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About this information

This information describes the syntax, semantics, and IBM® z/OS® XL C/C++
implementation of the C and C++ programming languages. Although the XL C
and XL C++ compilers conform to the specifications maintained by the ISO
standards for the C and C++ programming languages, the compilers also
incorporate many extensions to the core languages. These extensions have been
implemented with the aims of enhancing usability in specific operating
environments, supporting compatibility with other compilers, and supporting new
hardware capabilities. For example, on the z/OS platform, language constructs
have been added to provide support for data types that are specific to the IBM
System z® environment.

Note: As of z/OS V1R7, IBM z/OS C/C++ compiler has been rebranded to IBM
z/OS XL C/C++.

Who should read this information
This information is a reference for users who already have experience
programming applications in C or C++. Users new to C or C++ can still use this
information to find language and features unique to XL C/C++; however, this
reference does not aim to teach programming concepts nor to promote specific
programming practices.

How to use this information
Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and other graphical elements (see below for the
conventions used).

While this information covers both standard and implementation-specific features,
it does not include the following topic:
v Standard C and C++ library functions and headers. For standard C/C++ library

information, refer to the Standard C++ Library Reference.

How this information is organized
This information is organized to loosely follow the structure of the ISO standard
language specifications and topics are grouped into similar headings.
v Chapters 3 through 10 discuss language elements that are common to both C

and C++, including scope and linkage, lexical elements, data types, declarations,
declarators, type conversions, expressions, operators, statements, and functions.
Throughout these chapters, both standard features and extensions are discussed.

v Chapters 11 through 18 discuss standard C++ features exclusively, including
classes, overloading, inheritance, templates, and exception handling.

v Chapters 19 through 22 discuss directives to the preprocessor and macros that
are predefined by the compiler.

v Chapters 23 through 25 discuss the compatibility and conformance on the z/OS
platform.
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v The last chapters discuss implementation-defined behavior, accessibility, and
notices.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C language levels
and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only, or C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only, or C++ only
begins

C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

x z/OS V2R1.0 XL C/C++ Language Reference



Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

IBM extension, or IBM
extension begins

IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

C11, or C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11, or C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

z/OS only
z/OS

z/OS

The text describes a feature that is supported only on the z/OS
implementation of the compilers.

C++ and C11, or C++ and
C11 begin

C++ C11

C11 C++

C++ and C11 end

The text describes a feature that is supported by both C++ and
C11 standards.

Syntax diagrams

Throughout this information, diagrams illustrate z/OS XL C/C++ syntax. This
section will help you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a command, directive, or statement.
The ───� symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The �─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───�� symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):
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�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword
optional_argument

��

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

�� keyword required_argument1
required_argument2

��

If choosing one of the items is optional, the entire stack is shown below the
main path.

�� keyword
optional_argument1
optional_argument2

��

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

�� �

,

keyword repeatable_argument ��

v The item that is the default is shown above the main path.

�� keyword
default_argument
alternate_argument ��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma
comment directive.

��
(1) (2) (3) (4) (5) (9) (10)

# pragma comment ( compiler )
date
timestamp

(6)
copyright
user (7) (8)

, " token_sequence "

��

Notes:

1 This is the start of the syntax diagram.
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2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an
optional character string.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.
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z/OS XL C/C++ and related documents

z/OS XL C/C++ documents address a variety of application development tasks
and are provided in multiple formats.

For a summary of the information contained in z/OS XL C/C++ documents see
"z/OS XL C/C++ and related documents" in z/OS XL C/C++ User's Guide.

Softcopy documents

The z/OS XL C/C++ documents are supplied in PDF and IBM BookMaster®

formats on the following CD: z/OS Collection, SK3T-4269. They are also available at
http://www.ibm.com/software/awdtools/czos/library/.

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader,
you can download it (subject to Adobe license terms) from the Adobe Web site at
http://www.adobe.com.

You can also browse the documents on the World Wide Web by visiting the z/OS
library at http://www.ibm.com/systems/z/os/zos/bkserv/.

Note: For further information on viewing and printing softcopy documents and
using IBM BookManager®, see z/OS Information Roadmap.

Softcopy examples

For information on the labelling used to identify examples that are available as
softcopy files, see "Softcopy examples" in z/OS XL C/C++ User's Guide.

z/OS XL C/C++ on the World Wide Web

Additional information on z/OS XL C/C++ is available on the World Wide Web on
the z/OS XL C/C++ home page at: http://www.ibm.com/software/awdtools/
czos/.

This page contains late-breaking information about the z/OS XL C/C++ product,
including the compiler, the C/C++ libraries, and utilities. There are links to other
useful information, such as the z/OS XL C/C++ information library and the
libraries of other z/OS elements that are available on the Web. The z/OS XL
C/C++ home page also contains links to other related Web sites.

Technical support

Additional technical support is available from the z/OS XL C/C++ Support page.
This page provides a portal with search capabilities to a large selection of technical
support FAQs and other support documents. You can find the z/OS XL C/C++
Support page on the Web at: http://www.ibm.com/software/awdtools/czos/
support.

If you cannot find what you need, you can e-mail:

compinfo@ca.ibm.com
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For the latest information about z/OS XL C/C++, visit the product information site
at: http://www.ibm.com/software/awdtools/czos/.

For information about boosting performance, productivity and portability, visit the
C/C++ Cafe at: http://www-949.ibm.com/software/rational/cafe/community/
ccpp.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this document or any other z/OS XL
C/C++ documentation, send your comments by e-mail to:

compinfo@ca.ibm.com

Be sure to include the name of the document, the part number of the document,
the version of, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.
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Chapter 1. Scope and linkage

Scope is the largest region of program text in which a name can potentially be used
without qualification to refer to an entity; that is, the largest region in which the
name is potentially valid. Broadly speaking, scope is the general context used to
differentiate the meanings of entity names. The rules for scope combined with
those for name resolution enable the compiler to determine whether a reference to
an identifier is legal at a given point in a file.

The scope of a declaration and the visibility of an identifier are related but distinct
concepts. Scope is the mechanism by which it is possible to limit the visibility of
declarations in a program. The visibility of an identifier is the region of program
text from which the object associated with the identifier can be legally accessed.
Scope can exceed visibility, but visibility cannot exceed scope. Scope exceeds
visibility when a duplicate identifier is used in an inner declarative region, thereby
hiding the object declared in the outer declarative region. The original identifier
cannot be used to access the first object until the scope of the duplicate identifier
(the lifetime of the second object) has ended.

Thus, the scope of an identifier is interrelated with the storage duration of the
identified object, which is the length of time that an object remains in an identified
region of storage. The lifetime of the object is influenced by its storage duration,
which in turn is affected by the scope of the object identifier.

Linkage refers to the use or availability of a name across multiple translation units
or within a single translation unit. The term translation unit refers to a source code
file plus all the header and other source files that are included after preprocessing
with the #include directive, minus any source lines skipped because of conditional
preprocessing directives. Linkage allows the correct association of each instance of
an identifier with one particular object or function.

Scope and linkage are distinguishable in that scope is for the benefit of the
compiler, whereas linkage is for the benefit of the linker. During the translation of
a source file to object code, the compiler keeps track of the identifiers that have
external linkage and eventually stores them in a table within the object file. The
linker is thereby able to determine which names have external linkage, but is
unaware of those with internal or no linkage.

The distinctions between the different types of scopes are discussed in “Scope” on
page 2. The different types of linkages are discussed in “Program linkage” on page
7.
Related reference:
“Storage class specifiers” on page 48
Chapter 9, “Namespaces (C++ only),” on page 317
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Scope
The scope of an identifier is the largest region of the program text in which the
identifier can potentially be used to refer to its object. In C++, the object being
referred to must be unique. However, the name to access the object, the identifier
itself, can be reused. The meaning of the identifier depends upon the context in
which the identifier is used. Scope is the general context used to distinguish the
meanings of names.

The scope of an identifier is possibly noncontiguous. One of the ways that
breakage occurs is when the same name is reused to declare a different entity,
thereby creating a contained declarative region (inner) and a containing declarative
region (outer). Thus, point of declaration is a factor affecting scope. Exploiting the
possibility of a noncontiguous scope is the basis for the technique called information
hiding.

The concept of scope that exists in C was expanded and refined in C++. The
following table shows the kinds of scopes and the minor differences in
terminology.

Table 3. Kinds of scope

C C++

block local

function function

Function prototype Function prototype

file global namespace

namespace

class

In all declarations, the identifier is in scope before the initializer. The following
example demonstrates this:
int x;
void f() {

int x = x;
}

The x declared in function f() has local scope, not global scope.
Related reference:
Chapter 9, “Namespaces (C++ only),” on page 317

Block/local scope
A name has local scope or block scope if it is declared in a block. A name with local
scope can be used in that block and in blocks enclosed within that block, but the
name must be declared before it is used. When the block is exited, the names
declared in the block are no longer available.

Parameter names for a function have the scope of the outermost block of that
function. Also, if the function is declared and not defined, these parameter names
have function prototype scope.

When one block is nested inside another, the variables from the outer block are
usually visible in the nested block. However, if the declaration of a variable in a
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nested block has the same name as a variable that is declared in an enclosing
block, the declaration in the nested block hides the variable that was declared in
the enclosing block. The original declaration is restored when program control
returns to the outer block. This is called block visibility.

Name resolution in a local scope begins in the immediately enclosing scope in
which the name is used and continues outward with each enclosing scope. The
order in which scopes are searched during name resolution causes the
phenomenon of information hiding. A declaration in an enclosing scope is hidden
by a declaration of the same identifier in a nested scope.
Related reference:
“Block statements” on page 199

Function scope
The only type of identifier with function scope is a label name. A label is implicitly
declared by its appearance in the program text and is visible throughout the
function that declares it.

A label can be used in a goto statement before the actual label is seen.
Related reference:
“Labeled statements” on page 197

Function prototype scope
In a function declaration (also called a function prototype) or in any function
declarator—except the declarator of a function definition—parameter names have
function prototype scope. Function prototype scope terminates at the end of the
nearest enclosing function declarator.
Related reference:
“Function declarations” on page 219

File/global scope
C A name has file scope if the identifier's declaration appears outside of any

block. A name with file scope and internal linkage is visible from the point where
it is declared to the end of the translation unit.

C++ Global scope or global namespace scope is the outermost namespace scope of
a program, in which objects, functions, types and templates can be defined. A
name has global namespace scope if the identifier's declaration appears outside of all
blocks, namespaces, and classes.

A name with global namespace scope and internal linkage is visible from the point
where it is declared to the end of the translation unit.

A name with global (namespace) scope is also accessible for the initialization of
global variables. If that name is declared extern, it is also visible at link time in all
object files being linked.

A user-defined namespace can be nested within the global scope using namespace
definitions, and each user-defined namespace is a different scope, distinct from the
global scope. C++

Related reference:
Chapter 9, “Namespaces (C++ only),” on page 317
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“Internal linkage” on page 7
“The extern storage class specifier” on page 51

Examples of scope in C
The following example declares the variable x on line 1, which is different from the
x it declares on line 2. The declared variable on line 2 has function prototype scope
and is visible only up to the closing parenthesis of the prototype declaration. The
variable x declared on line 1 resumes visibility after the end of the prototype
declaration.
1 int x = 4; /* variable x defined with file scope */
2 long myfunc(int x, long y); /* variable x has function */
3 /* prototype scope */
4 int main(void)
5 {
6 /* . . . */
7 }

The following program illustrates blocks, nesting, and scope. The example shows
two kinds of scope: file and block. The main function prints the values 1, 2, 3, 0,
3, 2, 1 on separate lines. Each instance of i represents a different variable.

Class scope (C++ only)
A name declared within a member function hides a declaration of the same name
whose scope extends to or past the end of the member function's class.

When the scope of a declaration extends to or past the end of a class definition, the
regions defined by the member definitions of that class are included in the scope
of the class. Members defined lexically outside of the class are also in this scope. In
addition, the scope of the declaration includes any portion of the declarator
following the identifier in the member definitions.

#include <stdio.h>
int i = 1; /* i defined at file scope */

int main(int argc, char * argv[])
┌───── {
¹
¹ printf("%d\n", i); /* Prints 1 */
¹
¹ ┌─── {
¹ ² int i = 2, j = 3; /* i and j defined at block scope */
¹ ² /* global definition of i is hidden */
¹ ² printf("%d\n%d\n", i, j); /* Prints 2, 3 */
¹ ²
¹ ² ┌── {
¹ ² ³ int i = 0; /* i is redefined in a nested block */
¹ ² ³ /* previous definitions of i are hidden */
¹ ² ³ printf("%d\n%d\n", i, j); /* Prints 0, 3 */
¹ ² └── }
¹ ²
¹ ² printf("%d\n", i); /* Prints 2 */
¹ ²
¹ └─── }
¹
¹ printf("%d\n", i); /* Prints 1 */
¹
¹ return 0;
¹
└────── }
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The name of a class member has class scope and can only be used in the following
cases:
v In a member function of that class
v In a member function of a class derived from that class
v After the . (dot) operator applied to an instance of that class
v After the . (dot) operator applied to an instance of a class derived from that

class, as long as the derived class does not hide the name
v After the -> (arrow) operator applied to a pointer to an instance of that class
v After the -> (arrow) operator applied to a pointer to an instance of a class

derived from that class, as long as the derived class does not hide the name
v After the :: (scope resolution) operator applied to the name of a class
v After the :: (scope resolution) operator applied to a class derived from that class
Related reference:
Chapter 11, “Classes (C++ only),” on page 347
“Scope of class names” on page 351
“Member scope” on page 361
“Friend scope” on page 377
“Access control of base class members” on page 387
“Scope resolution operator :: (C++ only)” on page 148

Namespaces of identifiers
Namespaces are the various syntactic contexts within which an identifier can be
used. Within the same context and the same scope, an identifier must uniquely
identify an entity. Note that the term namespace as used here applies to C as well as
C++ and does not refer to the C++ namespace language feature. The compiler sets
up namespaces to distinguish among identifiers referring to different kinds of
entities. Identical identifiers in different namespaces do not interfere with each
other, even if they are in the same scope.

The same identifier can declare different objects as long as each identifier is unique
within its namespace. The syntactic context of an identifier within a program lets
the compiler resolve its namespace without ambiguity.

Within each of the following four namespaces, the identifiers must be unique:
v Tags of the following types must be unique within a single scope:

– Enumerations
– Structures and unions

v Members of structures, unions, and classes must be unique within a single
structure, union, or class type.

v Statement labels have function scope and must be unique within a function.
v All other ordinary identifiers must be unique within a single scope:

– C function names (C++ function names can be overloaded)
– Variable names
– Names of function parameters
– Enumeration constants
– typedef names

You can redefine identifiers in the same namespace using enclosed program blocks.
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Structure tags, structure members, variable names, and statement labels are in four
different namespaces. No name conflict occurs among the items named student in
the following example:
int get_item()
{

struct student /* structure tag */
{

char student[20]; /* structure member */
int section;
int id;

} student; /* structure variable */

goto student;
student:; /* null statement label */
return 0;
}

The compiler interprets each occurrence of student by its context in the program:
when student appears after the keyword struct, it is a structure tag; when it
appears in the block defining the student type, it is a structure member variable;
when it appears at the end of the structure definition, it declares a structure
variable; and when it appears after the goto statement, it is a label.

Name hiding (C++ only)
If a class name or enumeration name is in scope and not hidden, it is visible. A
class name or enumeration name can be hidden by an explicit declaration of that
same name — as an object, function, or enumerator — in a nested declarative
region or derived class. The class name or enumeration name is hidden wherever
the object, function, or enumerator name is visible. This process is referred to as
name hiding.

In a member function definition, the declaration of a local name hides the
declaration of a member of the class with the same name. The declaration of a
member in a derived class hides the declaration of a member of a base class of the
same name.

Suppose a name x is a member of namespace A, and suppose that the members of
namespace A are visible in namespace B through the use of a declaration. A
declaration of an object named x in namespace B will hide A::x. The following
example demonstrates this:
#include <iostream>
#include <typeinfo>
using namespace std;

namespace A {
char x;

};

namespace B {
using namespace A;
int x;

};

int main() {
cout << typeid(B::x).name() << endl;

}

See the output of the above example:
int
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The declaration of the integer x in namespace B hides the character x introduced by
the using declaration.
Related reference:
Chapter 11, “Classes (C++ only),” on page 347
“Member functions” on page 359
“Member scope” on page 361
Chapter 9, “Namespaces (C++ only),” on page 317

Program linkage
Linkage determines whether identifiers that have identical names refer to the same
object, function, or other entity, even if those identifiers appear in different
translation units. The linkage of an identifier depends on how it was declared.
There are three types of linkages:
v “Internal linkage” : identifiers can only be seen within a translation unit.
v “External linkage” on page 8 : identifiers can be seen (and referred to) in other

translation units.
v “No linkage” on page 8: identifiers can only be seen in the scope in which they

are defined.

Linkage does not affect scoping, and normal name lookup considerations apply.

C++ You can also have linkage between C++ and non-C++ code fragments,
which is called language linkage. Language linkage enables the close relationship
between C++ and C by allowing C++ code to link with that written in C. All
identifiers have a language linkage, which by default is C++. Language linkage
must be consistent across translation units, and non-C++ language linkage implies
that the identifier has external linkage.
Related reference:
“The static storage class specifier” on page 49
“The extern storage class specifier” on page 51
“Function storage class specifiers” on page 225
“Type qualifiers” on page 85
Anonymous unions

Internal linkage
The following kinds of identifiers have internal linkage:
v Objects, references, or functions explicitly declared static

v Objects or references declared in namespace scope (or global scope in C) with
the specifier const C++11 or constexpr C++11 and neither explicitly declared
extern, nor previously declared to have external linkage

v Data members of an anonymous union
v C++ Function templates explicitly declared static

v C++ Identifiers declared in the unnamed namespace

A function declared inside a block will usually have external linkage. An object
declared inside a block will usually have external linkage if it is specified extern. If
a variable that has static storage is defined outside a function, the variable has
internal linkage and is available from the point where it is defined to the end of
the current translation unit.
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If the declaration of an identifier has the keyword extern and if a previous
declaration of the identifier is visible at namespace or global scope, the identifier
has the same linkage as the first declaration.

External linkage
C In global scope, identifiers for the following kinds of entities declared

without the static storage class specifier have external linkage:
v An object
v A function

If an identifier in C is declared with the extern keyword and if a previous
declaration of an object or function with the same identifier is visible, the identifier
has the same linkage as the first declaration. For example, a variable or function
that is first declared with the keyword static and later declared with the keyword
extern has internal linkage. However, a variable or function that has no linkage
and was later declared with a linkage specifier will have the linkage that was
expressly specified. C

C++ In namespace scope, the identifiers for the following kinds of entities
have external linkage:
v A reference or an object that does not have internal linkage
v A function that does not have internal linkage
v A named class or enumeration
v An unnamed class or enumeration defined in a typedef declaration
v An enumerator of an enumeration that has external linkage
v A template, unless it is a function template with internal linkage
v A namespace, unless it is declared in an unnamed namespace

If the identifier for a class has external linkage, then, in the implementation of that
class, the identifiers for the following entities will also have external linkage:
v A member function
v A static data member
v A class of class scope
v An enumeration of class scope

C++

Related reference:
“The _Export qualifier (C++ only)” on page 125
“The _Export function specifier (C++ only)” on page 233

No linkage
The following kinds of identifiers have no linkage:
v Names that have neither external nor internal linkage
v Names declared in local scopes (with exceptions of certain entities declared with

the extern keyword)
v Identifiers that do not represent an object or a function, including labels,

enumerators, typedef names that refer to entities with no linkage, type names,
function parameters, and C++ template names C++
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You cannot use a name with no linkage to declare an entity with linkage. For
example, you cannot use the name of a structure or enumeration or a typedef
name referring to an entity with no linkage to declare an entity with linkage. The
following example demonstrates this:
int main() {

struct A { };
// extern A a1;

typedef A myA;
// extern myA a2;
}

The compiler will not allow the declaration of a1 with external linkage. Structure A
has no linkage. The compiler will not allow the declaration of a2 with external
linkage. The typedef name myA has no linkage because A has no linkage.

Language linkage (C++ only)
Linkage between C++ and non-C++ code fragments is called language linkage. All
function types, function names, and variable names have a language linkage,
which by default is C++.

You can link C++ object modules to object modules produced using other source
languages such as C by using a linkage specification.

Linkage specification syntax

�� extern string_literal

�

declaration

{ }
declaration

��

The string_literal is used to specify the linkage associated with a particular
function. String literals used in linkage specifications should be considered as
case-sensitive. All platforms support the following values for string_literal:

"C++" Unless otherwise specified, objects and functions have this default linkage
specification.

"C" Indicates linkage to a C procedure.

Calling shared libraries that were written before C++ needed to be taken into
account requires the #include directive to be within an extern "C" {} declaration.
extern "C" {
#include "shared.h"
}

The following example shows a C printing function that is called from C++.
// in C++ program
extern "C" int displayfoo(const char *);
int main() {

return displayfoo("hello");
}

/* in C program */
#include <stdio.h>
extern int displayfoo(const char * str) {

while (*str) {
putchar(*str);

Chapter 1. Scope and linkage 9



putchar(’ ’);
++str;

}
putchar(’\n’);

}

CCNX02J
// This example illustrates linkage specifications.

extern "C" int printf(const char*,...);

int main(void)
{

printf("hello\n");
}

Here the string_literal "C" tells the compiler that the routine printf(const
char*,...) is a C function.

Note: This example is not guaranteed to work on all platforms. The only safe way
to declare a C function in a C++ program is to include the appropriate header. In
this example you would substitute the line of code with extern with the following
line:
#include <stdio.h>

Name mangling (C++ only)

Name mangling is the encoding of function and variable names into unique names
so that linkers can separate common names in the language. Type names may also
be mangled. Name mangling is commonly used to facilitate the overloading
feature and visibility within different scopes. The compiler generates function
names with an encoding of the types of the function arguments when the module
is compiled. If a variable is in a namespace, the name of the namespace is mangled
into the variable name so that the same variable name can exist in more than one
namespace. The C++ compiler also mangles C variable names to identify the
namespace in which the C variable resides.

The scheme for producing a mangled name differs with the object model used to
compile the source code: the mangled name of an object of a class compiled using
one object model will be different from that of an object of the same class compiled
using a different object model. The object model is controlled by compiler option
or by pragma.

Name mangling is not desirable when linking C modules with libraries or object
files compiled with a C++ compiler. To prevent the C++ compiler from mangling
the name of a function, you can apply the extern "C" linkage specifier to the
declaration or declarations, as shown in the following example:
extern "C" {

int f1(int);
int f2(int);
int f3(int);

};

This declaration tells the compiler that references to the functions f1, f2, and f3
should not be mangled.

The extern "C" linkage specifier can also be used to prevent mangling of functions
that are defined in C++ so that they can be called from C. For example,
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extern "C" {
void p(int){

/* not mangled */
}

};

In multiple levels of nested extern declarations, the innermost extern specification
prevails.
extern "C" {

extern "C++" {
void func();

}
}

In this example, func has C++ linkage.
Related reference:
“The extern storage class specifier” on page 51
“The extern storage class specifier” on page 226
“#pragma linkage (C only)” on page 566
“The __cdecl function specifier (C++ only)” on page 231
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Chapter 2. Lexical elements

A lexical element refers to a character or groupings of characters that might legally
appear in a source file. This chapter contains discussions of the basic lexical
elements and conventions of the C and C++ programming languages.

Tokens
Source code is treated during preprocessing and compilation as a sequence of
tokens. A token is the smallest independent unit of meaning in a program, as
defined by the compiler.

Adjacent identifiers, keywords, and literals must be separated with white space.
Other tokens should be separated by white space to make the source code more
readable. White space includes blanks, horizontal and vertical tabs, new lines, form
feeds, and comments.

There are the following different types of tokens:
v “Keywords”
v “Identifiers” on page 16
v “Literals” on page 19
v “Punctuators and operators” on page 30

Keywords
Keywords are identifiers reserved by the language for special use. Although you can
use them for preprocessor macro names, it is considered poor programming style.
Only the exact spelling of keywords is reserved. For example, auto is reserved but
AUTO is not.

Keywords for the C and C++ languages

Table 4. C and C++ keywords

auto1

break
case
char
const
continue
default
do

double
else
enum
extern2

float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

Notes:

1. C++11 In C++11, the keyword auto is no longer used as a storage class specifier.
Instead, it is used as a type specifier, which can deduce the type of an auto variable from
the type of its initializer expression.

2. The keyword extern was previously used as a storage specifier or as part of a linkage
specification. The C++11 standard adds a third usage to use this keyword to specify

explicit instantiation declarations. C++11

C
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Keywords for the C language only

Standard C at the C99 and C11 levels also reserves the following keywords:

Table 5. C99 and C11 keywords

_Atomic1

_Bool
_Complex
_Generic1

_Imaginary2

inline3

_Noreturn1

_Static_assert1

restrict4

Notes:

1. C11 These keywords are introduced due to the C11 language level. C11

2. The keyword _Imaginary is reserved for possible future use. For complex number
functionality, use _Complex; see Complex literals (C only) for details.

3. The keyword inline is only recognized under compilation with c99 and above, or with
the LANGLVL(STDC99) or LANGLVL(EXTC99) options.

4. The keyword restrict is only recognized under compilation with c99 and above, or
with the LANGLVL(STDC99) or LANGLVL(EXTC99) options.

C

C++

Keywords for the C++ language only

The C++ language also reserves the following keywords:

Table 6. C++ keywords

bool
catch
class
char16_t1

char32_t1

const_cast
constexpr
delete

dynamic_cast
decltype
explicit
export
false
friend
inline
mutable
namespace

new

operator
private
protected
public
reinterpret_cast
static_assert
static_cast
template

this
throw
true
try
typeid
typename
using
virtual
wchar_t

Note:

1. C++11 These keywords are reserved only at the C++11 language level. C++11

C++

Keywords for language extensions (IBM extension)

In addition to standard language keywords, the z/OS XL C/C++ compiler reserves
the following keywords for use in language extensions:
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Table 7. Keywords for C and C++ language extensions

asm
__asm
__asm__
__attribute__
__attribute
__complex__ (C only)
__const__
__extension__

__imag__ (C only)
__inline__
_Noreturn2

__real__ (C only)
__restrict

__restrict__
__signed__

__signed
__static_assert1

typeof (C only)
__typeof__
vector3

__vector3

__volatile (C++ only)
__volatile__ (C++ only)

Notes:

1. C++11 __static_assert is a keyword for C language extension for compatibility with
the C++11 standard.

2. C++ _Noreturn is a keyword for C++ language extension for compatibility with the

C11 standard. C++

3. These keywords are recognized only when the VECTOR compiler option is in effect.

C++ The z/OS XL C/C++ compiler reserves the following keywords as
language extensions for compatibility with C99.

Table 8. Keywords for C++ language extensions related to C99

restrict

C++

z/OS z/OS XL C/C++ additionally reserves the following for use as extensions:

Table 9. Keywords for C/C++ language extensions on z/OS

C

_Packed
__packed

C++

__cdecl
_Export

__callback
__ptr32
__ptr64
__far1

Note:

1. Recognized only when the METAL compiler option is in effect, which is
currently only supported by z/OS XL C.

z/OS XL C/C++ also reserves the following keywords for future use in both C and
C++:

Table 10. Reserved keywords for future use

__alignof__
__extension__
__label__

C++ _Pragma

z/OS

More detailed information regarding the compilation contexts in which extension
keywords are valid is provided in the sections that describe each keyword.
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Identifiers
Identifiers provide names for the following language elements:
v Functions
v Objects
v Labels
v Function parameters
v Macros and macro parameters
v Type definitions
v Enumerated types and enumerators
v Structure and union names
v C++ Classes and class members
v C++ Templates
v C++ Template parameters
v C++ Namespaces

An identifier consists of an arbitrary number of letters, digits, or the underscore
character in the form:

�� letter
_

� letter
digit
_

��

Characters in identifiers

The first character in an identifier must be a letter or the _ (underscore) character;
however, beginning identifiers with an underscore is considered poor
programming style.

The compiler distinguishes between uppercase and lowercase letters in identifiers.
For example, PROFIT and profit represent different identifiers. If you specify a
lowercase a as part of an identifier name, you cannot substitute an uppercase A in
its place; you must use the lowercase letter.

Note: C If the names have external linkage, and you do not specify the
LONGNAME compiler option, names are truncated to eight characters and
uppercased in the object file. For example, STOCKONHOLD and stockonhold will both
refer to the same object. For more information on external name mapping, see
“External identifiers (z/OS only).”

The universal character names for letters and digits outside of the basic source
character set are allowed in C++ and at the C99 language level. C++ In C++,
you must compile with the LANGLVL(UCS) option for universal character name
support.

External identifiers (z/OS only)

By default, external names in C object modules, and external names without C++
linkage in C++ object modules, are formatted as follows:
v All characters are converted to uppercase.
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v Names longer than 8 characters are truncated to 8 characters.
v Each underscore character is converted to an at sign (@).

For example, if you compile the following C program:
int test_name[4] = { 4, 8, 9, 10 };
int test_namesum;

int main(void) {
int i;
test_namesum = 0;

for (i = 0; i < 4; i++)
test_namesum += test_name[i];

printf("sum is %d\n", test_namesum);
}

The C compiler displays the following message:
ERROR CCN3244 ./sum.c:2 External name TEST_NAM cannot be redefined.

The compiler changes the external names test_namesum and test_name to
uppercase and truncates them to 8 characters. If you specify the CHECKOUT
compile-time option, the compiler will generate two informational messages to this
effect. Because the truncated names are now the same, the compiler produces an
error message and terminates the compilation.

To avoid this problem, you can do either of the following:
v Map long external names in the source code to 8 or less characters that you

specify, by using the #pragma map directive. For example:
#pragma map(verylongname,"sname")

v Compile with the LONGNAME compiler option, and use the binder to produce
a program object in a PDSE, or use the prelinker. This allows up to 1024
characters in external names, mixed-case characters, and preserves the
underscore character. For more information on the binder, prelinker, and
LONGNAME compile-time option, see the z/OS XL C/C++ User's Guide.

IBM-provided functions have names that begin with IBM, CEE, and PLI. In order
to prevent conflicts between runtime functions and user-defined names, the
compiler changes all static or extern variable names that begin with IBM, CEE,
and PLI in your source program to IB$, CE$, and PL$, respectively, in the object
module. If you are using interlanguage calls, avoid using these prefixes altogether.
The compiler of the calling or called language may or may not change these
prefixes in the same manner as the z/OS XL C/C++ compiler does.

To call an external program or access an external variable that begins with IBM,
CEE, or PLI, use the #pragma map preprocessor directive. The following is an
example of #pragma map that forces an external name to be IBMENTRY:
#pragma map(ibmentry,"IBMENTRY")

Reserved identifiers

Identifiers with two initial underscores or an initial underscore followed by an
uppercase letter are reserved globally for use by the compiler.

C Identifiers that begin with a single underscore are reserved as identifiers
with file scope in both the ordinary and tag namespaces.
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C++ Identifiers that begin with a single underscore are reserved in the global
namespace.

Although the names of system calls and library functions are not reserved words if
you do not include the appropriate headers, avoid using them as identifiers.
Duplication of a predefined name can lead to confusion for the maintainers of your
code and can cause errors at link time or run time. If you include a library in a
program, be aware of the function names in that library to avoid name
duplications. You should always include the appropriate headers when using
standard library functions.

The __func__ predefined identifier

The C99 predefined identifier __func__ makes a function name available for use
within the function. C++ The z/OS XL C/C++ compiler supports this feature
as an IBM extension. C++ Immediately following the opening brace of each
function definition, __func__ is implicitly declared by the compiler. The resulting
behavior is as if the following declaration had been made:
static const char __func__[] = "function-name";

where function-name is the name of the lexically-enclosing function. The function
name is not mangled.

C++ The function name is qualified with the enclosing class name or function
name. For example, if foo is a member function of class X, the predefined identifier
of foo is X::foo. If foo is defined within the body of main, the predefined identifier
of foo is main::X::foo.

C++ The names of template functions or member functions reflect the
instantiated type. For example, the predefined identifier for the template function
foo instantiated with int, template<classT> void foo() is foo<int>.

For debugging purposes, you can explicitly use the __func__ identifier to return
the name of the function in which it appears. For example:
#include <stdio.h>

void myfunc(void) {
printf("%s\n",__func__);
printf("size of __func__ = %d\n", sizeof(__func__));

}

int main() {
myfunc();

}

The output of the program is:
myfunc
size of __func__ = 7

When the assert macro is used inside a function definition, the macro adds the
name of the enclosing function on the standard error stream.
Related reference:
“Identifier expressions (C++ only)” on page 145
“The Unicode standard” on page 35
“Keywords” on page 13
“#pragma map” on page 570
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“#pragma longname/nolongname” on page 569
“Function declarations and definitions” on page 219
Variables in specified registers (IBM extension)
“Inline assembly statements (IBM extension)” on page 215
“Command-line arguments” on page 248

Literals
The term literal constant, or literal, refers to a value that occurs in a program and
cannot be changed. C The C language uses the term constant in place of the
noun literal C . The adjective literal adds to the concept of a constant the
notion that we can speak of it only in terms of its value. A literal constant is
nonaddressable, which means that its value is stored somewhere in memory, but
we have no means of accessing that address.

Every literal has a value and a data type. The value of any literal does not change
while the program runs and must be in the range of representable values for its
type.

There are the following different types of literals:
v “Integer literals”
v “Boolean literals” on page 23
v “Floating-point literals” on page 23

v 2000z/OS “Fixed-point decimal literals” on page 27
v “Character literals” on page 27
v “String literals” on page 28
v “Pointer literal (C++11)” on page 30

Integer literals

C++11

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

C++11

Integer literals are numbers that do not have a decimal point or an exponential part.
They can be represented as:
v Decimal integer literals
v Hexadecimal integer literals
v Octal integer literals

An integer literal might have a prefix that specifies its base, or a suffix that
specifies its type.

Chapter 2. Lexical elements 19



Integer literal syntax

�� decimal_constant
octal_constant
hexadecimal_constant

l
L u
ll U
LL
u
U l

L
ll
LL

��

The long long features

There are two long long features:
v the C99 long long feature
v the non-C99 long long feature

Note: The syntax of integer literals is the same for both of the long long features.
IBM Both of the two features have the corresponding extension parts:

v the C99 long long feature with the associated IBM extensions
v the non-C99 IBM long long extension

IBM

Types of integer literals outside of C99 and C++11

The following table lists the integer literals and shows the possible data types
when the C99 long long feature is not enabled.

Table 11. Types of integer literals outside of C99 and C++111

Representation Suffix Possible data types

int unsigned
int

long
int

unsigned long
int

IBM

long long
int

IBM

unsigned
long long
int

Decimal None + + +2

Octal, Hex None + + + +

All u or U + +

Decimal l or L + +

Octal, Hex l or L + +

All Both u
or U
and l
or L

+

Decimal ll
or LL

+ +

Octal, Hex ll or
LL

+ +
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Table 11. Types of integer literals outside of C99 and C++111 (continued)

Representation Suffix Possible data types

All Both u
or U
and ll
or LL

+

Notes:

1. When none of the long long features are enabled, types of integer literals include all
the types in this table except the last two columns.

2. IBM The unsigned long int type is not required here in the C++98 and C++03
standards. The C++ compiler includes the type in the implementation for compatibility
purposes only.

Types of integer literals in C99 and C++11

When both the C99 and non-C99 long long features are disabled, integer literals
that have one of the following suffixes cause a severe compile-time error:
v ll or LL

v Both u or U and ll or LL

IBM A decimal literal without a u or U in the suffix is represented by the
unsigned long long int type if both of the following conditions are satisfied. In
this case, the compiler generates a message to indicate that the value of the literal
is too large for any signed integer type.
v The value of the literal can fit into the unsigned long long int type.
v The value cannot fit into any of the possible data types that are indicated in the

following table.

IBM

C++11 IBM To strictly conform to the C++11 standard, the compiler
introduces the extended integer safe behavior to ensure that a signed value never
becomes an unsigned value after a promotion. After you enable this behavior, if a
decimal integer literal that does not have a suffix containing u or U cannot be
represented by the long long int type, the compiler issues an error message to
indicate that the value of the literal is out of range. The extended integer safe
behavior is the only difference between the C99 long long feature with the
associated IBM extensions and the C99 long long feature. IBM C++11

The following table lists the integer literals and shows the possible data types
when the C99 long long feature is enabled.

Table 12. Types of integer literals in C99 and C++11

Representation Suffix Possible data types

int unsigned
int

long
int

unsigned
long int

long
long int

unsigned long
long int

Decimal None + +

Octal, Hex None + + + +

All u or U + +

Decimal l or L +

Octal, Hex l or L + +
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Table 12. Types of integer literals in C99 and C++11 (continued)

Representation Suffix Possible data types

All Both u
or U
and l
or L

+

Decimal ll
or LL

+ +1

Octal, Hex ll or
LL

+ +

All Both u
or U
and ll
or LL

+

Note:

1. C++11 IBM The compiler does not support this type if the extended integer safe
behavior is enabled.

2. 2000z/OS In 32-bit mode, an unsuffixed decimal constant of type signed long long is
given the type signed long in 64-bit mode when the constant is less than
ULLONG_MAX.

Decimal integer literals

A decimal integer literal contains any of the digits 0 through 9. The first digit cannot
be 0. Integer literals beginning with the digit 0 are interpreted as an octal integer
literal rather than as a decimal integer literal.

Decimal integer literal syntax

�� digit_1_to_9 � digit_0_to_9 ��

See the following examples of decimal literals:
485976
5

A plus (+) or minus (-) symbol can precede a decimal integer literal. The operator
is treated as a unary operator rather than as part of the literal. Consider the
following example:
-433132211
+20

Hexadecimal integer literals

A hexadecimal integer literal begins with the 0 digit followed by either an x or X,
followed by any combination of the digits 0 through 9 and the letters a through f
or A through F. The letters A (or a) through F (or f) represent the values 10 through
15, respectively.
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Hexadecimal integer literal syntax

�� 0x
0X

� digit_0_to_f
digit_0_to_F

��

See the following examples of hexadecimal integer literals:
0x3b24
0XF96
0x21
0x3AA
0X29b
0X4bD

Octal integer literals

An octal integer literal begins with the digit 0 and contains any of the digits 0
through 7.

Octal integer literal syntax

�� 0 � digit_0_to_7 ��

See the following examples of octal integer literals:
0
0125
034673
03245

Related reference:
“Integral types” on page 54
“Integral conversions” on page 130
“Integral and floating-point promotions” on page 135
“C++11 compatibility” on page 640

Boolean literals

C At the C99 level, C defines true and false as macros in the header file
stdbool.h.

C++ There are only two Boolean literals: true and false.
Related reference:
“Boolean types” on page 55
“Boolean conversions” on page 130

Floating-point literals

Floating-point literals are numbers that have a decimal point or an exponential part.
They can be represented as:
v Real literals

– Binary floating-point literals
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– C Hexadecimal floating-point literals (C only)
v Complex literals

Binary floating-point literals

A real binary floating-point constant consists of the following:
v An integral part
v A decimal point
v A fractional part
v An exponent part
v An optional suffix

Both the integral and fractional parts are made up of decimal digits. You can omit
either the integral part or the fractional part, but not both. You can omit either the
decimal point or the exponent part, but not both.

