenever
a new JIB is initialized during GETDS processing, Exit 23 is invoked in
HASPFSSM. At this time, the associated $JCT, $IOT, and checkpoint records are
read and the JSPA is built.

See “Programming Considerations” below for further coding requirements
associated with this exit.

Programming considerations
1. A save-area type control block is obtained for use as the parameter list loaded

into register 1 when control is passed to the exit routine.
2. The assignment of the JESNEWS data set can be checked in the $JOE

information block ($JIB). The JIBFNEWS bit can be set or reset by the exit
routine; however, if a return code of 8 is returned, the JESNEWS is not
assigned; this is independent of the JIBFNEWS bit setting.

3. IAZFSIP maps the GETDS parameter list.
4. IAZJSPA maps the JSPA parameter list. Flag bit JSPA1UND, when on, indicates

that the userid in field JSPCEUID is an undefined user.
5. Exit 23 routines should issue $SAVE after the $ENTRY macro and return to the

exit effector using $RETURN. These routines also can call subroutines of their
own which also use $SAVE/$RETURN logic.

6. This exit must be in common storage. Do not linkedit this exit to HASPFSSM.

7. Locating JCT Control Block Extensions

If the $JCT address is contained in field JIBJCT, you can locate extensions to the
job control table ($JCT) control block from this exit using the $JCTXGET macro.
For example, you can use these extensions to store job-related information. For
more information, see z/OS JES2 Macros.

Register contents when Exit 23 gets control
The contents of the register on entry to this exit are:

Register
Contents

0 Not applicable

1 Address of a 5-word parameter list, having the following structure:

word1 (+0)
JSPA address

Exit 23

202 z/OS V2R1.0 JES2 Installation Exits

word2 (+4)
JIB address

word3 (+8)
FSACB address

word4 (+12)
FSSCB address

word5 (+16)
GETDS parameter list address (IAZFSIP)

2-10 Not applicable

11 Address of the $HFCT

12 Not applicable

13 The address of an 18-word save area where the exit routine stores the exit
effector's registers

14 Return address

15 Entry address

Register contents when Exit 23 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-1 Not applicable

2-14 Unchanged

15 A return code

A return code of:

0 Tells JES2, if additional exit routines are associated with this exit, to call the
next consecutive exit routine. If no additional exit routines are associated
with this exit a zero return code tells the FSA to produce any separator
that has been defined by the installation based on the information
contained in the JSPA.

4 Tells JES2 to ignore any additional exit routines associated with this exit.
However, all other processing noted for return code 0 is accomplished.

8 Tells JES2 to unconditionally suppress production of the job separator
page. The JESNEWS data set is not assigned.

12 Tells JES2 to unconditionally (that is, even if the printer has been set to
S=N) produce any job separator page.

Coded example
Module HASX23A in SYS1.SHASSAMP contains a sample of Exit 23.

Exit 23

Chapter 35. Exit 23: FSS job separator page (JSPA) processing 203

204 z/OS V2R1.0 JES2 Installation Exits

Chapter 36. Exit 24: Post–initialization

Function
This exit allows you to make modifications to JES2 control blocks before JES2
initialization ends and to create and initialize control blocks that your installation
defines for its own special purposes.

Environment

Task
JES2 Main Task (Initialization) – JES2 dispatcher disabled

The following JES2 initialization steps have been performed before your exit
routine gets control. Essentially all JES2 initialization is done, but the JES2 warm
start processor has not been dispatched yet to perform its initialization-like
processing.

You must specify ENVIRON=JES2 on the $MODULE macro.
1. The JES2 initialization options are obtained from the operator or the PARM

parameter on the EXEC statement and converted into status bits.
2. The JES2 initialization statement data set is read and processed.
3. The direct-access devices are scanned, and eligible spooling volumes are

identified and allocated to JES2.
4. The spooling and checkpoint data sets are examined and initialized for JES2

processing.
5. The subsystem interface control blocks are constructed and initialized.
6. The unit-record devices, remote job entry lines, and network job entry lines are

scanned; eligible and specified devices are located and allocated.
7. JES2 subtasks are attached, and exit routines are located.
8. SMF processing is started by generating a type 43 SMF record.
9. The JES2 control blocks, such as the HASP communications table (HCT), the

device control tables (DCT), the data control blocks (DCB), the processor control
elements (PCE), the data extent blocks (DEB), and the buffers (IOB), are
constructed and initialized.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 24 in supervisor state and PSW key 1.

Recovery
JES2 does not have a recovery environment established at the processing point for
Exit 24 (the JES2 ESTAE will process termination, but not recover).

Job exit mask
This exit is not subject to job exit mask suppression.

© Copyright IBM Corp. 1988, 2013 205

Mapping macros normally required
$CIRWORK, $HASPEQU, $HCT, $PCE

Point of processing
When Exit 24 is called, HASPIRA has called each JES2 initialization routine (IR) in
turn to perform JES2 initialization. After all the IRs have successfully completed,
HASPIRA calls the Exit 24 routine(s) before tracing the JES2 initialization and
returning control to the HASJES20 load module (HASPNUC). On return from
HASPINIT, HASPNUC deletes the HASPINIT load module (if not part of
HASJES20) and passes control to the asynchronous input/output processor,
$ASYNC, resulting in the dispatching of JES2 processors.

Creating an information string through Exit 24
This information string gives the installation the option of providing its own
information to applications that request subsystem version information (through
SSI code 54), and to override the information passed by JES2.

Information about defining keywords and values for information strings is
provided in z/OS MVS Using the Subsystem Interface (in the discussion of SSI code
54).

Use the following steps to create an information string during JES2 initialization.
(JES2 does not pass an information build area to Exit 24 during a hot start.)
1. Check the condition byte in field XPLCOND to ensure that the JES2 is warm

starting, quick starting, cold starting, or restarting through a $E MEMBER
RESTART command.

2. Check the information build area length in field X024SSWL to ensure that the
area is large enough to accommodate the installation string. If the area is too
small, ensure that Exit 24 bypasses the installation code that builds the string.

3. Obtain the pointer to the information build area from field X024SSIA, then
move the installation string into the build area.

4. Initialize field X024SSIL with the length of the string.
5. Set flag X024RSSI in the XPL response byte to indicate that Exit 24 is supplying

an information string before returning to JES2 initialization.

When JES2 processing validates the variable information string, the HASPIRA
module obtains storage in ECSA. Then JES2 moves the variable information string
from the build area pointed to by X024SSIA to extended common storage.

Programming considerations
1. The EXIT(nnn) statement for Exit 24 must specify STATUS=ENABLED for the

exit; the $T EXIT(nnn) command cannot be used to enable
(STATUS=ENABLED) the exit at a later time since the point of processing for
Exit 24 is before the time at which the command processor is made functional.

2. Because Exit 24 is called from JES2 initialization, the JES2 dispatcher is not yet
functional; so MVS protocol should be used in Exit 24 routines (for example,
WAIT rather than $WAIT and ESTAE rather than $ESTAE).

3. If Exit 24 returns a return code of 8, HASPIRA issues message $HASP864
INITIALIZATION TERMINATED BY INSTALLATION EXIT 24. The $HASP428
message will also be issued before final termination.

Exit 24

206 z/OS V2R1.0 JES2 Installation Exits

4. Your exit routine can access JES2 control blocks through the HCT. Your exit
routine can then access DCTs, PCEs, buffers, the UCT, and so on. for making
modifications.

5. Your exit routine is responsible for establishing addressability to your own
special control blocks. The HCT points to the optional user-defined UCT and
other areas are provided in the HCT for various installation uses, identified by
labels $USER1 through $USER5.

Register contents when Exit 24 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
Parameter list eyecatcher

XPLLEVEL
Version level of $XPL parameter list

XPLXITID
Exit ID number

X024IND
Indicator byte: not applicable.

X024COND
Condition byte indicating the type of JES2 start in progress.

X024WARM
Indicates single-system warm start.

X024HOT
Indicates hot start.

X024QCK
Indicates quick start.

X024ALLS
Indicates all-systems warm start.

X024ESYS
Indicates $E MEMBER restart.

X024COLD
Indicates cold start.

X024IPL
Indicates system has been IPLed.

X024COFM
Indicates cold start with format in progress.

X024RESP
Response byte

Exit 24

Chapter 36. Exit 24: Post–initialization 207

X024SSIA
Address of the information build area where the exit builds the SSI
information string. The caller of EXIT 24 provides this area (set to
zero during a JES2 hot start).

X024SSWL
Length of the information build area (the area pointed to by
X024SSIA). The caller of Exit 24 provides this value.

2-10 Not applicable

11 Address of $HCT

12 Not applicable

13 Address of $PCE: the PCE work area is the common initialization routine
work area, mapped by the $CIRWORK macro.

14 Return address

15 Entry address

Register contents when Exit 24 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by $XPL:

XPLRESP
Response byte that indicates actions taken by the exit.

X024RSSI
Indicates that the exit is providing a string of SSI
information.

X024SSIL
Length of the string built by the exit. EXIT 24 provides this value.

2-13 N/A

14 Return Address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If no additional exit routines are
associated with this exit continue the normal initialization process.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
continue normal initialization processing.

8 Tells JES2 to terminate normal initialization. This results in the $HASP864
error message to the operator.

Coded example
Module HASX24A in SYS1.SHASSAMP contains a sample of Exit 24 .

Exit 24

208 z/OS V2R1.0 JES2 Installation Exits

Chapter 37. Exit 25: JCT read

Function
This exit allows you to provide an exit routine to receive control whenever a JES2
functional subsystem address space (HASPFSSM) performs JCT I/O. That is, your
routine receives control just after the JCT is read into storage by the HASPFSSM
module which executes as part of the FSS address space.

You can use this exit to perform I/O for any installation-specific control blocks you
may have created.

Related exits
Whenever JCT I/O is performed by the JES2 main task, Exit 7 serves the purpose
of this exit, and Exit 8 is used whenever a JES2 subtask or a routine running in the
user environment performs JCT I/O.

Environment

Task
Functional subsystem (HASPFSSM). You must specify ENVIRON=FSS on the
$MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 25 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine. The $ESTAE facility is
inoperative within the FSS execution environment, rather the MVS ESTAE facility
must be used to provide recovery. Also note that the FSS may have recovery
routines in effect and that these depend on the FSS implementation.

Job exit mask
Exit 25 is subject to suppression. You can suppress Exit 25 by implementing exit 2
to set the 25th bit in the job exit suppression mask (JCTXMASK) or by indicating
the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $HFCT, $JCT, $JCTX, ETP, FSIP

Point of processing
This exit is taken from the functional subsystem address space (HASPFSSM).

© Copyright IBM Corp. 1988, 2013 209

JES2 gives control to your exit routine after the $JCT has been read into storage,
during $JIB initialization processing in the FSMGETDS routine of HASPFSSM if the
$JCT read was successful and before initialization of the job separator page area
(IAZJSPA) with fields from the $JCT. The $JCT read belongs to the job owning the
JOE from which data set(s) will be selected for assignment to the FSA through the
functional subsystem interface (FSI) GETDS function.

JES2 can also give control to your exit routine just after the FSMGETDS routine in
HASPFSSM reads the JCT for the job owning the $JOE from which a data set will
be selected (except if queuing on a setup request) for assignment to a functional
subsystem application (FSA).

Programming considerations
1. Be sure your exit routines be in common storage. Do not linkedit this exit

with HASPFSSM.

2. The $SAVE and $RETURN services are available in the FSS environment.
3. The service routines provided in the HASPFSSM module may be used within

your exit routine. The cell pool services, $GETBLK and $RETBLK can be used
to acquire save areas and other predefined storage cells dynamically. You are
responsible for returning all storage cells explicitly acquired.

4. Locating JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro. For example, you can use these extensions to
store job-related information. For more information, see z/OS JES2 Macros.

Register contents when Exit 25 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 A code passed to your routine by JES2

0 Indicates that the $JCT has been read from spool

4 Indicates that the $JCT will be written to spool

1 Address of the $JCT

2-10 N/A

11 Address of the $HFCT

12 N/A

13 Address of an OS-style save area

14 Return address

15 Entry address

Register contents when Exit 25 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 N/A

Exit 25

210 z/OS V2R1.0 JES2 Installation Exits

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If no other exit routines are
associated with this exit, continue with normal processing, which is
determined by the particular exit point from which the exit routine was
called.

4 Tells JES2 that even if there are additional exit routines associated with this
exit, ignore them; continue with normal processing, which is determined
by the particular exit point from which the exit routine was called.

Coded example
None provided.

Exit 25

Chapter 37. Exit 25: JCT read 211

212 z/OS V2R1.0 JES2 Installation Exits

Chapter 38. Exit 26: Termination/resource release

Function
This exit allows you to free resources obtained during previous installation exit
routine processing at any JES2 termination. At a JES2 termination (that is, $P JES2
command, JES2 initialization termination, or an abend), Exit 26 receives control to
free whatever resources your exit routines continues to hold. To control the release
of resources, this exit permits access to the termination recovery communication
area (TRCA) and the HASP communications table (HCT). With such access
available, your installation is provided sufficient flexibility to withdraw or free all
services and resources you may have previously acquired. This exit can also be
used to permit your installation to modify the termination options and edit
operator responses to those options.

Environment

Task
JES2 main task (Termination) – JES2 dispatcher disabled. You must specify
ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 26 in supervisor state and PSW key 1.

Recovery
Exit 26 is protected by an ESTAE routine. If an error occurs during Exit 26
processing in your code, the ESTAE issues message $HASP082 INSTALLATION
EXIT 26 ABEND to the operator. The ESTAE provides an SDUMP (if possible),
returns control to JES2 termination processing ($HEXIT), and proceeds with normal
termination. If this ESTAE does receive control, JES2 does not permit Exit 26 to
receive control again.

Job exit mask
This exit point is not subject to job exit mask suppression.

Mapping macros normally required
$ERA, $HASPEQU, $HCCT, $HCT, $MIT, $PCE, $TRCA

Point of processing
This exit is taken from HASPTERM during JES2 termination processing ($HEXIT).

At JES2 termination, the operator receives the message $HASP098 ENTER
TERMINATION OPTION. Following the operator response but before response
processing, this exit gains control. At this time the exit has the option to change the

© Copyright IBM Corp. 1988, 2013 213

operator's reply to $HASP098. Exit processing completes, and on return from the
exit, processing continues with the scanning of the operator response to the
$HASP098 message.

Programming considerations
1. Be careful not to free private area storage (for example, the UCT) that might be

needed by JES2 termination services after exit 26 processing. PCE tables and
DTE tables, and so forth, may see UCT fields and might be needed later by
HASPTERM.

2. The $CADDR (JES2 common storage address table) might not be available
when Exit 26 is invoked.

Register contents when Exit 26 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 A code passed to your routine by JES2

0 Indicates that Exit 26 is invoked for the first time

4 Indicates that Exit 26 is invoked for other than the first time

1 Address of the JES2 main task $TRCA

2-10 Not applicable

11 Address of the $HCT

12 N/A

13 Address of the HASPTERM $PCE

14 Return address

15 Entry address

Register contents when Exit 26 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 A code passed to your routine by JES2

0 Indicates that Exit 26 is invoked for the first time

4 Indicates that Exit 26 is invoked for other than the first time

1 Address of the JES2 main task TRCA

2-10 Not applicable

11 Address of the $HCT

12 Not applicable

13 Address of the HASPTERM $PCE – (this is a special PCE located n
HASPTERM)

14 Return address

15 Return code

Exit 26

214 z/OS V2R1.0 JES2 Installation Exits

A return code:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if there are additional exit routines associated with this
exit, ignore them; continue with normal processing, which is determined
by the particular exit point from which the exit routine was called.

Coded example
None provided.

Exit 26

Chapter 38. Exit 26: Termination/resource release 215

216 z/OS V2R1.0 JES2 Installation Exits

Chapter 39. Exit 27: PCE attach/detach

Function
This exit allows resources to be allocated and deallocated. The exit also allows you
to deny a PCE attach.

Environment

Task
JES2 main task. You must specify this task on the ENVIRON specification of the
$MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 27 in supervisor state and PSW key 1.

Recovery
$ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
This exit point is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE

Point of processing
This exit is taken from HASPDYN either immediately after a PCE has been
attached or immediately before a PCE is detached.

Programming considerations
None.

Register contents when Exit 27 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 A code passed to your routine by JES2

0 Indicates that Exit 27 is invoked after a PCE attach

© Copyright IBM Corp. 1988, 2013 217

4 Indicates that Exit 27 is invoked before a PCE is detached

1 Pointer to a 1-word parameter list that contains the address of the PCE to
be processed.

2-10 N/A

11 Address of the HCT

12 N/A

13 Address of the PCE currently in control

14 The return address

15 The entry address

Register contents when Exit 27 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if there are additional exit routines associated with this exit,
call the next consecutive exit routine. If there are no other exit routines
associated with this exit, continue with normal processing, which is
determined by the particular exit point from which the exit routine was
called.

4 Tells JES2 that even if there are additional exit routines associated with this
exit, ignore them; continue with normal processing, which is determined
by the particular exit point from which the exit routine was called.

8 Tells JES2 to detach the PCE that was attached immediately before
invoking this exit.

Coded example
Module HASX27A in SYS1.SHASSAMP contains a sample of Exit 27.

Exit 27

218 z/OS V2R1.0 JES2 Installation Exits

Chapter 40. Exit 28: subsystem interface (SSI) job termination

Function
This exit allows you to free resources (for example, storage for installation control
blocks) that were obtained during Exit 32 (SSI Job Selection) processing. You can
also use this exit (by changing the response byte) to either suppress the JES2 job
termination-related message or replace them with your own installation-defined
messages.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 28 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
Exit 28 is subject to suppression. You can suppress Exit 28 by either implementing
exit 2 to set the 28th bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $HCCT, $JCT, $JCTX, $MIT, $SJB

Point of processing
This exit is taken from HASCJBST before the freeing of job-related control blocks
and the issuing of related messages.

Programming considerations
Changes of security information in the $JCT could cause a later security validation
to fail. These changes could also be a violation of your installation's security policy.

© Copyright IBM Corp. 1988, 2013 219

Expanding the JCT control block
You can add, expand, locate, and remove extensions to the job control table ($JCT)
control block from this exit using the $JCTX macro extension service. For example,
you can use these extensions to store job-related information. For more
information, see z/OS JES2 Macros.

Register contents when Exit 28 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 0

1 Pointer to a 12-byte parameter list with the following structure:

Byte 1 (+0)
A type-of-processing caller indicator, as follows:

0 job termination (JOB, STC, TSU, or XBM)

4 SYSLOG termination (return ID)

8 joblet termination

12 unsuccessful job selection (JOB, STC, TSU unable to obtain
resources)

16 unsuccessful request ID JOB (request ID unable to obtain
resources)

20 unsuccessful joblet selection (unable to obtain resources)

24 unsuccessful job restart (JOB RENQ unable to obtain
resources)

Byte 2 (+1)
This byte is not part of the interface

Byte 3 (+2)
Response byte

Bits 0-6
These bits are not part of the interface

Bit 7 0 – indicates that JES2 will issue job termination message
(default)

1 – indicates that JES2 will
suppress job termination
message

Byte 4 (+3)
This byte is not part of the interface

Byte 5 (+4)
Address of SJB or 0

Byte 9 (+8)
Address of JCT or 0

2-10 Not applicable

11 Address of the $HCCT

Exit 28

220 z/OS V2R1.0 JES2 Installation Exits

12 Not applicable

13 Address of an available save area

14 Return address

15 Entry address

Register contents when Exit 28 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if there are additional exit routines associated with this exit,
call the next consecutive exit routine. If there are no other exit routines
associated with this exit, continue with normal processing, which is
determined by the particular exit point from which the exit routine was
called.

4 Tells JES2 that even if there are additional exit routines associated with this
exit, ignore them; continue with normal processing, which is determined
by the particular exit point from which the exit routine was called.

Coded example
Module HASXJEA in SYS1.SHASSAMP contains a sample of Exit 28.

Exit 28

Chapter 40. Exit 28: subsystem interface (SSI) job termination 221

222 z/OS V2R1.0 JES2 Installation Exits

Chapter 41. Exit 29: Subsystem interface (SSI) end-of-memory

Function
This exit allows you to free resources in common storage (for example, installation
control blocks that were obtained during Exit 32, SSI Job Selection, processing).

You can also use this exit to free resources on an address space level. Because this
exit executes in the master scheduler address space, it can only process
CSA-resident items.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 29 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
This exit point is not subject to job exit mask suppression.

Mapping macros normally required
$HASB, $HASPEQU, $HCCT, $MIT, $SJB

Point of processing
This exit is taken from HASCJBTR before the freeing of CSA job-related control
blocks.

Programming considerations
None.

Register contents when Exit 29 gets control
The contents of the registers on entry to this exit are:

Register
Contents

© Copyright IBM Corp. 1988, 2013 223

0 Not applicable

1 Pointer to an 8-byte parameter list with the following structure:

Byte 1 (+0)
This byte is not part of the interface

Byte 2 (+1)
Condition byte

Bits 0-6
These bits are not part of the interface

Bit 7 0 – normal end-of-memory

1 – abnormal end-of-memory

Byte 3 (+2)
This byte is not part of the interface

Byte 4 (+3)
This byte is not part of the interface

Byte 5 (+4)
This byte is not part of the interface

Byte 6 (+5)
This byte is not part of the interface

Byte 7 (+6)
Address space ID

2-10 Not applicable

11 Address of $HCCT

12 Not applicable

13 Address of an available save area

14 Return address

15 Entry address

Register contents when Exit 29 passes control back to JES2
Register

Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Exit 29

224 z/OS V2R1.0 JES2 Installation Exits

Coded example
Module HASX29A in SYS1.SHASSAMP contains a sample of Exit 29.

Exit 29

Chapter 41. Exit 29: Subsystem interface (SSI) end-of-memory 225

226 z/OS V2R1.0 JES2 Installation Exits

Chapter 42. Exit 30: Subsystem interface (SSI) data set OPEN
and RESTART

Function
This exit allows you to get control during OPEN and RESTART processing of
subsystem interface data sets. An indicator (passed to the exit in register 0)
indicates either OPEN or RESTART processing; therefore, this exit can be used for
either situation. Further, an indicator (passed in the parameter list pointed to by
register 1) indicates the type of data set (SYSIN, SYSOUT, process SYSOUT, SPOOL
BROWSE, or an internal reader type).

You can examine the data set characteristics and check them for validity, proper
authority, or alter them.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 30 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect.

However, as with every exit, your exit routine should not depend on JES2 for
recovery. JES2 cannot anticipate the exact purpose of your exit routine and can
therefore provide no more than minimal recovery. Your exit routine should provide
its own recovery.

Job exit mask
Exit 30 is subject to suppression. You can suppress Exit 30 either by implementing
exit 2 to set the 30th bit in the job exit suppression mask (JCTXMASK) or by
including a statement in the initialization stream that disables Exit 30.

Mapping macros normally required
$HASPEQU, $HCCT, $IOT, $MIT, $PDDB, $SJB, DEB, JFCB

Point of processing
This exit is taken from HASCDSOC after the data set has been either OPENed or
RESTARTed.

© Copyright IBM Corp. 1988, 2013 227

Programming considerations
1. Expanding the JCT Control Block

If the address of the $JCT is contained in field SJB, you can add, expand, locate, or
remove extensions to the job control table ($JCT) control block from this exit using
the $JCTX macro extension service. For example, you can use these extensions to
store job-related information. For more information, see z/OS JES2 Macros.

Register contents when Exit 30 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Type of call indication

0 OPEN

4 RESTART

1 Pointer to an 28-byte parameter list with the following structure:

Byte 1 (+0)
Type of data set being processed

0 JOB internal reader

4 STC internal reader

8 TSU internal reader

12 SYSIN data set

16 SYSOUT data set

20 PROCESS SYSOUT or SYSOUT application program
interface (SAPI) data set

24 SPOOL BROWSE data set

28 Unknown data set type

Byte 2 (+1)
Condition byte

Bits 0-4
These bits are not part of the interface.

Bit 5 0 – user authorization successful

1 – user authorization failed

Bit 6 0 – no error encountered

1 – error encountered

Bit 7 (applicable to data set OPEN for STC and TSU internal
readers only)

0 – $P JES2 not in progress

1 – $P JES2 in progress

Byte 3 (+2)
Response byte

Exit 30

228 z/OS V2R1.0 JES2 Installation Exits

bits 0-5
These bits are not part of the interface.

bit 6 0 – open/restart the data set or reader. Default is 0 unless
the data set type is unknown or if an error occurred while
attempting to open the data set.

1 – fail the OPEN/RESTART processing

bit 7 0 – suppress unknown data set message ($HASP352). Zero
is the default for this bit unless the type of data set is
unknown.

1 – issue the unknown data set message ($HASP352)

Byte 4 (+3)
This byte is not part of the interface.

Byte 5 (+4)
Address of IRWD if internal reader data set (type 0, 4, 8 in byte 1
of parameter list)

Address of SDB if SYSIN, SYSOUT, PROCESS SYSOUT, or SPOOL
BROWSE data set (type 12, 16, 20, or 24 in byte 1 of parameter list)

0 if unknown data set file (type 28 in byte 1 of parameter list)

Byte 9 (+8)
Address of SJB or 0

Byte 13 (+12)
Address of JFCB

Byte 17 (+16)
Address of DEB

Byte 21 (+20)
0 if internal reader data set (type 0, 4, 8 in byte 1 of parameter list)
or if bits 6 and 7 of byte 2 (condition byte) are not 0

Address of PDDB if SYSIN, SYSOUT, PROCESS SYSOUT, or
SPOOL BROWSE data set (type 12, 16, 20, or 24 in byte 1 of
parameter list)

Byte 25 (+24)
0 if internal reader data set (type 0, 4, 8 in byte 1 of parameter list)
or if bits 6 and 7 of byte 2 (condition byte) are not 0

Address of IOT if SYSIN, SYSOUT, PROCESS SYSOUT, or SPOOL
BROWSE data set (type 12, 16, 20, or 24 in byte 1 of parameter list)

2-10 Not applicable

11 Address of HCCT

12 Not applicable

13 Address of an available save area

14 Return address

15 Entry address

Register contents when Exit 30 passes control back to JES2
Upon return from this exit, the register contents must be:

Exit 30

Chapter 42. Exit 30: Subsystem interface (SSI) data set OPEN and RESTART 229

Register
Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASXOCA in SYS1.SHASSAMP contains a sample of Exit 30.

Exit 30

230 z/OS V2R1.0 JES2 Installation Exits

Chapter 43. Exit 31: Subsystem interface (SSI) allocation

Function
This exit allows you to receive control during allocation of subsystem interface
data sets and internal readers. During allocation processing, JES2 can affect
subsystem data set characteristics. This exit allows an installation to control how
JES2 will process installation-specified statements and parameters during this
processing phase.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 31 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery.

Job exit mask
Exit 31 is subject to suppression. You can suppress Exit 31 either by implementing
exit 2 to set the 31st bit in the job exit suppression mask (JCTXMASK) or by
indicating Exit 31 is disabled in the initialization stream.

Mapping macros normally required
$HASPEQU, $HCCT, $IOT, $MIT, $PDDB, $SJB, JFCB

Point of processing
This exit is taken from HASCDSAL after allocation processing but before return to
the SSI caller.

Programming considerations
The following are programming considerations for Exit 31.
1. You can determine whether Exit 31 was invoked on behalf of a transaction

program or batch job by either:
v Determining if flag SJBFLGA is set to SJBATP
v Determining if the IOT contains a DSCT

2. Expanding the JCT Control Block

© Copyright IBM Corp. 1988, 2013 231

If the address of the $JCT is contained in field SJBJCT, you can add, expand,
locate, or remove extensions to the job control table ($JCT) control block from
this exit using the $JCTX macro extension service. For example, you can use
these extensions to store job-related information. For more information, see
z/OS JES2 Macros.

Register contents when Exit 31 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
Eyecatcher

XPLLEVEL
Version level of the base XPL

XPLXLEV
Version number for the exit

XPLXITID
Exit ID number

X031ID
Indicator byte

X031COND
Condition byte

X031ERR
Allocation error

X031RESP
Response byte

X031FAIL
Fail the allocation request

X031DSTY
Type of the data set being processed

X031INTR
Internal reader

X031JSNW
JESNEWS data set

X031SYIN
SYSIN data set

X031SYSO
SYSOUT data set

X031PSPI
Process SYSOUT (PSO) or SYSOUT application program
interface (SAPI) data set

Exit 31

232 z/OS V2R1.0 JES2 Installation Exits

X031SDSB
SPOOL browse data set

X031UNK
Unknown data set type

X031SDB

v Address of SDB - if data set type is X031JSNW, X031SYIN,
X031SYSO, X031PSPI, or X031SDSB

v Address of IRWD - if data set type is internal reader data set
(X031INTR)

v 0 - if data set type is unknown data set type (X031UNK)

X031SJB
Address of SJB or 0. The value is 0 in the following conditions:
v There is an error in obtaining SJB address.
v The data set is a started task or the TSO/E internal reader.
v The automatic restart manager allocates an internal reader.

X031JFCB
Address of JFCB

X031PDDB
Address of PDDB or zero

X031IOT
Address of IOT or zero

1 Pointer to type of data set being processed (X031DSTY)

2-10 N/A

11 Address of HCCT

12 N/A

13 Address of an available save area

14 The return address

15 The entry address

Register contents when Exit 31 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,

Exit 31

Chapter 43. Exit 31: Subsystem interface (SSI) allocation 233

ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX31A in SYS1.SHASSAMP contains a sample Exit 31.

Exit 31

234 z/OS V2R1.0 JES2 Installation Exits

Chapter 44. Exit 32: Subsystem interface (SSI) job selection

Function
This exit allows you to receive control during job selection processing. You can
perform job-related processing such as allocating resources and I/O for
installation-defined control blocks. Also, this exit can be used to suppress job
selection related messages and replace them with installation-defined messages.
Such messages can indicate, for example, that a job is “not to be selected for
execution” and “the initiators were terminated”.

Related exits
Use Exit 28 (SSI Job Termination) and Exit 29 (SSI End-of-Memory) with Exit 32 to
perform job termination processing.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places Exit 32 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
Exit 32 is subject to suppression. You can suppress Exit 32 by either implementing
exit 2 to set the 32nd bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $HCCT, $JCT, $JCTX, $MIT, $SJB

Point of processing
This exit is taken from HASCJBST following job selection but before the issuing of
the $HASP373 JOBID $HASP373 jobname STARTED message.

Programming considerations
1. Expanding the JCT Control Block:

© Copyright IBM Corp. 1988, 2013 235

You can add, expand, locate, or remove extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service. For
example, you can use these extensions to store job-related information. For
more information, see z/OS JES2 Macros.

Register contents when Exit 32 gets control
0 0

1 Pointer to an 12-byte parameter list with the following structure:

Byte 1 (+0)
Type of processing indicator

0 Reserved

4 Request for job by SYSLOG ID

8 Request for job by class

12 TSU

16 STC

Byte 2 (+1)
Condition byte

bits 0-6
These bits are not part of the interface

bit 7 0 – no error occurred during processing (job selectable for
execution)

)

1 – error occurred during job select processing (job is to be
restarted or terminated)

Byte 3 (+2)
Response byte

bits 0-3
These bits are not part of the interface

bit 4 0 – initiator is not abnormally ended (default)

1 – initiator is abnormally ended, then restarted
automatically.

bit 5 0 – initiator is not abnormally ended (default)

1 – initiator is abnormally ended

Note:

1. If you specify both bits 4 and 5, the initiator is not
automatically ended and drained.

2. The initiator will stop after the job currently being
processed has been terminated/queued for RESTART.

3. This bit is ignored unless the type of processing is a job
request by class (R1, byte 1 = 8)

bit 6 0 – select this job (default)

1 – terminate this job

Exit 32

236 z/OS V2R1.0 JES2 Installation Exits

Note: This bit is ignored if the condition byte (byte 2) is
nonzero

bit 7 0 – issue the JES2 job selection ($HASP373) message

1 – suppress the JES2 job selection ($HASP373) message

Note: This bit is ignored if the condition byte (byte 2) is
nonzero

Byte 4 (+3)
This byte is not part of the interface

Byte 5 (+4)
Address of SJB

Byte 9 (+8)
Address of JCT or 0

2-10 N/A

11 Address of HCCT

12 N/A

13 Address of an available save area

14 Return address

15 Entry address

Register contents when Exit 32 passes control back to JES2
0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX32A in SYS1.SHASSAMP contains a sample of Exit 32.

Exit 32

Chapter 44. Exit 32: Subsystem interface (SSI) job selection 237

238 z/OS V2R1.0 JES2 Installation Exits

Chapter 45. Exit 33: Subsystem interface (SSI) data set
CLOSE

Function
This exit allows you to receive control during subsystem data set CLOSE
processing. You can examine the data set characteristics and check them for
validity, authority, or alter the characteristics. An indicator, passed to this exit in
the parameter list pointed to by register 1, indicates the type of data set.

Related exits
Use Exit 30 (SSI Data Set OPEN and RESTART) in conjunction with Exit 33 to
perform required data set OPEN and RESTART processing.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 33 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
Exit 33 is subject to suppression. You can suppress Exit 33 by setting the 33rd bit in
the job exit suppression mask (JCTXMASK) or by indicating Exit 33 is disabled in
the initialization stream.

Mapping macros normally required
$DCT, $HASPEQU, $HCCT, $IOT, $MIT, $PDDB, $SDB, $SJB, DEB, JFCB

Point of processing
This exit is taken from HASCDSOC before the CLOSE of the subsystem data set.

Programming considerations
1. Expanding the JCT Control Block

© Copyright IBM Corp. 1988, 2013 239

If the address of the $JCT is contained in field SJBJCT, you can add, expand, locate,
or remove extensions to the job control table ($JCT) control block from this exit
using the $JCTX macro extension service. For example, you can use these
extensions to store job-related information. For more information, see z/OS JES2
Macros.

Register contents when Exit 33 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 N/A

1 Pointer to a 25-byte parameter list with the following structure:

Byte 1 (+0)
Type of data set indicator

0 JOB internal reader

4 STC internal reader

8 TSU internal reader

12 SYSIN data set

16 SYSOUT data set

20 PROCESS SYSOUT data set

24 SPOOL BROWSE data set

28 Unknown data set type

Byte 2 (+1)
Condition byte

bits 0-6
These bits are not part of the interface

bit 7 0 – no error occurred during CLOSE processing

1 – error occurred during CLOSE processing

Byte 3 (+2)
Response byte

bits 0-5
These bits are not part of the interface

bit 6 0 – CLOSE the data set or internal reader (default, unless
data set type unknown, byte 1 = 28)

1 – fail CLOSE processing

bit 7 0 – suppress the JES2 unknown data set type ($HASP3)
message (default, unless data set type unknown, byte 1 =
28)

1 – issue the JES2 unknown data set type ($HASP3)
message

Byte 4 (+3)
This byte is not part of the interface

Byte 5 (+4)

Exit 33

240 z/OS V2R1.0 JES2 Installation Exits

v Address of IRWD - if data set type is internal reader (byte 1 = 0,
4, or 8)

v Address of SDB - if data set type is SYSIN, SYSOUT, PROCESS
SYSOUT, SPOOL BROWSE, unknown data set (byte 1 = 12, 16,
20, 24, or 28) or 0

Byte 9 (+8)
Address of SJB or 0

Byte 13 (+12)
Address of JFCB

Byte 17 (+16)
Address of DEB

Byte 21 (+20)
0 if data set type is internal reader (byte 1 = 0, 4, or 8) or if byte 2
is nonzero

Address of PDDB if data set type is SYSIN, SYSOUT, PROCESS
SYSOUT, SPOOL BROWSE data set, or unknown (byte 1 = 12, 16,
20, 24, or 28)

Byte 25 (+24)
0 if data set type is internal reader (byte 1 = 0, 4, or 8) or if bit 7 of
byte 2 is nonzero

Address of IOT if data set type is SYSIN, SYSOUT, PROCESS
SYSOUT, SPOOL BROWSE data set, or unknown (byte 1 = 12, 16,
20, 24, 28)

2-10 N/A

11 Address of HCCT

12 N/A

13 Address of an available save area

14 The return address

15 The entry address

Register contents when Exit 33 passes back control to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,

Exit 33

Chapter 45. Exit 33: Subsystem interface (SSI) data set CLOSE 241

ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASXOCA in SYS1.SHASSAMP contains a sample of Exit 33.

Exit 33

242 z/OS V2R1.0 JES2 Installation Exits

Chapter 46. Exit 34: Subsystem interface (SSI) data set
unallocation

Function
This exit allows you to receive control during unallocation processing of subsystem
interface data sets and internal readers.

Related exits
Use Exit 34 in conjunction with Exit 31 (SSI Data Set Allocation) to perform
required data set unallocation processing.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 34 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
Exit 34 is subject to suppression. You can suppress Exit 34 by either implementing
exit 2 to set the 34th bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$DCT, $HASPEQU, $HCCT, $IOT, $MIT, $PDDB, $SDB, $SJB, JFCB

Point of processing
This exit is taken from HASCDSAL before the processing to unallocate the data set.

Programming considerations
When this exit routine returns control to JES2, JES2 updates certain characteristics
of the data set being allocated with information in the SSOB extension, eliminating
any changes you might have made to the PDDB in this exit. To have a permanent
effect, you should make any changes to the data set characteristics in the SSOB
extensions.

© Copyright IBM Corp. 1988, 2013 243

1. Expanding the JCT Control Block

If the address of the $JCT is contained in field SJBJCT, you can add, expand, locate,
or remove extensions to the job control table ($JCT) control block from this exit
using the $JCTX macro extension service. For example, you can use these
extensions to store job-related information. For more information, see z/OS JES2
Macros.

Register contents when Exit 34 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 0

1 Pointer to a 24-byte parameter list with the following structure:

Byte 1 (+0)
Type of data set indicator

0 Internal reader

4 JESNEWS data set

8 SYSIN data set

12 SYSOUT data set

16 PROCESS SYSOUT or SYSOUT application program
interface (SAPI) data set

20 SPOOL BROWSE data set

24 Unknown data set type

Byte 2 (+1)
Condition byte

bits 0-5
These bits are not part of the interface

bit 6 0 – no error occurred during allocation processing

1 – error occurred during allocation processing

bit 7 0 – no error occurred during unallocation processing

1 – error occurred during unallocation processing

Byte 3 (+2)
This byte is not part of the interface

Byte 4 (+3)
This byte is not part of the interface

Byte 5 (+4)
This byte is
v Address of IRWD - if data set type is internal reader (byte 1 = 0)
v Address of SDB - if data set type is SYSIN, SYSOUT, PROCESS

SYSOUT, or SPOOL BROWSE data set (byte 1 = 8, 12, 16, or 20)
v 0- if unknown data set type (byte 1 = 24)

Byte 9 (+8)
Address of SJB or 0. This value is 0:

Exit 34

244 z/OS V2R1.0 JES2 Installation Exits

v If error in obtaining SJB address,
v If data set is a started task or TSO/E internal reader, or
v When the automatic restart manager unallocates an internal

reader.

Byte 13 (+12)
Address of JFCB

Byte 17 (+16)
Address of PDDB

0 – if data set type is a regular internal reader, an unknown data
set type (byte 1 = 0 or 24), or if the PSO unallocation was
performed after the JOB–step TCB ended.

Byte 21 (+20)
Address of IOT

0 – if data set type is a regular internal reader or unknown data set
type (byte 1 = 0 or 24)

2-10 N/A

11 Address of HCCT

12 N/A

13 Address of an available save area

14 The return address

15 The entry address

Register contents when Exit 34 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX34A in SYS1.SHASSAMP contains a sample of Exit 34.

Exit 34

Chapter 46. Exit 34: Subsystem interface (SSI) data set unallocation 245

246 z/OS V2R1.0 JES2 Installation Exits

Chapter 47. Exit 35: Subsystem interface (SSI) end-of-task

Function
This exit allows you to free resources at the task level during end-of-task
processing.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 35 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
This exit point is not subject to job exit mask suppression.

Mapping macros normally required
$HASB, $HASPEQU, $HCCT, $MIT, $SJB

Point of processing
This exit is taken from HASCJBTR after JES2 has located and locked the SJB
(subsystem job block).

Programming considerations
1. Expanding the JCT Control Block

If the address of the $JCT is contained in field SJBJCT, you can add, expand, locate,
or remove extensions to the job control table ($JCT) control block from this exit
using the $JCTX macro extension service. For example, you can use these
extensions to store job-related information. For more information, see z/OS JES2
Macros.

Register contents when Exit 35 gets control
The contents of the registers on entry to this exit are:

© Copyright IBM Corp. 1988, 2013 247

Register
Contents

0 0

1 Pointer to a 20-byte parameter list with the following structure:

Byte 1 (+0)
This byte is not part of the interface

Byte 2 (+1)
Condition byte

bits 0-6
These bits are not part of the interface

bit 7 0 – task ended normally

1 – task ended abnormally

Byte 3 (+2)
This byte is not part of the interface

Byte 4 (+3)
This byte is not part of the interface

Byte 5 (+4)
This byte is not part of the interface

Byte 6 (+5)
This byte is not part of the interface

Byte 7 (+6)
Address space ID

Byte 11 (+8)
Address of SJB

Byte 13 (+12)
Address of primary IOT or 0

Byte 17 (+16)
Address of JCT or 0

2-10 N/A

11 Address of HCCT

12 N/A

13 Address of an available save area

14 The return address

15 The entry address

Register contents when Exit 35 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 Unchanged

14 Return address

15 Return code

Exit 35

248 z/OS V2R1.0 JES2 Installation Exits

A return code:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASXJEA in SYS1.SHASSAMP contains a sample of Exit 35.

Exit 35

Chapter 47. Exit 35: Subsystem interface (SSI) end-of-task 249

250 z/OS V2R1.0 JES2 Installation Exits

Chapter 48. Exit 36: Pre-security authorization call

Function
This exit allows you to modify information passed to the security authorization
facility (SAF) of MVS. $SEAS invokes this exit just before passing control to SAF.
You can:
v Bypass the default SAF call and perform your own security checking.
v Do additional security checking besides what SAF provides.
v Pass your own return and reason code to the invoker in place of the standard

SAF return code.
v Pass information from JES2 to the security subsystem.
v Disable specific SAF security checking.

Environment

Task
USER environment. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 36 in supervisor state and PSW key 0.

Recovery
Recovery for this exit depends on the environment that invokes the exit:

Main task
If general purpose subtasks are attached then the subtask ESTAE is in
effect. If no general purpose subtasks are attached and you specified
UNCOND=YES, then the $SUBIT $ESTAE is in effect.

FSS ESTAE recovery is in effect.

USER JES2 fails the request and SSI $ESTAE recovery is in effect.

However, as with every exit, your exit routine should not depend on JES2 for
recovery. JES2 cannot anticipate the exact purpose of your exit routine and can
therefore provide no more than minimal recovery. Your exit routine should provide
its own recovery.

Job exit mask
Table 9 on page 252 shows which function codes are subject to job mask
suppression. (See the register one byte that is mapped by X036IND in “Register
Contents when Exit 36 Gets Control”.)

Mapping macros normally required
$HASPEQU, $HCCT, $WAVE, $XPL

© Copyright IBM Corp. 1988, 2013 251

Point of processing
JES2 takes this exit before issuing the SAF call.

Programming considerations
v Use care when changing or restricting the functions that build, obtain, or extract

information for tokens because you could cause later SAF calls to fail.
v If you need a finer level of control you will have to build more specific entity

names in this exit. For example, if you want only certain operators to change the
routing of a printer:
– Define a more specific profile to RACF. For example, if you wanted to keep

operators from changing the routing of jobs on JESC, you would define a
profile named:

JESC.MODIFY.JOBOUT.ROUTE

with only the operators you want to issue the command on the list of userids
authorized to the command.