Binary floating-point literal syntax

�� �

�

�

�

. digit
exponent

digit

digit .
exponent

digit exponent

f
F
l
L

��

Exponent:

e
E +

-

� digit

The suffix f or F indicates a type of float, and the suffix l or L indicates a type of
long double. If a suffix is not specified, the floating-point constant has a type
double.

A plus (+) or minus (-) symbol can precede a floating-point literal. However, it is
not part of the literal; it is interpreted as a unary operator.

The following are examples of floating-point literals:

floating-point constant Value

5.3876e4 53,876
4e-11 0.00000000004
1e+5 100000
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floating-point constant Value

7.321E-3 0.007321
3.2E+4 32000
0.5e-6 0.0000005
0.45 0.45
6.e10 60000000000

Hexadecimal floating-point literals (C only)

Real hexadecimal floating constants, which are a C99 feature, consist of the
following parts.
v a hexadecimal prefix
v a significant part
v a binary exponent part
v an optional suffix

The significant part represents a rational number and is composed of the
following:
v a sequence of hexadecimal digits (whole-number part)
v an optional fraction part

The optional fraction part is a period followed by a sequence of hexadecimal
digits.

The exponent part indicates the power of 2 to which the significant part is raised,
and is an optionally signed decimal integer. The type suffix is optional. The full
syntax is as follows:

Hexadecimal floating-point literal syntax

�� 0x
0X

� �

�

�

. digit_0_to_f exponent
digit_0_to_f digit_0_to_F
digit_0_to_F

digit_0_to_f . exponent
digit_0_to_F

digit_0_to_f exponent
digit_0_to_F

�

�
f
F
l
L

��
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Exponent:

p
P +

-

� digit_0_to_9

The suffix f or F indicates a type of float, and the suffix l or L indicates a type of
long double. If a suffix is not specified, the floating-point constant has a type
double. You can omit either the whole-number part or the fraction part, but not
both. The binary exponent part is required to avoid the ambiguity of the type
suffix F being mistaken for a hexadecimal digit.

Complex literals

Complex literals, which were introduced in the C99 standard, are constructed in
two parts: the real part, and the imaginary part.

Complex literal syntax

�� real part + imaginary part
–

��

Real part:

floating-point constant

Imaginary part:

floating-point constant * _Complex_I

floating-point constant can be specified as a hexadecimal floating-point literal
(including optional suffixes), in any of the formats described in the previous
sections.

_Complex_I is a macro defined in the complex.h header file, representing the
imaginary unit i, the square root of -1.

For example, the declaration:
varComplex = 2.0f + 2.0f * _Complex_I;

initializes the complex variable varComplex to a value of 2.0 + 2.0i.
Related reference:
“Floating-point types” on page 56
“Floating-point conversions” on page 130
“Unary expressions” on page 151
Complex floating-point types
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Fixed-point decimal literals

C Fixed-point decimal constants are a z/OS XL C extension to Standard C.
This type is available when you specify the LANGLVL(EXTENDED) compile-time
option.

A fixed-point decimal constant has a numeric part and a suffix that specifies its
type. The numeric part can include a digit sequence that represents the
whole-number part, followed by a decimal point (.), followed by a digit sequence
that represents the fraction part. Either the integral part or the fractional part, or
both must be present.

A fixed-point constant has the form:

�� �

� �

�

�

. digit_0_to_9

digit_0_to_9 . digit_0_to_9

digit_0_to_9 .

digit_0_to_9

D
d

��

A fixed-point constant has two attributes:
v Number of digits (size)
v Number of decimal places (precision).

The suffix D or d indicates a fixed-point constant.

The following are examples of fixed-point decimal constants:

Fixed-point constant (size, precision)

1234567890123456D (16, 0)
12345678.12345678D (16, 8)
12345678.d ( 8, 0)
.1234567890d (10, 10)
12345.99d ( 7, 2)
000123.990d ( 9, 3)
0.00D ( 3, 2)

For more information on fixed-point decimal data types, see z/OS XL C/C++
Programming Guide. C

Related reference:
“Fixed point decimal types (C only)” on page 58
“The digitsof and precisionof operators (C only)” on page 160

Character literals

A character literal contains a sequence of characters or escape sequences enclosed in
single quotation mark symbols, for example ’c’. A character literal may be
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prefixed with the letter L, for example L’c’. A character literal without the L prefix
is an ordinary character literal or a narrow character literal. A character literal with the
L prefix is a wide character literal. An ordinary character literal that contains more
than one character or escape sequence (excluding single quotes ('), backslashes (\)
or new-line characters) is a multicharacter literal.

C The type of a narrow character literal is int. The type of a wide character
literal is wchar_t. The type of a multicharacter literal is int.

C++ The type of a character literal that contains only one character is char,
which is an integral type. The type of a wide character literal is wchar_t. The type
of a multicharacter literal is int.

Character literal syntax

��
L

' � character
escape_sequence

' ��

At least one character or escape sequence must appear in the character literal, and
the character literal must appear on a single logical source line.

The characters can be from the source program character set. You can represent the
double quotation mark symbol by itself, but to represent the single quotation mark
symbol, you must use the backslash symbol followed by a single quotation mark
symbol ( \’ escape sequence). (See “Escape sequences” on page 34 for a list of
other characters that are represented by escape characters.)

Outside of the basic source character set, the universal character names for letters
and digits are allowed in C++ and at the C99 language level. C++ In C++, you
must compile with the LANGLVL(UCS) option for universal character name
support.

The following are examples of character literals:
’a’
’\’’
L’0’
’(’

Related reference:
“Character types” on page 59
“Source program character set” on page 32
“The Unicode standard” on page 35

String literals

A string literal contains a sequence of characters or escape sequences enclosed in
double quotation mark symbols. A string literal with the prefix L is a wide string
literal. A string literal without the prefix L is an ordinary or narrow string literal.

C The type of narrow string literal is array of char. The type of a wide
character string literal is array of wchar_t Both types have static storage duration.
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C++ The type of a narrow string literal is array of const char. The type of a
wide string literal is array of const wchar_t. Both types have static storage
duration.

String literal syntax

��
L

" � character
escape_sequence

" ��

Multiple spaces contained within a string literal are retained.

Use the escape sequence \n to represent a new-line character as part of the string.
Use the escape sequence \\ to represent a backslash character as part of the string.
You can represent a single quotation mark symbol either by itself or with the
escape sequence \’. You must use the escape sequence \" to represent a double
quotation mark.

Outside of the basic source character set, the universal character names for letters
and digits are allowed in C++ and at the C99 language level. C++ In C++, you
must compile with the LANGLVL(UCS) option for universal character name support.

See the following examples of string literals:
char titles[ ] = "Handel’s \"Water Music\"";
char *temp_string = "abc" "def" "ghi"; // *temp_string = "abcdefghi\0"
wchar_t *wide_string = L"longstring";

This example illustrates escape sequences in string literals:

CCNX02K
#include <iostream> using namespace std;

int main () {
char *s ="Hi there! \n";
cout << s;
char *p = "The backslash character \\.";
cout << p << endl;
char *q = "The double quotation mark \".\n";
cout << q ;

}

This program produces the following output:
Hi there! The backslash character \. The double quotation mark ".

To continue a string on the next line, use the line continuation character (\ symbol)
followed by optional whitespace and a new-line character (required). For example:
char *mail_addr = "Last Name First Name MI Street Address \

893 City Province Postal code ";

Note: When a string literal appears more than once in the program source, how
that string is stored depends on whether strings are read-only or writable. By
default, the compiler considers strings to be read-only. z/OS XL C/C++ might
allocate only one location for a read-only string; all occurrences refer to that one
location. However, that area of storage is potentially write-protected. If strings are
writable, then each occurrence of the string has a separate, distinct storage location
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that is always modifiable. You can use the directive or the ROSTRING compiler
option to change the default storage for string literals.

String concatenation

Another way to continue a string is to have two or more consecutive strings.
Adjacent string literals can be concatenated to produce a single string. For
example:
"hello " "there" //equivalent to "hello there"
"hello" "there" //equivalent to "hellothere"

Characters in concatenated strings remain distinct. For example, the strings "\xab"
and "3" are concatenated to form "\xab3". However, the characters \xab and 3
remain distinct and are not merged to form the hexadecimal character \xab3 .

If a wide string literal and a narrow string literal are adjacent, as in the following
example:
"hello " L"there"

the result is a wide string literal.

Note: C In C99, narrow strings can be concatenated with wide string
literals. C++11 In C++11, the changes to string literal concatenation in the C99
preprocessor are adopted to provide a common preprocessor interface for C and
C++ compilers. Narrow strings can be concatenated with wide string literals in
C++11. For more information, see “C99 preprocessor features adopted in C++11”
on page 526.

Following any concatenation, '\0' of type char is appended at the end of each
string. For a wide string literal, '\0' of type wchar_t is appended. By convention,
programs recognize the end of a string by finding the null character. For example:
char *first = "Hello "; //stored as "Hello \0"
char *second = "there"; //stored as "there\0"
char *third = "Hello " "there"; //stored as "Hello there\0"

Related reference:
“Character types” on page 59
“Source program character set” on page 32
“The Unicode standard” on page 35
String concatenation of u-literals

Pointer literal (C++11)

The only pointer literal is the nullptr keyword that is a prvalue of type
std::nullptr_t. A prvalue of this type is a null pointer constant that can be
converted to any pointer type, pointer-to-member type, or bool type.
Related reference:
“Pointer conversions” on page 137

Punctuators and operators
A punctuator is a token that has syntactic and semantic meaning to the compiler,
but the exact significance depends on the context. A punctuator can also be a token
that is used in the syntax of the preprocessor.
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C99 and C++ define the following tokens as punctuators, operators, or
preprocessing tokens:

Table 13. C and C++ punctuators
[ ] ( ) { } , : ;
* = ... #
. -> ++ -- ##
& + - ~ !
/ % << >> !=
< > <= >= ==
^ | && || ?
*= /= %= += -=
<<= >>= &= ^= |=

C++ In addition to the C99 preprocessing tokens, operators, and punctuators,
C++ allows the following tokens as punctuators:

Table 14. C++ punctuators
:: .* ->* new delete
and and_eq bitand bitor comp
not not_eq or or_eq xor xor_eq

C++

Alternative tokens

Both C and C++ provide the following alternative representations for some
operators and punctuators. The alternative representations are also known as
digraphs.

Operator or punctuator Alternative representation

{ <%

} %>

[ <:

] :>

# %:

## %:%:

Note: The recognition of these alternative representations is controlled by the
DIGRAPHS option; for more information, see “Digraph characters” on page 37.

In addition to the operators and punctuators listed above, C++ and C at the C99
language level provide the following alternative representations. In C, they are
defined as macros in the header file iso646.h.

Operator or punctuator Alternative representation

&& and

| bitor

|| or

^ xor

~ compl
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Operator or punctuator Alternative representation

& bitand

&= and_eq

|= or_eq

^= xor_eq

! not

!= not_eq

Related reference:
“Digraph characters” on page 37
“Boolean types” on page 55
“Boolean conversions” on page 130
“Floating-point types” on page 56
“Floating-point conversions” on page 130
“Unary expressions” on page 151
“Fixed point decimal types (C only)” on page 58
“The digitsof and precisionof operators (C only)” on page 160
“Source program character set”
“Character types” on page 59
Chapter 6, “Expressions and operators,” on page 141

Source program character set
See the following list of the basic source character sets that are available at both
compile time and run time:
v The uppercase and lowercase letters of the English alphabet:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

v The decimal digits:
0 1 2 3 4 5 6 7 8 9

v The following graphic characters:
! " # % & ' ( ) * + , - . / : ; < = > ? [ \ ] _ { } ~
– The caret (^) character in ASCII (bitwise exclusive OR symbol) or the

equivalent not (¬) character in EBCDIC
– The split vertical bar (¦) character in ASCII, which may be represented by the

vertical bar (|) character on EBCDIC systems .
v The space character
v The control characters representing new-line, horizontal tab, vertical tab, form

feed, end of string (NULL character), alert, backspace, and carriage return.

IBM Depending on the compiler option, other specialized identifiers, such as
the dollar sign ($) or characters in national character sets, may be allowed to
appear in an identifier.

z/OS In a source file, a record contains one line of source text; the end of a
record indicates the end of a source line.
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If you use the #pragma filetag directive to specify the encoding of input files, the
compiler converts this encoding to the encoding defined by code page IBM-1047. If
you use the LOCALE to specify the encoding for output, the compiler converts the
encoding from code page IBM-1047 to the encoding you have specified. These
conversions apply to:
v Listings that contain identifier names and source code
v String literals and character constants that are emitted in the object code
v Messages generated by the compiler

They do not apply to source-code annotation in the pseudo-assembly listings.

Therefore, the encoding of the following characters from the basic character set
may vary between the source-code generation environment and the runtime
environment:

! # ' [ ] \ { } ~ ^ |

For a detailed description of the #pragma filetag directive and the LOCALE
option, refer to the description of globalization, locales, and character sets in the
z/OS XL C/C++ User's Guide. z/OS

Related reference:
Characters in identifiers
“#pragma filetag” on page 556

Multibyte characters
The compiler recognizes and supports the additional characters (the extended
character set) which you can meaningfully use in string literals and character
constants. The support for extended characters includes multibyte character sets. A
multibyte character is a character whose bit representation fits into more than one
byte.

z/OS systems represent multibyte characters by using Shiftout <SO> and Shiftin
<SI> pairs. Strings are of the form:
<SO> x y z <SI>

Or they can be mixed:
<SO> x <SI> y z x <SO> y <SI> z

In the above, two bytes represent each character between the <SO> and <SI> pairs.
z/OS XL C/C++ restricts multibyte characters to character constants, string
constants, and comments.

Multibyte characters can appear in any of the following contexts:
v String literals and character constants. To declare a multibyte literal, use a

wide-character representation, prefixed by L. For example:
wchar_t *a = L"wide_char_string";
wchar_t b = L’wide_char’;

Strings containing multibyte characters are treated essentially the same way as
strings without multibyte characters. Generally, wide characters are permitted
anywhere multibyte characters are, but they are incompatible with multibyte
characters in the same string because their bit patterns differ. Wherever
permitted, you can mix single-byte and multibyte characters in the same string.
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v Preprocessor directives. The following preprocessor directives permit
multibyte-character constants and string literals:
– #define
– #pragma comment
– #include
A file name specified in an #include directive can contain multibyte characters.
For example:
#include <multibyte_char/mydir/mysource/multibyte_char.h>
#include "multibyte_char.h"

v Macro definitions. Because string literals and character constants can be part of
#define statements, multibyte characters are also permitted in both object-like
and function-like macro definitions.

v The # and ## operators.
v Program comments.

The following are restrictions on the use of multibyte characters:
v Multibyte characters are not permitted in identifiers.
v Hexadecimal values for multibyte characters must be in the range of the code

page being used.
v You cannot mix wide characters and multibyte characters in macro definitions.

For example, a macro expansion that concatenates a wide string and a multibyte
string is not permitted.

v Assignment between wide characters and multibyte characters is not permitted.
v Concatenating wide character strings and multibyte character strings is not

permitted.
Related reference:
Character literals
“The Unicode standard” on page 35
“Character types” on page 59

Escape sequences
You can represent any member of the execution character set by an escape sequence.
They are primarily used to put nonprintable characters in character and string
literals. For example, you can use escape sequences to put such characters as tab,
carriage return, and backspace into an output stream.

Escape character syntax

�� \ escape_sequence_character
x hexadecimal_digits
octal_digits

��

An escape sequence contains a backslash (\) symbol followed by one of the escape
sequence characters or an octal or hexadecimal number. A hexadecimal escape
sequence contains an x followed by one or more hexadecimal digits (0-9, A-F, a-f).
An octal escape sequence uses up to three octal digits (0-7). The value of the
hexadecimal or octal number specifies the value of the wanted character or wide
character.
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Note: The line continuation sequence (\ followed by a new-line character) is not
an escape sequence. It is used in character strings to indicate that the current line
of source code continues on the next line.

The escape sequences and the characters they represent are:

Escape sequence Character represented

\a Alert (bell, alarm)
\b Backspace
\f Form feed (new page)
\n New-line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\' Single quotation mark
\" Double quotation mark
\? Question mark
\\ Backslash

The value of an escape sequence represents the member of the character set used
at run time. Escape sequences are translated during preprocessing. For example, on
a system using the ASCII character codes, the value of the escape sequence \x56 is
the letter V. On a system using EBCDIC character codes, the value of the escape
sequence \xE5 is the letter V.

Use escape sequences only in character constants or in string literals. An error
message is issued if an escape sequence is not recognized.

In string and character sequences, when you want the backslash to represent itself
(rather than the beginning of an escape sequence), you must use a \\ backslash
escape sequence. For example:
cout << "The escape sequence \\n." << endl;

This statement results in the following output:
The escape sequence \n.

The Unicode standard
The Unicode Standard is the specification of an encoding scheme for written
characters and text. It is a universal standard that enables consistent encoding of
multilingual text and allows text data to be interchanged internationally without
conflict. The ISO standards for C and C++ refer to Information technology –
Programming Languages – Universal Multiple-Octet Coded Character Set (UCS),
ISO/IEC 10646:2003. (The term octet is used by ISO to refer to a byte.) The ISO/IEC
10646 standard is more restrictive than the Unicode Standard in the number of
encoding forms: a character set that conforms to ISO/IEC 10646 is also conformant
to the Unicode Standard.

The Unicode Standard specifies a unique numeric value and name for each
character and defines three encoding forms for the bit representation of the
numeric value. The name/value pair creates an identity for a character. The
hexadecimal value representing a character is called a code point. The specification
also describes overall character properties, such as case, directionality, alphabetic
properties, and other semantic information for each character. Modeled on ASCII,
the Unicode Standard treats alphabetic characters, ideographic characters, and
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symbols, and allows implementation-defined character codes in reserved code
point ranges. According to the Unicode Standard, the encoding scheme of the
standard is therefore sufficiently flexible to handle all known character encoding
requirements, including coverage of all the world's historical scripts.

C99 allows the universal character name construct defined in ISO/IEC 10646 to
represent characters outside the basic source character set. It permits universal
character names in identifiers, character constants, and string literals. C++ To
be compatible with C99, the z/OS XL C/C++ compiler supports universal
character names as an IBM extension. In C++, you must compile with the
LANGLVL(UCS) option for universal character name support. C++

The following table shows the generic universal character name construct and how
it corresponds to the ISO/IEC 10646 short name.

Universal character name ISO/IEC 10646 short name

where N is a hexadecimal digit
\UNNNNNNNN NNNNNNNN
\uNNNN 0000NNNN

C99 and C++ disallow the hexadecimal values representing characters in the basic
character set (base source code set) and the code points reserved by ISO/IEC 10646
for control characters.

The following characters are also disallowed:
v Any character whose short identifier is less than 00A0. The exceptions are 0024

($), 0040 (@), or 0060 (').
v Any character whose short identifier is in the code point range D800 through

DFFF inclusive.

UTF literals (IBM extension)

The ISO C and ISO C++ Committees have approved the implementation of
u-literals and U-literals to support Unicode UTF-16 and UTF-32 character literals,
respectively.

In C mode, the Unicode literals are enabled under the EXTENDED language level,
and disabled under the strictly-conforming language levels. When the Unicode
literals are enabled, the macro __IBM_UTF_LITERAL is predefined to 1, otherwise
this macro is not predefined.

In C++ mode, to enable support for UTF literals in your source code, you must
compile with the option LANGLVL(EXTENDED0X). It can be customized through
the option [NO]KEYWORD(char16_t, char32_t). In C++ mode, the Unicode literals
and character types are enabled under EXTENDED and EXTENDED0X language
levels, and disabled under other language levels. When the Unicode literals are
enabled, the macros __IBM_UTF_LITERAL and __IBMCPP_UTF_LITERAL__ are
predefined to 1, otherwise they are not predefined. Under the EXTENDED
language level, the keywords char16_t and char32_t are disabled by default (but
are available as typedefs via <uchar.h>). Under the EXTENDED0X language level,
these keywords are enabled by default.

The following table shows the syntax for UTF literals.
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Table 15. UTF literals

Syntax Explanation

u'character' Denotes a UTF-16 character.

u"character-sequence" Denotes an array of UTF-16 characters.

U'character' Denotes a UTF-32 character.

U"character-sequence" Denotes an array of UTF-32 characters.

String concatenation of u-literals
The u-literals and U-literals follow the same concatenation rule as wide
character literals: the normal character string is widened if they are
present. The following shows the allowed combinations. All other
combinations are invalid.

Combination Result

u"a" u"b" u"ab"
u"a" "b" u"ab"
"a" u"b" u"ab"

U"a" U"b" U"ab"
U"a" "b" U"ab"
"a" U"b" U"ab"

Multiple concatentations are allowed, with these rules applied recursively.
Related reference:
String concatenation

Digraph characters
You can represent unavailable characters in a source program by using a
combination of two keystrokes that are called a digraph character. The preprocessor
reads digraphs as tokens during the preprocessor phase. To enable processing of
digraphs, use the DIGRAPH compiler option (which is enabled by default).

The digraph characters are:

%: or %% # number sign
<: [ left bracket
:> ] right bracket
<% { left brace
%> } right brace
%:%: or %%%% ## preprocessor macro concatenation operator

You can create digraphs by using macro concatenation. z/OS XL C/C++ does not
replace digraphs in string literals or in character literals. For example:
char *s = "<%%>; // stays "<%%>"

switch (c) {
case ’<%’ : { /* ... */ } // stays ’<%’
case ’%>’ : { /* ... */ } // stays ’%>’
}
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Trigraph sequences
Some characters from the C and C++ character set are not available in all
environments. You can enter these characters into a C or C++ source program
using a sequence of three characters called a trigraph. The trigraph sequences are:

Trigraph Single character Description

??= # pound sign
??( [ left bracket
??) ] right bracket
??< { left brace
??> } right brace
??/ \ backslash
??' ^ caret
??! | vertical bar
??- ~ tilde

The preprocessor replaces trigraph sequences with the corresponding
single-character representation. For example,
some_array??(i??) = n;

Represents:
some_array[i] = n;

z/OS At compile time, the compiler translates the trigraphs found in string
literals and character constants into the appropriate characters they represent.
These characters are in the coded character set you select by using the LOCALE
compiler option. If you do not specify the LOCALE option, the preprocessor uses
code page IBM-1047.

The z/OS XL C/C++ compiler will compile source files that were edited using
different encoding of character sets. However, they might not compile cleanly.
z/OS XL C/C++ does not compile source files that you edit with the following:
v A character set that does not support all the characters that are specified above,

even if the compiler can access those characters by a trigraph.
v A character set for which no one-to-one mapping exists between it and the

character set above.

Note: The exclamation mark (!) is a variant character. Its recognition depends on
whether or not the LOCALE option is active. For more information on variant
characters, refer to the z/OS XL C/C++ Programming Guide. z/OS

Comments
A comment is text replaced during preprocessing by a single space character; the
compiler therefore ignores all comments.

There are two kinds of comments:
v The /* (slash, asterisk) characters, followed by any sequence of characters

(including new lines), followed by the */ characters. This kind of comment is
commonly called a C-style comment.

v The // (two slashes) characters followed by any sequence of characters. A new
line not immediately preceded by a backslash terminates this form of comment.
This kind of comment is commonly called a single-line comment or a C++
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comment. A C++ comment can span more than one physical source line if it is
joined into one logical source line with line-continuation (\) characters. The
backslash character can also be represented by a trigraph. C To enable
C++ comments in C, you must compile with c99, or with the SSCOMM or
LANGLVL(STDC99) or LANGLVL(EXTC99) options.

C

You can put comments anywhere the language allows white space. You cannot nest
C-style comments inside other C-style comments. Each comment ends at the first
occurrence of */.

You can also include multibyte characters.

Note: The /* or */ characters found in a character constant or string literal do not
start or end comments.

In the following program, the second printf() is a comment:
#include <stdio.h>

int main(void)
{

printf("This program has a comment.\n");
/* printf("This is a comment line and will not print.\n"); */

return 0;
}

Because the second printf() is equivalent to a space, the output of this program
is:
This program has a comment.

Because the comment delimiters are inside a string literal, printf() in the
following program is not a comment.
#include <stdio.h>

int main(void)
{

printf("This program does not have \
/* NOT A COMMENT */ a comment.\n");
return 0;
}

The output of the program is:
This program does not have
/* NOT A COMMENT */ a comment.

In the following example, the comments are highlighted:
/* A program with nested comments. */

#include <stdio.h>

int main(void)
{

test_function();
return 0;

}

int test_function(void)
{

int number;
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char letter;
/*
number = 55;
letter = ’A’;
/* number = 44; */
*/
return 999;
}

In test_function, the compiler reads the first /* through to the first */. The second
*/ causes an error. To avoid commenting over comments already in the source
code, you should use conditional compilation preprocessor directives to cause the
compiler to bypass sections of a program. For example, instead of commenting out
the above statements, change the source code in the following way:

/* A program with conditional compilation to avoid nested comments. */

#define TEST_FUNCTION 0
#include <stdio.h>

int main(void)
{

test_function();
return 0;

}

int test_function(void)
{

int number;
char letter;

#if TEST_FUNCTION
number = 55;
letter = ’A’;
/*number = 44;*/

#endif /*TEST_FUNCTION */
}

You can nest single line comments within C-style comments. For example, the
following program will not output anything:
#include <stdio.h>

int main(void)
{

/*
printf("This line will not print.\n");
// This is a single line comment
// This is another single line comment
printf("This line will also not print.\n");
*/
return 0;

}

Note: You can also use the #pragma comment directive to place comments into
an object module.
Related reference:
“#pragma comment” on page 541
“Multibyte characters” on page 33
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Chapter 3. Data objects and declarations

The topics in this chapter discuss the various elements that constitute a declaration
of a data object.

Topics are sequenced to loosely follow the order in which elements appear in a
declaration. The discussion of the additional elements of data declarations is also
continued in Chapter 4, “Declarators,” on page 97.

Overview of data objects and declarations
The following sections introduce some fundamental concepts regarding data
objects and data declarations that will be used throughout this reference.

Overview of data objects
A data object is a region of storage that contains a value or group of values. Each
value can be accessed using its identifier or a more complex expression that refers
to the object. In addition, each object has a unique data type. The data type of an
object determines the storage allocation for that object and the interpretation of the
values during subsequent access. It is also used in any type checking operations.
Both the identifier and data type of an object are established in the object
declaration.

C++ An instance of a class type is commonly called a class object. The
individual class members are also called objects.

Data types are often grouped into type categories that overlap, such as:

Fundamental types versus derived types
Fundamental data types are also known as "basic", "fundamental" or
"built-in" to the language. These include integers, floating-point numbers,
and characters. Derived types, also known as "compound" types in
Standard C++, are created from the set of basic types, and include arrays,
pointers, structures, unions, enumerations. All C++ classes are considered
compound types.

Built-in types versus user-defined types
Built-in data types include all of the fundamental types, plus types that
refer to the addresses of basic types, such as arrays and pointers.
User-defined types are created by the user from the set of basic types, in
typedef, structure, union, and enumeration definitions. C++ classes are
considered user-defined types.

Scalar types versus aggregate types
Scalar types represent a single data value, while aggregate types represent
multiple values, of the same type or of different types. Scalars include the
arithmetic types and pointers. Aggregate types include arrays, structures.
C++ classes are considered aggregate types.

The following matrix lists the supported data types and their classification into
fundamental, derived, scalar, and aggregate types.
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Table 16. C/C++ data types

Data object Basic Compound
Built-
in

User-
defined Scalar Aggregate

integer types + + +

floating-point types1 + + +

character types + +

Booleans + + +

void type +2 + +

pointers + + +

arrays + + +

structures + + +

unions + +

enumerations + + see note3

C++ classes + + +

Note:

1. C Although complex floating-point types are represented internally as
an array of two elements, they behave in the same way as real floating-pointing
types in terms of alignment and arithmetic operations, and can therefore be
considered scalar types.

2. The void type is really an incomplete type, as discussed in “Incomplete types.”
Nevertheless, Standard C++ defines it as a fundamental type.

3. C The C standard does not classify enumerations as either scalar or
aggregate. C++ Standard C++ classifies enumerations as scalars.

Incomplete types

The following are incomplete types:
v The void type
v Arrays of unknown size
v Arrays of elements that are of incomplete type
v Structure, union, or enumerations that have no definition
v C++ Pointers to class types that are declared but not defined
v C++ Classes that are declared but not defined

C However, if an array size is specified by [*], indicating a variable length
array, the size is considered as having been specified, and the array type is then
considered a complete type. For more information, see “Variable length arrays” on
page 106.

The following examples illustrate incomplete types:
void *incomplete_ptr;
struct dimension linear; /* no previous definition of dimension */
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Compatible and composite types

C

In C, compatible types are defined as:
v two types that can be used together without modification (as in an assignment

expression)
v two types that can be substituted one for the other without modification

A composite type is constructed from two compatible types. Determining the
resultant composite type for two compatible types is similar to following the usual
binary conversions of integral types when they are combined with some arithmetic
operators.

Obviously, two types that are identical are compatible; their composite type is the
same type. Less obvious are the rules governing type compatibility of non-identical
types, user-defined types, type-qualified types, and so on. “Type specifiers” on
page 54 discusses compatibility for basic and user-defined types in C.

C

C++ A separate notion of type compatibility as distinct from being of the same
type does not exist in C++. Generally speaking, type checking in C++ is stricter
than in C: identical types are required in situations where C would only require
compatible types.
Related reference:
Chapter 11, “Classes (C++ only),” on page 347
“The void type” on page 59
“Incomplete class declarations” on page 352
“Compatibility of arrays (C only)” on page 107
“Compatibility of pointers (C only)” on page 103
“Compatible functions (C only)” on page 224

Overview of data declarations and definitions
A declaration establishes the names and characteristics of data objects used in a
program. A definition allocates storage for data objects, and associates an identifier
with that object. When you declare or define a type, no storage is allocated.

The following table shows examples of declarations and definitions. The identifiers
declared in the first column do not allocate storage; they refer to a corresponding
definition. The identifiers declared in the second column allocate storage; they are
both declarations and definitions.

Declarations Declarations and definitions

extern double pi; double pi = 3.14159265;

struct payroll;
struct payroll {

char *name;
float salary;

} employee;
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Note: C The C99 standard no longer requires that all declarations appear at
the beginning of a function before the first statement. C++ As in C++, you can
mix declarations with other statements in your code.

Declarations determine the following properties of data objects and their
identifiers:
v Scope, which describes the region of program text in which an identifier can be

used to access its object
v Visibility, which describes the region of program text from which legal access

can be made to the identifier's object
v Duration, which defines the period during which the identifiers have real,

physical objects allocated in memory
v Linkage, which describes the correct association of an identifier to one particular

object
v Type, which determines how much memory is allocated to an object and how

the bit patterns found in the storage allocation of that object should be
interpreted by the program

The elements of a declaration for a data object are as follows:
v “Storage class specifiers” on page 48, which specify storage duration and linkage
v “Type specifiers” on page 54, which specify data types
v “Type qualifiers” on page 85, which specify the mutability of data values
v Declarators, which introduce and include identifiers
v “Initializers” on page 108, which initialize storage with initial values

IBM In addition, for compatibility with GCC, z/OS XL C/C++ allows you to
use attributes to modify the properties of data objects. They are described in
“Variable attributes (IBM extension)” on page 125. IBM

All declarations have the form:

Data declaration syntax

�� �

storage_class_specifier

�

type_qualifier
type_specifier �

� �

,

declarator
initializer

; ��

Tentative definitions

C A tentative definition is any external data declaration that has no storage
class specifier and no initializer. A tentative definition becomes a full definition if
the end of the translation unit is reached and no definition has appeared with an
initializer for the identifier. In this situation, the compiler reserves uninitialized
space for the object defined.

C The following statements show normal definitions and tentative
definitions.
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int i1 = 10; /* definition, external linkage */
static int i2 = 20; /* definition, internal linkage */
extern int i3 = 30; /* definition, external linkage */
int i4; /* tentative definition, external linkage */
static int i5; /* tentative definition, internal linkage */

int i1; /* valid tentative definition */
int i2; /* not legal, linkage disagreement with previous */
int i3; /* valid tentative definition */
int i4; /* valid tentative definition */
int i5; /* not legal, linkage disagreement with previous */

C++ C++ does not support the concept of a tentative definition: an external
data declaration without a storage class specifier is always a definition.
Related reference:
“Function declarations and definitions” on page 219

_Static_assert declaration (C11)

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

Static assertions can be declared to detect and diagnose common usage errors at
compile time. A _Static_assert declaration takes the following form:

_Static_assert declaration syntax

�� _Static_assert ( constant_expression , string_literal ) ; ��

The constant_expression must be an integer constant expression. If the integer
constant expression evaluates to 0, the compiler issues a severe error containing the
string literal with the source location of the _Static_assert declaration. Otherwise,
the _Static_assert declaration has no effect.

The declaration of static assertions does not declare a new type or object, and does
not imply any size or time cost at run time.

static_assert is a macro defined in assert.h for C.

The addition of static assertions to the C language has the following benefits:
v Libraries can detect common usage errors at compile time.
v Implementations of the C Standard Library can detect and diagnose common

usage errors, improving usability.

You can declare static assertions to check important program invariants at compile
time.
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Examples: _Static_assert declaration

Example 1: The following example demonstrates the use of a _Static_assert
declaration inside a structure.
#include <stddef.h>
struct __attribute__((packed)) B{

char a;
int i;

};

struct A{
struct B b;
_Static_assert(offsetof(struct B,i)==1,"S not packed");

};

Example 2: The following example contains static assertions declared with
static_assert, so the assert.h header file must be included.
/* static_assert requires <assert.h> */
#include <assert.h>
static_assert(sizeof(long) >= 8, "64-bit not enabled.");

Example 3: The following example shows the use of a _Static_assert declaration
with an invalid constant expression.
_Static_assert(1 / 0, "never shows up!");

When you compile this program, the compiler does not show the string literal in
the _Static_assert declaration. Instead, the compiler issues an error message
indicating that the divisor cannot be zero.
Related reference:
“Extensions for C11 compatibility” on page 640

static_assert declaration (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Static assertions can be declared to detect and diagnose common usage errors at
compile time. A static_assert declaration takes the following form:

static_assert declaration syntax

�� static_assert ( constant_expression , string_literal ) ; ��

The constant_expression must be a constant expression that can be contextually
converted to bool. If the value of the expression converted in such a way is false,
the compiler issues a severe error containing the string literal with the source
location of the static_assert declaration. Otherwise, the static_assert
declaration has no effect.
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You can declare static assertions anywhere that you use a using declaration,
including namespace scope, block scope, and class member declaration lists.

The declaration of static assertions does not declare a new type or object, and does
not imply any size or time cost at run time.

The C++ programming language also supports the _Static_assert keyword in all
language levels for improved compatibility with the C programming language.

The addition of static assertions to the C++ language has the following benefits:
v Libraries can detect common usage errors at compile time.
v Implementations of the C++ Standard Library can detect and diagnose common

usage errors, improving usability.

You can declare static assertions to check important program invariants at compile
time.

Examples: static_assert declaration

The following example illustrates the use of a static_assert declaration in
namespace scope.
static_assert(sizeof(long) >= 8, "64-bit code generation not
enabled/supported.");

The following example demonstrates the use of a static_assert declaration in
class scope, with templates.
#include <type_traits>
#include <string>

template<typename T>
struct X {

static_assert(std::tr1::is_pod<T>::value, "POD required to
instantiate class template X.");

// ...
};

int main() {
X<std::string> x;

}

The following example demonstrates the use of a static_assert declaration in
block scope, with templates:

template <typename T, int N>
void f() {

static_assert (N >=0, "length of array a is negative.");
T a[N];
// ...

}

int main() {
f<int, -1>();

}

The following example shows the use of a static_assert declaration with an
invalid constant expression.
static_assert(1 / 0, "never shows up!");
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When you compile this program, the compiler does not show the string literal in
the static_assert declaration. Instead, the compiler issues an error message
indicating that the divisor cannot be zero.
Related reference:
“C++11 compatibility” on page 640

Storage class specifiers
A storage class specifier is used to refine the declaration of a variable, a function,
and parameters. Storage classes determine whether:
v The object has internal, external, or no linkage
v The object is to be stored in memory or in a register, if available
v The object receives the default initial value of 0 or an indeterminate default

initial value
v The object can be referenced throughout a program or only within the function,

block, or source file where the variable is defined
v The storage duration for the object is maintained throughout program run time

or only during the execution of the block where the object is defined

For a variable, its default storage duration, scope, and linkage depend on where it
is declared: whether inside or outside a block statement or the body of a function.
When these defaults are not satisfactory, you can use a storage class specifier to
explicitly set its storage class.

C++11

In C++11, the keyword auto is no longer used as a storage class specifier. Instead,
it is used as a type specifier. The compiler deduces the type of an auto variable
from the type of its initializer expression. For more information, see “The auto type
specifier (C++11)” on page 76.

The keyword extern was previously used as a storage specifier or as part of a
linkage specification. The C++11 standard adds a third usage to use this keyword
to specify explicit instantiation declarations. For more information, see “Explicit
instantiation” on page 456.

C++11

The storage class specifiers in C and C++ are:
v auto
v static
v extern
v C++ mutable
v register
Related reference:
“Function storage class specifiers” on page 225
“Initializers” on page 108
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The auto storage class specifier
The auto storage class specifier lets you explicitly declare a variable with automatic
storage. The auto storage class is the default for variables declared inside a block. A
variable x that has automatic storage is deleted when the block in which x was
declared exits.

You can only apply the auto storage class specifier to names of variables declared
in a block or to names of function parameters. However, these names by default
have automatic storage. Therefore the storage class specifier auto is usually
redundant in a data declaration.

Storage duration of automatic variables

Objects with the auto storage class specifier have automatic storage duration. Each
time a block is entered, storage for auto objects defined in that block is made
available. When the block is exited, the objects are no longer available for use. An
object declared with no linkage specification and without the static storage class
specifier has automatic storage duration.

If an auto object is defined within a function that is recursively invoked, a new
object is allocated at each invocation of the block.

Linkage of automatic variables

An auto variable has block scope and no linkage.

Note: C++11 In C++11, the keyword auto is no longer used as a storage class
specifier. Instead, it is used as a type specifier. The compiler deduces the type of an
auto variable from the type of its initializer expression. For more information, see
“The auto type specifier (C++11)” on page 76.
Related reference:
“Initialization and storage classes” on page 109
“Block statements” on page 199
“The goto statement” on page 213

The static storage class specifier
Objects declared with the static storage class specifier have static storage duration,
which means that memory for these objects is allocated when the program begins
running and is freed when the program terminates. Static storage duration for a
variable is different from file or global scope: a variable can have static duration
but local scope.

C The keyword static is the major mechanism in C to enforce information
hiding.

C++ C++ enforces information hiding through the namespace language
feature and the access control of classes. The use of the keyword static to limit
the scope of external variables is deprecated for declaring objects in namespace
scope.