– Intercept the command authorization call in Exit 36.
– In Exit 36, scan the command and build the required profile name. The

address of the command and the profile JES2 is requesting authorization for is
in the $WAVE.

– Replace the entity name (profile name) pointed to by the $WAVE with the
more specific entity name.

– If you code Exit 36 or Exit 37, you can pass a RACF request type to the exit.
JES2 can request a branch entry extract to extract information from
SECLABEL profiles (WAVREQST field set to WAVRXTRB). In addition, JES2
also uses the RACF extract (non-branch entry) to extract SECLABELs from
various other profiles (WAVREQST field set to WAVRXTRT). New function
codes (38 and 39) are defined for all these requests; see Table 9.

v Locating Extensions to the JCT Control Block: You can use the $JCTXGET
macro to locate extensions to the job control table ($JCT) control block from this
exit.

v If you need to pass information from JES2 to the security subsystem, move the
JCT pointer from the $SAFINFO parameter list (SFIJCT) to the SAF parameter
list (ICHSAFP) in field SAFPUSRW to access the SAF router exit.

v If you include code (such as a branch table) based on the security function codes
presented in Table 9 be certain you also see the source of these function codes
contained in macro $HASPEQU for their current and complete listing.

Table 9. Security Function Codes. Function Code Decimal Value, Symbolic Name, Meaning, Related Control Block*
and Job Masking

Function
Code

Decimal
Value Symbolic Name Meaning

Related
Control
Block* Job Masking

0 $SEANJES Reserved for user code No

1 $SEAINIT Initialize security environment SFI Yes

2 $SEAVERC Security environment create JCT Yes

3 $SEAVERD Security environment delete JCT Yes

Exit 36

252 z/OS V2R1.0 JES2 Installation Exits

Table 9. Security Function Codes (continued). Function Code Decimal Value, Symbolic Name, Meaning, Related
Control Block* and Job Masking

Function
Code

Decimal
Value Symbolic Name Meaning

Related
Control
Block* Job Masking

4 $SEAXTRT Extract security information for this
environment

SJB **

5 $SEASIC SYSIN data set create IOT Yes

6 $SEASOC SYSOUT data set create IOT Yes

7 $SEASIP SYSIN data set open SDB Yes

8 $SEASOP SYSOUT data set open SDB Yes

9 $SEAPSO Process SYSOUT data set open SDB Yes

10 $SEAPSS Process SYSOUT data set select PSO No

11 $SEATCAN TSO/E cancel JCT No

12 $SEACMD Command authorization None No

13 $SEAPRT Printer data set select PDDB Yes

14 $SEADEL Data set purge IOT **

15 $SEANUSE Notify user token extract None No

16 $SEATBLD Token build SFI Yes

17 $SEARJES RJE signon, NJE source for command
authorization

SWEL No

18 $SEADEVA Device authorization PCE **

19 $SEANJEA NJE SYSOUT data set create SFI Yes

20 $SEAREXT Re-verify token extract JCT Yes

21 --- Reserved None

22 $SEANEWS Update of JESNEWS SJB No

23 $SEANWBL Build JESNEWS token IOT No

24 $SEAVERS Subtask to create access control
environment element (ACEE) for general

subtasks

None No

25 $SEAAUD Audit for job in error None No

26 $SEADCHK Authorization for $DESTCHK DCW No

27 $SEATSOC SYSOUT data set create for trace IOT No

28 $SEASSOC SYSOUT data set create for system job
data sets (for example, JOBLOG)

SFI Yes

29 $SEANSOC SYSOUT data set create for JESNEWS IOT Yes

30 $SEASOX Transmit or offload of SYSOUT PCE Yes

31 $SEANJEV VERIFYX for receive or reload of
SYSOUT

SFI Yes

32 $SEAJOX Transmit or offload of job PCE Yes

33 --- Reserved None

34 $SEASPBO Spool browse data set open SDB Yes

35 $SEASFS Scheduler service, TOKNXTR SSW No

Exit 36

Chapter 48. Exit 36: Pre-security authorization call 253

Table 9. Security Function Codes (continued). Function Code Decimal Value, Symbolic Name, Meaning, Related
Control Block* and Job Masking

Function
Code

Decimal
Value Symbolic Name Meaning

Related
Control
Block* Job Masking

36 $SEASSWM SWM modify ALTER AUTH None No

37 $SEASAPI SYSOUT application programming
interface

None No

38 $SEASCLA SECLABEL affinity extract JQE No

39 $SEASCLE DCT SECLABEL extract DCT or NIT No

40 $SEANSON Secure NJE signon SAF profiles for
secure NJE signon

None No

41 $SEADIRA SECLABEL dominance None No

42 $SEASPLR SPOOL I/O AUTH check None No

43-255 --- Not currently in use Not in use

Note:

1. * Your exit routine should always check for the presence of the control block
before using fields in the control block. Currently, the control block is not
present when the $SEAXTRT function occurs during an open of TSU or STC
internal readers.

2. ** Job exit mask suppression not in effect during selected processing.

Register contents when Exit 36 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
The version level of $XPL

XPLXITID
The exit ID number

X036IND
Indicator byte that contains the function code (value of
FUNCODE=) passed by $SEAS. See Table 9 on page 252 for these
function codes and their meanings.

X036COND
Condition byte showing the type of code that invoked the exit.

Exit 36

254 z/OS V2R1.0 JES2 Installation Exits

X036JES2
IBM-supplied code (CODER=JES2 on $SEAS).

X036USER
Customer-written code (CODER=USER on $SEAS).

X036RESP
Response byte you set to have the following meanings:

X036NORC
Setting this bit on in the response byte indicates that the
exit-specified return and reason codes will be used.
Otherwise, the SAF return code and reason code will be
used.

Note: If you set this bit to a 1, you must make sure SAF
will recognize any changes you make.

X036BYPS
If this bit is turned on, the call to SAF is bypassed.
Otherwise, the authorization request is passed to SAF.

X036PARM
Address of the parameter list, in the Work Access Verification
Element ($WAVE), to pass to SAF. This address allows you to alter
any parameters contained in the parameter list. However, do not
change the address in this fullword field as SAF will not get the
expected parameters.

X036WAVE
Address of the $WAVE. This address allows you to alter any
information contained in the $WAVE. However, do not change the
address in this fullword field because you might not point to a
valid $WAVE.

X036RCBN
4-character identifier of related control block.

X036RCBA
Address of related control block. If a control block is not related
with this request, the address is zero.

X036RETC
Fullword return code from exit routine. The exit passes the return
code you set here to the caller in place of the SAF return code if
X036NORC is a 1.

X036RSNC
Fullword reason code from exit routine. The exit passes the reason
code you set here to the caller in place of the SAF reason code if
X036NORC is a 1.

X036SIZE
Size of parameter list for Exit 36

2-10 N/A

11 Address of HCCT

12 N/A

13 Address of an available save area.

14 Return address

Exit 36

Chapter 48. Exit 36: Pre-security authorization call 255

15 Entry address

Register contents when Exit 36 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 N/A

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX36A in SYS1.SHASSAMP contains a sample of Exit 36.

Exit 36

256 z/OS V2R1.0 JES2 Installation Exits

Chapter 49. Exit 37: Post-security authorization call

Function
This exit allows you to examine or modify return codes from the security
authorization facility (SAF) of MVS. JES2 invokes this exit just before returning
control to $SEAS. You can also perform additional security checking or other action
based on the return code received. For example, you can:
v Notify the operator of the status of a request.
v Request confirmation of a request from the operator before continuing.
v Further restrict the criteria used to allow (or disallow) access.
v Call $SEAS again with new information.

Environment

Task
USER environment. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 37 in supervisor state and PSW key 0.

Recovery
Recovery for this exit depends on the environment that invokes the exit:

Main task
If general purpose subtasks are attached then the subtask ESTAE is in
effect. If no general purpose subtasks are attached and you specified
UNCOND=YES, then the $SUBIT $ESTAE is in effect.

FSS ESTAE recovery is in effect.

USER JES2 fails the request and SSI $ESTAE recovery is in effect.

However, as with every exit, your exit routine should not depend on JES2 for
recovery. JES2 cannot anticipate the exact purpose of your exit routine and can
therefore provide no more than minimal recovery. Your exit routine should provide
its own recovery.

Job exit mask
Exit 37 is subject to job exit mask suppression for function codes 5, 6, 7, 8, 9, 14,
and 19. Table 10 on page 259 shows which function codes are subject to job mask
suppression. (See Byte 8 of 1 in “Register Contents when Exit 37 Gets Control”).

Mapping macros normally required
$HASPEQU, $HCCT, $WAVE, $XPL

© Copyright IBM Corp. 1988, 2013 257

Point of processing
This exit is taken from HASCSRIC after returning from the SAF call.

Programming considerations
v Use care when changing or restricting the functions that build, obtain, or extract

information for tokens because you could cause later SAF calls to fail.
v Locating Extensions to the JCT Control Block: You can use the $JCTXGET

macro to locate extensions to the job control table ($JCT) control block from this
exit.

v If you include code (such as a branch table) based on the security function codes
presented in Table 9 on page 252 be certain you also see the source of these
function codes contained in macro $HASPEQU for their current and complete
listing.

v If you code Exit 36 or Exit 37, you can pass a RACF request type to the exit.
JES2 can request a branch entry extract to extract information from SECLABEL
profiles (WAVREQST field set to WAVRXTRB). In addition, JES2 also uses the
RACF extract (non-branch entry) to extract SECLABELs from various other
profiles (WAVREQST field set to WAVRXTRT). Function codes 38 and 39 are
defined for all these requests; see Table 9 on page 252.

Register contents when Exit 37 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
The version level of $XPL

XPLXITID
The exit ID number

X037IND
Indicator byte that contains the function code (value of
FUNCODE=) passed by $SEAS. See Table 10 on page 259 for these
function codes and their meanings.

X037COND
Condition byte showing the type of code that invoked the exit.

X037JES2
IBM-supplied code (CODER=JES2 on $SEAS).

X037USER
Customer-written code (CODER=USER on $SEAS).

X037RESP
Response byte you set to have the following meaning:

Exit 37

258 z/OS V2R1.0 JES2 Installation Exits

X037NORC
Setting this bit on in the response byte indicates that the
exit-specified return and reason codes will be used.
Otherwise, the SAF return code and reason code will be
used.

X037PLUS
Exit 37 parameter list

X037PARM
Address of the parameter list, in the Work Access Verification
Element ($WAVE), to pass to SAF. This address allows you to alter
any parameters contained in the parameter list. However, do not
change the address in this fullword field as SAF will not get the
expected parameters.

X037WAVE
Address of the $WAVE. This address allows you to alter any
information contained in the $WAVE. However, do not change the
address in this fullword field because you might not point to a
valid $WAVE.

X037RCBN
4-character identifier of related control block.

X037RCBA
Address of related control block. If a control block is not related
with this request, the address is zero.

X037RETC
Fullword return code from exit routine. The exit passes the return
code you set here to the caller in place of the SAF return code if bit
6 of byte 10 is a 1.

X037RSNC
Fullword reason code from exit routine. The exit passes this reason
code you set here to the caller in place of the SAF reason code if
bit 6 of byte 10 is a 1.

X037SIZE
Size of parameter list for Exit 37

2-10 N/A

11 Address of HCCT

12 N/A

13 Address of an available save area.

14 Return address

15 Entry address

Table 10. Security Function Codes. Function Code Decimal Value, Symbolic Name, Meaning, Related Control Block*
and Job Masking

Function
Code

Decimal
Value Symbolic Name Meaning

Related
Control
Block* Job Masking

0 $SEANJES Reserved for user code No

Exit 37

Chapter 49. Exit 37: Post-security authorization call 259

Table 10. Security Function Codes (continued). Function Code Decimal Value, Symbolic Name, Meaning, Related
Control Block* and Job Masking

Function
Code

Decimal
Value Symbolic Name Meaning

Related
Control
Block* Job Masking

1 $SEAINIT Initialize security environment SFI Yes

2 $SEAVERC Security environment create JCT Yes

3 $SEAVERD Security environment delete JCT Yes

4 $SEAXTRT Extract security information for this
environment

SJB **

5 $SEASIC SYSIN data set create IOT Yes

6 $SEASOC SYSOUT data set create IOT Yes

7 $SEASIP SYSIN data set open SDB Yes

8 $SEASOP SYSOUT data set open SDB Yes

9 $SEAPSO Process SYSOUT data set open SDB Yes

10 $SEAPSS Process SYSOUT data set select PSO No

11 $SEATCAN TSO/E cancel JCT No

12 $SEACMD Command authorization None No

13 $SEAPRT Printer data set select PDDB Yes

14 $SEADEL Data set purge IOT **

15 $SEANUSE Notify user token extract None No

16 $SEATBLD Token build SFI Yes

17 $SEARJES RJE signon, NJE source for command
authorization

SWEL No

18 $SEADEVA Device authorization PCE **

19 $SEANJEA NJE SYSOUT data set create SFI Yes

20 $SEAREXT Re-verify token extract JCT Yes

21 --- Reserved None

22 $SEANEWS Update of JESNEWS SJB No

23 $SEANWBL Build JESNEWS token IOT No

24 $SEAVERS Subtask to create access control
environment element (ACEE) for general

subtasks

None No

25 $SEAAUD Audit for job in error None No

26 $SEADCHK Authorization for $DESTCHK DCW No

27 $SEATSOC SYSOUT data set create for trace IOT No

28 $SEASSOC SYSOUT data set create for system job
data sets (for example, JOBLOG)

SFI Yes

29 $SEANSOC SYSOUT data set create for JESNEWS IOT Yes

30 $SEASOX Transmit or offload of SYSOUT PCE Yes

31 $SEANJEV VERIFYX for receive or reload of
SYSOUT

SFI Yes

32 $SEAJOX Transmit or offload of job PCE Yes

Exit 37

260 z/OS V2R1.0 JES2 Installation Exits

Table 10. Security Function Codes (continued). Function Code Decimal Value, Symbolic Name, Meaning, Related
Control Block* and Job Masking

Function
Code

Decimal
Value Symbolic Name Meaning

Related
Control
Block* Job Masking

33 --- Reserved None

34 $SEASPBO Spool browse data set open SDB Yes

35 $SEASFS Scheduler service, TOKNXTR SSW No

36 $SEASSWM SWM modify ALTER AUTH None No

37 $SEASAPI SYSOUT application programming
interface

None No

38-39 --- Not currently in use Not in use

40 $SEANSON Secure NJE signon SAF profiles for
secure NJE signon

None No

41 $SEADIRA Seclabel dominance None No

42 $SEASPLR SPOOL I/O AUTH check None No

43-255 --- Not currently in use Not in use

Note:

1. * Your exit routine should always check for the presence of the control block
before using fields in the control block. Currently, the control block is not
present when the $SEAXTRT function occurs during an open of TSU or STC
internal readers.

2. ** Job exit mask suppression not in effect during selected processing.

Register contents when Exit 37 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 N/A

14 Return address

15 Return code

A return code:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX37A in SYS1.SHASSAMP contains a sample of Exit 37.

Exit 37

Chapter 49. Exit 37: Post-security authorization call 261

262 z/OS V2R1.0 JES2 Installation Exits

Chapter 50. Exit 38: TSO/E receive data set disposition

Function
During processing of a TSO/E RECEIVE command, SAF determines a user's
authority to receive a data set based on the SECLABELs listed in the user's profile.
Default actions JES2 takes when SAF returns control are:
v If the user can receive the data set with the current SECLABEL (the SECLABEL

the user logged on with), RECEIVE processing continues normally and JES2
selects the data set.

v If the user cannot receive the data set with the current SECLABEL, but the user
profile contains a SECLABEL that will allow the user to receive the data set,
JES2 does not select the data set at this time. Use exit 37 to override this
processing.

v If the user cannot receive the data set with the current SECLABEL or any of the
SECLABELs in the user profile, JES2 deletes the data set. Use this exit to change
this processing.

In this exit you set a response byte to have JES2:
v Continue normal processing, which deletes the data set.
v Bypass the data set. Bypassing the data set causes the data set to remain on

spool. This could cause an undesirable accumulation of data on spool.

You can also supply extra information to the user about the final disposition of the
data set. For more information about SECLABELs, see z/OS Security Server RACF
Security Administrator's Guide.

Environment

Task
JES2 address space. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 38 in supervisor state and PSW key 1.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery. If an abend does occur within the exit
routine, JES2 assumes a response byte than indicates normal processing (delete the
data set) should occur.

Job exit mask
This exit point is not subject to job exit mask suppression.

© Copyright IBM Corp. 1988, 2013 263

Mapping macros normally required
$HASPEQU, $HCT, $PSO, $XPL

Point of processing
This exit is taken from HASPPSO. JES2 passes control to this exit after obtaining a
response from SAF for authorization to a data set during TSO/E RECEIVE
processing.

Programming considerations
None.

Register contents when Exit 38 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
The version level of $XPL

XPLXITID
The exit ID number

X038RESP
Response byte

X038PSO
Address of the Process SYSOUT Work Area (PSO) mapped by
$PSO. Field name PSOPGMN of this work area contains the userid
of the intended receiver.

X038IND
Indicator byte

X038COND
Condition byte

X038JOA
Address of the artificial JOE (JOA)

Note: If the exit must update JOE fields, it should obtain and
return an update mode JOA. For more information, see the
“Checkpoint control blocks for JOEs” on page 409.

2-10 N/A

11 Address of the HCT

12 N/A

Exit 38

264 z/OS V2R1.0 JES2 Installation Exits

13 N/A

14 Return address

15 Entry address

Register contents when Exit 38 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

X038IND
Indicator byte

X038COND
Condition byte

X038RESP
Response byte. Set by the exit before returning to JES2:

X038KEEP
If you set this bit on, JES2 will bypass data set selection
and will keep the JOE. Otherwise, normal processing will
continue and the data set will be deleted.

2-10 N/A

11 Address of the HCT

12 N/A

13 N/A

14 Return address

15 Return Code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX38A in SYS1.SHASSAMP contains a sample of exit 38.

Exit 38

Chapter 50. Exit 38: TSO/E receive data set disposition 265

266 z/OS V2R1.0 JES2 Installation Exits

Chapter 51. Exit 39: NJE SYSOUT reception data set
disposition

Function
This exit allows an installation to change the default processing (delete) for a data
set that failed RACF verification upon entering this node for SNA and BSC NJE
lines.

In this exit, you can:
v Continue default processing and delete the data set
v Accept the data set

Environment

Task
JES2 address space. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 39 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. Your exit routine must provide its
own recovery.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $JCT, $JCTX, $NHD, $PDDB, $XPL

Point of processing
This exit is taken from HASPNET. JES2 passes control to this exit when RACF fails
the verification for a SYSOUT data set received from another node.

Programming considerations
1. When rerouting the data set, your exit routine should ensure the data set has

the proper authority for the target node.
2. If your routine accepts SYSOUT already rejected by RACF, there will not be an

audit record for the subsequent data set create. The owner of the data set is the
userid of the job that created the SYSOUT, even if that userid could not own

© Copyright IBM Corp. 1988, 2013 267

the data on your system and RACF does not validate the assigned userid. If
you are using security labels, RACF assigns a SECLABEL of SYSLOW to the
data set created.

3. Expanding the JCT Control Block

You can add, expand, locate, or remove extensions to the job control table ($JCT)
control block from this exit using the $JCTX macro extension service. For example,
you can use these extensions to store job-related information. For more
information, see z/OS JES2 Macros.

Note: If you code Exit 39, it may also be necessary for you to code a parallel Exit
55 to provide the same function for TCP/IP lines.

Register contents when Exit 39 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
The version level of $XPL

XPLXITID
The exit ID number

X039IND
Indicator byte

X039COND
Condition byte

X039RESP
Response byte.

X039PDDB
PDDB address

X039JCT
JCT address

X039NDH
Data set header address

X039AREA
SRW address

2-10 N/A

11 Address of the HCT

12 N/A

13 N/A

Exit 39

268 z/OS V2R1.0 JES2 Installation Exits

14 Return address

15 Entry address

Register contents when Exit 39 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

X039IND
Indicator byte

X039COND
Condition byte

X039RESP
Response byte. Set by exit before returning to JES2:

X039RECV
Setting this bit on will allow JES2 to receive the data set.
Otherwise, processing will continue and the data set will
be deleted.

2-13 N/A

14 Return address

15 Return Code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX39A in SYS1.SHASSAMP contains a sample of Exit 39.

Exit 39

Chapter 51. Exit 39: NJE SYSOUT reception data set disposition 269

270 z/OS V2R1.0 JES2 Installation Exits

Chapter 52. Exit 40: Modifying SYSOUT characteristics

Function
Use Exit 40 to change the characteristics of a SYSOUT data set before JES2 gathers
the attributes of the data set into an output group ($JOE). For example, you can
change class, routing, or forms attributes of the data set. You can also affect the
grouping of the PDDBs, or delete the data set by setting the PDB1NSOT bit in
PDBFLAG1. Any logical attributes of the data can be changed with this exit. You
can also use Exit 40 to influence the issuance of the $HASP549 notify messages.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places Exit 40 in supervisor state and PSW key 1.

Recovery
No recovery is in effect. Your exit routine should provide its own recovery.

Job exit mask
This exit is not subject to suppression.

Mapping macros normally required
$HASPEQU, $HCT, $DSCT, $JCT, $JCTX, $JQE, $PDDB, $PCE, $XPL

Point of processing
JES2 passes control to this exit just before it creates JOEs for the job. This exit can
be taken:
v During spin processing, called from HASPSPIN before a JOE is created for a

spin PDDB.
v During unspun processing, called from HASPSPIN before a JOE is created for a

spin PDDB.
v During regular processing, called from HASPHOPE before the JOEs are created

from the non-spin PDDBs.

JES2 gathers the non-spin data sets into groups after leaving this exit and the
groups will reflect the changes your routine makes.

Programming considerations
v You can determine whether JES2 invoked Exit 40 for a transaction program by

determining whether a $DSCT is available in field X040DSCT of the $XPL.

© Copyright IBM Corp. 1988, 2013 271

v You can not change the characteristics of SYSOUT data sets defined as
OUTPUT=DUMMY; they are not passed to Exit 40. However, SYSOUT data sets
defined as OUTDISP=PURGE are passed and available to this exit.

v Expanding the JCT Control Block

You can add, expand, locate, and remove extensions to the job control table ($JCT)
control block from this exit using the $JCTX macro expansion service. For example,
you can use these extensions to store job-related information. For more
information, see z/OS JES2 Macros.

Note that only the $JCTXGET macro can be used from this exit if any of the
following indicator bytes (for non-spin and unspun PDDBs) have been marked on
in the parameter list:
v X040NSPN
v X040UNSP

If these bytes are set on, JES2 will not write modifications of the extensions to
spool.

Contents of registers when Exit 40 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
The version level of $XPL

XPLXITID
The exit ID number

X040IND
Indicator byte.

X040SPIN
If this bit setting is on, it is a spin PDDB.

X040NSPN
If this bit setting is on, it is a non-spin PDDB.

X040UNSP
If this bit setting is on, it is an unspun PDDB.

X040COND
Condition byte

X040RESP
Response byte

X040PDDB
Address of $PDDB

Exit 40

272 z/OS V2R1.0 JES2 Installation Exits

X040JQE
Address of $JQE

X040JCT
Address of $JCT or 0. JES2 is unable to supply the address of a
$JCT when processing spin PDDBs.

X040DSCT
Address of $DSCT or 0. JES2 only supplies the address of a $DSCT
when processing a SYSOUT data set produced by a transaction
program.

X040VTXT
A 20-byte EBCDIC field containing variable text to be placed in the
$HASP548 message is in place of "INVALID USERID" for
NETMAIL output, if the PDB1NSOT flag is turned on by the exit.

2-10 Not applicable

11 Address of $HCT

12 Not applicable

13 Address of $PCE

14 Return address

15 Entry address

Register contents when Exit 40 passes control back to JES2
Register

Contents

0 Unchanged

1 Pointer to a parameter list with the following structure:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
The version level of $XPL

XPLXITID
The exit ID number

X040IND
Indicator byte

X040SPIN
If this bit setting is on, it is a spin PDDB.

X040NSPN
If this bit setting is on, it is a non-spin PDDB.

X040UNSP
If this bit setting is on, it is an unspun PDDB.

X040COND
Condition byte

Exit 40

Chapter 52. Exit 40: Modifying SYSOUT characteristics 273

X040RESP
Response byte

X040RFNT
Enables JES2 to issue the $HASP549 notification message to
the intended receiver of the transmitted file, if the
PDB9ONOT flag of the PDBFLAG9 byte is set. If this
return code is set, JES2 ignores the NJEDEF MAILMSG=
parameter.

Note:

1. If the exit turns on the PDB1NSOT bit in the
PDBFLAG1 byte of the $PDDB, JES2 ignores this return
code and suppress the $HASP549 message.

2. If the exit routine alters the PDBUSER field of the
$PDDB, JES2 routes the $HASP549 message to the user
that the contents of PDBUSER indicate. So the sender's
intended receiver does not receive this notification
message.

X040RNNT
Disables JES2to issue the $HASP549 notification message to
the intended receiver of the transmitted file. If this return
code is set, JES2 ignores the NJEDEF MAILMSG=
parameter.

X040PDDB
Address of $PDDB

X040JQE
Address of $JQE

X040JCT
Address of $JCT, or 0. JES2 is unable to supply the address of a
$JCT when processing spin PDDBs.

X040DSCT
Address of $DSCT or 0. JES2 only supplies the address of a DSCT
when processing a SYSOUT data set produced by a transaction
program.

X040VTXT
A 20-byte EBCDIC field containing variable text to be placed in the
$HASP548 message is in place of "INVALID USERID" for
NETMAIL output, if the PDB1NSOT flag is turned on by the exit.

2-14 Unchanged

15 Return Code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them.

Coded example
Module HASX40A in SYS1.SHASSAMP contains a sample of Exit 40.

Exit 40

274 z/OS V2R1.0 JES2 Installation Exits

Chapter 53. Exit 41: Modifying output grouping key selection

Function
Use exit 41 to affect which OUTPUT JCL keywords JES2 uses for generic grouping.

JES2 passes this exit a table that contains the SJF keys for the default generic
grouping keywords. There is a one-to-one correspondence between the SJF keys
and the OUTPUT JCL keywords. You can use this exit to add keys to or delete
keys from this table. You can add up to 24 additional keys at the end of the table.
Delete keys by compressing the table.

Generic grouping cannot perform special processing for keywords (such as
handling defaults or overrides). A keyword should not be grouped generically if it
has any of the following attributes:
v The keyword can be overridden by another source. CLASS, DEST, and WRITER

can be overridden on the DD statement. The network SYSOUT receiver uses the
group id in a data set header; the group id might have been generated by the
execution node and thus not be present on the OUTPUT statement.

v The keyword can be specified at dynamic unallocation (for example, CLASS).
v The keyword has a default value that JES2 must provide. DEST, OUTDISP, and

PRMODE, for example, have default values.
v The keyword can be specified in an alternate way (for example, HOLD=YES on

the DD statement is equivalent to OUTDISP=HOLD).

Keywords that require special processing should be managed by the PDDB and be
grouped upon by the output processor.

JES2 passes this exit the name of the JCL definition vector table (JDVT) that defines
these keys. The table of OUTPUT grouping keys applies to all OUTPUT statements
processed using this JDVT.

Environment

Task
User environment. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places exit 41 in supervisor state and PSW key 0 or 1.

Recovery
No recovery is in effect. Your exit routine must provide its own recovery.

Job exit mask
This exit is not subject to job exit mask suppression.

© Copyright IBM Corp. 1988, 2013 275

Mapping macros normally required
$HASPEQU, $HCCT, $XPL, SJTRP.

Point of processing
This exit is taken from HASCGGKY during JES2 initialization after the default
OUTPUT grouping keywords have been selected, but before any grouping is done
based on this JDVT name. The table of grouping keys, as modified by the exit, is
used for all subsequent grouping for that JDVT name.

Programming considerations
None

Register contents when Exit 41 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Zero

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
The version level of $XPL

XPLXITID
The exit ID number

X041IND
Indicator byte

X041COND
Condition byte

X041RESP
Response byte

X041GGKT
Address of the grouping keys table. The table is mapped by the
SJTRKEYL DSECT in the IEFSJTRP parameter list. See z/OS MVS
Programming: Assembler Services Reference ABE-HSP for more
information about IEFSJTRP.

X041DEFN
Number of defined entries in the grouping keys table. If the exit
changes the number of defined entries, it must update this field.

X041TOTN
Total number of entries in the grouping keys table, including
defined entries and entries reserved for additional keys.

X041RSVN
Number of entries reserved for additional keys.

Exit 41

276 z/OS V2R1.0 JES2 Installation Exits

X041JDVT
JDVT name

2-10 N/A

11 Address of the $HCCT

12 N/A

13 Address of an available save area

14 Return address

15 Entry address

Register contents when Exit 41 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-13 Unchanged

14 Return Address

15 Return Code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. Otherwise, continue with normal
processing, which is determined by the particular exit point from which
the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX41A in SYS1.SHASSAMP contains a sample of exit 41.

Exit 41

Chapter 53. Exit 41: Modifying output grouping key selection 277

278 z/OS V2R1.0 JES2 Installation Exits

Chapter 54. Exit 42: Modifying a notify user message

Function
This exit allows you to affect how a notify user message will be handled. When a
notify user message is to be issued, the notify user message SSI service routine is
invoked. The routine validates the input and then invokes this installation exit,
before the notify user message is built and issued. Use Exit 42 to:
v Cancel the message.
v Change the destination of the message. You can change the userid, node, or both

to which the message is to be routed.
v Change the message text.
v Continue processing without changing the message or destination.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 42 in supervisor state and PSW key 0 or 1.

Recovery
$ESTAE recovery is in effect, under the $ESTAE established when the SSI was
invoked. However, your exit routine should provide its own recovery, as with
every exit.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HCCT, $XPL, SSNU, SSOB

Point of processing
JES2 takes this exit after the input for a message has been validated and
authorization checking has been done for the receiving userid and node. If the exit
routine changes the destination, it must provide its own authority and validity
checks. Exit 42 will return to the SSI service for the message processing to be
completed.

© Copyright IBM Corp. 1988, 2013 279

Programming considerations
1. Before this exit is invoked, the system does validity and authorization checking

of the node and userid that is to receive the message. Therefore, if the exit
changes the node or userid to which the message will be sent, the installation
must check the validity and the authority of the new destination.

2. If errors were detected by the SSI service, the bit setting X042CANC will be on
in the response byte, indicating that the notify message is to be canceled. If
your exit routine corrects the error and turns X042CANC off, to issue the
message, it should also zero out the exit-supplied reason and return codes in
fields X042REAS and X042RC of the parameter list.

3. As the notify user SSI caller can be unauthorized, you must take special
consideration if the SSNU extension is directly referenced in the exit routine.
The SSI caller's key is provided so that the exit can reference SSNU data
appropriately. Additionally, the $XPL contains fields so that the exit can update
the userid, message text, and message length.

Note: IBM suggests updating information in the XPL instead of the SSNU.
When using the XPL fields, JES2 ensures the changes are appropriately
handled. However, when changing the SSNU directly, the exit must understand
how JES2 uses the SSNU fields in subsequent logic.

Register contents when Exit 42 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher

XPLLEVEL
The version level number of $XPL

XPLXITID
The exit ID number

X042IND
Indicator byte

X042COND
Condition byte. This byte might contain the following bit settings
on entry, if an error exists:

X042EMSG
Error in message specification

X042NOXT
No extension exists

X042EXTE
Extension error

Exit 42

280 z/OS V2R1.0 JES2 Installation Exits

X042NOAU
No authorization

X042UERR
Userid not specified

X042DERR
Destination error

X042RESP
Response byte.

X042SNUA
Address of the SSNU extension for the SSOB

X042NEWN
Current node identifier, in binary form

X042NEWR
Current remote identifier, in binary form

X042NWML
Current message length

X042REAS
Exit-supplied reason code

X042RC
Exit-supplied return code

X042NEWU
Current userid

X042NEWM
Pointer to current message

X042CKEY
SSI caller's key

X042MEMB
The member number that the message should be routed to if the
userid is not logged on and OUTDEF BRODCAST=NO.

2-10 N/A

11 Address of the HCCT

12 N/A

13 N/A

14 Return address

15 Entry address

Register contents when Exit 42 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 N/A

1 Pointer to a parameter list mapped by $XPL:

Exit 42

Chapter 54. Exit 42: Modifying a notify user message 281

Field Name
Description

XPLRESP
This response byte must be set by the exit before returning to JES2.
Set the response byte as follows:

X042CANC
This bit setting turned on in the response byte indicates
that the notify message is to be canceled. Otherwise, the
notify message is to be issued. This bit will be turned off
on entry if no errors exist before the installation exit gets
control, but will be turned on entry if errors are found
before the installation exit gets control. If the exit corrects
the errors detected, this bit setting should be reset to be off.

X042SETR
This bit setting turned on in the response byte indicates
that both a return code and a reason code were specified in
the parameter list. If this bit setting is not on, neither
reason code nor return code are present.

X042NOCH
This bit setting turned on in the response byte indicates
that the node has been changed. If this bit setting is not
turned on, there has been no change to the destination
node.

X042RMCH
This bit setting turned on in the response byte indicates
that the remote has been changed. If this bit setting is not
turned on, there has been no change to the destination
remote.

X042USCH
This bit setting turned on in the response byte indicates
that the userid has been changed. If this bit setting is not
turned on, there has been no change to the userid.

X042MSGC
This bit setting turned on in the response byte indicates
that the message text and length have been changed. If this
bit setting is not turned on, there has been no change to
the message text and length.

X042MEMC
This bit setting turned on in the response byte indicates
that the member number in X042MEMB was changed by
the exit.

X042MAIN
This bit setting turned on in the response byte indicates
that the notify request should be unconditionally queued to
the JES2 main task for processing. This allows the message
to be seen by $EXIT 10.

X042NEWN
New node identifier, in binary form, to be returned from exit, if
there was a change in the node.

Exit 42

282 z/OS V2R1.0 JES2 Installation Exits

X042NEWR
New remote identifier, in binary form, to be returned from exit, if
there was a change in the remote.

X042NEWU
New userid to be returned from the exit, if there was a change in
the userid.

X042NEWM
New message text pointer. Note that if the text is updated, the
message length in X042NWML must be updated.

X042NWML
New message text length to be returned, if there was a change to
the message text.

X042REAS
Exit-supplied reason code

X042RC
Exit-supplied return code

2-14 N/A

15 Return Code

A return code:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them.

Coded example
Module HASX42A in SYS1.SHASSAMP contains a sample of exit 42.

Exit 42

Chapter 54. Exit 42: Modifying a notify user message 283

284 z/OS V2R1.0 JES2 Installation Exits

Chapter 55. Exit 43: APPC/MVS TP selection/change/
termination

Function
When the system processes an APPC/MVS transaction program (TP) or a z/OS
UNIX application, this exit allows you to receive control during:
v TP selection processing, which means the TP initiator selected a TP to run.
v TP termination processing, which means the TP initiator completed processing a

TP.
v TP change processing, which means the TP initiator was processing a

multi-transaction TP. The APPC/MVS transaction initiator or z/OS UNIX
BPXAS initiator started another TP as a result of completing another TP.

While JES2 is processing a TP selection request, you could implement Exit 43 to:
v Create installation-specific control blocks to be used by subsequent installation

exits that are invoked for the TP after Exit 43.
v Modify the output limits maintained in the $SJB.
v Issue messages to the TP's message log.

While processing a multi-transaction TP, if JES2 is invoked for a change request,
you could implement Exit 43 to:
v Reset the output limit counts associated with the TP's SYSOUT data set
v Issue messages to the TP's message log.

During TP termination processing, you could implement Exit 43 to:
v Release any control blocks Exit 43 previously obtained for the TP.
v Issue messages to the TP's message log.

Related exits
IBM suggests that you use exit IEFUJI to terminate a TP instead of Exit 43. See
z/OS MVS Installation Exits for additional information about exit IEFUJI.

If a SYSOUT data set created by a TP exceeded the output limits specified in Exit
43 or in the initialization stream, JES2 invokes Exit 9.

Recommendations for implementing Exit 43
It might be necessary for you to create control blocks that your installation will use
while APPC/MVS is processing the transaction program. To create
installation-specific control blocks:
1. Create a DSECT for your installation's control block
2. In Exit 43:

a. Include all the control blocks necessary for the exit. Mapping macros
normally required in the Environment section identifies all the control
blocks IBM suggests should be included. Be sure to include any
installation-specific control blocks you have created for TPs.

b. Issue a $GETMAIN macro to obtain storage for the control block.

© Copyright IBM Corp. 1988, 2013 285

c. Initialize the control block with the required information.
d. Use the information as required while JES2 processes the transaction

program.

Your installation might want to issue installation-defined messages to the TP
message log when either JES2 selects or terminates a transaction program. Code
the following macro to issue a message in Exit 43:
$WTO ROUTE=$LOG

Environment

Task
User (APPC/MVS transaction initiator). You must specify ENVIRON=USER on the
$MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 43 in supervisor state and PSW key 0

Locks held before entry
$SJB

Restrictions
v Exit 43 should not perform any I/O. If I/O is performed in Exit 43, your

installation might experience a degradation in its performance.

Recovery
$ESTAE is in effect and provides minimal recovery. JES2 will attempt to recover
from any errors experienced by Exit 43. However, you should not depend on JES2
for recovery.

Job exit mask
Exit 43 is subject to suppression. You can suppress exit 43 by either implementing
Exit 2 to set the 43rd bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream. All TPs submitted
under the APPC/MVS transaction initiator will not invoke Exit 43.

Storage recommendations
Subpool 230

Mapping macros normally required
$HASPEQU, $SJB, $JCT, $JCTX, $XPL

Point of processing
JES2 invokes Exit 43 during TP selection, change, or termination processing.

Exit 43

286 z/OS V2R1.0 JES2 Installation Exits

Programming considerations
You should consider the following when implementing installation exit 43:
v Any code implemented in this installation exit will be invoked for every

transaction program submitted under this initiator.
v The output limits are found in the $SJB and the $SJXB.
v Expanding the JCT Control Block

You can add, expand, locate, or remove extensions to the job control table ($JCT)
control block from this exit using the $JCTX macro extension service. For
example, you can use these extensions to store job-related information. For more
information, see z/OS JES2 Macros.

Register contents when Exit 43 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable

1 Address to a parameter list with the following structure:

Field Name

XPLID
Eyecatcher - $XPL

XPLLEVEL
Version level of $XPL

XPLXITID
Exit identifier number - 43

XPLEXLEV
Version level of the exit

X043IND
Indicator byte

X043TPS
Indicates Exit 43 was invoked for TP select processing.

X043TPT
Indicates Exit 43 was invoked for TP terminate processing.

X043CHG
Indicates Exit 43 was invoked for TP change processing.

X043COND
Not applicable to Exit 43

X043RESP
Not applicable to Exit 43

X043SJB
Pointer to the $SJB

X043JCT
Pointer to the $JCT

X043SIZE
Length of $XPL for Exit 43

Exit 43

Chapter 55. Exit 43: APPC/MVS TP selection/change/termination 287

2-10 Not applicable

11 Address of the $HCCT

12 Not applicable

13 Address of a save area

14 Return address

15 Entry address

Register contents when Exit 43 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-14 Unchanged from entry registers

15 Return code

A return code of:

0 Indicates JES2 should continue processing the TP.

4 Indicates JES2 should continue processing the TP but ignore any additional
exits associated with the TP.

Coded example
Module HASX43A in SYS1.SHASSAMP contains a sample of Exit 43.

Exit 43

288 z/OS V2R1.0 JES2 Installation Exits

Chapter 56. Exit 44: JES2 converter exit (JES2 main)

This information describes JES2 installation exit 44.

Function
This exit allows you to modify job-related control blocks after the converter
running as a subtask in the JES2 address space has converted the job's JCL into C/I
text. After the system has converted the job's JCL, your installation might want to:
v Change fields in the job's job queue element ($JQE), such as:

– Change the priority of the job
– Release the job from hold
– Route the job to print on a device other that what was specified on the job's

JCL
– Reassign the system where the job should execute or print

v Perform spool I/O for installation-defined control blocks. You can supply a
scheduling environment to the JQASCHE field in the JQE. This will override any
scheduling environment from the JOBCLASS(n) for this job. JES2 does not
validate the scheduling environment; therefore, be careful to supply a valid
scheduling environment or the system will not schedule the job for execution. If
needed, use Exit 6 or Exit 60 to provide scheduling environment validation.

v Exit 44 can be used to reject duplicate TSO logons.

Related exits
Exit 6 (JES2 address space) or exit 60 (JES2CI address space) is invoked while the
converter subtask is processing the job. Exit 6 or exit 60 is called earlier than Exit
44 during converter processing. Any changes that are required for your job control
table ($JCT) can also be done in exit 6 or exit 60.

Recommendations for implementing Exit 44
If you use exit 6 or exit 60 to extract information from the job's JCL and created
installation-specific control blocks, you can implement Exit 44 to write those
installation-specific control blocks to spool by:
1. Issuing a $GETBUF macro to obtain a buffer. The information contained in the

installation-specific control block should be moved into the buffer.
2. Issuing a $CBIO macro to write the buffer to spool.
3. Updating a user field in the $JCT with the address of the spool

installation-specific control block.
4. If you intend to update the JQE passed in your exit, $DOGJQE should be used

to obtain an update mode JQE and to return it when the updates are complete.
You do not need to write the $JCT to spool since JES2 will write the $JCT to
spool after returning from Exit 44.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

© Copyright IBM Corp. 1988, 2013 289

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 44 in supervisor state and PSW key 1

Recovery
$ESTAE is in effect and HASPCNVT provides minimal recovery. JES2 attempts to
recover from any abends experienced by the converter main task. However, you
should not depend on JES2 for recovery.

Job exit mask
Exit 44 is subject to suppression. You can suppress Exit 44 by either implementing
exit 2 to set the 44th bit in the job exit suppression mask (JCTXMASK) or by
disabling the exit through the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $JQE, $JCT, $JCTX, $XPL

Point of processing
Exit 44 is invoked from the JES2 main task after the converter subtask has
converted the job's JCL. It is invoked before JES2 writes job-related control blocks
to spool.

After Exit 44 returns to JES2, JES2 examines the response byte in the $XPL. If an
error was encountered and Exit 44 set the response byte in Exit 44 to indicate the
job should be placed on the:
v Purge queue or output queue, JES2 places the job on the specified queue.
v Purge queue and output queue, JES2 places the job on the purge queue.

If Exit 44 did not set the response byte, JES2 places the job on the execution queue.

Programming considerations
The following are programming considerations for Exit 44:
1. If Exit 44 sets an indicator in the response byte (XPLRESP) before returning to

JES2, JES2 honors the setting over any specifications made in the job's JCL.
2. Locating the JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTGET macro. For more information, see z/OS JES2 Macros.

3. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

Register contents when Exit 44 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable to Exit 44

1 Address of a parameter list with the following structure:

Exit 44

290 z/OS V2R1.0 JES2 Installation Exits

Field Name

XPLID
Eyecatcher - $XPL

XPLLEVEL
Version level of $XPL

XPLXITID
Exit identifier number - 44

XPLEXLEV
Version level of the exit

X044IND
Indicates the type of error, if any, while converting the job's JCL
v X044JCLO indicates the converter successfully converted the

job's JCL
v X044JCLE indicates the converter encountered an error while

converting the job's JCL
v X044CPER indicates a system error occurred while the converter

was converting the job's JCL. See X044COND for additional
information.

X044COND
Indicates additional information about the type of error that was
encountered.
v X044DLGN a user is already logged onto the system with the

same TSU user id.
v X044FKOF JES2 was unable to open the system data sets for the

converter.
v X044CNWT JES2 could not convert the job because the job's

JCLLIB data set was not available.