The static storage class specifier can be applied to the following declarations:
v Data objects
v C++ Class members
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v Anonymous unions

You cannot use the static storage class specifier with the following:
v Type declarations
v Function parameters

C At the C99 language level, the static keyword can be used in the
declaration of an array parameter to a function. The static keyword indicates that
the argument passed into the function is a pointer to an array of at least the
specified size. In this way, the compiler is informed that the pointer argument is
never null. See “Static array indices in function parameter declarations (C only)”
on page 238 for more information.

Linkage of static variables

If a declaration of an object contains the static storage class specifier and has file
scope, the identifier has internal linkage. Each instance of the particular identifier
therefore represents the same object within one file only. If a declaration of an
object contains the static storage class specifier and has function scope, an object is
statically allocated and all the function calls use the same object. For example, if a
static variable x has been declared in function f, when the program exits the scope
of f, x is not destroyed:
#include <stdio.h>

int f(void) {
static int x = 0;
x++;
return x;

}

int main(void) {
int j;
for (j = 0; j < 5; j++) {

printf("Value of f(): %d\n", f());
}
return 0;

}

The following is the output of the above example:
Value of f(): 1
Value of f(): 2
Value of f(): 3
Value of f(): 4
Value of f(): 5

Because x is a function local static variable, it is not reinitialized to 0 on successive
calls to f.
Related reference:
“The static storage class specifier” on page 226
“Static members” on page 366
“Initialization and storage classes” on page 109
“Internal linkage” on page 7
Chapter 9, “Namespaces (C++ only),” on page 317
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The extern storage class specifier
The extern storage class specifier lets you declare objects that several source files
can use. An extern declaration makes the described variable usable by the
succeeding part of the current source file. This declaration does not replace the
definition. The declaration is used to describe the variable that is externally
defined.

An extern declaration can appear outside a function or at the beginning of a block.
If the declaration describes a function or appears outside a function and describes
an object with external linkage, the keyword extern is optional.

If a declaration for an identifier already exists at file scope, any extern declaration
of the same identifier found within a block refers to that same object. If no other
declaration for the identifier exists at file scope, the identifier has external linkage.

C++ C++ restricts the use of the extern storage class specifier to the names of
objects or functions. Using the extern specifier with type declarations is illegal. An
extern declaration cannot appear in class scope.

Storage duration of external variables

All extern objects have static storage duration. Memory is allocated for extern
objects before the main function begins running, and is freed when the program
terminates. The scope of the variable depends on the location of the declaration in
the program text. If the declaration appears within a block, the variable has block
scope; otherwise, it has file scope.

Linkage of external variables

C Like the scope, the linkage of a variable declared extern depends on the
placement of the declaration in the program text. If the variable declaration
appears outside of any function definition and has been declared static earlier in
the file, the variable has internal linkage; otherwise, it has external linkage in most
cases. All object declarations that occur outside a function and that do not contain
a storage class specifier declare identifiers with external linkage.

C++ For objects in the unnamed namespace, the linkage may be external, but
the name is unique, and so from the perspective of other translation units, the
name effectively has internal linkage.

Note: C++11 The keyword extern was previously used as a storage specifier or
as part of a linkage specification. The C++11 standard adds a third usage to use
this keyword to specify explicit instantiation declarations. For more information,
see “Explicit instantiation” on page 456.
Related reference:
“External linkage” on page 8
“Initialization and storage classes” on page 109
“The extern storage class specifier” on page 226
Chapter 9, “Namespaces (C++ only),” on page 317
“Class scope (C++ only)” on page 4
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The mutable storage class specifier (C++ only)
The mutable storage class specifier is used only on a class data member to make it
modifiable even though the member is part of an object declared as const. You
cannot use the mutable specifier with names declared as static or const, or
reference members.

In the following example:
class A
{

public:
A() : x(4), y(5) { };
mutable int x;
int y;

};

int main()
{

const A var2;
var2.x = 345;
// var2.y = 2345;

}

the compiler would not allow the assignment var2.y = 2345 because var2 has been
declared as const. The compiler will allow the assignment var2.x = 345 because
A::x has been declared as mutable.
Related reference:
“Type qualifiers” on page 85
“References (C++ only)” on page 107

The register storage class specifier
The register storage class specifier indicates to the compiler that the object should
be stored in a machine register. The register storage class specifier is typically
specified for heavily used variables, such as a loop control variable, in the hopes of
enhancing performance by minimizing access time. However, the compiler is not
required to honor this request. Because of the limited size and number of registers
available on most systems, few variables can actually be put in registers. If the
compiler does not allocate a machine register for a register object, the object is
treated as having the storage class specifier auto.

An object having the register storage class specifier must be defined within a
block or declared as a parameter to a function.

The following restrictions apply to the register storage class specifier:

v C You cannot use pointers to reference objects that have the register
storage class specifier.

v C You cannot use the register storage class specifier when declaring
objects in global scope.

v C A register does not have an address. Therefore, you cannot apply the
address operator (&) to a register variable.

v C++ You cannot use the register storage class specifier when declaring
objects in namespace scope.

C++ Unlike C, C++ lets you take the address of an object with the register
storage class. For example:
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register int i;
int* b = &i; // valid in C++, but not in C

Storage duration of register variables

Objects with the register storage class specifier have automatic storage duration.
Each time a block is entered, storage for register objects defined in that block is
made available. When the block is exited, the objects are no longer available for
use.

If a register object is defined within a function that is recursively invoked, a new
object is allocated at each invocation of the block.

Linkage of register variables

Since a register object is treated as the equivalent to an object of the auto storage
class, it has no linkage.

Variables in specified registers (C only) (IBM extension)

When the GENASM compiler option is in effect, you can specify that a particular
hardware register is dedicated to a global variable by using an asm register variable
declaration. Global register variables reserve registers throughout the program;
stores into the reserved register are never deleted. The register variable must be of
type pointer.

Register variable declaration syntax

�� register variable_declaration __asm__ ("register_specifier")
__asm

��

The register_specifier is a string representing a hardware register. The register name
is CPU-specific. The following are valid register names:

r0 to r15 or R0 to R15
General purpose registers

The following are the rules of use for register variables:
v Registers can only be reserved for variables of pointer type.
v A global register variable cannot be initialized.
v The register dedicated for a global register variable should not be a volatile

register, or the value stored into the global variable might not be preserved
across a function call.

v More than one register variable can reserve the same register; however, the two
variables become aliases of each other, and this is diagnosed with a warning.

v The same global register variable cannot reserve more than one register.

C++11

Note: The register storage class specifier is deprecated in C++11.
Related reference:
“Initialization and storage classes” on page 109
“Block/local scope” on page 2
“References (C++ only)” on page 107
“Inline assembly statements (IBM extension)” on page 215
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Type specifiers
Type specifiers indicate the type of the object being declared. See the following
available kinds of types:
v Fundamental or built-in types:

– Arithmetic types
- Integral types
- Boolean types
- Floating-point types

- 2000z/OS Fixed-point decimal types
- Character types

– The void type
v User-defined types

C++

A type is a literal type if it satisfies one of the following conditions:
v It is a scalar type.
v It is a reference type.
v It is an array of literal type.
v C++11 It is a class type with all the following properties:

– The class has a trivial destructor.
– Each constructor call and full expression in the initializers for nonstatic data

members (if any) is a constant expression.
– The class is an aggregate type or has at least one constexpr constructor or

constructor template that is not a copy or move constructor.
– All nonstatic data members and base classes of the class are of literal types.

C++11

C++

C++11

In the C++11 standard, the following type specifiers are introduced:
v The auto type specifier
v The decltype(expression) type specifier

C++11

Related reference:
“Function return type specifiers” on page 234
See "C/C++ data mapping" under "Implementation-defined behavior"
“Command-line arguments” on page 248

Integral types
Integer types fall into the following categories:
v Signed integer types:

– signed char
– short int

54 z/OS V2R1.0 XL C/C++ Language Reference



– int
– long int
– long long int

v Unsigned integer types:
– unsigned char
– unsigned short int
– unsigned int
– unsigned long int
– unsigned long long int

C++ z/OS XL C++ supports the long long data type for language levels other
than ANSI by default. You can also control the support for long long using the
LONGLONG suboption of LANGLVL. For example, specifying LANGLVL(ANSI,
LONGLONG) would add the long long data type to the ISO language level. Refer
to the z/OS XL C/C++ User's Guide for information on using the LANGLVL option.

The unsigned prefix indicates that the object is a nonnegative integer. Each
unsigned type provides the same size storage as its signed equivalent. For
example, int reserves the same storage as unsigned int. Because a signed type
reserves a sign bit, an unsigned type can hold a larger positive integer value than
the equivalent signed type.

The declarator for a simple integer definition or declaration is an identifier. You
can initialize a simple integer definition with an integer constant or with an
expression that evaluates to a value that can be assigned to an integer.

C++ When the arguments in overloaded functions and overloaded operators
are integer types, two integer types that both come from the same group are not
treated as distinct types. For example, you cannot overload an int argument
against a signed int argument.
Related reference:
Integer literals
“Integral conversions” on page 130
“Arithmetic conversions and promotions” on page 129
Chapter 10, “Overloading (C++ only),” on page 327
See "Integers" under "Implementation-defined behavior"

Boolean types
A Boolean variable can be used to hold the integer values 0 or 1, C++ or the
literals true or false C++ , which are implicitly promoted to the integers 1 and
0 respectively, whenever an arithmetic value is necessary. The Boolean type is
unsigned and has the lowest ranking in its category of standard unsigned integer
types; it may not be further qualified by the specifiers signed, unsigned, short, or
long. In simple assignments, if the left operand is a Boolean type, then the right
operand must be either an arithmetic type or a pointer.

C Boolean type is a C99 feature. To declare a Boolean variable, use the
_Bool type specifier. C

C++ To declare a Boolean variable in C++, use the bool type specifier. The
result of the equality, relational, and logical operators is of type bool: either of the
Boolean constants true or false. C++
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You can use Boolean types to make Boolean logic tests. A Boolean logic test is used
to express the results of a logical operation. For example:
_Bool f(int a, int b)
{

return a==b;
}

If a and b have the same value, f returns true. If not, f returns false.
Related reference:
Boolean literals
“Boolean conversions” on page 130

Floating-point types
Floating-point type specifiers fall into the following categories:
v Real floating-point types
v Complex floating-point types

Real floating-point types

Generic, or binary, floating-point types consist of the following:
v float
v double
v long double

IBM Decimal floating-point types consist of the following:
v _Decimal32
v _Decimal64
v _Decimal128

Note: In order for the _Decimal32, _Decimal64, and _Decimal128 keywords to be
recognized, you must compile with the DFP compiler option. See DFP compiler
option in the z/OS XL C/C++ User's Guide for details.

IBM

The magnitude ranges of the real floating-point types are given in the following
table.

Table 17. Magnitude ranges of real floating-point types

Type Range

FLOAT(HEX):

float 5.397605-79 - 7.23700575

double 5.397605-79 - 7.23700675

long double 5.397605-79 - 7.23700675

FLOAT(IEEE):

float 1.175494-38 - 3.40282338

double 2.225074-308 - 1.797693308

long double 3.362103-4932 - 1.1897314932

DFP:

_Decimal32 0.000001-95 to 9.99999996
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Table 17. Magnitude ranges of real floating-point types (continued)

Type Range

_Decimal64 0.000000000000001-383 to 9.999999999999999384

_Decimal128 0.000000000000000000000000000000001-6143 to
9.9999999999999999999999999999999996144

If a floating-point constant is too large or too small, the result is undefined by the
language.

2000z/OS Note that z/OS XL C/C++ supports IEEE binary floating-point variables
as well as IBM z/Architecture® hexadecimal floating-point variables. For details on
the FLOAT compiler option, see the z/OS XL C/C++ User's Guide.

The declarator for a simple floating-point declaration is an identifier. Initialize a
simple floating-point variable with a float constant or with a variable or expression
that evaluates to an integer or floating-point number.

IBM You can use decimal floating-point types with any of the operators that
are supported for binary floating-point types. You can also perform implicit or
explicit conversions between decimal floating-point types and all other integral
types, generic floating-point types, or packed decimals. However, there are
restrictions on the use of decimal floating-point types with other arithmetic types
as follows:
v You cannot mix decimal floating-point types with generic floating-point types or

complex floating-point types in arithmetic expressions, unless you use explicit
conversions.

v Implicit conversion between decimal floating-point types and real binary
floating-point types is only allowed via assignment, with the simple assignment
operator =. Implicit conversion is performed in simple assignments, which also
include function argument assignments and function return values. See
“Floating-point conversions” on page 130 for details.

IBM

Complex floating-point types

Complex floating-point types are introduced in the C99 standard. C++ The
z/OS XL C/C++ compiler supports this feature as an IBM extension. C++ The
complex floating-point type specifiers are as follows:
v float _Complex
v double _Complex
v long double _Complex

The representation and alignment requirements of a complex type are the same as
an array type containing two elements of the corresponding real type. The real part
is equal to the first element; the imaginary part is equal to the second element.

The equality and inequality operators have the same behavior as for real types.
None of the relational operators may have a complex type as an operand.

IBM As an extension to C99, complex numbers may also be operands to the
unary operators ++ (increment), -- (decrement), and ~ (bitwise negation). IBM

Related reference:
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Floating-point literals
“Floating-point conversions” on page 130
“Arithmetic conversions and promotions” on page 129
See "Floating-point numbers" under "Implementation-defined behavior"
Complex literals (C only)
“The __real__ and __imag__ operators (IBM extension)” on page 160

Fixed point decimal types (C only)
Fixed point decimal types are classified as arithmetic types. To declare fixed point
decimal variables and initialize them with fixed point decimal constants, you use
the type specifier decimal. For this type specifier, decimal is a macro that is defined
in the decimal.h header file. Remember to include decimal.h if you use fixed point
decimals in your program.

Fixed point decimal syntax

�� decimal ( significant_digits )
, precision_digits

��

The significant_digits is a positive integral constant expression. The second
argument, precision_digits is optional. If you leave it out, the default value is 0. The
type specifiers decimal(n,0) and decimal(n) are type-compatible.

In the type specifier, significant_digits and precision_digits have a range of allowed
values according to the following rules:
1. precision_digits <= significant_digits

2. 1 <= significant_digits <= DEC_DIG

3. 0 <= precision_digits <= DEC_PRECISION

The decimal.h file defines DEC_DIG (the maximum number of digits) and
DEC_PRECISION (the maximum precision). Currently, it uses a maximum of 31
digits for both limits.

The following examples show how to declare a variable as a fixed point decimal
data type:
decimal(10,2) x;
decimal(5,0) y;
decimal(5) z;
decimal(18,10) *ptr;
decimal(8,2) arr[100];

In the previous example:
v x can have values between -99999999.99D and +99999999.99D.
v y and z can have values between -99999D and +99999D.
v ptr is a pointer to type decimal(18,10).
v arr is an array of 100 elements, where each element is of type decimal(8,2).
Related reference:
Fixed-point decimal literals (z/OS only)
“The digitsof and precisionof operators (C only)” on page 160
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Character types
Character types fall into the following categories:
v Narrow character types:

– char
– signed char
– unsigned char

v Wide character type wchar_t

The char specifier is an integral type. The wchar_t type specifier is an integral type
that has enough storage to represent a wide character literal. (A wide character
literal is a character literal that is prefixed with the letter L, for example L’x’)

C A char is a distinct type from signed char and unsigned char, and the
three types are not compatible.

C++ For the purposes of distinguishing overloaded functions, a C++ char is a
distinct type from signed char and unsigned char.

If it does not matter if a char data object is signed or unsigned, you can declare the
object as having the data type char. Otherwise, explicitly declare signed char or
unsigned char to declare numeric variables that occupy a single byte. When a char
(signed or unsigned) is widened to an int, its value is preserved.

By default, char behaves like an unsigned char. To change this default, you can
use the CHARS option or the #pragma chars directive. See “#pragma chars” on
page 539 and CHARS in the z/OS XL C/C++ User's Guide for more information.
Related reference:
Character literals
String literals
“Arithmetic conversions and promotions” on page 129

The void type
The void data type always represents an empty set of values. The only object that
can be declared with the type specifier void is a pointer.

You cannot declare a variable of type void, but you can explicitly convert any
expression to type void. The resulting expression can only be used as one of the
following cases:
v An expression statement
v The left operand of a comma expression
v The second or third operand in a conditional expression.
Related reference:
“Pointers” on page 100
“Comma operator ,” on page 172
“Conditional expressions” on page 174
“Function declarations and definitions” on page 219
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The atomic type (C11)

Atomic declaration syntax

�� _Atomic ( type_name )
type_name

��

The type_name cannot be an array type, a function type, an atomic type, or a
qualified type.

The properties associated with atomic types are meaningful only for expressions
that are lvalues. If the _Atomic keyword is immediately followed by a left
parenthesis, it is used a type specifier rather than a type qualifier.

The following example shows the declaration of atomic objects:
_Atomic(float) a;
_Atomic(int) b;
_Atomic int c;

To support the compatibility of atomic types between C and C++, you can define a
macro #define _Atomic(T) atomic<T>.

User-defined types
See the following user-defined types:
v Structures and unions
v Enumerations
v Typedef definitions
v C++ Classes
v C++ Elaborated type specifiers

C++ classes are discussed in Chapter 11, “Classes (C++ only),” on page 347.
Elaborated type specifiers are discussed in “Scope of class names” on page 351.

Structures and unions
A structure contains an ordered group of data objects. Unlike the elements of an
array, the data objects within a structure can have varied data types. Each data
object in a structure is a member or field.

A union is an object similar to a structure except that all of its members start at the
same location in memory. A union variable can represent the value of only one of
its members at a time.

C++ In C++, structures and unions are the same as classes except that their
members and inheritance are public by default. C++

You can declare a structure or union type separately from the definition of
variables of that type, as described in “Structure and union type definition” on
page 61 and “Structure and union variable declarations” on page 66; or you can
define a structure or union data type and all variables that have that type in one
statement, as described in “Structure and union type and variable definitions in a
single statement” on page 67.
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Structures and unions are subject to alignment considerations. For information
about changing alignment and packing structures, see “The _Packed qualifier (C
only)” on page 124 and “#pragma pack” on page 583.

Structure and union type definition

A structure or union type definition contains the struct or union keyword followed
by an optional identifier (the structure tag) and a brace-enclosed list of members.

Structure or union type definition syntax

�� struct
union

�{ member_declaration ; }
tag_identifier

; ��

The tag_identifier gives a name to the type. If you do not provide a tag name, you
must put all variable definitions that refer to the type within the declaration of the
type, as described in “Structure and union type and variable definitions in a single
statement” on page 67. Similarly, you cannot use a type qualifier with a structure
or union definition; type qualifiers placed in front of the struct or union keyword
can only apply to variables that are declared within the type definition.

Member declarations

The list of members provides a structure or union data type with a description of
the values that can be stored in the structure or union. The definition of a member
has the form of a standard variable declaration. The names of member variables
must be distinct within a single structure or union, but the same member name
may be used in another structure or union type that is defined within the same
scope, and may even be the same as a variable, function, or type name.

A structure or union member may be of any type except:
v any variably modified type
v void type

v C a function
v any incomplete type

Because incomplete types are not allowed as members, a structure or union type
may not contain an instance of itself as a member, but is allowed to contain a
pointer to an instance of itself. As a special case, the last member of a structure
with more than one member may have an incomplete array type, which is called a
flexible array member, as described in Flexible array members.

IBM

As an extension to Standard C and C++ for compatibility with GNU C/C++, z/OS
XL C/C++ also allows zero-extent arrays as members of structures and unions, as
described in Zero-extent array members (IBM extension). IBM

C++ A union member cannot be a class object that has a constructor,
destructor, or overloaded copy assignment operator, nor can it be of reference type.
A union member cannot be declared with the keyword static. C++
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A member that does not represent a bit field can be qualified with either of the
type qualifiers volatile or const. The result is an lvalue.

Structure members are assigned to memory addresses in increasing order, with the
first component starting at the beginning address of the structure name itself. To
allow proper alignment of components, padding bytes may appear between any
consecutive members in the structure layout.

The storage allocated for a union is the storage required for the largest member of
the union (plus any padding that is required so that the union will end at a natural
boundary of its member having the most stringent requirements). All of a union's
components are effectively overlaid in memory: each member of a union is
allocated storage starting at the beginning of the union, and only one member can
occupy the storage at a time.

Flexible array members

A flexible array member is an unbounded array that occurs within a
structure. It is a C99 feature and C++ the z/OS XL C/C++ compiler
supports it as an IBM extension C++ . Flexible array members can be
used to access a variable-length object. A flexible array member is
permitted as the last member of a structure, provided that the structure has
more than one named member. It is declared with an empty index as
follows:

array_identifier [ ];

For example, b is a flexible array member of structure f.
struct f{

int a;
int b[];

};

Because a flexible array member has an incomplete type, you cannot apply the
sizeof operator to a flexible array. In this example, the statement sizeof(f)
returns the same result as sizeof(f.a), which is the size of an integer. The
statement sizeof(f.b) cannot be used, because b is a flexible array member that
has an incomplete type.

Any structure containing a flexible array member cannot be a member of another
structure or an element of an array, for example:
struct f{

int a;
int b[];

};
struct f fa[10]; // Error.

IBM To be compatible with GNU C/C++, the z/OS XL C/C++compiler
extends Standard C and C++, to ease the restrictions on flexible array members
and allow the following situations:
v Flexible array members can be declared in any part of a structure, not just as the

last member. The type of any member that follows the flexible array member is
not required to be compatible with the type of the flexible array member;
however, a warning message is issued when a flexible array member is followed
by members of an incompatible type. The following example demonstrates this:
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struct s {
int a;
int b[];
char c; // The compiler issues a warning message.

} f;

v Structures containing flexible array members can be members of other structures.
v C Flexible array members can be statically initialized only if either of the

following two conditions is true:
– The flexible array member is the last member of the structure, for example:

struct f {
int a;
int b[];

} f1 = {1,{1,2,3}}; // Fine.

struct a {
int b;
int c[];
int d[];

} e = { 1,{1,2},3}; // Error, c is not the last member
// of structure a.

– Flexible array members are contained in the outermost structure of nested
structures. Members of inner structures cannot be statically initialized, for
example:
struct b {

int c;
int d[];

};

struct c {
struct b f;
int g[];

} h ={{1,{1,2}},{1,2}}; // Error, member d of structure b is
// in the inner nested structure.

C

IBM

Zero-extent array members (IBM extension)

Zero-extent arrays are provided for GNU C/C++ compatibility, and can be
used to access a variable-length object.

A zero-extent array is an array with an explicit zero specified as its dimension.
array_identifier [0]

For example, b is a zero-extent array member of structure f.
struct f{

int a;
int b[0];

};

The sizeof operator can be applied to a zero-extent array, and the value returned
is 0. In this example, the statement sizeof(f) returns the same result as
sizeof(f.a), which is the size of an integer. The statement sizeof(f.b) returns 0.

A structure containing a zero-extent array can be an element of an array, for
example:
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struct f{
int a;
int b[0];

};
struct f fa[10]; // Fine.

A zero-extent array can only be statically initialized with an empty set {}.
Otherwise, it must be initialized as a dynamically allocated array. For example:
struct f{

int a;
int b[0];

};
struct f f1 = {100, {}}; //Fine.
struct f f2 = {100, {1, 2}}; //Error.

If a zero-extent array is not initialized, no static zero filling occurs, because a
zero-extent array is defined to have no members. The following example
demonstrates this:
#include <stdio.h>

struct s {
int a;
int b[0];

};

struct t1 {
struct s f;
int c[3];

} g1 = {{1},{1,2}};

struct t2 {
struct s f;
int c[3];

} g2 = {{1,{}},{1,2}};

int main() {
printf("%d %d %d %d\n", g1.f.a, g1.f.b[0], g1.f.b[1], g1.f.b[2]);
printf("%d %d %d %d\n", g2.f.a, g2.f.b[0], g2.f.b[1], g2.f.b[2]);
return 0;

}

In this example, the two printf statements produce the same output:
1 1 2 0

A zero-extent array can be declared in any part of a structure, not just as the last
member. The type of any member following the zero-extent array is not required to
be compatible with the type of the zero-extent array; however, a warning is issued
when a zero-extent array is followed by members of an incompatible type. For
example:
struct s {

int a;
int b[0];
char c; // Issues a warning message

} f;

You can declare a zero extent array only as a member of an aggregate type. For
example:
int func(){

int a[0]; // error
struct S{
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int x;
char b[0]; // fine

};
}

Bit field members

Both C and C++ allow integer members to be stored into memory spaces
smaller than the compiler would ordinarily allow. These space-saving
structure members are called bit fields, and their width in bits can be
explicitly declared. Bit fields are used in programs that must force a data
structure to correspond to a fixed hardware representation and are unlikely
to be portable.

Bit field member declaration syntax

�� type_specifier :
declarator

constant_expression ; ��

The constant_expression is a constant integer expression that indicates the field
width in bits. A bit field declaration may not use either of the type qualifiers const
or volatile.

C

In C99, the allowable data types for a bit field include _Bool, int, signed int, and
unsigned int.

C11 The width of a _Bool bit field cannot be greater than one bit. C11

C

C++ A bit field can be any integral type or enumeration type. C++

The following structure has three bit-field members kingdom, phylum, and genus,
occupying 12, 6, and 2 bits respectively:
struct taxonomy {

int kingdom : 12;
int phylum : 6;
int genus : 2;

};

When you assign a value that is out of range to a bit field, the low-order bit
pattern is preserved and the appropriate bits are assigned.

The following restrictions apply to bit fields. You cannot:
v Define an array of bit fields
v Take the address of a bit field
v Have a pointer to a bit field
v Have a reference to a bit field

Bit fields are bit packed. They can cross word and byte boundaries. No padding is
inserted between two (non-zero length) bit field members. Bit padding can occur
after a bit field member if the next member is a zero length bitfield or a non-bit
field. Non-bit field members are aligned based on their declared type. For example,
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the following structure demonstrates the lack of padding between bit field
members, and the insertion of padding after a bit field member that precedes a
non-bit field member.
struct {

int larry : 25; // Bit Field: offset 0 bytes and 0 bits.
int curly : 25; // Bit Field: offset 3 bytes and 1 bit (25 bits).
int moe; // non-Bit Field: offset 8 bytes and 0 bits (64 bits).

} stooges;

There is no padding between larry and curly. The bit offset of curly would be 25
bits. The member moe would be aligned on the next 4 byte boundary, causing 14
bits a padding between curly and moe.

Bit fields with a length of 0 must be unnamed. Unnamed bit fields cannot be
referenced or initialized.

A zero-width bit field causes the next field to be aligned on the next container
boundary. However, a _Packed (C only) structure, which has a zero-width bit field,
causes the next field to be aligned on the next byte boundary.

The following example demonstrates padding, and is valid for all implementations.
Suppose that an int occupies 4 bytes. The example declares the identifier kitchen
to be of type struct on_off:
struct on_off {

unsigned light : 1;
unsigned toaster : 1;
int count; /* 4 bytes */
unsigned ac : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;

} kitchen;

The structure kitchen contains eight members totalling 16 bytes. The following
table describes the storage that each member occupies:

Member name Storage occupied

light 1 bit

toaster 1 bit

(padding — 30 bits) To the next int boundary

count The size of an int (4 bytes)

ac 4 bits

(unnamed field) 4 bits

clock 1 bit

(padding — 23 bits) To the next int boundary (unnamed field)

flag 1 bit

(padding — 31 bits) To the next int boundary

Structure and union variable declarations

A structure or union declaration has the same form as a definition except the
declaration does not have a brace-enclosed list of members. You must declare the
structure or union data type before you can define a variable having that type.
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Structure or union variable declaration syntax

�� �

storage_class_specifier
type_qualifier

struct
union

tag_identifier declarator ; ��

The tag_identifier indicates the data type of the structure or union.

C++ The keyword struct is optional in structure variable declarations.
C++

You can declare structures or unions having any storage class. The storage class
specifier and any type qualifiers for the variable must appear at the beginning of
the statement. Structures or unions declared with the register storage class
specifier are treated as automatic variables.

The following example defines structure type address:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};

The following examples declare two structure variables of type address:
struct address perm_address;
struct address temp_address;

Structure and union type and variable definitions in a single statement

You can define a structure (or union) type and a structure (or union) variable in
one statement, by putting a declarator and an optional initializer after the variable
definition. The following example defines a union data type (not named) and a
union variable (named length):
union {

float meters;
double centimeters;
long inches;

} length;

Note that because this example does not name the data type, length is the only
variable that can have this data type. Putting an identifier after struct or union
keyword provides a name for the data type and lets you declare additional
variables of this data type later in the program.

To specify a storage class specifier for the variable or variables, you must put the
storage class specifier at the beginning of the statement. For example:
static struct {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

} perm_address, temp_address;
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In this case, both perm_address and temp_address are assigned static storage.

Type qualifiers can be applied to the variable or variables declared in a type
definition. Both of the following examples are valid:
volatile struct class1 {

char descript[20];
long code;
short complete;

} file1, file2;

struct class1 {
char descript[20];
long code;
short complete;

} volatile file1, file2;

In both cases, the structures file1 and file2 are qualified as volatile.

Access to structure and union members

Once structure or union variables have been declared, members are referenced by
specifying the variable name with the dot operator (.) or a pointer with the arrow
operator (->) and the member name. For example, both of the following:
perm_address.prov = "Ontario";
p_perm_address -> prov = "Ontario";

assign the string "Ontario" to the pointer prov that is in the structure
perm_address.

All references to members of structures and unions, including bit fields, must be
fully qualified. In the previous example, the fourth field cannot be referenced by
prov alone, but only by perm_address.prov.

Anonymous structures (C11)

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

An anonymous structure is a structure that does not have a tag or a name and that
is a member of another structure or union. All the members of the anonymous
structure behave as if they were members of the parent structure. An anonymous
structure must meet the following conditions:
v The structure is nested inside another structure or union.
v The structure has no tag.
v The structure has no name.

For example, the following code fragment demonstrates the conditions that an
anonymous structure must meet.
struct v {

union {
// This is an anonymous structure, because it has no tag, no name,
// and is a member of another structure or union.
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struct { int i, j; };

// This is not an anonymous structure, because it has a name.
struct { long k, l; } w;

// This is not an anonymous structure, because
// the structure has a tag "phone".
struct phone {int number, areanumber;};

};

int m;
} v1;

Anonymous unions

An anonymous union is a union that does not have a tag or a name and that is a
member of another union or structure. It cannot be followed by a declarator. An
anonymous union is not a type; it defines an unnamed object.

z/OS XL C supports anonymous unions only under extended language levels.

The member names of an anonymous union must be distinct from other names
within the scope in which the union is declared. You can use member names
directly in the union scope without any additional member access syntax.

For example, in the following code fragment, you can access the data members i
and cptr directly because they are in the scope containing the anonymous union.
Because i and cptr are union members and have the same address, you should
only use one of them at a time. The assignment to the member cptr will change
the value of the member i.
void f() {

union { int i; char* cptr ; };
/* . . . */
i = 5;
cptr = "string_in_union"; // Overrides the value 5.

}

C++ An anonymous union cannot have protected or private members, and it
cannot have member functions. A global or namespace anonymous union must be
declared with the keyword static. C++

C11

Related reference:
“Classes and structures” on page 350
“Variable length arrays” on page 106
“The aligned variable attribute” on page 126
“Initialization of structures and unions” on page 112
“Compatibility of structures, unions, and enumerations (C only)” on page 73
“Dot operator .” on page 150
“Arrow operator ->” on page 150
“Storage class specifiers” on page 48
“Type qualifiers” on page 85
“The static storage class specifier” on page 49
“Member functions” on page 359
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Enumerations
An enumeration is a data type that consists of a set of named values that represent
integral constants, known as enumeration constants. An enumeration is also referred
to as an enumerated type because you must list (enumerate) each of the values in
creating a name for each of them. In addition to providing a way of defining and
grouping sets of integral constants, enumerations are useful for variables that have
a small number of possible values.

You can declare an enumeration type separately from the definition of variables of
that type, as described in “Enumeration type definition” and “Enumeration
variable declarations” on page 72; or you can define an enumeration data type and
all variables that have that type in one statement, as described in “Enumeration
type and variable definitions in a single statement” on page 72.

Enumeration type definition

An enumeration type definition contains the enum keyword followed by an
optional identifier (the enumeration tag) and a brace-enclosed list of enumerators.
A comma separates each enumerator in the enumerator list. C C99 allows a
trailing comma between the last enumerator and the closing brace. C

Enumeration definition syntax

�� enum
tag_identifier

�

,

{ enumerator } ; ��

The tag_identifier gives a name to the enumeration type. If you do not provide a
tag name, you must put all variable definitions that refer to the enumeration type
within the declaration of the type, as described in “Enumeration type and variable
definitions in a single statement” on page 72. Similarly, you cannot use a type
qualifier with an enumeration definition; type qualifiers placed in front of the enum
keyword can only apply to variables that are declared within the type definition.

Elaborated type specifier

Elaborated type specifier syntax

�� enum tag_identifier x ��

The elaborated type specifier refers to a previously declared enumeration. The x is
a variable that has the type tag_identifier.

The enum keyword can be used to refer to scoped or unscoped enumerations
during variable declaration or definition. For example:
// a scoped enumeration
enum class color { red, white, black, yellow };

// an unscoped enumeration
enum letter {A, B, C, D};

// valid, regular type name usage
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color pic1 = color :: white;

// valid, elaborated type usage
enum color pic2 = color :: red;

You cannot use enum class or enum struct in the elaborated type specifier. For
example:
enum class color pic3 = color :: black; // invalid

The elaborated type specifier for an unscoped enumeration is the same as that for
a scoped enumeration. For example:
enum letter let1 = letter :: A; // valid

Enumeration members

The list of enumeration members, or enumerators, provides the data type with a set
of values.

Enumeration member declaration syntax

�� identifier
= enumeration_constant

��

C In C, an enumeration constant is of type int. If a constant expression is
used as an initializer, the value of the expression cannot exceed the range of int
(that is, INT_MIN to INT_MAX as defined in the header limits.h). Otherwise, the
condition is tolerated, a diagnostic message is issued, but the value of the
enumeration constant is undefined. C

C++ In C++, each enumeration constant has a value that can be promoted to a
signed or unsigned integer value and a distinct type that does not have to be
integral. You can use an enumeration constant anywhere an integer constant is
allowed, or anywhere a value of the enumeration type is allowed. C++

The value of an enumeration constant is determined in the following way:
1. An equal sign (=) and a constant expression after the enumeration constant

gives an explicit value to the enumeration constant. The enumeration constant
represents the value of the constant expression.

2. If no explicit value is assigned to the first enumerator, then it takes the value 0
(zero).

3. Enumeration constants with no explicitly assigned values receive the integer
value that is one greater than the value represented by the previous
enumeration constant.

The following data type declarations list oats, wheat, barley, corn, and rice as
enumeration constants. The number under each constant shows the integer value.
enum grain { oats, wheat, barley, corn, rice };

/* 0 1 2 3 4 */

enum grain { oats=1, wheat, barley, corn, rice };
/* 1 2 3 4 5 */

enum grain { oats, wheat=10, barley, corn=20, rice };
/* 0 10 11 20 21 */
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It is possible to associate the same integer with two different enumeration
constants. For example, the following definition is valid. The identifiers suspend
and hold have the same integer value.
enum status { run, clear=5, suspend, resume, hold=6 };

/* 0 5 6 7 6 */

Each enumeration constant must be unique within the scope in which the
enumeration is defined. In the following example, the second declarations of
average and poor cause compiler errors:
func()

{
enum score { poor, average, good };
enum rating { below, average, above };
int poor;

}

Enumeration variable declarations

You must declare the enumeration data type before you can define a variable
having that type.

Enumeration variable declaration syntax

�� � enum tag_identifier
storage_class_specifier
type_qualifier

declarator ��

The tag_identifier indicates the previously-defined data type of the enumeration.

C++ The keyword enum is optional in enumeration variable declarations.
C++

Enumeration type and variable definitions in a single statement

You can define a type and a variable in one statement by using a declarator and an
optional initializer after the variable definition. To specify a storage class specifier
for the variable, you must put the storage class specifier at the beginning of the
declaration. For example:
register enum score { poor=1, average, good } rating = good;

C++ C++ also lets you put the storage class immediately before the declarator
list. For example:
enum score { poor=1, average, good } register rating = good;

C++

Either of these examples is equivalent to the following two declarations:
enum score { poor=1, average, good };
register enum score rating = good;

Both examples define the enumeration data type score and the variable rating.
rating has the storage class specifier register, the data type enum score, and the
initial value good.
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Combining a data type definition with the definitions of all variables having that
data type lets you leave the data type unnamed. For example:
enum { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday } weekday;

defines the variable weekday, which can be assigned any of the specified
enumeration constants. However, you cannot declare any additional enumeration
variables using this set of enumeration constants.
Related reference:
“Arithmetic conversions and promotions” on page 129
“#pragma enum” on page 549
“Integral types” on page 54
“Initialization of enumerations” on page 114
“Compatibility of structures, unions, and enumerations (C only)”

Compatibility of structures, unions, and enumerations (C only)
Within a single source file, each structure or union definition creates a new type
that is neither the same as nor compatible with any other structure or union type.
However, a type specifier that is a reference to a previously defined structure or
union type is the same type. The tag associates the reference with the definition,
and effectively acts as the type name. To illustrate this, only the types of structures
j and k are compatible in this example:
struct { int a; int b; } h;
struct { int a; int b; } i;
struct S { int a; int b; } j;
struct S k;

Compatible structures may be assigned to each other.

Structures or unions with identical members but different tags are not compatible
and cannot be assigned to each other. Structures and unions with identical
members but using different alignments are not also compatible and cannot be
assigned to each other.

You cannot perform comparisons between packed and nonpacked structures or
unions of the same type. You cannot assign packed and nonpacked structures or
unions to each other, regardless of their type. You cannot pass a packed structure
or union argument to a function that expects a nonpacked structure or union of the
same type and vice versa.

Since the compiler treats enumeration variables and constants as integer types, you
can freely mix the values of different enumerated types, regardless of type
compatibility. Compatibility between an enumerated type and the integer type that
represents it is controlled by compiler options and related pragmas. For a
discussion of the ENUMSIZE compiler option, see the z/OS XL C/C++ User's Guide.
For a discussion of the #pragma enum directive, see “#pragma enum” on page 549.

Compatibility across separate source files

When the definitions for two structures, unions, or enumerations are defined in
separate source files, each file can theoretically contain a different definition for an
object of that type with the same name. The two declarations must be compatible,
or the run time behavior of the program is undefined. Therefore, the compatibility
rules are more restrictive and specific than those for compatibility within the same
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source file. For structure, union, and enumeration types defined in separately
compiled files, the composite type is the type in the current source file.

The requirements for compatibility between two structure, union, or enumerated
types declared in separate source files are as follows:
v If one is declared with a tag, the other must also be declared with the same tag.
v If both are completed types, their members must correspond exactly in number,

be declared with compatible types, and have matching names.

For enumerations, corresponding members must also have the same values.

For structures and unions, the following additional requirements must be met for
type compatibility:
v Corresponding members must be declared in the same order (applies to

structures only).
v Corresponding bit fields must have the same widths.
Related reference:
“Arithmetic conversions and promotions” on page 129
Chapter 11, “Classes (C++ only),” on page 347
Structure or union type definition
Incomplete types
“The _Packed qualifier (C only)” on page 124
“#pragma pack” on page 583

typedef definitions

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

You can use thetypedef declaration to define your own identifiers that can be used
in place of type specifiers such as int, float, and double. A typedef declaration
does not reserve storage. The names you define using typedef are not new data
types, but synonyms for the data types or combinations of data types they
represent.

The name space for a typedef name is the same as other identifiers. When an
object is defined using a typedef identifier, the properties of the defined object are
exactly the same as if the object were defined by explicitly listing the data type
associated with the identifier.

C11

Using typedef redeclaration, you can redefine a name that is a previous typedef
name in the same scope to refer to the same type if the type is not a variably
modified type. For example:
typedef char AChar;
typedef char AChar;
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IBM When any extended language level is in effect, typedef redeclaration
supports all types, including a variably modified type. IBM

For more information about variably modified types, see “Variable length arrays”
on page 106.

C11

Examples of typedef definitions

The following statements define LENGTH as a synonym for int and then use this
typedef to declare length, width, and height as integer variables:
typedef int LENGTH;
LENGTH length, width, height;

The preceding declarations are equivalent to the following declaration:
int length, width, height;

Similarly, typedef can be used to define a structure, union, or C++ class. For
example:
typedef struct {

int scruples;
int drams;
int grains;
} WEIGHT;

The structure WEIGHT can then be used in the following declarations:
WEIGHT chicken, cow, horse, whale;

In the following example, the type of yds is "pointer to function with no
parameters, returning int".
typedef int SCROLL(void);
extern SCROLL *yds;

In the following typedef definitions, the token struct is part of the type name: the
type of ex1 is struct a; the type of ex2 is struct b.
typedef struct a { char x; } ex1, *ptr1;
typedef struct b { char x; } ex2, *ptr2;

Type ex1 is compatible with the type struct a and the type of the object pointed
to by ptr1. Type ex1 is not compatible with char, ex2, or struct b.

C++

In C++, a typedef name must be different from any class type name declared
within the same scope. If the typedef name is the same as a class type name, it can
only be so if that typedef is a synonym of the class name.

A C++ class defined in a typedef definition without being named is given a
dummy name. Such a class cannot have constructors or destructors. Consider the
following example:
typedef class {

~Trees();
} Trees;
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In this example, an unnamed class is defined in a typedef definition. Trees is an
alias for the unnamed class, but not the class type name. So you cannot define a
destructor ~Trees() for this unnamed class; otherwise, the compiler issues an error.

C++

C++11

Declaring typedef names as friends

In the C++11 standard, the extended friend declarations feature is introduced, with
which you can declare typedef names as friends. For more information, see
“Extended friend declarations” on page 374.

C++11

Related reference:
“Type names” on page 99
“Type specifiers” on page 54
“Structures and unions” on page 60
Chapter 11, “Classes (C++ only),” on page 347
“Friends” on page 373

The auto type specifier (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

C++11 introduces the keyword auto as a new type specifier. auto acts as a
placeholder for a type to be deduced from the initializer expression of a variable.
With auto type deduction enabled, you no longer need to specify a type while
declaring a variable. Instead, the compiler deduces the type of an auto variable
from the type of its initializer expression.

The following examples demonstrate the usage of auto type deduction.
auto x = 1; //x : int

float* p;
auto x = p; //x : float*
auto* y = p; //y : float*

double f();
auto x = f(); //x : double
const auto& y = f(); //y : const double&

class R;
R* h();
auto* x = h(); //x : R*
auto y = h(); //y : R*
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int& g();
auto x = g(); //x : int
const auto& y = g(); //y : const int&
auto* z = g(); //error, g() does not return a pointer type

By delegating the task of type deduction to the compiler, auto type deduction
increases programming convenience, and potentially eliminates typing errors made
by programmers. Auto type deduction also reduces the size and improves the
readability of programs.

The following two examples demonstrate the benefits of enabling auto type
deduction. The first example does not enable auto type deduction.
vector<int> vec;
for (vector<int>::iterator i = vec.begin(); i < vec.end(); i++)
{

int* a = new int(1);
//...

}

With auto type deduction enabled, the first example can be simplified as follows:
vector<int> vec;
for (auto i = vec.begin(); i < vec.end(); i++)
{

auto a = new auto(1);
//...

}

The following rules and constraints apply to the use of auto as a type specifier in
auto type deduction.
v Auto type deduction cannot deduce array types.

int x[5];
auto y[5] = x; //error, x decays to a pointer,

//which does not match the array type

v Auto type deduction cannot deduce cv-qualifier or reference type from the
initializer.
int f();
auto& x = f(); //error, cannot bind a non-const reference

//to a temporary variable
int& g();
auto y = g(); //y is of type int
auto& z = g(); //z is of type int&

v Auto type deduction supports multi-variable auto declarations. If the list of
declarators contains more than one declarator, the type of each declarator can be
deduced independently. If the deduced type is not the same in each deduction,
the program is ill-formed.
auto x=3, y=1.2, *z=new auto(1); //error y: deduced as double,

//but was previously deduced as int

v The name of the object that is declared can not be used in its initializer
expression.
auto x = x++; //error

v auto can not be used in function parameters.
int func(auto x = 3) //error
{

//...
}

Note: In C++11, the keyword auto is no longer used as a storage class specifier.
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Related reference:
“Storage class specifiers” on page 48
“The auto storage class specifier” on page 49
“Type qualifiers” on page 85
“C++11 compatibility” on page 640

The decltype(expression) type specifier (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

The decltype(expression) specifier is a type specifier introduced in C++11. With this
type specifier, you can get a type that is based on the resultant type of a possibly
type-dependent expression.

decltype(expression) takes expression as an operand. When you define a variable by
using decltype(expression), it can be thought of as being replaced by the compiler
with the type or the derived type of expression. Consider the following example:
int i;
static const decltype(i) j = 4;

In this example, decltype(i) is equivalent to the type name int.

General rules for using decltype

When you use decltype(expression) to get a type, the following rules are applicable:
1. If expression is an unparenthesized id-expression or class member,

decltype(expression) is the type of the entity named by expression. If there is no
such entity, or if expression names a set of overloaded functions, the program is
ill formed.

2. Otherwise, if expression is an xvalue, decltype(expression) is T&&, where T is the
type of expression.

3. Otherwise, if expression is an lvalue, decltype(expression) is T&, where T is the
type of expression.

4. Otherwise, decltype(expression) is the type of expression.

The following example illustrates how these rules are used:
const int* g(){

return new int[0];
}

int&& fun(){
int&& var = 1;
return 1;

}

struct A{
double x;

};

78 z/OS V2R1.0 XL C/C++ Language Reference



template <class T> T tf(const T& t){
return t;

}

bool f(){
return false;

}

struct str1{
template <typename T, typename U>
static decltype((*(T*)0) * (*(U*)0)) mult(const U& arg1, const T& arg2){

return arg1 * arg2;
}

};

template <typename T, typename U> struct str2{
typedef decltype((*(T*)0) + (*(U*)0)) btype;
static btype g(T t, U u);

};

int main(){
int i = 4;
const int j = 6;
const int& k = i;
int&& m = 1;
int a[5];
int *p;

decltype(i) var1; // int
decltype(1) var2; // int
decltype(2+3) var3; // int(+ operator returns an rvalue)
decltype(i=1) var4 = i; // int&, because assignment to int

// returns an lvalue
decltype((i)) var5 = i; // int&
decltype(j) var6 = 1; // const int
decltype(k) var7 = j; // const int&
decltype("decltype") var8 = "decltype"; // const char(&)[9]
decltype(a) var9; // int[5]
decltype(a[3]) var10 = i; // int&([] returns an lvalue)
decltype(*p) var11 = i; // int&(*operator returns an lvalue)
decltype(fun()) var12 = 1; // int&&
decltype(tf(A())) var13; // A
decltype(f()) var14; // bool
decltype((f())) var15; // bool, parentheses around f() are ignored
decltype(f) var16; // bool()
decltype(&f) var17; // bool(*)()
decltype(&A::x) var18; // double A::*
decltype(str1::mult(3.0, 4u)) var19; // double
decltype(str2<float, short>::g(1,3)) var20; // float
decltype(m) var21 = 1; // int&&
decltype((m)) var22 = m; // int&
return 0;

}

In this example, the comment after each decltype statement explains the type of
the defined variable.

The following example illustrates an incorrect usage of decltype(expression):
int func(){

return 0;
}
int func(int a){

return 0;
}

int main(){
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int i = 4;

// Incorrect usage. func names an overload function
decltype(func) var1;

// Correct usage. The overload operation is not ambiguous
decltype(func(i)) var2;

return 0;
}

In this example, the compiler issues an error message because it does not know
which func function to match.

Rules for using decltype with structure member variables

When you use decltype(expression) to get a type, and expression is an
unparenthesized member variable of an object expression (with a . operator) or a
pointer expression (with a -> operator), the following rules apply:
v If the object expression or the pointer expression is specified with a constant or

volatile qualifier, the type qualifier does not contribute to the result of
decltype(expression).

v The lvalueness or rvalueness of the object expression or the pointer expression
does not affect whether decltype(expression) is a reference type or not.

Example:
struct Foo{

int x;
};

int main(){
struct Foo f;
const struct Foo g = {0};
volatile struct Foo* h = &f;
struct Foo func();

decltype(g.x) var1; // int
decltype(h->x) var2; // int
decltype(func().x) var3; // int
return 0;

}

In this example, the constant qualifier of the object expression g is not desired in
the result of decltype(g.x). Similarly, the volatile qualifier of the pointer
expression h is not desired in the result of decltype(h->x). The object expression g
and the pointer expression h are lvalues, and the object expression func() is an
rvalue, but they do not affect whether the decltype results of their unparenthesized
member variables are reference types or not.

If expression declared in decltype(expression) is a parenthesized nonstatic
non-reference class member variable, the constant or volatile type qualifier of the
parent object expression or pointer expression of expression contributes to the result
of decltype(expression). Similarly, the lvalueness or rvalueness of the object
expression or the pointer expression affects the result of decltype(expression).

Example:
struct Foo{

int x;
};

80 z/OS V2R1.0 XL C/C++ Language Reference



int main(){
int i = 1;
struct Foo f;
const struct Foo g = {0};
volatile struct Foo* h = &f;
struct Foo func();

decltype((g.x)) var1 = i; // const int&
decltype((h->x)) var2 = i; // volatile int&
decltype((func().x)) var3 = 1; // int
return 0;

}

In this example, the result of decltype((g.x)) inherits the constant qualifier of the
object expression g. Similarly, the result of decltype((h->x)) inherits the volatile
qualifier of the pointer expression h. The object expression g and the pointer
expression h are lvalues, so decltype((g.x)) and decltype((h->x)) are reference
types. The object expression func() is an rvalue, so decltype((func().x)) is a
nonreference type.

If you use the built-in operators .* or ->* within a decltype(expression), the constant
or volatile type qualifier of the parent object expression or pointer expression of
expression contributes to the result of decltype(expression), regardless of whether
expression is a parenthesized or an unparenthesized structure member variable.
Similarly, the lvalueness or rvalueness of the object expression or the pointer
expression affects the result of decltype(expression).

Example:
class Foo{

int x;
};
int main(){

int i = 0;
Foo f;
const Foo & g = f;
volatile Foo* h = &f;
const Foo func();

decltype(f.*&Foo::x) var1 = i; // int&, f is an lvalue
decltype(g.*&Foo::x) var2 = i; // const int&, g is an lvalue
decltype(h->*&Foo::x) var3 = i; // volatile int&, h is an lvalue
decltype((h->*&Foo::x)) var4 = i; // volatile int&, h is an lvalue
decltype(func().*&Foo::x) var5 = 1; // const int, func() is an rvalue
decltype((func().*&Foo::x)) var6 = 1; // const int, func() is an rvalue
return 0;

}

Side effects and decltype

If you use decltype(expression) to get a type, additional operations in the decltype
parenthetical context can be performed, but they do not have side effects outside of
the decltype context. Consider the following example:
int i = 5;
static const decltype(i++) j = 4; // i is still 5

The variable i is not increased by 1 outside of the decltype context.

There are exceptions to this rule. In the following example, because the expression
given to decltype must be valid, the compiler has to perform a template
instantiation:
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template <int N>
struct Foo{

static const int n=N;
};
int i;

decltype(Foo<101>::n,i) var = i; // int&

In this example, Foo template instantiation occurs, even though var is only
determined by the type of the variable i.

Redundant qualifiers and specifiers with decltype

Because decltype(expression) is considered syntactically to be a type specifier, the
following redundant qualifiers or specifiers are ignored:
v constant qualifiers
v volatile qualifiers
v & specifiers

The following example demonstrates this case:
int main(){

int i = 5;
int& j = i;
const int k = 1;
volatile int m = 1;

// int&, the redundant & specifier is ignored
decltype(j)& var1 = i;

// const int, the redundant const qualifier is ignored
const decltype(k) var2 = 1;

// volatile int, the redundant volatile qualifer is ignored
volatile decltype(m) var3;
return 0;

}

Note: The functionality of ignoring the redundant & specifiers in
decltype(expression) is not supported in the current C++11 standard, but it is
implemented in this compiler release.

Template dependent names and decltype

Without using the decltype feature, when you pass parameters from one function
to another function, you might not know the exact types of the results that are
passed back. The decltype feature provides a mechanism to generalize the return
types easily. The following program shows a generic function that performs the
multiplication operation on some operands:
struct Math{

template <typename T>
static T mult(const T& arg1, const T& arg2){

return arg1 * arg2;
}

};

If arg1 and arg2 are not the same type, the compiler cannot deduce the return type
from the arguments. You can use the decltype feature to solve this problem, as
shown in the following example:
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struct Foo{
template<typename T, typename U>
static decltype((*(T*)0)*(*(U*)0)) mult(const T& arg1, const U& arg2)
{

return arg1 * arg2;
}

};

In this example, the return type of the function is the type of the multiplication
result of the two template-dependent function parameters.

The typeof operator and decltype

IBM The decltype feature is similar to the existing typeof feature. One
difference between these two features is that decltype accepts only an expression as
its operand, while typeof can also accept a type name. Consider the following
example:
__typeof__(int) var1; // okay
decltype(int) var2; // error

In this example, int is a type name, so it is invalid as the operand of decltype.

Note: __typeof__ is an alternate spelling of typeof.

IBM

Related reference:
“Keywords” on page 13
“Name binding and dependent names” on page 480
“C++11 compatibility” on page 640
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

The constexpr specifier (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

The C++11 standard introduces a new keyword constexpr as a declaration
specifier. You can apply the constexpr specifier only to the following contexts:
v The definition of a variable
v The declaration of a function or function template
v The declaration of a static data member

For example:
constexpr int i = 1; // OK, definition
constexpr int f1(); // OK, function declaration, but must be defined before use

If you declare a function that is not a constructor with a constexpr specifier, that
function is a constexpr function. Similarly, if you declare a constructor with a
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constexpr specifier, that constructor is a constexpr constructor. Both constexpr
functions and constexpr constructors are implicitly inline. For example:
struct S {

constexpr S(int i) : mem(i) { } // OK, declaration of a constexpr constructor
private:

int mem;
};
constexpr S s(55); // OK, invocation of a constexpr constructor

If any declaration of a function or function template is specified with constexpr, all
its declarations must contain the constexpr specifier. For example:
constexpr int f1(); // OK, function declaration
int f1() { // Error, the constexpr specifier is missing

return 55;
}

Function parameters cannot be declared with the constexpr specifier. The
following example demonstrates this:
constexpt int f4(constexpr int); //Error

A constexpr specifier used in an object declaration declares the object as const.
Such an object must be of a literal type and initialized. If it is initialized by a
constructor call, that call must be a constant expression. Otherwise, if a constexpr
specifier is used in a reference declaration, every full expression that appears in its
initializer must be a constant expression. Each implicit conversion used in
converting the initializer expressions and each constructor call used for the
initialization must be valid in a constant expression. For example:
constexpr int var; // Error, var is not initialized
constexpr int var1 = 1; // OK

void func() {
var1 = 5; //Error, var1 is const

}

struct L {
constexpr L() : mem(55) { }
constexpr L(double d) : mem((int)d) { }
L(int i) : mem(i) { }
operator int() { return mem; }

private:
int mem;

};

// Error, initializer involves a non-constexpr constructor.
constexpr L var2(55);

double var3 = 55;

// Error, initializer involves a constexpr constructor with non-constant argument
constexpr L var4(var3);

// Error, involves conversion that uses a non-constexpr conversion function
constexpr int var5 = L();

A constexpr specifier for a nonstatic member function that is not a constructor
declares that member function to be const. The class of that constexpr member
function must be a literal type. In the following example, the class NL is a
non-literal type because it has a user-provided destructor.
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struct NL {
constexpr int f(){ //error, enclosing class is not a literal type

return 55;
}
~NL() { }

};

A call to a constexpr function produces the same result as a call to an equivalent
non-constexpr function, except that a call to a constexpr function can appear in a
constant expression.

The main function cannot be declared with the constexpr specifier.
Related reference:
“Literals” on page 19
“Constexpr functions (C++11)” on page 313
“Constexpr constructors (C++11)” on page 411
“Generalized constant expressions (C++11)” on page 149

Compatibility of arithmetic types (C only)
Two arithmetic types are compatible only if they are the same type.

The presence of type specifiers in various combinations for arithmetic types may or
may not indicate different types. For example, the type signed int is the same as
int, except when used as the types of bit fields; but char, signed char, and
unsigned char are different types.

The presence of a type qualifier changes the type. That is, const int is not the
same type as int, and therefore the two types are not compatible.

Type qualifiers
A type qualifier is used to refine the declaration of a variable, a function, and
parameters, by specifying whether:
v The value of an object can be changed
v The value of an object must always be read from memory rather than from a

register
v More than one pointer can access a modifiable memory address

z/OS XL C/C++ recognizes the following type qualifiers:
v const

v restrict

v volatile

z/OS XL C/C++ includes the following additional type qualifiers to meet the
special needs of the z/OS environment:
v __callback

v C __far C

v __ptr32

v C __ptr64 C
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Standard C++ refers to the type qualifiers const and volatile as cv-qualifiers. In
both languages, the cv-qualifiers are only meaningful in expressions that are
lvalues.

When the const and volatile keywords are used with pointers, the placement of
the qualifier is critical in determining whether it is the pointer itself that is to be
qualified, or the object to which the pointer points. For a pointer that you want to
qualify as volatile or const, you must put the keyword between the * and the
identifier. For example:

int * volatile x; /* x is a volatile pointer to an int */
int * const y = &z; /* y is a const pointer to the int variable z */

For a pointer to a volatile or const data object, the type specifier and qualifier
can be in any order, provided that the qualifier does not follow the * operator. For
example, for a pointer to a volatile data object:

volatile int *x; /* x is a pointer to a volatile int */

or
int volatile *x; /* x is a pointer to a volatile int */

For a pointer to a const data object:
const int *y; /* y is a pointer to a const int */

or
int const *y; /* y is a pointer to a const int */

The following examples contrast the semantics of these declarations:

Declaration Description

const int * ptr1; Defines a pointer to a constant integer: the value
pointed to cannot be changed.

int * const ptr2; Defines a constant pointer to an integer: the
integer can be changed, but ptr2 cannot point to
anything else.

const int * const ptr3; Defines a constant pointer to a constant integer:
neither the value pointed to nor the pointer itself
can be changed.

You can put more than one qualifier on a declaration, and the compiler ignores
duplicate type qualifiers. This is a C99 language feature. C++ To be compatible
with C99, the z/OS XL C/C++ compiler supports it as an IBM extension. C++

A type qualifier cannot apply to user-defined types, but only to objects created
from a user-defined type. Therefore, the following declaration is illegal:

volatile struct omega {
int limit;
char code;

}

However, if a variable or variables are declared within the same definition of the
type, a type qualifier can be applied to the variable or variables by placing it at the
beginning of the statement or before the variable declarator or declarators.
Therefore:
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volatile struct omega {
int limit;
char code;
} group;

provides the same storage as:
struct omega {

int limit;
char code;
} volatile group;

In both examples, the volatile qualifier only applies to the structure variable
group.

When type qualifiers are applied to a structure, C++ class C++ , or union
variable, they also apply to the members of the structure, class or union.
Related reference:
“Pointers” on page 100
“Constant and volatile member functions” on page 360

The __callback type qualifier
The keyword __callback is a qualifier that can be applied only to a function
pointer type. The qualifier instructs the compiler to generate extra code in the call
sites to assist the call, and thus allows the function pointer to point to either
XPLINK or non-XPLINK functions. Under normal circumstances, a non-XPLINK
function pointer is incompatible with XPLINK compilation units.

The keyword can appear in the declarator part of a function pointer declaration,
wherever a cv-qualifier can appear. For example,

int (*__callback foo)(int);

declares foo to be a function pointer that might point to non-XPLINK functions.
foo will then have fewer restrictions on what it can reference and can thus be used
with XPLINK compilation units.

XPLINK and non-XPLINK compilation units cannot be statically bound; the two
linkages can be mixed only across DLL boundaries. Moreover, a function pointer
that points to a non-XPLINK function cannot be used in XPLINK DLLs unless the
pointer is passed across the boundary explicitly as a function argument. The
__callback qualifier relaxes the latter restriction, at the expense of extra code
sequences in the call site.

Semantically, the __callback keyword is a language extension that has a single
effect: to instruct the compiler to generate assistance code. It does not take part in
type definition. The keyword also has no effect on the following:
v Type (such as in overload resolution).
v Name mangling.
v Allocation of the pointer object in memory.

It is the responsibility of the programmer to make sure that the function pointer is
appropriately __callback-qualified for all call sites that require it.

The atomic qualifier (C11)
The _Atomic qualifier designates an atomic type. The type modified by the _Atomic
qualifier cannot be an array type or a function type.
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The properties associated with qualified types are meaningful only for expressions
that are lvalues.

If you modify a type with the _Atomic qualifier and other qualifiers, the resulting
type is the so-qualified atomic type. For example, the following statement declares
a pointer to a volatile-qualified atomic type:
_Atomic volatile int *p;

The const type qualifier
The const qualifier explicitly declares a data object as something that cannot be
changed. Its value is set at initialization. You cannot use const data objects in
expressions requiring a modifiable lvalue. For example, a const data object cannot
appear on the left side of an assignment statement.

C A const object cannot be used in constant expressions. A global const
object without an explicit storage class is considered extern by default. C

C++ In C++, all const declarations must have initializers, except those
referencing externally defined constants. A const object can appear in a constant
expression if it is an integer and it is initialized to a constant. The following
example demonstrates this:
const int k = 10;
int ary[k]; /* allowed in C++, not legal in C */

In C++ a global const object without an explicit storage class is considered static
by default, with internal linkage.
const int k = 12; /* Different meanings in C and C++ */

static const int k2 = 120; /* Same meaning in C and C++ */
extern const int k3 = 121; /* Same meaning in C and C++ */

Because its linkage is assumed to be internal, a const object can be more easily
defined in header files in C++ than in C. C++

An item can be both const and volatile. In this case the item cannot be
legitimately modified by its own program but can be modified by some
asynchronous process.
Related reference:
“The #define directive” on page 507
“The this pointer” on page 363

The __far type qualifier (C only)
When the METAL option is in effect, you can use the __far keyword to qualify a
pointer type so that it can access additional data spaces in access-register (AR)
mode. The upper half of the pointer contains the access-list-entry token (ALET),
which identifies the secondary virtual address space you want to access. The lower
half the pointer is the offset within the secondary virtual address space. The size of
a __far-qualified pointer is increased to 8 bytes in 31-bit mode and 16 bytes in
64-bit mode. In 31-bit mode, the upper 4 bytes contain the ALET, and the lower 4
bytes is the address within the data space. In 64-bit mode, bytes 0-3 are unused,
bytes 4-7 are the ALET, and bytes 8-15 are the address within the data space.

The __far keyword must appear in the declarator part of a pointer declaration,
wherever a cv-qualifier can be used. For example,
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int * __far p;

declares p to be a __far pointer to int.

__far pointers can appear in global scope and function scope, in simple
assignment and in implicit assignment via function parameter passing. However, if
they are used inside a function in operations that access the data space, such as
dereferencing, the function must be in AR mode (that is, with the ARMODE
compiler option in effect, or qualified with the armode function attribute).

A normal pointer can be converted to a __far pointer explicitly through
typecasting or implicitly through assignment. The ALET of the __far pointer is set
to zero. A __far pointer can be explicitly converted to a normal pointer through
typecasting; the normal pointer keeps the offset of the __far pointer and the ALET
is lost. A __far pointer cannot be implicitly converted to a normal pointer.

Pointer arithmetic is supported for __far pointers, with the ALET part being
ignored. If the two ALETs are different, the results may have no meaning.

Two __far pointers can be compared for equality and inequality using the == and
!= operators. The whole pointer is compared. To compare for equality of the offset
only, use the built-in function to extract the offset and then compare. To compare
for equality of the ALET only, use the built-in function to extract the ALET and
then compare. For more information on the set of built-in functions that operate on
__far pointers, see z/OS XL C/C++ Programming Guide.

Two __far pointers can be compared using the >, < , >=, and <= relational
operators. The ALET parts of the pointers are ignored in this operation. There is no
ordering between two __far pointers if their ALETs are different, and between a
NULL pointer and any __far pointers. The result is meaningless if they are
compared using relational operators.

When a __far pointer and a normal pointer are involved in an operation, the
normal pointer is implicitly converted to __far before the operation. There is
unspecified behavior if the ALETs are different. For example:
int * __far p;
int * __far q;
ptrdiff_t chunk;
...

if (p == q) {
p = p + 1024;

}

if (p < q) {
chunk = q - p;

}
else {

chunk = p - q;
}

The result of the & (address) operator is a normal pointer, except for the following
cases:
v If the operand of & is the result of an indirection operator (*), the type of & is

the same as the operand of the indirection operator.
v If the operand of & is the result of the arrow operator (->, structure member

access), the type of & is the same as the left operand of the arrow operator.
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For example:
int * __far p;
int * __far q;
...

q = &(*(p+2)); // result of & is a __far pointer; the ALET is the same as p.

struct S {
int b;

} * __far r;
...
q = & r->b; // result of & is a __far pointer; the ALET is the same as r.

For more information on ARMODE and METAL compiler options, see ARMODE
and METAL compiler options in the z/OS XL C/C++ User's Guide.
Related reference:
“armode | noarmode (C only)” on page 244

The __ptr32 type qualifier
The keyword __ptr32 is a qualifier that can be applied to a pointer type to
constrain its size to 32 bits. This language extension is provided to facilitate
porting structures with pointer members from 31- to 64-bit mode. The qualifier is
accepted and ignored in 31-bit mode.

The size of a pointer type doubles to 64 bits in 64-bit mode. Doubling the size of a
pointer changes the layout of a structure that contains pointer members. If the
object referenced by a pointer member resides within a 31-bit addressing space,
constraining the pointer to 32 bits can reduce some of the unexpected effects of
moving to 64-bit mode.

The __ptr32 keyword can appear in the declarator part of a pointer declaration,
wherever a cv-qualifier can be used. For example,

int * __ptr32 p;

declares p to be a 32-bit pointer to int.
int * __ptr32 *q;

declares q to be a 64-bit pointer to a 32-bit pointer to int.
int * __ptr32 const r;

declares r to be a const 32-bit pointer.

Pointers with external linkage must be __ptr32-qualified consistently across all
compilation units. If a pointer is declared 31-bit in one compilation unit and 64-bit
in another, the behavior is undefined.

Assignment of 32-bit and 64-bit pointers to each other is permitted. The compiler
generates an implicit conversion or truncates without emitting a diagnostic.

Note: The terms 31-bit mode and 32-bit mode are used interchangeably when there
is no ambiguity. The term 32-bit mode is commonly used in the industry to refer to
a class of machines, to which z/OS in 31-bit mode belongs. Strictly speaking, 31-bit
mode refers to the addressing mode of the architecture, and 32 bits refers to the size
of the pointer type. In z/OS 31-bit addressing mode, the size of a pointer is four
bytes. However, the high-order bit is reserved for system use, and is not used to
form the address. The addressing range in this mode is therefore 2 gigabytes. In
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64-bit mode, the size of a pointer is eight bytes, and all 64 bits participate in
addressing. When a __ptr32 pointer is dereferenced, a 64-bit address is formed by
filling the 33 missing high-order bits with zeros. The program using that address
should make sure it is valid within the address space of the application.

The __ptr64 type qualifier (C only)
The keyword __ptr64 is a qualifier that can be applied to a pointer type to
constrain its size to 64 bits. When you need to switch addressing mode (AMODE)
between programs, this language extension enables the handling of a 64-bit pointer
by an AMODE 31 function without dereferencing it, for example, passing it as a
parameter or receiving it as a return value.

Note: The __ptr64 qualifier can be used only when the METAL compiler option is
specified.

The __ptr64 keyword can be used only to qualify a pointer type. For example,
int *__ptr64 p; /* 64-bit pointer */
int *r; /* 32-bit pointer, default to the model’s size */
int *__ptr64 const q; /* 64-bit const pointer */
int *__far __ptr64 s; /* 64-bit far pointer */

For further information on the METAL compiler option, see z/OS XL C/C++ User's
Guide. For further information on AMODE switching, see z/OS Metal C
Programming Guide and Reference.

The restrict type qualifier
This type qualifier is introduced in the C99 standard. C++ The z/OS XL
C/C++ compiler supports it as an IBM extension. C++

A pointer is the address of a location in memory. More than one pointer can access
the same chunk of memory and modify it during the course of a program. The
restrict (or __restrict or __restrict__)1 type qualifier can be applied to a
pointer type to form a restrict-qualified pointer. During the execution of the block
that is associated with the declaration of an object that provides a way to designate
a restrict-qualified pointer, the memory addressed via the restrict-qualified pointer
cannot be modified or can be accessed only via this pointer if the pointer does not
point to a const-qualified type. The compiler may choose to optimize code
involving restrict-qualified pointers in a way that might otherwise result in
incorrect behavior. It is the responsibility of the programmer to ensure that
restrict -qualified pointers are used as they were intended to be used. Otherwise,
undefined behavior may result.

If a particular chunk of memory is not modified, it can be aliased through more
than one restricted pointer. The following example shows restricted pointers as
parameters of foo(), and how an unmodified object can be aliased through two
restricted pointers.
void foo(int n, int * restrict a, int * restrict b, int * restrict c)
{

int i;
for (i = 0; i < n; i++)

a[i] = b[i] + c[i];
}

Assignments between restricted pointers are limited, and no distinction is made
between a function call and an equivalent nested block.
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{
int * restrict x;
int * restrict y;
x = y; // undefined
{

int * restrict x1 = x; // okay
int * restrict y1 = y; // okay
x = y1; // undefined

}
}

In nested blocks containing restricted pointers, only assignments of restricted
pointers from outer to inner blocks are allowed. The exception is when the block in
which the restricted pointer is declared finishes execution. At that point in the
program, the value of the restricted pointer can be carried out of the block in
which it was declared.

Notes:

1. The restrict qualifier is represented by the following keywords (all have the
same semantics):
v The restrict keyword is recognized in C, under compilation with c99 or the

LANGLVL(STDC99) or LANGLVL(EXTC99) options, and in C++ under the
LANGLVL(EXTENDED) or KEYWORD(RESTRICT) options. IBM The __restrict
and __restrict__ keywords are recognized in both C, at all language levels,
and C++, at LANGLVL(EXTENDED). IBM

The volatile type qualifier
The volatile qualifier maintains consistency of memory access to data objects.
Volatile objects are read from memory each time their value is needed, and written
back to memory each time they are changed. The volatile qualifier declares a data
object that can have its value changed in ways outside the control or detection of
the compiler (such as a variable updated by the system clock or by another
program). This prevents the compiler from optimizing code referring to the object
by storing the object's value in a register and re-reading it from there, rather than
from memory, where it may have changed.

Accessing any lvalue expression that is volatile-qualified produces a side effect. A
side effect means that the state of the execution environment changes.

References to an object of type "pointer to volatile" may be optimized, but no
optimization can occur to references to the object to which it points. An explicit
cast must be used to assign a value of type "pointer to volatile T" to an object of
type "pointer to T". The following shows valid uses of volatile objects.
volatile int * pvol;
int *ptr;
pvol = ptr; /* Legal */
ptr = (int *)pvol; /* Explicit cast required */

C A signal-handling function may store a value in a variable of type
sig_atomic_t, provided that the variable is declared volatile. This is an exception
to the rule that a signal-handling function may not access variables with static
storage duration. C

An item can be both const and volatile. In this case the item cannot be
legitimately modified by its own program but can be modified by some
asynchronous process.
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Type attributes (IBM extension)
Type attributes are language extensions that allow you to use named attributes to
specify special properties of user-defined types. Type attributes apply to the
definitions of user-defined types, such as structures, unions, enumerations,

C++ and classes C++ . Any objects that are declared as having that type
will have the attribute applied to them.

A type attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires.
Although there are variations, the syntax of a type attribute is of the general form:

Type attribute syntax

�� type_name __attribute__ �

,

(( attribute name )) �

�
tag_identifier

{ member_definition_list } ; ��

Type attribute syntax — typedef declarations

�� typedef type_declaration type_name �

� �

,

__attribute__ (( attribute name )) ; ��

For unsupported attribute names, the z/OS XL C/C++ compiler issues diagnostics
and ignores the attribute specification. Multiple attribute names can be specified in
the same attribute specification.

The following type attributes are supported:
v “The amode31 | amode64 type attribute (C only)”
v “The armode | noarmode type attribute (C only)” on page 94
v “The may_alias type attribute” on page 94
Related reference:
“Variable attributes (IBM extension)” on page 125
“Function attributes (IBM extension)” on page 242

The amode31 | amode64 type attribute (C only)
For use with the METAL compiler option, the amode31 type attribute allows you to
define a typedef of a function or function pointer type to operate in addressing
mode (AMODE) 31 and the amode64 type attribute allows you to define a typedef
of a function or function pointer type to operate in AMODE 64.
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amode31 | amode64 function attribute syntax

�� __attribute__ (( amode31 | amode64 )) ��

The following example declares a typedef of function pointer foo that is in
AMODE 64:
typedef void (*foo)(int) __attribute__ ((amode64));

For information on the METAL compiler option, see the METAL compiler option
description in z/OS XL C/C++ User's Guide. For information on AMODE switching,
see z/OS Metal C Programming Guide and Reference.

The armode | noarmode type attribute (C only)
For use with the METAL compiler option, the armode type attribute allows you to
define a typedef of function or function pointer type as operating in access-register
(AR) mode. AR mode allows a C function to access multiple additional data
spaces, and manipulate more data in memory.

armode function attribute syntax

�� __attribute__ (( armode ))
noarmode

��

Functions in AR mode can call functions not in AR mode, and vice versa.

The following example declares a typedef of function pointer foo that is in AR
mode, and then declares bar as a function that passes function pointer foo as a
parameter:
typedef void (*foo) (int) __attribute__((armode));
void bar (foo);

The attribute overrides the default setting of the ARMODE compiler option for the
specified type. Note that this attribute is only supported when the METAL
compiler option is in effect.

For more information on ARMODE and METAL compiler options, see ARMODE
and METAL compiler options in the z/OS XL C/C++ User's Guide.
Related reference:
“armode | noarmode (C only)” on page 244
“The __far type qualifier (C only)” on page 88

The may_alias type attribute
You can specify the may_alias type attribute for a type so that lvalues with
dereferencing operator of the type can alias objects of any type, similar to a char
type. Types with the may_alias attribute are not subject to type-based aliasing
rules.

may_alias type attribute syntax

�� __attribute__ (( may_alias ))
__may_alias__

��
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You can specify the may_alias type attribute in the following ways:
struct __attribute__((__may_alias__)) my_struct {} *ps;
typedef long __attribute__((__may_alias__)) t_long;
typedef struct __attribute__((__may_alias__)) my_struct {} t_my_struct;

Instead of specifying the NOANSIALIAS option, you can alternatively specify the
may_alias type attribute for a type to violate the ANSI aliasing rules when
compiling expressions that contain lvalues of that type. For example:
#define __attribute__(x) // Invalidates all __attribute__ declarations
typedef long __attribute__((__may_alias__)) t_long;

int main (void){
int i = 42;
t_long *pa = (t_long *) &i;
*pa = 0;
if (i == 42)

return 1;
return 0;

}

If you compile this code with the ANSIALIAS option at a high optimization level,
such as -O3, the executable program returns 1. Because the lvalue *pa is of type
long, according to the ANSI aliasing rules, the assignment to lvalue *pa cannot
modify the value of i, which is of type int.

If you remove the #define __attribute__(x) statement and compile the code with
the same options as before, the executable program returns 0. Because the type of
*pa is long __attribute__((__may_alias__)), *pa can alias any other object of any
type, and the assignment to lvalue *pa can modify the value of i to 0.

The usage of the may_alias type attribute can result in less conservative aliasing
relationships and provide more optimization opportunities compared to usage of
compiler option ANSIALIAS.

C This attribute is supported at the EXTC89, EXTC99, EXTENDED, and EXTC1X
language levels. C

C++ This attribute is supported at the EXTENDED and EXTENDED0X language
levels. C++
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Chapter 4. Declarators

This section continues the discussion of data declarations and includes information
on type names, pointers, arrays, C++ references C++ , initializers, and
variable attributes.

Overview of declarators
A declarator declares an object, function, or C++ reference C++ as part of a
declaration.

A declarator has the following form:

Declarator syntax (C only):

�

direct_declarator

pointer_operator

Declarator syntax (C++ only):

�

direct_declarator

pointer_operator
(1)

trailing_return_type

Notes:

1 C++11

Direct declarator:

�

declarator_name
function_declarator
direct_declarator [ ]

constant_expression
( direct_declarator )

pointer_operator

Pointer operator (C only):

*
type_qualifier_seq
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Declarator name (C only):

identifier_expression

Pointer operator (C++ only):

*
type_qualifier_seq

&
(1)

&&
nested_name_specifier *

:: type_qualifier_seq

Notes:

1 C++11

Declarator name (C++ only):

identifier_expression
type_name

:: nested_name_specifier

Notes:

v The type_qualifier_seq represents one or a combination of type qualifiers. For the
details of type qualifiers, see “Type qualifiers” on page 85.

v C++ A nested_name_specifier is a qualified identifier expression. An
identifier_expression can be a qualified or unqualified identifier. C++

For the details of function declarators, see “Function declarators” on page 235.
C++11 For the details of trailing return types, see “Trailing return type (C++11)”

on page 239. C++11

The following types are known as derived declarator types, and are therefore
discussed in this section:
v “Pointers” on page 100
v “Arrays” on page 104
v “References (C++ only)” on page 107

z/OS XL C/C++ includes two additional qualifiers, which are described in
“Declarator qualifiers” on page 124.