X044RESP
Response byte

X044CNVQ
JES2 requeues the job to conversion

X044JCT
Address of the $JCT

X044JQE
Address of the $JQE

X044SIZE
Length of $XPL for Exit 44

2-10 Not applicable to Exit 44

11 Address of the $HCT

12 Not applicable

13 Address of the $PCE

14 Return address

15 Entry address

Exit 44

Chapter 56. Exit 44: JES2 converter exit (JES2 main) 291

Register contents when Exit 44 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable

1 Address of a parameter list with the following structure:

Field Name

X044IND
Indicator byte

X044COND
Condition byte

X044RESP
Response byte

X044OUTQ
Indicates JES2 should place the job on the output queue

X044PURQ
Indicates JES2 should place the job on the purge queue

X044JCT
Address of the $JCT

X044JQE
Address of the $JQE

2-10 Not applicable

11 Address of the $HCT

12 Not applicable

13 Address of the $PCE

14 Return address

15 Return code

A return code of:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job but ignore any additional
exits associated with the job.

Coded example
Module HASX44A in SYS1.SHASSAMP contains two samples of Exit 44.

Exit 44

292 z/OS V2R1.0 JES2 Installation Exits

Chapter 57. Exit 45: Pre-SJF service request

Function
This exit allows you to process requests for the scheduler JCL facility prior to
JES2's processing of the request. A function code of 70 on a subsystem IEFSSREQ
call with SSSFSWBM in field SSSFREQF invokes the exit. Exit 45 allows the
installation to:
v Examine the request to determine if the system should continue to process the

request for SJF services
v Redirect error messages for a request.

Environment

Task
User task. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 45 in supervisor state and PSW key 1

Recovery
A $ESTAE recovery is in effect for exit 45. However, as with every exit, your exit
routine should not depend on JES2 for recovery. JES2 cannot anticipate the exact
purpose of your exit routine and can therefore provide minimal recovery. You
should provide recovery for errors that might be encountered by exit 45's
processing.

Job exit mask
Exit 45 is subject to suppression. The installation can suppress the exit either by
implementing exit 2 to set bit 45 in the job exit suppression mask (JCTXMASK) or
by indicating the exit is disabled in the JES2 initialization stream.

Storage recommendations
Subpool 241 or 231

Mapping macros normally required
$HASPEQU, $HCT, $XPL, $SFRB, IAZSSSF

Point of processing
Exit 45 is invoked by a subsystem issuing an IEFSSREQ macro with a function
code of 70 and SSSFSWBM in field SSSFREQF. This is a request for scheduler JCL
facility (SJF) SWB modify services. The request is routed through the subsystem
interface and JES2, module HASCSJFS, receives control. HASCSJFS performs the
following functions:

© Copyright IBM Corp. 1988, 2013 293

1. Establish a recovery environment.
2. Validate the SSOB and its extension SSSF.
3. Issue a $SEAS request to obtain UTOKEN of the requester.

Programming considerations
Because the SJF Services SSI caller (SSI 70) can be unauthorized, the SSSF extension
can be located in an unauthorized storage key. Therefore, you must take special
consideration if the SSSF extension is directly referenced in the exit routine. The
SSI caller's key is provided so that the exit can reference SSSF data appropriately.
However, many fields in the SSSF extension are located in the $XPL, so no key
considerations are necessary when using these fields. IBM suggests that the exit
reference fields in the $XPL rather than the corresponding fields in the SSSF.

Register contents when Exit 45 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable to exit 45

1 Address of the $XPL parameter list, which has the following structure:

XPLID
Eye-catcher for the $XPL - $XPL

X045VERN
Indicates the version number of exit 45

XPLXITID
Exit identifier - 45

XPLEXLEV
Version level of the exit

X045SIZE
Indicates the length of the $XPL parameter list for exit 45.

X045IND
Indicator byte

X045COND
If set, indicates the reason why JES2 is unable to process the SJF
request. If XPLCOND is set to:
v X045PCED, indicates the JES2 SJF PCE is not able to process the

request because it is disabled.
v X045JESD, indicates JES2 is currently not active.
v X045NOXT, indicates that JES2 could not locate the SSSF

extension of the SSOB.
v X045EXTE, indicates the SSSF extension was not valid.
v X045NOAU, indicates that JES2 could not validate the request

because it could not obtain the security token for the request.
v X045INVF, indicates JES2 could not process the SJF request

because the requester did not indicate an request the correct
function.

v X045INVI indicates JES2 could not process the SJF request
because the input to the request was in error.

Exit 45

294 z/OS V2R1.0 JES2 Installation Exits

Note: If XPLCOND is set, JES2 has preset XPLRESP to X045CANC
to cancel the request for SJF services.

X045RESP
Response byte

X045SSSA
Contains the address of IAZSSSF.

X045SFRB
Contains the address of the JES2 scheduler facilities request block
(SFRB) to be given to the JES2 SJF PCE.

X045CKEY
Contains the SSI caller's key

X045FLG1
Indicates the intended type of security authorization checking to be
done in order to ensure that the user has access to the target sysout
dataset. A value of:

X045DEST
Indicates that a DEST (ISFAUTH) security check will be
done.

X045SECL
Indicates that a SECLABEL dominance security check will
be done.

X045JSSP
Indicates that a security check against the JESSPOOL
resource class will be done.

X045JBNM
Contains the job name of the target sysout dataset.

X045JBID
Contains the job ID of the target sysout dataset.

X045GRPN
Contains the group name of the target sysout dataset.

X045GRP1
Contains the first group identifier of the target sysout dataset.

X045GRP2
Contains the second group identifier of the target sysout dataset.

X045CART
Contains the command and response token for WTO responses.

X045CNID
Contains the console ID for WTO responses.

X045MDAD
Contains the address of the output descriptor modify list in
SWBTU format.

X045ERAD
Contains the address of the output descriptor erase list in TU
format.

X045MDLN
Contains the length of the modify list (SWBTU).

Exit 45

Chapter 57. Exit 45: Pre-SJF service request 295

X045ERLN
Contains the length of the erase list (TU).

2-10 Not applicable to exit 45

11 Address of the $HCCT

12-13 Not applicable to exit 45

14 Return address

15 Entry point address of exit 45

Register contents when Exit 45 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable to exit 45

1 Address of the $XPL parameter list which has the following structure:

X045IND
Indicator byte

X045COND
Condition byte

X045RESP
Indicates the processing or return codes the installation exit should
return to the application program that requested the SJF service. A
value of:
v X045CANC indicates JES2 should not process the request.
v X045SETR indicates exit 45 returned its own return and reason

code to the application program that issued the request for SJF
services. The return and reason codes are located in X045REAS
and X045RC.

X045REAS
Is the installation-specified reason code that will be returned to the
application program that issued the request for SJF services.

X045RC
Is the installation-specified return code that will be returned to the
application program that issued the request for SJF services.

X045FLG1
Indicates the installation-specified type of security checking that
will be performed. A value of:

X045DEST
Indicates that a DEST (ISFAUTH) security check will be
done.

X045SECL
Indicates that a SECLABEL dominance security check will
be done. Note that if the exit is entered as a result of an
unauthorized SSI 70 call, this value will not be honored,
and the default will be X045JSSP.

Exit 45

296 z/OS V2R1.0 JES2 Installation Exits

X045JSSP
Indicates that a security check against the JESSPOOL
resource class will be done.

2-13 Not applicable to exit 45

14 Return address

15 Exit effector return code

A return code of:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job, but ignore any
additional exits associated with the job.

Coded example
Module HASX45A in SYS1.SHASSAMP contains a sample of exit 45.

Exit 45

Chapter 57. Exit 45: Pre-SJF service request 297

298 z/OS V2R1.0 JES2 Installation Exits

Chapter 58. Exit 46: Modifying an NJE data area before its
transmission

Function
This exit allows you to change an NJE data area before transmitting a job to
another node through SNA or BSC NJE, or while offloading jobs to spool. (See
Network Job Entry (NJE) Formats and Protocols for more information about the
various NJE data areas that can be transmitted across a network.) Before
transmitting the NJE job, your installation might need to add, remove or change
information to one or more of the following NJE data areas:
v NJE job header
v NJE data set header
v NJE RCCS (Record Characteristics Change Section) header
v NJE job trailer

Your installation might want to:
v Remove any installation-defined sections your installation added to the NJE job

when exit 47 was processing the NJE job. However, it might not be necessary to
remove any installation-defined sections because installation-defined sections are
ignored when they are received at other nodes.

v Add or change information, such as accounting, security or scheduling
information, needed by another node in the network.

v Extract information from user fields in JES2 defined control blocks or installation
defined control blocks and transfer them to the NJE data areas.

v Remove, modify, or add an RCCS header before sending the job stream into the
network.

Related exits
Consider using:
v Exit 40 if you want to change the output characteristics associated with a

SYSOUT data set before it prints at your node.
v Exit 2 or exit 47 to modify NJE job headers for jobs that are received for

processing at your installation.
v Exit 46 to receive control for spool offload, and BSC and SNA NJE lines.
v Exit 56 to receive control for TCP/IP lines.

Recommendations for implementing Exit 46
If you want to remove an installation-defined section from the NJE data area
passed to Exit 46, you should:
1. Use XPLIND to determine the type of NJE data area that JES2 passed to Exit 46

for processing.
2. Issue a $NDHREM macro to remove the installation-defined section from the

NJE data area

© Copyright IBM Corp. 1988, 2013 299

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 46 in supervisor state and PSW key 0.

Recovery
Because different types of recovery are provided by the networking or spool
offload PCE, your installation should provide its own recovery routine.

Job exit mask
Exit 46 is subject to suppression. Your installation can either implement exit 2 to
set the 46th bit in the job exit suppression mask (JCTXMASK) or disable the exit in
the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $PDDB, $SCR, $XPL, $HCT, $NHD, $HCCT, $DCT, $JQE, $JCT,
$JCTX, $JOE, $PCE, $NJEWORK, $JTW, $STW

Point of processing
JES2 invokes Exit 46 before transmitting a job while performing spool offload
processing or while transmitting an SNA or BSC NJE job across the network.
Before invoking Exit 46, JES2:
1. Builds the NJE data area in a 32K buffer
2. Removes any JES2-specific sections from the NJE data area if JES2 is

transmitting the NJE data area to another node in the network. The following
NJE data areas contain a JES2 section:
v Job Header
v Job Trailer
For spool offload processing, the transmission routine does not alter the NJE
data area.

3. Initializes the $XPL parameter and invokes Exit 46.

After returning from Exit 46, JES2 examines the response byte (XPLRESP) in the
$XPL parameter list. If in Exit 46 you set XPLRESP to:
v X046TERM, it indicates an error occurred, JES2 terminates the transmission of

the NJE data area, and places the job in hold.
v X046BYP, JES2 continues processing the remainder of the NJE job because Exit

46 transmitted the buffer that contained the NJE data area.

If XPLRESP has not been set, JES2 transmits the NJE data area.

Programming considerations
The following are programming considerations for Exit 46:

Exit 46

300 z/OS V2R1.0 JES2 Installation Exits

v If your installation needs to process NJE data areas differently for spool offload
processing and NJE processing, use field DCTDEVTP in the $DCT to determine
the type of job JES2 is processing.

v Locating the JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro. For example, you can use these extensions to
retrieve job-related information from the $JCTX control block to ship across the
network in $NHD macro sections. For more information, see z/OS JES2 Macros.

Register contents when Exit 46 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable to Exit 46

1 Address of the $XPL parameter list, which has the following structure:

XPLID
Eye-catcher for the $XPL - XPL

X046VERN
Indicates the version number of Exit 46

XPLXITID
Exit identifier - 46

XPLEXLEV
Version level of the exit

X046IND
Indicates the type of NJE data area JES2 passed to Exit 46 for
processing. A value of:
v X046HDR indicates an NJE job header was passed to Exit 46 for

processing.
v X046TRL indicates an NJE job trailer was passed to Exit 46 for

processing.
v X046DSH indicates an NJE data set header was passed to Exit

46 for processing.
v X046RCCS indicates an NJE RCCS header was passed to Exit 46

for processing.

X046COND
Condition byte
v X046R1ST indicates that this RCCS header precedes the first

data record.

X046RESP
Response byte

On input, the response bit X046BYP may be set to indicate that
default JES2 processing would suppress the sending of the header.
This is the case when a SYSIN data set is being sent and JES2
decided not to send an RCCS header.

X046HADR
Contains the address of the NJE data area

Exit 46

Chapter 58. Exit 46: Modifying an NJE data area before its transmission 301

X046DCT
Contains the address of the $DCT

X046JQE
Contains the address of the $JQE

X046JCT
Contains the address of the $JCT

X046PDDB
Contains the address of the $PDDB if Exit 46 is processing an NJE
data set header. If Exit 46 is processing an NJE job header or trailer,
a 0 is passed as the address.

X046JOA
Contains the address of the artificial JOE (JOA) if Exit 46 is
processing an NJE data set header. If Exit 46 is processing an NJE
job header or trailer, a value of zero is passed as the address.

Note: If the exit must update JOE fields, it should obtain and
return an update mode JOA. For more information, see
“Checkpoint control blocks for JOEs” on page 409.

X046AREA
Contains the address of the NJEWORK area (JTW or STW) for the
transmitter device sending the header.

X046SIZE
Indicates the length of the $XPL parameter list for Exit 46.

2-10 Not applicable to Exit 46

11 Address of the $HCT

12 Not applicable to Exit 46

13 Address of the spool offload or networking $PCE

14 Return address

15 Entry point address of Exit 46

Register contents when Exit 46 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable to Exit 46

1 Address of the $XPL parameter list, which has the following structure:

XPLID
Eye-catcher for the $XPL - $XPL

X046VERN
Indicates the version number of Exit 46

XPLXITID
Exit identifier - 46

XPLEXLEV
Version level of the exit

Exit 46

302 z/OS V2R1.0 JES2 Installation Exits

X046IND
Indicator byte

X046COND
Condition byte

X046RESP
Indicates the processing Exit 46 determined JES2 should perform
after processing the NJE data area. A value of:
v X046TERM indicates Exit 46 determined the NJE data area

should not be transmitted. JES2 will discard the remainder of the
NJE job.

v X046BYP indicates JES2 should not transmit the NJE data area.
JES2 will continue to process the remainder of the NJE job.

X046SIZE
Indicates the length of the $XPL parameter list for Exit 46.

2-13 Not applicable to Exit 46

14 Return address

15 Exit effector return code

A return code of:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job, but ignore any
additional exits associated with Exit 46.

Coded example
Module HASX46A in SYS1.SHASSAMP contains a sample of Exit 46. Module
HASXJECL in SYS1.SHASSAMP also contains an example.

Exit 46

Chapter 58. Exit 46: Modifying an NJE data area before its transmission 303

304 z/OS V2R1.0 JES2 Installation Exits

Chapter 59. Exit 47: Modifying an NJE data area before
receiving the rest of the NJE job

Function
This exit allows you to:
v Examine and change an NJE data area before receiving the rest of the NJE job

from another node through SNA or BSC NJE or before receiving jobs from spool.
v Add, expand, locate, or remove an extension to the $JCT control block where

accounting information can be stored.

Before receiving an NJE job, your installation might need to add, remove or change
information to one or more of the NJE data areas below. (See Network Job Entry
(NJE) Formats and Protocols for more information about the various NJE data areas
that can be transmitted across a network.)
v NJE job header
v NJE data set header
v NJE RCCS (Record Characteristics Change Section) header
v NJE job trailer

Your installation might want to:
v Remove any installation-defined sections your installation added to the NJE job

when exit 46 was processing the NJE job.
v Add or change information, such as accounting or security information, needed

by another node in the network.
v Extract information from the NJE data areas and transfer them to user fields in

JES2 defined control blocks or installation defined control blocks.

Related exits
If you want to change the output characteristics associated with a SYSOUT data
set, consider using exit 40. Exit 47 can be used to receive control for spool offload
and SNA and BSC NJE. If you code exit 47, you also need Exit 57 to handle jobs
received on TCP/IP lines.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 47 in supervisor state and PSW key 1.

© Copyright IBM Corp. 1988, 2013 305

Recovery
Because different types of recovery are provided by the networking or spool
offload PCE, your installation should provide its own recovery routine.

Job exit mask
Exit 47 is subject to suppression. The installation can suppress the exit either by
implementing exit 2 to set the 47th bit in the job exit suppression mask
(JCTXMASK) or by indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $PDDB, $SCR, $XPL, $HCT, $NHD, $HCCT, $DCT, $JQE, $JCT,
$JCTX, $JOE, $PCE, $NJEWORK, $JRW, $SRW

Point of processing
JES2 invokes Exit 47 before receiving a job while performing spool offload
processing or while transmitting an NJE job across the network. Before invoking
Exit 47 JES2:
1. Allocates a dummy $JCT and $JQE. JES2 initializes these data areas with

minimal information.
2. Receives the NJE data area and invokes Exit 47 to perform installation-specific

processing.

After returning from Exit 47, JES2 determines if exit 47 indicated whether the NJE
data area should be received. If exit 47 indicated the NJE data area should not be
received, JES2 places the NJE job in hold on the transmitting node. Otherwise, JES2
continues to process the NJE job. You cannot use this exit to update IBM-defined
JCT or JQE fields in the dummy JCT and dummy JQE, respectively. You can,
however, update user-defined fields (such as JCTUSERx) or any $JCTX extensions
you have created. JES2 propagates changes to ‘user’ fields to the $JCT and $JQE.

Programming considerations
The following are programming considerations for Exit 47:
v If your installation needs to process NJE data areas differently for spool offload

processing and NJE processing, use field DCTDEVTP in the $DCT to determine
the type of job JES2 is processing.

v If exit is being invoked for a job header, then the JQE address passed points to a
dummy JQE (as indicated by X047BJQE). This JQE is not valid as input to
$DOGJQE. For other header types, use $DOGJQE to access the JQE passed. See
“Checkpoint control blocks” on page 407 for more information.

v Expanding the JCT Control Block:
You can add, expand, locate, or remove extensions to the job control table ($JCT)
control block from this exit using the $JCTX macro extension service. For
example, you can use these extensions to store job-related information. For more
information, see z/OS JES2 Macros.

Register contents when Exit 47 gets control
The contents of the registers on entry to this exit are:

Register
Contents

Exit 47

306 z/OS V2R1.0 JES2 Installation Exits

0 Not applicable to Exit 47

1 Address of the $XPL parameter list which has the following structure:

XPLID
Eye-catcher for the $XPL - XPL

X047VERN
Indicates the version number of Exit 47

XPLXITID
Exit identifier - 47

XPLEXLEV
Version level of the exit

X047IND
Indicates the type of NJE data area JES2 passed to Exit 47 for
processing. A value of:
v X047HDR indicates an NJE job header was passed to Exit 47 for

processing.
v X047TRL indicates an NJE job trailer was passed to Exit 47 for

processing.
v X047DSH indicates an NJE data set header was passed to Exit

47 for processing.
v X047RCCS indicates an NJE RCCS header was passed to Exit 47

for processing.
v X047BJQE indicates that the JQE address in field X047JQE points

to a working copy of the JQE that has not yet been added to the
job queue. The working copy should not be used in services that
expect the address of a real JQE. For example, this JQE address
should not be used as input to $DOGJQE.

X047COND
Condition byte

X047RESP
Response byte

X047HADR
Contains the address of the NJE data area

X047DCT
Contains the address of the $DCT

X047JQE
Contains the address of either a working copy of the $JQE or the
address of a real $JQE. See the X047BJQE bit to determine the type
of $JQE that this address points to.

X047JCT
Contains the address of the $JCT

X047PDDB
Contains the address of the $PDDB if Exit 47 is processing an NJE
data set header. If Exit 47 is processing an NJE job header or trailer,
a 0 is passed as the address.

X047AREA
Contains the address of the NJEWORK area (JRW or SRW) for the
receiver.

Exit 47

Chapter 59. Exit 47: Modifying an NJE data area before receiving the rest of the NJE job 307

X047SIZE
Indicates the length of the $XPL parameter list for Exit 47.

2-10 Not applicable to Exit 47

11 Address of the $HCT

12 Not applicable to Exit 47

13 Address of the spool offload or networking $PCE

14 Return address

15 Entry point address of Exit 47

Register contents when Exit 47 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable to Exit 47

1 Address of the $XPL parameter list which has the following structure:

X047IND
Condition byte

X047COND
Response byte

X047RESP
Indicates the processing Exit 47 determined JES2 should perform
after processing the NJE data area. A value of:
v X047TERM indicates Exit 47 determined the NJE data area

should not be received. JES2 will stop processing the rest of the
NJE job.

2-13 Not applicable to Exit 47

14 Return address

15 Exit effector return code

A return code of:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job, but ignore any
additional exits associated with this exit.

Coded example
Module HASX47A in SYS1.SHASSAMP contains a sample of Exit 47. Module
HASXJECL in SYS1.SHASSAMP also contains an example.

Exit 47

308 z/OS V2R1.0 JES2 Installation Exits

Chapter 60. Exit 48: Subsystem interface (SSI) SYSOUT data
set unallocation

Function
This exit gives control to installation exit routines during unallocation of sysout
data sets. This exit is taken later in processing than exit 34. When this exit is taken,
all the characteristics have been merged from the SSOB into the PDDB. Through
this exit, an installation can control whether JES2 will spin the SYSOUT data set.

Unlike installation exit 34, which is taken once for an unallocation, installation Exit
48 is taken once for each PDDB associated with an unallocation.

Environment

Task
User address space. You must specify USER on the ENVIRON= parameter of the
$MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
Exit 48 receives control in supervisor state with a PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
Exit 48 is subject to suppression. You can suppress Exit 48 by either implementing
exit 2 to set the 48th bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $HCCT, $IOT, $MIT, $PDDB, $SDB, $SJB, $JCT, $JCTX, JFCB

Point of processing
This exit is taken from HASCDSAL after JES2 has merged the characteristics from
the SSOB into the PDDB.

Programming considerations
1. Job mask suppression is in effect for this exit.
2. Bit 7 of the response byte is set based on the setting of SSALSPIN in the SSOB:

If SSALSPIN is on, bit 7 is set on. If SSALSPIN is off, bit 7 is set off.

© Copyright IBM Corp. 1988, 2013 309

3. By examining the setting of bit 7 in the response byte and the setting of
IOT1SPIN in IOTFLG1, you can determine if the data set was originally
allocated as spin and how it was unallocated:

Bit 7 IOT1SPIN JES2 DATA SET

on on Spins the data set The application allocated the data set as
spin.

on off Spins the data set The application allocated the data set as
non-spin (either DALCLOSE was not set in
dynamic allocation or FREE=CLOSE was
not specified on the DD statement). The
application used dynamic allocation to
unallocate the data set.

off on Does not spin the
data set

The application allocated the data as spin
but the task terminated before closing the
data set.

off off Does not spin the
data set

The application allocated the data set as
non-spin and the data set remains non-spin.

4. Expanding the JCT Control Block

If the $JCT address is contained in field SJBJCT, you can add, expand, locate, or
remove extensions to the job control table ($JCT) control block from this exit using
the $JCTX macro extension service. For example, you can use these extensions to
store job-related information. For more information, see z/OS JES2 Macros

Register contents when Exit 48 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 0

1 Pointer to a 24-byte parameter list with the following structure:

Byte 1 (+0)
Type of data set indicator

12 SYSOUT data set

Byte 2 (+1)
This byte is not part of the programming interface.

Byte 3 (+2)
Response byte

bits 0-6
These bits are not part of the programming interface

bit 7 0 – Do not spin the data set.

1 – Spin the data set. For more information, see
“Programming considerations” on page 309

Byte 4 (+3)
This byte is not part of the programming interface

Byte 5 (+4)
SDB address.

Exit 48

310 z/OS V2R1.0 JES2 Installation Exits

Byte 9 (+8)
SJB address.

Byte 13 (+12)
JFCB address.

Byte 17 (+16)
PDDB address.

Byte 21 (+20)
IOT address

2-10 N/A

11 Address of HCCT

12 N/A

13 Address of the register save area

14 The return address

15 The entry point address

Register contents when Exit 48 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0-14 Unchanged

15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX48A in SYS1.SHASSAMP contains a sample of Exit 48.

Exit 48

Chapter 60. Exit 48: Subsystem interface (SSI) SYSOUT data set unallocation 311

312 z/OS V2R1.0 JES2 Installation Exits

Chapter 61. Exit 49: Job queue work select - QGOT

Function
This exit allows you to gain control whenever JES2 work selection processing has
located a pre-execution job for a device. This includes work selected for JES2 and
workload management (WLM) initiators. Exit 49 also gets control when the start
job ($S J) command is used to start a batch job.

Exit 14, Job Queue Work Select - $QGET is not called for workload management
(WLM) initiator work selection. Use this exit to instruct JES2 to accept or not
accept such work. Exit 49 is generally easier to implement because it does not
require that you copy JES2 decision-making algorithms into your exit routine.

Your exit routine is called by the $QGET routine in HASPJQS, which JES2 uses to
acquire control of a job queue element (JQE). This JQE is actually a JQA (an
artificial JQE) in update mode; you do not need to verify its update-mode status
for calls to $DOGJQE. This JQA represents a job that is "BERT locked" by the PCE
calling Exit 49. You can update this JQA without using any $DOGxxx services and
therefore avoid disallowed $WAITs for this exit.

The $QGET routine scans the appropriate queue for an element that:
v is not held
v is not already acquired by a previous request to the job queue service routines
v has affinity to the selecting JES2 member
v has independent mode set in agreement with the current mode of the selecting

member.

If this exit rejects the selected job, the JES2 job queue search routine ($QGET) will
continue to search for another job (JQE), which if found will cause this exit to
again receive control.

Note: Exit 49 is not called if:
v JES2 does not find a job
v Exit 14 already selected a job.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 49 in supervisor state and PSW key 1.

© Copyright IBM Corp. 1988, 2013 313

Recovery
The recovery that is in effect when $QGET is called is the same environment your
exit will assume. As with every exit, you should provide your own recovery within
the exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $JQE, $MIT, $PCE, $XPL

Point of processing
HASPJQS calls your exit routine with the address of the JQE that represents the job
selected by the $QGET routine. Your exit routine has opportunity to examine this
JQE and return to JES2 with the indication to select it for further processing or
reject it.

HASPXEQ also calls exit 49 when processing the $S Job command. The exit is
called once when the command is issued, under the HASPCOMM PCE while
processing the $S Job command. If a job is rejected at this point, a message will be
returned to the operator that the job cannot be processed. The second point the exit
gets control is when the job is selected for execution under the execution PCE on
the member where the job will execute. If a job is rejected at this point, a message
is issued to the console that the requested job is not found.

Programming considerations
1. $WAIT is not allowed in EXIT49.
2. Exit 49 can perform duplicate job name check and instruct JES2 to bypass the

normal duplicate job checks it would perform. You can also use the exit to
allow a duplicate jobname to execute under certain situations. Setting
X049NDUP causes JES2 checking for selected job to be bypassed.

Register contents when Exit 49 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable

1 Parameter List Address having the following structure:

Field Name

XPLID
Eyecatcher ('$XPL')

XPLLEVEL
Maintenance Level

XPLXITID
Version Number

Exit 49

314 z/OS V2R1.0 JES2 Installation Exits

X049VERN
Parameter list version

X049XID
Exit 49 ID

X049IND
Indicator byte flag bits:

X049NORM
Normal job selection

X049SJOB
$S job command issued

X049SJSE
$S job selection

X049COND
Condition byte:

X049RESP
Response byte

X049SKIP
Do not select this JQE

X049NDUP
Bypass duplicate job name check for this job

X049NOPT
Disallow initiator job selection optimization

Attention: Turning on this flag may cause performance
degradation.

X049SIZE
Length of parameter list

X049JQE
Address of the JQE

X049QGT
Address of the QGET parameter list or zero if the is $S JOB
processing. The QGET parameter list has the following structure:

+0 (word 1)
Address of the node table

+4 (word 2)
Address of control block
v PIT – if INWS
v DCT – if OJTWS or OJTWSC

+8 (word 3)
Address of class list (if applicable)

+12 (word 4)
Address of the JQE

+16 (word 5)
each byte is set as follows:

+16 Length of the class list

Exit 49

Chapter 61. Exit 49: Job queue work select - QGOT 315

+17 Queue type (see the $QGET macro description for
a list of these) This byte is set to ‘00’ for queue
types INWS, OJTWSC, and OJTWS. Byte 18 (the
type flag) is used to differentiate between these
three queue types.

+18 Work selection type flag

+19 This byte is not part of the interface

2-10 Not applicable

11 Address of the HCT

12 Not applicable

13 Current PCE address

14 The return address

15 The entry address

Register contents when Exit 49 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 - 14 Unchanged

15 A return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with the exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing.

4 Tells JES2 that even if additional exit routines are associated with the exit,
ignore them; continue with normal processing. Set bit X049SKIP in the
response byte to cause JES2 to select another job.

Coded example
Modules HASX49A and HASX49B in SYS1.SHASSAMP contains samples of Exit
49.

Exit 49

316 z/OS V2R1.0 JES2 Installation Exits

Chapter 62. Exit 50: End of input

Function
This exit allows you to do the following:
v Selectively assign a job's priority, affinity, execution node, SCHENV, and job

class, and influence next phase of job processing based on an installation's
unique requirements and processing workload.

v Based on installation-defined criteria, terminate a job's normal processing and
selectively print or not print its output.

v Exit 50 allows input processing - end of input.
v Override the value of the user portion of the job correlator.

Note: See Appendix A, “JES2 exit usage limitations,” on page 397 for a listing of
specific instances when this exit will be invoked or not invoked.

Recommendations for implementing Exit 50
To access the submitting information for a job on the internal reader, you can use
the following code segment:
USING JRW,R2 Est JRW addressability
USING RIDCWKAR,JRW Est IRWD addressability
USING SJB,R3 Est SJB addressability
SPACE 1
L R2,X05xAREA Get JRW address
L R3,RIDSJB Get submitters SJB address
L R4,SJBJCT Get submitters JCT address

For STC and TSU INTRDRs, RIDSJB is zero because there is no submitting job in
these situations.

Environment
Do not attempt to access anything in the JES2 address space in this exit. The JQE
provided is always a JQA. The real JQE address is not available. It is not valid and
is not necessary to perform a $DOGJQE.

Task
JES2 user environment task. You must specify ENVIRON=USER on the $MODULE
macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 50 in supervisor state and PSW key 1.

Recovery
$ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your

© Copyright IBM Corp. 1988, 2013 317

exit routine, therefore, it can provide no more than minimal recovery. You should
provide your own recovery within your exit routine.

Job exit mask
Exit 50 is subject to suppression. You can suppress Exit 50 by either setting the
50th bit in the job exit suppression mask (JCTXMASK) or by indicating the exit is
disabled in the initialization stream.

Mapping macros normally required
$JCT, $JCTX, $PCE, $HASPEQU, $MIT, $JRW, $HCCT, $BUFFER, $DCT

Point of processing
This exit is taken in the subroutine CJOBEND or in the subroutine CJOBKILL of
HASCSRIP in the User environment..

Programming considerations
1. To change affinity, set the X050SAF field in the $XPL work area using the

$SETAFF macro.
To allow the job to run on any member:
$SETAFF REQUEST=ANY,AFFIELD=X050SAF

To allow the job to run on only this member:
$SETAFF REQUEST=CLEAR,AFFIELD=X050SAF

$SETAFF REQUEST=ADD,AFFIELD=X050SAF,
ID=CCTTOQUL

2. If MVS submits a job through an internal reader, it can force a job's affinity to
the local member. This can occur when the automatic restart manager restarts
a job. The automatic restart manager expects the job to execute on a specific
member, and will change the job's affinity so the job can run on that specific
member, if necessary. If the automatic restart manager has changed the job's
affinity, the X0501ARM flag in the XPL is on. You can test this flag and
determine whether the affinity was changed. With that information, you can
then decide whether to avoid changing the affinity.

3. To set independent mode for a job, the installation must turn on the bit
X0501IND in X050FLG1.
To put jobs that start with the characters 'IND' into independent mode:
EXIT50 $ENTRY BASE=R12,SAVE=YES Set entry point

LTR R10,R10 If JCT not present
BZ RRET can’t check jobname

CLC =C’IND’,JCTJNAME Job want independent mode?
BNE RRET No, leave flags alone
OI X050FLG1, X0501IND Set independent mode

RRET $RETURN RC=0 Return to caller

4. To change the priority set X050PRIO in the XPL. The priority is contained in
the 4 high-order bits of X050PRIO. For example, a value of 'C0' would be a
priority 12. (See z/OS JES2 Initialization and Tuning Reference for further details
on setting and changing job priority.)
v To change the execution node, update X050XNOD with the half word

binary value of the node. Use the $DEST macro to convert an EBCDIC node
name to the internal binary representation of the node number

Exit 50

318 z/OS V2R1.0 JES2 Installation Exits

v To change the job class, place the new job class in X050JCLS. This is
honored only if the job is a batch job, not if it is an STC or TSU job.

v The exit can influence the next phase of the job in most circumstances. Place
the next phase value in X050NEXT. X050NEXT is primed with the phase
that JES2 believes is the correct next phase when the exit is called. The exit
can place one of these values in X050NEXT:

$OUTPUT
Job will be placed in the OUTPUT queue unless JES2 has already
determined that the job should be purged. In that case, X050NEXT
is ignored.

$PURGE
Job will be placed in the PURGE queue.

Any other phase
JES2 will honor the request unless it has already determined that
the job should be placed in the OUTPUT or PURGE phase.

The next phase can also be set through the return code in R15. If one or both
of the specifications specify PURGE; then PURGE will be the next phase. If
neither specify PURGE, but one or both specify OUTPUT; then the next phase
will be OUTPUT.

5. Extending the JCT Control Block: You can use the $JCTX macro extension
service to add, expand, locate, and delete extensions to the job control table
($JCT) control block from this exit. For example, you can use these extensions
to store job-related information. Extensions that are added can be SPOOLed
extensions that are available to all exits that read the JCT or local extension
that are available only to input processing exits (52, 53, 54, and 50) and the
$QMOD exit (51). The size of SPOOLed extensions is based on the SPOOL
buffer size and is less than 3k. You can have up to 8K of local extension
regardless of SPOOL buffer size. For more information, see z/OS JES2 Macros.

6. This exit will not be taken under the following circumstances:
v The JES2 input service processor fails the job because JES2 does not identify

a JOB card within the input stream.
7. If you need to change the scheduling environment, use the X050SENV field in

the XPL.
8. Setting the X050AVF response bit does NOT influence the next phase of the

job. To influence the next phase of the job, you must use the documented
methods.

9. Accessing $NITs

The $NIT macro defines the characteristics of NJE nodes. The $NITs are
arranged in a table that is indexed by the node number. The table of $NITs is
in JES2 private storage and shadowed in a data space for use outside the JES2
address space. Installation exits can use three fields in the $NJEWORK work
area to access the $NIT table. Installation exits can use these fields to access a
$NIT without regard for what address space they are in.
Because these fields are in the $NJEWORK data area, you can address them
using the ‘NJE’ prefix or the prefix for the device dependent work area in
which the $NJEWORK is embedded. Therefore, you can address NJENITAD
as JRWNITAD in the $JRW.
The following code accesses the origin node’s NIT in an NJE JOB receiver exit:
USING NIT,R1 Est NIT addressability
SPACE 1
$ARMODE ON,SYSSTATE=SET,INIT=CCTZEROS Enter AR mode
SPACE 1

Exit 50

Chapter 62. Exit 50: End of input 319

LLGH R1,JRWRDNOD Get origin node number
MH R1,CCTNITSZ Get NIT offset
AL R1,JRWNITBL Get NIT address
LAM AR1,AR1,JRWNITAL Get NIT ALET

10. Determining the device type: Most exits need to determine the type of device
that they are being called under. The $NJEWORK area has copies of $DCT
fields that can help identify the device. Which method you use depends on
the condition that you are testing for.
The field NJEDEVTP (that corresponds to DCTDEVTP) is a one byte flag that
can be used to test for classes of devices. A test of the DCTNET bit in
NJEDEVTP indicates that the exit is being called under a networking device.
A compare of the byte to DCTINR indicates that the exit is being called under
an internal reader. See the $DCT for the meaning of the bits in DCTDEVTP.
NJEDEVID corresponds to DCTDEVID. This is a 3 byte value that can
uniquely identify a device. This is more often used when knowing what
specific device you are running under. See the $DCT for the meaning of the
fields.

11. Do not issue a $GETMAIN storage request for subpool 0 (the default for
$GETMAIN), or for subpool 240 or 250, which are translated to subpool 0 for
authorized callers. Doing so would establish subpool 0 with an assigned key
of 0, which can cause problems for a job step application that shares subpool 0
and requests subpool 0 storage, thereby obtaining the storage in key 0. To
avoid this issue the exit should issue a $GETMAIN request for subpool 229 or
230, which are high private subpools intended for use by authorized functions,
whereas subpools 0-127 are in low private subpools and are part of the user
region.

Register contents when Exit 50 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 A code indicating:

0 Normal end of input.

4 Job has a JES2 control statement error.

8 Job has an SAF (security) failure.

12 Job failed work selection criteria (OFFLOADER only)

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
The eyecatcher.

XPLLEVEL
Version level for base XPL.

XPLXITID
The exit ID number.

XPLEXLEV
Version number for exit

Exit 50

320 z/OS V2R1.0 JES2 Installation Exits

X050IND
Indicator byte.

X050COND
Condition byte.

X050GJOB
Condition bit that specifies a normal job.

X050JECL
Condition bit that specifies a JECL error.

X050BSAF
Condition bit that specifies an SAF failure.

X050WSEL
Condition bit that specifies the job failed to meet work
selection criteria.

X050RESP
Response byte.

X050NORM
Response bit that specifies to do normal process.

X050OUTP
Response bit that specifies to terminate with output.

X050PURG
Response bit that specifies to terminate job without
printing the output.

X050AVF
Response bit that indicates the exit's job verification failed.

XPLSIZE
Size of parm list, including base section.

X050JCT
Address of the JCT.

X050JQE
Address of update mode JQA.

X050DCT
Always zero. This field exists so that the XPL for exit 50 will be
compatible with the XPL passed in exit 20. Most DCT fields can be
accessed using corresponding fields in the JRW (pointed to by
X050AREA). For example, DCTDEVTP can be accessed using field
JRWDEVTP.

X050AREA
Address of the JRW

X050PRIO
Job priority (Input/Output field)

X050FLG1
Flags

X050XNOD
Execution Node (Input/Output field)

X050SAF
Full system affinity mask (Input/Output)

Exit 50

Chapter 62. Exit 50: End of input 321

X050SENV
Scheduling Environment (Input/Output field)

X050JCLS
Job class (Input/Output field)

X050NEXT
Next job phase (Input/Output field)

X050UCOR
Override user portion of the job correlator

2-9 Not applicable

10 Address of the JCT.

11 Address of the HCCT.

12 Not applicable

13 Address of a save area

14 Return address.

15 Entry address

Register contents when Exit 50 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable

1 Address of a parameter list mapped by $XPL:

X050RESP
Response byte that may be set by the exit before returning to JES2.

15 A return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no additional exit routines are
associated with this exit continue normal processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
continue normal processing.

8 Tells JES2 to terminate normal processing and print the output.

12 Tells JES2 to terminate normal processing without printing the output.

Coded example
Modules HASX50A and HASX50B in SYS1.SHASSAMP contain samples of Exit 50.

Exit 50

322 z/OS V2R1.0 JES2 Installation Exits

Chapter 63. Exit 51: Job phase change exit ($QMOD)

Function
Exit 51 gets control when a job is moving from one phase to another or when a job
completes execution phase and is being re-queued for execution. It is called from
$QMOD processing when the new phase for the job is not the same as the current
phase, while from $QPUT when a job has completed execution and is being
re-queued to execute again.

The exit can alter the new queue for the job, prevent or cause the job to re-execute,
or change the job class, scheduling environment, or affinity of the job. It can also
be used as a point of control to track jobs as they move through the various phases
of JES2 processing.

The exit will not get control when attributes of the job (such as the class,
scheduling environment or service class) change even if those changes cause
$QMOD to re-queue the job to a new job queue.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places Exit 51 in supervisor state and PSW key 1.

Restrictions
See Appendix A, “JES2 exit usage limitations,” on page 397 for a listing of specific
instances when this exit will be invoked or not invoked.

Recovery
No specific recovery is in place for this exit; however, most callers of $QMOD have
a general recovery routine in place to deal with ABENDs. Your exit routine for this
exit should not depend on JES2 for recovery. JES2 cannot anticipate the exact
purpose of your exit routine, therefore, it can provide no more than minimal
recovery. Provide your own recovery within your exit routine.

Job exit mask
Exit 51 is subject to suppression if a JCT is available at the time the exit is taken.
You can suppress Exit 51 by setting the 51st bit in the job exit suppression mask
(JCTXMASK) or by indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$PCE, $JCT, $JCTX, $HCT, $JQE

© Copyright IBM Corp. 1988, 2013 323

Point of processing
Exit 51 is called by $QMOD or $QPUT while the JQE is still on the original job
queue. A update mode JQA has been obtained and the BERT lock is held. If the job
is not being occupied by the call, the JQA passed to the exit has been updated.
However, the busy bits (and device ID) of the real JQE have not been updated at
the time of the call.

Programming considerations
1. Exit 51 can be used to alter the new phase for the job. However, the new phase

must be a later phase than the current one. If the new phase is not later, the
change will be ignored.

2. If a JCT address is passed to the exit, the job has completed the current phase
of processing including writing out the JCT. After the exit completes, the JCT
will not be written by JES2. Installations should avoid updating the JCT in exit
51. Instead, earlier exits (such as exits 20 and 50) should be used to alter the
JCT.

3. JCT extensions can be used to pass information from earlier exits to exit 51.
Input processing can create both local and SPOOLed JCT extension. These can
be used to pass information from user environment exits (such as 52, 53, and
54) to process in the JES2 main task. Local extensions are also supported in
exits 2, 3, 4, and 20 so that a common set of services can be used for all job
input processing.

4. Code in exit 51 must check the X051NOCH bit in X051COND and not attempt
to change the phase of the job if this bit is on. In addition, if the X051RBLD bit
is on in X051COND, the job is on the rebuild queue (an error queue) and will
be deleted when it is no longer busy. Jobs on the rebuild queue should not be
processed, because errors have already been detected in the checkpointed data
structures. They are passed to exit 51 to allow complete tracking of the job.

5. Internal reader and NJE over TCP/IP processing occurs outside the JES2
address space. However, the code must reach across into the JES2 address space
to perform some key functions (like build JQEs and queue them to the next
phase). This processing is accomplished using a new service call $JQESERV.
There is also a set of PCEs (the JQE Request Processors) in the main task that
handle these requests (10 of them in all). It is under these PCEs that the
$QMOD is done and that exit 51 is called. The code is careful not to $WAIT for
any extended length of time so that the JQE Request Processors can process as
many requests as possible. Adding a $CBIO to write the JCT in exit 51 will
limit the number of jobs that can be processed by a given JQE Request
Processor to one per $JCT write. The design point for internal readers was a
single reader submitting hundreds of jobs at once and completing input
processing as fast as possible. If this is the environment you are in, the extra
I/O will impact performance. If jobs are arriving at a more leisurely rate, you
can wait for a $CBIO.

6. Do not issue a $GETMAIN storage request for subpool 0 (the default for
$GETMAIN), or for subpool 240 or 250, which are translated to subpool 0 for
authorized callers. Doing so would establish subpool 0 with an assigned key of
0, which can cause problems for a job step application that shares subpool 0
and requests subpool 0 storage, thereby obtaining the storage in key 0. To avoid
this issue the exit should issue a $GETMAIN request for subpool 229 or 230,
which are high private subpools intended for use by authorized functions,
whereas subpools 0-127 are in low private subpools and are part of the user
region.