IBM In addition, for compatibility with GNU C and C++, z/OS XL C/C++
allows you to use variable attributes to modify the properties of data objects. As
they are normally specified as part of the declarator in a declaration, they are
described in “Variable attributes (IBM extension)” on page 125. IBM

Related reference:
“Initializers” on page 108
“Type qualifiers” on page 85
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Examples of declarators
The following table indicates the declarators within the declarations:

Declaration Declarator Description

int owner; owner owner is an integer data object.

int *node; *node node is a pointer to an integer data
object.

int names[126]; names[126] names is an array of 126 integer
elements.

volatile int min; min min is a volatile integer.

int * volatile volume; * volatile volume volume is a volatile pointer to an
integer.

volatile int * next; *next next is a pointer to a volatile
integer.

volatile int *
sequence[5];

*sequence[5] sequence is an array of five pointers
to volatile integer data objects.

extern const volatile int
clock;

clock clock is a constant and volatile
integer with static storage duration
and external linkage.

int * __far p; * __far p p is a __far pointer to an integer

Related reference:
“Type qualifiers” on page 85
“Array subscripting operator [ ]” on page 171
“Scope resolution operator :: (C++ only)” on page 148
“Function declarators” on page 235

Type names
A type name, is required in several contexts as something that you must specify
without declaring an object; for example, when writing an explicit cast expression
or when applying the sizeof operator to a type. Syntactically, the name of a data
type is the same as a declaration of a function or object of that type, but without
the identifier.

To read or write a type name correctly, put an "imaginary" identifier within the
syntax, splitting the type name into simpler components. For example, int is a
type specifier, and it always appears to the left of the identifier in a declaration. An
imaginary identifier is unnecessary in this simple case. However, int *[5] (an
array of 5 pointers to int) is also the name of a type. The type specifier int *
always appears to the left of the identifier, and the array subscripting operator
always appears to the right. In this case, an imaginary identifier is helpful in
distinguishing the type specifier.

As a general rule, the identifier in a declaration always appears to the left of the
subscripting and function call operators, and to the right of a type specifier, type
qualifier, or indirection operator. Only the subscripting, function call, and
indirection operators may appear in a type name declaration. They bind according
to normal operator precedence, which is that the indirection operator is of lower
precedence than either the subscripting or function call operators, which have
equal ranking in the order of precedence. Parentheses may be used to control the
binding of the indirection operator.
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It is possible to have a type name within a type name. For example, in a function
type, the parameter type syntax nests within the function type name. The same
rules of thumb still apply, recursively.

The following constructions illustrate applications of the type naming rules.

Table 18. Type names

Syntax Description

int *[5] array of 5 pointers to int

int (*)[5] pointer to an array of 5 integers

int (*)[*] pointer to an variable length array of an
unspecified number of integers

int *() function with no parameter specification
returning a pointer to int

int (*)(void) function with no parameters returning an
int

int (*const [])(unsigned int, ...) array of an unspecified number of constant
pointers to functions returning an int. Each
function takes one parameter of type
unsigned int and an unspecified number of
other parameters.

The compiler turns any function designator into a pointer to the function. This
behavior simplifies the syntax of function calls.
int foo(float); /* foo is a function designator */
int (*p)(float); /* p is a pointer to a function */
p=&foo; /* legal, but redundant */
p=foo; /* legal because the compiler turns foo into a function pointer */

C++ In C++, the keywords typename and class, which are interchangeable,
indicate the name of the type. C++

Related reference:
“Operator precedence and associativity” on page 190
“Examples of expressions and precedence” on page 193
“The typename keyword” on page 482
“Parenthesized expressions ( )” on page 145

Pointers
A pointer type variable holds the address of a data object or a function. A pointer
can refer to an object of any one data type; it cannot refer to a bit field or a
reference.

Some common uses for pointers are:
v To access dynamic data structures such as linked lists, trees, and queues.
v To access elements of an array or members of a structure or C++ class.
v To access an array of characters as a string.
v To pass the address of a variable to a function. (In C++, you can also use a

reference to do this.) By referencing a variable through its address, a function
can change the contents of that variable.
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C The z/OS XL C compiler supports only the pointers that are obtained in
one of the following ways:
v Directly from the return value of a library function which returns a pointer
v As an address of a variable
v From constants that refer to valid addresses or from the NULL constant
v Received as a parameter from another C function
v Directly from a call to a service in the z/OS IBM Language Environment® that

allocates storage, such as CEEGTST

Any bitwise manipulation of a pointer can result in undefined behavior. C

Note that the placement of the type qualifiers volatile and const affects the
semantics of a pointer declaration. If either of the qualifiers appears before the *,
the declarator describes a pointer to a type-qualified object. If either of the
qualifiers appears between the * and the identifier, the declarator describes a
type-qualifed pointer.

The following table provides examples of pointer declarations.

Table 19. Pointer declarations

Declaration Description

long *pcoat; pcoat is a pointer to an object having type
long

extern short * const pvolt; pvolt is a constant pointer to an object
having type short

extern int volatile *pnut; pnut is a pointer to an int object having the
volatile qualifier

float * volatile psoup; psoup is a volatile pointer to an object
having type float

enum bird *pfowl; pfowl is a pointer to an enumeration object
of type bird

char (*pvish)(void); pvish is a pointer to a function that takes no
parameters and returns a char

C++11 nullptr_t pnull; pnull is a null pointer that does not point to

any valid object or function. C++11

Related reference:
“Type qualifiers” on page 85
“Initialization of pointers” on page 116
“Compatibility of pointers (C only)” on page 103
“Pointer conversions” on page 137
“Address operator &” on page 154
“Indirection operator *” on page 155
“Pointers to functions” on page 257

Pointer arithmetic
You can perform a limited number of arithmetic operations on pointers. These
operations are:
v Increment and decrement
v Addition and subtraction
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v Comparison
v Assignment

The increment (++) operator increases the value of a pointer by the size of the data
object the pointer refers to. For example, if the pointer refers to the second element
in an array, the ++ makes the pointer refer to the third element in the array.

The decrement (--) operator decreases the value of a pointer by the size of the
data object the pointer refers to. For example, if the pointer refers to the second
element in an array, the -- makes the pointer refer to the first element in the array.

You can add an integer to a pointer but you cannot add a pointer to a pointer.

If the pointer p points to the first element in an array, the following expression
causes the pointer to point to the third element in the same array:
p = p + 2;

If you have two pointers that point to the same array, you can subtract one pointer
from the other. This operation yields the number of elements in the array that
separate the two addresses that the pointers refer to.

You can compare two pointers with the following operators: ==, !=, <, >, <=,
and >=.

Pointer comparisons are defined only when the pointers point to elements of the
same array. Pointer comparisons using the == and != operators can be performed
even when the pointers point to elements of different arrays.

You can assign to a pointer the address of a data object, the value of another
compatible pointer or the NULL pointer.
Related reference:
“Increment operator ++” on page 151
“Arrays” on page 104
“Decrement operator --” on page 152
Chapter 6, “Expressions and operators,” on page 141

Type-based aliasing
The compiler follows the type-based aliasing rule in the C and C++ standards
when the ANSIALIAS option is in effect (which it is by default). This rule, also
known as the ANSI aliasing rule, states that a pointer can only be dereferenced to
an object of the same type or a compatible type. 1

1. The C Standard states that an object shall have its stored value accessed only by an lvalue that has one of the following types:

v the declared type of the object,

v a qualified version of the declared type of the object,

v a type that is the signed or unsigned type corresponding to the declared type of the object,

v a type that is the signed or unsigned type corresponding to a qualified version of the declared type of the object,

v an aggregate or union type that includes one of the aforementioned types among its members (including, recursively, a member
of a subaggregate or contained union), or

v a character type

The C++ standard states that if a program attempts to access the stored value of an object through an lvalue of other than one of
the following types, the behavior is undefined:

v the dynamic type of the object,
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The common coding practice of casting a pointer to an incompatible type and then
dereferencing it violates this rule. (Note that char pointers are an exception to this
rule) Refer to the description of the ANSIALIAS option in the z/OS XL C/C++
User's Guide for additional information.

The compiler uses the type-based aliasing information to perform optimizations to
the generated code. Contravening the type-based aliasing rule can lead to
unexpected behavior, as demonstrated in the following example:

int *p;
double d = 0.0;

int *faa(double *g); /* cast operator inside the function */

void foo(double f) {
p = faa(&f); /* turning &f into an int ptr */
f += 1.0; /* The optimizer might move the */

/* assignment after the printf statement. */
printf("f=%x\n", *p);

}

int *faa(double *g) { return (int*) g; } /* questionable cast; */
/* the function can be in */
/* another translation unit */

int main() {
foo(d);

}

In the above printf statement, *p cannot be dereferenced to a double under the
ANSI aliasing rule. The compiler determines that the result of f += 1.0 does not
affect the value of *p. Thus, the optimizer might move the assignment after the
printf statement. If you compile the above example with optimization enabled, the
printf statement might output 0 (zero).
Related reference:
“The may_alias type attribute” on page 94
“The reinterpret_cast operator (C++ only)” on page 179

Compatibility of pointers (C only)
Two pointer types with the same type qualifiers are compatible if they point to
objects of compatible types. The composite type for two compatible pointer types
is the similarly qualified pointer to the composite type.

The following example shows compatible declarations for the assignment
operation:

v a cv-qualified version of the dynamic type of the object,

v a type that is the signed or unsigned type corresponding to the dynamic type of the object,

v a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type of the object,

v an aggregate or union type that includes one of the aforementioned types among its members (including, recursively, a member
of a subaggregate or contained union),

v a type that is a (possible cv-qualified) base class type of the dynamic type of the object,

v a char or unsigned char type.
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float subtotal;
float * sub_ptr;
/* ... */
sub_ptr = &subtotal;
printf("The subtotal is %f\n", *sub_ptr);

The next example shows incompatible declarations for the assignment operation:
double league;
int * minor;
/* ... */
minor = &league; /* error */

z/OS Packed and nonpacked objects have different memory layouts.
Consequently, a pointer to a packed structure or union is incompatible with a
pointer to a corresponding nonpacked structure or union. As a result, comparisons
and assignments between pointers to packed and nonpacked objects are not valid.

You can, however, perform these assignments and comparisons with type casts. In
the following example, the cast operation lets you compare the two pointers, but
you must be aware that ps1 still points to a nonpacked object:
int main(void)
{

_Packed struct ss *ps1;
struct ss *ps2;

...
ps1 = (_Packed struct ss *)ps2;

...}

z/OS

Related reference:
“The _Packed qualifier (C only)” on page 124

Arrays
An array is a collection of objects of the same data type, allocated contiguously in
memory. Individual objects in an array, called elements, are accessed by their
position in the array. The subscripting operator ([]) provides the mechanics for
creating an index to array elements. This form of access is called indexing or
subscripting. An array facilitates the coding of repetitive tasks by allowing the
statements executed on each element to be put into a loop that iterates through
each element in the array.

The C and C++ languages provide limited built-in support for an array type:
reading and writing individual elements. Assignment of one array to another, the
comparison of two arrays for equality, returning self-knowledge of size are not
supported by either language.

The type of an array is derived from the type of its elements, in what is called
array type derivation. If array objects are of incomplete type, the array type is also
considered incomplete. Array elements may not be of type void or of function
type. However, arrays of pointers to functions are allowed.

C++ Array elements may not be of reference type or of an abstract class type.
C++

The array declarator contains an identifier followed by an optional subscript
declarator. An identifier preceded by an asterisk (*) is an array of pointers.
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Array subscript declarator syntax

�� � [ constant_expression ] ��

The constant_expression is a constant integer expression, indicating the size of the
array, which must be positive.

C If the declaration appears in block or function scope, a nonconstant
expression can be specified for the array subscript declarator, and the array is
considered a variable-length array, as described in “Variable length arrays” on page
106. C

The subscript declarator describes the number of dimensions in the array and the
number of elements in each dimension. Each bracketed expression, or subscript,
describes a different dimension and must be a constant expression.

The following example defines a one-dimensional array that contains four elements
having type char:
char
list[4];

The first subscript of each dimension is 0. The array list contains the elements:
list[0]
list[1]
list[2]
list[3]

The following example defines a two-dimensional array that contains six elements
of type int:
int
roster[3][2];

Multidimensional arrays are stored in row-major order. When elements are referred
to in order of increasing storage location, the last subscript varies the fastest. For
example, the elements of array roster are stored in the order:
roster[0][0]
roster[0][1]
roster[1][0]
roster[1][1]
roster[2][0]
roster[2][1]

In storage, the elements of roster would be stored as:

roster[0][0]

roster[1][0]

roster[0][1]

You can leave the first (and only the first) set of subscript brackets empty in:
v Array definitions that contain initializations
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v extern declarations
v Parameter declarations

In array definitions that leave the first set of subscript brackets empty, the
initializer determines the number of elements in the first dimension. In a
one-dimensional array, the number of initialized elements becomes the total
number of elements. In a multidimensional array, the initializer is compared to the
subscript declarator to determine the number of elements in the first dimension.
Related reference:
“Array subscripting operator [ ]” on page 171
“Initialization of arrays” on page 116

Variable length arrays
A variable length array, which is a C99 feature, is an array of automatic storage
duration whose length is determined at run time. C++ The z/OS XL C/C++
compiler supports this feature as an IBM extension. C++

Variable length array declarator syntax

�� array_identifier [ expression ]
*

type-qualifiers

��

If the size of the array is indicated by * instead of an expression, the variable
length array is considered to be of unspecified size. Such arrays are considered
complete types, but can only be used in declarations of function prototype scope.

A variable length array and a pointer to a variable length array are considered
variably modified types. Declarations of variably modified types must be at either
block scope or function prototype scope. Array objects declared with the extern
storage class specifier cannot be of variable length array type. Array objects
declared with the static storage class specifier can be a pointer to a variable
length array, but not an actual variable length array. The identifiers declared with a
variably modified type must be ordinary identifiers and therefore cannot be
members of structures or unions. A variable length array cannot be initialized.

Note: C++ In C++ applications, storage allocated for use by variable length
arrays is not released until the function they reside in completes execution.

C++

A variable length array can be the operand of a sizeof expression. In this case, the
operand is evaluated at run time, and the size is neither an integer constant nor a
constant expression, even though the size of each instance of a variable array does
not change during its lifetime.

A variable length array can be used in a typedef statement. The typedef name will
have only block scope. The length of the array is fixed when the typedef name is
defined, not each time it is used.

A function parameter can be a variable length array. The necessary size expressions
must be provided in the function definition. The compiler evaluates the size
expression of a variably modified parameter on entry to the function. For a
function declared with a variable length array as a parameter, as in the following,
void f(int x, int a[][x]);
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the size of the variable length array argument must match that of the function
definition.

IBM C++ The C++ extension does not include support for references to a
variable length array type; neither might a function parameter be a reference to a
variable length array type. C++ IBM

Related reference:
Flexible array members

Compatibility of arrays (C only)
Two compatible array types must have compatible element types. In addition, if
each array has a size specifier that is an integer constant expression, both size
specifiers must have the same constant value. For example, the types of the
following two arrays are not compatible:

char ex1[25];
const char ex2[25];

The composite type of two compatible array types is an array with the composite
element type. The composite type of two compatible arrays is determined by the
following rules:
1. If one of the original types is an array of known constant size, the composite

type is an array of that size. For example:
// The composite type is char [42].
char ex3[];
char ex4[42];

2. Otherwise, if one of the original types is a variable length array, the composite
type is that type.

3. C11 Otherwise, if one of the original types is a variable length array whose
size is specified by an expression that is not evaluated, the behavior is
undefined.

4. Otherwise, if one of the original types is a variable length array whose size is
specified by an expression that is already evaluated, the composite type is a
variable length array of that size. For example:

// The composite type is int [n].
int ex5[];
int ex6[n]; // The value of n is determined

5. Otherwise, if one of the original types is a variable length array of unspecified
size, the composite type is a variable length array of unspecified size.

6. Otherwise, if both the original types are arrays of unknown size, the composite
type is an array of unknown size. For example:

// The composite type is int [].
int ex7[];
int ex8[];

C11

Related reference:
“External linkage” on page 8

References (C++ only)
A reference is an alias or an alternative name for an object or function. All
operations applied to an object reference act on the object to which the reference
refers. The address of a reference is the address of the aliased object or function.
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An lvalue reference type is defined by placing the reference modifier & or bitand
after the type specifier. C++11 An rvalue reference type is defined by placing the
reference modifier && or and after the type specifier. For the details of rvalue
references, see Using rvalue references (C++11). C++11 Reference types include
both lvalue reference C++11 and rvalue reference C++11 types.

Because arguments of a function are passed by value, a function call does not
modify the actual values of the arguments. If a function needs to modify the actual
value of an argument or needs to return more than one value, the argument must
be passed by reference (as opposed to being passed by value). Passing arguments by
reference can be done using either references or pointers. Unlike C, C++ does not
force you to use pointers if you want to pass arguments by reference. The syntax
of using a reference is simpler than that of using a pointer. Passing an object by
reference enables the function to change the object being referred to without
creating a copy of the object within the scope of the function. Only the address of
the actual original object is put on the stack, not the entire object.

For example:
int f(int&);
int main()
{

extern int i;
f(i);

}

You cannot tell from the function call f(i) that the argument is being passed by
reference.

The following types of references are invalid:
v References to NULL

v References to void

v References to invalid objects or functions
v References to bit fields
v References to references C++11 except with reference collapsing. See

“Reference collapsing (C++11)” on page 194 for more information. C++11

You also cannot declare arrays of references, pointers to references, and
cv-qualifiers on references. If cv-qualifiers are introduced through a typedef or
template argument deduction, the cv-qualifiers are ignored.

For information on references to functions, see “Pointers to functions” on page 257.
Related reference:
“Initialization of references (C++ only)” on page 119
“Pointers” on page 100
“Address operator &” on page 154
“Pass by reference (C++ only)” on page 252

Initializers
An initializer specifies an initial value to a data object and is optional in a data
declaration. Whether an initializer is valid for a particular declaration depends on
the type and storage class of the object to be initialized.

The initializer consists of the = symbol followed by an initial expression or a
brace-enclosed list of initial expressions separated by commas. Individual
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expressions must be separated by commas, and groups of expressions can be
enclosed in braces and separated by commas. Braces ({ }) are optional if the
initializer for a character string is a string literal. The number of initializers must
not be greater than the number of elements to be initialized. The initial expression
evaluates to the first value of the data object.

To assign a value to an arithmetic or pointer type, use the simple initializer:
= expression. For example, the following data definition uses the initializer = 3 to
set the initial value of group to 3:

int group = 3;

You initialize a variable of character type with a character literal (consisting of one
character) or with an expression that evaluates to an integer.

C++ You can initialize variables at namespace scope with nonconstant
expressions. C++ C You cannot initialize variables at global scope with
nonconstant expressions. C

Related reference:
“Using class objects” on page 348

Initialization and storage classes
This topic includes descriptions of the following:
v Initialization of automatic variables
v Initialization of static variables
v Initialization of external variables
v Initialization of register variables

Initialization of automatic variables

You can initialize any auto variable except function parameters. If you do not
explicitly initialize an automatic object, its value is indeterminate. If you provide
an initial value, the expression representing the initial value can be any valid C or
C++ expression. The object is then set to that initial value each time the program
block that contains the object's definition is entered.

Note that if you use the goto statement to jump into the middle of a block,
automatic variables within that block are not initialized.

Note: C++11 In C++11, the keyword auto is no longer used as a storage class
specifier. Instead, it is used as a type specifier. The compiler deduces the type of an
auto variable from the type of its initializer expression. For more information, see
“The auto type specifier (C++11)” on page 76. C++11

Initialization of static variables

You can initialize a static object with a constant expression, or an expression that
reduces to the address of a previously declared extern or static object, possibly
modified by a constant expression. If you do not explicitly initialize a static (or
external) variable, it will have a value of zero of the appropriate type, unless it is a
pointer, in which case it will be initialized to NULL.
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C A static variable in a block is initialized only one time, prior to program
execution, whereas an auto variable that has an initializer is initialized every time
it comes into existence. C

C++ A static variable in a block can be dynamically initialized when the flow
of control passes through its definition in a block for the first time. Dynamic
initialization of a static variable can occur with non-constant expressions. A static
object of class type will use the default constructor if you do not initialize it.

C++

Initialization of external variables

You can initialize any object with the extern storage class specifier at global scope
in C or at namespace scope in C++. The initializer for an extern object must either:

v C Appear as part of the definition, and the initial value must be
described by a constant expression; C

v C++ Appear as part of the definition. C++

v Reduce to the address of a previously declared object with static storage
duration. You may modify this object with pointer arithmetic. (In other words,
you may modify the object by adding or subtracting an integral constant
expression.)

If you do not explicitly initialize an extern variable, its initial value is zero of the
appropriate type. Initialization of an extern object is completed by the time the
program starts running.

Initialization of register variables

You can initialize any register object except function parameters. If you do not
initialize an automatic object, its value is indeterminate. If you provide an initial
value, the expression representing the initial value can be any valid C or C++
expression. The object is then set to that initial value each time the program block
that contains the object's definition is entered.
Related reference:
“The auto storage class specifier” on page 49
“The static storage class specifier” on page 49
“The extern storage class specifier” on page 51
“The register storage class specifier” on page 52

Designated initializers for aggregate types (C only)
Designated initializers, a C99 feature, are supported for aggregate types, including
arrays, structures, and unions. A designated initializer, or designator, points out a
particular element to be initialized. A designator list is a comma-separated list of
one or more designators. A designator list followed by an equal sign constitutes a
designation.

Designated initializers allow for the following flexibility:
v Elements within an aggregate can be initialized in any order.
v The initializer list can omit elements that are declared anywhere in the

aggregate, rather than only at the end. Elements that are omitted are initialized
as if they are static objects: arithmetic types are initialized to 0; pointers are
initialized to NULL.
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v Where inconsistent or incomplete bracketing of initializers for multi-dimensional
arrays or nested aggregates may be difficult to understand, designators can more
clearly identify the element or member to be initialized.

Designator list syntax for structures and unions

�� { �

,

. member = expression } ��

Designator list syntax for arrays

�� � �

,

{ [ array subscript ] = expression } ��

In the following example, the designator is .any_member and the designated
initializer is .any_member = 13:
union { /* ... */ } caw = { .any_member = 13 };

The following example shows how the second and third members b and c of
structure variable klm are initialized with designated initializers:
struct xyz {

int a;
int b;
int c;
} klm = { .a = 99, .c = 100 };

In the following example, the third and second elements of the one-dimensional
array aa are initialized to 3 and 6, respectively:
int aa[4] = { [2] = 3, [1] = 6 };

The following example initializes the first four and last four elements, while
omitting the middle four:

static short grid[3] [4] = { [0][0]=8, [0][1]=6,
[0][2]=4, [0][3]=1,
[2][0]=9, [2][1]=3,
[2][2]=1, [2][3]=1 };

The omitted four elements of grid are initialized to zero:

Element Value Element Value

grid[0] [0] 8 grid[1] [2] 0

grid[0] [1] 6 grid[1] [3] 0

grid[0] [2] 4 grid[2] [0] 9

grid[0] [3] 1 grid[2] [1] 3

grid[1] [0] 0 grid[2] [2] 1

grid[1] [1] 0 grid[2] [3] 1

Designated initializers can be combined with regular initializers, as in the
following example:

Chapter 4. Declarators 111



int a[10] = {2, 4, [8]=9, 10}

In this example, a[0] is initialized to 2, a[1] is initialized to 4, a[2] to a[7] are
initialized to 0, and a[9] is initialized to 10.

In the following example, a single designator is used to "allocate" space from both
ends of an array:
int a[MAX] = {

1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0
};

The designated initializer, [MAX-5] = 8, means that the array element at subscript
MAX-5 should be initialized to the value 8. If MAX is 15, a[5] through a[9] will be
initialized to zero. If MAX is 7, a[2] through a[4] will first have the values 5, 7, and
9, respectively, which are overridden by the values 8, 6, and 4. In other words, if
MAX is 7, the initialization would be the same as if the declaration had been written:
int a[MAX] = {

1, 3, 8, 6, 4, 2, 0
};

You can also use designators to represent members of nested structures. For
example:
struct a {

struct b {
int c;
int d;

} e;
float f;

} g = {.e.c = 3 };

initializes member c of structure variable e, which is a member of structure
variable g, to the value of 3.
Related reference:
“Initialization of structures and unions”
“Initialization of arrays” on page 116

Initialization of structures and unions
An initializer for a structure is a brace-enclosed comma-separated list of values,
and for a union, a brace-enclosed single value. The initializer is preceded by an
equal sign (=).

C99 and C++ allow the initializer for an automatic member variable of a union or
structure type to be a constant or non-constant expression.

C++ The initializer for a static member variable of a union or structure type
must be a constant expression or string literal. See “Static data members” on page
367 for more information. C++

There are two ways to specify initializers for structures and unions:
v With C89-style initializers, structure members must be initialized in the order

declared, and only the first member of a union can be initialized.

v C Using designated initializers, a C99 feature which allows you to name
members to be initialized, structure members can be initialized in any order, and
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any (single) member of a union can be initialized. Designated initializers are
described in detail in “Designated initializers for aggregate types (C only)” on
page 110. C

Using C89-style initialization, the following example shows how you would
initialize the first union member birthday of the union variable people:
union {

char birthday[9];
int age;
float weight;
} people = {"23/07/57"};

C Using a designated initializer in the same example, the following
initializes the second union member age :
union {

char birthday[9];
int age;
float weight;
} people = { .age = 14 };

C

The following definition shows a completely initialized structure:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
static struct address perm_address =

{ 3, "Savona Dr.", "Dundas", "Ontario", "L4B 2A1"};

The values of perm_address are:

Member Value

perm_address.street_no 3

perm_address.street_name address of string "Savona Dr."

perm_address.city address of string "Dundas"

perm_address.prov address of string "Ontario"

perm_address.postal_code address of string "L4B 2A1"

Unnamed structure or union members do not participate in initialization and have
indeterminate value after initialization. Therefore, in the following example, the bit
field is not initialized, and the initializer 3 is applied to member b:
struct {

int a;
int :10;
int b;
} w = { 2, 3 };

You do not have to initialize all members of structure variables. If a structure
variable does not have an initializer, the initial values of the structure members
depend on the storage class associated with the structure variable:
v If a structure variable has static storage, its members are implicitly initialized to

zero of the appropriate type.
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v If a structure variable has automatic storage, its members have no default
initialization.

If a structure variable is partially initialized, all the uninitialized structure members
are implicitly initialized to zero no matter what the storage class of the structure
variable is. See the following example:
struct one {

int a;
int b;
int c;

};
void main(){

struct one z1; // Members in z1 do not have default initial values.
static struct one z2; // z2.a=0, z2.b=0, and z2.c=0.
struct one z3 = {1}; // z3.a=1, z3.b=0, and z3.c=0.

}

In this example, structure variable z1 has automatic storage, and it does not have
an initializer, so all the members in z1 do not have default initial values. Structure
variable z2 has static storage, and all its members are implicitly initialized to zero.
Structure variable z3 is partially initialized, so all its uninitialized members are
implicitly initialized to zero.

You do not have to initialize all members of a union. The default initializer for a
union with static storage is the default for the first component. A union with
automatic storage has no default initialization.

C To initialize only the third and fourth members of the temp_address
variable, you could use a designated initializer list, as follows:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
struct address temp_address =

{ .city = "Hamilton", .prov = "Ontario" };

C

Related reference:
Structure and union variable declarations
“Explicit initialization with constructors” on page 413
“Assignment operators” on page 161

Initialization of enumerations
The initializer for an enumeration variable contains the = symbol followed by an
expression enumeration_constant.

C++ In C++, the initializer must have the same type as the associated
enumeration type. C++

The following statement declares an C++11 unscoped C++11 enumeration
grain.
enum grain { oats, wheat, barley, corn, rice };
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The following statement defines a variable g_food and initializes g_food to the
value of barley. The integer value associated with barley is 2.
enum grain g_food = barley;

C++11

The following rules apply to both the scoped and unscoped enumerations.
v An enumeration cannot be initialized using an integer or enumeration constant

from a different enumeration, without an explicit cast.
v An uninitialized enumeration variable has undefined value.

The following statement declares an unscoped enumeration color.
enum color { white, yellow, green, red, brown };

The following statement declares a scoped enumeration letter and references the
scoped enumerators directly inside the scope of the enumeration. The initial values
of A, B, C, and D are 0, 1, 1, and 2.
enum class letter { A, B, C = B, D = C + 1 };

The following statement defines a variable let1 and initializes let1 to the value of
A. The integer value associated with A is 0.
letter let1 = letter :: A;

To reference scoped enumerators outside of the enumeration's scope, you must
qualify the enumerators with the name of the enumeration. For example, the
following statement is invalid.
letter let2 = A; //invalid

The keyword enum in the following statement is optional and can be omitted.
enum letter let3 = letter :: B;

The white enumerator is visible in the following statement, because color is an
unscoped enumeration.
color color1 = white; // valid

Unscoped enumerations can also be qualified with their enumeration scope, for
example:
color color2 = color :: yellow; // valid

You cannot initialize an enumeration with an enumeration constant from a
different enumeration or an integer without an explicit cast. For example, the
following two statements are invalid.
letter let4 = color :: white; // invalid

letter let5 = 1; // invalid

You can use explicit cast to initialize an enumeration with an enumeration constant
from a different enumeration or an integer. For example, the following two
statements are valid.
letter let6 = (letter) color :: white; // valid

letter let7 = (letter) 2; // valid

C++11
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Related reference:
Enumeration variable declarations

Initialization of pointers
The initializer is an = (equal sign) followed by the expression that represents the
address that the pointer is to contain. The following example defines the variables
time and speed as having type double and amount as having type pointer to a
double. The pointer amount is initialized to point to total:
double time, speed, *amount = &total;

The compiler converts an unsubscripted array name to a pointer to the first
element in the array. You can assign the address of the first element of an array to
a pointer by specifying the name of the array. The following two sets of definitions
are equivalent. Both define the pointer student and initialize student to the
address of the first element in section:
int section[80];
int *student = section;

is equivalent to:
int section[80];
int *student = &section[0];

You can assign the address of the first character in a string constant to a pointer by
specifying the string constant in the initializer. The following example defines the
pointer variable string and the string constant "abcd". The pointer string is
initialized to point to the character a in the string "abcd".
char *string = "abcd";

The following example defines weekdays as an array of pointers to string constants.
Each element points to a different string. The pointer weekdays[2], for example,
points to the string "Tuesday".
static char *weekdays[ ] ={

Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

A pointer can also be initialized to null using any integer constant expression that
evaluates to 0, for example char *a=0;. Such a pointer is a null pointer. It does not
point to any object.

The following examples define pointers with null pointer values:
char *a = 0;
char *b = NULL;

C++11

char *ch = nullptr;

C++11

Related reference:
“Pointers” on page 100

Initialization of arrays
The initializer for an array is a comma-separated list of constant expressions
enclosed in braces ({ }). The initializer is preceded by an equal sign (=). You do
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not need to initialize all elements in an array. If an array is partially initialized,
elements that are not initialized receive the value 0 of the appropriate type. The
same applies to elements of arrays with static storage duration. (All file-scope
variables and function-scope variables declared with the static keyword have
static storage duration.)

There are two ways to specify initializers for arrays:
v With C89-style initializers, array elements must be initialized in subscript order.

v C Using designated initializers, which allow you to specify the values of
the subscript elements to be initialized, array elements can be initialized in any
order. Designated initializers are described in detail in “Designated initializers
for aggregate types (C only)” on page 110. C

Using C89-style initializers, the following definition shows a completely initialized
one-dimensional array:
static int number[3] = { 5, 7, 2 };

The array number contains the following values: number[0] is 5, number[1] is 7;
number[2] is 2. When you have an expression in the subscript declarator defining
the number of elements (in this case 3), you cannot have more initializers than the
number of elements in the array.

The following definition shows a partially initialized one-dimensional array:
static int number1[3] = { 5, 7 };

The values of number1[0] and number1[1] are the same as in the previous
definition, but number1[2] is 0.

C

The following definition shows how you can use designated initializers to skip
over elements of the array that you don't want to initialize explicitly:
static int number[3] = { [0] = 5, [2] = 7 };

The array number contains the following values: number[0] is 5; number[1] is
implicitly initialized to 0; number[2] is 7.

C

Instead of an expression in the subscript declarator defining the number of
elements, the following one-dimensional array definition defines one element for
each initializer specified:
static int item[ ] = { 1, 2, 3, 4, 5 };

The compiler gives item the five initialized elements, because no size was specified
and there are five initializers.

Initialization of character arrays

You can initialize a one-dimensional character array by specifying:
v A brace-enclosed comma-separated list of constants, each of which can be

contained in a character
v A string constant (braces surrounding the constant are optional)
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Initializing a string constant places the null character (\0) at the end of the string if
there is room or if the array dimensions are not specified.

The following definitions show character array initializations:
static char name1[ ] = { ’J’, ’a’, ’n’ };
static char name2[ ] = { "Jan" };
static char name3[4] = "Jan";

These definitions create the following elements:

Element Value Element Value Element Value

name1[0] J name2[0] J name3[0] J

name1[1] a name2[1] a name3[1] a

name1[2] n name2[2] n name3[2] n

name2[3] \0 name3[3] \0

Note that the following definition would result in the null character being lost:
static char name3[3]="Jan";

C++ When you initialize an array of characters with a string, the number of
characters in the string — including the terminating ’\0’ — must not exceed the
number of elements in the array. C++

Initialization of multidimensional arrays

You can initialize a multidimensional array using any of the following techniques:
v Listing the values of all elements you want to initialize, in the order that the

compiler assigns the values. The compiler assigns values by increasing the
subscript of the last dimension fastest. This form of a multidimensional array
initialization looks like a one-dimensional array initialization. The following
definition completely initializes the array month_days:

static month_days[2][12] =
{
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

v Using braces to group the values of the elements you want initialized. You can
put braces around each element, or around any nesting level of elements. The
following definition contains two elements in the first dimension (you can
consider these elements as rows). The initialization contains braces around each
of these two elements:

static int month_days[2][12] =
{
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};

v Using nested braces to initialize dimensions and elements in a dimension
selectively. In the following example, only the first eight elements of the array
grid are explicitly initialized. The remaining four elements that are not explicitly
initialized are automatically initialized to zero.

static short grid[3] [4] = {8, 6, 4, 1, 9, 3, 1, 1};

The initial values of grid are:
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Element Value Element Value

grid[0] [0] 8 grid[1] [2] 1

grid[0] [1] 6 grid[1] [3] 1

grid[0] [2] 4 grid[2] [0] 0

grid[0] [3] 1 grid[2] [1] 0

grid[1] [0] 9 grid[2] [2] 0

grid[1] [1] 3 grid[2] [3] 0

v C Using designated initializers. The following example uses designated
initializers to explicitly initialize only the last four elements of the array. The first
eight elements that are not explicitly initialized are automatically initialized to
zero.
static short grid[3] [4] = { [2][0] = 8, [2][1] = 6,

[2][2] = 4, [2][3] = 1 };

The initial values of grid are:

Element Value Element Value

grid[0] [0] 0 grid[1] [2] 0

grid[0] [1] 0 grid[1] [3] 0

grid[0] [2] 0 grid[2] [0] 8

grid[0] [3] 0 grid[2] [1] 6

grid[1] [0] 0 grid[2] [2] 4

grid[1] [1] 0 grid[2] [3] 1

C

Related reference:
“Arrays” on page 104
“Designated initializers for aggregate types (C only)” on page 110

Initialization of references (C++ only)
When you initialize a reference, you bind that reference to an object, which is not
necessarily the object denoted by the initializer expression.

Once a reference has been initialized, it cannot be modified to refer to another
object. For example:
int num1 = 10;
int num2 = 20;

int &RefOne = num1; // valid
int &RefOne = num2; // error, two definitions of RefOne
RefOne = num2; // assign num2 to num1
int &RefTwo; // error, uninitialized reference
int &RefTwo = num2; // valid

Note that the initialization of a reference is not the same as an assignment to a
reference. Initialization operates on the actual reference by binding the reference to
the object it is an alias for. Assignment operates through the reference on the object
referred to.

A reference can be declared without an initializer:
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v When it is used in a parameter declaration
v In the declaration of a return type for a function call
v In the declaration of class member within its class declaration
v When the extern specifier is explicitly used

Reference binding

Suppose T and U are two types. If ignoring top-level cv-qualifiers, T is of the same
type as U or is a base class of U, T and U are reference-related.

Example 1
typedef int t1;
typedef const int t2;

In this example, t1 and t2 are reference-related.

If T and U are reference-related, and T is at least as cv-qualified as U, T is
reference-compatible with U. In Example 1, t1 is not reference-compatible with t2, but
t2 is reference-compatible with t1.

If an lvalue reference r to type T is to be initialized by an expression e of type U,
and T is reference-compatible with U, the reference r can be bound directly to e or
a base class subobject of e unless T is an inaccessible or ambiguous base class of U.

Example 2
int a = 1;
const int& ra = a;

struct A {};
struct B: A {} b;

A& rb = b;

In this example, the const int type is reference-compatible with the int type, so
ra can be bound directly to a. Structure A is reference-related to structure B, so rb
can be bound directly to b.

If an lvalue reference r to type T is to be initialized by an expression e of type U, r
can be bound to the lvalue result of the conversion of e or a base class of e if the
following conditions are satisfied. In this case, the conversion function is chosen by
overload resolution.
v U is a class type.
v T is not reference-related to U.
v e can be converted to an lvalue of type S, and T is reference-compatible with S.

Example 3
struct A {

operator int&();
};

const int& x= A();

In this example, structure A is a class type, and the const int type is not
reference-related to structure A. However, A can be converted to an lvalue of type
int, and const int is reference-compatible with int, so reference x of type const
int can be bound to the conversion result of A().
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By default, the compiler cannot bind a non-const or volatile lvalue reference to an
rvalue.

Example 4
int& a = 2; // error
const int& b = 1; // ok

In this example, the variable a is a non-const lvalue reference. The compiler cannot
bind a to the temporary initialized with the rvalue expression 2, and issues an
error message. The variable b is a nonvolatile const lvalue reference, which can be
initialized with the temporary initialized with the rvalue expression 1.

IBM

If you specify the LANGLVL(COMPATRVALUEBINDING) option, the compiler can bind a
non-const or volatile lvalue reference to an rvalue of a user-defined type where an
initializer is not required. The default value of this option is
LANGLVL(NOCOMPATRVALUEBINDING). This compiler behavior conflicts with the rvalue
references feature, which does not allow a non-const or volatile lvalue reference to
be bound to an rvalue. If both of the features are enabled, the compiler issues an
error message.

Notes:

v A non-const or volatile lvalue reference cannot be bound to an rvalue of a
built-in type.

v A non-const or volatile lvalue reference that is a class member cannot be bound
to an rvalue.

IBM

C++11

Suppose an expression e of type U belongs to one of the following value categories:
v An xvalue
v A class prvalue
v An array prvalue
v A function lvalue

If an rvalue reference or a nonvolatile const lvalue reference r to type T is to be
initialized by the expression e, and T is reference-compatible with U, reference r can
be initialized by expression e and bound directly to e or a base class subobject of e
unless T is an inaccessible or ambiguous base class of U.

Example 5
int& func1();
int& (&&rf1)()=func1;

int&& func2();
int&& rf2 = func2();

struct A{
int arr[5];

};
int(&&ar_ref)[5] = A().arr;
A&& a_ref = A();
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In this example, rf1, rf2, ar_ref, and a_ref are all rvalue references. rf1 is bound
to the function lvalue func1, rf2 is bound to the xvalue result of the call func2(),
ar_ref is bound to the array prvalue A().arr, and a_ref is bound to the class
prvalue A().

Suppose r is an rvalue reference or nonvolatile const lvalue reference to type T,
and r is to be initialized by an expression e of type U. r can be bound to the
conversion result of e or a base class of e if the following conditions are satisfied.
In this case, the conversion function is chosen by overload resolution.
v U is a class type.
v T is not reference-related to U.
v e can be converted to an xvalue, class prvalue, or function lvalue type of S, and

T is reference-compatible with S.

Example 6
int i;
struct A {

operator int&&() {
return static_cast<int&&>(i);

}
};

const int& x = A();

int main() {
assert(&x == &i);

}

In this example, structure A is a class type, and the const int type is not
reference-related to structure A. However, A can be converted to an xvalue of type
int, and const int is reference-compatible with int, so reference x of const int
can be initialized with A() and bound to variable i.

An rvalue reference can be initialized with an lvalue in the following contexts:
v A function lvalue
v A temporary converted from an lvalue
v An rvalue result of a conversion function for an lvalue object that is of a class

type

Example 7
int i = 1;
int&& a = 2; // ok
int&& b = i; // error
double&& c = i; // ok

In this example, the rvalue reference a can be bound to the temporary initialized
with the rvalue expression 2, but the rvalue reference b cannot be bound to the
lvalue expression i. You can bind the rvalue reference c to the temporary value 1.0
that is converted from the variable i.

C++11

Related reference:
“References (C++ only)” on page 107
“Pass by reference (C++ only)” on page 252
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“Lvalues and rvalues” on page 141

Initialization of complex types (C11)
When the C11 complex initialization feature is enabled, you can initialize C99
complex types with a value of the form x + yi, where x and y can be any floating
point value, including Inf or NaN.

C The C11 complex initialization feature can be enabled by the
-qlanglvl=extc1x group option. C

C++ The C11 complex initialization feature can be enabled by the
-qlanglvl=extended or -qlanglvl=extended0x group option. You can also use the
-qlanglvl=complexinit suboption to enable this feature. When you specify the
-qlanglvl=nocomplexinit option, only the C11 form of complex initialization is
disabled. C++

C To enable the initialization of these complex types, macros CMPLX, CMPLXF,
and CMPLXL are defined inside the standard header file complex.h for C11
compilation, which act as if the following functions are used.

float complex CMPLXF( float x, float y );
double complex CMPLX( double x, double y );
long double complex CMPLXL( long double x, long double y );

Note: These macros might infringe upon user namespaces. You must avoid using
the macro names for other purposes.

C

These macros are available only if the C language header file complex.h is
included, and they result in values that are suitable for static initialization if
arguments are suitable for static initialization. C++ To use the C language
header file complex.h in C++ programs, you must specify the
-qlanglvl=c99complexheader or -qlanglvl=c99complex option. C++

The following example shows how to initialize a complex type with a value of the
form x + yi.
// a.c
#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void) {
float _Complex c = CMPLXF(5.0, NAN);
printf("Value: %e + %e * I\n", __real__(c), __imag__(c));
return;

}

You can specify the following command to compile this program:
xlc -qlanglvl=extc1x -qfloat=ieee a.c

The result of running the program is:
Value: 5 + NaNQ * I

Related reference:
“Extensions for C11 compatibility” on page 640
“Floating-point literals” on page 23
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“Floating-point types” on page 56

Declarator qualifiers
z/OS XL C/C++ includes two additional qualifiers that are given in declarator
specifications:

v C _Packed C

v C++ _Export C++

The _Packed qualifier (C only)
The z/OS XL C compiler aligns structure and union members according to their
natural byte boundaries and ends the structure or union on its natural boundary.
However, since the alignment of a structure or union is that of the member with
the largest alignment requirement, the compiler may add padding to elements
whose byte boundaries are smaller than this requirement. You can use the _Packed
qualifier to remove padding between members of structures or unions. Packed and
nonpacked structures and unions have different storage layouts.

Consider the following example:
union uu{

short a;
struct {

char x;
char y;
char z;

} b;
};

union uu nonpacked[2];
_Packed union uu packed[2];

In the array of unions nonpacked, since the largest alignment requirement among
the union members is that of short a, namely, 2 bytes, one byte of padding is
added at the end of each union in the array to enforce this requirement:

┌───── nonpacked[0] ─────────── nonpacked[1] ───┐
│ │ │
│ a │ │ a │ │
│ x │ y │ z │ │ x │ y │ z │ │
!─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘

0 1 2 3 4 5 6 7 8

In the array of unions packed, each union has a length of only 3 bytes, as opposed
to the 4 bytes of the previous case:

┌─── packed[0] ───┬─── packed[1] ───┐
│ │ │
│ a │ │ a │ │
│ x │ y │ z │ x │ y │ z │
!─────┴─────┴─────┴─────┴─────┴─────┘
0 1 2 3 4 5 6

Note: When the _Packed qualifier is used, the compiler removes padding between
members of structures or unions, regardless of the member type.

If you specify the _Packed qualifier on a structure or union that contains a
structure or union as a member, the qualifier is not passed on to the nested
structure or union.
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Related reference:
“Compatibility of structures, unions, and enumerations (C only)” on page 73
“#pragma pack” on page 583

The _Export qualifier (C++ only)
You can use the _Export keyword with a function name or external variable to
declare that it is to be exported (made available to other modules). The _Export
keyword must immediately precede the object name. For more information, see
“The _Export function specifier (C++ only)” on page 233.
Related reference:
“External linkage” on page 8
“#pragma export” on page 553

Variable attributes (IBM extension)
A variable attribute is a language extension that allows you to use a named
attribute to specify special properties of variables. Currently, only the variable
attribute aligned is supported on the z/OS platform.

A variable attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires. A
variable __attribute__ specification is included in the declaration of a variable,
and can be placed before or after the declarator. Although there are variations, the
syntax generally takes either of the following forms:

Variable attribute syntax: post-declarator

�� declarator __attribute__ �

,

(( attribute name ))
__attribute name__

��

Variable attribute syntax: pre-declarator

�� type specifier __attribute__ �

,

(( attribute name ))
__attribute name__

�

� declarator
initializer

��

You can specify attribute name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. For unsupported
attribute names, the z/OS XL C/C++ compiler issues diagnostics and ignores the
attribute specification. Multiple attribute names can be specified in the same
attribute specification.

In a comma-separated list of declarators on a single declaration line, if a variable
attribute appears before all the declarators, it applies to all declarators in the
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declaration. If the attribute appears after a declarator, it only applies to the
immediately preceding declarator. For example:
struct A {

int b __attribute__((aligned)); /* typical placement of variable */
/* attribute */

int __attribute__((aligned))__ c = 10; /* variable attribute can also be */
/* placed here */

int d, e, f __attribute__((aligned)); /* attribute applies to f only */

int g __attribute__((aligned)), h, i; /* attribute applies to g only */

int __attribute__((aligned)) j, k, l; /* attribute applies to j, k, and l */

};

The following variable attributes are supported:
v “The aligned variable attribute”

The aligned variable attribute
With the aligned variable attribute, you can override the default memory
alignment mode to specify a minimum memory alignment value, expressed as a
number of bytes, for any of the following types of variables:
v Non-aggregate variables
v Aggregate variables (such as a structures, classes, or unions)
v Selected member variables

The attribute is typically used to increase the alignment of the given variable.

aligned variable attribute syntax

�� __attribute__ (( aligned ))
__aligned__ ( alignment_factor )

��

The alignment_factor is the number of bytes, specified as a constant expression that
evaluates to a positive power of 2. On the z/OS platform, the maximum supported
value is 8 bytes in 32-bit mode, and 16 bytes in 64-bit mode. If you omit the
alignment factor (and its enclosing parentheses), the compiler automatically uses
the platform maximum. If you specify an alignment factor greater than the
maximum, the compiler uses the default alignment in effect and ignores your
specification.

When you apply the aligned attribute to a member variable in a bit field structure,
the attribute specification is applied to the bit field container. If the default
alignment of the container is greater than the alignment factor, the default
alignment is used.

Example

In the following example, the structures first_address and second_address are set
to an alignment of 16 bytes:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;
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} first_address __attribute__((__aligned__(16))) ;

struct address second_address __attribute__((__aligned__(16))) ;

In the following example, only the members first_address.prov and
first_address.postal_code are set to an alignment of 16 bytes:
struct address {

int street_no;
char *street_name;
char *city;
char *prov __attribute__((__aligned__(16))) ;
char *postal_code __attribute__((__aligned__(16))) ;

} first_address ;
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Chapter 5. Type conversions

An expression of a given type is implicitly converted when it is used in the
following situations:
v As an operand of an arithmetic or logical operation.
v As a condition in an if statement or an iteration statement (such as a for loop).

The expression will be converted to a Boolean (or an integer in C89).
v In a switch statement. The expression is converted to an integral type.
v As the right operand of an assignment or as an initializer.
v As an initialization. This includes the following types:

– A function is provided an argument value that has a different type than the
parameter.

– The value specified in the return statement of a function has a different type
from the defined return type for the function.

C The implicit conversion result is an rvalue. C

C++ The implicit conversion result belongs to one of the following value
categories depending on different converted expressions types:
v An lvalue if the type is an lvalue reference type C++11 or an rvalue reference

to a function type C++11

v C++11 An xvalue if the type is an rvalue reference to an object type C++11

v A C++11 (prvalue) C++11 rvalue in other cases

C++

You can perform explicit type conversions using a cast expression, as described in
“Cast expressions” on page 176.
Related reference:
“User-defined conversions” on page 423
“Conversion constructors” on page 424
“Conversion functions” on page 426
“The switch statement” on page 202
“The if statement” on page 200
“The return statement” on page 212
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

Arithmetic conversions and promotions
The following sections discuss the rules for the standard conversions for arithmetic
types:
v “Integral conversions” on page 130
v “Floating-point conversions” on page 130
v “Boolean conversions” on page 130
v “Packed decimal conversions (C only)” on page 132
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If two operands in an expression have different types, they are subject to the rules
of the usual arithmetic conversions, as described in “Usual arithmetic conversions”
on page 133.

Integral conversions
Unsigned integer to unsigned integer or signed integer to signed integer

If the types are identical, there is no change. If the types are of a different
size, and the value can be represented by the new type, the value is not
changed; if the value cannot be represented by the new type, truncation or
sign shifting will occur.

Signed integer to unsigned integer
The resulting value is the smallest unsigned integer type congruent to the
source integer. If the value cannot be represented by the new type,
truncation or sign shifting will occur.

Unsigned integer to signed integer
If the signed type is large enough to hold the original value, there is no
change. If the value can be represented by the new type, the value is not
changed; if the value cannot be represented by the new type, truncation or
sign shifting will occur.

Signed and unsigned character types to integer
The character types are promoted to type int.

Wide character type wchar_t to integer
If the original value can be represented by int, it is represented as int. If
the value cannot be represented by int, it is promoted to the smallest type
that can hold it: unsigned int, long, or unsigned long.

Signed and unsigned integer bit field to integer
If the original value can be represented by int, it is represented as int. If
The value cannot be represented by int, it is promoted to unsigned int.

Enumeration type to integer
If the original value can be represented by int, it is represented as int. If
the value cannot be represented by int, it is promoted to the smallest type
that can hold it: unsigned int, long, or unsigned long. Note that an
enumerated type can be converted to an integral type, but an integral type
cannot be converted to an enumeration.

Boolean conversions
An unscoped enumeration, pointer, or pointer to member type can be converted to
a Boolean type.

C If the scalar value is equal to 0, the Boolean value is 0; otherwise, the
Boolean value is 1. C

C++ A zero, null pointer, or null member pointer value is converted to false.
All other values are converted to true. C++

C++11 A null pointer with the nullptr value is converted to false. C++11

Floating-point conversions
The standard rule for converting between real floating-point types is as follows:
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If the value being converted can be represented exactly in the new type, it is
unchanged. If the value being converted is in the range of values that can be
represented but cannot be represented exactly, the result is rounded, according to
the current compile-time or runtime rounding mode in effect. If the value being
converted is outside the range of values that can be represented, the result is
dependent on the rounding mode.

Integer to floating point
If the value being converted can be represented exactly in the new type, it
is unchanged. If the value being converted is in the range of values that
can be represented but cannot be represented exactly, the result is correctly
rounded. If the value being converted is outside the range of values that
can be represented, the result is quiet NaN.

Floating point to integer
The fractional part is discarded (i.e., the value is truncated toward zero). If
the value of the integral part cannot be represented by the integer type, the
result is one of the following:
v If the integer type is unsigned, the result is the largest representable

number if the floating-point number is positive, or 0 otherwise.
v If the integer type is signed, the result is the most negative or positive

representable number according to the sign of the floating-point number.

C11 Note: The conversion between a floating type and a pointer type is not
allowed. C11

Implicit conversions of decimal floating-point types (IBM
extension)

The compiler has the following decimal floating-point types:
v _Decimal32

v _Decimal64

v _Decimal128

The following implicit conversions are always supported:
v Implicit conversions between decimal floating-point types:

– _Decimal32 to _Decimal64

– _Decimal32 to _Decimal128

– _Decimal64 to _Decimal32

– _Decimal64 to _Decimal128

– _Decimal128 to _Decimal32

– _Decimal128 to _Decimal64

v Implicit conversions between decimal floating-point types and the following
integer types:
– signed char, unsigned char

– signed short int, unsigned short int

– signed int, unsigned int

– signed long int, unsigned long int

– signed long long int, unsigned long long int

v Implicit conversions between decimal floating-point types and Boolean types
bool or _Bool.
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Implicit conversions between decimal floating-point types and the following
generic floating-point types are supported conditionally. It is supported through
assignment operation using the simple assignment operator =, initialization,
function argument passing and function return statements.
v float

v double

v long double

The following examples demonstrate the implicit conversion from a generic
floating-point type to a decimal floating-point type. In this example, variable f1 is
implicitly converted from type float to type _Decimal32 in the initialization.
float f1;
_Decimal32 d1 = f1;

C++

float f1;
_Decimal32 d1(f1);

C++

Restriction: You cannot mix decimal floating-point types with generic
floating-point types or complex floating-point types in arithmetic expressions
unless you use explicit conversions. Here is an example:
_Decimal32 d1;
float f1;
float f2 = f1 + d1; // Incorrect
float f3 = f1 + (float)d1; // Correct

Complex conversions

Complex to complex
If the types are identical, there is no change. If the types are of a different
size, and the value can be represented by the new type, the value is not
changed; if the value cannot be represented by the new type, both real and
imaginary parts are converted according to the standard conversion rule
given above.

Complex to real (binary)
The imaginary part of the complex value is discarded. If necessary, the
value of the real part is converted according to the standard conversion
rule given above.

Real (binary) to complex
The source value is used as the real part of the complex value, and
converted, if necessary, according to the standard conversion rule given
above. The value of the imaginary part is zero.

Related reference:
“Floating-point types” on page 56

Packed decimal conversions (C only)
Packed decimal to long long integer

The fractional part is discarded.

Long long integer to packed decimal
The resulting size is decimal(20,0).

132 z/OS V2R1.0 XL C/C++ Language Reference



Complex to packed decimal
Only the floating value of the real part is used.

Packed decimal to complex
The real part of the complex type is converted, and the imaginary part is 0.

Packed decimal to decimal floating-point
If the number of significant digits in the packed decimal value exceeds the
precision of the target, the result is rounded to the target precision using
the current decimal floating-point rounding mode.

Decimal floating-point to packed decimal
Before conversion, the decimal floating-point value is rounded or truncated
to match the fractional precision of the resulting type, if necessary. If the
value being converted represents infinity or NaN, or if non-zero digits are
truncated from the left end of the result, the result is undefined.

Usual arithmetic conversions
When different arithmetic types are used as operands in certain types of
expressions, standard conversions known as usual arithmetic conversions are applied.

For example, when the values of two different integral types are added together,
both values are first converted to the same type: when a short int value and an
int value are added together, the short int value is converted to the int type.
Chapter 6, “Expressions and operators,” on page 141 provides a list of the
operators and expressions that participate in the usual arithmetic conversions.

Conversion ranks for arithmetic types

The ranks in the tables are listed from highest to lowest:

Table 20. Conversion ranks for floating-point types

Operand type

long double or long double _Complex

double or double _Complex

float or float _Complex

IBM

Table 21. Conversion ranks for decimal floating-point types

Operand type

_Decimal128

_Decimal64

_Decimal32

IBM

Table 22. Conversion ranks for integer types

Operand type

long long int, unsigned long long int
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Table 22. Conversion ranks for integer types (continued)

Operand type

long int, unsigned long int

int, unsigned int

short int, unsigned short int

char, signed char, unsigned char

Boolean

Notes:

v The long long int and unsigned long long int types are not included in the C89,
C++98 and C++03 standards.

v C The wchar_t type is not a distinct type, but rather a typedef for an integer

type. The rank of the wchar_t type is equal to the rank of its underlying type. C

v C The rank of enumerated type is equal to the rank of its underlying type.
C

Rules for floating-point operands

In a context where an operation involves two operands, if either of the operands is
of floating-point type, the compiler performs the usual arithmetic conversions to
bring these two operands to a common type. The floating-point promotions are
applied to both operands. The following rules apply to the promoted operands:
1. If both operands have the same type, no conversion is needed.
2. Otherwise, if both operands have complex types, the type at a lower integer

conversion rank is converted to the type at a higher rank. For more
information, see “Floating-point conversions” on page 130.

3. Otherwise, if one operand has a complex type, the type of both operands after
conversion is the higher rank of the following types:
v The complex type corresponding to the type of the generic floating-point

operand
v The type of the complex operand

For more information, see “Floating-point conversions” on page 130.
4. Otherwise, both operands have generic floating types. The following rules

apply:
a. If one operand has the long double type, the other operand is converted to

long double.
b. Otherwise, if one operand has the double type, the other operand is

converted to double.
c. Otherwise, if one operand has the float type, the other operand is

converted to float.

Rules for integral operands

In a context where an operation involves two operands, if both of the operands are
of integral types, the compiler performs the usual arithmetic conversions to bring
these two operands to a common type. The integral promotions are applied to both
operands and the following rules apply to the promoted operands:
1. If both operands have the same type, no conversion is needed.
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2. Otherwise, if both operands have signed integer types or both have unsigned
integer types, the type at a lower integer conversion rank is converted to the
type at a higher rank.

3. Otherwise, if one operand has an unsigned integer type and the other operand
has a signed integer type, the following rules apply:
a. If the rank for the unsigned integer type is higher than or equal to the rank

for the signed integer type, the signed integer type is converted to the
unsigned integer type.

b. Otherwise, if the signed integer type can represent all of the values of the
unsigned integer type, the unsigned integer type is converted to the signed
integer type.

c. Otherwise, both types are converted to the unsigned integer type that
corresponds to the signed integer type.

Related reference:
“Integral types” on page 54
“Boolean types” on page 55
“Floating-point types” on page 56
“Character types” on page 59
“Enumerations” on page 70
“Binary expressions” on page 160

Integral and floating-point promotions
The integral and floating-point promotions are used automatically as part of the usual
arithmetic conversions and default argument promotions. The integral and
floating-point promotions do not change either the sign or the magnitude of the
value. For more information about the usual arithmetic conversions, see “Usual
arithmetic conversions” on page 133.

C++11

Integral promotion rules for wchar_t

If a value is of the wchar_t type, the type of the value can be converted to the first
of the following types that can represent all the values of the underlying type of
wchar_t:
v int

v unsigned int

v long int

v unsigned long int

v long long int

v unsigned long long int

If none of the types in the list can represent all the values of the underlying type of
wchar_t, the wchar_t type is converted to the underlying type of wchar_t.

C++11
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Integral promotion rules for bit field

C The rules apply to the following conditions:
v The -qupconv option is in effect.
v The type of an integral bit field is unsigned.
v The type of the integral bit field is smaller than the int type.

If all these conditions are satisfied, one of the following rules applies to the
promotion of the integral bit field:
v If the unsigned int type can represent all the values of the integral bit field, the

bit field is converted to unsigned int.
v Otherwise, no integral promotion applies to the bit field.

If any of these conditions is not satisfied, one of the following rules applies to the
promotion of the integral bit field:
v If the int type can represent all the values of the integral bit field, the bit field is

converted to int.
v Otherwise, if the unsigned int type can represent all the values, the bit field is

converted to unsigned int.
v Otherwise, no integral promotion applies to the bit field.

C

C++ One of the following rules applies to an integral bit field promotion:
v If the int type can represent all the values of an integral bit field, the bit field is

converted to int.
v Otherwise, if the unsigned int type can represent all the values, the bit field is

converted to unsigned int.
v Otherwise, no integral promotion applies to the bit field.

C++

Integral promotion rules for Boolean

C If the -qupconv option is in effect, a Boolean value is converted to the
unsigned int type with its value unchanged. Otherwise, if the -qnoupconv option is
in effect, a Boolean value is converted to the int type with its value unchanged.

C

C++ If a Boolean value is false, it is converted to an int with a value of 0. If
a Boolean value is true, it is converted to an int with a value of 1.

Integral promotion rules for other types

C The rules apply to the following conditions:
v The -qupconv option is in effect.
v The type of an integer type other than bit field and Boolean is unsigned.
v The type of the integer type is smaller than the int type.

If all these conditions are satisfied, the integer type is converted to the unsigned
int type.

If any of these conditions is not satisfied, one of the following rules applies to the
promotion of the integer type:
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v If the integer type can be represented by the int type and its rank is lower than
the rank of int, the integer type is converted to the int type.

v Otherwise, the integer type is converted to the unsigned int type.

C

C++ One of the following rules applies to the promotion of an integer type
other than wchar_t, bit field, and Boolean:
v If the integer type can be represented by the int type and its rank is lower than

the rank of int, the integer type is converted to the int type.
v Otherwise, the integer type is converted to the unsigned int type.

C++

floating-point promotion rules

The float type can be converted to the double type. The float value is not
changed after the promotion.

Lvalue-to-rvalue conversions
If an lvalue C++11 or xvalue C++11 is used in a situation in which the
compiler expects a C++11 (prvalue) C++11 rvalue, the compiler converts the
lvalue C++11 or xvalue C++11 to a C++11 (prvalue) C++11 rvalue.
However, a C++11 (prvalue) C++11 rvalue cannot be converted implicitly to an
lvalue C++11 or xvalue C++11 , C++ except by user-defined conversions

C++ . The following table lists exceptions to this rule.

Situation before conversion Resulting behavior

The lvalue is a function type. A pointer to function

The lvalue is an array. A pointer to the first element of the array

The type of the lvalue C++11 or xvalue
C++11 is an incomplete type.

compile-time error

The lvalue C++11 or xvalue C++11

refers to an uninitialized object.

undefined behavior

The lvalue C++11 or xvalue C++11

refers to an object not of the type of the
C++11 (prvalue) C++11 rvalue, nor of a

type derived from the type of the
C++11 (prvalue) C++11 rvalue.

undefined behavior

C++ The lvalue C++11 or xvalue
C++11 is a nonclass type, qualified by

either const or volatile. C++

The type after conversion is not qualified by
either const or volatile.

Related reference:
“Lvalues and rvalues” on page 141

Pointer conversions
Pointer conversions are performed when pointers are used, including pointer
assignment, initialization, and comparison.
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C Conversions that involve pointers must use an explicit type cast. The
exceptions to this rule are the allowable assignment conversions for C pointers. In
the following table, a const-qualified lvalue cannot be used as a left operand of the
assignment.

Table 23. Legal assignment conversions for C pointers

Left operand type Permitted right operand types

pointer to (object) T v the constant 0

v a pointer to a type compatible with T

v a pointer to void (void*)

pointer to (function) F v the constant 0

v a pointer to a function compatible with F

The referenced type of the left operand must have the same or more cv-qualifiers
as compared to those of the right operand.

C

Zero constant to null pointer
An integral constant expression that evaluates to zero is a null pointer
constant. This expression can be converted to a pointer. This pointer is a
null pointer (pointer with a zero value), and is guaranteed not to point to
any object.

C++ A constant expression that evaluates to zero can also be
converted to the null pointer to a member.

Array to pointer
An lvalue or rvalue with type "array of N," where N is the type of a single
element of the array, to N*. The result is a pointer to the initial element of
the array. This conversion is not performed if the expression is used as the
operand of the address operator & or the sizeof operator C++ or when
the array is bound to a reference of the array type C++ .

Function to pointer

An lvalue that is a function can be converted to a C++11 (prvalue)
C++11 rvalue that is a pointer to a function of the same type, except

when the expression is used as the operand of the & (address) operator, the
() (function call) operator, or the sizeof operator.

C11 Note: The conversion between a floating type and a pointer type is not
allowed. C11

Related reference:
“Pointers” on page 100
“Integer constant expressions” on page 144
“Arrays” on page 104
“Pointers to functions” on page 257
“Pointers to members” on page 362
Ambiguous base classes (C++ only)
“Lvalues and rvalues” on page 141
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Conversion to void*
C pointers are not necessarily the same size as type int. Pointer arguments given
to functions should be explicitly cast to ensure that the correct type expected by
the function is being passed. The generic object pointer in C is void*, but there is
no generic function pointer.

Any pointer to an object, optionally type-qualified, can be converted to void*,
keeping the same const or volatile qualifications.

C The allowable assignment conversions involving void* as the left
operand are shown in the following table.

Table 24. Legal assignment conversions in C for void*

Left operand type Permitted right operand types

(void*) v The constant 0.

v A pointer to an object. The object may be of incomplete type.

v (void*)

C

C++ Pointers to functions cannot be converted to the type void* with a
standard conversion: this can be accomplished explicitly, provided that a void* has
sufficient bits to hold it. C++

Related reference:
“The void type” on page 59

Reference conversions (C++ only)
A reference conversion can be performed wherever a reference initialization occurs,
including reference initialization done in argument passing and function return
values. A reference to a class can be converted to a reference to an accessible base
class of that class as long as the conversion is not ambiguous. The result of the
conversion is a reference to the base class subobject of the derived class object.

Reference conversion is allowed if the corresponding pointer conversion is allowed.
Related reference:
“References (C++ only)” on page 107
“Initialization of references (C++ only)” on page 119
“Function calls” on page 249
“Function return values” on page 235

Function argument conversions
When a function is called, if a function declaration is present and includes declared
argument types, the compiler performs type checking. The compiler compares the
data types provided by the calling function with the data types that the called
function expects and performs necessary type conversions. For example, when
function funct is called, argument f is converted to a double, and argument c is
converted to an int:
char * funct (double d, int i);

int main(void){
float f;
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char c;
funct(f, c) /* f is converted to a double, c is converted to an int */
return 0;

}

If no function declaration is visible when a function is called, or when an
expression appears as an argument in the variable part of a prototype argument
list, the compiler performs default argument promotions or converts the value of
the expression before passing any arguments to the function. The automatic
conversions consist of the following:
v The integral and floating-point promotions are performed.
v Arrays or functions are converted to pointers.
Related reference:
“Integral and floating-point promotions” on page 135
“Function call expressions” on page 149
“Function calls” on page 249
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Chapter 6. Expressions and operators

Expressions are sequences of operators, operands, and punctuators that specify a
computation.

The evaluation of expressions is based on the operators that the expressions
contain and the context in which they are used. An expression can result in a value
and can produce side effects. A side effect is a change in the state of the execution
environment.

“Operator precedence and associativity” on page 190 provides tables listing the
precedence of all the operators described in the various sections listed above.

C++ C++ operators can be defined to behave differently when applied to
operands of class type. This is called operator overloading, and is described in
“Overloading operators” on page 329. C++

Lvalues and rvalues
Expressions can be categorized into one of the following value categories:

Lvalue
An expression can appear on the left side of an assignment expression if
the expression is not const qualified.

C++11 Xvalue C++11

An rvalue reference that is to expire.

C++11 (Prvalue) C++11 rvalue
A C++11 non-xvalue C++11 expression that appears only on the right
side of an assignment expression.

C++11 Rvalues include both xvalues and prvalues. Lvalues and xvalues can be
referred as glvalues. C++11

Notes:

v Class C++11 (prvalue) C++11 rvalues can be cv-qualified, but non-class
C++11 (prvalue) C++11 rvalues cannot be cv-qualified.

v Lvalues C++11 and xvalues C++11 can be of incomplete types, but
C++11 (prvalue) C++11 rvalues must be of complete types or void types.

An object is a region of storage that can be examined and stored into. An lvalue
C++11 or xvalue C++11 is an expression that refers to such an object. An lvalue

does not necessarily permit modification of the object it designates. For example, a
const object is an lvalue that cannot be modified. The term modifiable lvalue is used
to emphasize that the lvalue allows the designated object to be changed as well as
examined. Lvalues of the following object types are not modifiable lvalues:
v An array type
v An incomplete type
v A const-qualified type
v A structure or union type with one of its members qualified as a const type
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Because these lvalues are not modifiable, they cannot appear on the left side of an
assignment statement, C++ except where a suitable assignment operator exists

C++ .

C C defines a function designator as an expression that has function type. A
function designator is distinct from an object type or an lvalue. It can be the name
of a function or the result of dereferencing a function pointer. The C language also
differentiates between its treatment of a function pointer and an object pointer.

C

C++ A function call that returns an lvalue reference is an lvalue. Expressions
can produce an lvalue, C++11 an xvalue C++11 , a C++11 (prvalue) C++11

rvalue, or no value. C++

Certain C++ built-in C++ operators require lvalues for some of their
operands. The following table lists these operators and additional constraints on
their usage.

Operator Requirement

& (unary) Operand must be an lvalue.

++ -- Operand must be a modifiable lvalue. This
applies to both prefix and postfix forms.

= += -= *= %= <<= >>= &= ^= |= Left operand must be a modifiable lvalue.

For example, all assignment operators evaluate their right operand and assign that
value to their left operand. The left operand must be a modifiable lvalue.

The address operator (&) requires an lvalue as an operand while the increment (++)
and the decrement (--) operators require a modifiable lvalue as an operand. The
following example shows expressions and their corresponding lvalues.

Expression Lvalue

x = 42 x

*ptr = newvalue *ptr

a++ a

C++ f() The function call to f()

C++11

The following expressions are xvalues:
v The result of calling a function whose return type is of an rvalue reference type
v A cast to an rvalue reference
v A nonstatic data member of a non-reference type accessed through an xvalue

expression
v A pointer to member access expression in which the first operand is an xvalue

expression and the second operand is of a pointer to member type

See the following example:
int a;
int&& b= static_cast<int&&>(a);

struct str{
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int c;
};

int&& f(){
int&& var =1;
return var;

}

str&& g();
int&& rc = g().c;

In this example, The initializer for rvalue reference b is an xvalue because it is a
result of a cast to an rvalue reference. A call to the function f() produces an xvalue
because the return type of this function is of the int&& type. The initializer for
rvalue reference rc is an xvalue because it is an expression that accesses a nonstatic
non-reference data member c through an xvalue expression.

C++11

Related reference:
“Arrays” on page 104
“Lvalue-to-rvalue conversions” on page 137
“References (C++ only)” on page 107

Primary expressions
Primary expressions fall into the following general categories:
v Names (identifiers)
v Literals (constants)
v Integer constant expressions
v Identifier expressions
v Parenthesized expressions ( )
v C11 Generic selection C11

v C++ The this pointer (described in “The this pointer” on page 363)
v Names qualified by the scope resolution operator (::) C++

Names
The value of a name depends on its type, which is determined by how that name
is declared. The following table shows whether a name is an lvalue expression.

Table 25. Primary expressions: Names

Name declared as Evaluates to Is an lvalue?

Variable of arithmetic,
pointer, enumeration,
structure, or union type

An object of that type yes

Enumeration constant The associated integer value no

Array That array. In contexts subject
to conversions, a pointer to
the first object in the array,
except where the name is
used as the argument to the
sizeof operator.

C no C

C++ yes C++
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Table 25. Primary expressions: Names (continued)

Name declared as Evaluates to Is an lvalue?

Function That function. In contexts
subject to conversions, a
pointer to that function,
except where the name is
used as the argument to the
sizeof operator, or as the
function in a function call
expression.

C no C

C++ yes C++

As an expression, a name may not refer to a label, typedef name, structure
member, union member, structure tag, union tag, or enumeration tag. Names used
for these purposes reside in a namespace that is separate from that of names used
in expressions. However, some of these names may be referred to within
expressions by means of special constructs: for example, the dot or arrow operators
may be used to refer to structure and union members; typedef names may be used
in casts or as an argument to the sizeof operator.

Literals
A literal is a numeric constant or string literal. When a literal is evaluated as an
expression, its value is a constant. A lexical constant is never an lvalue. However, a
string literal is an lvalue.
Related reference:
“Literals” on page 19
“The this pointer” on page 363

Integer constant expressions
An integer constant is a value that is determined at compile time and cannot be
changed at run time. An integer constant expression is an expression that is
composed of constants and evaluated to a constant at compile time.

An integer constant expression is an expression that is composed of only the
following elements:
v literals
v enumerators
v const variables initialized with compile-time constant expressions or

C++11 constexpr expressions C++11

v static const data members initialized with compile-time constant expressions
or C++11 constexpr expressions C++11

v casts to integral types
v sizeof expressions, where the operand is not a variable length array

The sizeof operator applied to a variable length array type is evaluated at run
time, and therefore is not a constant expression.

You must use an integer constant expression in the following situations:
v In the subscript declarator as the description of an array bound.
v After the keyword case in a switch statement.
v In an enumerator, as the numeric value of an enumeration constant.
v In a bit-field width specifier.
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v In the preprocessor #if statement. (Enumeration constants, address constants,
and sizeof cannot be specified in a preprocessor #if statement.)

Note: C++11 The C++11 standard generalizes the concept of constant
expressions. For more information, see “Generalized constant expressions (C++11)”
on page 149. C++11

Related reference:
“The sizeof operator” on page 157

Identifier expressions (C++ only)
An identifier expression, or id-expression, is a restricted form of primary expression.
Syntactically, an id-expression requires a higher level of complexity than a simple
identifier to provide a name for all of the language elements of C++.

An id-expression can be either a qualified or unqualified identifier. It can also
appear after the dot and arrow operators.

Identifier expression syntax

�� unqualified_id
qualified_id

��

unqualified_id:

identifier
operator_function_id
conversion_function_id
~ class_name
template_id

qualified_id:

�

:: identifier
operator_function_id
template_id

class_or_namespace :: unqualified_id
:: class_or_namespace :: template

template

Related reference:
“Identifiers” on page 16
Chapter 4, “Declarators,” on page 97

Parenthesized expressions ( )
Use parentheses to explicitly force the order of expression evaluation. The
following expression does not use parentheses to group operands and operators.
The parentheses surrounding weight, zipcode are used to form a function call.
Note how the compiler groups the operands and operators in the expression
according to the rules for operator precedence and associativity:
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handling- discount item +

+

*

*

( weight

expression

expression

unary minus

function call

parameters

expression

zipcode ),

The following expression is similar to the previous expression, but it contains
parentheses that change how the operands and operators are grouped:

handlingitem +

+

*

*

(( weight

expression

expression

expression

parenthesized expression

function callexpression

expression

zipcode ) ),

parameters

- discount

unary minus

In an expression that contains both associative and commutative operators, you
can use parentheses to specify the grouping of operands with operators. The
parentheses in the following expression guarantee the order of grouping operands
with the operators:
x = f + (g + h);

Related reference:
“Operator precedence and associativity” on page 190

Generic selection (C11)

A generic selection is a primary expression. Its type and value depend on the
selected generic association.

The following diagram shows the generic selection syntax:
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�� �

,

_Generic ( assignment-expression , type-name : assignment-expression )
(1)

default : assignment-expression

��

Notes:

1 A generic selection can have at most one default generic association.

where:

type-name
Specifies the type of a generic association. The type name that you specify in a
generic association must be a complete object type other than a variably
modified type.

assignment-expression
Is an assignment expression. The first assignment expression is called the
controlling expression.

The generic association list is a group of generic associations. There are two forms
of generic associations:
v type-name: assignment-expression
v default: assignment-expression

One generic selection cannot have two or more generic associations that specify
compatible types. In one generic selection, the controlling expression can have at
most one compatible type name in the generic association list. If a generic selection
has no default generic association, its controlling expression must have exactly one
compatible type name in its generic association list.

If there is a generic association with a type name that is compatible with the
controlling expression in the generic selection, the expression in the generic
selection is the result expression. Otherwise, the result expression of the generic
selection is the expression in the default generic association. The controlling
expression of a generic selection is not evaluated. None of the expressions from
any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result
expression. For example, a generic selection is an lvalue, a function designator, or a
void expression if its result expression is an lvalue, a function designator, or a void
expression.

Example

The following sample myprogram.c defines a type-generic macro:
#define myfunction(X) _Generic((X), \
long double:myfunction_longdouble, \
default:myfunction_double, \
float:myfunction_float \
)(X)
void myfunction_longdouble(long double x){printf("calling %s\n",__func__);}
void myfunction_double(double x){printf("calling %s\n",__func__);}
void myfunction_float(float x){printf("calling %s\n",__func__);}

int main()
{

long double ld;
double d;
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float f;
myfunction(ld);
myfunction(d);
myfunction(f);

}

When you execute the program:
xlc myprogram.c -qlanglvl=extc1x
./a.out

the result is as follows:
calling myfunction_longdouble
calling myfunction_double
calling myfunction_float

Scope resolution operator :: (C++ only)
The :: (scope resolution) operator is used to qualify hidden names so that you can
still use them. You can use the unary scope operator if a namespace scope or
global scope name is hidden by an explicit declaration of the same name in a block
or class. For example:
int count = 0;

int main(void) {
int count = 0;
::count = 1; // set global count to 1
count = 2; // set local count to 2
return 0;

}

The declaration of count declared in the main function hides the integer named
count declared in global namespace scope. The statement ::count = 1 accesses the
variable named count declared in global namespace scope.

You can also use the class scope operator to qualify class names or class member
names. If a class member name is hidden, you can use it by qualifying it with its
class name and the class scope operator.

In the following example, the declaration of the variable X hides the class type X,
but you can still use the static class member count by qualifying it with the class
type X and the scope resolution operator.
#include <iostream>
using namespace std;

class X
{
public:

static int count;
};
int X::count = 10; // define static data member

int main ()
{

int X = 0; // hides class type X
cout << X::count << endl; // use static member of class X

}

Related reference:
“Scope of class names” on page 351
Chapter 9, “Namespaces (C++ only),” on page 317
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Generalized constant expressions (C++11)
The C++11 standard generalizes the concept of constant expressions and introduces
a new keyword constexpr as a declaration specifier. A constant expression is an
expression that can be evaluated at compile time by the compiler. The major
benefits of this feature are as follows:
v Improves type safety and portability of code that requires compile-time

evaluation
v Improves support for systems programming, library building, and generic

programming
v Improves the usability of Standard Library components. Library functions that

can be evaluated at compile time can be used in contexts that require constant
expressions.

An object declaration with the constexpr specifier declares that object to be
constant. The constexpr specifier can be applied only to the following contexts:
v The definition of an object
v The declaration of a function or function template
v The declaration of a static data member of a literal type

If you declare a function that is not a constructor with a constexpr specifier, then
that function is a constexpr function. Similarly, if you declare a constructor with a
constexpr specifier, then that constructor is a constexpr constructor.