Exit 51

324 z/OS V2R1.0 JES2 Installation Exits

Register contents when Exit 51 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
Eyecatcher

XPLLEVEL
Version level for base XPL

XPLXITID
Exit ID number

XPLEXLEV
Version number for exit

X051IND
Indicator byte

X051COND
Condition byte

X051RBLD
Job is on the re-build queue and will be purged when no
longer busy.

X051NOCH
Phase change is not allowed (X051RXEQ and X051RQUE
ignored).

X051RESP
Response byte

X051RXEQ
Job is being/should be requeued for execution (only valid
if X051OLDQ is X051QXEQ). This bit is set by JES2 if the
job is being requeued for execution. Exit 51 can alter the
setting of this bit to cause the job to be requeued or not.

X051RQUE
X051NEWQ has been updated with new phase
(X051NEWT no longer matches X051NEWQ) To change the
next phase of the job, set X051RQUE on and set the next
phase in X051NEWQ. You cannot change phase if
X051NOCH is on. The new phase must be a later phase
than the current phase (X051OLDQ).

XPLSIZE
Size of parameter list, including base section.

X051JCT
Address of JCT (or zero). If a JCT is passed, it will not be written
after this call. If updated, the exit must write the JCT and wait for
the I/O to complete.

Exit 51

Chapter 63. Exit 51: Job phase change exit ($QMOD) 325

X051JQA
Address of JQA

X051OLDQ
Current queue job is in. See below for valid values.

X051OLDT
Current JQE type. See JQETYPE field in the JQE for valid values.

X051NEWQ
New queue job is moving to. See below for valid values

X051NEWT
Proposed new JQE type. See JQETYPE field in the JQE for valid
values.

X051JOBC
JOB class of the job

X051SENV
SCHENV value

X051SAF
Full sysaff mask

X051FLG1
Flags

X0511IND
Independent system affinity.

Note: X051JOBC, X051SENV, X051SAF, X0511IND are only
meaningful if NEWQ is X051QCNV, X051QSET, X051QXEQ.

Queue values for X051OLDQ and X051NEWQ (not same as JQETYPE field
in JQE).

X051QINP
Input queue

X051QCNV
Conversion queue

X051QSET
Setup queue

X051QXEQ
Execution queue

X051QSPN
Spin queue

X051QXMT
XMIT queue

X051QRCV
X051QRCV

X051QOUT
X051QOUT

X051QHRD
Hardcopy queue

X051QPUR
Purge queue

Exit 51

326 z/OS V2R1.0 JES2 Installation Exits

2-10 Not applicable

11 Address of the HCT

12 Not applicable

13 Address of the current PCE

14 Return address

15 Entry address

Register contents when Exit 51 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 - 14 Unchanged

15 A return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with the exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing.

4 Tells JES2 that even if additional exit routines are associated with the exit,
ignore them; continue with normal processing.

Coded example
Modules HASX51A and HASX51B in SYS1.SHASSAMP contains samples of Exit
51.

Exit 51

Chapter 63. Exit 51: Job phase change exit ($QMOD) 327

328 z/OS V2R1.0 JES2 Installation Exits

Chapter 64. Exit 52: JOB JCL statement scan (JES2 user
environment)

Function
Exit 52 allows you to process information specified on the JOB JCL statement for
jobs submitted through internal readers or TCP/IP NJE. (For jobs submitted
through card readers, RJE, SNA and BSC NJE, and SPOOL reload, exit 2 is called
for JOB JCL statements.) Exit 52 is invoked for the initial JOB statement and each
continuation of the JOB card. The initial JOB card and all continuations are read
before invoking the exit.

Using Exit 52 you can:
v Add, delete, change information specified on the JOB statement. If you are

adding information, such as accounting information, you can create an
additional JOB continuation statements.

v Indicate which spool volumes from which a job or transaction program should
allocate spool space, if the installation did not implement spool partitioning
through the JES2 initialization stream.

v Add JCL statements or JES2 control statements (JECL) to the job.
v Cancel, purge, or continue processing the job.
v Indicate whether additional job-related exits should be invoked for the job.
v Override the value of the user portion of the job correlator.

Recommendations for implementing Exit 52
Exit 52 is called for each card in the job statement (the original card and all
continuations). Each time the exit is called, it will pass the current card image and
the statement buffer. The statement buffer includes all the operands for the JOB
statement concatenated in a single buffer. For example:
//TEST JOB (ACCOUNT),’PROGRAMMER’, COMMENT 1
// CLASS=A,MSGCLASS=A, COMMENT 2
// USER=TEST,PASSWORD=TEST COMMENT 3

In this case the exit will be called 3 times, once for each card and
will pass (on all 3 calls) the following data in the statement buffer
(pointed to by X052STMT):

(ACCOUNT),’PROGRAMMER’,CLASS=A,MSGCLASS=A,USER=TEST,PASSWORD=TEST

To alter the processing of the JOB card, the exit can:
v Update the card image passed in X052CARD. This change shows up in the

listing of the job.
v Update the statement buffer in X052STMT to add or modify the operands. This

change does not show up in the listing of the job and is not passed to
conversion processing (it only affects keywords input processing scans from the
JOB card). If you update the statement buffer (X052STMT) in exit 52 and change
the length of the buffer, you must update the field X052STME to indicate the
new end of buffer (one byte past the last meaningful character).

v Add additional card images to the JCL stream.

© Copyright IBM Corp. 1988, 2013 329

You can add card images to the JCL stream by either queuing a single RJCB or a
chain of RJCBs to the XPL, or by placing a card image after the current card into
the area pointed to by X052JXWR and setting X052XSNC. In either case, when a
card is added, the current card is re-scanned and the statement buffer is re-built.
Exit 52 is driven again for the updated statement, with X052SEC set to indicate this
card has been presented to the exit previously.

When adding cards using RJCBs, use the RGETRJCB service (located in
HASCSRIP) to obtain a free RJCB; then add it to one of the three RJCB queues in
the XPL. Use the $CALL macro to invoke the RGETRJCB service. Register 1 on
entry must be the JRW address. The RJCB address is returned in register 1.

The 80-byte card image to be added is placed into the field RJCBCARD. RJCBs are
chained together using the RJCBRJCB field in the $RJCB. They are added to the job
stream in the order they exist in the chain. To add an element to the chain you
would move the current RJCB queue head in the $XPL into the RJCBRJCB field of
the last RJCB you are adding and then set the address of the first RJCB element
into the $XPL queue head. Be aware that multiple exit 4s might be using these
queues so ensure that you do not lose existing entries on the queue.

X052RJCP
Adds the card images before the first card in the current JOB statement.

X052RJCA
Adds the card images after the last card in the current JOB statement. In
this case, the card(s) are assumed to not be a continuation of the current
job statement and the job card is not re-scanned.

X052RJCC
Adds the card images after the current card. It is the callers' responsibility
to ensure that the proper continuation processing will occur.

When processing the last card in a JOB statement, the difference between adding a
card to the X052RJCA queue and the X052RJCC queue is that the first will not
re-scan the job card and the second will. You can also add a single card image after
the current card using the X052JXWR field. In this case, the job card will be
re-scanned just as if the card was added to the X052RJCC queue. To add
information to the job JCL statement:
1. Move a comma into the last byte of the job statement image exit 52 is currently

processing. The comma indicates that additional information follows on the job
statement.

2. Move the information you want to add to the job statement to the area pointed
to by X052JXWR and set the X052XSNC bit in the X052RESP byte to one.
Setting X052RESP to X052XSNC indicates that the installation has supplied an
additional job statement image.

3. Set register 15 to X'00' or X'04' depending on whether you want to invoke
additional installation exits to process the job.

You can also add an additional job level JCL statement to the job as follows:
1. Ensure that the job statement image that exit 52 is currently processing is the

last. exit 52 is processing the last job statement image if a comma is not in the
last byte of the job statement image.

2. Place the job-level JCL statement in the are pointed to by X052JXWR and set
the X052XSNC bit in the X052RESP byte to one. Setting X052RESP to
X052XSNC indicates that the installation has supplied an additional job
statement image.

Exit 52

330 z/OS V2R1.0 JES2 Installation Exits

3. Set register 15 to X'00' or X'04' depending on whether you want to invoke
additional installation exits to process the job.

If you want to issue messages when you cancel or purge the job:
1. Generate the message text in exit 52.
2. Move the message text to area pointed to by X052JXWR and set the X052XSEM

bit in X052RESP to one. Setting X052RESP to X052XSEM indicates that the
installation exit has supplied an error message that will be added to the JCL
listing.

3. Set register 15 to X‘08’ to indicate JES2 should cancel or purge the job.

The following indicators in the XPL can assist you in adding a card image to the
current job statement:

X052LOPR
Current card has the last operand in the job statement. There may be
additional continued comments after the current card.

X052QUOT
A quoted sting is being continued from the current card to the next card.
Pay attention if a card is being added after this card.

X052CCMT
The current card is a continued comment. Operand added to this card or
after this card will not be processed.

X052LAST
This is the last card image in the JOB statement.

To assist you in processing the operands on a statement, you can use either of the
following services to parse the statement buffer passed in X004STMT:
v Use the $SCAN facility to parse the operands with the standard $SCAN rules for

statements. This give you the flexibility of $SCAN, but the parsing rules are not
the same as normal JCL. See the $SCAN and $SCANTAB macros for additional
information.

v Use the RCARDSCN service and $STMTTAB macro to parse the operands with
standard JCL rules. This is the service used by JES2 input processing to parse the
statement buffer. However, the RCARDSCN service only parses the operands
and calls a processing routine to do all the conversions and storing of data.
Conversion of data to binary to store into data areas is the responsibility of the
processing routines. See the $STMTTAB macro for more information.

To access the submitting information for a job on the internal reader, you can use
the following code segment:
USING JRW,R2 Est JRW addressability
USING RIDCWKAR,JRW Est IRWD addressability
USING SJB,R3 Est SJB addressability
SPACE 1
L R2,X05xAREA Get JRW address
L R3,RIDSJB Get submitters SJB address
L R4,SJBJCT Get submitters JCT address

For STC and TSU INTRDRs, RIDSJB is zero because there is no submitting job in
these situations.

Exit 52

Chapter 64. Exit 52: JOB JCL statement scan (JES2 user environment) 331

Environment

Task
JES2 user environment. You must specify ENVIRON=USER on the $MODULE
macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places exit 52 in supervisor state and PSW key 0.

Restrictions
v See Appendix A, “JES2 exit usage limitations,” on page 397 for a listing of

specific instances when this exit will be invoked or not invoked.
v Installation Exit 52 is not invoked for jobs such as SYSLOG, $TRCLOG, or

JESMSG.
v Do not use this exit to set fields in the JCT; they will likely be overwritten by

future processing.
v Installation Exit 52 is not invoked for jobs submitted through card readers, RJE,

SAN and BSC NJE and SPOOL reload.

Recovery
$ESTAE is in effect and provides minimal recovery. Input Services will attempt to
recover from any program check errors experienced by exit 52. However, you
should not depend on JES2 for recovery.

Job exit mask
Exit 52 and all subsequent job-related installation exits can be suppressed after Exit
2 processes the initial job statement image. You can set the 52nd bit in the job exit
suppression mask (JCTXMASK) or you can indicate the exit is disabled in the JES2
initialization stream.

Storage recommendations
If exit 52 requires work areas or additional storage, you can:
v Use the 80-byte work area, JCTXWRK, in the JCT
v Issue $GETMAIN to obtain additional storage

Mapping macros normally required
$JCT, $JCTX, $HCCT, $BUFFER, $MIT, $HASPEQU, $JRW

Point of processing
Installation Exit 52 can be invoked when JES2 encounters either:
v the JOB statement, this is called the initial job statement image.
v or a continuation of the JOB statement, this is called an additional JOB

continuation statement image.

Exit 52

332 z/OS V2R1.0 JES2 Installation Exits

Module HASPINJR invokes installation Exit 52 for initial JOB statement images.
Input service has obtained and initialized the job control table (JCT) and the IOT
before calling installation Exit 52. After performing the processing you coded in
Exit 52, input services complete scanning the JOB statement and allocate spool
space for the job.

Module HASPINJR invokes installation Exit 52 for continuation JOB statement
images.

Extending the JCT control block
1. You can use the $JCTX macro extension service to add, expand, locate, and

delete extensions to the job control table ($JCT) control block from this exit. For
example, you can use these extensions to store job-related information.
Extensions that are added can be SPOOLed extensions that are available to all
exits that read the JCT or local extension that are available only to input
processing exits (52, 53, 54, and 50) and the $QMOD exit (51). The size of
SPOOLed extensions is based on the SPOOL buffer size and is less than 3K.
You can have up to 8K of local extension regardless of SPOOL buffer size.

2. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

Programming considerations
1. Be aware that when a JOB card image is passed to Exit 52, any //* comment

cards embedded within that statement are also passed to the exit. For example,
all of the following are passed:

//ABC JOB
//* COMMENT CARD
// CLASS=A

If within a //* comment you embed valid JOB card parameters, there is
potential to cause confusion in your scan routine and lead to unpredictable
results. Consider the following:

//* CHANGED CLASS FROM ORIGINAL CLASS=B

2. When this exit adds or modifies cards, whether the change is sent over NJE
(including SPOOL offload) depends on the statement type and the setting of
option flags in the $XPL or $RJCB. Modified JECL cards (original and modified
card are both JECL) are not sent over NJE. By default, all other changes are sent
over NJE. To limit changes to only the local node, you can set the X052RLOC in
the XPL (affects the current card) or set the RJCB3LOC bit in any RJCBs that
are added.

3. Updating the statement buffer is only valid for parameters that have
$STMTTABs in HASCSRIP.

4. Updates to the statement buffer are not passed to the converter and will not be
seen by Exit 6 or Exit 60.

5. Accessing $NITs

The $NIT macro defines the characteristics of NJE nodes. The $NITs are
arranged in a table that is indexed by the node number. The table of $NITs is in
JES2 private storage and shadowed in a data space for use outside the JES2
address space. Installation exits can use three fields in the $NJEWORK work
area to access the $NIT table. Installation exits can use these fields to access a
$NIT without regard for what address space they are in.

Exit 52

Chapter 64. Exit 52: JOB JCL statement scan (JES2 user environment) 333

Because these fields are in the $NJEWORK data area, you can address them
using the ‘NJE’ prefix or the prefix for the device dependent work area in
which the $NJEWORK is embedded. Therefore, you can address NJENITAD as
JRWNITAD in the $JRW.
The following code accesses the origin node’s NIT in an NJE JOB receiver exit:
USING NIT,R1 Est NIT addressability
SPACE 1
$ARMODE ON,SYSSTATE=SET,INIT=CCTZEROS Enter AR mode
SPACE 1
LLGH R1,JRWRDNOD Get origin node number
MH R1,CCTNITSZ Get NIT offset
AL R1,JRWNITBL Get NIT address
LAM AR1,AR1,JRWNITAL Get NIT ALET

6. Determining the device type

Most exits need to determine the type of device that they are being called
under. The $NJEWORK area has copies of $DCT fields that can help identify
the device. Which method you use depends on the condition that you are
testing for.
The field NJEDEVTP (that corresponds to DCTDEVTP) is a one byte flag that
can be used to test for classes of devices. A test of the DCTNET bit in
NJEDEVTP indicates that the exit is being called under a networking device. A
compare of the byte to DCTINR indicates that the exit is being called under an
internal reader. See the $DCT for the meaning of the bits in DCTDEVTP.
NJEDEVID corresponds to DCTDEVID. This is a 3 byte value that can uniquely
identify a device. This is more often used when knowing what specific device
you are running under. See the $DCT for the meaning of the fields.

7. Do not issue a $GETMAIN storage request for subpool 0 (the default for
$GETMAIN), or for subpool 240 or 250, which are translated to subpool 0 for
authorized callers. Doing so would establish subpool 0 with an assigned key of
0, which can cause problems for a job step application that shares subpool 0
and requests subpool 0 storage, thereby obtaining the storage in key 0. To avoid
this issue the exit should issue a $GETMAIN request for subpool 229 or 230,
which are high private subpools intended for use by authorized functions,
whereas subpools 0-127 are in low private subpools and are part of the user
region.

Register contents on entry to Exit 52
The contents of the registers on entry to this exit are:

Register
Contents

0 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
Eyecatcher

XPLLEVEL
Version level for base XPL

XPLXITID
Exit ID number

XPLEXLEV
Version number for exit

Exit 52

334 z/OS V2R1.0 JES2 Installation Exits

X052IND
Indicator byte

X052JOBC
JOB card detected (always set for exit 52)

X052COND
Condition byte

X052CONT
Card is a continuation (not first card of JOB statement)

X052SEC
This card has been passed to the exit previously for this job
(set if cards added physically before this card)

X052RESP
Response byte

X052XSNC
Exit supplied next card in X052JXWR

X052XSEM
Exit supplied error message in X052JXWR

X052JCMT
Skip processing card

X052KILL
Kill current job (queue job to OUTPUT processing)

X052PURG
Purge current job

X052RLOC
Changed or added cards are not sent through NJE (set
RJCB3LOC in current RJCB)

XPLSIZE
Size of parameter list, including base section

X052CARD
80-byte card image address

X052FLGX
Pointer to exit flags (same as JRWFLAGX)

X052JXWR
80-byte exit work area address (same as JCTXWRK)

X052JCT
JCT address

X052JQE
Update mode JQA address

X052AREA
JRW address

X052STMT
Concatenated statement buffer. This is all the operands on all
continuations cards for this statement

X052STME
End of statement+1 pointer (in buffer)

Exit 52

Chapter 64. Exit 52: JOB JCL statement scan (JES2 user environment) 335

X052STML
Statement label (job name)

X052STMV
Statement verb (JOB)

X052RJCP
RJCBs to add before this JOB statement

X052RJCA
RJCBs to add after this JOB statement

X052RJCC
RJCBs to add after the current card

X052FLG1
Statement flag byte

X052LOPR
Last operand is on the current card

X052QUOT
Unfinished quote at end of current card

X052CCMT
Current card is a continued comment

X052LAST
Last card in job statement

X052OCLS
Override job class (batch jobs only)

X052OJNM
Override job name. Specifying a non-zero value in this field will
alter the job name that is used when processing the job. The exit
must ensure that the provided job name is valid (such as proper
characters with blank padded on the right).

Note: This does not alter the job name in the JCL that is printed
with the output of the job.

X052UCOR
Override user portion of the job correlator

1 Address of a 3-word parameter list with the following structure:

Word 1
(+0) points to the JOB statement image buffer

Word 2
(+4) points to the exit flag byte, JRWFLAGX, in the $JRW

Word 3
(+8) points to the JCTXWRK field in the $JCT

2-9 Not applicable

10 Address of the $JCT

11 Address of the HCCT

12 Not applicable

13 Address of an available save area

14 Return address

Exit 52

336 z/OS V2R1.0 JES2 Installation Exits

15 Entry address

Register contents when Exit 52 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 - 13 Not applicable

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no additional exit
routines associated with this exit, continue with normal HASPINJR
processing.

4 Tells JES2 to ignore any additional exit routines associated with this exit
and to continue with normal HASPINJR processing.

8 Tells JES2 to cancel the job; output (the incomplete JCL images listing) is
produced.

12 Tells JES2 to purge the job; no output is produced.

Note: If register 10 contains 0 (the JCT is unavailable), JES2 ignores any return
code greater than 4.

Coded example
Module HASX52A in SYS1.SHASSAMP contains a sample of exit 52.

Exit 52

Chapter 64. Exit 52: JOB JCL statement scan (JES2 user environment) 337

338 z/OS V2R1.0 JES2 Installation Exits

Chapter 65. Exit 53: JOB statement accounting field scan
(JES2 user environment)

Function
This exit allows you to provide an exit routine for scanning the JOB statement
accounting field and for setting the corresponding fields in the appropriate JES2
control blocks. Exit 53 gets control for jobs submitted through internal readers or
TCP/IP NJE. For jobs submitted through card readers, RJE, SNA and BSC NJE, and
SPOOL reload, exit 3 is called to process the JOB statement accounting field.

You can use your exit routine to interpret the variables in the accounting field and,
based on this interpretation, decide whether to cancel the job.

Use this exit to record alterations to the accounting field; they will not appear on
the user's output but are reflected in the JCT and the SMF type 6 record is written.

This exit is associated with the existing HASPRSCN accounting field scan
sub-routine. You can write your exit routine as a replacement for HASPRSCN. Or,
you can use a return code to direct input processing to call HASPRSCN after your
exit routine has executed. In either case, when this exit is implemented and
enabled, JES2 treats your exit routine as the functional equivalent of HASPRSCN.
The specification of the ACCTFLD parameter on the JOBDEF initialization
statement, which normally determines whether JES2 is to call HASPRSCN,
becomes an additional factor in determining whether your exit routine is to be
called. The exit is taken only if the ACCTFLD= parameter on the JOBDEF
initialization statement is specified as either REQUIRED or OPTIONAL. The exit is
not taken if ACCTFLD=IGNORE is specified. When it is called, your exit routine,
rather than the ACCTFLD parameter, determines whether HASPRSCN is to be
executed as an additional scan of the accounting field. For a complete explanation
on how the ACCTFLD parameter is specified, see z/OS JES2 Initialization and
Tuning Reference. The relationship of HASPRSCN to this exit is described in more
detail in the “Other Programming Considerations” below.

Related exits
Use Exit 52 to alter the accounting information and supply new accounting
information at the time the entire JOB statement is first scanned.

Recommendations for implementing Exit 53
To access the submitting information for a job on the internal reader, you can use
the following code segment:
USING JRW,R2 Est JRW addressability
USING RIDCWKAR,JRW Est IRWD addressability
USING SJB,R3 Est SJB addressability
SPACE 1
L R2,X05xAREA Get JRW address
L R3,RIDSJB Get submitters SJB address
L R4,SJBJCT Get submitters JCT address

For STC and TSU INTRDRs, RIDSJB is zero because there is no submitting job in
these situations.

© Copyright IBM Corp. 1988, 2013 339

Environment

Task
JES2 user environment. You must specify ENVIRON=USER on the $MODULE
macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places Exit 53 in supervisor state and PSW key 0.

Restrictions
See Appendix A, “JES2 exit usage limitations,” on page 397 for a listing of specific
instances when this exit will be invoked or not invoked.

Recovery
$ESTAE recovery is in effect. Input processing recovery will attempt to recover
from program check errors, including program check errors in the exit routine.
However, as with every exit, your exit routine for this exit should not depend on
JES2 for recovery. JES2 cannot anticipate the exact purpose of your exit routine.
Therefore, it can provide no more than minimal recovery. You should provide your
own recovery within your exit routine.

Job exit mask
Exit 53 is subject to suppression. You can suppress Exit 53 by either implementing
exit 52 to set the 53rd bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$JCT, $JCTX, $HCCT, $BUFFER, $HASPEQU, $JRW

Point of processing
This exit is taken from the JES2 user environment, the JOB statement processing
routine of HASCINJR. , If HASPRSCN is to be called, the exit occurs after JES2 has
scanned the entire JOB statement, but before the execution of the HASPRSCN
accounting field scan subroutine. The JCT has been initialized with the JES2 and
installation defaults; in addition, those fields of the JCT that correspond to JOB
statement parameters other than accounting field parameters have been set. The
accounting field image is passed in X053ACCT and the length in X053ACTL.

Table 11 lists some of the fields in the JCT that you can modify.

Table 11. Selected JES2 Job Control Table Fields

Field Name in
JCT

Length
(Bytes) Field Bit Meaning Notes

JCTSMFLG 1 SMF Flags 0–1 These bits are not part of the interface –

2 If set, IEFUSO exit not taken 1,2

3–4 These bits are not part of the interface –

Exit 53

340 z/OS V2R1.0 JES2 Installation Exits

Table 11. Selected JES2 Job Control Table Fields (continued)

Field Name in
JCT

Length
(Bytes) Field Bit Meaning Notes

5 If set, no type 6 SMF records produced 1,2

6 If set, IEFUJP exit not taken 1,2

7 If set, no type 26 SMF record produced 1,2

JCTJOBFL 1 Job Flags 0 Background job –

1 TSO/E (foreground) job –

2 Started task –

3 No job journaling 1,2

4 No output 1,2

5 TYPRUN=SCAN 1,2,3

6 TYPRUN=COPY 2,3

7 Job restartable 1,2,8

JCTJBOPT 1 Job Options 0 /*PRIORITY card was read and value is
in priority field (JCTIPRIO)

–

1 /*SETUP card was read –

2 TYPRUN=HOLD was specified 1,2,4

3 No job log for this job 1,2,6,8

4 Execution batch job 1,2

5 The job was read through an internal
reader

–

6 The job was rerun –

7 This bit is not part of the interface –

JCTJOBID 8 JES2 JOB identifier –

JCTJNAME 8 Job name 3

JCTPNAME 20 Programmer name 3

JCTMCLAS 1 Message class 1,4

JCTJCLAS 1 Job class 1,4

JCTIPRIO 1 Priority 1,5

JCTROUTE 4 Route code of input
device (binary)

–

JCTINDEV 8 Input device name –

JCTACCTN 4 Account number 1,6

JCTROOMN 4 Room number 1,6,8

JCTETIME 4 Estimated real–time job
will run

1,6,8

JCTESTLN 4 Estimated count of
output lines (in
thousands)

1,6,8

JCTESTPU 4 Estimated number of
output cards punched

1,6,8

JCTESTBY 4 Estimated number of
SYSOUT bytes

8

Exit 53

Chapter 65. Exit 53: JOB statement accounting field scan (JES2 user environment) 341

Table 11. Selected JES2 Job Control Table Fields (continued)

Field Name in
JCT

Length
(Bytes) Field Bit Meaning Notes

JCTESTPG 4 Estimated number of
output pages

8

JCTFORMS 8 Job Forms 1,6,8

JCTCPYCT 1 Job copy count (binary) 1,6,8

JCTLINCT 1 Lines per page (binary) 1,6,8

JCTPROUT 4 Default print routing
(binary)

1,7

JCTPUOUT 4 Default punch routing
(binary)

1,7

JCTPROCN 8 Procedure DD name 1,2,8

Note:

1. Can be modified by installation routine.
2. Preset from JOBCLASS(v) initialization statement according to job class
3. Preset from JOB statement
4. From JOB statement, if specified; otherwise according to input device as

established at JES2 initialization (for example, in RDR(nn)).
5. Exit 53 can use field JCTIPRIO to force a priority for a job subject to the

limitations of the input device's priority increment and priority limit values.
When exit 53 receives control, a value of C'*' in JCTIPRIO indicates a priority
has not been forced by an exit routine. If you want to force a priority in exit 53,
set JCTIPRIO to a value between 0 and 15 in the low-order four bits on the
field.

Note: Whether you may set field JCTIPRIO and the allowable values depend
on the specific exit.

6. Set by the routine (HASPRSCN) used by JES2 to scan the account field of the
JOB statement. Exit 3 can specify that JES2 cannot call HASPRSCN.

7. Preset according to an input device initialization parameter (for example,
RDR(nn)). If not set at initialization, the parameter defaults to the job input
source value (LOCAL or RMT(nnnn)). Can be modified by a /*ROUTE
statement after the scan exit.

8. Can be modified by a /*JOBPARM statement after the scan exit.

Extending the JCT control block
You can use the $JCTX macro extension service to add, expand, locate, and delete
extensions to the job control table ($JCT) control block from this exit. For example,
you can use these extensions to store job-related information. Extensions that are
added can be SPOOLed extensions that are available to all exits that read the JCT
or local extension that are available only to input processing exits (52, 53, 54, and
50) and the $QMOD exit (51). The size of SPOOLed extensions is based on the
SPOOL buffer size and is less than 3K. You can have up to 8K of local extension
regardless of SPOOL buffer size.

Exit 53

342 z/OS V2R1.0 JES2 Installation Exits

Programming considerations
1. The accounting field resides in a 144-byte work area pointed to by X053ACCT

in the XPL passed to the exit in register 0.
2. If you need to verify the existence of a JOB rather than a started task (STC) or

TSO/E logon, this can be done by comparing the JCTJOBID field to a "J". The
presence of a "J" indicates the existence of a JOB.

3. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

4. The ACCTFLD parameter on the JOBDEF statement indicates whether JES2
should scan the accounting field of a JOB statement. For further details
concerning the use of the ACCTFLD parameter, see z/OS JES2 Initialization and
Tuning Reference

If the ACCTFLD parameter indicates that the scan should be performed, and
if this exit is implemented and enabled, input processing will call your exit
routine to perform the scan. If your exit routine passes a return code of 0 or 4
to JES2, input processing will call the existing HASPRSCN accounting field
scan subroutine after your routine has executed. Note that if both routines are
to be called, your routine should not duplicate HASPRSCN processing. For
example, your routine should not set the fields in the JCT that are set by
HASPRSCN. However, if your routine passes a return code of 8 or 12 to JES2,
it causes JES2 to suppress execution of HASPRSCN. If the ACCTFLD
parameter indicates that the scan should be performed but this exit is
disabled, only HASPRSCN will be called; your exit routine is not called and is
not given the opportunity to allow or suppress HASPRSCN execution. If the
ACCTFLD parameter indicates that a scan should not be performed, your exit
routine will not be called, even if this exit is enabled, and execution of
HASPRSCN is also suppressed.

5. The ACCTFLD parameter on the JOBDEF statement indicates whether JES2
should cancel a job if the accounting field on the JOB statement is invalid or if
a JCL syntax error has been detected during input processing. Note that your
exit routine can affect this termination processing. For example,
ACCTFLD=REQUIRED indicates that JES2 should scan the accounting field,
the job should be canceled if the accounting field is invalid, and the job
should be canceled if a JCL syntax error has been found. If you pass a return
code of 8 to JES2, HASPRSCN is not called. Therefore, it cannot terminate a
job with an invalid accounting field, even though ACCTFLD=REQUIRED.
Also note that HASPRSCN scans the accounting field passed in X053ACCT.
Therefore, if your routine alters this field, you affect HASPRSCN processing.

6. The specification of the ACCTFLD parameter is stored in the HCCT, in field
CCTJOPTS. If your exit routine is meant to completely replace HASPRSCN,
you may want to access this field for use by your algorithm.

7. Typically, use this exit, rather than Exit 52, to alter the JCT directly. If you use
Exit 52 to alter the JCT, later processing might override your changes. The job
exit mask and the spool partitioning mask are exceptions. See note 2 of Exit 52
for more information.

8. An 80-byte work area pointed to by X053JXWR in the XPL is available for use
by your routine. If your routine requires additional work space, use the
$GETMAIN macro to obtain storage, and the $FREMAIN macro to return it to
the system when your routine has completed.

9. When passing a return code of 12, your exit routine can pass an
installation-defined error message to JES2 to be added to the JCL data set
rather than the standard error message. To send an error message, generate

Exit 53

Chapter 65. Exit 53: JOB statement accounting field scan (JES2 user environment) 343

the message text in your exit routine, move it to area pointed to by
X053JXWR, and set the X053XSEM bit in X053RESP to one.

Note: The standard error message, $HASP110, still appears in SYSLOG on this
path, in addition to the installation-defined message. However, only the
installation message will be placed in the JCL data set and no WTO will be
issued for the installation-defined message unless Exit 53 issues the WTO
itself.

10. If there is no accounting field on a JOB statement, the length passed by JES2
to the exit routine in R0 is zero.Your exit routine should take this possibility
into account.

11. If you intend to use this exit to process nonstandard accounting field
parameters, you should either suppress later execution of HASPRSCN or you
should code your exit routine to delete nonstandard parameters before passing
control to HASPRSCN. If you do neither, that is, if you allow HASPRSCN to
receive the nonstandard parameters, it might cancel the job because of an
illegal accounting field depending on how the ACCTFLD parameter on the
JOBDEF statement is specified.
If you change the length of the accounting field, you must reload the length
into field JRWACCTL.

12. There are three job class fields (JCTJCLAS, JCTCLASS, and JCTAXCLS) in the
JCT. JCTJCLAS is the initial job execution class as set during input processing
and used when building the JQE during that processing. JCTCLASS is the
actual execution class. After input processing it contains the same value as
JCTJCLAS, but it might be updated when the job executes if a $T command
was used to update the job's class before execution. Therefore, JCTJCLAS and
JCTCLASS could be different. JCTAXCLS is a copy of the actual execution
class (JCTCLASS) that is propagated into the network JOB trailer. Do not use
any exit routine to set the JCTAXCLS field.
If you intend to use an exit 53 routine to change the execution class of a job,
be certain to set both the JCTJCLAS and JCTCLASS fields.

13. Accessing $NITs

The $NIT macro defines the characteristics of NJE nodes. The $NITs are
arranged in a table that is indexed by the node number. The table of $NITs is
in JES2 private storage and shadowed in a data space for use outside the JES2
address space. Installation exits can use three fields in the $NJEWORK work
area to access the $NIT table. Installation exits can use these fields to access a
$NIT without regard for what address space they are in.
Because these fields are in the $NJEWORK data area, you can address them
using the ‘NJE’ prefix or the prefix for the device dependent work area in
which the $NJEWORK is embedded. Therefore, you can address NJENITAD
as JRWNITAD in the $JRW.
The following code accesses the origin node’s NIT in an NJE JOB receiver exit:
USING NIT,R1 Est NIT addressability
SPACE 1
$ARMODE ON,SYSSTATE=SET,INIT=CCTZEROS Enter AR mode
SPACE 1
LLGH R1,JRWRDNOD Get origin node number
MH R1,CCTNITSZ Get NIT offset
AL R1,JRWNITBL Get NIT address
LAM AR1,AR1,JRWNITAL Get NIT ALET

14. Determining the device type

Exit 53

344 z/OS V2R1.0 JES2 Installation Exits

Most exits need to determine the type of device that they are being called
under. The $NJEWORK area has copies of $DCT fields that can help identify
the device. Which method you use depends on the condition that you are
testing for.
The field NJEDEVTP (that corresponds to DCTDEVTP) is a one byte flag that
can be used to test for classes of devices. A test of the DCTNET bit in
NJEDEVTP indicates that the exit is being called under a networking device.
A compare of the byte to DCTINR indicates that the exit is being called under
an internal reader. See the $DCT for the meaning of the bits in DCTDEVTP.
NJEDEVID corresponds to DCTDEVID. This is a 3 byte value that can
uniquely identify a device. This is more often used when knowing what
specific device you are running under. See the $DCT for the meaning of the
fields.

15. Do not issue a $GETMAIN storage request for subpool 0 (the default for
$GETMAIN), or for subpool 240 or 250, which are translated to subpool 0 for
authorized callers. Doing so would establish subpool 0 with an assigned key
of 0, which can cause problems for a job step application that shares subpool 0
and requests subpool 0 storage, thereby obtaining the storage in key 0. To
avoid this issue the exit should issue a $GETMAIN request for subpool 229 or
230, which are high private subpools intended for use by authorized
functions, whereas subpools 0-127 are in low private subpools and are part of
the user region.

16. Do not use subpool 240 or 250 when obtaining storage for this exit. Do not
use 0-127, because this will determine the key of the subpool for the duration
of the job step. Using these subpools might result in errors when the exit
receives control for address spaces that are created with the KEEPRGN
attribute.

Register contents when Exit 53 gets control
Field Name

Description

0 Pointer to a parameter list with the following structure, mapped by $XPL:

XPLID
Eyecatcher

XPLLEVEL
Version level for base XPL

XPLXITID
Exit ID number

XPLEXLEV
Version number for exit

X053IND
Indicator byte

X053COND
Condition byte

X053RESP
Response byte

X053XSEM
Exit supplied error message in X052JXWR

Exit 53

Chapter 65. Exit 53: JOB statement accounting field scan (JES2 user environment) 345

X053SKIP
Skip default accounting field scan

X053KILL
Kill current job (queue job to OUTPUT processing)

XPLSIZE
Size of parameter list, including base section

X053ACCT
Address of accounting field

X053FLGX
Pointer to exit flags (same as JRWFLAGX)

X053JXWR
80-byte exit work area address (same as JCTXWRK)

X053JCT
JCT address

X053JQE
Update mode JQA address

X053AREA
JRW address

1 Address of a 3-fullword parameter list

Word 1 (+0)
points to the accounting field (JCTWORK in the JCT)

Word 2 (+4)
points to the exit flag byte, JRWFLAGX in the JRW

Word 3 (+8)
points to the JCTXWRK field in the JCT

2-10 Not applicable

11 Address of the HCCT

12 Not applicable

13 Available save area address

14 Return address

15 Entry address

Register contents when Exit 53 passes control back to JES2
0-13 N/A

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no additional exit
routines associated with this exit, use the current setting of the ACCTFLD
parameter on the JOBDEF statement to determine whether to execute the
HASPRSCN subroutine.

4 Tells JES2 to ignore any other exit routines associated with this exit and to

Exit 53

346 z/OS V2R1.0 JES2 Installation Exits

use the current setting of the ACCTFLD parameter on the JOBDEF
statement to determine whether to execute HASPRSCN.

8 Tells JES2 to suppress execution of HASPRSCN and to complete job card
processing.

12 Tells JES2 to cancel the job because an illegal accounting field has been
detected. Tells JES2 to suppress execution of HASPRSCN and to queue the
job for output; output (the incomplete JCL images listing) is produced.

Coded example
Module HASX53A in SYS1.SHASSAMP contains a sample of Exit 53.

Exit 53

Chapter 65. Exit 53: JOB statement accounting field scan (JES2 user environment) 347

348 z/OS V2R1.0 JES2 Installation Exits

Chapter 66. Exit 54: JCL and JES2 control statement scan
(JES2 user environment)

Function
This exit allows you to provide an exit routine for scanning JCL and JES2 control
statements for jobs submitted through internal readers (including TSO SUBMIT
command) or TCP/IP NJE. For jobs submitted through card readers, RJE, SNA and
BSC NJE, and SPOOL reload, exit 4 is called to process JCL and JES2 control
statements (JECL). If this exit is implemented and enabled, it is taken whenever
JES2 encounters a JCL or JES2 control statement.

Note: JOB statements are not included in the scan.

For JCL statements, your exit routine can interpret JCL parameters and, based on
this interpretation, decide whether JES2 should cancel the job, purge the job, or
allow the job to continue normally. Your routine can also alter JCL parameters and
supply additional JCL parameters. If necessary, in supplying expanded JCL data,
your routine can pass a JCL continuation statement back to JES2 or add statements
before or after the current JCL statement.

For JES2 control statements, your routine can interpret the JES2 control parameters
and subparameters and, based on this interpretation, decide whether JES2 should
cancel the job, purge the job, or allow the job to continue normally. For any JES2
control statement, you can write your exit routine as a replacement for the
standard JES2 control statement processing, suppressing execution of the standard
JES2 scan, or you can perform your own (partial) processing and then allow JES2
to execute the standard control statement processing. Also, your routine can alter a
JES2 control statement and then pass the modified statement back to JES2 for
standard processing, or your routine can pass an entirely new JES2 control
statement back to JES2, to be read (and processed) before or after the current
control statement.

This exit also allows you to process your own installation-specific JES2 control
statements or to implement new, installation-specific subparameters for existing
JES2 control statements.

This exit gets control when JES2 detects a JES2 control statement or JCL statement
within a job. JES2 also gives control to your exit routine when JES2 detects a JES2
control statement or JCL statement outside a job. JES2 also gives control to your
exit routine when it detects a JCL continuation statement.

Recommendations for implementing Exit 54
To access the submitting information for a job on the internal reader, you can use
the following code segment:
USING JRW,R2 Est JRW addressability
USING RIDCWKAR,JRW Est IRWD addressability
USING SJB,R3 Est SJB addressability
SPACE 1
L R2,X05xAREA Get JRW address
L R3,RIDSJB Get submitters SJB address
L R4,SJBJCT Get submitters JCT address

© Copyright IBM Corp. 1988, 2013 349

For STC and TSU INTRDRs, RIDSJB is zero because there is no submitting job in
these situations.

Environment

Task
JES2 user environment. You must specify ENVIRON=USER on the $MODULE
macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 54 in supervisor state and PSW key 0.

Restriction
JES2 does not invoke this exit for JCL from cataloged procedures. See Appendix A,
JES2 exit usage limitations for other specific instances when this exit will be
invoked or not invoked.

Recovery
$ESTAE recovery is in effect. The recovery routine established by JES2 attempts to
recover from program check errors, including program check errors in the exit
routine itself. However, as with every exit, your exit routine should not depend on
JES2 for recovery. JES2 cannot anticipate the exact purpose of your exit routine.
Therefore, it can provide no more than minimal recovery. You should provide your
own recovery within your exit routine.

Job exit mask
Exit 54 is subject to suppression. You can suppress Exit 54 by either implementing
exit 52 to set the 54th bit in the job exit suppression mask (JCTXMASK) or
disabling the exit in the JES2 initialization stream.

Mapping macros normally required
$HCCT, $JCT, $JCTX, $BUFFER, $HASPEQU, $JRW

Point of processing
This exit is taken from HASCINJR in the user environment. The exit occurs in
input processing's main processing loop, after the entire JES2 control statement or
JCL statement (including JCL continuations) has been read but before it has
processed any keywords on the statement. The statement may be outside a valid
job (that is, when there is no current job structure active on the reader).

This exit is invoked for jobs submitted through the internal reader or TCP/IP NJE.
It is not invoked for jobs submitted through card readers, RJE, SNA and BSC NJE,
and SPOOL reload.

Exit 54

350 z/OS V2R1.0 JES2 Installation Exits

Programming considerations
1. This exit is taken once for each control statement (except for JOB statements)

encountered by JES2. X054IND indicates whether the current statement is a
JCL statement or a JES2 control statement. Your exit routine gets control for
//* comment, /* (generated), and /* PRIORITY JES2 control statements.

2. During input processing, JES2 writes the JCL records to a JCL data set. If an
error occurs during input processing, it is the JCL data set that is printed
when the job goes through output processing. If the job is successfully
processed by input processing, the JCL data set is the input for the converter.
The converter produces a JCL images data set that is printed when the job
goes to output processing after being successfully processed by input
processing.

3. Exit 54 is called for each card in a JCL statement (the original card and all
continuations) and for each JES2 control statement. Each time the exit is
called, it is passed the current card image and the statement buffer. The
statement buffer is all the operands for the JCL statement or JES2 control
statement concatenated in a single buffer. For example:
//OUTSET DD SYSOUT=H,OUTPUT=*.OUT1, COMMENT1
// DCB=(LRECL=8000,RECFM=FB,BLKSIZE=8000) COMMENT2

In this case the exit will be called 2 times, once for each card and will be
passed (on both calls) the following data in the statement buffer (pointed to
by X054STMT):
SYSOUT=H,OUTPUT=*.OUT1,DCB=(LRECL=8000,RECFM=FB,BLKSIZE=8000)

To alter the processing of the JCL statement or JES2 control card, the exit can
either:
v Update the card image passed in X054CARD. This change will show up in

the listing of the job.
v Update the statement buffer in X054STMT to add or modify the operands.

This change does not show up in the listing of the job and is not passed to
conversion processing (it only affects keywords input processing scans from
the JCL/JECL card). If you update the statement buffer (X054STMT) in Exit
54 and change the length of the buffer, you must update the field
X054STME to indicate the new end of buffer (one byte past the last
meaningful character).

v Add additional card images to the JCL stream.
Adding card images to the JCL stream can be accomplished by either queuing
a single RJCB or a chain of RJCBs to the XPL or by placing a card image to be
placed after the current card into the area pointed to by X054JXWR and
setting X054XSNC. In either case, when a card is added, the current card is
re-scanned and the statement buffer is re-built. Exit 54 will be driven again for
the updated statement, with X054SEC set to indicate this card has been
presented to the exit previously.
When adding cards using RJCBs, use the RGETRJCB service (located in
HASCSRIP) to obtain a free RJCB; then add it to one of the three RJCB queues
in the XPL. Use the $CALL macro to invoke the RGETRJCB service. Register 1
on entry must be the JRW address. The RJCB address is returned in register 1.
The 80-byte card image to be added is placed into the field RJCBCARD. RJCBs
are chained together using the RJCBRJCB field in the $RJCB. They are added
to the job stream in the order they exist in the chain. To add an element to the
chain you would move the current RJCB queue head in the $XPL into the
RJCBRJCB field of the last RJCB you are adding and then set the address of

Exit 54

Chapter 66. Exit 54: JCL and JES2 control statement scan (JES2 user environment) 351

the first RJCB element into the $XPL queue head. Be aware that multiple exit
4s might be using these queues so ensure that you do not lose existing entries
on the queue.

X054RJCP
Adds the card images before the first card in the current JCL
statement or before the JES2 control card.

X054RJCA
Adds the card images after the last card in the current JCL statement.
In this case, the cards are assumed not to be a continuation of the
current JCL statement, and the JCL cards are not re-scanned.

X054RJCC
Adds the card images after the current card. It is the callers'
responsibility to ensure that the proper continuation processing will
occur.

When processing the last card in a JCL statement or when processing a JES2
control statement, the difference between adding a card to the X054RJCA
queue and the X054RJCC queue is that the first will not rescan the current
statement and the second will do.
You can also add a single card image after the current card using the
X054JXWR field. In this case, the JCL statement will be re-scanned just as if
the card was added to the X054RJCC queue. To add information to a JCL
statement:
a. Move a comma into the last byte of the operand on the JCL card image

(X054CARD) that exit 54 is currently processing. The comma indicates
additional information follows this JCL statement.

b. Move the information you want to add to the JCL statement to the area
pointed to by X054JXWR and set the X054XSNC bit in the X054RESP byte
to one. Setting X054RESP to X054XSNC indicates that the installation has
supplied an additional JCL statement image.

c. Set register 15 to X'00' or X'04' depending on whether you want to invoke
additional installation exits to process the statement.

You can also add an additional JCL statement to the job by:
a. Ensuring that the JCL card image that exit 54 is currently processing is the

last for the current statement (X054LOPR is on). Exit 54 is processing the
last JCL statement image if a comma is not in the last byte of the JCL
operand on the card image.

b. Placing the JCL statement in the are pointed to by X054JXWR and set the
X054XSNC bit in the X054RESP byte to one. Setting X054RESP to
X054XSNC indicates that the installation has supplied an additional JCL
statement image.

c. Setting register 15 to X'00' or X'04' depending on whether you want to
invoke additional installation exits to process the JCL or JECL card.

For JECL statements, because there are no formal rules for the format of the
statement, the statement buffer will contain all the text after the VERB on the
JECL statement. The following is an example of a JOBPARM JECL statement
and the associated statement buffer:

/*JOBPARM SYSAFF=(IBM1),COPIES=2 This is a comment

The statement buffer for this statement would contain:

SYSAFF=(IBM1),COPIES=2 This is a comment

Exit 54

352 z/OS V2R1.0 JES2 Installation Exits

The statement buffer contains the comment in this case (and any trailing
blanks) because there is no formal rule stating where a JECL statement ends.

4. Updating the statement buffer is only valid for parameters that have
$STMTTABs in HASCSRIP.

5. Updates to the statement buffer are not passed to the converter and will not
be seen by Exit 6 or Exit 60.

6. The following indicators in the XPL can assist you in adding a card image to
the current JCL statement:

X054LOPR
Current card has the last operand in the JCL statement. There can be
additional continued comments after the current card.

X054QUOT
A quoted sting is being continued from the current card to the next
card. Pay attention if a card is being added after this card.

X054CCMT
The current card is a continued comment. Operand added to this card
or after this card will not be processed.

X054LAST
This is the last card image in the JCL or JECL statement.

7. To assist you in processing the operands on a statement, you can use either of
these services to parse the statement buffer passed in X054STMT:
v The $SCAN facility can be used to parse the operands using the standard

$SCAN rules for statements. This give you the flexability of $SCAN but the
parsing rules are not the same as normal JCL. See the $SCAN and
$SCANTAB macros for additional information.

v The RCARDSCN service and $STMTTAB macro can be used to parse the
operands using standard JCL rules. This is the service used by JES2 input
processing to parse the statement buffer. However, the RCARDSCN service
only parses the operands and calls a processing routine to do all the
conversions and storing of data. Conversion of data to binary to store into
data areas is the responsibility of the processing routines. See the
$STMTTAB macro for more information.

8. To entirely replace standard JES2 control card processing (HASPRCCS) for a
particular JES2 control statement, write your routine as a replacement version
of the standard HASPRCCS routine and then pass a return code of 8 back to
JES2 to suppress standard processing. Note that your routine becomes
responsible for duplicating any HASPRCCS function you want to retain. If
you merely want to supplement standard HASPRCCS processing, you can
write your exit routine to perform the additional function and then, by
passing a return code of 0 or 4, direct JES2 to execute the standard
HASPRCCS routine.

9. To nullify a JES2 control statement, pass a return code of 8 to JES2 without
using your exit routine to perform the function requested by the statement.
Note that, based on what appears in the JCL images output data set, the user
is not informed that the statement was nullified.

10. To modify a JES2 control statement, also use return code 8. Place the altered
statement in the area pointed to by X054JXWR and set X054XSNC to one. If
input processing is successful, the user will see the original statement in the
output of the JCL images file , and the altered statement. Note that if you
modify a JES2 control statement; then pass a return code of 0 or 4, JES2 carries
out normal input (HASPRCCS) processing. The modified version of the
statement will appear on the user's output in the JCL images file, but the

Exit 54

Chapter 66. Exit 54: JCL and JES2 control statement scan (JES2 user environment) 353

original statement will not appear unless you go directly to output phase
(bypassing the converter); then, the user will see the original statement when
the JCL data set is printed.

11. You also use return code 8 in processing your own installation-specific JES2
control statements. Write your exit routine to perform the function requested
by the statement and then pass return code 8 to JES2 to suppress standard
processing and thereby prevent JES2 from detecting the statement as "illegal."

12. Extend the JCT Control Block. You can use the $JCTX macro extension service
to add, expand, locate, and delete extensions to the job control table ($JCT)
control block from this exit. For example, you can use these extensions to store
job-related information. Extensions that are added can be SPOOLed extensions
that are available to all exits that read the JCT or local extension that are
available only to input processing exits (52, 53, 54, and 50) and the $QMOD
exit (51). The size of SPOOLed extensions is based on the SPOOL buffer size
and is less than 3K. You can have up to 8K of local extension regardless of
SPOOL buffer size.

13. To process your own installation-specific JES2 control statement
subparameters, you should generally write your exit routine to replace
standard HASPRCCS processing entirely. That is, write your exit routine to
perform the functions requested by the standard parameters and
subparameters, and those requested by any unique installation-defined
subparameters on a statement. Then, from your exit, pass a return code of 8
back to JES2. Typically, because the parameters and subparameters on a JES2
control statement are interdependent, you will be limited to this method.
However, if you have defined an installation-specific subparameter which can
be processed independently of the rest of the control statement on which it
appears, you can write your exit routine to process this subparameter alone,
delete it, and pass a return code of 0 or 4 to JES2. JES2 can then process the
remainder of the statement as a standard JES2 control statement.

14. When passing a return code of 12 or 16, it is also possible for your exit routine
to pass an error message to JES2 for display at the operator's console. To send
an error message, generate the message text in your exit routine, move it to
the area pointed to by X054JXWR, and set the X054XSEM bit in X054RESP to
one.

15. If you intend to use this exit to affect the JCT, your exit routine must ensure
the existence of the JCT on receiving control. If the JCT has not been created
when your exit routine receives control, the pointer to X054JXWR is zero. For
example, when your exit routine receives control for a /*PRIORITY statement,
the JCT doesn't exist yet. In this case, your routine must store any data to be
placed in the JCT until JES2 creates the JCT.

16. Your exit routine does not have access to the previous control card image. You
should take this into account when devising your algorithm.

17. An 80-byte work area, pointed to by X054JXWR, is available for use by your
exit routine. If your routine requires additional work space, use the
$GETMAIN macro to obtain storage (and the $FREMAIN macro to return it to
the system when your routine has completed).

18. Exit 54 can use field JCTIPRIO to force a priority for a job subject to the
limitations of the input device's priority increment and priority limit values.
When exit 54 receives control, a value of C'*' in JCTIPRIO indicates a priority
has not been forced by an exit routine. If you want to force a priority in exit
54, set JCTIPRIO to a value between 0 and 15 in the low-order four bits on the
field.

Exit 54

354 z/OS V2R1.0 JES2 Installation Exits

Note: Whether you can set field JCTIPRIO and the allowable values depend
on the specific exit.

19. When this exit adds or modifies cards, whether the change is sent over NJE
(including SPOOL offload) depends on the statement type and the setting of
option flags in the $XPL or $RJCB. Modified JECL cards (original and
modified card are both JECL) are not sent over NJE. By default, all other
changes are sent over NJE. To limit changes to only the local node, you can
set the X054RLOC in the XPL (affects the current card) or set the RJCB3LOC
bit in any RJCBs that are added.

20. Accessing $NITs

The $NIT macro defines the characteristics of NJE nodes. The $NITs are
arranged in a table that is indexed by the node number. The table of $NITs is
in JES2 private storage and shadowed in a data space for use outside the JES2
address space. Installation exits can use three fields in the $NJEWORK work
area to access the $NIT table. Installation exits can use these fields to access a
$NIT without regard for what address space they are in.
Because these fields are in the $NJEWORK data area, you can address them
using the ‘NJE’ prefix or the prefix for the device dependent work area in
which the $NJEWORK is embedded. Therefore, you can address NJENITAD
as JRWNITAD in the $JRW.
The following code accesses the origin node’s NIT in an NJE JOB receiver exit:
USING NIT,R1 Est NIT addressability
SPACE 1
$ARMODE ON,SYSSTATE=SET,INIT=CCTZEROS Enter AR mode
SPACE 1
LLGH R1,JRWRDNOD Get origin node number
MH R1,CCTNITSZ Get NIT offset
AL R1,JRWNITBL Get NIT address
LAM AR1,AR1,JRWNITAL Get NIT ALET

21. Determining the device type

Most exits need to determine the type of device that they are being called
under. The $NJEWORK area has copies of $DCT fields that can help identify
the device. Which method you use depends on the condition that you are
testing for.
The field NJEDEVTP (that corresponds to DCTDEVTP) is a one byte flag that
can be used to test for classes of devices. A test of the DCTNET bit in
NJEDEVTP indicates that the exit is being called under a networking device.
A compare of the byte to DCTINR indicates that the exit is being called under
an internal reader. See the $DCT for the meaning of the bits in DCTDEVTP.
NJEDEVID corresponds to DCTDEVID. This is a 3 byte value that can
uniquely identify a device. This is more often used when knowing what
specific device you are running under. See the $DCT for the meaning of the
fields.

22. Do not issue a $GETMAIN storage request for subpool 0 (the default for
$GETMAIN), or for subpool 240 or 250, which are translated to subpool 0 for
authorized callers. Doing so would establish subpool 0 with an assigned key
of 0, which can cause problems for a job step application that shares subpool 0
and requests subpool 0 storage, thereby obtaining the storage in key 0. To
avoid this issue the exit should issue a $GETMAIN request for subpool 229 or
230, which are high private subpools intended for use by authorized
functions, whereas subpools 0-127 are in low private subpools and are part of
the user region.

Exit 54

Chapter 66. Exit 54: JCL and JES2 control statement scan (JES2 user environment) 355

Register contents when Exit 54 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

XPLID
Eyecatcher

XPLLEVEL
Version level for base XPL

XPLXITID
Exit ID number

XPLEXLEV
Version number for exit

X054IND
Indicator byte

00 JCL card detected

04 JECL card detected

X054COND
Condition byte

X054CONT
Card is a continuation (not the first card of the JCL or JECL
statement)

X054JOBP
/*JOBPARM card detected

X054CMND
/*$ command card detected

X054SEC
This card has been passed to the exit previously for this job
(set if cards added before this card)

X054RESP
Response byte

X054XSNC
Exit supplied next card in X054JXWR

X054XSEM
Exit supplied error message in X054JXWR

X054JCMT
Skip processing card

X054KILL
Kill current job (queue job to OUTPUT processing)

X054PURG
Purge current job

Exit 54

356 z/OS V2R1.0 JES2 Installation Exits

X054RLOC
Changed or added cards are not sent through NJE (set
RJCB3LOC in current RJCB)

XPLSIZE
Size of parameter list, including base section

X054CARD
80-byte card image address

X054FLGX
Pointer to exit flags (same as JRWFLAGX)

X054JXWR
80-byte exit work area address (same as JCTXWRK)

X054JCT
JCT address

X054JQE
Update mode JQA address

X054AREA
JRW address

X054STMT
Concatenated statement buffer. This is all the operands on all
continuations cards for this statement

X054STME
End of statement+1 pointer (in buffer)

X054STML
Statement label

X054STMV
Statement verb

X054RJCP
RJCBs to add before the current JCL/JECL statement

X054RJCA
RJCBs to add after the current JCL/JECL statement

X054RJCC
RJCBs to add after the current card

X054FLG1
Statement flag byte

X054LOPR
Last operand is on the current card

X054QUOT
Unfinished quote at end of current card

X054CCMT
Current card is a continued comment

X054LAST
Last card in JCL or JECL statement

1 Address of a 3-word parameter list with the following structure:

Word 1
(+0) address of the control statement image buffer

Exit 54

Chapter 66. Exit 54: JCL and JES2 control statement scan (JES2 user environment) 357

Word 2
(+4) points to the exit flag byte, JRWFLAGX, in the $JRW

Word 3
(+8) points to the JCTXWRK field in the $JCT

2-10 Not applicable

11 Address of the HCCT

12 Not applicable

13 Address of the save area

14 Return address

15 Entry address

Register contents when Exit 54 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 - 13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
call the next consecutive exit routine. If there are no additional exit
routines associated with this exit, perform standard input processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to
perform standard input processing.

8 For JES2 control statements and JCL statements, tells JES2 not to perform
standard processing and just write the statement to the JCL data set.

12 Tells JES2 to cancel the job because an illegal control statement has been
detected; output (the incomplete JCL images listing) is produced.

16 Tells JES2 to purge the job because an illegal control statement has been
detected; no output is produced.

Note: For all JES2 control statements preceding the JOB card (X054PREJ on), a
return code higher than 4 is ignored.

Coded example
Modules HASX54A, HASX54B, and HASX54C in SYS1.SHASSAMP contains a
samples of Exit 54.

Exit 54

358 z/OS V2R1.0 JES2 Installation Exits

Chapter 67. Exit 55: NJE SYSOUT reception data set
disposition

Function
This exit allows an installation to change the default processing (delete) for a data
set which failed RACF verification upon entering this node on a TCP/IP line. In
this exit, you can:
v Continue default processing and delete the data set
v Accept the data set

Environment

Task
General purpose subtask in NETSRV address space. You must specify
ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 55 in supervisor state and PSW key 0.

Recovery
Your exit routine should provide its own recovery.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCCT, $JCT, $JCTX, $NHD, $PDDB, $XPL, $NJEWORK, $SRW

Point of processing
This exit is taken from HASCNJSR. JES2 passes control to this exit when RACF
fails the verification for a SYSOUT data set received from another node on a
TCP/IP line.

Programming considerations
When rerouting the data set, your exit routine should ensure the data set has the
proper authority for the target node. If your routine accepts SYSOUT already
rejected by RACF, there will not be an audit record for the subsequent data set
create. The owner of the data set is the userid of the job that created the SYSOUT,
even if that userid could not own the data on your system and RACF does not
validate the assigned userid. If you are using security labels, RACF assigns a
SECLABEL of SYSLOW to the data set created.

© Copyright IBM Corp. 1988, 2013 359

Expanding the JCT Control Block: You can add, expand, locate, or remove
extensions to the job control table ($JCT) control block from this exit using the
$JCTX macro extension service. For example, you can use these extensions to store
job-related information. For more information, see z/OS JES2 Macros

Related Exits: If you code Exit 55, it may also be necessary for you to code a
parallel Exit 39 to provide the same function for SNA and BSC lines.

Register contents when Exit 55 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name

XPLID
Eyecatcher ('$XPL')

XPLLEVEL
The version level of $XPL

XPLXITID
The exit ID number

X055IND
Indicator byte

X055COND
Condition byte

X055RESP
Response byte

X055PDDB
PDDB address

X055JCT
JCT address

X055NDH
Data set header address

X055AREA
SRW address

2-10 Not applicable

11 Address of the HCCT

12 Not applicable

13 Address of the save area

14 The return address

15 The entry address

Exit 55

360 z/OS V2R1.0 JES2 Installation Exits

Register contents when Exit 55 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable

1 Pointer to a parameter list with the following structure, mapped by $XPL:

Field Name
Description

X055IND
Indicator byte.

X055COND
Condition byte.

X055RESP
Response byte. Set by exit before returning to JES2

X055RECV
If you set this bit on, JES2 can receive the data set.
Otherwise, processing continues and the data set is deleted.

2-13 Not applicable.

14 Return address.

15 A return code.

A return code of:

0 Tells JES2 that if additional exit routines are associated with this exit, call
the next consecutive exit routine. If no other exit routines are associated
with this exit, continue with normal processing, which is determined by
the particular exit point from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with this exit,
ignore them; continue with normal processing, which is determined by the
particular exit point from which the exit routine was called.

Coded example
Module HASX55A in SYS1.SHASSAMP contains a sample of Exit 55.

Exit 55

Chapter 67. Exit 55: NJE SYSOUT reception data set disposition 361

362 z/OS V2R1.0 JES2 Installation Exits

Chapter 68. Exit 56: Modifying an NJE data area before its
transmission

Function
This exit allows you to change an NJE data area before transmitting a job to
another node through TCP/IP NJE. (See Network Job Entry (NJE) Formats and
Protocols for more information about the various NJE data areas that can be
transmitted across a network.) Before transmitting the NJE job, your installation
might need to add, remove or change information to one or more of the following
NJE data areas:
v NJE job header
v NJE data set header
v NJE RCCS (Record Characteristics Change Section) header
v NJE job trailer

Your installation might want to:
v Remove any installation-defined sections your installation added to the NJE job

when exit 56 was processing the NJE job. However, it might not be necessary to
remove any installation-defined sections because installation-defined sections are
ignored when they are received at other nodes.

v Add or change information, such as accounting, security or scheduling
information, needed by another node in the network.

v Extract information from user fields in JES2 defined control blocks or installation
defined control blocks and transfer them to the NJE data areas.

Related exits
Consider using:
v Exit 40 if you want to change the output characteristics associated with a

SYSOUT data set before it prints at your node.
v Exits 2, 52, 47, or 57 to modify NJE job headers for jobs that are received for

processing at your installation.
v Exit 56 to receive control for spool TCP/IP NJE lines.
v Exit 46 to receive control for SNA or BSC lines or spool offload.

Recommendations for implementing Exit 56
If you want to remove an installation-defined section from the NJE data area
passed to Exit 56, you should:
v Use XPLIND to determine the type of NJE data area that JES2 passed to Exit 56

for processing.
v Issue a $NDHREM macro to remove the installation section.

Environment

Task
JES2 General purpose subtask in NETSRV address space. You must specify
ENVIRON=USER on the $MODULE macro.

© Copyright IBM Corp. 1988, 2013 363

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 56 in supervisor state and PSW key 0.

Recovery
Your installation should provide its own recovery routine.

Job exit mask
Exit 56 is subject to suppression. Your installation can either implement Exit 2 or
Exit 52 to set the 56th bit in the job exit suppression mask (JCTXMASK) or disable
the exit in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $PDDB, $SCR, $XPL, $NHD, $HCCT, $JQE, $JCT, $JCTX, $JOE,
$NJEWORK, $JTW, $STW

Point of processing
JES2 invokes Exit 56 before transmitting a job while transmitting an NJE job across
a TCP/IP line. Before invoking Exit 56, JES2:
v Builds the NJE data area in a 32K buffer
v Removes any JES2-specific sections from the NJE data area if JES2 is transmitting

the NJE data area to another node in the network. The following NJE data areas
contain a JES2 section:
– Job Header
– Job Trailer

v Initializes the $XPL parameter and invokes Exit 56.
v After returning from Exit 56, JES2 examines the response byte (XPLRESP) in the

$XPL parameter list. If in Exit 56 you set XPLRESP to:
– X056TERM, it indicates an error occurred. JES2 terminates the transmission of

the NJE data area, and places the job in hold.
– X056BYP, JES2 continues processing the remainder of the NJE job because Exit

56 transmitted the buffer that contained the NJE data area.

If XPLRESP has not been set, JES2 transmits the NJE data area.

Programming considerations
The following are programming considerations for Exit 56:
v Locating the JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro. For example, you can use these extensions to
retrieve job-related information from the $JCTX control block to ship across the
network in $NHD macro sections. For more information, see z/OS JES2 Macros.

v Accessing $NITs

The $NIT macro defines the characteristics of NJE nodes. The $NITs are
arranged in a table that is indexed by the node number. The table of $NITs is in
JES2 private storage and shadowed in a data space for use outside the JES2
address space. Installation exits can use three fields in the $NJEWORK work

Exit 56

364 z/OS V2R1.0 JES2 Installation Exits

area to access the $NIT table. Installation exits can use these fields to access a
$NIT without regard for what address space they are in.
Because these fields are in the $NJEWORK data area, you can address them
using the ‘NJE’ prefix or the prefix for the device dependent work area in which
the $NJEWORK is embedded. Therefore, you can address NJENITAD as
JRWNITAD in the $JRW, JTWNITAD in the $NJT, SRWNITAD in the $SRW, and
STWNITAD in the $STW.
The following code accesses the origin node’s NIT in an NJE JOB receiver exit:
USING NIT,R1 Est NIT addressability
SPACE 1
$ARMODE ON,SYSSTATE=SET,INIT=CCTZEROS Enter AR mode
SPACE 1
LLGH R1,JRWRDNOD Get origin node number
MH R1,CCTNITSZ Get NIT offset
AL R1,JRWNITBL Get NIT address
LAM AR1,AR1,JRWNITAL Get NIT ALET

v Determining the device type

Most exits need to determine the type of device that they are being called under.
The $NJEWORK area has copies of $DCT fields that can help identify the device.
Which method you use depends on the condition that you are testing for.
The field NJEDEVTP (that corresponds to DCTDEVTP) is a one byte flag that
can be used to test for classes of devices. A test of the DCTNET bit in
NJEDEVTP indicates that the exit is being called under a networking device. A
compare of the byte to DCTINR indicates that the exit is being called under an
internal reader. See the $DCT for the meaning of the bits in DCTDEVTP.
NJEDEVID corresponds to DCTDEVID. This is a 3 byte value that can uniquely
identify a device. This is more often used when knowing what specific device
you are running under. See the $DCT for the meaning of the fields.

Register contents when Exit 56 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable

1 Parameter List Address having the following structure:

Field Name

XPLID
Eyecatcher ('$XPL')

X056VERN
Parameter list version

XPLXITID
Exit identifier

XPLEXLEV
Version level of the exit

X056IND
Indicates the type of NJE data area JES2 passed to Exit 56 for
processing. A value of:

Exit 56

Chapter 68. Exit 56: Modifying an NJE data area before its transmission 365

X056HDR
Indicates an NJE job header was passed to Exit 56 for
processing.

X056TRL
Indicates an NJE job trailer was passed to Exit 56 for
processing.

X056DSH
Indicates an NJE data set header was passed to Exit 56 for
processing.

X056RCCS
Indicates an NJE RCCS header was passed to Exit 56 for
processing.

X056COND
Condition byte

X056R1ST
Indicates that this RCCS header precedes the first data
record.

X056RESP
Response byte.

X056HADR
Contains the address of the NJE data area.

(Reserved field)
This field is reserved for Exit 56 to keep the same offsets of the
XPL mapping as Exit 46. This value is always zero for Exit 56.

X056JQE
Address of read mode JQA.

X056JCT
Contains the address of the $JCT.

X056PDDB
Contains the address of the $PDDB if Exit 56 is processing an NJE
data set header. If Exit 56 is processing an NJE job header or trailer,
a 0 is passed as the address.

X056JOA
Contains the address of the artificial JOE (JOA) if Exit 56 is
processing an NJE data set header. If Exit 56 is processing an NJE
job header or trailer, a 0 is passed as the address.

Note: If the exit must update JOE fields, it should obtain and
return an update mode JOA. For more information, see
“Checkpoint control blocks for JOEs” on page 409.

X056AREA
Contains the address of the NJEWORK area (JTW or STW) for the
transmitter device sending the header.

X056SIZE
Indicates the length of the $XPL parameter list for Exit 56.

2-10 Not applicable

11 Address of the HCCT

Exit 56

366 z/OS V2R1.0 JES2 Installation Exits

12 Not applicable

13 Address of the save area

14 The return address

15 Entry point address of Exit 56

Register contents when Exit 56 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable

1 Address of the $XPL parameter list, which has the following structure:

XPLID
Eye-catcher for the $XPL

X056VERN
Indicates the version number of Exit 56

XPLXITID
Exit identifier

XPLEXLEV
Version level of the exit

X056IND
Indicator byte

X056COND
Condition byte

X056RESP
Indicates the processing Exit 56 determined JES2 should perform
after processing the NJE data area. A value of:

X056TERM
Indicates Exit 56 determined the NJE data area should not
be transmitted. JES2 will discard the remainder of the NJE
job.

X056BYP
Indicates JES2 should not transmit the NJE data area. JES2
will continue to process the remainder of the NJE job.

X056SIZE
Indicates the length of the $XPL parameter list for Exit 56.

2-13 Not applicable to Exit 56

14 Return address

15 Exit effector return code

A return code of:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job, but ignore any
additional exits associated with Exit 56.

Exit 56

Chapter 68. Exit 56: Modifying an NJE data area before its transmission 367

Coded example
Module HASX56A in SYS1.SHASSAMP contains a sample of Exit 56. Module
HASXJECL in SYS1.SHASSAMP also contains an example.

Exit 56

368 z/OS V2R1.0 JES2 Installation Exits

Chapter 69. Exit 57: Modifying an NJE data area before
receiving the rest of the NJE job

Function
This exit allows you to:
v Examine and change an NJE data area before receiving the rest of the NJE job

from another node through TCP/IP NJE.
v Add, expand, locate, or remove an extension to the $JCT control block where

accounting information can be stored.

Before receiving an NJE job, your installation might need to add, remove or change
information to one or more of the NJE data areas below. See Network Job Entry
(NJE) Formats and Protocols for more information about the various NJE data areas
that can be transmitted across a network.
v NJE job header
v NJE data set header
v NJE RCCS (Record Characteristics Change Section) header
v NJE job trailer

Your installation might want to:
v Remove any installation-defined sections your installation added to the NJE job

when exit 56 was processing the NJE job.
v Add or change information, such as accounting or security information, needed

by another node in the network.
v Extract information from the NJE data areas and transfer them to user fields in

JES2 defined control blocks or installation defined control blocks.

Related exits
If you want to change the output characteristics associated with a SYSOUT data
set, consider using exit 40. Exit 57 only receives control for TCP/IP NJE. If you
code exit 57, you may also need a Exit 47 to handle jobs received on SNA or BSC
lines or through spool offload.

Environment

Task
General purpose subtask in NETSRV address space. You must specify
ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 57 in supervisor state and PSW key 0.

Recovery
Your installation should provide its own recovery routine.

© Copyright IBM Corp. 1988, 2013 369

Job exit mask
Exit 57 is subject to suppression. The installation can suppress the exit either by
implementing exit 2 to set the 57th bit in the job exit suppression mask
(JCTXMASK) or by indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $PDDB, $SCR, $XPL, $NHD, $HCCT, $JQE, $JCT, $JCTX, $JOE,
$NJEWORK, $JRW, $SRW

Point of processing
JES2 invokes Exit 57 before receiving a job while performing receiving an NJE job
across a TCP/IP line. Before invoking Exit 57 JES2:
v Allocates a dummy $JCT and $JQE. JES2 initializes these data areas with

minimal information.
v Receives the NJE data area and invokes Exit 57 to perform installation-specific

processing.
v After returning from Exit 57, JES2 determines if exit 57 indicated whether the

NJE data area should be received. If exit 57 indicated the NJE data area should
not be received, JES2 places the NJE job in hold on the transmitting node.
Otherwise, JES2 continues to process the NJE job. You cannot use this exit to
update IBM-defined JCT or JQE fields in the dummy JCT and dummy JQE,
respectively. You can, however, update user-defined fields (such as JCTUSERx)
or any $JCTX extensions you have created. JES2 propagates changes to 'user'
fields to the $JCT and $JQE.

Programming considerations
The following are programming considerations for Exit 57:
v If the exit is being invoked for a job header, the JQE address passed points to a

dummy JQE (as indicated by X057BJQE). See “Checkpoint control blocks” on
page 407 for more information.

v Extending the JCT Control Block

You can add, expand, locate, or remove extensions to the job control table ($JCT)
control block from this exit using the $JCTX macro extension service. For
example, you can use these extensions to store job-related information. For more
information, see z/OS JES2 Macros.

v Accessing $NITs

The $NIT macro defines the characteristics of NJE nodes. The $NITs are
arranged in a table that is indexed by the node number. The table of $NITs is in
JES2 private storage and shadowed in a data space for use outside the JES2
address space. Installation exits can use three fields in the $NJEWORK work
area to access the $NIT table. Installation exits can use these fields to access a
$NIT without regard for what address space they are in.
Because these fields are in the $NJEWORK data area, you can address them
using the ‘NJE’ prefix or the prefix for the device dependent work area in which
the $NJEWORK is embedded. Therefore, you can address NJENITAD as
JRWNITAD in the $JRW, JTWNITAD in the $NJT, SRWNITAD in the $SRW, and
STWNITAD in the $STW.
The following code accesses the origin node’s NIT in an NJE JOB receiver exit:

Exit 57

370 z/OS V2R1.0 JES2 Installation Exits

USING NIT,R1 Est NIT addressability
SPACE 1
$ARMODE ON,SYSSTATE=SET,INIT=CCTZEROS Enter AR mode
SPACE 1
LLGH R1,JRWRDNOD Get origin node number
MH R1,CCTNITSZ Get NIT offset
AL R1,JRWNITBL Get NIT address
LAM AR1,AR1,JRWNITAL Get NIT ALET

v Determining the device type

Most exits need to determine the type of device that they are being called under.
The $NJEWORK area has copies of $DCT fields that can help identify the device.
Which method you use depends on the condition that you are testing for.
The field NJEDEVTP (that corresponds to DCTDEVTP) is a one byte flag that
can be used to test for classes of devices. A test of the DCTNET bit in
NJEDEVTP indicates that the exit is being called under a networking device. A
compare of the byte to DCTINR indicates that the exit is being called under an
internal reader. See the $DCT for the meaning of the bits in DCTDEVTP.
NJEDEVID corresponds to DCTDEVID. This is a 3 byte value that can uniquely
identify a device. This is more often used when knowing what specific device
you are running under. See the $DCT for the meaning of the fields.

Register contents when Exit 57 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable to Exit 57

1 Parameter List Address having the following structure:

Field Name

XPLID
Eyecatcher ('$XPL')

X057VERN
Indicates the version number of Exit 57

XPLXITID
Exit identifier - 57

XPLEXLEV
Version level of the exit

X057IND
Indicates the type of NJE data area JES2 passed to Exit 57 for
processing. A value of:

X057HDR
Indicates an NJE job header was passed to Exit 57 for
processing.

X057TRL
Indicates an NJE job trailer was passed to Exit 57 for
processing.

X057DSH
Indicates an NJE data set header was passed to Exit 57 for
processing

Exit 57

Chapter 69. Exit 57: Modifying an NJE data area before receiving the rest of the NJE job 371

X057RCCS
Indicates an NJE RCCS header was passed to Exit 57 for
processing.

X057BJQE
Indicates that the JQE address in field X057JQE points to a
working copy of the JQE that has not yet been added to
the job queue. The working copy should not be used in
services that expect the address of a real JQE.

X057COND
Condition byte.

X057RESP
Response byte.

X057HADR
Contains the address of the NJE data area.

(Reserved field)
This field is reserved for Exit 57 to keep the same offsets of the
XPL mapping as Exit 47. This value is always zero for Exit 57.

X057JQE
Contains the address of an update mode JQA.

X057JCT
Contains the address of the $JCT.

X057PDDB
Contains the address of the $PDDB if Exit 57 is processing an NJE
data set header. If Exit 57 is processing an NJE job header or trailer,
a 0 is passed as the address.

X057AREA
Contains the address of the NJEWORK area (JRW or SRW) for the
receiver.

X057SIZE
Indicates the length of the $XPL parameter list for Exit 57.

2-10 Not applicable

11 Address of the HCCT

12 Not applicable

13 Address of the save area

14 The return address

15 Entry point address of Exit 57

Register contents when Exit 57 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable to Exit 57

1 Address of the $XPL parameter list which has the following structure:

X057IND
Condition byte

Exit 57

372 z/OS V2R1.0 JES2 Installation Exits

X057COND
Response byte

X057RESP
Indicates the processing Exit 57 determined JES2 should perform
after processing the NJE data area. A value of:

X057TERM
Indicates Exit 57 determined the NJE data area should not
be received. JES2 will stop processing the rest of the NJE
job.

2-13 Not applicable to Exit 57

14 Return address

15 Exit effector return code

A return code of:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job, but ignore any
additional exits associated with this exit.

Coded example
Module HASX57A in SYS1.SHASSAMP contains a sample of Exit 57. Module
HASXJECL in SYS1.SHASSAMP also contains an example.

Exit 57

Chapter 69. Exit 57: Modifying an NJE data area before receiving the rest of the NJE job 373

374 z/OS V2R1.0 JES2 Installation Exits

Chapter 70. Exit 58: Subsystem interface (SSI) end-of-step

Function
This exit gains control once a job step completes. This exit controls the return code
for the step and whether or not the job will continue.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 58 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
This exit point is not subject to job exit mask suppression.

Mapping macros normally required
$HASB, $HASPEQU, $HCCT, $MIT, $SJB

Point of processing
This exit is taken from HASCJBTR after JES2 has located the SJB (subsystem job
block).

Programming considerations
Expanding the JCT Control Block: If the address of the $JCT is contained in field
SJBJCT, you can add, expand, locate, or remove extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service. For
example, you can use these extensions to store job-related information. For more
information, see z/OS JES2 Macros.

Register contents when Exit 58 gets control
The contents of the registers on entry to this exit are:

Register
Contents

© Copyright IBM Corp. 1988, 2013 375

0 Not applicable to Exit 58

1 Parameter list address with the following structure:

XPLID
Eyecatcher ('$XPL')

XPLLEVEL
Indicates the version number of Exit 58

XPLXITID
Exit identifier - 58

XPLEXLEV
Version level of the exit

X058IND
Indicates byte (not used)

X058COND
Condition byte (condition when the step ended):

X058STAB
Step ABENDed (X058STPA set)

X058RESP
Response byte - action to take after exit returns (may be pre-set):

X058SRST
Restart job after this step

X058SRSH
Hold job after restart

XPLSIZE
Size of exit 58 parameter list, including base section

X058SJB
$SJB address

X058JCT
$JCT address

X058PSN
Name on EXEC PGM= JCL card

X058PSS
Name on EXEC PROC= JCL card

X058STPC
Step completion code

X058STPA
Step ABEND code

2-10 Not applicable

11 Address of HCCT

12 Not applicable

13 Address of an available save area

14 The return address

15 The entry address

Exit 58

376 z/OS V2R1.0 JES2 Installation Exits

Register contents when Exit 58 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable to Exit 58

1 Address of the $XPL parameter list which was passed in possibly altering
the following:

Field Name

X058RESP
Response byte – action to take after exit returns:

X058SRST
Restart job after this step

X058SRSH
Hold job after restart

X058STPC
Step completion code

X058STPA
Step ABEND code

2-13 Not applicable to Exit 58

14 Return address

15 Exit effector return code

A return code:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job, but ignore any
additional exits associated with this exit.

Exit 58

Chapter 70. Exit 58: Subsystem interface (SSI) end-of-step 377

Exit 58

378 z/OS V2R1.0 JES2 Installation Exits

Chapter 71. Exit 59: Post interpretation

This information describes JES2 installation exit 59.

Function
This exit gets control when then z/OS interpreter is called after the z/OS converter
is called in the JES2CI address space. This function is activated by specifying
INTERPRET=JES on the JOBDEF initialization statement. When given control, the
job's SWA blocks have been built in memory but have not yet been written to
spool. The exit can examine the SWA blocks to extract information that is required
to process the job.

Related exits
This exit gets control after the final call to Exit 6 or Exit 60. After this exit returns,
processing writes out the SWA blocks for the job, conversion phase processing in
the JES2 main task is posted and exit 44 is called. Use exit 44 if you choose to alter
any fields in the job queue element ($JQE). Altering fields in the $JQE in Exit 59
will not be successful because you are in the user environment.

Recommendations for implementing Exit 59
Exit 59 is similar to Exit 60 because it is also run in the JES2CI address space. In
this environment, this exit does not have access to JES2 private storage data areas
such as the HCT and the converter PCE.

One function of this exit is to enforce installation standards. If the exit fails a job, it
should set a return code of 8 in register 15 before returning to JES2.

If you decide to fail the job, issue error messages to inform the operator and the
user of the reason for the failure. Any WTO issued by this exit is placed into the
system message data set for the job.

Environment
The following environment requirements apply to Exit 59.

Task
JES2 user (JES2CI address space). You must specify ENVIRON=USER on the
$MODULE or $ENVIRON macro.

Restrictions
v Exit 59 runs in the JES2CI address space and cannot access any JES2 private

address space data areas, such as the HCT.
v Do not attempt to modify checkpointed data from this exit.
v See Appendix A, “JES2 exit usage limitations,” on page 397 for a listing of

specific instances when this exit will be invoked or not invoked.
v Exit 59 must be MVS reentrant. See “Reentrant Code Considerations” in Chapter

2 for more information.

© Copyright IBM Corp. 1988, 2013 379

v Do not alter any fields in the $JQE. The changes will not be successful because
you are in the subtask environment.

v Do not attempt to control the processing of the MVS converter by changing the
C/I text at Exit 59. The converter does not examine the C/I text returned from
the exit to determine what changes have been made. For example, you cannot
use this exit to execute a procedure other than the one initially named on the
EXEC statement, nor can you use this exit to control the printing of JCL
statement images by altering the MSGLEVEL parameter on the JOB statement.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 59 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, no exit routine should depend on JES2 for
recovery. Because JES2 cannot identify the exact purpose of your exit routine, it can
provide only minimal recovery. Your exit routine should provide its own recovery.

If JES2's recovery is entered, the current job will be failed.

Job exit mask
Exit 59 is subject to suppression. The installation can implement exit 2 to set the
59th bit in the job exit suppression mask (JCTXMASK) or the installation can
indicate the exit is disabled in the JES2 initialization stream.

Storage recommendations
v Private subpool that resides below 16-megabytes
v Word 1 in register 1 contains the address of a 16-byte work area

Mapping macros typically required
$CIWORK, $CIPARM, $DTE, $DTECNV, $HASPEQU, $HCT, $JCT, $JCTX, $MIT,
$XIT

Point of processing
This exit is taken from HASCCNVS after the interpreter has been called for the job
and after processing any OUTPUT statements that apply to JES managed data sets
(JESDS data set). At this point, the SWA blocks for the job are in memory and
available to the exit for inspection. After calling the exit, the SWA blocks are
written to spool and the converter PCE is posted to complete conversion
processing for the job (including calling Exit 44).

Programming considerations
Expanding the JCT Control Block: If the address of the $JCT is contained in field
SJBJCT, you can add, expand, locate, or remove extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service. For
example, you can use these extensions to store job-related information. For more
information, refer to z/OS JES2 Macros.

Exit 59

380 z/OS V2R1.0 JES2 Installation Exits

Register contents when Exit 59 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 Not applicable to Exit 59.

1 Parameter list address with the following structure:

XPLID
Eyecatcher ('$XPL')

XPLLEVEL
Indicates the version number of Exit 59

XPLXITID
Exit identifier - 59

XPLEXLEV
Version level of the exit

X059IND
Indicator byte (not used)

X059COND
Condition byte

X059FAIL
Interpreter failed

X059TSU
Converting a TSO user

X059STC
Converting a started task

X059JOB
Converting a batch job

X059RESP
Response byte:

X059HOLD
Batch job hold indicator. Set on input as the current hold
state and can be modified by the exit.

X059WORK
16 byte work area address

X059IRET
Address of Interpreter RC

X059CNVW
JES2 DTE work area address

X059JCT
JCT address

X059CIW
CIWORK data area address

Exit 59

Chapter 71. Exit 59: Post interpretation 381

X059JCLS
Current job class that is associated with the job. For batch jobs, the
exit can update this field to alter the job class that is associated
with the job.

X059SCHE
Current scheduling environment (SCHENV) that is associated with
the job. For batch jobs, the exit can update this field to alter the
scheduling environment that is associated with the job.

2-10 Not applicable

11 Address of the $HCCT

12 Not applicable

13 Address of an available save area

14 Return address

15 Entry address

Register contents when Exit 59 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable to Exit 59

1 Address of the $XPL parameter list which was passed in.

2-13 Not applicable to Exit 59.

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
execute the next consecutive exit routine. If there are no more exit routines
associated with this exit point, continue with normal JES2 processing.
Normal processing is to queue the job for execution if conversion and
interpretation processing was successful.

4 Tells JES2 to ignore any additional exit routines associated with this exit
and continue with normal processing. Normal processing is to queue the
job for execution if conversion and interpretation processing was
successful.

8 Tells JES2 to bypass execution and cancel the job; the job is queued for
output rather than for execution.

Exit 59

382 z/OS V2R1.0 JES2 Installation Exits

Chapter 72. Exit 60: JES2 converter exit (user)

This information describes JES2 installation exit 60.

Function
This exit gets control when conversion processing occurs in the JES2CI address
space. It allows you to provide an exit routine for scanning resolved
Converter/Interpreter (C/I) text. If this exit is implemented and enabled, it is taken
after the converter has converted each JCL statement into C/I text and once after
all of the JCL for a particular job has been converted to C/I text.

If you are running conversion in the JES2 address space, then exit 6 is taken at the
same point in processing as this exit.

You can use your exit routine to:
v Interpret C/I text and, based on this interpretation, decide whether JES2 should

either cancel the job at the end of conversion processing or allow it to continue
with normal execution.

v Pass messages to the converter that it will write to the JCLMSG data set for the
job.

v Modify the C/I text.

After the converter has processed the entire job, this exit again allows you to direct
JES2 either to cancel the job or to allow it to continue with normal execution.

C/I text is represented by 'keys' that identify the various JCL parameters. These
keys are documented in the JES2 assembly, HASPDOC, which calls macros
IEFVKEYS and IEFTXTFT, which are distributed in SYS1.MODGEN. Specifying
KEYS on $MODULE causes IEFVKEYS to be expanded; specifying TEXT on
$MODULE causes IEFTXTFT to be expanded. IEFVKEYS contains the definition of
the values for each key, and IEFTXTFT contains the definition of the format of the
Converter/Interpreter text. For more information about C/I text, see z/OS MVS
Installation Exits.

Related exits
Exit 60 only gets control when the converter is called in the JES2CI address space
(when JOBDEF INTERPRET=JES). If conversion is being run in the JES2 address
space, use exit 6 to perform the equivalent exit 60 function.

Use exit 44 if you need to alter any fields in the job queue element ($JQE). Altering
fields in the $JQE in Exit 6 will not be successful because you are in the subtask
environment.

Recommendations for implementing Exit 60
Unlike exit 6, exit 60 is run in the JES2CI address space. In this environment, the
exit does not have access to JES2 private storage data areas such as the HCT and
the converter PCE.