With this feature, constant expressions can include calls to template and
non-template constexpr functions, constexpr objects of class literal types, and
references bound to const objects that are initialized with constant expressions.

Evaluations of floating-point operations at compile time use the default semantics
of the FLOAT option.
Related reference:
“The constexpr specifier (C++11)” on page 83
“Constexpr functions (C++11)” on page 313
“Constexpr constructors (C++11)” on page 411
“C++11 compatibility” on page 640

Function call expressions
A function call is an expression containing the function name followed by the
function call operator, (). If the function has been defined to receive parameters,
the values that are to be sent into the function are listed inside the parentheses of
the function call operator. The argument list can contain any number of
expressions separated by commas. The argument list can also be empty.

The type of a function call expression is the return type of the function. This type
can either be a complete type, a reference type, or the type void.

C A function call is always an rvalue. C

C++ A function call belongs to one of the following value categories depending
on the result type of the function:
v An lvalue if the result type is an lvalue reference type C++11 or an rvalue

reference to a function type C++11

Chapter 6. Expressions and Operators 149



v C++11 An xvalue if the result type is an rvalue reference to an object type
C++11

v A C++11 (prvalue) C++11 rvalue in other cases

C++

Here are some examples of the function call operator:
stub()
overdue(account, date, amount)
notify(name, date + 5)
report(error, time, date, ++num)

The order of evaluation for function call arguments is not specified. In the
following example:
method(sample1, batch.process--, batch.process);

the argument batch.process-- might be evaluated last, causing the last two
arguments to be passed with the same value.
Related reference:
“Function argument conversions” on page 139
“Function calls” on page 249
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

Member expressions
Member expressions indicate members of classes, structures, or unions. The
member operators are:
v Dot operator .
v Arrow operator ->

Dot operator .
The . (dot) operator is used to access class, structure, or union members. The
member is specified by a postfix expression, followed by a . (dot) operator,
followed by a possibly qualified identifier or a pseudo-destructor name. (A
pseudo-destructor is a destructor of a nonclass type.) The postfix expression must be
an object of type class, struct or union. The name must be a member of that
object.

The value of the expression is the value of the selected member. If the postfix
expression and the name are lvalues, the expression value is also an lvalue. If the
postfix expression is type-qualified, the same type qualifiers will apply to the
designated member in the resulting expression.
Related reference:
Access to structure and union members
“Pseudo-destructors” on page 422

Arrow operator ->
The -> (arrow) operator is used to access class, structure or union members using a
pointer. A postfix expression, followed by an -> (arrow) operator, followed by a
possibly qualified identifier or a pseudo-destructor name, designates a member of
the object to which the pointer points. (A pseudo-destructor is a destructor of a
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nonclass type.) The postfix expression must be a pointer to an object of type class,
struct or union. The name must be a member of that object.

The value of the expression is the value of the selected member. If the name is an
lvalue, the expression value is also an lvalue. If the expression is a pointer to a
qualified type, the same type-qualifiers will apply to the designated member in the
resulting expression.
Related reference:
“Pointers” on page 100
Access to structure and union members
“Structures and unions” on page 60
Chapter 12, “Class members and friends (C++ only),” on page 357
“Pseudo-destructors” on page 422

Unary expressions
A unary expression contains one operand and a unary operator.

All unary operators have the same precedence and have right-to-left associativity,
as shown in Table 29 on page 191.

As indicated in the descriptions of the operators, the usual arithmetic conversions
are performed on the operands of most unary expressions.

The supported unary operators are:
v “Increment operator ++”
v “Decrement operator --” on page 152
v “Unary plus operator +” on page 153
v “Unary minus operator -” on page 153
v “Logical negation operator !” on page 153
v “Bitwise negation operator ~” on page 153
v “Address operator &” on page 154
v “Indirection operator *” on page 155
v C++ typeid C++

v IBM alignof IBM

v sizeof

v IBM typeof

v C digitsof and precisionof C

v IBM __real__ and __imag__ IBM

Related reference:
“Pointer arithmetic” on page 101
“Lvalues and rvalues” on page 141
“Arithmetic conversions and promotions” on page 129

Increment operator ++
The ++ (increment) operator adds 1 to the value of a scalar operand, or if the
operand is a pointer, increments the operand by the size of the object to which it
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points. The operand receives the result of the increment operation. The operand
must be a modifiable lvalue of arithmetic or pointer type.

You can put the ++ before or after the operand. If it appears before the operand,
the operand is incremented. The incremented value is then used in the expression.
If you put the ++ after the operand, the value of the operand is used in the
expression before the operand is incremented. A pre-increment expression is an
lvalue. A post-increment expression is an rvalue. For example:
play = ++play1 + play2++;

is similar to the following expressions; play1 is altered before play:
int temp, temp1, temp2;

temp1 = play1 + 1;
temp2 = play2;
play1 = temp1;
temp = temp1 + temp2;
play2 = play2 + 1;
play = temp;

The result has the same type as the operand after integral promotion.

The usual arithmetic conversions on the operand are performed.

IBM C The increment operator has been extended to handle complex
types. The operator works in the same manner as it does on a real type, except
that only the real part of the operand is incremented, and the imaginary part is
unchanged. C IBM

Decrement operator --
The -- (decrement) operator subtracts 1 from the value of a scalar operand, or if
the operand is a pointer, decreases the operand by the size of the object to which it
points. The operand receives the result of the decrement operation. The operand
must be a modifiable lvalue.

You can put the -- before or after the operand. If it appears before the operand,
the operand is decremented, and the decremented value is used in the expression.
If the -- appears after the operand, the current value of the operand is used in the
expression and the operand is decremented. A pre-decrement expression is an
lvalue. A post-decrement expression is an rvalue.

For example:
play = --play1 + play2--;

is similar to the following expressions; play1 is altered before play:
int temp, temp1, temp2;

temp1 = play1 - 1;
temp2 = play2;
play1 = temp1;
temp = temp1 + temp2;
play2 = play2 - 1;
play = temp;

The result has the same type as the operand after integral promotion, but is not an
lvalue.
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The usual arithmetic conversions are performed on the operand.

IBM C The decrement operator has been extended to handle complex
types, for compatibility with GNU C. The operator works in the same manner as it
does on a real type, except that only the real part of the operand is decremented,
and the imaginary part is unchanged. C IBM

Unary plus operator +
The + (unary plus) operator maintains the value of the operand. The operand can
have any arithmetic type or pointer type. The result is not an lvalue.

The result has the same type as the operand after integral promotion.

Note: Any plus sign in front of a constant is not part of the constant.

Unary minus operator -
The - (unary minus) operator negates the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

For example, if quality has the value 100, -quality has the value -100.

The result has the same type as the operand after integral promotion.

Note: Any minus sign in front of a constant is not part of the constant.

Logical negation operator !
The ! (logical negation) operator determines whether the operand evaluates to 0
(false) or nonzero (true).

C The expression yields the value 1 (true) if the operand evaluates to 0, and
yields the value 0 (false) if the operand evaluates to a nonzero value. C

C++ The expression yields the value true if the operand evaluates to false (0),
and yields the value false if the operand evaluates to true (nonzero). The operand
is implicitly converted to bool, and the type of the result is bool. C++

The following two expressions are equivalent:
!right;
right == 0;

Related reference:
“Boolean types” on page 55

Bitwise negation operator ~
The ~ (bitwise negation) operator yields the bitwise complement of the operand.
In the binary representation of the result, every bit has the opposite value of the
same bit in the binary representation of the operand. The operand must have an
integral type. The result has the same type as the operand but is not an lvalue.

Suppose x represents the decimal value 5. The 16-bit binary representation of x is:
0000000000000101

The expression ~x yields the following result (represented here as a 16-bit binary
number):
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1111111111111010

Note that the ~ character can be represented by the trigraph ??-.

The 16-bit binary representation of ~0 is:
1111111111111111

IBM C The bitwise negation operator has been extended to handle
complex types. With a complex type, the operator computes the complex conjugate
of the operand by reversing the sign of the imaginary part. C IBM

Related reference:
“Trigraph sequences” on page 38

Address operator &
The & (address) operator yields a pointer to its operand. The operand must be an
lvalue, a function designator, or a qualified name. It cannot be a bit field.

C It cannot have the storage class register. C

If the operand is an lvalue or function, the resulting type is a pointer to the
expression type. For example, if the expression has type int, the result is a pointer
to an object having type int.

If the operand is a qualified name and the member is not static, the result is a
pointer to a member of class and has the same type as the member. The result is
not an lvalue.

If p_to_y is defined as a pointer to an int and y as an int, the following
expression assigns the address of the variable y to the pointer p_to_y :
p_to_y = &y;

C++ The ampersand symbol & is used in C++ to form declarators for lvalue
references in addition to being the address operator. The meanings are related but
not identical.
int target;
int &rTarg = target; // rTarg is an lvalue reference to an integer.

// The reference is initialized to refer to target.
void f(int*& p); // p is an lvalue reference to a pointer

If you take the address of a reference, it returns the address of its target. Using the
previous declarations, &rTarg is the same memory address as &target.

You may take the address of a register variable.

You can use the & operator with overloaded functions only in an initialization or
assignment where the left side uniquely determines which version of the
overloaded function is used. C++

Related reference:
“Indirection operator *” on page 155
“Pointers” on page 100
“References (C++ only)” on page 107
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Indirection operator *
The * (indirection) operator determines the value referred to by the pointer-type
operand. The operand can be a pointer to an incomplete type that is not cv void.
The lvalue thus obtained cannot be converted to a C++11 prvalue C++11

rvalue. If the operand points to an object, the operation yields an lvalue referring
to that object. If the operand points to a function, the result is C a function
designator C C++ an lvalue referring to the object to which the operand
points C++ . Arrays and functions are converted to pointers.

The type of the operand determines the type of the result. For example, if the
operand is a pointer to an int, the result has type int.

Do not apply the indirection operator to any pointer that contains an address that
is not valid, such as NULL. The result is not defined.

If p_to_y is defined as a pointer to an int and y as an int, the expressions:
p_to_y = &y;
*p_to_y = 3;

cause the variable y to receive the value 3.
Related reference:
“Arrays” on page 104
“Pointers” on page 100

The typeid operator (C++ only)
The typeid operator provides a program with the ability to retrieve the actual
derived type of the object referred to by a pointer or a reference. This operator,
along with the dynamic_cast operator, are provided for runtime type identification
(RTTI) support in C++.

typeid operator syntax

�� typeid ( expr )
type-name

��

The typeid operator returns an lvalue of type const std::type_info that
represents the type of expression expr. You must include the standard template
library header <typeinfo> to use the typeid operator.

If expr is a reference or a dereferenced pointer to a polymorphic class, typeid will
return a type_info object that represents the object that the reference or pointer
denotes at run time. If it is not a polymorphic class, typeid will return a type_info
object that represents the type of the reference or dereferenced pointer. The
following example demonstrates this:
#include <iostream>
#include <typeinfo>
using namespace std;

struct A { virtual ~A() { } };
struct B : A { };

struct C { };
struct D : C { };

int main() {
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B bobj;
A* ap = &bobj;
A& ar = bobj;
cout << "ap: " << typeid(*ap).name() << endl;
cout << "ar: " << typeid(ar).name() << endl;

D dobj;
C* cp = &dobj;
C& cr = dobj;
cout << "cp: " << typeid(*cp).name() << endl;
cout << "cr: " << typeid(cr).name() << endl;

}

The following is the output of the above example:
ap: B
ar: B
cp: C
cr: C

Classes A and B are polymorphic; classes C and D are not. Although cp and cr refer
to an object of type D, typeid(*cp) and typeid(cr) return objects that represent
class C.

Lvalue-to-rvalue, array-to-pointer, and function-to-pointer conversions will not be
applied to expr. For example, the output of the following example will be int [10],
not int *:
#include <iostream>
#include <typeinfo>
using namespace std;

int main() {
int myArray[10];
cout << typeid(myArray).name() << endl;

}

If expr is a class type, that class must be completely defined.

The typeid operator ignores top-level const or volatile qualifiers.
Related reference:
“Type names” on page 99
“The typeof operator (IBM extension)” on page 159

The __alignof__ operator (IBM extension)
The __alignof__ operator is a language extension to C99 and Standard C++ that
returns the position to which its operand is aligned. The operand can be an
expression or a parenthesized type identifier. If the operand is an expression that
represents an lvalue, the number that is returned by __alignof__ represents the
alignment that the lvalue is known to have. The type of the expression is
determined at compile time, but the expression itself is not evaluated. If the
operand is a type, the number represents the alignment that is usually required for
the type on the target platform.

The __alignof__ operator cannot be applied to the following situations:
v An lvalue that represents a bit field
v A function type
v An undefined structure or class
v An incomplete type (such as void)
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__alignof__ operator syntax

�� __alignof__ unary_expression
( type-id )

��

If type-id is a reference or a referenced type, the result is the alignment of the
referenced type. If type-id is an array, the result is the alignment of the array
element type. If type-id is a fundamental type, the result is implementation-defined.

The sizeof operator
The sizeof operator yields the size in bytes of the operand, which can be an
expression or the parenthesized name of a type.

sizeof operator syntax

�� sizeof expr
( type-name )

��

The result for either kind of operand is not an lvalue, but a constant integer value.
The type of the result is the unsigned integral type size_t defined in the header
file stddef.h.

Except in preprocessor directives, you can use a sizeof expression wherever an
integral constant is required. One of the most common uses for the sizeof operator
is to determine the size of objects that are referred to during storage allocation,
input, and output functions.

Another use of sizeof is in porting code across platforms. You can use the sizeof
operator to determine the size that a data type represents. For example:
sizeof(int);

The sizeof operator applied to a type name yields the amount of memory that can
be used by an object of that type, including any internal or trailing padding.

Using the sizeof operator with a fixed-point decimal type results in the total
number of bytes that are occupied by the decimal type. z/OS XL C/C++
implements decimal data types using the native packed decimal format. Each digit
occupies half a byte. The sign occupies an additional half byte. The following
example gives you a result of 6 bytes:
sizeof(decimal(10,2));

For compound types, results are as follows:

Operand Result

An array The result is the total number of bytes in the array. For
example, in an array with 10 elements, the size is equal to 10
times the size of a single element. The compiler does not
convert the array to a pointer before evaluating the
expression.

C++ A class The result is always nonzero. It is equal to the number of
bytes in an object of that class, also including any padding

required for placing class objects in an array. C++

C++ A reference The result is the size of the referenced object. C++
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The sizeof operator cannot be applied to:
v A bit field
v A function type
v An undefined structure or class
v An incomplete type (such as void)

The sizeof operator applied to an expression yields the same result as if it had
been applied to only the name of the type of the expression. At compile time, the
compiler analyzes the expression to determine its type. None of the usual type
conversions that occur in the type analysis of the expression are directly
attributable to the sizeof operator. However, if the operand contains operators that
perform conversions, the compiler does take these conversions into consideration
in determining the type. For example, the second line of the following sample
causes the usual arithmetic conversions to be performed. Assuming that a short
uses 2 bytes of storage and an int uses 4 bytes,
short x; ... sizeof (x) /* the value of sizeof operator is 2 */
short x; ... sizeof (x + 1) /* value is 4, result of addition is type int */

The result of the expression x + 1 has type int and is equivalent to sizeof(int).
The value is also 4 if x has type char, short, int, or any enumeration typeof the
default enum size.

A variable length array can be the operand of a sizeof expression. In this case, the
operand is evaluated at run time, and the size is neither an integer constant nor a
constant expression, even though the size of each instance of a variable array does
not change during its lifetime.

C++11 sizeof... is a unary expression operator introduced by the variadic
template feature. This operator accepts an expression that names a parameter pack
as its operand. It then expands the parameter pack and returns the number of
arguments provided for the parameter pack. Consider the following example:
template<typename...T> void foo(T...args){

int v = sizeof...(args);
}

In this example, the variable v is assigned to the number of the arguments
provided for the parameter pack args.

Notes:

v The operand of the sizeof... operator must be an expression that names a
parameter pack.

v The operand of the sizeof operator cannot be an expression that names a
parameter pack or a pack expansion.

For more information, see “Variadic templates (C++11)” on page 468

C++11

Related reference:
“Type names” on page 99
“Integer constant expressions” on page 144
“Arrays” on page 104
“References (C++ only)” on page 107
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The typeof operator (IBM extension)
The typeof operator returns the type of its argument, which can be an expression
or a type. The language feature provides a way to derive the type from an
expression. Given an expression e, __typeof__(e) can be used anywhere a type
name is needed, for example in a declaration or in a cast. The alternate spelling of
the keyword, __typeof__, is recommended.

typeof operator syntax

�� __typeof__
typeof

( expr )
type-name

��

A typeof construct itself is not an expression, but the name of a type. A typeof
construct behaves like a type name defined using typedef, although the syntax
resembles that of sizeof.

The following examples illustrate its basic syntax. For an expression e:
int e;
__typeof__(e + 1) j; /* the same as declaring int j; */
e = (__typeof__(e)) f; /* the same as casting e = (int) f; */

Using a typeof construct is equivalent to declaring a typedef name. Given
typedef int T[2];
int i[2];

you can write
__typeof__(i) a; /* all three constructs have the same meaning */
__typeof__(int[2]) a;
__typeof__(T) a;

The behavior of the code is as if you had declared int a[2];.

For a bit field, typeof represents the underlying type of the bit field. For example,
int m:2;, the typeof(m) is int. Since the bit field property is not reserved, n in
typeof(m) n; is the same as int n, but not int n:2.

The typeof operator can be nested inside sizeof and itself. The following
declarations of arr as an array of pointers to int are equivalent:
int *arr[10]; /* traditional C declaration */
__typeof__(__typeof__ (int *)[10]) a; /* equivalent declaration */

The typeof operator can be useful in macro definitions where expression e is a
parameter. For example,
#define SWAP(a,b) { __typeof__(a) temp; temp = a; a = b; b = temp; }

Notes:

1. The typeof and __typeof__ keywords are supported as follows:
v The __typeof__ keyword is recognized in C under LANGLVL(EXTC89|

EXTC99|EXTENDED), and in C++ under the LANGLVL(EXTENDED).
v The typeof keyword is only recognized when the KEYWORD(TYPEOF)

compiler option is in effect.
Related reference:
“The decltype(expression) type specifier (C++11)” on page 78
“Type names” on page 99
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“typedef definitions” on page 74

The digitsof and precisionof operators (C only)
The digitsof and precisionof operators yield information about fixed-point
decimal types or an expressions of the decimal type. The decimal.h header file
defines the digitsof and precisionof macros.

The digitsof operator gives the number of significant digits of an object, and
precisionof gives the number of decimal digits. That is,

digitsof(decimal(n,p)) = n
precisionof(decimal(n,p)) = p

The results of the digitsof and precisionof operators are integer constants.
Related reference:
Fixed-point decimal literals (z/OS only)
“Fixed point decimal types (C only)” on page 58

The __real__ and __imag__ operators (IBM extension)
z/OS XL C/C++ extends the C99 standards to support the unary operators
__real__ and __imag__. These operators provide the ability to extract the real and
imaginary parts of a complex type. These extensions have been implemented to
ease the porting applications developed with GNU C.

__real__ and __imag__ operator syntax

�� __real__
__imag__

( var_identifier ) ��

The var_identifier is the name of a previously declared complex variable. The
__real__ operator returns the real part of the complex variable, while the __imag__
operator returns the imaginary part of the variable. If the operand of these
operators is an lvalue, the resulting expression can be used in any context where
lvalues are allowed. They are especially useful in initializations of complex
variables, and as arguments to calls to library functions such as printf and scanf
that have no format specifiers for complex types. For example:
float _Complex myvar;
__imag__(myvar) = 2.0f;
__real__(myvar) = 3.0f;

initializes the imaginary part of the complex variable myvar to 2.0i and the real part
to 3.0, and
printf("myvar = %f + %f * i\n", __real__(myvar), __imag__(myvar));

prints:
myvar = 3.000000 + 2.000000 * i

Related reference:
Complex literals (C only)
Complex floating-point types (C only)

Binary expressions
A binary expression contains two operands separated by one operator.
v “Assignment operators” on page 161
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All binary operators have left-to-right associativity, but not all binary operators
have the same precedence. The ranking and precedence rules for binary operators
is summarized in Table 30 on page 192.

The order in which the operands of most binary operators are evaluated is not
specified. To ensure correct results, avoid creating binary expressions that depend
on the order in which the compiler evaluates the operands.

As indicated in the descriptions of the operators, the usual arithmetic conversions
are performed on the operands of most binary expressions.

The supported binary operators are as follows:
v “Assignment operators”
v “Multiplication operator *” on page 163
v “Division operator /” on page 163
v “Remainder operator %” on page 164
v “Addition operator +” on page 164
v “Subtraction operator -” on page 164
v “Bitwise left and right shift operators << >>” on page 165
v “Relational operators < > <= >=” on page 165
v “Equality and inequality operators == !=” on page 167
v “Bitwise AND operator &” on page 168
v “Bitwise exclusive OR operator ^” on page 168
v “Bitwise inclusive OR operator |” on page 169
v “Logical AND operator &&” on page 169
v “Logical OR operator ||” on page 170
v “Array subscripting operator [ ]” on page 171
v

v “Comma operator ,” on page 172
v “Pointer to member operators .* ->* (C++ only)” on page 173
Related reference:
“Lvalues and rvalues” on page 141
“Arithmetic conversions and promotions” on page 129

Assignment operators
An assignment expression stores a value in the object designated by the left operand.
There are two types of assignment operators:
v “Simple assignment operator =” on page 162
v “Compound assignment operators” on page 162

The left operand in all assignment expressions must be a modifiable lvalue. The
type of the expression is the type of the left operand. The value of the expression
is the value of the left operand after the assignment has completed.

C The result of an assignment expression is not an lvalue. C

C++ The result of an assignment expression is an lvalue. C++

All assignment operators have the same precedence and have right-to-left
associativity.
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Simple assignment operator =

The simple assignment operator has the following form:

lvalue = expr

The operator stores the value of the right operand expr in the object designated by
the left operand lvalue.

If the left operand is not a class type, the right operand is implicitly converted to
the type of the left operand. This converted type is not be qualified by const or
volatile.

If the left operand is a class type, that type must be complete. The copy
assignment operator of the left operand is called.

If the left operand is an object of reference type, the compiler assigns the value of
the right operand to the object denoted by the reference.

IBM A packed structure or union can be assigned to a nonpacked structure or
union of the same type. A nonpacked structure or union can be assigned to a
packed structure or union of the same type.

If one operand is packed and the other is not, z/OS XL C/C++ remaps the layout
of the right operand to match the layout of the left. This remapping of structures
might degrade performance. For efficiency, when you perform assignment
operations with structures or unions, you should ensure that both operands are
either packed or nonpacked.

Note: If you assign pointers to structures or unions, the objects they point to must
both be either packed or nonpacked. See “Initialization of pointers” on page 116
for more information on assignments with pointers. IBM

Compound assignment operators

The compound assignment operators consist of a binary operator and the simple
assignment operator. They perform the operation of the binary operator on both
operands and store the result of that operation into the left operand, which must
be a modifiable lvalue.

The following table shows the operand types of compound assignment
expressions:

Operator Left operand Right operand

+= or -= Arithmetic Arithmetic

+= or -= Pointer Integral type

*=, /=, and %= Arithmetic Arithmetic

<<=, >>=, &=, ^=, and |= Integral type Integral type

Note that the expression
a *= b + c

is equivalent to
a = a * (b + c)

162 z/OS V2R1.0 XL C/C++ Language Reference



and not
a = a * b + c

The following table lists the compound assignment operators and shows an
expression using each operator:

Operator Example Equivalent expression

+= index += 2 index = index + 2

-= *pointer -= 1 *pointer = *pointer - 1

*= bonus *= increase bonus = bonus * increase

/= time /= hours time = time / hours

%= allowance %= 1000 allowance = allowance % 1000

<<= result <<= num result = result << num

>>= form >>= 1 form = form >> 1

&= mask &= 2 mask = mask & 2

^= test ^= pre_test test = test ^ pre_test

|= flag |= ON flag = flag | ON

Although the equivalent expression column shows the left operands (from the
example column) twice, it is in effect evaluated only once.

C++ In addition to the table of operand types, an expression is implicitly
converted to the cv-unqualified type of the left operand if it is not of class type.
However, if the left operand is of class type, the class becomes complete, and
assignment to objects of the class behaves as a copy assignment operation.
Compound expressions and conditional expressions are lvalues in C++, which
allows them to be a left operand in a compound assignment expression.
Related reference:
“Lvalues and rvalues” on page 141
“Pointers” on page 100
“Type qualifiers” on page 85

Multiplication operator *
The * (multiplication) operator yields the product of its operands. The operands
must have an arithmetic or enumeration type. The result is not an lvalue. The
usual arithmetic conversions on the operands are performed.

Because the multiplication operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one multiplication operator. For example, the expression:
sites * number * cost

can be interpreted in any of the following ways:
(sites * number) * cost
sites * (number * cost)
(cost * sites) * number

Division operator /
The / (division) operator yields the algebraic quotient of its operands. If both
operands are integers, any fractional part (remainder) is discarded. Throwing away
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the fractional part is often called truncation toward zero. The operands must have an
arithmetic or enumeration type. The right operand may not be zero: the result is
undefined if the right operand evaluates to 0. For example, expression 7 / 4 yields
the value 1 (rather than 1.75 or 2). The result is not an lvalue.

If either operand is negative, the result is rounded towards zero.

The usual arithmetic conversions on the operands are performed.

Remainder operator %
The % (remainder) operator yields the remainder from the division of the left
operand by the right operand. For example, the expression 5 % 3 yields 2. The
result is not an lvalue.

Both operands must have an integral or enumeration type. If the right operand
evaluates to 0, the result is undefined. If either operand has a negative value, the
result is such that the following expression always yields the value of a if b is not 0
and a/b is representable:

( a / b ) * b + a %b;

The usual arithmetic conversions on the operands are performed.

Addition operator +
The + (addition) operator yields the sum of its operands. Both operands must have
an arithmetic type, or one operand must be a pointer to an object type and the
other operand must have an integral or enumeration type.

When both operands have an arithmetic type, the usual arithmetic conversions on
the operands are performed. The result has the type produced by the conversions
on the operands and is not an lvalue.

A pointer to an object in an array can be added to a value having integral type.
The result is a pointer of the same type as the pointer operand. The result refers to
another element in the array, offset from the original element by the amount of the
integral value treated as a subscript. If the resulting pointer points to storage
outside the array, other than the first location outside the array, the result is
undefined. A pointer to one element past the end of an array cannot be used to
access the memory content at that address. The compiler does not provide
boundary checking on the pointers. For example, after the addition, ptr points to
the third element of the array:

int array[5];
int *ptr;
ptr = array + 2;

Related reference:
“Pointer arithmetic” on page 101
“Pointer conversions” on page 137

Subtraction operator -
The - (subtraction) operator yields the difference of its operands. Both operands
must have an arithmetic or enumeration type, or the left operand must have a
pointer type and the right operand must have the same pointer type or an integral
or enumeration type. You cannot subtract a pointer from an integral value.
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When both operands have an arithmetic type, the usual arithmetic conversions on
the operands are performed. The result has the type produced by the conversions
on the operands and is not an lvalue.

When the left operand is a pointer and the right operand has an integral type, the
compiler converts the value of the right to an address offset. The result is a pointer
of the same type as the pointer operand.

If both operands are pointers to elements in the same array, the result is the
number of objects separating the two addresses. The number is of type ptrdiff_t,
which is defined in the header file stddef.h. Behavior is undefined if the pointers
do not refer to objects in the same array.
Related reference:
“Pointer arithmetic” on page 101
“Pointer conversions” on page 137

Bitwise left and right shift operators << >>
The bitwise shift operators move the bit values of a binary object. The left operand
specifies the value to be shifted. The right operand specifies the number of
positions that the bits in the value are to be shifted. The result is not an lvalue.
Both operands have the same precedence and are left-to-right associative.

Operator Usage

<< Indicates the bits are to be shifted to the left.

>> Indicates the bits are to be shifted to the right.

Each operand must have an integral or enumeration type. The compiler performs
integral promotions on the operands, and then the right operand is converted to
type int. The result has the same type as the left operand (after the arithmetic
conversions).

The right operand should not have a negative value or a value that is greater than
or equal to the width in bits of the expression being shifted. The result of bitwise
shifts on such values is unpredictable.

If the right operand has the value 0, the result is the value of the left operand
(after the usual arithmetic conversions).

The << operator fills vacated bits with zeros. For example, if left_op has the value
4019, the bit pattern (in 16-bit format) of left_op is:
0000111110110011

The expression left_op << 3 yields:
0111110110011000

The expression left_op >> 3 yields:
0000000111110110

Relational operators < > <= >=
The relational operators compare two operands and determine the validity of a
relationship. The following table describes the four relational operators:
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Operator Usage

< Indicates whether the value of the left operand is less than the
value of the right operand.

> Indicates whether the value of the left operand is greater than
the value of the right operand.

<= Indicates whether the value of the left operand is less than or
equal to the value of the right operand.

>= Indicates whether the value of the left operand is greater than
or equal to the value of the right operand.

Both operands must have arithmetic or enumeration types or be pointers to the
same type.

C The type of the result is int and has the values 1 if the specified
relationship is true, and 0 if false. C

C++ The type of the result is bool and has the values true or false. C++

The result is not an lvalue.

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

When the operands are pointers, the result is determined by the locations of the
objects to which the pointers refer. If the pointers do not refer to objects in the
same array, the result is not defined.

A pointer can be compared to a constant expression that evaluates to 0. You can
also compare a pointer to a pointer of type void*. The pointer is converted to a
pointer of type void*.

If two pointers refer to the same object, they are considered equal. If two pointers
refer to nonstatic members of the same object, the pointer to the object declared
later is greater, provided that they are not separated by an access specifier;
otherwise the comparison is undefined. If two pointers refer to data members of
the same union, they have the same address value.

If two pointers refer to elements of the same array, or to the first element beyond
the last element of an array, the pointer to the element with the higher subscript
value is greater.

You can only compare members of the same object with relational operators.

Relational operators have left-to-right associativity. For example, the expression:
a < b <= c

is interpreted as:
(a < b) <= c

If the value of a is less than the value of b, the first relationship yields 1 in C, or
true in C++. The compiler then compares the value true (or 1) with the value of c
(integral promotions are carried out if needed).
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Equality and inequality operators == !=
The equality operators, like the relational operators, compare two operands for the
validity of a relationship. The equality operators, however, have a lower
precedence than the relational operators. The following table describes the two
equality operators:

Operator Usage

== Indicates whether the value of the left operand is equal to the
value of the right operand.

!= Indicates whether the value of the left operand is not equal to
the value of the right operand.

Both operands must have arithmetic or enumeration types or be pointers to the
same type, or one operand must have a pointer type and the other operand must
be a pointer to void or a null pointer.

C The type of the result is int and has the values 1 if the specified
relationship is true, and 0 if false. C++ The type of the result is bool and has
the values true or false.

C++ The type of the result is bool and has the values true or false. C++

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

If the operands are pointers, the result is determined by the locations of the objects
to which the pointers refer.

If one operand is a pointer and the other operand is an integer having the value 0,
the == expression is true only if the pointer operand evaluates to NULL. The !=
operator evaluates to true if the pointer operand does not evaluate to NULL.

You can also use the equality operators to compare pointers to members that are of
the same type but do not belong to the same object. The following expressions
contain examples of equality and relational operators:
time < max_time == status < complete
letter != EOF

Note: The equality operator (==) should not be confused with the assignment (=)
operator.

For example,

if (x == 3)
evaluates to true (or 1) if x is equal to three. Equality tests like this should
be coded with spaces between the operator and the operands to prevent
unintentional assignments.

while

if (x = 3)
is taken to be true because (x = 3) evaluates to a nonzero value (3). The
expression also assigns the value 3 to x.

Related reference:
Simple assignment operator =
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Bitwise AND operator &
The & (bitwise AND) operator compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1's, the corresponding bit
of the result is set to 1. Otherwise, it sets the corresponding result bit to 0.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands.

Because the bitwise AND operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise AND operator.

The following example shows the values of a, b, and the result of a & b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100

bit pattern of b 0000000000101110
bit pattern of a & b 0000000000001100

Note: The bitwise AND (&) should not be confused with the logical AND. (&&)
operator. For example,

1 & 4 evaluates to 0
while

1 && 4 evaluates to true

Bitwise exclusive OR operator ^
The bitwise exclusive OR operator (in EBCDIC, the ^ symbol is represented by the
¬ symbol) compares each bit of its first operand to the corresponding bit of the
second operand. If both bits are 1's or both bits are 0's, the corresponding bit of the
result is set to 0. Otherwise, it sets the corresponding result bit to 1.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands and is not an lvalue.

Because the bitwise exclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise exclusive OR operator. Note that the ^ character can be
represented by the trigraph ??’.

The following example shows the values of a, b, and the result of a ^ b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100

bit pattern of b 0000000000101110
bit pattern of a ^ b 0000000001110010

Related reference:
“Trigraph sequences” on page 38
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Bitwise inclusive OR operator |
The | (bitwise inclusive OR) operator compares the values (in binary format) of
each operand and yields a value whose bit pattern shows which bits in either of
the operands has the value 1. If both of the bits are 0, the result of that bit is 0;
otherwise, the result is 1.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands and is not an lvalue.

Because the bitwise inclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise inclusive OR operator. Note that the | character can be
represented by the trigraph ??!.

The following example shows the values of a, b, and the result of a | b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100

bit pattern of b 0000000000101110
bit pattern of a | b 0000000001111110

Note: The bitwise OR (|) should not be confused with the logical OR (||) operator.
For example,

1 | 4 evaluates to 5
while

1 || 4 evaluates to true
Related reference:
“Trigraph sequences” on page 38

Logical AND operator &&
The && (logical AND) operator indicates whether both operands are true.

C If both operands have nonzero values, the result has the value 1.
Otherwise, the result has the value 0. The type of the result is int. Both operands
must have an arithmetic or pointer type. The usual arithmetic conversions on each
operand are performed.

C++ If both operands have values of true, the result has the value true.
Otherwise, the result has the value false. Both operands are implicitly converted
to bool and the result type is bool.

Unlike the & (bitwise AND) operator, the && operator guarantees left-to-right
evaluation of the operands. If the left operand evaluates to 0 (or false), the right
operand is not evaluated.

The following examples show how the expressions that contain the logical AND
operator are evaluated:

Expression Result

1 && 0 false or 0
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Expression Result

1 && 4 true or 1

0 && 0 false or 0

The following example uses the logical AND operator to avoid division by zero:
(y != 0) && (x / y)

The expression x / y is not evaluated when y != 0 evaluates to 0 (or false).

Note: The logical AND (&&) should not be confused with the bitwise AND (&)
operator. For example:

1 && 4 evaluates to 1 (or true)
while

1 & 4 evaluates to 0

Logical OR operator ||
The || (logical OR) operator indicates whether either operand is true.

C If either of the operands has a nonzero value, the result has the value 1.
Otherwise, the result has the value 0. The type of the result is int. Both operands
must have an arithmetic or pointer type. The usual arithmetic conversions on each
operand are performed. C

C++ If either operand has a value of true, the result has the value true.
Otherwise, the result has the value false. Both operands are implicitly converted
to bool and the result type is bool. C++

Unlike the | (bitwise inclusive OR) operator, the || operator guarantees
left-to-right evaluation of the operands. If the left operand has a nonzero (or true)
value, the right operand is not evaluated.

The following examples show how expressions that contain the logical OR
operator are evaluated:

Expression Result

1 || 0 true or 1

1 || 4 true or 1

0 || 0 false or 0

The following example uses the logical OR operator to conditionally increment y:
++x || ++y;

The expression ++y is not evaluated when the expression ++x evaluates to a
nonzero (or true) quantity.

Note: The logical OR (||) should not be confused with the bitwise OR (|) operator.
For example:
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1 || 4 evaluates to 1 (or true)
while

1 | 4 evaluates to 5

Array subscripting operator [ ]
A postfix expression followed by an expression in [ ] (brackets) specifies an
element of an array. The expression within the brackets is referred to as a subscript.
The first element of an array has the subscript zero.

By definition, the expression a[b] is equivalent to the expression *((a) + (b)),
and, because addition is associative, it is also equivalent to b[a]. Between
expressions a and b, one must be a pointer to a type T, and the other must have
integral or enumeration type. The result of an array subscript is an lvalue. The
following example demonstrates this:
#include <stdio.h>

int main(void) {
int a[3] = { 10, 20, 30 };
printf("a[0] = %d\n", a[0]);
printf("a[1] = %d\n", 1[a]);
printf("a[2] = %d\n", *(2 + a));
return 0;

}

See the output of the above example:
a[0] = 10
a[1] = 20
a[2] = 30

C++ The above restrictions on the types of expressions required by the
subscript operator, as well as the relationship between the subscript operator and
pointer arithmetic, do not apply if you overload operator[] of a class. C++

The first element of each array has the subscript 0. The expression contract[35]
refers to the 36th element in the array contract.

In a multidimensional array, you can reference each element (in the order of
increasing storage locations) by incrementing the right-most subscript most
frequently.

For example, the following statement gives the value 100 to each element in the
array code[4][3][6]:
for (first = 0; first < 4; ++first)

{
for (second = 0; second < 3; ++second)

{
for (third = 0; third < 6; ++third)

{
code[first][second][third] =
100;
}

}
}

C C99 allows array subscripting on arrays that are not lvalues. The
following example is valid in C99:
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struct trio{int a[3];};
struct trio f();
foo (int index)
{

return f().a[index];
}

C

Related reference:
“Pointers” on page 100
“Integral types” on page 54
“Lvalues and rvalues” on page 141
“Arrays” on page 104
“Overloading subscripting” on page 336
“Pointer arithmetic” on page 101

Comma operator ,
A comma expression contains two operands of any type separated by a comma and
has left-to-right associativity. The left operand is fully evaluated, possibly
producing side effects, and its value, if there is one, is discarded. The right
operand is then evaluated. The type and value of the result of a comma expression
are those of its right operand, after the usual unary conversions.

C The result of a comma expression is not an lvalue. C

C++ In C++, the result is an lvalue if the right operand is an lvalue. The
following statements are equivalent:
r = (a,b,...,c);
a; b; r = c;

The difference is that the comma operator may be suitable for expression contexts,
such as loop control expressions.

Similarly, the address of a compound expression can be taken if the right operand
is an lvalue.
&(a, b)
a, &b

C++

Any number of expressions separated by commas can form a single expression
because the comma operator is associative. The use of the comma operator
guarantees that the subexpressions will be evaluated in left-to-right order, and the
value of the last becomes the value of the entire expression. In the following
example, if omega has the value 11, the expression increments delta and assigns the
value 3 to alpha:
alpha = (delta++, omega % 4);

A sequence point occurs after the evaluation of the first operand. The value of
delta is discarded. Similarly, in the following example, the value of the expression:
intensity++, shade * increment, rotate(direction);

is the value of the expression:
rotate(direction)
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In some contexts where the comma character is used, parentheses are required to
avoid ambiguity. For example, the function
f(a, (t = 3, t + 2), c);

has only three arguments: the value of a, the value 5, and the value of c. Other
contexts in which parentheses are required are in field-length expressions in
structure and union declarator lists, enumeration value expressions in enumeration
declarator lists, and initialization expressions in declarations and initializers.