It is important to remember that Exit 60 is invoked because either:

© Copyright IBM Corp. 1988, 2013 383

v The converter just completed converting a JCL statement to C/I text
v The converter completed processing the entire job.

You could implement Exit 60 to keep certain counters—for instance, the number of
DD cards received. Then, when the JCL for the entire job has been processed, the
second part of your routine, the part that receives control when the code in R0 is 4
(or X060IND is set to X060CEND), can determine whether to allow the job to
continue based on the contents of these counters.

You should use extreme caution when modifying C/I text. If any of your changes
cause a job to fail (because of an interpreter error), there will be no correlation of
the error with the resulting abend on the user's output. To modify or examine the
C/I text:
v Ensure register 0 contains a X'00' (or X060IND is set to X060TEXT) to indicate

the invocation of Exit 60 is to process a converted JCL statement.
v Use any information from the C/I text for any installation-written control blocks.
v Make any necessary modifications to the C/I text. z/OS MVS Installation Exits

describes the rules for changing C/I text to ensure the changes you make will
not cause the other problems in your installation, such as loss of data, loss of
integrity and performance.

Note:

– You might want to issue messages to the JCLMSG data set to track the
changes that you make to the C/I text, because none of the changes that you
make will be reflected in the job output. However, the changes that you make
will be reflected in the job's SWA control blocks.

– The current job class for a job is passed to the exit in XPL field X060JCLS. You
can modify this field to alter the job class for the job. Alternatively, you can
use the JCTJCLAS and JCXJCLA8 fields in the JCT. When conversion and all
Exit 60 processing is completed for a job, JES2 will use these fields to update
the corresponding JQE fields JQEJCLAS and JQXJCLAS. JES2 also ensures
that these changes are checkpointed. Ensure that the specified job class exists
to avoid a resulting job failure.

– If you need to change the job priority, use the JCTIPRIO fields in the JCT.
When conversion and all Exit 60 processing is completed for a job, JES2 will
use this field to update the corresponding JQE field JQEPRIO. JES2 also
ensures that these changes are checkpointed.

– The current scheduling environment for a job is passed to the exit in XPL
field X060SCHE. You can modify this field to alter the scheduling
environment for the job.
Alternatively, you can supply a scheduling environment directly in the
JCTSCHEN field in the JCT, which overrides any value that is specified on
the job card. The converter validates the scheduling environment after Exit 60
receives control. If the scheduling environment is not valid, JES2 fails the job
with a JCL error. Alternatively, you can update the internal text for the job
card to specify a new scheduling environment.
The current hold state of the job is passed to the exit in bit X060HOLD of the
XPL. You can modify this bit to alter the current hold status of the job.
Alternatively, you can set bit JCTTHOLD in the JCT.

v Set the appropriate return code in register 15 or perform additional processing.

If you decide to fail the job, you should issue error messages to the operator and
to the user. You can fail the job in Exit 60 by either:

Exit 60

384 z/OS V2R1.0 JES2 Installation Exits

v Setting flag CNMBFJOB in byte CNMBOPTS of the CNMB. See z/OS MVS
Installation Exits for information about obtaining and initializing the CNMB. If
you set this flag, the converter continues to convert the job's JCL and will fail
the job after it has completely processed the job. You can only fail the job in this
manner when register 0 contains a X'00'.

v Setting a return code of 8 in register 15 before returning to JES2.

If you want to issue messages to the:
v JCLMSG data set, you must obtain a CNMB and initialize it with the message

text. You can not issue any messages to the JCLMSG data set, if this is the last
invocation of the exit (register 0 contains a 4). See z/OS MVS Installation Exits for
additional information about how to initialize the CNMB.

v Operator or user, issue a $WTO macro.

Environment
The following environment requirements apply to Exit 60.

Task
JES2 user. You must specify ENVIRON=USER on the $MODULE or $ENVIRON
macro.

Restrictions
The following restrictions apply to Exit 60:
v Exit 60 runs in the JES2CI address space and cannot access any JES2 private

address space data areas, such as the HCT.
v Do not attempt to modify checkpointed data from this exit.
v See Appendix A, “JES2 exit usage limitations,” on page 397 for a listing of

specific instances when this exit will be invoked or not invoked.
v Exit 60 must be MVS reentrant. See “Reentrant Code Considerations” in Chapter

2 for more information.
v Do not alter any fields in the $JQE. The changes will not be successful because

you are in the subtask environment.
v Do not attempt to control the processing of the MVS converter by changing the

C/I text at Exit 60. The converter does not examine the C/I text returned from
the exit to determine what changes have been made. For example, you cannot
use this exit to execute a procedure other than the one initially named on the
EXEC statement, nor can you use this exit to control the printing of JCL
statement images by altering the MSGLEVEL parameter on the JOB statement.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 60 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Exit 60

Chapter 72. Exit 60: JES2 converter exit (user) 385

Job exit mask
Exit 60 is subject to suppression. The installation can implement exit 2 to set the
60th bit in the job exit suppression mask (JCTXMASK) or the installation can
indicate the exit is disabled in the JES2 initialization stream.

Storage recommendations
v Private subpool that resides below 16-megabytes
v Word 1 in register 1 contains the address of a 16-byte work area

Mapping macros typically required
$DTE, $DTECNV, $HASPEQU, $HCT, $JCT, $JCTX, $MIT, $XIT, CNMB, KEYS,
TEXT

Point of processing
This exit is taken from the JCL conversion processor subtask in the JES2CI address
space, from within module HASCCNVS at the following two times:
1. JES2 first gives your exit control after the converter has successfully converted

a complete JCL job into its equivalent C/I text. The exit receives control once
for each complete JCL statement unless the converter determines that any JCL
statement for this job is in error. A complete JCL statement is considered to be a
single JCL statement with all of its continuations. When Exit 60 is invoked, the
user's JCL has been merged with the expanded JCL from PROCLIB, and all
substitutions for symbolic parameters have been made. Therefore, all of the
standard modifications that JES2 will make to the C/I text are complete when
the exit receives control.

2. JES2 also gives your exit control after all of the JCL for a particular job has
been converted to C/I text even if the converter did detect a JCL statement that
was in error. It occurs at the return from the link to the converter, before JES2
creates the scheduler work area (SWA) control blocks. JES2 will not create the
scheduler work area (SWA) control blocks until all the JCL for a particular job
has been converted to C/I text.

Programming considerations
1. If you suspect that an exit routine associated with this exit is causing a

problem, the most expedient method of debugging is to disable the exit to
determine whether the problem still occurs when your exit routine is not
executed. Then, if the problem seems to be within your exit routine, you can
test the routine by turning on the tracing facility.
The trace record serves as a valuable debugging aid because it contains two
copies of each C/I text, one before the call to your exit routine and one after
the call to your exit routine. However, do not turn on tracing in your normal
production environment or you will seriously degrade the performance of your
system.

2. Extending the JCT Control Block

You can use the $JCTX macro extension service to add, expand, locate, and
delete extensions to the job control table ($JCT) control block from this exit. For
example, you can use these extensions to store job-related information.

3. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

Exit 60

386 z/OS V2R1.0 JES2 Installation Exits

4. Be sure to take into account when you manage any resources for the exit that
the final call to the exit cannot be made if the converter task abends.

Register contents when Exit 60 gets control
The contents of the registers on entry to this exit are:

Register
Contents

0 A code indicating the status of conversion processing

0 Indicates that a JCL statement has been converted to C/I text.

4 Indicates that the converter has completed converting the job to
C/I text. This is the final invocation of Exit 60 for the job.

1 Address of a 6-word parameter list

Word 1 (+0)
Address of a 16-byte work area available to the installation.

Word 2 (+4)
If the code passed in R0 is:
v 0, this word points to the address of a 8192 (2000 hex) byte

buffer that contains the C/I text of the converted JCL statement.
v 4, this word contains the address of the converter's return code.

Word 3 (+8)
Address of the $DTE

Word 4 (+12)
Address of the $JCT

Word 5 (+16)
JES2 sets this to 0 before it passes control to the exit routine.

Word 6 (+20)
Address of the $CIWORK are for this subtask.

2 Parameter list address mapped by $XPL. Register 1 points into this area for
compatibility with existing exits that do not understand the $XPL data
structure. The parameter list has the following structure:

XPLID
Eyecatcher ('$XPL')

XPLLEVEL
Indicates the version number of Exit 60

XPLXITID
Exit identifier - 60

XPLEXLEV
Version level of the exit

X060IND
Indicator byte

X060TEXT
Internal text exit

X060CEND
End of conversion

Exit 60

Chapter 72. Exit 60: JES2 converter exit (user) 387

X060COND
Condition byte:

X060TSU
Converting a TSO user

X060STC
Converting a started task

X060JOB
Converting a batch job

X060RESP
Response byte:

X060HOLD
Batch job hold indicator. Set on input as the current hold
state and can be modified by the exit.

X060PLUS
Exit 60 parameter list (register 1 points here)

X060WORK
16 byte work area address

X060ITXT
Internal text image address (when X060IND = X060TEXT)

X060CRET
Address of Converter RC (when X060IND = X060CEND)

X060CNVW
JES2 DTE work area address

X060JCT
JCT address

X060CNMB
Address of message buffer

X060CIW
CIWORK data area address

X060JCLS
Current job class that is associated with the job. For batch jobs, the
exit can update this field to alter the job class that is associated
with the job.

X060SCHE
Current scheduling environment (SCHENV) that is associated with
the job. For batch jobs, the exit can update this field to alter the
scheduling environment that is associated with the job.

3-10 Not applicable

11 Address of the $HCCT

12 N/A

13 Address of an 18-word OS-style save area

14 Return address

15 Entry address

Exit 60

388 z/OS V2R1.0 JES2 Installation Exits

Register contents when Exit 60 passes control back to JES2
Upon return from this exit, the register contents must be:

Register
Contents

0 Not applicable on return

1 Address of a 6-word parameter list

Word 5 (+16)
Address of a CNMB to be processed by the converter. If you want
to pass a message(s) that the C/I will include in the JCLMSG data
set for the job, this must contain the address of the CNMB (see
z/OS MVS Data Areas in the z/OS Internet Library:
http://www.ibm.com/systems/z/os/zos/bkserv/ for information
about the IEFCNMB macro).

2-13 Not applicable

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with this exit,
execute the next consecutive exit routine. If there are no more exit routines
associated with this exit point, continue with normal JES2 processing. If the
exit routine was called when register 0 contains a X'00", normal processing
is the conversion of the next JCL statement. If the exit routine was called
when register 0 contains a X'04', normal processing is to queue the job for
execution.

4 Tells JES2 to ignore any additional exit routines associated with this exit for
this C/I text and continue with normal processing. If the exit routine was
called when register 0 contains a X'00' normal JES2 processing is the
conversion of the next JCL statement. If the exit routine was called when
register 0 contained a X'04', normal JES2 processing is to queue the job for
execution.

8 Tells JES2 to bypass execution and cancel the job; the job is queued for
output rather than for execution. Conversion will continue until all JCL has
been converted.

Coded example
Module HASX06A contains a sample of Exit 60.

Module HASX60B contains the same sample exit 60 but also includes two samples
of exit 6 that call the common sample of Exit 60.

Exit 60

Chapter 72. Exit 60: JES2 converter exit (user) 389

http://www.ibm.com/systems/z/os/zos/bkserv/

390 z/OS V2R1.0 JES2 Installation Exits

Chapter 73. JES2 exit migration considerations

This chapter provides more details on a subset of the migration actions required
for JES2. For a complete list of the migration actions from one JES2 release to
another JES2 release, see z/OS Migration. The migration details in this chapter are
presented in the order in which they were introduced into a z/OS release. See z/OS
Migration for more information about when the migration actions are required.

JES2 z/OS V1R11 migration details
A new checkpoint activation level, which is called z11, is available for JES2 release
V1R11. The current checkpoint level is z2. JES2 needs certain conditions to activate
to the z11 checkpoint level: refer to “JES2 z/OS V1R11 checkpoint activation.”

Before activating to JES2 release V1R11, you should meet certain conditions if your
installation is using the following JES2 exits or macros: refer to “JES2 z/OS V1R11
exits and macros.”

JES2 z/OS V1R11 checkpoint activation
Use the $ACTIVATE command to activate to the z11 checkpoint level. The
$ACTIVATE, LEVEL=Z11 command expands the JES2 checkpoint to support
functions that are enabled with the z11 checkpoint level. JES2 will reject the
$ACTIVATE command if certain conditions are not met. For information about a
complete list of new functions that are enabled by z11 activation, see $ACTIVATE
command in z/OS JES2 Commands.

The $D ACTIVATE command provides an exhaustive list of reasons that block
checkpoint activation to the z11 checkpoint level. It is suggested that you use the
$D ACTIVATE command before attempting an activation to the z11 checkpoint
level.

JES2 z/OS V1R11 exits and macros
Before activating to JES2 release V1R11, you should meet certain conditions if your
installation is using the following JES2 exits or macros:
v If you reference JOE fields in any of your exits, check the $DOGJOE macro. This

macro enables creation of read and update mode artificial JOEs that are called
JOAs. For information about $DOGJOE macro, see z/OS JES2 Macros. For a
description of JOAs, see “Checkpoint control blocks” on page 407.

v If you use JES2 Exit 1, Exit 15, Exit 38, Exit 46 or Exit 56, your code might need
to be updated. Before JES2 release V1R11, real work JOE and characteristics JOE
were passed to these various exits. Starting with JES2 release V1R11, an artificial
JOE will be passed to each of these exits. For more information about these exits,
see Chapter 12, “IBM-defined exits,” on page 65.

v If you use JES2 macros $#ADD, $#ALCHK, $#BLD and $#BUSY, your code
might need to be updated. In many cases the interface has changed to require
that a JOA be passed into the macro versus a work JOE or work/characteristics
JOE combination. In the case of $#BUSY and $#ALCHK, additional rules must be
followed. For information about the requirements of the macros, see z/OS JES2
Macros.

v The size of the JQX is changed. If you use the $DOGJQE service, the code
should not be impacted.

© Copyright IBM Corp. 1988, 2013 391

v JQEs, JOEs and BERTs have new size limits:
– JQEs = 400,000.
– JOEs = 1,000,000
– BERTs = 1,000,000

v The $#JOE macro returns a real JOE or a read mode JOA. Before JES2 release
V1R11, this macro only returned a real JOE. The default for $#JOE are changed
to return a read mode JOA. If read mode JOA is used and an early exit is made
from $#JOE processing loop, make sure that JOA is properly released by a call to
$DOGJOE service ACTION=RETURN.

v Before JES2 V1R11, exit 7 could determine which record was being read by using
the field CBMTTR. Starting with JES2 release V1R11, CBIO uses MQTR to
address a record on spool. If you have exit routines that examine field CBMTTR,
change them to examine field CBMQTR.

v JES2 is now an exploiter of 64 bit common storage to store information for
devices and jobs.

JES2 z/OS V2R1 migration details
In z/OS 2.1, JES2 provides improved JCL error handling, which can be used to
enhance your installation exits.

JES2 z/OS 2.1 input phase processing
Prior to z/OS 2.1, error messages that were generated during the JES2 input phase
were placed in the JESJCLIN data set, which was the only data set that was
created. This earlier method of reporting input phase error messages differed
significantly from conversion phase error reporting. For example, the following JCL
uses this method, which is employed in z/OS 1.13 and earlier releases:

In the example output from z/OS 1.13, error messages are intermixed with the JCL
for the job in a single output data set. And because the job never advanced past
the input phase, subsequent JCL errors went undetected.

//IBMUSERA JOB (,2D07),MSGLEVEL=(1,1),CLASS=ABC,SYSAFF=(BAD)
/*JOBPARM PROC=PROC99
//*
//STEP1 EXEC PGM=IEBDG,REGON=0M
//SYSPRINT DD SYSOUT=*
//DATASET1 DD SYSOUT=*
//SYSIN DD DATA,DLM=$$$$
There are a number of errors that JES2 would detect during input phase.
The result is a series of messages in the JESJCLIN data set that looks like this:
//IBMUSERA JOB (,2D07),MSGLEVEL=(1,1),CLASS=ABC,SYSAFF=(BAD) JOB00767
************ ILLEGAL JOB CARD - VALUE OF CLASS= EXCEEDS 1 CHARACTER ***********
/*JOBPARM PROC=PROC99
******* NON-VALID JOBPARM STMT - UNEXPECTED KEYWORD DETECTED - PROC ******
//*
//STEP1 EXEC PGM=IEBDG,REGON=0M
//SYSPRINT DD SYSOUT=*
//DATASET1 DD SYSOUT=*
//SYSIN DD DATA,DLM=$$$$
******** NON-VALID DD STMT - VALUE FOR DLM KEYWORD NOT VALID *******
$HASP106 JOB DELETED BY JES2 OR CANCELLED BY OPERATOR BEFORE EXECUTION
------ JES2 JOB STATISTICS ------

17 CARDS READ
7 SYSOUT PRINT RECORDS
0 SYSOUT PUNCH RECORDS
0 SYSOUT SPOOL KBYTES

0.00 MINUTES EXECUTION TIME

Figure 12. JCL example from z/OS 1.13 and earlier releases

392 z/OS V2R1.0 JES2 Installation Exits

By contrast, z/OS 2.1 produces the following output for this same job:

In the example output from z/OS 2.1, JES2 detects the errors during input
processing but still queues the job for conversion. Conversion phase processing
adds the messages to the normal system messages data set, with references back to
the statements in error.

In z/OS 2.1, JECL statements (which begin with /*) are also assigned line numbers
in the output. Messages continue to be placed in the JESJCLIN data set, but they
are tagged with meta data which identifies them as messages and not JCL. For
example, the following JESJCLIN data set is the data set for this job:

In z/OS 2.1, warning messages are also supported during the input phase, instead
of error messages only. This capability extends to the input phase for JES2 Exits 2,
4, 52, and 54, which can use the $RMSGQUE with MSG=WARNING to issue a
warning message and still allow the job to execute.

JES2 z/OS 2.1 conversion phase processing
In z/OS 2.1, conversion phase processing has been enhanced to allow the
interpreter to be called during the conversion phase, immediately after the
converter. This is typically done when the job is selected for execution.

Invoking the interpreter prior to job execution provides the following benefits:
v Errors that are typically found by the interpreter can be detected without the job

entering the execution phase. This provides more complete error detection when

12.43.45 JOB00042 IEFC452I IBMUSERA - JOB NOT RUN - JCL ERROR 533
------ JES2 JOB STATISTICS ------

17 CARDS READ
24 SYSOUT PRINT RECORDS
0 SYSOUT PUNCH RECORDS
1 SYSOUT SPOOL KBYTES

0.00 MINUTES EXECUTION TIME
1 //IBMUSERA JOB (,2D07),MSGLEVEL=(1,1),CLASS=ABC,SYSAFF=(BAD)
2 /*JOBPARM PROC=PROC99

//*
3 //STEP1 EXEC PGM=IEBDG,REGON=0M
4 //SYSPRINT DD SYSOUT=*
5 //DATASET1 DD SYSOUT=*
6 //SYSIN DD DATA,DLM=$$$$

STMT NO. MESSAGE
1 HASP110 value of CLASS= parameter is not valid
1 HASP112 value of SYSAFF= parameter is not valid
2 HASP107 UNEXPECTED KEYWORD DETECTED - PROC
3 IEFC630I UNIDENTIFIED KEYWORD REGON
6 HASP107 value for DLM keyword not valid

Figure 13. JCL example from z/OS 2.1 and later releases

//IBMUSERA JOB (,2D07),MSGLEVEL=(1,1),CLASS=ABC,SYSAFF=(BAD) JOB00010
HASP110 value of CLASS= parameter is not valid
HASP112 value of SYSAFF= parameter is not valid
/*JOBPARM PROC=PROC99
HASP107 UNEXPECTED KEYWORD DETECTED - PROC
//*
//STEP1 EXEC PGM=IEBDG,REGON=0M
//SYSPRINT DD SYSOUT=*
//DATASET1 DD SYSOUT=*
//SYSIN DD DATA,DLM=$$$$
HASP107 value for DLM keyword not valid

Figure 14. JESJCLIN data set example from z/OS 2.1 and later releases

Chapter 73. JES2 exit migration considerations 393

using TYPRUN=SCAN. However, data set locate processing is still not done
until job execution, so missing data sets remain undetected during the
conversion phase.

v OUTPUT cards that specify the JESDS or MERGE parameters can be processed
even if the job does not execute. This processing is done after the interpreter is
called.

JES2 z/OS 2.1 data structure processing
If the interpreter is being called after the converter, processing for both the
converter and the interpreter is done in a separate address space to accommodate
data isolation and storage space requirements. In z/OS 2.1, multiple data structures
are altered to support running the subtasked portion of the conversion phase in a
separate address space. The data area changes are consistent (from an exits
perspective) across the JES2 address space and the new JES2CI address space.

The conversion PCE exits in both environments (JES2 and JES2CI private) and
remains essentially unchanged. A conversion DTE in both environments represents
the subtask. However, most of the data areas that were in the DTE prior to z/OS
2.1 have been moved to two new local work areas, the CIWORK and CIWORKB
data areas, which are both contained in the $CIWORK macro. These areas are 31
and 24-bit JES2 or JES2CI private storage work areas for the conversion subtasks.

Prior to z/OS 2.1, the DTE also passed information about the job being converted
from the PCE that selected the job to the DTE that was converting the job. In z/OS
2.1, this is no longer possible because the DTE could exist in a separate address
space. The CIPARM data area in the $CIPARM macro is now used to communicate
this information. The CIPARM data area is located in the PSO data space and is
pointed to by both the PCE (pointer JPCECIP and ALET $PSOTOK) and the DTE
(pointer DCNVCIP and ALET DCNVCIPL).

JES2 z/OS 2.1 Exit 6 considerations
Exit 6 gets control of a job for every converter/interpreter text record that is
created, and it also gets control of a job at the end of conversion processing to
perform any final processing. Because Exit 6 is called directly out of the subtask, it
is running in the JES2 SUBTASK execution environment. This environment is
similar to the USER environment, except that register 11 is the HCT address in the
SUBTASK environment.

In z/OS 2.1, this same processing cannot be run in the JES2CI address space. This
processing will not run in the SUBTASK environment because it cannot access the
HCT in private storage. When this processing is done in the JES2CI address space,
it must be run in the USER environment where register 11 points to the HCT.

In z/OS 2.1, Exit 6 cannot be called when processing is done in the JES2CI address
space. USER environment Exit 60 is called instead, at the same point in job
processing that Exit 6 is called in the JES2 address space.

If your exit 6 routine only involves passing data areas on to the interface, your exit
6 does not require changes for z/OS 2.1. However, if your exit 6 accesses fields in
the converter DTE that have been moved to the CIWORK data area, you must
change your references to these fields. All fields names have been updated
consistently. The address of the CIWORK data area is passed to Exits 6 and 60.

If you use Exit 6 to create an Exit 60, you must update your Exit 60 routine to
reference fields in the JES2CI address space instead of in JES2 private storage. If

394 z/OS V2R1.0 JES2 Installation Exits

your data areas are locally-defined, they might also require being relocated to
common storage (31 or 64 bit) or to a data space. If they are data areas that are
owned by JES2, check to see if they have already been copied to an accessible data
area that you can use.

In z/OS 2.1, both Exit 6 and Exit 60 include a new XPL data area, which is passed
to the exit in register 2. This standardizes the method for accessing fields that are
passed to these exits by using field names instead of hardcoded offsets. This also
allows you to determine if your routine is being called as an Exit 6 or an Exit 60.

The sample Exit 60 (HASX60B) that is provided in z/OS 2.1 is an example of how
to use a single USER environment routine for both Exit 6 and Exit 60. It includes
one example Exit 6 that switches to the USER environment and calls a specific Exit
60 routine. A second example Exit 6 switches to the USER environment and uses
the $EXIT facility to invoke all the Exit 60 routines that are defined. Both example
exits provide a single routine which performs both Exit 6 and Exit 60 functions.

JES2 z/OS 2.1 Exit 7 and Exit 8 considerations
Exits 7 and 8 are the CBIO exits in the main task and user environments. Because
conversion subtask processing can occur in the JES2CI address space in z/OS 2.1,
the process of reading in the IOTs for a job and later writing out the IOTs has been
relocated from the conversion PCE to the subtask. This change implies that read
and write operations are detected by Exit 8 instead of by Exit 7. Therefore, you
must relocate any processing that involves reading or writing IOTs during the
conversion phase from Exit 7 to Exit 8.

Because job processing can occur in a separate address space in z/OS 2.1, Exit 8
code cannot access JES2 private storage.

It is uncommon for any JES2 exit to read or write IOTs during conversion
processing. However, JES2 exits are called at this point in processing to
accommodate any case where general processing is done for IOTs while they are
read and written.

JES2 z/OS 2.1 Exit 36 and Exit 37 considerations
Exits 36 and 37 get control of a job whenever a RACF call is made. JES2 makes
RACF calls during conversion processing to create the security environment for the
job. These exits use FUNCODEs of $SEAVERC and $SEAVERD for the VERIFY
CREATE and VERIFY DELETE RACROUTE calls. There is also a call to audit the
creation of in-stream data sets, which is performed using a FUNCODE of $SEASIC.
In z/OS 2.1, all of these functions can be called in the JES2CI address space, and
potentially no longer have access to data areas in the JES2 private address space.

JES2 z/OS 2.1 Exit 44 considerations
Exit 44 gets control of a job at the end of conversion phase processing, in the JES2
main task. The processing for Exit 44 exit is unchanged in z/OS 2.1. However,
because the IOTs are written and freed in the JES2CI address space, they are no
longer available when Exit 44 gets control of a job. If your exit examines the IOTs,
move this processing to the final Exit 6 call, after conversion has completed.

JES2 z/OS 2.1 Exit 59 considerations
If the interpreter is called, then Exit 59 is called after a job is interpreted and after
any OUTPUT cards are processed, but before SWA blocks that are created by the
interpreter are written to spool. In z/OS 2.1, Exit 59 performs any verification of

Chapter 73. JES2 exit migration considerations 395

the data in the SWA blocks (for example, LOCATE processing for any data sets
that are specified in the JCL). Exit 59 can request that the job being processed is
failed and does not execute.

396 z/OS V2R1.0 JES2 Installation Exits

Appendix A. JES2 exit usage limitations

The following table notes those instances when reader and converter exits (Exits 2,
3, 4, 6, 20, and 60) are invoked or not invoked. Be certain to consider this
information when attempting to implement these exits.

Table 12. Reader and converter exits usage. Exits taken for, input services and converter

Exits Taken for Input Services Converter

Source of Job 2/52 3/53 4/54 20/50 6/60

Job from local reader Y(2) Y(3) ¹ Y(4) Y(20) Y

Job from remote reader Y(2) Y(3) ¹ Y(4) Y(20) Y

TSO session logon (TSU) Y(52) Y(53) ¹ Y(54) Y(50) Y

TSO submitted job Y(52) Y(53) ¹ Y(54) Y(50) Y

Started task Y(52) Y(53) ¹ Y(54) Y(50) Y

Job with /*ROUTE XEQ - INTRDR,
NJE/TCP

Y(52) Y(53) ¹ Y(54) Y(50) N

Job with /*ROUTE XEQ - Other
sources

Y(2) Y(3) ¹ Y(4) Y(20) N

Job following /*XMIT JECL or
//XMIT JCL

N N N N N

Job from NJE job receiver:

Job for this node - TCP/IP Y(52) Y(53) ¹ Y(54) Y(50) Y

Job for this node - SNA, BSC N(2) Y(3) ¹ N(4) Y(20) Y

Store and forward - TCP/IP N N N Y(50) N

Store and forward - BSC, SNA N N N Y(20) N

Job from NJE SYSOUT receiver:

Job for this node - BSC, SNA, TCP/IP N N N N N

Store and forward - BSC, SNA,
TCP/IP

N N N N N

Job internally generated by JES2
(SYSLOG-RMTMSG)

N N N N N

Spool offload job receiver ² Y(2) Y(3) ¹ Y(4) Y(20) Y

Spool offload SYSOUT receiver N N N N N

XBM invocation - INTRDR, NJE/TCP Y(52) Y(53) ¹ Y(54) Y(50) Y

XBM invocation - other sources Y(2) Y(3) ¹ Y(4) Y(20) Y

Special Case JCL and JECL

JCL from cataloged procedure N/A N/A N N/A Y

//*COMMENT cards - INTRDR,
NJE/TCP

Y(52) N/A Y(54) N/A N/A

//*COMMENT cards - other sources Y(2) N/A Y(4) N/A N/A

/*PRIORITY statements- INTRDR,
NJE/TCP

N/A N/A Y(54) N/A N/A

/*PRIORITY statements - other sources N/A N/A Y(4) N/A N/A

© Copyright IBM Corp. 1988, 2013 397

Table 12. Reader and converter exits usage (continued). Exits taken for, input services and
converter

Exits Taken for Input Services Converter

/*$command statements - INTRDR,
NJE/TCP ³

N/A N/A Y(54) N/A N/A

/*$command statements - other
sources ³

N/A N/A Y(4) N/A N/A

/*end of SYSIN data N/A N/A N N/A N/A

//null statements N/A N/A N N/A N/A

Generated DD*statement - INTRDR,
NJE/TCP

N/A N/A Y(54) N/A N/A

Generated DD*statement - other
sources

N/A N/A Y(4) N/A N/A

/*with invalid verb - INTRDR,
NJE/TCP

N/A N/A Y(54) Y(50) N/A

/*with invalid verb - other sources N/A N/A Y(4) Y(20) N/A

//with invalid verb - INTRDR,
NJE/TCP

N/A N/A Y(54) Y(50) N/A

//with invalid verb - other sources N/A N/A Y(4) Y(20) N/A

/*EOF internal reader N/A N/A N N/A N/A

/*DEL internal reader - INTRDR,
NJE/TCP

N/A N/A N Y(50) N

/*DEL internal reader - other sources N/A N/A N Y(20) N

/*PURGE internal reader - INTRDR,
NJE/TCP

N/A N/A N Y(50) N

/*PURGE internal reader - other
sources

N/A N/A N Y(20) N

/*SCAN internal reader N/A N/A N N/A N

Where Y(n) = Exit is invoked and number, N = Exit is not invoked, and N/A = Not
applicable

Note:

1. Exit 3/53 is taken only if ACCTFLD=REQUIRED or OPTIONAL is specified on the
JOBDEF initialization statement. Exit 3/53 will be taken even if there is no accounting
information provided on the JOB statement.

2. This might be the second (or higher) pass through these exits for this job.

3. Commands must be outside of a job; they will invoke Exit 4/54 but will not have a JCT
(R10=0).

398 z/OS V2R1.0 JES2 Installation Exits

Appendix B. Sample code for Exit 17 and Exit 18

The following is code that your installation can include in installation Exit 17 and
Exit 18 to remove blanks from the remote workstation identifier on the RJE signon
cards.

Col 72
|
v

X1718 $MODULE ENVIRON=JES2,TITLE=’JES2 EXIT 017 - $MODULE’, X
$CADDR, JES2 Common Address Table X
$HASPEQU, JES2 Equates X
$HCCT, JES2 Common Communications Table X
$HCT, JES2 Control Table X
$HFAME, JES2 File Allocation Map Entry X
$MIT, JES2 Module Information Table X
$MITETBL, JES2 MIT Entry Table X
$PADDR, JES2 Private Routine Address Table X
$PARMLST, JES2 Parameter list X
$PCE, JES2 Processor Control Element X
$PSV, JES2 Prefix Save Area X
$SCAT, JES2 Sysout Class Attribute Table X
$USERCBS, User Control Blocks X
$XECB JES2 Extended ECB

X17DBLNK $ENTRY CSECT=YES,BASE=R12 Establish entry point
SPACE 1
$SAVE Save caller’s registers
LR R12,R15 Save base address
SLR R6,R6 Preset return code
LTR R0,R0 Is this the first call for signon?
BNZ X17RET No, return now
EJECT

**
* *
* The card image passed to this routine by JES2 will *
* always have a blank after the characters ’/*SIGNON’. *
* *
**

SPACE 1
L R2,12(,R1) Point to the signon card
LA R2,15(,R2) Point to remote number portion
SPACE 1

© Copyright IBM Corp. 1988, 2013 399

**
* *
* Now get past the ’RMT ’ or ’R ’. *
* *
**

SPACE 1
SLR R7,R7 Zero number of blanks found
LA R5,L’X17FIELD Get max length of remote field
LA R4,L’X17REMOT Assume that it is ’REMOTE’
CLC X17REMOT,0(R2) Does it start with ’REMOTE’?
BE X17FNUM Yes, go process the number
LA R4,L’X17RMT Assume that it is ’RMT’
CLC X17RMT,0(R2) Does it start with ’RMT’?
BE X17FNUM Yes, go process the number
LA R4,L’X17RM Assume that it is ’RMT’
CLC X17RM,0(R2) Does it start with ’RM’?
BNE X17RET No, can’t do anything with it

X17FNUM LA R2,0(R4,R2) Point to character after remote
SR R5,R4 Get count of numbers in field
LR R4,R5 Save number of numbers
LR R3,R2 Save start of number portion

X17LOOP CLI 0(R2),C’ ’ Is the next char a blank?
BNE X17SKWSH No, all done
LA R7,1(,R7) Increment number of blanks found
LA R2,1(,R2) Point to next character
BCT R5,X17LOOP And continue de-blanking
B X17RET No numbers, all blanks
EJECT

400 z/OS V2R1.0 JES2 Installation Exits

**
* *
* Move the characters over and then fill the rest of the *
* remote number portion of the field with blanks. *
* *
**

SPACE 1
X17SKWSH LTR R7,R7 Were any blanks found?

BZ X17RET No, line is OK
SR R4,R7 Get number of numbers
BCTR R4,0 Less one for execute
EX R4,X17MOVE1 Move the characters over
LA R3,1(R4,R3) Point past numbers
BCTR R7,0 Less one for execute
EX R7,X17MOVE2 Blank out remaining characters
SPACE 1

X17RET $RETURN RC=(R6) Return to the caller
EJECT

**
* *
* Executed statements and storage areas *
* *
**

SPACE 1
X17MOVE1 MVC 0(*-*,R3),0(R2) Squish out those blanks
X17MOVE2 MVC 0(*-*,R3),X17BLANK Squish out those blanks

SPACE 1
X17BLANK DC CL9’ ’
X17FIELD DC C’REMOTE999’
X17REMOT DC C’REMOTE’
X17RMT DC C’RMT’
X17RM DC C’RM’

* *
* LITERAL POOL *
* *

SPACE 1
LTORG ,
SPACE 1
$MODEND ,
END

Appendix B. Sample code for Exit 17 and Exit 18 401

402 z/OS V2R1.0 JES2 Installation Exits

Appendix C. Job-related exit scenarios

This appendix identifies the JES2 job-related exits. It also describes the relationship
between the JES2 $JCT and MVS/SP JMR blocks and provides an overview of the
security access service.

Examples of exits that are not job-related are exits such as those taken during JES2
initialization, JES2 termination, RJE signon, JES2 command processing, and other
functions not necessarily related to individual jobs 1.

Job-related exits fall into two categories: specific purpose and general purpose. A
specific purpose job-related exit is one that provides a specific function. Although,
it may be used for other purposes such as a compromise to avoid in-line
modifications.

Examples of specific-purpose job-related exits are job output overflow (Exit 9) and
spool partitioning exits (Exits 11 and 12). These exits are used in controlling output
limits and spool allocation (fencing) for a particular job. Because these exits do not
occur at predictable intervals during the life of a job, using them for a general
purpose is not appropriate.

General-purpose job-related exits are exits such as the job statement scan exit (Exit
2), converter internal text scan exit (Exit 6), and the control block read/write exits
(Exits 7 and 8). These exits are typically considered when there is a user
requirement to control installation standards, job resources, security, output
processing, and other job-related functions.

Often the use of more than one exit is required and sometimes combinations of
JES2 and other exits such as Systems Management Facilities (SMF) exits must be
used. Table 13 on page 404 lists the exits that are discussed. They are not all of the
job-related exits but possibly enough to make a decision as to which exits to
choose to control certain processes or functions during the life of a job.

Exit sequence
There are two major considerations when selecting an exit to satisfy a user
requirement:
1. The environment of the exit -

The address space, TCB (task), storage key, data areas that are addressable, and
facilities are available at the time the exit is taken.

2. The sequence of the exits -
Which exits precede and which exits follow each other? What processing has
preceded and what processing follows the exit?

1. A job, in JES2 terminology, is anything represented by a Job Queue Element ($JQE). The name “job” is also used to describe job
output rather than the more specific term - spool data set. It is common for operators to say that a “job” is on the printer or a
“job” is printing. It would be awkward, but more accurate, to say that the data set or output group is printing.

© Copyright IBM Corp. 1988, 2013 403

Selected exits
To provide a user-required function, two or more exits may be needed. In that
case, understanding the sequence of exits is important.

Table 13 lists the selected exits that are included here for further discussion.

Table 13. Job-Related Exits

Exit Exit Title Comment

1 Print/Punch Separator Taken when a job's data sets have been selected
for printing or punching, before the check for the
standard separator page.

2 JOB Statement Scan The first exit taken for a job and before the
statement is processed.

3 Job Statement
Accounting Field Scan

Taken after JOB statement has been processed.
Normally used to replace or supplement JES2's
accounting field scanning routine (HASPRSCN),
but also used as a post job card exit.

4 JCL and JECL control
statement scan

Taken for each JCL and JECL statement submitted
but not for PROCLIB JCL statements.

6 Converter/Interpreter
internal text scan

An efficient exit for scanning JCL because of
structured text and single record for each
statement (no continuation). This exit is used
when conversion is done in the JES2 address
space. Use exit 60 for conversion that is done in
the JES2CI address space.

7 Control Block
Read/Write (JES2
environment)

Taken from the JES2 main task each time a spool
resident control block ($JCT, $IOT, $SWBIT,
$OCR) is read from or written to spool.

8 Control Block
Read/Write (User or
Subtask environment)

Taken from the user address space or a JES2
subtask each time a spool resident control block
($JCT, $IOT, $SWBIT, $OCR) is read from or
written to spool.

15 Output Data Set/Copy
Select

Taken once for each data set where the data set's
$PDDB matches the selected Job Output Element
($JOE) and once for each copy of these data sets.

20 End of Job Input Taken at the end of input processing and before
$JCT is written. This is typically a good place to
make final alterations to the job before conversion.

28 SSI Job Termination Taken at the end of job execution before the $JCT
is written to spool.

30 SSI Data Set
Open/Restart

Taken for SYSIN, SYSOUT, or internal reader
Open or Restart processing.

31 SSI Allocation Taken for SYSIN, SYSOUT, or internal reader
Allocation processing.

32 SSI Job Selection Taken after all job selection processing is
complete.

33 SSI Data Set Close Taken for SYSIN, SYSOUT, or internal reader
Close processing.

404 z/OS V2R1.0 JES2 Installation Exits

Table 13. Job-Related Exits (continued)

Exit Exit Title Comment

34 SSI Data Set Unallocate -
Early

Taken for SYSIN, SYSOUT, or internal reader
Unallocate processing. This exit is taken early in
Unallocation. You may want to consider Exit 48
(late unallocation) when modifying SYSOUT
characteristics.

35 SSI End-of-Task Taken at end of each task during job execution.

36 Pre-SAF Taken just before JES2 call to SAF.

37 Post-SAF Taken just after the return from the JES2 call to
SAF

40 Modifying SYSOUT
characteristics

Taken during OUTPUT processing (HASPHOPE
or HASPSPIN) for each SYSOUT data set before
JES2 gathers data sets with like attributes into a
$JOE.

44 Post Conversion -
Maintask

Taken in maintask environment after job
conversion processing and before the $JCT and
$JQE are checkpointed

46 NJE Transmission Taken for NJE header, trailer, and data set header
during NJE job transmissions.

47 NJE Reception Taken for NJE header, trailer, and data set header
during NJE job reception.

48 SYSOUT Unallocation -
Late

This exit can be used as an alternative to Exit 34
(early allocation). It is more suitable when
modifying SYSOUT characteristics or affecting
SPIN processing. When modifying SYSOUT
characteristics in Exit 34, subsequent JES2
processing can override changes made to the
$PDDB in the exit. If processing is required
earlier, use Exit 34.

49 Job Queue Work Select -
QGOT

This exit allows you to gain control whenever
JES2 work selection processing has located a
pre-execution job for a device. This includes work
selected for JES2 and workload management
(WLM) initiators.

50 End of Job Input Taken at the end of input processing and before
$JCT is written. This is typically a good place to
make final alterations to the job before conversion.

51 Job Phase Change Taken when a job moves from one phase to the
next.

52 JOB Statement Scan The first exit taken for a job and before the
statement is processed.

53 Job Statement
Accounting Field Scan

Taken after JOB statement has been processed.
Normally used to replace or supplement JES2's
accounting field scanning routine (HASPRSCN),
but also used as a post job card exit.

54 JCL and JECL control
statement scan

Taken for each JCL and JECL statement submitted
but not for PROCLIB JCL statements.

56 NJE Transmission Taken for NJE header, trailer, and data set header
during NJE job transmissions.

57 NJE Reception Taken for NJE header, trailer, and data set header
during NJE job reception.

Appendix C. Job-related exit scenarios 405

Table 13. Job-Related Exits (continued)

Exit Exit Title Comment

58 End of Step Taken at the end of each step in a job.

59 Post Interpretation A efficient place to examine SWA blocks (using
SJF services) prior to a job going into execution.

60 Converter/Interpreter
internal text scan

An efficient exit for scanning JCL because of
structured text and single record for each
statement (no continuation). This exit is used
when conversion is done in the JES2CI address
space. Use exit 6 for conversion done in the JES2
address space.

IEFUJV SMF Job Validation Receives control for each JCL statement and at the
conversion end from the converter subtask.
IEFUJV receives control from the user's address
space after all JCL is interpreted.

IEFUJI SMF Job Initiation Taken at job initiation after the $JCT has been
checkpointed and before SMF exit IEFUSI.

IEFUJP SMF Purge Taken from subtask in JES2 address space after
job is purged.

IEFUSI SMF Step Initiation Taken just after SMF exit IEFUJI for the first step
of a job. Also taken again at the beginning of each
subsequent step.

IEFACTRT SMF Termination Receives control at job and step termination and
for the creation of SMF type 5 and 35 records.

SPOOL control blocks
It's important to understand the status of any control block to be referenced or
altered in a user exit. Control blocks associated with a job may not always be in
storage. However, all job-related control blocks are written to either the checkpoint
data set or a spool data set. This is done to:
v Allow warm starts after JES2 termination.
v Make control blocks accessible to all sharing members of a multi-access spool

complex.
v Provide recovery in case of a system failure.

Sometimes job-related control blocks are just read and not written (if they are not
altered) but are always written after they are created and after they have been
altered. The job-related control blocks on spool are:
v $JCT - Job Control Table
v $IOT - I/O Table (contains spool track allocation and spool data set information)
v $OCT - Output Control Table (contains Output Control Records (OCRs) which

are used for /*OUTPUT JECL parameters)
v $SWBIT - SWB Information Table (contains Scheduler Work Blocks used by //

OUTPUT JCL)
v $CHK - Checkpoint record for local, RJE and FSS printers.

406 z/OS V2R1.0 JES2 Installation Exits

Checkpoint control blocks
If you write code for JES2 exits that access and update checkpoint control blocks,
you need to review this section and apply this information along with those
specific "Programming Considerations" described for the JES2 exit that you are
implementing.

Checkpoint control blocks for JQEs
JES2 provides different types of JQEs or JQAs to your exit and processes them in
differing ways. The types are:
v Real JQE. Your exit receives a read or update mode JQE or JQA.
v Read-mode JQA. Your exit receives an artificial JQE that is a temporary block of

storage. This storage contains:
– Almost the same information as the real JQE.
– Information from the JQX (new in Version 2 Release 4).
– Information from BERTs (another checkpointed area).

v Update-mode JQA. Your exit receives an artificial JQE that is a temporary block
of storage. This storage is similar to the read-mode JQA. JES2 ensures the
integrity of this JQA and manages the storage that each JQA occupies.

v Work area that contains a prototype JQE. In certain circumstances, your exit may
be passed the address of a work area that contains a working copy of a JQE. See
Exit 47 for more information.

Exits normally use JQEs in read mode (data is extracted or pointed to when calling
service routines) or in write mode (data in the JQE is modified). JES2 exit writers
need to take the following actions when they use a particular JQE or JQA as the
JQE= keyword value on the $DOGJQE macro:
v If the JQE is needed only to access data and that data is within the bounds of

the original real JQE, only the address of the real JQE is needed. Regardless of
what IBM has provided as the JQE address, use the following action to get the
address of the real JQE:
$DOGJQE ACTION=GETJQEADDR,CBADDR=jqe

v If the JQE is needed only to access data and that data is beyond the bounds of
the original real JQE (that is, it is stored in fields where the first three characters
of the field name are other than JQE), a read mode JQA is needed. Regardless of
what IBM has provided as the JQE address, use the following action to get the
address of a read mode JQA. The address of the read mode is returned in R0.
$DOGJQE ACTION=(FETCH,READ),JQE=jqe

After you finish, use the following action to free the memory that is used for the
JQA (x is the address that is returned from the first $DOGJQE call):
$DOGJQE ACTION=RETURN,CBADDR=x

v If the JQE is needed in write mode (the fields to be changed are either within
the bounds or not within the bounds of the original JQE), use the following
action to get the address of an update mode JQE, regardless of what IBM has
provided as the JQE address. The address of the JQA is returned in R0. Make all
changes to fields in the update mode JQA.
$DOGJQE ACTION=(FETCH,UPDATE),JQE=jqe

After you finish, use the following action to free the memory that is used for
JQA (x is the address from the first $DOGJQE call) and to ensure that the
changes in the JQA get propagated to the real JQE, the JQX, and the BERT area.
$DOGJQE ACTION=RETURN,CBADDR=x

Appendix C. Job-related exit scenarios 407

Update-mode JQA considerations: If an exit requires an update-mode JQA, use
the following logic path:
1. Perform the action:

$DOGJQE ACTION=(FETCH,UPDATE),JQE=jqe, WAIT=NO

where jqe is the address of the JQE that the IBM code gives to the exit.
2. If JES2 returns a return code indicating that the JQA could not be created, you

must manage the situation of lock not available.
3. If RC=0, perform rest of logic by using the JQA.
4. Perform the action:

$DOGJQE ACTION=RETURN,CBADDR=jqa

where jqa is the address that is returned in R0 from FETCH in the first step.

Note: It is not necessary or desirable to perform the following action before you
attempt to get an update-mode JQA.
$DOGJQE ACTION=(QUERYLOCK,OBTAINABLE)

This is valid because the non-zero return code (that is, the failure RC) returned by
QUERYLOCK indicates that the lock is not available for a new user. This condition
is different from requesting an update-mode JQA for the current caller.

Other processing considerations:

JQE or JQA processing considerations: When your exit returns a JQE or JQA to
the JES2 systems through these actions, certain errors can occur if JES2 determines
that what your exit has returned is not consistent with what JES2 knows to exist.
JES2 uses the $ERROR macro and issues the following errors:
v DJ1– Non-IBM code returned an IBM JQE or JQA that violates the consistency

checks of JES2.
v DJ2– IBM code returned a non-IBM JQE or JQA that violates the consistency

checks of JES2.

Note:

1. You are encouraged to disregard the kind of JQE or JQA that is passed to your
exit and always to do the following actions:
v To obtain the address of the real JQE (for example, your exit needs to

compute the offset of the JQE), perform the action:
$DOGJQE ACTION=GETJQEADDR

v To obtain the address of a read–mode JQE or JQA (for example, your exit
needs to examine the MAXCC field), perform the action:
$DOGJQE ACTION=(FETCH,READ)

v To obtain the address of an update–mode JQE or JQA (for example, your exit
needs to change the SYSAFF or PRIORITY or MAXCC), perform the action:
$DOGJQE ACTION=(FETCH,UPDATE)

2. If you are writing Exit 47, do not use $DOGJQE to access a JQE or a JQA.
3. If you are writing user environment exits, such as Exit 50, Exit 52, Exit 53, Exit

54, or Exit 57, do not use $DOGJQE to obtain an update mode JQA. These
exits, when passed a JQE, will always be passed an update-mode JQA. Exit 56
will always be passed a read-mode JQA.

4. If you are writing JES2 exits that are in the following situations:
v Run outside the JES2 main task

408 z/OS V2R1.0 JES2 Installation Exits

v Need to access or update checkpoint control blocks

you need to follow the specific coding recommendations in “Checkpoint control
blocks” on page 407 and those specific "Programming Considerations" listed for
the JES2 exit that you are implementing.

Checkpoint control blocks for JOEs
JES2 provides different types of artificial JOEs (that is, JOAs) to your exit and
processes them in differing ways. The types are:
v Read-mode JOA. Your exit receives an artificial JOE that is a temporary block of

storage. This storage contains:
– Information about the Work JOE
– Information about the Characteristics JOE
– Information about the JOE Extension (JOX)
– Information about BERTs (another checkpointed area). BERT data that is

owned by JOEs is new for JES2 release V1R11 code running in z11 checkpoint
activation mode. For more information about JES2 z11 activation see the
$ACTIVATE and $DACTIVATE commands in z/OS JES2 Commands.

v Update-mode JOA. Your exit receives an artificial JOE that is a temporary block
of storage. This storage is similar to the read-mode JOA. JES2 ensures the
integrity of this JOA and manages the storage that each JOA occupies.

v Work area that contains a prototype JOA. In certain circumstances, your exit
may be passed the address of a work area that contains a working copy of a
JOA. For example, a prototype JOA is embedded in the JOE Information Block
($JIB). See Exit 23 for more information.

Exits normally use JOAs in read mode (data in the JOA is used but not modified)
or in write mode (data in the JOA is modified). The exit should always obtain
either a READ or an UPDATE mode JOA. The use of the real JOE should be
avoided if possible. JES2 exit writers need to take the following actions:
v If a JOA is needed only to access data, a local read mode JOA should be

obtained. Regardless of what IBM has provided as the JOA address, use the
following action to obtain the address of a read mode JOA. The address of the
local read mode JOA is returned in R0.
$DOGJOE ACTION=(FETCH,READ), JOE=joa

where joa is the address of the JOA that IBM code provides to the exit.
After you finish, use the following action to free the memory that is used for the
local read mode JOA:
$DOGJOE ACTION=RETURN, CBADDR=joa

where joa is the JOA address that is returned from the first $DOGJOE call.
v If the exit must modify JOA fields, a local update mode JOA should be obtained.

Regardless of what IBM has provided as the JOA address, use the following
action to obtain the address of an update mode JOA. The address of the local
update mode JOA is returned in R0. Make all changes to fields in the local
update mode JOA.
$DOGJOE ACTION=(FETCH,UPDATE), JOE=joa

where joa is the address of the JOA provided to the exit by IBM code.

Appendix C. Job-related exit scenarios 409

After you finish, use the following action to free the memory that is used for the
local update mode JOA and to ensure that any changes that are made in the JOA
are propagated to the real work JOE, the real characteristics JOE, the JOX, and
the BERT area.
$DOGJOE ACTION=RETURN, CBADDR=joa

where joa is the JOA address returned from the first $DOGJOE call.

Update mode JOA considerations for wait conditions: If an exit requires an
update-mode JOA, but cannot wait for a possible conflict to be resolved, use the
following logic path:
1. Perform the action:

$DOGJOE ACTION=(FETCH,UPDATE), JOE=joa, WAIT=NO

where joa is the address of the JOA that IBM code provides to the exit.
2. If JES2 returns a return code indicating that the update mode JOA could not be

created, you must manage the situation of lock not available.
3. If RC=0, perform rest of the exit logic by using the update mode JOA.
4. Perform the action:

$DOGJOE ACTION=RETURN, CBADDR=joa

where joa is the address that is returned in R0 from FETCH in the first step.

Other processing considerations:

JOA processing considerations: When your exit returns a JOA to the JES2
systems through these actions, certain errors can occur if JES2 determines that
what your exit has returned is not consistent with what JES2 knows to exist. JES2
uses the $ERROR macro and issues the following errors:
v D01– Non-IBM code returned an IBM JOE or JOA that violates the consistency

checks of JES2.
v D02– IBM code returned a non-IBM JOE or JOA that violates the consistency

checks of JES2.

Note:

1. You are encouraged to disregard the kind of JOA that is passed to your exit
and always to do the following actions:
v To obtain the address of a read–mode JOA (for example, your exit needs to

examine but not change the JOEFORM field), perform the action:
$DOGJOE ACTION=(FETCH,READ)

v To obtain the address of an update–mode JOA (for example, your exit needs
to change the JOEHSRSN field), perform the action:
$DOGJOE ACTION=(FETCH,UPDATE)

2. If you are writing JES2 exits that are in the following situations:
v Run outside the JES2 main task
v Need to access or update checkpoint control blocks

you need to follow the specific coding recommendations in “Checkpoint control
blocks” on page 407 and those specific "Programming Considerations" listed for
the JES2 exit that you are implementing.

410 z/OS V2R1.0 JES2 Installation Exits

$JCT/JMR relationship
The MVS Job Management Record (JMR) is initialized as part of the JES2 $JCT
when the $JCT is built by HASPRDR.

Additionally, the following information should help in the understanding of the
$JCT and JMR relationship:
v SMF documentation references to the Common Exit Parameter Area (CEPA)

which is actually the MVS JMR.
v During the Conversion, Execution, and Purge phases of JES2, the JMR is built by

copying the JMR section of the JES2 $JCT into the MVS JMR and constructing
the JMR extension.

v At the end of the Conversion and Execution phases of JES2, the MVS JMR is
copied back into the $JCT. Any alterations to the JMR is therefore checkpointed
along the JES2 $JCT.

v The CEPA User-Communication field (defined as JMRUCOM in the JMR) could
be used to provide addressability to the JES2 $JCT for SMF exits.

v There is a MVS Job Control Table (JCT). It's built by MVS and used during
execution by MVS. and has nothing to do with the JES2 JCT.

The following table, Table 14, displays a side-by-side label comparison of the JMR
(CEPA) and the JES2 $JCT/JMR areas.

Table 14. $JCT/JMR Definitions

$JCT Label JMR Label Length Field Description

JCTJMRJN JMRJOB 8 characters 8-character job name from JOB JCL statement

JCTRDRON JMRENTRY 4 bytes Time, in hundreds of second, on Input
processor

JCTRDTON JMREDATE 4 bytes Date on Input processor in form of 00YYDDDF

JCTCPUID JMRCPUID 4 bytes SMF SYSID

JCTUSEID JMRUSEID 8 characters Initialized to blanks by JES2

JCTSTEP JMRSTEP 1 byte Current step number

JCTINDC JMRINDC 1 byte SMF options

JCTJTCC JMRFLAG 1 byte Job status indicator

JCTCLASS JMRCLASS 1 byte First byte of execution job class

JCTUCOM JMRUCOM 4 bytes User communication area - initialized to zeros
by JES2

JCTUJVP JMRUTLP 4 bytes User time limit exit routine

JCTRDROF
JCTRDTOF

JMRDRSTP 8 bytes First word is time off input process and second
word is date off input process

JCTJOBIN JMRJOBIN 4 bytes Job's SYSIN count

JCTRDR JMRRDR 2 bytes Reader device type and class

JCTJMOPT JMROPT 1 byte SMF option switches

(none) (none) 1 byte Reserved

JCXJCLA8 JMRCLAS8 8 characters 8 character jobclass

(none) JMRJOBCORRELATOR 64 characters JES job correlator for inclusion in SMF records

Appendix C. Job-related exit scenarios 411

Input phase
The JES2 input service exits provide the functions needed to receive all
pre-execution batch jobs, started tasks, and time sharing sessions into the system.
There are special cases, as outlined in “Job input sources,” where some (non-batch)
jobs bypass input service.

Many installations use input service exits to control installation standards, tailor
accounting information, and provide additional security controls.

Job input sources
Figure 15 shows The possible sources of jobs entered into JES2. Each of the input
sources (known internally as devices) is represented by a Processor Control
Element ($PCE) and a Device Control Table ($DCT). The $PCE is the dispatchable
element used by the JES2 dispatcher and the $DCT contains the device (input
source) information.

When designing input service exits, be aware that jobs can be entered from a
number of input sources. Consider whether the source of a job could affect the exit
processing. For example, in the case of a spool offload job receiver, an individual
job could be submitted more than once. This could be an important consideration
if the purpose of the exit is to add a JCL or JECL statement. A test for a spool
offload device ($DCT) may be in order to see if the additional statement already
exists. Also, some exit-provided functions may not apply to all job sources. For
example, you might want to bypass started tasks or time sharing sessions when
enforcing installations standards. When using spool offload to selectively reload
jobs, Exits 2-3-4 will be taken even for jobs that are not selected. This is because the
work selection takes place after the JCL has been received.

There are jobs ($JQEs) that do not originate through input service, for example, the
system log ($SYSLOG), the JES2 trace facility ($TRCLOG), and remote message
spooling ($RMTMSG) that are created internally and do not have JCL associated
with them. Additionally, there are jobs created for NJE and spool offload SYSOUT
receivers and NJE store-and-forward jobs. These are also specially created jobs that
do not go through input service and therefore input service exits are not taken for
these special jobs.

TSO Submit

TSO Internal Internal STC Internal

RJE NJE Job Spool Offload Card Reader

JES2 Input
Processing

Job/STC/TSU

Reader Reader

Rnnnn.RD1 Receiver Job Receiver

Reader

Figure 15. Job Input Sources

412 z/OS V2R1.0 JES2 Installation Exits

Job input service processing
The following scenarios describe the exits and the sequence of exits for a normal
batch job entered through either main task or user environment of JES2 input
service.

Table 15. Job Input Service Exits - Main Task. This applies to physical card readers, remote
readers, spool offload devices, and SNA/BSC NJE devices.

Step Processing Exit Used

1 If the job source is a NJE job receiver or a spool offload job
receiver (reload), Exit 47, the NJE header exit, is processed
before Exit 2. For all other job sources, Exit 2 will be the first
exit to be taken.

47

2 A job statement is read and the $JCT is initialized. Exit 2 has
control before the actual scanning of the job statement. You
can set the job defaults, the spools allowed mask (fencing),
and the job exit mask (to prevent certain future exits to be
taken). You may also control the message class of a job at this
time.

The job statement has not been processed. To control or
override statement parameters, change either the actual
parameter in the buffer or, choose a later exit to alter field in
the control block after the job statement scan is complete. For
each JOB continuation statement, an additional Exit 2 is taken
with a value of 4 in general register 0

2

3 After the job and job continuation statements have been
processed, a spool track is obtained using $TRACK and Exit
11.

11

4 An $IOT is initialized, and the spool control blocks ($JCT and
$IOT) are written to spool. Exit 7 is taken.

7

5 Exit 3 processes accounting information. The job statement has
already been written to the spool JCL data set. Therefore, it is
too late to alter the accounting information passed to the MVS
Converter. To alter accounting information, use HASPRSCAN.

3

6 Exit 4 processes submitted JCL, JCL continuation, and JES
control statements (JECL). JCL residing in PROCLIB is not
processed. To process all JCL, use SMF exit IEFUJV or Exit 6.
Exit 4 processes all JECL (/*), with the exception of internal
reader control statements (such as /*EOF, /*DEL.).

4

7 Exit 2 is taken. After Exit 2, the NJE header validation routine
is taken to verify the structure of the network job trailer and
indicate the end of the job.

2

8 If the input device is an NJE Job Receiver, Exit 47 is taken for
the network job trailer. Exit 47 can be used to:

v Reject the job (and hold it at the transmitting node)

v Accept the job (and add or remove sections of the NJE
header).

47

9 After all the submitted JCL and JECL have been processed for
a job, SAF calls are made to verify the job. Six additional SAF
calls are made to process system generated spool data sets
(joblog, job messages, JCL, and so on.). For each SAF call, Exits
36, 37 are taken. The SAF router exit (ICHRTX00) is also taken.

36

37
ICHRTX00

Appendix C. Job-related exit scenarios 413

Table 15. Job Input Service Exits - Main Task (continued). This applies to physical card
readers, remote readers, spool offload devices, and SNA/BSC NJE devices.

Step Processing Exit Used

10 After all of the job's submitted JCL and JECL have been
processed, and end of file (EOF) condition causes control to be
passed to the end of job processing, Exit 20 is taken. Exit 20
allows final changes to the job without the exposure of further
job JCL and JECL alterations. The final write of the $JCT and
$IOT to spool follows Exit 20.

The $JQE has not been checkpointed so you can make changes
affecting the $JQE. You can make changes to job class and job
priority and JES2 will propagate the changes to the $JQE. To
change other fields, such as JQEJNAME which require the
alteration of the $JQE, use the $DOGJQE service to obtain an
update mode JQE. When the updates are complete, use the
$DOGJQE service to return the updated JQE.

20

11 Exit 7 is taken again when the $JCT and $IOT are written to
spool. Exit 7 could be used to create an installation defined
spool-resident control block. The headers are kept in separate
SPOOL buffers with their address pointers in the $JCT.

The $JCTX macro extension service allows you to add, expand,
locate, and delete $JCT extensions. These extensions can be
used to store job-related accounting information that can be
copied throughout a network.

7

12 The $JQE is moved from the input queue to the conversion
queue and checkpointed. If an error occurs, the $JQE is placed
on the output queue or purge queue and checkpointed. Exit 51
is taken when the job moves on from one queue to the next.

51

Table 16. Job Input Service Exits - User Environment. This applies to internal readers
(batch, STC, and TSU), and TCP/IP NJE job receivers.

Step Processing Exit Used

1 If the job source is a NJE job receiver or a spool offload job
receiver (reload), Exit 57, the NJE header exit, is processed
before Exit 52. For all other job sources, Exit 52 will be the first
exit to be taken.

57

2 A job statement is read and the $JCT is initialized. Exit 52 has
control before the actual scanning of the job statement. You
can set the job defaults, the spools allowed mask (fencing),
and the job exit mask (to prevent certain future exits to be
taken). You may also control the message class of a job at this
time.

The job statement has not been processed. To control or
override statement parameters, change either the actual
parameter in the buffer or, choose a later exit to alter field in
the control block after the job statement scan is complete. For
each JOB continuation statement, an additional Exit 52 is taken
with a value of 4 in general register 0

52

3 After the job and job continuation statements have been
processed, a spool track is obtained using $TRACK and Exit
12.

12

4 An $IOT is initialized, and the spool control blocks ($JCT and
$IOT) are written to spool. Exit 8 is taken.

8

414 z/OS V2R1.0 JES2 Installation Exits

Table 16. Job Input Service Exits - User Environment (continued). This applies to internal
readers (batch, STC, and TSU), and TCP/IP NJE job receivers.

Step Processing Exit Used

5 Exit 53 processes accounting information. The job statement
has already been written to the spool JCL data set. Therefore,
it is too late to alter the accounting information passed to the
MVS Converter. To alter accounting information, use
HASPRSCAN.

53

6 Exit 54 processes submitted JCL, JCL continuation, and JES
control statements (JECL). JCL residing in PROCLIB is not
processed. To process all JCL, use SMF exit IEFUJV or Exit 6.
Exit 54 processes all JECL (/*), with the exception of internal
reader control statements (such as /*EOF, /*DEL.).

54

7 Exit 52 is taken. After Exit 52, the NJE header validation
routine is taken to verify the structure of the network job
trailer and indicate the end of the job.

52

8 If the input device is an NJE Job Receiver, Exit 57 is taken for
the network job trailer. Exit 57 can be used to:

v Reject the job (and hold it at the transmitting node)

v Accept the job (and add or remove sections of the NJE
header).

57

9 After all the submitted JCL and JECL have been processed for
a job, SAF calls are made to verify the job. Six additional SAF
calls are made to process system generated spool data sets
(joblog, job messages, JCL, and so on.). For each SAF call, Exits
36, 37 are taken. The SAF router exit (ICHRTX00) is also taken.

36

37
ICHRTX00

10 After all of the job's submitted JCL and JECL have been
processed, and end of file (EOF) condition causes control to be
passed to the end of job processing, Exit 50 is taken. Exit 50
allows final changes to the job without the exposure of further
job JCL and JECL alterations. The final write of the $JCT and
$IOT to spool follows Exit 50.

50

11 Exit 8 is taken again when the $JCT and $IOT are written to
spool. Exit 8 could be used to create an installation defined
spool-resident control block. The headers are kept in separate
SPOOL buffers with their address pointers in the $JCT.

The $JCTX macro extension service allows you to add, expand,
locate, and delete $JCT extensions. These extensions can be
used to store job-related accounting information that can be
copied throughout a network.

8

12 The $JQE is moved from the input queue to the conversion
queue and checkpointed. If an error occurs, the $JQE is placed
on the output queue or purge queue and checkpointed. Exit 51
is taken when the job moves on from one queue to the next.

51

Conversion phase
The interpreter converts C/I text to SWA control blocks used by the initiator to run
the job. The interpreter can be called as part of the conversion phase of a job or at
the start of a job's execution. When the interpreter is run is based on the
INTERPRET keyword on JOBDEF. If INTERPRET=JES, the interpreter is called
during the conversion phase.

Appendix C. Job-related exit scenarios 415

When the interpreter is called during the conversion phase, processing for both the
converter and the interpreter is normally run under a subtask in the JES2CI
address space. The actual address space name is jesxCInn, where jesx is the
subsystem name and nn is a number 1-25. Exits in this environment are called at
the same point in processing as they are when running in the JES2 address space.
However, because the code is running in a separate address space, the exits cannot
access JES2 private storage data areas such as the HCT and the PCE.

Other control block structures are the same regardless of the environment; there is
a converter DTE in both environments. The local work are the $CIWORK and
$CIWORKB (31 and 24 bit data areas); both are in private storage in the address
space. Communications between the PCE and the subtask is done by the $CIPARM
data area, which is located in the “PSO” data space with an address and ALET in
the $DTE work area.

When considering exit usage, you must consider the environment that the exit will
run in. Exit 7 (CBIO for the $JCT) executes in the maintask environment, Exit 8
(CBIO for the IOT) runs in the user environment, and Exit 6 and the SMF IEFUJV
exit execute in the subtask environment when the converter is being called in the
JES2 address space. If the converter is being called from the JES2CI environment,
then Exit 7 and 8 are running in the same environment, Exit 60 is called in the user
environment instead of Exit 6, and the SMF IEFUJV exit is running in the user
environment. All user environment exits called from the JES2CI address space
cannot access JES2 private storage. If maintask functions are required for a subtask
exit, two exits might be required to provide a specific function: for example, Exit 6
or 60 in conjunction with Exit 44.

Another important consideration is that there can be, and typically are, more than
one converter processor (and subtask); therefore, any exits taken in the subtask or
user environment (Exits 6, 59, 60, and SMF exit IEFUJV) must be MVS reentrant.
The following scenario describes the processing that occurs during the conversion
processing.

Table 17. Conversion phase processing

Step Processing Exit Used

1 A job is selected from the input queue, and the job's $JCT is
read from spool. Exit 7 is invoked with a value of zero in
general register zero (R0=0). The Converter Interpreter
Parameter area ($CIPARM) is initialized and the Converter
subtask is POSTed (either in the JES2 or JES2CI address space).

7

2 The JES2 conversion subtask locates the job's $PDDBs (JES2
Peripheral Data Definition Blocks) and Fake Opens the ACBs
(Access Control Blocks) for internal text, job log, system
messages, JCL, and JCL images data sets. The Converter
subtask LOADs the MVS Converter, if the Converter has not
already been loaded. Exit 8 is taken for reading the $IOTs from
spool.

8

3 The Security Access Service ($SEAS) macro calls the Security
Authorization Facility (SAF) to build the security environment
in case the jobstream contains MVS commands which if
present, would be issued by the Converter using the
Command SVC. The userid associated with the command
would be the user's, not JES2. As a result of the $SEAS call,
Exits 36 and 37 are called.

36

37

416 z/OS V2R1.0 JES2 Installation Exits

Table 17. Conversion phase processing (continued)

Step Processing Exit Used

4 For each JCL image, SMF exit IEFUJV (entry codes 0, 4, 8, and
64) is taken. This includes continuation statements. IEFUJV is
called once more with an entry code of 16.

SMF exit

IEFUJV

5 After the statement and all continuation statements have been
converted into C/I text, the Converter exit, XTXTEXIT is called
to provide spool data set names for SYSIN and SYSOUT JCL
statements. If the statement represents a SYSIN data set, a
$SEAS call is made to audit the creation.

XTXTEXIT

6 At the completion of conversion and after the Converter
returns to the JES2 converter processor module Exit 6 (when
running in the JES2 address space) or Exit 60 (when running
in the JES2CI address space) is taken with R0 set to 4 to allow
final conversion processing.

6/60

7 At the completion of conversion and after the Converter
returns to the JES2 converter processor module, a $SEAS call is
issued to delete the security environment. Exit 6 (R0=4) is
taken again to allow final processing.

6

8 If the interpreter should be called because INTERPRET=JES is
set (bit CIPOINTR in CIPARM flag CIPOFLAG is on) and the
job is not to be reconverted, then the JCL, JCL images, and
internal test ACBs are fake closed. The internal text ACB is
fake opened for input and SWA blocks ACB fake opened for
output. The environment is set up and the MVS interpreter is
called. After calling the interpreter, any JESDS and
MERGE=YES OUTPUT statements are processed. Then Exit 59
is called with the SWA blocks still in memory. After exit 59,
the SWA blocks are written to spool, and the SWA data areas
deleted.

59

9 A $SEAS call is issued to delete the security environment and
exits 36 and 37 are called as a result.

36

37

10 Exit 8 is taken to write the $IOTs. The JES2 converter processor
module subtask POSTs its maintask and WAITs for the next
job.

8

11 Exit 44 is taken to allow user modifications that require the
maintask environment. Using the $DOGJQE macro you can
access and optionally update fields in the JQE.

44

12 The JES2 converter module checkpoints the $JCT and invokes
Exit 7.

7

13 The $JQE is queued to the execution queue and Exit 51 is
invoked.

51

The conversion phase offers the only chance to have exit control over all of a job's
JCL. Although SMF exit, IEFUJV is taken for each JCL and JCL continuation
statement, JES2 Exit 6 and Exit 60 offers some advantages.

First, the format of the C/I text is more structured. It is in parsed form and all
major syntax errors have been removed. This has all been done by the converter
before the exit gets control.

Appendix C. Job-related exit scenarios 417

Another advantage of Exit 6 and Exit 60 over IEFUJV is that when JCL statements
have been converted into C/I text, there are no continuation statements. That is,
the entire JCL statement, along with all continuation statements, are represented by
a single C/I text statement.

A SAF security environment exists within the subtask and can be used with the
RACF FACILITY class to control the specification of options within JCL. Exit 6 and
Exit 60, messages can be returned to the Converter to be issued by the Converter.

Execution phase
This section attempts to merge those functions provided by a section of JES2 code
in the JES2 Job Select/Termination module known as “Job Selection” and the
pieces of MVS code known in the broad sense as “The Initiator”. The MVS Initiator
consists of many modules which perform job selection, allocation, and initiator
attach services (and others). JES2 Job Select also includes end-of-job functions.

For the purpose of this discussion, job selection is defined as the period, starting
with the initiator's Subsystem Interface (SSI) call for job selection by class and ends
with the JES2 message, $HASP373 JOB STARTED. The following scenario
describes the processing that occurs during the Execution Phase.

Table 18. Execution Phase Exits

Step Processing Exit Used

1 The MVS Job Selection module issues a SSI call specifying
function code 5 which identifies the call to JES2 as a request to
select a job by class.

SSI calls with a function code of 5 are processed by the JES2
Job Select/Termination module. JBSELECT POSTs JES2
execution processing and WAITs for a job to be selected.

If a JES2 initiator is selecting work, JES2 calls Exit 14 to allow
the your installation to provide its own queue selection routine
or to tailor the selection request. Exit 14 is not a job-related
exit, that is, JES2 has not selected a job at this time. Exit 14 can
select a job or it can tell JES2 to select a job. If a WLM initiator
is selecting work, JES2 does not call Exit 14.

After JES2 selects a job from the execution queue, it calls Exit
49 which can accept or reject the job. If Exit 49 rejects the job,
JES2 searches for another job. JES2 does not call Exit 49 if Exit
14 selects a job.

If JES2 execution processing finds a job that matches the
Initiator's defined job classes, it POSTs the waiting initiator
and provides the job's $JCT spool address in the $SJB. If a job
has been found, control is given to the JBFOUND routine.

14

418 z/OS V2R1.0 JES2 Installation Exits

Table 18. Execution Phase Exits (continued)

Step Processing Exit Used

2 The JBFOUND routine reads the job's JES2 $JCT using the
spool address passed in the $SJB. Exit 8 is the first exit taken
out of the user's (or job's) address space after a job is selected.
This first entry to Exit 8 is taken after the job's $JCT has been
read. The job name, jobID, and all the other information in the
$JCT are available.

If later SMF exits for this job need addressability to the JES2
$JCT, store the JES2 $JCT address (as contained in Exit 8
parameter list) into the JCTUCOM field that later becomes the
JMRUCOM.

8

3 Exit 8 is again taken to read the primary allocation $IOT. There
may also be additional calls to Exit 8 to read secondary
allocation $IOTs or $PDDB-only $IOTs based on the job's JCL.
Exit 8 is called for all spool control block reads and writes.

JES2 allows installations to create extensions to the $JCT where
job-related accounting data can be stored and transmitted
through the network. Using the $JCTX macro extension
service, you can add, expand, locate, and delete these
extensions. For more information about using these extensions,
see z/OS JES2 Macros.

8

4 The JBFOUND routine calls the MVS SWA Create Control
module to obtains storage for and initialize the Interpreter
Entry List. The Interpreter Entry List contains information
from JES2, such as user ID and security information and is
used for linking to the MVS Interpreter.

Both JES2 and MVS have a data area named JCT. The two JCTs
are not similar and one is not a copy, or partial copy, of the
other. The Interpreter Entry List contains a pointer to the
in-storage copy of the beginning of the $JCT JMR area which
is used to create the CEPA/JMR.

The MVS Interpreter Initialization routine calls the MVS
Interpreter Router routine and after the internal text has been
interpreted, the MVS Enqueue routine issues the call to SMF
exit IEFUJV (entry code of 32). This is the first SMF exit for a
job during the execution phase. The Scheduler Work Area
(SWA) job and step tables have been created. The JMR pointer,
called the CEPA in SMF documentation, is provided in the exit
parameter list.

IEFUJV

5 After the Interpreter returns control to the MVS SWA Create
Control module, a RACROUTE
REQUEST=VERIFY,ENV=CREATE is then issued to create the
job's security environment. The SAF Router exit is invoked if it
exists and Message ICH70001I is issued by RACF identifying
the user. If an error occurred during Job Select processing, for
example a JCL error, then the job's security environment is not
created.

SAF Router
exit

6 Exit 32 is called. The $JCT, all $IOTs the JMR, and the ACEE
have been created and are available.

The JBSELECT routine then issues the $HASP373 JOB
STARTED message.

32

Appendix C. Job-related exit scenarios 419

Table 18. Execution Phase Exits (continued)

Step Processing Exit Used

7 Before job select processing is complete and control returns to
the Initiator, JES2 checkpoints (writes to spool) the $JCT. Exit 8
is called.

8

8 Job initiation calls SMF exit, IEFUJI. MVS job initiation is a
series of calls to step initiation based on the number of steps
in a job.

IEFUJI

9 MVS step initiation consists of a call to SMF exit, IEFUSI, step
allocation for those data sets and devices defined in the job's
JCL, and a call to the MVS Initiator Attach routine.

IEFUSI

10 Allocation of JCL defined SYSIN, SYSOUT, and internal
readers initiates a call to Exit 31.

31

11 The MVS Initiator Attach routine attaches a subtask with an
entry point of the program name specified on the EXEC JCL
statement for the job step. The job step could dynamically
allocate JES2 SYSIN, SYSOUT, or internal readers and therefore
Exit 31 can be called.

31

12 The OPEN and CLOSE of JES2 data sets and internal readers
call Exits 30 and 33.

30

33

13 Dynamic Unallocation of JES2 data sets and internal readers
initiate a call to Exit 34. Exit 48 can be used in preference to
Exit 34. Exit 34 may be too early to affect some fields in the
$PDDB because unallocation processing takes place after Exit
34. Use Exit 48 when altering fields in the $PDDB, this exit can
also be used to control Spin processing.

34

14 At End-of-Task (EOT) processing an SSI call is made to JES2
and Exit 35 is called.

35

15 Control is passed (return from Attach) to the MVS Initiator
Attach routine and subsequently MVS Step Delete calls Step
Unallocation which unallocates those data sets and devices
defined in the job's JCL on a step basis. Exit 34 is called for
JCL defined SYSIN, SYSOUT, and internal readers. Exit 48 is
also taken as mentioned previously.

34

48

16 The MVS Unallocation routine calls the MVS SMF Control
routine which calls SMF exit IEFACTRT with entry codes 20
and 12. If additional job steps are to be processed, control is
passed back to step 8. Otherwise, control is passed to Job
Termination at step 17.

SMF exit

IEFACTRT

17 Job Termination (actually this is Step Termination for the last
step) again calls SMF exit IEFACTRT with entry codes 20 and
16. Control is then passed to MVS Step Delete where a SSI call
(12) is made for Job Termination.

IEFACTRT

18 End-of-job processing calls Exit 28. This exit can clean up
resources obtained over the life of job execution.

28

19 Spool control blocks are checkpointed. Exit 8 is taken for
writing the JCT.

8

20 The $JQE is placed on the OUTPUT queue waiting output
processing, and Exit 51 is invoked.

51

420 z/OS V2R1.0 JES2 Installation Exits

Spin phase
Spin processing typically takes place during the execution phase, however because
of processing alternatives, which could occur during execution, the spin phase
could happen immediately after the execution phase, but always before the output
phase. Spin processing consists of processing the unspun queue and building Job
Out Elements ($JOEs) for each unspun spool data set.

The output phase follows the spin phase processing and is sometimes confused
with the hardcopy phase. Output phase processing scans the job's $IOT chains and
if there are $PDDBs representing non-held output, these $PDDBs will be grouped
into $JOEs. Held output data sets are grouped into $JOEs which are the elements
representing output groups (spool data sets with like characteristics). $JOES are
queued by class in the Job Output Table ($JOT) and are ordered FIFO, within
priority, by route code.

After all $PDDBs have been assigned output groups the job's $JQE is placed on the
hardcopy queue to await print, punch, transmission, or canceling of job output.
The following describes the Spin Phase processing.

Table 19. Spin Phase Processing

Step Processing Exit Used

1 After selecting a job from the $SPIN queue, the spin processor
scans through the $IOTs which represent unspun data sets.
When a unspun $IOT is found, Exit 40 gains control to allow
the installation to change the characteristics of the data set
before grouping the data set into an output group ($JOE).

40

2 A $#BLD macro is issued to build a $JOE and a $#ADD macro
is issued to add the $JOE to the $JOT.

3 The $QMOD macro queues the job ($JQE) to the OUTPUT
queue for processing, and Exit 51 is invoked.

51

Output phase
The following describes the Output Phase processing.

Table 20. Output Phase Processing

Step Processing Exit Used

1 The $QGET service searches the job queue to find a candidate
for output processing. Exit 14 ($QGET) is taken before a job is
selected so this is not a job-related exit.

14

2 Because there can be multiple output processors, the job lock
($GETLOCK) provides serialization on a job basis. When the
lock is obtained, the $JQE is checkpointed using the $CKPT
macro.

$CKPT
macro

3 After the job is selected and the job lock obtained, the job's
$JCT is read from spool and Exit 7 is called.

7

4 If NOTIFY= was coded on the JOB JCL statement, NOTIFY
processing calls Exit 16. This exit, is conditionally based on the
job's JCL parameter.

16

Appendix C. Job-related exit scenarios 421

Table 20. Output Phase Processing (continued)

Step Processing Exit Used

5 After NOTIFY processing, the job's $IOTs are read from spool,
$PDDBs are scanned, and the non-HELD $PDDBs are assigned
to $JOEs. HELD $PDDBs are also assigned to $JOEs. $JOEs
represent output groups, an output group can represent one or
more spool data sets with like characteristics. Before each data
set is grouped, Exit 40 is taken for each data set. Any changes
made to the $PDDB will be used to determine data set
grouping. Use Exit 40 to change SYSOUT characteristics. Exit
40 is taken before the data set has been gathered into an
output group ($JOE). After all non-HELD PDDBs are
processed, the $JCT is checkpointed. This is done to update
the spool-resident $JCT with alterations made during output
processing.

40

6 After the $JCT is checkpointed, the job's $JQE is moved to the
hardcopy queue to await printing or other processing of job
output. The $JQE is checkpointed after being moved to the
hardcopy queue. Exit 51 is invoked when the job moves to the
hardcopy queue.

51

Hardcopy phase
The hardcopy phase of JES2 processing takes place after output processing. The
job's $JQE is placed on the hardcopy queue where it waits until all output is
processed.

To be processed, HELD data sets must be either released, canceled, or transmitted
(SPOOL Offload or NJE). All data sets are grouped into $JOEs. However, held data
sets are not eligible for hardcopy processing even though they are represented by
$JOEs. Since $JOEs are always resident in memory, the performance of held data
sets is improved.

A common misconception with JES2 users is that output is assigned to a printer or
output device. Output is only assigned to an output class and has other output
characteristics. Output devices, printers, punches, external writers, and so forth,
select job output from the output queues ($JOT or Job Output Table) by class and
other output characteristics. Output has no affinity to an output device, for
example, a printer. Output must be selected by the device based on the output
data set characteristics matching the device work selection (WS=) criteria. Route
code is the most common characteristic used to match job output with an output
device.

This section discusses two types of hardcopy processing, JES2 controlled devices
and Print Services Facility™ (PSF) controlled devices. The JES2 Print/Punch
Processor module contains the necessary functional routines for controlling and
writing to JES2 output devices, both local and remote.

Only line mode printing is supported for JES2 devices. Page mode output data
must be processed by PSF. Printing to coax connected printers (printers attached
through 3174 and so on.), such as 3270 type printers (3276,), is not controlled by
JES2. Applications, such as JES/328X, are required to support these types of
printers.

The following describes the Hardcopy Phase processing.

422 z/OS V2R1.0 JES2 Installation Exits

Table 21. Hardcopy Phase Processing

Step Processing Exit Used

1 HASPPRPU initialization consists of assigning an available
output device and initializing control blocks and buffers as a
result of a Start command (e.g., $S PRT(5)).

2 When an output device (either remote or local) has been
started a call is made to scan the output queues $JOT using
the $#GET macro. This is the work selection service which
scans the $JOT to search for output as specified in the work
selection parameter list.

When an output group ($JOE) has been selected the job's $JCT
is read from spool and Exit 7 is taken.

7

3 If the image subtask has not already been attached, it is done
now. A call is made for Exit 1 to allow installations to provide
their own separator routine. After Exit 1 (and based on Exit 1
if it exists) the standard JES2 supplied separator page may be
produced.

The jobs $IOTs are read from spool and the $PDDBs
(contained within the $IOTs) are obtained. Setup is called to
check if device and data set characteristics match. Operator
intervention may occur here.

1

4 A call is made ($SEAS) to verify that the data set userid
(owner) is allowed to print on this device. Exits 36 and 37 are
taken.

36

37

5 Exit 15 (R0=0) is called for data set select. This exit point could
be used to control copy count, print translate table, or the
CCW translate tables.

15

6 Exit 15 (R0=4) is again called to allow user produced data set
separators. The $#CHK macro is used to produce a checkpoint
at this time. A checkpoint produces a checkpoint $JOE that
allows for recovery in case of a system or device failure.

15

7 The main print/punch loop is where SPOOL buffers are read,
channel programs are constructed for the output device, and
$EXCPs are issued to print or punch lines of output. This
process continues until the entire data set is read and written
to the output device. The data set is repeated if copy count is
greater than one and a return to step 3 is made if there are
additional data sets in the output group to be processed.

There are no
exits
available
during this
process.

8 Exit 1 is called (R0=8) to allow for installation separator
routines to replace the JES2 routine. The $JOE is placed on the
free queue. When there are no more output data sets to be
processed for the job, the $JQE is placed on the Purge queue.
Exit 51 is invoked when the job moves to the purge queue.

1

51

Appendix C. Job-related exit scenarios 423

NJE hardcopy phase exits
The following describes the NJE Hardcopy Phase processing:

Table 22. NJE Hardcopy Phase Processing

Step Processing Exit Used

1 The Network SYSOUT Transmitter initializes a SYSOUT
Transmitter device ($DCT) and acquires resources (lines,
buffers, and so on.) to prepare for SYSOUT transmissions.

The $#GET service routine is used to search the Job Output
Table ($JOT) to find an eligible $JOE on the network queue.
When a candidate is found the $CBIO macro is used to read
the $JCT, $IOTs and $SWBITs from spool. Exit 7 or 8 is taken
for each control block read. If the network job header does not
exist, the NJE SYSOUT transmitter builds it.

Exit 7 (JES2
main task),
Exit 8
(TCP/IP
NJE)

2 The $NHD (Network Job Header) is then read from spool.
$NHD Validation Routine (NJEHDVAL) is called to validate
the NJE header structure before transmission. After validation,
Exit 46 or 56 is taken. This exit allows the viewing, removing,
or alteration of sections in the Network Job Header.

Exit 46 (JES2
main task),
Exit 56
(NJE/TCP)

3 A $SEAS (JES2 Security Authorization Service) authorization
check is made for each data set to be transmitted. This call to
the SAF typically passes, because of the writer check
previously done during the execution phase. The reason that
this call should not fail is that a SAF call was made to the
WRITER class during SYSOUT allocation at job execution time.
If the job owner does not have authority to create SYSOUT
destined for a particular node the job will fail in execution.

Another Exit 46 or 56 is taken for each data set header
followed by the data itself.

Exit 46, or
Exit 56

4 Exit 46 or 56 is taken again for the job trailer. If the NJE job
trailer does not exist, the NJE SYSOUT transmitter builds it. In
general, the $#REM macro is used to remove the $JOE from
the $JOT output queue.

Exit 46, or
Exit 56

5 The data set is purged ($#PURGE) and if the device is a Spool
Offload SYSOUT Transmitter, an SMF24 record is created.
When using SPOOL Offload, the $JOE could remain on the
$JOT and the data set may not be purged if the installation
specified an output disposition where the output would not be
purged after processing.

Purge phase
The purge phase is the final phase of JES2 processing. Jobs are placed on the purge
queue after all spool data set have been processed or if the job gets canceled. Spool
tracks are returned, the SMF 26 record is written and the $JQE is placed on the free
queue. The following scenario describes the processing that occurs during the
Purge Phase.

Table 23. Purge Phase Exits

Step Processing Exit Used

1 A job is selected from the purge queue, the $JCT is read and
Exit 7 is invoked.

7

424 z/OS V2R1.0 JES2 Installation Exits

Table 23. Purge Phase Exits (continued)

Step Processing Exit Used

2 $PURGE macro calls the purge service routine for each spool
data set. If data set purge verification is active, the $SEAS
macro will be issued for authorization. This invokes Exits 36
and 37 for each purged data set. Spool tracks assigned to the
job are returned.

36

37

3 Buffers are gotten to build the SMF type 26 record and the
JMR. The SMF 26 record is formatted. $QUESMFB macro calls
the SMB buffer queue routine Exit 21 is called and a $POSTQ
is issued to POST the HASPACCT (SMF Writer) subtask.
Because $QPOST was issued, we do not WAIT on the
completion of the SMF write. $QUESMFB returns to
HASVPRG immediately.

21

4 After the HASPACCT subtask is POSTed, SMF exit IEFUJP is
called. None of the jobs resources are available. Only the SMF
record buffer and the JMR (CEPA) are available. The
SMFWTM macro is issued to write the SMF 26 record and
HASPACCT WAITs to be POSTed for the next record if there
are no others to process.

IEFUJP

Exit 7 could possibly be used as a general purpose exit. Exit 21 and SMF exit
IEFUJP are taken after the return of spool tracks. When IEFUJP is invoked, the
in-storage buffer containing the $JCT could be reused and contain another job's
$JCT.

Appendix C. Job-related exit scenarios 425

426 z/OS V2R1.0 JES2 Installation Exits

Appendix D. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1988, 2013 427

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

428 z/OS V2R1.0 JES2 Installation Exits

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix D. Accessibility 429

430 z/OS V2R1.0 JES2 Installation Exits

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2013 431

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

432 z/OS V2R1.0 JES2 Installation Exits

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of JES2.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices 433

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

434 z/OS V2R1.0 JES2 Installation Exits

Index

Special characters
(exit 26) 213
$$WTO macro 20
$$WTOR macro 20
$#CHK macro 423
$CHK 406
$CKPT macro 421
$CRET macro 20
$CWTO macro 20
$D EXIT(nnn) command 55
$DCT 412
$ENTRY macro 23, 30
$ERROR macro 14
$ESTAE macro 26
$EXIT macro 30, 60

MAXRC= operand 14
$FREEBUF macro 85

$FREEBUF 85
$GETBUF 85

$GETBUF macro 85
$GETSMFB usage 195
$HASP426 message 79
$HASP427 message 79
$HASP428 message 80
$HASP864 message 82, 206
$HASPGBL copying 30
$IOT 406
$JCAN macro 198
$JCT 406
$JCT/JMR 411
$JCTX extension

accounting field 100
exit 1 85, 252, 258
exit 11 151
exit 12 157
exit 15 168
exit 16 174
exit 2 92
exit 20 191, 319
exit 23 202
exit 25 210
exit 28 220
exit 3 100, 342
exit 30 228
exit 32 236
exit 33 240
exit 34 244
exit 35 247
exit 39 232, 268
exit 4 109, 126, 386
exit 40 272
exit 43 287
exit 44 290
exit 46 301
exit 47 306
exit 48 310
exit 52 333
exit 53 342
exit 58 375
exit 6 126
exit 60 386

$JCTX extension (continued)
exit 7 132
exit 8 135
exit 9 140
JCTWORK usage 100

$JIB 10
$JOE 10
$MODEND macro 30
$MODULE macro 30
$OCT 406
$PBLOCK service routine 85

$SEPPDIR usage 85
$PCE 412
$QUESMFB usage 195
$RETURN macro 12, 13
$SAVE macro 12
$SCAN facility 80, 186
$STMTLOG macro 186
$STORE macro 13
$STRAK (exit 12) 155
$SWBIT 406
$T EXIT command 186
$T EXIT(nnn) command 55
$T EXIT(nnn) operator command 26
$TRACE macro 26
$TRACK (exit 11) 149
$USER1 through $USER5 207
$WTO messages, modifying 173
$WTO parameter list usage 173
$WTO screen exit 145
&RJOBOPT usage 100

A
accessibility 427

contact IBM 427
features 427

account field scan 75
accounting field scan exit 96, 337
across environment exits 8
addressability of the exit 23
addressing requirements requirements,

addressing
$AMODE

AMODE 13
31-bit 13
residency 13
RMODE 13

affinity
system 189, 317

allocation 149
spool partitioning ($STRAK) 155

alter console routing 146
alter SMF control block 195
altering operating states of exits 5
analyzing initialization statements 185
APPC (Advanced Program-to-Program

Communication)
transaction program (TP) 285

areas of modification in JES2 1
assembler language for exits 7

assembly environment
$MODULE macro 8

assign system affinity 189, 317
assistive technologies 427
automatic tracing 26

B
BSC RJE devices

controlling 177
BSC RJE signon/signoff exit 177
buffer

use in Exit 1 85

C
calling environment 7
cancel

exit 196
cancel status exit 196
CEPA 411, 425
change notify routing 173
changing message text (exit 10) 146
changing output grouping keys 275
changing SYSOUT characteristics

exit 271
checking initialization statements 185
checkpoint 423
checkpoint control blocks 407
codes 14

exit-dependent return codes 14
return (greater than 4) 14
return codes 14

coding considerations 11
$ENTRY macro 23
addressability of the exit 23
control blocks for exits 14
exit-dependent return codes 14
linkage conventions 11
main task exits 11
multiple exit routines 12
naming the exit 23
nonreentrant 11
packaging the exit 30, 51
received parameters 13
recovery for exits 26
reentrant 11
return codes (greater than 4) 14
return codes for exits 14
service routine usage 19
source module conventions 23
subtask exits 11
tracing the exit 26

coding language for exits 7
COMAUTH structure 118
command 55

$D EXIT(nnn) 55
$T EXIT 186
operator ($T EXIT(nnn)) 26
preprocessor exit 115

© Copyright IBM Corp. 1988, 2013 435

communication
$CWTO macro (exit 5) 120
exit routine-to-exit point

response byte 20
exit-to-operator 20
JES2-to-operator 2

condition byte
exit point-to-exit routine

communication 19
CONSOLE initialization statement 186
console message buffer (CMB) 145

CMBFLAG usage (exit 10) 146
CMBJOBN usage (exit 10) 146
CMBROUT usage (exit 10) 146
CMBTEXT usage (exit 10) 146
interrogating (exit 10) 145
usage (exit 16) 173

control block read/write (JES2) 131
JCTJQE usage 131
JQETYPE usage 131
PCEID usage 132
specific description 131

control block read/write (JES2) exit 131
control block read/write exit 135
control blocks for exits 14
control statement

/*JOBPARM
job control field table 100, 342

/*ROUTE
job control table field 100, 342

control statement scan 105
HASPRCCS replacement 105
recovery 106
specific description 105

control statements
/*SETUP

job control table fields 99, 341
controlling BSC RJE devices 177
controlling SNA RJE devices 181
converter

exit 44 289
converter/interpreter text scan 123, 383

CNVWORK usage 126, 386
recovery 125
specific description 123, 383

converter/interpreter text scan exit 75
Converter/Interpreter text scan exit 121
COPY $HASPGBL 30
create SMF control block 195
creation of installation control

blocks 205

D
data set 186

log data set 186
separator exit 167

deleting initialization statements 185
device 177

BSC RJE remote 177
SNA RJE remote 181

disabled exit state 5
disabling the exit 55
dual execution environments 8

E
enabled exit state 5
enabling trace (ID 13) for tracing 26
end of job input exit 189
environments 7
environments for exits 7

caller's environment 7
execution environment 7
JES2 main task 7
JES2 subtask 7
user address space 7

error 55
isolating them 55

ESTAE 223
recovery 223, 227, 231, 235, 239, 243,

247, 251, 257, 375
execution environment

FSS (functional subsystem address
space) 7

JES2 (main task) 7
SUBTASK (subtask) 7
USER (user address space) 7

execution node 189, 317
exit 1, 208, 317, 323, 329, 349, 359, 363,

369
$WTO screen 145
across environments 8
addressability 23
BSC RJE signon/signoff 177
cancel/status 196
control block read/write 75
control block usage 14
Converter/Interpreter text scan 75
end of job input 189
IBM-defined 3, 65
implementation table 75
individual purposes 65
initialization JCL 41
initialization statement scan 185
initializing in the system 52
installation-defined 3, 59
integrating exit routines 51
introduction 1
JCL/JES2 control statement scan 75
JES2 command preprocessor 75
job queue work select 161, 313
Job Queue Workload Selection

(initiator jobs) 75
job separator page process 200
job statement account field scan 75,

96, 337
job statement scan 75
job-related 55
job-related (defined) 5
linkage conventions 11
logic 19
mask (JOBMASK) 55
modifying a notify user message 279
modifying SYSOUT

characteristics 271
multiple exit routines 6

linkage conventions 12
naming the exit 23
NJE SYSOUT reception data set

disposition 267
notify 173
operating environment 7

exit (continued)
output data set/copy separators 167
packaging 51
packaging the code 30
passing control to them 55
PCE attach/detach 215
post initialization 203, 205
pre-initialization 75
pre-initialization (exit 0) 79
pre-security authorization call 251
print/punch job separator 82
print/punch separator 75
received parameters 13
recovery considerations 26
reentrant code considerations 11
return code responsibility 12
return codes 14
service routine usage 19
SMF record 193
SNA RJE logon/logoff 181
source module conventions 23
specific individual uses 65
specific titles of each 65
specific uses 65
spool partitioning allocation

($STRAK) 155
spool partitioning allocation

($TRACK) 149
SSI data set allocation 231
SSI data set CLOSE 239
SSI data set OPEN and restart 227
SSI data set unallocation 243
SSI end-of-memory 221
SSI end-of-step 375
SSI end-of-task 247
SSI job selection 235
SSI job termination 218
SSI SYSOUT data set

unallocation 309
status (enabled, disabled) 55
synchronization 10
termination 211
testing exit routines 51
tracing status 57
tracing their execution 26
TSO/E receive data set

disposition 263
using control blocks 14
writing an exit routine 7

Exit 1
$FREEBUF macro 85
$GETBUF macro 85
buffer usage 85

exit 10 145
CMBFLAG usage 146
CMBJOBN usage 146
CMBROUT usage 146
CMBTEXT usage 146

exit 11 149
$TRACKX exit point 150
JCTSAMSK usage 149

exit 12 155
$STRAKX exit point 156
JCTSAMSK usage 155

exit 14 161
finding job queue work 161

exit 15 167

436 z/OS V2R1.0 JES2 Installation Exits

exit 15 (continued)
CCW translate table usage 167
PRTRANS table 167

exit 16 173
change notify routing 173
CMB usage 173
modify $WTO messages 173

exit 17 177
exit 18 181

MICEXIT exit point 182
MSNALXIT exit point 181
MSNALXT2 exit point 182

exit 19 185
$SCAN facility usage 186
$STMTLOG macro 186
$T EXIT command 186
CONSOLE initialization

statement 186
EXIT(nnn) usage 186
LOADmod usage 186

exit 20 189
JCTIPTIO usage 190, 318
PCE work area usage 190, 318

exit 21 195
$GETSMFB usage 195
$QUESMFB usage 195

exit 22 197
$JCAN macro 198
IKJ56216I message 198

exit 23 201
exit 24 205

$HASP864 message 206
$T EXIT command usage 206
$USER1 through $USER5 207
EXITnnn statement 206
recovery 205

exit 26 213
exit 27 217
exit 28 219
exit 29 223
exit 3 97

&RJOBOPT use 100
exit 3 98
HASPRSCN replacement 97
JCTJOBID usage 100
JCTXWRK usage 101
recovery 98, 340

exit 30 227
exit 31 231
exit 32 235
exit 33 239
exit 34 243
exit 35 247
exit 36 251
exit 37 257

post-security authorization call 257
exit 38 263
exit 39 267
exit 4 105, 106

HASPRCCS replacement 105
recovery 106

exit 40 271
exit 41 275
exit 42 279

recovery 279
exit 43 285
exit 44 289

exit 45 293
exit 46 299
exit 47 305
exit 48 309
exit 49 313
exit 5 115, 117

$CWTO macro 120
COMAUTH structure 118
recovery 117

exit 50 317
exit 51 323
exit 52 329
exit 53 339

exit 53 340
exit 54 349
exit 55 359
exit 56 363
exit 57 369
exit 58 375
exit 59 379
Exit 59

AMODE/RMODE requirements 380
Environment 379, 380
Function 379
Job exit mask 380
Mapping macros typically

required 380
Point of processing 380
Programming considerations 380
Recommendations for implementing

Exit 59 379
Recovery 380
Register contents when Exit 59 gets

control 381
Register contents when Exit 59 passes

control back to JES2 382
Related exits 379
Restrictions 379
Storage recommendations 380
Supervisor/problem program 380
Task 379

exit 6 123, 125
CNVWORK usage 126
recovery 125

exit 60 383
CNVWORK usage 386

Exit 60
AMODE/RMODE requirements 385
Coded example 389
Environment 385, 386
Function 383
Job exit mask 386
Mapping macros typically

required 386
Point of processing 386
Programming considerations 386
Recommendations for implementing

Exit 60 383
Recovery 385
Register contents when Exit 60 gets

control 387
Register contents when Exit 60 passes

control back to JES2 389
Related exits 383
Restrictions 385
Storage recommendations 386
Supervisor/problem program 385

Exit 60 (continued)
Task 385

exit 7 131
JCTJQE usage 131
JQETYPE usage 131
PCEID usage 132

Exit 9 139
exit effector 7

definition 5
tracing 60

exit facility
introduction 1
using 3

exit implementation table 75
exit migrations 391
exit module 23

security considerations 23
source conventions 23

exit point 3
$STRAKX (Exit 12) 156
$TRACKX (exit 11) 150
definition 3
identifying them 3
logoff 182
logon 181
MICEXIT (exit 18) 182
MSNALXIT (exit 18) 181
MSNALXT2 (exit 18) 182

exit routine 3
definition 3
integration 51
language used 7
load module 52
loading one 41
multiple ones 6, 47
passing them control 55
placement 54
writing one 7

exit selection table 65
exit-to-exit communication

among exits
exit point-to-exit routine condition

byte 19
EXIT(nnn) initialization parameter 26
exits

control block read/write 134
Converter/Interpreter text scan 121
execution phase 418
hardcopy phase 422
JCL/JES2 control statement scan 105
JES2 command preprocessor 113
Job Input Service 413
job-related 403
output phase 421
purge phase 424
sequence 403
spin phase 421

exits in processing order processing area,
exit arrangement processors invoking
exits 65

external names 52

F
FSACB 10
FSS environment 10
FSSCB 10

Index 437

G
generic grouping

modifying selection with an exit 275

H
hardcopy

console 186
HASJES20 20, 30

location 8
HASPCOMM 20
HASPINIT 8, 30
HASPIRPL 185
HASPRDR 411

I
I/O 1

control block 131
IBM-defined exits 3

description 65
identifying the exit 23
IEFACTRT 420
IEFUJI 420
IKJ56216I message 198
implementation

exit table 75
implementing initialization

statements 185
initialization 1

$ADD LOADmod(jxxxxxx)
command 52

$T EXIT(nnn) 53
&RJOBOPT use 100
EXIT(nnn) parameter 26
EXIT(nnn) statement 3, 53
EXIT(nnn) TRACE= usage 57
exits in the system 52
JCL 41
LOADMOD statement 3
LOADMOD(jxxxxxxx) initialization

statement 52
modifying control blocks 205
placement of exits 54
pre-initialization exit 79
processing 1

initialization statement exit 185
$SCAN facility usage 186
$STMTLOG macro 186
$T EXIT command 186
checking and analyzing 185
CONSOLE 186
CONSOLE initialization

statement 186
EXIT(nnn) 186
EXIT(nnn) usage 186
implementing 185
LOADmod 186
LOADmod usage 186
tailoring 185

initialization statement scan exit 185
initializing a user defined exit 41
initializing an exit 41
initializing the exit in the system 52
initiator jobs 75

work selection exit 313

input/output 131
inserting initialization statements 185
installation 3

control blocks 205
exits 3
work areas 207

installation-defined exits 59
integrating the exit routine 51
interrogate CMB 145
introduction

checkpoint control blocks 407
job-related exits

exit sequence 403
selected exits 404

job-related Exits 403
spool control blocks 406

IOT 1
isolating an exit error 55

J
JCL (job control language) 1

initializing an exit 41
JCL/JES2 control statement scan exit 75,

105
JCT 404
JCT (job control table) 1

JCTIPTIO usage 190, 318
JCTJOBID usage 100
JCTJQE usage 131
JCTSAMSK usage (Exit 11) 149
JCTSAMSK usage (exit 12) 155
JCTXWRK usage 101
job control table 1
job exit mask address 55
read/write 131
selected fields 98, 340

JCT read 208
exit 25 209
recovery 209

JCT read/write exit 75
JES 2 Print /Punch processor 422
JES2 1

$ESTAE macro usage 26
$SCAN facility 80
address space 10
areas of modification 1
dispatching unit (PCE) 11
exit 1
exit effector 7
main task 8
modifying 1
primary load module (HASJES20) 8
processors 11
reentrant sense 11
source language (assembler) 7
subtasks execution 9
terminating 197

JES2 command preprocessor exit 75, 115
JES2 converter exit (JES2 main) 289
JES2 data areas 43
JES2 exits

exit 1 423
exit 11 403
exit 12 403
exit 14 421
exit 15 423

JES2 exits (continued)
exit 16 421
exit 21 425
exit 28 420
exit 30 420
exit 31 420
exit 32 419
exit 33 420
exit 34 420
exit 35 420
exit 36 423, 425
exit 37 423, 425
exit 51 420
exit 7 421, 423, 424
exit 8 419, 420
exit 9 403

JES2 Exits
exit 2 403
exit 6 403
exit 7 403
exit 8 403

JES2 main
converter exit 289

JES2 main task 8
JES2 reentrancy 8
JES2 subtask 9
JES2 termination 197
JES2 z/OS V2R1 migration details 392

conversion phase processing 393
data structure processing 394
Exit 36 considerations 395
Exit 37 considerations 395
Exit 44 considerations 395
Exit 59 considerations 395
Exit 6 considerations 394
Exit 7 considerations 395
Exit 8 considerations 395
input phase processing 392

JES2-to-operator communication 2
JMR 1

usage 102
job 2

end of input exit 189
exit mask (JOBMASK) 55
input processing 2
priority 189, 317
related exits (defined) 5
terminating processing 189, 317

job control language (JCL) 41
job control table

read write (USER) exit 135
job control table field 100, 342
job exit mask 56
job input 189

end 189
processing 2

job management record (JMR) 102
job management record record, job

management JMR
SMFTYPE field

meaning 196
values 196

job output
processing 2

job queue 161
finding work (exit 14) 161
work select exit 161

438 z/OS V2R1.0 JES2 Installation Exits

job queue element 131
job queue initiator jobs 75
job queue work select exit 161, 313
job separator page process 200
job statement account field scan exit 75,

96, 337
JOB statement accounting field scan 96

&RJOBOPT use 100
HASPRSCN replacement 97
JCTJOBID usage 100
JCTXWRK usage 101
recovery 98, 340
specific description 96, 337

job statement scan exit 75
general description 66

job termination 189, 317
job-related exits 55
JOBMASK parameter 55
jobs

work selection exit 313
JOE (job output element) 1
JOT (job output table) 1
JQE (job queue element) 1

acquiring control (exit 14) 161
acquiring control (exit 49) 313
JQETYPE usage 131

K
keyboard

navigation 427
PF keys 427
shortcut keys 427

L
linkage conventions 11
linkage conventions to exits 11
LMT 80
LOAD initialization statement 80
LOAD macro 80

$HASP428 message 80
$HASP864 message 82
LOAD macro 80

load module table (LMT) 80
usage (exit 0) 80

loading an exit routine 41
log data set 186
logic of an exit 19
logon/logoff

SNA exit 181

M
Macro 80

$CWTO 120
$JCAN 198
$STMTLOG 186
LOAD 80

main task 5
protect key 5

main task environment 8
maximum return code 14
MAXRC= operand ($EXIT macro) 14
message 65

$HASP426 65, 79

message (continued)
$HASP427 65, 79
$HASP428 80
$HASP864 82, 206
alter console routing 146
modify $WTO messages (exit 16) 173

methods of packaging the exit 30
MIT 1
MITETBL 1

illustration 52
modification 1

areas in JES2 1
modify

JES2 control blocks 205
modify $WTO messages 173
modifying initialization statements 185
modifying output grouping keys 275
modifying SYSOUT characteristics

exit 271
multiple exit routines 6, 12, 47

linkage conventions 12
single module (example) 47

MVS 11
ESTAE macro usage 26
LOAD macro 80
reentrant sense 11
WTO macro 20
WTOR macro 20

MVS WAITS 8

N
naming the exit 23
navigation

keyboard 427
NJE data area

modifying before its
transmission 299

modifying before receiving the rest of
the NJE job 305

NJE SYSOUT reception data set
disposition exit 267

nonreentrant considerations for exits 11
Notices 431
notify exit 173
notify user message

modifying with an exit 279

O
operating environment for exits 7
operating states

altering (via $T EXIT(nnn)) 5
disabled 5
enabled 5

operator 2
$CWTO macro (exit 5) 120
$D EXIT(nnn) command usage 57
$T EXIT(nnn) command usage 57
command ($T EXIT(nnn)) 26
communicating from the exit 20
communication with JES2 2

operator-to-exit communication 20
other programming considerations 23
output

data set/copy separator exit 167

output data set/copy separators exit 167
output grouping keys

modifying selection with an exit 275
output processing 2

P
packaging the exit 30, 51
parameter

EXIT(nnn) 26
JOBMASK 55
received by exits 13

passing control to exit routines 55
PCE 1

PCEID usage 132
work area for HASPRDR 190, 318

PCE attach/detach exit 215
PCEs 421
phases

conversion 415
execution

exits 418
overview 418

hardcopy
exits 422
overview 422

input
exits 413
overview 412

output
exits 421
overview 421

purge
exits 424
overview 424

spin
exits 421
overview 421

placement of exits 54
post initialization exit 203, 205
post interpretation

specific description 379
post-security authorization call exit 257
pre-initialization 79

$HASP426 message 79
$HASP428 message 80
$HASP864 message 82
LOAD macro 80
specific description 79

pre-initialization exit 75
$HASP426 message 65
$HASP427 message 65
general description 65

pre-security authorization call exit 251
pre-SFJ service request exit 293
print/punch 82

$SEPPDIR usage 85
specific description 82

print/punch job separator exit 82
general description 65

print/punch separator exit 75
priority 189, 317
processing 55

disabled exits 55
enabled exits 55
job-related exits 55

processor control element 132

Index 439

programming considerations 12
$ENTRY macro 23
addressability of the exit 23
exit initialization 52
exit logic 19
exit-to-operator communication 20
integrating the exit routine 51
multiple exit routines 12
naming the exit 23
other ones for exits 23
packaging the exit 30, 51
passing control to exit routines 55
recovery for exits 26
security 23
service routine usage 19
source module conventions 23
testing exit routines 51
tracing status of exits 57
tracing the exit 26

Q
queue SMF records 195

R
received parameters for exits 13
recovery 217, 219
Recovery 223

exit 29 223
exit 30 227
exit 31 231
exit 32 235
exit 33 239
exit 34 243
exit 35 247
exit 36 251
exit 37 257
exit 38 263
exit 42 279
exit 58 375

recovery for exits 26
reentrant

JES2 sense 11
MVS sense 11

reentrant considerations for exits 11
register

linkage information for exits 11
remote attribute table (RAT) 178

usage (exit 17) 178
usage (exit 18) 182

remote job entry (RJE) 2
BSC signon/signoff exit 177
processing 2
SNA logon/logoff exit 181

replacing initialization statements 185
response byte

exit routine-to-exit point
communication 20

restore caller's registers 12
$RETURN macro 12

return codes from exits 14
routine 19

$QGET (exit 14) 161
$QGET (exit 49) 313
used by exits 19

S
Sample exit routines 45
save caller's registers 12

$SAVE macro 12
scan

accounting field 96, 337
Converter/Interpreter text (exit

6) 123
Converter/Interpreter text (exit

60) 383
initialization statement exit 185
JCL/JES2 control statements 105
post interpretation (exit 59) 379

security 23
security considerations 23
selecting an exit 65
selection of initiator jobs 75
sending comments to IBM xxi
separator pages

copies 167
data sets 167

service request exit 293
service routine usage 19
service routines 19

usage 19
services for synchronizing 10

main task
$WAIT macro 10

shortcut keys 427
signon/signoff

BSC exit 177
single module for multiple exit

routines 47
SMF 1

control block creation/alteration 195
queuing records 195
record exit 195

SMF exits 403
SMF record exit 193
SMFWTM macro 425
SNA RJE devices, controlling 181
SNA RJE logon/logoff exit 181
source module conventions 23
specific description 115, 135, 145, 149,

161, 167, 173, 177, 181, 189, 193, 196, 200
$CWTO macro 120
$GETSMFB usage 195
$HASP864 206
$JCAN macro 198
$QUESMFB usage 195
$STRAKX exit point 156
$T EXIT command usage 206
$TRACKX exit point 150
$USER1 through $USER5 207
CCW translate table usage 167
change notify routine 173
CMB usage 173
CMBFLAG usage 146
CMBJOBN usage 146
CMBROUT usage 146
CMBTEXT usage 146
COMAUTH structure 118
EXITnnn statement 206
finding job queue work 161
IKJ56216I message 198
JCTIPTIO usage 190, 318
JCTSAMSK usage 149, 155

specific description (continued)
MICEXIT exit point 182
modify $WTO messages 173
MSNALXIT exit point 181
MSNALXT2 exit point 182
PCE work area usage 190, 318
PRTRANS table 167
recovery 117, 205, 209
specific description 203, 205, 208

specific uses of exits 65
spool 2

partitioning allocation ($STRAK) 155
partitioning allocation ($STRAK)

exit 155
partitioning mask (JCTSAMSK) 149
processing 2

spool control blocks 406
spool partitioning allocation ($STRAK)

exit 155
spool partitioning allocation exit

($TRACK) 149
SSI data set allocation exit 231
SSI data set CLOSE exit 239
SSI data set OPEN and restart exit 227
SSI data set unallocation exit 243
SSI end-of-memory exit

(JES2) 221
SSI end-of-memory JES2 exit 221
SSI end-of-step exit 375
SSI end-of-task exit 247
SSI job selection exit 235
SSI job termination exit

(JES2) 218
SSI job termination JES2 exit 218
SSI SYSOUT data set unallocation

exit 309
status

changing exit status 55
exit 196
exit status 55
tracing exit status 57

subtask 5
protect key 5

subtask environment 9
Summary of changes xxiii
synchronization services 10

for exits 10
SYSOUT characteristics

exit to change 271
system affinity 189, 317
system initializing for exits 52
system management facilities (SMF)

record exit 193

T
tables 167

CCW translate table (exit 15) 167
exit implementation table 75
exit selection table 65
PRTRANS table (exit 15) 167

tailoring initialization statements 185
termination exit 211, 213
termination JES2 exit 211
testing 26

exit routines 51
tracing usage 26

440 z/OS V2R1.0 JES2 Installation Exits

testing (continued)
TYPE=TEST ($EXIT macro) 59

TGB 1
titles of exits 65
tracing 26

$D EXIT(nnn) command usage 57
$T EXIT(nnn) command usage 57
automatic tracing 60
automatically 26
AUTOTR= ($EXIT macro) 60
disabled (exit 19) 186
enabling trace (ID 13) 26, 57
exit effectors 60
exit status 57
exits 26
job-related tracing 57
necessary conditions 26
TRACE= usage on EXIT(nnn) 57

Tracing status 57
tracing status of exits 57
trademarks 433
transaction program (TP)

selection/change/termination
exit 285

TSO/E CANCEL/STATUS (exit 22) 197
TSO/E receive data set disposition

exit 263

U
use of exit facility 3
user address 5

protect key 5
user address space environment 7
User Control Table 207

usage 207
USER environment 9
User environment exits

storage 25
user interface

ISPF 427
TSO/E 427

using control blocks in exits 14
using service routines in exits 19

V
verify a job's existence 100

W
weak external names 52
WLM initiator jobs

work selection exit 313
work

select exit 161
work area 101

$USER1 through $USER5) 207
CNVWORK 126, 386
HASPRDR PCE 190, 318
JCTXWRK (exit 3) 101

workload selection 75
writing an exit routine 7

X
XIT 1
XRT 1

Index 441

442 z/OS V2R1.0 JES2 Installation Exits

����

Product Number: 5650-ZOS

Printed in USA

SA32-0995-00

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How this document is organized
	Where to find more information
	Additional information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Introduction
	What is a JES2 exit?
	Environment
	General
	Program authority
	Exit linkage
	Return codes
	Installation

	Chapter 2. Writing an exit routine
	Language
	Operating environment
	JES2 environments
	Synchronization
	Reentrant code considerations
	Linkage conventions
	Addressing mode of JES2 exits
	Addressing mode requirements
	Residency mode requirements

	Received parameters
	Return codes
	Control blocks
	Determining the JES2 release level
	Service routine usage
	Exit logic
	Exit-to-exit communication
	Exit point-to-exit routine communication
	Exit routine-to exit point communication
	Exit-to-operator communication
	Required mapping macros
	JES2 main task environment exits
	Assuming you minimally code the following for each exit
	Required macros

	JES2 subtask environment exits
	Assuming you minimally code the following for each exit
	Required macros

	Functional subsystem address space environment exits
	Assuming you minimally code the following for each exit
	Required macros

	User environment exits
	Assuming you minimally code the following for each exit
	Required macros

	User environment exit considerations
	Reentrancy
	Accessing CKPTed Data Area
	Accessing $CATs
	Storage considerations

	One time exit initialization code
	Tracing
	Recovery
	Loading non-JES2 modules

	Chapter 3. Controlling the loading of installation-defined load modules
	Loading and placement of installation load modules
	Dynamic Load Modules
	Dynamic Load Module Considerations
	$$$$LOAD and $$$$DEL routines
	$$$$LOAD Routine

	$$$$DEL Routine
	Special Considerations for LPA Modules

	Chapter 4. Enabling an exit
	Chapter 5. Getting listings of JES2 data areas
	Chapter 6. Sample exit routines
	Chapter 7. Multiple exit routines in a single module
	Chapter 8. Testing your exit routine
	Packaging the exit
	Initializing the exit in the system
	Passing control to exit routines
	Job-related exits

	Chapter 9. Tracing status
	Chapter 10. Establishing installation-defined exits
	Chapter 11. Hints for coding JES2 exit routines
	Assembler instructions
	Constants
	DSECTs
	Registers
	Miscellaneous

	Chapter 12. IBM-defined exits
	Exit selection table
	Exit implementation table

	Chapter 13. Exit 0: Pre-initialization
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 0 gets control
	Register contents when Exit 0 passes control back to JES2
	Coded example

	Chapter 14. Exit 1: Print/punch separators
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Restrictions
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 1 gets control
	Register contents when control passes back to JES2:
	Coded example

	Chapter 15. Exit 2: JOB JCL statement scan (JES2 main task)
	Function
	Recommendations for implementing Exit 2
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Restrictions
	Recovery
	Job exit mask
	Storage recommendations
	Mapping macros normally required

	Point of processing
	Extending the JCT control block
	Programming considerations
	Register contents on entry to exit 2
	Register contents when exit 2 passes control back to JES2
	Coded example

	Chapter 16. Exit 3: JOB statement accounting field scan (JES2 main task)
	Function
	Related exits
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Restrictions
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Extending the JCT control block
	Programming considerations
	Register contents when Exit 3 gets control
	Register contents when Exit 3 passes control back to JES2
	Coded example

	Chapter 17. Exit 4: JCL and JES2 control statement scan (JES2 main task)
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Restrictions
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 4 gets control
	Register contents when Exit 4 passes control back to JES2
	Coded example

	Chapter 18. Exit 5: JES2 command preprocessor
	Function
	The JES2 command translator migration aid:

	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 5 gets control
	Register contents when Exit 5 passes control back to JES2
	Coded example

	Chapter 19. Exit 6: JES2 converter exit (subtask)
	Function
	Related exits
	Recommendations for implementing Exit 6
	Environment
	Task
	Restrictions
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Storage recommendations
	Mapping macros typically required

	Point of processing
	Programming considerations
	Register contents when Exit 6 gets control
	Register contents when Exit 6 passes control back to JES2
	Coded example

	Chapter 20. Exit 7: Control block I/O (JES2)
	Function
	Related exits
	Recommendations for implementing Exit 7
	Programming considerations
	Point of processing
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Register contents on entry to Exit 7
	Register contents when Exit 7 passes control back to JES2
	Coded example

	Chapter 21. Exit 8: Control block read/write (user, subtask, and FSS)
	Function
	Related exits
	Programming considerations
	Point of processing
	Environment
	Task
	AMODE/RMODE requirements
	Restrictions
	Recovery
	Job exit mask
	Mapping macros normally required

	Register contents on entry to Exit 8
	Register contents on return to JES2
	Coded example

	Chapter 22. Exit 9: Output excession options
	Function
	Related exits
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Restrictions
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents on entry to Exit 9
	Register contents when Exit 9 passes control back to JES2
	Coded example

	Chapter 23. Exit 10: $WTO screen
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations:
	Register contents when Exit 10 gets control
	Register contents when Exit 10 passes control back to JES2
	Coded example

	Chapter 24. Exit 11: Spool partitioning allocation ($TRACK)
	Function
	Related exits
	Recommendations for implementing Exit 11
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Restrictions
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 11 gets control
	Register contents when Exit 11 passes control back to JES2
	Coded example

	Chapter 25. Exit 12: Spool partitioning allocation ($STRAK)
	Function
	Related exits
	Recommendations for implementing Exit 12
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Restrictions
	Recovery

	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 12 gets control
	Register contents when Exit 12 passes control back to JES2
	Coded example

	Chapter 26. Exit 14: Job queue work select – $QGET
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 14 gets control
	Register contents when Exit 14 passes control back to JES2
	Coded example

	Chapter 27. Exit 15: Output data set/copy select
	Function
	Programming considerations
	Environment
	Task
	AMODE/RMODE requirements
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Contents of registers on entry to Exit 15
	Contents of register when Exit 15 returns to JES2
	Coded example

	Chapter 28. Exit 16: Notify
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask

	Mapping macros normally required
	Point of processing
	Programming considerations
	Register contents when Exit 16 gets control
	Register contents when Exit 16 passes control back to JES2
	Coded example

	Chapter 29. Exit 17: BSC RJE SIGNON/SIGNOFF
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Storage recommendations
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 17 gets control
	Register contents when Exit 17 passes control back to JES2
	Coded example

	Chapter 30. Exit 18: SNA RJE LOGON/LOGOFF
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 18 gets control
	Register contents when Exit 18 passes control back to JES2
	Coded example

	Chapter 31. Exit 19: Initialization statement
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 19 gets control
	Register contents when Exit 19 passes control back to JES2
	Coded example

	Chapter 32. Exit 20: End of input
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 20 gets control
	Register contents when Exit 20 passes control back to JES2
	Coded example

	Chapter 33. Exit 21: SMF record
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 21 gets control
	Register contents when Exit 21 passes control back to JES2
	Coded example

	Chapter 34. Exit 22: Cancel/status
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 22 gets control
	Register contents when Exit 22 passes control back to JES2
	Coded example

	Chapter 35. Exit 23: FSS job separator page (JSPA) processing
	Function
	Recommendations for implementing Exit 23
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Restrictions
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 23 gets control
	Register contents when Exit 23 passes control back to JES2
	Coded example

	Chapter 36. Exit 24: Post–initialization
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Creating an information string through Exit 24
	Programming considerations
	Register contents when Exit 24 gets control
	Register contents when Exit 24 passes control back to JES2
	Coded example

	Chapter 37. Exit 25: JCT read
	Function
	Related exits
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 25 gets control
	Register contents when Exit 25 passes control back to JES2
	Coded example

	Chapter 38. Exit 26: Termination/resource release
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 26 gets control
	Register contents when Exit 26 passes control back to JES2
	Coded example

	Chapter 39. Exit 27: PCE attach/detach
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 27 gets control
	Register contents when Exit 27 passes control back to JES2
	Coded example

	Chapter 40. Exit 28: subsystem interface (SSI) job termination
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Expanding the JCT control block
	Register contents when Exit 28 gets control
	Register contents when Exit 28 passes control back to JES2
	Coded example

	Chapter 41. Exit 29: Subsystem interface (SSI) end-of-memory
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 29 gets control
	Register contents when Exit 29 passes control back to JES2
	Coded example

	Chapter 42. Exit 30: Subsystem interface (SSI) data set OPEN and RESTART
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 30 gets control
	Register contents when Exit 30 passes control back to JES2
	Coded example

	Chapter 43. Exit 31: Subsystem interface (SSI) allocation
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 31 gets control
	Register contents when Exit 31 passes control back to JES2
	Coded example

	Chapter 44. Exit 32: Subsystem interface (SSI) job selection
	Function
	Related exits
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 32 gets control
	Register contents when Exit 32 passes control back to JES2
	Coded example

	Chapter 45. Exit 33: Subsystem interface (SSI) data set CLOSE
	Function
	Related exits
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 33 gets control
	Register contents when Exit 33 passes back control to JES2
	Coded example

	Chapter 46. Exit 34: Subsystem interface (SSI) data set unallocation
	Function
	Related exits
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 34 gets control
	Register contents when Exit 34 passes control back to JES2
	Coded example

	Chapter 47. Exit 35: Subsystem interface (SSI) end-of-task
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 35 gets control
	Register contents when Exit 35 passes control back to JES2
	Coded example

	Chapter 48. Exit 36: Pre-security authorization call
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 36 gets control
	Register contents when Exit 36 passes control back to JES2
	Coded example

	Chapter 49. Exit 37: Post-security authorization call
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 37 gets control
	Register contents when Exit 37 passes control back to JES2
	Coded example

	Chapter 50. Exit 38: TSO/E receive data set disposition
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 38 gets control
	Register contents when Exit 38 passes control back to JES2
	Coded example

	Chapter 51. Exit 39: NJE SYSOUT reception data set disposition
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 39 gets control
	Register contents when Exit 39 passes control back to JES2
	Coded example

	Chapter 52. Exit 40: Modifying SYSOUT characteristics
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Contents of registers when Exit 40 gets control
	Register contents when Exit 40 passes control back to JES2
	Coded example

	Chapter 53. Exit 41: Modifying output grouping key selection
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 41 gets control
	Register contents when Exit 41 passes control back to JES2
	Coded example

	Chapter 54. Exit 42: Modifying a notify user message
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 42 gets control
	Register contents when Exit 42 passes control back to JES2
	Coded example

	Chapter 55. Exit 43: APPC/MVS TP selection/change/termination
	Function
	Related exits
	Recommendations for implementing Exit 43
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Locks held before entry
	Restrictions
	Recovery
	Job exit mask
	Storage recommendations
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 43 gets control
	Register contents when Exit 43 passes control back to JES2
	Coded example

	Chapter 56. Exit 44: JES2 converter exit (JES2 main)
	Function
	Related exits
	Recommendations for implementing Exit 44
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 44 gets control
	Register contents when Exit 44 passes control back to JES2
	Coded example

	Chapter 57. Exit 45: Pre-SJF service request
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Storage recommendations
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 45 gets control
	Register contents when Exit 45 passes control back to JES2
	Coded example

	Chapter 58. Exit 46: Modifying an NJE data area before its transmission
	Function
	Related exits
	Recommendations for implementing Exit 46
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 46 gets control
	Register contents when Exit 46 passes control back to JES2
	Coded example

	Chapter 59. Exit 47: Modifying an NJE data area before receiving the rest of the NJE job
	Function
	Related exits
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 47 gets control
	Register contents when Exit 47 passes control back to JES2
	Coded example

	Chapter 60. Exit 48: Subsystem interface (SSI) SYSOUT data set unallocation
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 48 gets control
	Register contents when Exit 48 passes control back to JES2
	Coded example

	Chapter 61. Exit 49: Job queue work select - QGOT
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 49 gets control
	Register contents when Exit 49 passes control back to JES2
	Coded example

	Chapter 62. Exit 50: End of input
	Function
	Recommendations for implementing Exit 50
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 50 gets control
	Register contents when Exit 50 passes control back to JES2
	Coded example

	Chapter 63. Exit 51: Job phase change exit ($QMOD)
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Restrictions
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 51 gets control
	Register contents when Exit 51 passes control back to JES2
	Coded example

	Chapter 64. Exit 52: JOB JCL statement scan (JES2 user environment)
	Function
	Recommendations for implementing Exit 52
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Restrictions
	Recovery
	Job exit mask
	Storage recommendations
	Mapping macros normally required

	Point of processing
	Extending the JCT control block
	Programming considerations
	Register contents on entry to Exit 52
	Register contents when Exit 52 passes control back to JES2
	Coded example

	Chapter 65. Exit 53: JOB statement accounting field scan (JES2 user environment)
	Function
	Related exits
	Recommendations for implementing Exit 53
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Restrictions
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Extending the JCT control block
	Programming considerations
	Register contents when Exit 53 gets control
	Register contents when Exit 53 passes control back to JES2
	Coded example

	Chapter 66. Exit 54: JCL and JES2 control statement scan (JES2 user environment)
	Function
	Recommendations for implementing Exit 54
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Restriction
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 54 gets control
	Register contents when Exit 54 passes control back to JES2
	Coded example

	Chapter 67. Exit 55: NJE SYSOUT reception data set disposition
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 55 gets control
	Register contents when Exit 55 passes control back to JES2
	Coded example

	Chapter 68. Exit 56: Modifying an NJE data area before its transmission
	Function
	Related exits
	Recommendations for implementing Exit 56
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 56 gets control
	Register contents when Exit 56 passes control back to JES2
	Coded example

	Chapter 69. Exit 57: Modifying an NJE data area before receiving the rest of the NJE job
	Function
	Related exits
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 57 gets control
	Register contents when Exit 57 passes control back to JES2
	Coded example

	Chapter 70. Exit 58: Subsystem interface (SSI) end-of-step
	Function
	Environment
	Task
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Mapping macros normally required

	Point of processing
	Programming considerations
	Register contents when Exit 58 gets control
	Register contents when Exit 58 passes control back to JES2

	Chapter 71. Exit 59: Post interpretation
	Function
	Related exits
	Recommendations for implementing Exit 59
	Environment
	Task
	Restrictions
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Storage recommendations
	Mapping macros typically required

	Point of processing
	Programming considerations
	Register contents when Exit 59 gets control
	Register contents when Exit 59 passes control back to JES2

	Chapter 72. Exit 60: JES2 converter exit (user)
	Function
	Related exits
	Recommendations for implementing Exit 60
	Environment
	Task
	Restrictions
	AMODE/RMODE requirements
	Supervisor/problem program
	Recovery
	Job exit mask
	Storage recommendations
	Mapping macros typically required

	Point of processing
	Programming considerations
	Register contents when Exit 60 gets control
	Register contents when Exit 60 passes control back to JES2
	Coded example

	Chapter 73. JES2 exit migration considerations
	JES2 z/OS V1R11 migration details
	JES2 z/OS V1R11 checkpoint activation
	JES2 z/OS V1R11 exits and macros

	JES2 z/OS V2R1 migration details
	JES2 z/OS 2.1 input phase processing
	JES2 z/OS 2.1 conversion phase processing
	JES2 z/OS 2.1 data structure processing
	JES2 z/OS 2.1 Exit 6 considerations
	JES2 z/OS 2.1 Exit 7 and Exit 8 considerations
	JES2 z/OS 2.1 Exit 36 and Exit 37 considerations
	JES2 z/OS 2.1 Exit 44 considerations
	JES2 z/OS 2.1 Exit 59 considerations

	Appendix A. JES2 exit usage limitations
	Appendix B. Sample code for Exit 17 and Exit 18
	Appendix C. Job-related exit scenarios
	Exit sequence
	Selected exits
	SPOOL control blocks
	Checkpoint control blocks
	Checkpoint control blocks for JQEs
	Checkpoint control blocks for JOEs

	$JCT/JMR relationship
	Input phase
	Job input sources
	Job input service processing

	Conversion phase
	Execution phase
	Spin phase
	Output phase
	Hardcopy phase
	NJE hardcopy phase exits
	Purge phase

	Appendix D. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