In the previous example, the comma is used to separate the argument expressions
in a function invocation. In this context, its use does not guarantee the order of
evaluation (left to right) of the function arguments.

The primary use of the comma operator is to produce side effects in the following
situations:
v Calling a function
v Entering or repeating an iteration loop
v Testing a condition
v Other situations where a side effect is required but the result of the expression is

not immediately needed

The following table gives some examples of the uses of the comma operator.

Statement Effects

for (i=0; i<2; ++i, f() ); A for statement in which i is incremented and f()
is called at each iteration.

if ( f(), ++i, i>1 ) { /* ...
*/ }

An if statement in which function f() is called,
variable i is incremented, and variable i is tested
against a value. The first two expressions within
this comma expression are evaluated before the
expression i>1. Regardless of the results of the first
two expressions, the third is evaluated and its result
determines whether the if statement is processed.

func( ( ++a, f(a) ) ); A function call to func() in which a is incremented,
the resulting value is passed to a function f(), and
the return value of f() is passed to func(). The
function func() is passed only a single argument,
because the comma expression is enclosed in
parentheses within the function argument list.

Pointer to member operators .* ->* (C++ only)
There are two pointer to member operators: .* and ->*.

The .* operator is used to dereference pointers to class members. The first operand
must be of class type. If the type of the first operand is class type T, or is a class
that has been derived from class type T, the second operand must be a pointer to a
member of a class type T.

The ->* operator is also used to dereference pointers to class members. The first
operand must be a pointer to a class type. If the type of the first operand is a
pointer to class type T, or is a pointer to a class derived from class type T, the
second operand must be a pointer to a member of class type T.
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The .* and ->* operators bind the second operand to the first, resulting in an
object or function of the type specified by the second operand.

If the result of .* or ->* is a function, you can only use the result as the operand
for the ( ) (function call) operator. If the second operand is an lvalue, the result of
.* or ->* is an lvalue.
Related reference:
“Class member lists” on page 357
“Pointers to members” on page 362

Conditional expressions
A conditional expression is a compound expression that contains a condition that is
implicitly converted to type bool in C++(operand1), an expression to be evaluated if
the condition evaluates to true (operand2), and an expression to be evaluated if the
condition has the value false (operand3).

The conditional expression contains one two-part operator. The ? symbol follows
the condition, and the : symbol appears between the two action expressions. All
expressions that occur between the ? and : are treated as one expression.

The first operand must have a scalar type. The type of the second and third
operands must be one of the following:
v An arithmetic type
v A compatible pointer, structure, or union type
v void

The second and third operands can also be a pointer or a null pointer constant.

Two objects are compatible when they have the same type but not necessarily the
same type qualifiers (volatile or const). Pointer objects are compatible if they
have the same type or are pointers to void.

The first operand is evaluated, and its value determines whether the second or
third operand is evaluated:
v If the value is true, the second operand is evaluated.
v If the value is false, the third operand is evaluated.

The result is the value of the second or third operand.

If the second and third expressions evaluate to arithmetic types, the usual
arithmetic conversions are performed on the values. The types of the second and
third operands determine the type of the result.

Conditional expressions have right-to-left associativity with respect to their first
and third operands. The leftmost operand is evaluated first, and then only one of
the remaining two operands is evaluated. The following expressions are equivalent:
a ? b : c ? d : e ? f : g
a ? b : (c ? d : (e ? f : g))
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Types in conditional C expressions (C only)
In C, a conditional expression is not an lvalue, nor is its result.

Table 26. Types of operands and results in conditional C expressions

Type of one operand Type of other operand Type of result

Arithmetic Arithmetic Arithmetic type after usual
arithmetic conversions

Structure or union type Compatible structure or
union type

Structure or union type with
all the qualifiers on both
operands

void void void

Pointer to compatible type Pointer to compatible type Pointer to type with all the
qualifiers specified for the
composite type

Pointer to type NULL pointer (the constant 0) Pointer to type

Pointer to object or
incomplete type

Pointer to void Pointer to void with all the
qualifiers specified for the
type

Types in conditional C++ expressions (C++ only)
Table 27. Types of operands and results in C++ conditional expressions

Type of one operand Type of other operand Type of result

Reference to type Reference to type Reference after usual
reference conversions

Class T Class T Class T

Class T Class X Class type for which a
conversion exists. If more
than one possible conversion
exist, the result is ambiguous.

throw expression Other (type, pointer,
reference)

Type of the expression that is
not a throw expression

Examples of conditional expressions
The following expression determines which variable has the greater value, y or z,
and assigns the greater value to the variable x:
x = (y > z) ? y : z;

The following statement is equivalent to the previous expression.
if (y > z)

x = y;
else

x = z;

The following expression calls the function printf, which receives the value of the
variable c, if c evaluates to a digit. Otherwise, printf receives the character
constant ’x’.
printf(" c = %c\n", isdigit(c) ? c : ’x’);
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If the last operand of a conditional expression contains an assignment operator, use
parentheses to ensure the expression evaluates properly. For example, the =
operator has lower precedence than the ?: operator in the following expression:
int i,j,k;
(i == 7) ? j ++ : k = j;

The compiler will interpret this expression as if it were parenthesized this way:
int i,j,k;
((i == 7) ? j ++ : k) = j;

That is, k is treated as the third operand, not the entire assignment expression k =
j.

To assign the value of j to k when i == 7 is false, enclose the last operand in
parentheses:
int i,j,k;
(i == 7) ? j ++ : (k = j);

Cast expressions
A cast operator is used for explicit type conversions. It converts the value of an
expression to a specified type.

The following cast operators are supported:

Cast operator ()

Cast expression syntax

�� ( type ) expression ��

C In C, the result of the cast operation is not an lvalue. C

C++ In C++, the cast result belongs to one of the following value categories:
v If type is an lvalue reference type C++11 or an rvalue reference to a function

type C++11 , the cast result is an lvalue.
v C++11 If type is an rvalue reference to an object type, the cast result is an

xvalue. C++11

v In all other cases, the cast result is a C++11 (prvalue) C++11 rvalue.

C++

The following example demonstrates the use of the cast operator to dynamically
create an integer array of size 10:
#include <stdlib.h>

int main(void) {
int* myArray = (int*) malloc(10 * sizeof(int));
free(myArray);
return 0;

}

The malloc library function returns a void pointer that points to memory that
holds an object of the size of its argument. The statement int* myArray = (int*)
malloc(10 * sizeof(int)) has the following steps:
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v Creates a void pointer that points to memory that can hold ten integers.
v Converts that void pointer into an integer pointer with the use of the cast

operator.
v Assigns that integer pointer to myArray.

C++ In C++ you can also use the following objects in cast expressions:
v Function-style casts
v C++ conversion operators, such as static_cast.

Function-style notation converts the value of expression to the type type:
type(expression)

The following example shows the same value cast with a C-style cast, the C++
function-style cast, and a C++ cast operator:
#include <iostream>
using namespace std;

int main() {
float num = 98.76;
int x1 = (int) num;
int x2 = int(num);
int x3 = static_cast<int>(num);

cout << "x1 = " << x1 << endl;
cout << "x2 = " << x2 << endl;
cout << "x3 = " << x3 << endl;

}

See the output of the above example:
x1 = 98
x2 = 98
x3 = 98

The integer x1 is assigned a value in which num has been explicitly converted to an
int with the C-style cast. The integer x2 is assigned a value that has been
converted with the function-style cast. The integer x3 is assigned a value that has
been converted with the static_cast operator.

For C++, the operand of a cast expression can have class type. If the operand has
class type, it can be cast to any type for which the class has a user-defined
conversion function. Casts can invoke a constructor, if the target type is a class, or
they can invoke a conversion function, if the source type is a class. They can be
ambiguous if both conditions hold. C++

Related reference:
“Structures and unions” on page 60
“Type names” on page 99
“Conversion functions” on page 426
“Conversion constructors” on page 424
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

The static_cast operator (C++ only)
The static_cast operator converts a given expression to a specified type.
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static_cast operator syntax

�� static_cast < Type > ( expression ) ��

C++11 With the right angle bracket feature, you may specify a template_id as
Type in the static_cast operator with the >> token in place of two consecutive >
tokens. For details, see “Class templates” on page 441. C++11

The result of static_cast<Type>(expression) belongs to one of the following value
categories:
v If Type is an lvalue reference type C++11 or an rvalue reference to a function

type C++11 , static_cast<Type>(expression) is an lvalue.
v C++11 If Type is an rvalue reference to an object type,

static_cast<Type>(expression) is an xvalue. C++11

v In all other cases, static_cast<Type>(expression) is a C++11 (prvalue)
C++11 rvalue.

An example of the static_cast operator:
#include <iostream>
using namespace std;

int main() {
int j = 41;
int v = 4;
float m = j/v;
float d = static_cast<float>(j)/v;
cout << "m = " << m << endl;
cout << "d = " << d << endl;

}

The output of this example is:
m = 10
d = 10.25

In this example, m = j/v; produces an answer of type int because both j and v are
integers. Conversely, d = static_cast<float>(j)/v; produces an answer of type
float. The static_cast operator converts variable j to type float. This allows the
compiler to generate a division with an answer of type float. All static_cast
operators resolve at compile time and do not remove any const or volatile
modifiers.

Applying the static_cast operator to a null pointer converts it to a null pointer
value of the target type.

The compiler supports the following types of cast operations:
v An lvalue of type A to type B&, and the cast result is an lvalue of type B

v C++11 An lvalue or xvalue of type A to type B&&, and the cast result is an
xvalue of type B C++11

v A C++11 (prvalue) C++11 rvalue of pointer to A to pointer to B

v C++11 An lvalue of type A to type B&& if an xvalue of type A can be bound
directly to a reference of type B&& C++11

v An expression e to type T if the direct initialization T t(e) is valid.

To support the first three cast operations, the following conditions must be
satisfied:
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v A is a base class of B.
v There exists a standard conversion from a pointer to type B to a pointer to type

A.
v Type B is the same as or more cv-qualified than type A.
v A is not a virtual base class or a base class of a virtual base class of B.

You can cast a C++11 (prvalue) C++11 rvalue of a pointer to member of A
whose type is cv1 T to a C++11 (prvalue) C++11 rvalue of a pointer to member
of B whose type is cv2 T if the following conditions are satisfied:
v B is a base class of A.
v There exists a standard conversion from a pointer to member of B whose type is

T to a pointer to member of A whose type is T.
v cv2 is the same or more cv-qualification than cv1.

You can explicitly convert a pointer to cv1 void to a pointer to cv2 void if cv2 is
the same or more cv-qualification than cv1.
Related reference:
“User-defined conversions” on page 423
“Type-based aliasing” on page 102
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

The reinterpret_cast operator (C++ only)
A reinterpret_cast operator handles conversions between unrelated types.

reinterpret_cast operator syntax

�� reinterpret_cast < Type > ( expression ) ��

C++11 With the right angle bracket feature, you may specify a template_id as
Type in the reinterpret_cast operator with the >> token in place of two
consecutive > tokens. For details, see “Class templates” on page 441. C++11

The result of reinterpret_cast<Type>(expression) belongs to one of the following
value categories:
v If Type is an lvalue reference type C++11 or an rvalue reference to a function

type C++11 , reinterpret_cast<Type>(expression) is an lvalue.
v C++11 If Type is an rvalue reference to an object type,

reinterpret_cast<Type>(expression) is an xvalue. C++11

v In all other cases, reinterpret_cast<Type>(expression) is a C++11 (prvalue)
C++11 rvalue.

The reinterpret_cast operator produces a value of a new type that has the same bit
pattern as its argument. You cannot cast away a const or volatile qualification.
You can explicitly perform the following conversions:
v A pointer to any integral type large enough to hold it
v A value of integral or enumeration type to a pointer
v A pointer to a function to a pointer to a function of a different type
v A pointer to an object to a pointer to an object of a different type
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v A pointer to a member to a pointer to a member of a different class or type, if
the types of the members are both function types or object types

A null pointer value is converted to the null pointer value of the destination type.

Given a type T and an lvalue expression x, the following two expressions for lvalue
references have different syntax but the same semantics:
v reinterpret_cast<T&>(x)

v *reinterpret_cast<T*>(&(x))

C++11 Given a type T and an lvalue expression x, the following two expressions
for rvalue references have different syntax but the same semantics:
v reinterpret_cast<T&&>(x)

v static_cast<T&&>(*reinterpret_cast<T*>(&(x)))

C++11

Reinterpreting one type of pointer as an incompatible type of pointer is usually
invalid. The reinterpret_cast operator, as well as the other named cast operators,
is more easily spotted than C-style casts, and highlights the paradox of a strongly
typed language that allows explicit casts.

The C++ compiler detects and quietly fixes most but not all violations. It is
important to remember that even though a program compiles, its source code may
not be completely correct. On some platforms, performance optimizations are
predicated on strict adherence to standard aliasing rules. Although the C++
compiler tries to help with type-based aliasing violations, it cannot detect all
possible cases.

The following example violates the aliasing rule, but executes as expected when
compiled unoptimized in C++ or in K&R C or with NOANSIALIAS. It also
successfully compiles optimized in C++ with ANSIALIAS, but does not necessarily
execute as expected. The offending line 7 causes an old or uninitialized value for x
to be printed.
1 extern int y = 7.;
2
3 int main() {
4 float x;
5 int i;
6 x = y;
7 i = *(int *) &x;
8 printf("i=%d. x=%f.\n", i, x);
9 }

The next code example contains an incorrect cast that the compiler cannot even
detect because the cast is across two different files.
1 /* separately compiled file 1 */
2 extern float f;
3 extern int * int_pointer_to_f = (int *) &f; /* suspicious cast */
4
5 /* separately compiled file 2 */
6 extern float f;
7 extern int * int_pointer_to_f;
8 f = 1.0;
9 int i = *int_pointer_to_f; /* no suspicious cast but wrong */

In line 8, there is no way for the compiler to know that f = 1.0 is storing into the
same object that int i = *int_pointer_to_f is loading from.
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Related reference:
“User-defined conversions” on page 423
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

The const_cast operator (C++ only)
A const_cast operator adds or removes a const or volatile modifier to or from a
type.

const_cast operator syntax

�� const_cast < Type > ( expression ) ��

C++11 With the right angle bracket feature, you may specify a template_id as
Type in the const_cast operator with the >> token in place of two consecutive >
tokens. For details, see “Class templates” on page 441. C++11

The result of const_cast<Type>(expression) belongs to one of the following value
categories:
v If Type is an lvalue reference to an object type, const_cast<Type>(expression) is

an lvalue.
v C++11 If Type is an rvalue reference to an object type,

const_cast<Type>(expression) is an xvalue. C++11

v In all other cases, const_cast<Type>(expression) is a C++11 (prvalue) C++11

rvalue.

Type and the type of expression may only differ with respect to their const and
volatile qualifiers. Their cast is resolved at compile time. A single const_cast
expression may add or remove any number of const or volatile modifiers.

If a pointer to T1 can be converted to a pointer to T2 using const_cast<T2>, where
T1 and T2 are object types, you can also make the following types of conversions:
v An lvalue of type T1 to an lvalue of type T2 using const_cast<T2&>

v C++11 An lvalue or xvalue of type T1 to an xvalue of type T2 using
const_cast<T2&&> C++11

v C++11 A prvalue of class type T1 to an xvalue of type T2 using
const_cast<T2&&> C++11

If a conversion from a C++11 (prvalue) C++11 rvalue of type pointer to T1 to
type pointer to T2 casts away constness, the following types of conversions also
cast away constness:
v An lvalue of type T1 to an lvalue of type T2

v C++11 An expression of type T1 to an xvalue of type T2 C++11

v A C++11 (prvalue) C++11 rvalue of type pointer to data member of X of type
T1 to type pointer to data member of Y of type T2

Types cannot be defined within const_cast.

The following demonstrates the use of the const_cast operator:
#include <iostream>
using namespace std;
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void f(int* p) {
cout << *p << endl;

}

int main(void) {
const int a = 10;
const int* b = &a;

// Function f() expects int*, not const int*
// f(b);
int* c = const_cast<int*>(b);
f(c);

// Lvalue is const
// *b = 20;

// Undefined behavior
// *c = 30;

int a1 = 40;
const int* b1 = &a1;
int* c1 = const_cast<int*>(b1);

// Integer a1, the object referred to by c1, has
// not been declared const
*c1 = 50;

return 0;
}

The compiler does not allow the function call f(b). Function f() expects a pointer
to an int, not a const int. The statement int* c = const_cast<int>(b) returns a
pointer c that refers to a without the const qualification of a. This process of using
const_cast to remove the const qualification of an object is called casting away
constness. Consequently the compiler does allow the function call f(c).

The compiler would not allow the assignment *b = 20 because b points to an
object of type const int. The compiler does allow the *c = 30, but the behavior of
this statement is undefined. If you cast away the constness of an object that has
been explicitly declared as const, and attempt to modify it, the results are
undefined.

However, if you cast away the constness of an object that has not been explicitly
declared as const, you can modify it safely. In the above example, the object
referred to by b1 has not been declared const, but you cannot modify this object
through b1. You may cast away the constness of b1 and modify the value to which
it refers.
Related reference:
“Type qualifiers” on page 85
“Type-based aliasing” on page 102
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

The dynamic_cast operator (C++ only)
The dynamic_cast operator checks the following types of conversions at run time:
v A pointer to a base class to a pointer to a derived class
v An lvalue referring to a base class to an lvalue reference to a derived class
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v C++11 An xvalue referring to a base class to an rvalue reference to a derived
class C++11

A program can thereby use a class hierarchy safely. This operator and the typeid
operator provide runtime type identification (RTTI) support in C++.

dynamic_cast operator syntax

�� dynamic_cast < T > ( v ) ��

C++11 With the right angle bracket feature, you may specify a template_id as T
in the dynamic_cast operator with the >> token in place of two consecutive >
tokens. For details, see “Class templates” on page 441. C++11

The expression dynamic_cast<T>(v) converts the expression v to type T. Type T
must be a pointer or reference to a complete class type or a pointer to void.

The following rules apply to the dynamic_cast<T>(v) expression:
v If T is a pointer type, v must be a C++11 (prvalue) C++11 rvalue, and

dynamic_cast<T>(v) is a C++11 (prvalue) C++11 rvalue of type T.
v If T is an lvalue reference type, v must be an lvalue, and dynamic_cast<T>(v) is

an lvalue of the type that is referred by T.
v C++11 If T is an rvalue reference type, dynamic_cast<T>(v) is an xvalue of the

type that is referred by T. C++11

If T is a pointer and the dynamic_cast operator fails, the operator returns a null
pointer of type T. If T is a reference and the dynamic_cast operator fails, the
operator throws the exception std::bad_cast. You can find this class in the
standard library header <typeinfo>.

If T is a void pointer, then dynamic_cast returns the starting address of the object
pointed to by v. The following example demonstrates this:
#include <iostream>
using namespace std;

struct A {
virtual ~A() { };

};

struct B : A { };

int main() {
B bobj;
A* ap = &bobj;
void * vp = dynamic_cast<void *>(ap);
cout << "Address of vp : " << vp << endl;
cout << "Address of bobj: " << &bobj << endl;

}

The output of this example is similar to the following result. Both vp and &bobj
refer to the same address:
Address of vp : 12FF6C
Address of bobj: 12FF6C

The primary purpose for the dynamic_cast operator is to perform type-safe
downcasts. A downcast is the conversion of a pointer or reference to a class A to a
pointer or reference to a class B, where class A is a base class of B. The problem
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with downcasts is that a pointer of type A* might point to an object that is not a
base class subobject of type A that belongs to an object of type B or a class derived
from B. The dynamic_cast operator ensures that if you convert a pointer to class A
to a pointer to class B, the object of type A pointed to by the former belongs to an
object of type B or a class derived from B as a base class subobject.

The following example demonstrates the use of the dynamic_cast operator:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "Class A" << endl; }

};

struct B : A {
virtual void f() { cout << "Class B" << endl; }

};

struct C : A {
virtual void f() { cout << "Class C" << endl; }

};

void f(A* arg) {
B* bp = dynamic_cast<B*>(arg);
C* cp = dynamic_cast<C*>(arg);

if (bp)
bp->f();

else if (cp)
cp->f();

else
arg->f();

};

int main() {
A aobj;
C cobj;
A* ap = &cobj;
A* ap2 = &aobj;
f(ap);
f(ap2);

}

See the output of the above example:
Class C
Class A

The function f() determines whether the pointer arg points to an object of type A,
B, or C. The function does this by trying to convert arg to a pointer of type B, then
to a pointer of type C, with the dynamic_cast operator. If the dynamic_cast operator
succeeds, it returns a pointer that points to the object denoted by arg. If
dynamic_cast fails, it returns 0.

You may perform downcasts with the dynamic_cast operator only on polymorphic
classes. In the above example, all the classes are polymorphic because class A has a
virtual function. The dynamic_cast operator uses the runtime type information
generated from polymorphic classes.
Related reference:
“Derivation” on page 383
“User-defined conversions” on page 423
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“Type-based aliasing” on page 102
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

Compound literal expressions
A compound literal is a postfix expression that provides an unnamed object whose
value is given by an initializer list. The C99 language feature allows you to pass
parameters to functions without the need for temporary variables. It is useful for
specifying constants of an aggregate type (arrays, structures, and unions) when
only one instance of such types is needed. C++ To be compatible with C99, the
z/OS XL C/C++ compiler supports this feature as an IBM extension. C++

The syntax for a compound literal resembles that of a cast expression. However, a
compound literal is an lvalue, while the result of a cast expression is not.
Furthermore, a cast can only convert to scalar types or void, whereas a compound
literal results in an object of the specified type.

Compound literal syntax

�� ( type_name ) �

,

{ initializer_list } ��

The type_name can be any data type, including user-defined types. It can be an
array of unknown size, but not a variable length array. If the type is an array of
unknown size, the size is determined by the initializer list.

The following example passes a constant structure variable of type point
containing two integer members to the function drawline:
drawline((struct point){6,7});

If the compound literal occurs outside the body of a function, the initializer list
must consist of constant expressions, and the unnamed object has static storage
duration. If the compound literal occurs within the body of a function, the
initializer list need not consist of constant expressions, and the unnamed object has
automatic storage duration.

IBM For compatibility with GNU C, a static variable can be initialized with a
compound literal of the same type, provided that all the initializers in the
initializer list are constant expressions. IBM

Related reference:
String literals

new expressions (C++ only)
The new operator provides dynamic storage allocation.

new operator syntax

��
::

new
( argument_list )

( type )
new_type

�
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�
( )

initial_value

��

If you prefix new with the scope resolution operator (::), the global operator new()
is used. If you specify an argument_list, the overloaded new operator that
corresponds to that argument_list is used. The type is an existing built-in or
user-defined type. A new_type is a type that has not already been defined and can
include type specifiers and declarators.

An allocation expression containing the new operator is used to find storage in free
store for the object being created. The new expression returns a pointer to the object
created and can be used to initialize the object. If the object is an array, a pointer to
the initial element is returned.

You cannot use the new operator to allocate function types, void, or incomplete
class types because these are not object types. However, you can allocate pointers
to functions with the new operator. You cannot create a reference with the new
operator.

When the object being created is an array, only the first dimension can be a general
expression. All subsequent dimensions must be integral constant expressions that
evaluate to positive values. The first dimension can be a general expression even
when an existing type is used. You can create an array with zero bounds with the
new operator. For example:
char * c = new char[0];

In this case, a pointer to a unique object is returned.

An object created with operator new() or operator new[]() exists until the
operator delete() or operator delete[]() is called to deallocate the object's
memory. A delete operator or a destructor will not be implicitly called for an
object created with a new that has not been explicitly deallocated before the end of
the program.

If parentheses are used within a new type, parentheses should also surround the
new type to prevent syntax errors.

In the following example, storage is allocated for an array of pointers to functions:
void f();
void g();

int main(void)
{

void (**p)(), (**q)();
// declare p and q as pointers to pointers to void functions
p = new (void (*[3])());
// p now points to an array of pointers to functions
q = new void(*[3])(); // error
// error - bound as ’q = (new void) (*[3])();’
p[0] = f; // p[0] to point to function f
q[2] = g; // q[2] to point to function g
p[0](); // call f()
q[2](); // call g()
return (0);

}
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However, the second use of new causes an erroneous binding of q = (new void)
(*[3])().

The type of the object being created cannot contain class declarations, enumeration
declarations, or const or volatile types. It can contain pointers to const or
volatile objects.

For example, const char* is allowed, but char* const is not.
Related reference:
Generalized constant expressions (C++11)

Placement syntax
Additional arguments can be supplied to new by using the argument_list, also called
the placement syntax. If placement arguments are used, a declaration of operator
new() or operator new[]() with these arguments must exist. For example:
#include <new>
using namespace std;

class X
{
public:

void* operator new(size_t,int, int){ /* ... */ }
};

// ...

int main ()
{

X* ptr = new(1,2) X;
}

The placement syntax is commonly used to invoke the global placement new
function. The global placement new function initializes an object or objects at the
location specified by the placement argument in the placement new expression.
This location must address storage that has previously been allocated by some
other means, because the global placement new function does not itself allocate
memory. In the following example, no new memory is allocated by the calls
new(whole) X(8);, new(seg2) X(9);, or new(seg3) X(10); Instead, the constructors
X(8), X(9), and X(10) are called to reinitialize the memory allocated to the buffer
whole.

Because placement new does not allocate memory, you should not use delete to
deallocate objects created with the placement syntax. You can only delete the entire
memory pool (delete whole). In the example, you can keep the memory buffer but
destroy the object stored in it by explicitly calling a destructor.
#include <new>
class X
{

public:
X(int n): id(n){ }
~X(){ }

private:
int id;
// ...

};

int main()
{

char* whole = new char[ 3 * sizeof(X) ]; // a 3-part buffer
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X * p1 = new(whole) X(8); // fill the front
char* seg2 = &whole[ sizeof(X) ]; // mark second segment
X * p2 = new(seg2) X(9); // fill second segment
char* seg3 = &whole[ 2 * sizeof(X) ]; // mark third segment
X * p3 = new(seg3) X(10); // fill third segment

p2->~X(); // clear only middle segment, but keep the buffer
// ...
return 0;

}

The placement new syntax can also be used for passing parameters to an allocation
routine rather than to a constructor.
Related reference:
“delete expressions (C++ only)” on page 189
“Scope resolution operator :: (C++ only)” on page 148
“Overview of constructors and destructors” on page 407

Initialization of objects created with the new operator
You can initialize objects created with the new operator in several ways. For
nonclass objects, or for class objects without constructors, a new initializer
expression can be provided in a new expression by specifying ( expression ) or ().
For example:
double* pi = new double(3.1415926);
int* score = new int(89);
float* unknown = new float();

If a class does not have a default constructor, the new initializer must be provided
when any object of that class is allocated. The arguments of the new initializer
must match the arguments of a constructor.

You cannot specify an initializer for arrays. You can initialize an array of class
objects only if the class has a default constructor. The constructor is called to
initialize each array element (class object).

Initialization using the new initializer is performed only if new successfully
allocates storage.
Related reference:
“Overview of constructors and destructors” on page 407

Handling new allocation failure
When the new operator creates a new object, it calls the operator new() or operator
new[]() function to obtain the needed storage.

When new cannot allocate storage to create a new object, it calls a new handler
function if one has been installed by a call to set_new_handler(). The
std::set_new_handler() function is declared in the header <new>. Use it to call a
new handler you have defined or the default new handler.

Your new handler must perform one of the following:
v obtain more storage for memory allocation, then return
v throw an exception of type std::bad_alloc or a class derived from

std::bad_alloc

v call either abort() or exit()
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The set_new_handler() function has the prototype:
typedef void(*PNH)();
PNH set_new_handler(PNH);

set_new_handler() takes as an argument a pointer to a function (the new handler),
which has no arguments and returns void. It returns a pointer to the previous new
handler function.

If you do not specify your own set_new_handler() function, new throws an
exception of type std::bad_alloc.

The following program fragment shows how you could use set_new_handler() to
return a message if the new operator cannot allocate storage:
#include <iostream>
#include <new>
#include <cstdlib>
using namespace std;

void no_storage()
{

std::cerr << "Operator new failed: no storage is
available.\n";

std::exit(1);
}
int main(void)
{

std::set_new_handler(&no_storage);
// Rest of program ...

}

If the program fails because new cannot allocate storage, the program exits with the
message:
Operator new failed:
no storage is available.

delete expressions (C++ only)
The delete operator destroys the object created with new by deallocating the
memory associated with the object.

The delete operator has a void return type.

delete operator syntax

��
::

delete object_pointer ��

The operand of delete must be a pointer returned by new, and cannot be a pointer
to constant. Deleting a null pointer has no effect.

The delete[] operator frees storage allocated for array objects created with new[].
The delete operator frees storage allocated for individual objects created with new.

delete[] operator syntax

��
::

delete [ ] array ��
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The result of deleting an array object with delete is undefined, as is deleting an
individual object with delete[]. The array dimensions do not need to be specified
with delete[].

The result of any attempt to access a deleted object or array is undefined.

If a destructor has been defined for a class, delete invokes that destructor.
Whether a destructor exists or not, delete frees the storage pointed to by calling
the function operator delete() of the class if one exists.

The global ::operator delete() is used if:
v The class has no operator delete().
v The object is of a nonclass type.
v The object is deleted with the ::delete expression.

The global ::operator delete[]() is used if:
v The class has no operator delete[]()

v The object is of a nonclass type
v The object is deleted with the ::delete[] expression.

The default global operator delete() only frees storage allocated by the default
global operator new(). The default global operator delete[]() only frees storage
allocated for arrays by the default global operator new[]().
Related reference:
“The void type” on page 59
“Overview of constructors and destructors” on page 407

throw expressions (C++ only)
A throw expression is used to throw exceptions to C++ exception handlers. A throw
expression is of type void.
Related reference:
Chapter 16, “Exception handling (C++ only),” on page 485
“The void type” on page 59

Operator precedence and associativity
Two operator characteristics determine how operands group with operators:
precedence and associativity. Precedence is the priority for grouping different types
of operators with their operands. Associativity is the left-to-right or right-to-left
order for grouping operands to operators that have the same precedence. An
operator's precedence is meaningful only if other operators with higher or lower
precedence are present. Expressions with higher-precedence operators are
evaluated first. The grouping of operands can be forced by using parentheses.

For example, in the following statements, the value of 5 is assigned to both a and b
because of the right-to-left associativity of the = operator. The value of c is
assigned to b first, and then the value of b is assigned to a.
b = 9;
c = 5;
a = b = c;
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Because the order of subexpression evaluation is not specified, you can explicitly
force the grouping of operands with operators by using parentheses.

In the expression
a + b * c / d

the * and / operations are performed before + because of precedence. b is
multiplied by c before it is divided by d because of associativity.

The following tables list the C and C++ language operators in order of precedence
and show the direction of associativity for each operator. Operators that have the
same rank have the same precedence.

Table 28. Precedence and associativity of postfix operators

Rank Right
associative?

Operator function Usage

1 yes C++ global scope
resolution

:: name_or_qualified name

1 C++ class or
namespace scope
resolution

class_or_namespace :: member

2 member selection object . member

2 member selection pointer -> member

2 subscripting pointer [ expr ]

2 function call expr ( expr_list )

2 value construction type ( expr_list )

2 postfix increment lvalue ++

2 postfix decrement lvalue --

2 yes C++ type
identification

typeid ( type )

2 yes C++ type
identification at run time

typeid ( expr )

2 yes C++ conversion
checked at compile time

static_cast < type > ( expr )

2 yes C++ conversion
checked at run time

dynamic_cast < type > ( expr )

2 yes C++ unchecked
conversion

reinterpret_cast < type > (
expr )

2 yes C++ const
conversion

const_cast < type > ( expr )

Table 29. Precedence and associativity of unary operators

Rank Right
associative?

Operator function Usage

3 yes size of object in bytes sizeof expr

3 yes size of type in bytes sizeof ( type )

3 yes prefix increment ++ lvalue
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Table 29. Precedence and associativity of unary operators (continued)

Rank Right
associative?

Operator function Usage

3 yes prefix decrement -- lvalue

3 yes bitwise negation ~ expr

3 yes not ! expr

3 yes unary minus - expr

3 yes unary plus + expr

3 yes address of & lvalue

3 yes indirection or dereference * expr

3 yes C++ create (allocate
memory)

new type

3 yes C++ create (allocate
and initialize memory)

new type ( expr_list ) type

3 yes C++ create
(placement)

new type ( expr_list ) type (
expr_list )

3 yes C++ destroy
(deallocate memory)

delete pointer

3 yes C++ destroy array delete [ ] pointer

3 yes type conversion (cast) ( type ) expr

Table 30. Precedence and associativity of binary operators

Rank Right
associative?

Operator function Usage

4 C++ member
selection

object .* ptr_to_member

4 C++ member
selection

object ->* ptr_to_member

5 multiplication expr * expr

5 division expr / expr

5 modulo (remainder) expr % expr

6 binary addition expr + expr

6 binary subtraction expr - expr

7 bitwise shift left expr << expr

7 bitwise shift right expr >> expr

8 less than expr < expr

8 less than or equal to expr <= expr

8 greater than expr > expr

8 greater than or equal to expr >= expr

9 equal expr == expr

9 not equal expr != expr

10 bitwise AND expr & expr

11 bitwise exclusive OR expr ^ expr
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Table 30. Precedence and associativity of binary operators (continued)

Rank Right
associative?

Operator function Usage

12 bitwise inclusive OR expr | expr

13 logical AND expr && expr

14 logical inclusive OR expr || expr

15 conditional expression expr ? expr : expr

16 yes simple assignment lvalue = expr

16 yes multiply and assign lvalue *= expr

16 yes divide and assign lvalue /= expr

16 yes modulo and assign lvalue %= expr

16 yes add and assign lvalue += expr

16 yes subtract and assign lvalue -= expr

16 yes shift left and assign lvalue <<= expr

16 yes shift right and assign lvalue >>= expr

16 yes bitwise AND and assign lvalue &= expr

16 yes bitwise exclusive OR and
assign

lvalue ^= expr

16 yes bitwise inclusive OR and
assign

lvalue |= expr

17 yes C++ throw
expression

throw expr

18 comma (sequencing) expr , expr

Examples of expressions and precedence
The parentheses in the following expressions explicitly show how the compiler
groups operands and operators.
total = (4 + (5 * 3));
total = (((8 * 5) / 10) / 3);
total = (10 + (5/3));

If parentheses did not appear in these expressions, the operands and operators
would be grouped in the same manner as indicated by the parentheses. For
example, the following expressions produce the same output.
total = (4+(5*3));
total = 4+5*3;

Because the order of grouping operands with operators that are both associative
and commutative is not specified, the compiler can group the operands and
operators in the expression:
total = price + prov_tax + city_tax;

in the following ways as indicated by parentheses:
total = (price + (prov_tax + city_tax));
total = ((price + prov_tax) + city_tax);
total = ((price + city_tax) + prov_tax);

The grouping of operands and operators does not affect the result.
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Because intermediate values are rounded, different groupings of floating-point
operators may give different results.

In certain expressions, the grouping of operands and operators can affect the result.
For example, in the following expression, each function call might be modifying
the same global variables.
a = b() + c() + d();

This expression can give different results depending on the order in which the
functions are called.

If the expression contains operators that are both associative and commutative and
the order of grouping operands with operators can affect the result of the
expression, separate the expression into several expressions. For example, the
following expressions could replace the previous expression if the called functions
do not produce any side effects that affect the variable a.
a = b();
a += c();
a += d();

The order of evaluation for function call arguments or for the operands of binary
operators is not specified. Therefore, the following expressions are ambiguous:
z = (x * ++y) / func1(y);
func2(++i, x[i]);

If y has the value of 1 before the first statement, it is not known whether or not the
value of 1 or 2 is passed to func1(). In the second statement, if i has the value of 1
before the expression is evaluated, it is not known whether x[1] or x[2] is passed
as the second argument to func2().

Reference collapsing (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Before C++11, references to references are ill-formed in the C++ language. In
C++11, the rules of reference collapsing apply when you use references to
references through one of the following contexts:
v A decltype specifier
v A typedef name
v A template type parameter

You can define a variable var whose declared type TR is a reference to the type T,
where T is also a reference type. For example,
// T denotes the int& type
typedef int& T;

// TR is an lvalue reference to T
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typedef T& TR;

// The declared type of var is TR
TR var;

The actual type of var is listed in the following table for different cases, where
neither TR nor T is qualified by cv-qualifiers.

Table 31. Reference collapsing without cv-qualifiers

T TR Type of var

A T A1

A T& A&1

A T&& A&&1

A& T A&1

A& T& A&

A& T&& A&

A&& T A&&1

A&& T& A&

A&& T&& A&&

Note:

1. Reference collapsing does not apply in this case, because T and TR are not both
reference types.

The general rule in this table is that when T and TR are both reference types, but
are not both rvalue reference types, var is of an lvalue reference type.

Example 1
typedef int& T;

// a has the type int&
T&& a;

In this example, T is of the int& type, and the declared type of a is T&&. After
reference collapsing, the type of a is int&.

Example 2
template <typename T> void func(T&& a);
auto fp = func<int&&>;

In this example, the actual parameter of T is of the int&& type, and the declared
type of a is T&&. An rvalue reference to an rvalue reference is formed. After
reference collapsing, the type of a is int&&.

Example 3
auto func(int& a) -> const decltype(a)&;

In this example, decltype(a), which is a trailing return type, refers to the
parameter a, whose type is int&. After reference collapsing, the return type of func
is int&.

You can define a variable var whose declared type TR is a reference to the type T,
where T is also a reference type. If either TR or T is qualified by cv-qualifiers, then
the actual type of var is listed in the following table for different cases.
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Table 32. Reference collapsing with cv-qualifiers

T TR Type of var

A const T const A1

const A volatile T& const volatile A&1

A const T&& const A&&1

A& const T A&1

const A& volatile T& const A&

const A& T&& const A&

A&& const T A&&1

const A&& volatile T& const A&

const A&& T&& const A&&

Note:

1. Reference collapsing does not apply in this case, because T and TR are not both
reference types.

The general rule of this table is that when T is a reference type, the type of var
inherits only the cv-qualifiers from T.
Related reference:
“The decltype(expression) type specifier (C++11)” on page 78
“typedef definitions” on page 74
“Type template parameters” on page 434
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Chapter 7. Statements

A statement, the smallest independent computational unit, specifies an action to be
performed. In most cases, statements are executed in sequence.

The following list is a summary of the statements available in C and C++:
v “Labeled statements”
v “Expression statements” on page 198
v “Block statements” on page 199
v “Selection statements” on page 200
v “Iteration statements” on page 206
v “Jump statements” on page 210
v “Null statement” on page 215
v “Inline assembly statements (IBM extension)” on page 215
Related reference:
Chapter 3, “Data objects and declarations,” on page 41
“Function declarations” on page 219
“try blocks” on page 485

Labeled statements
There are three kinds of labels: identifier, case, and default.

Labeled statement syntax

�� identifier : statement ��

The label consists of the identifier and the colon (:) character.

C A label name must be unique within the function in which it appears.
C

C++ In C++, an identifier label can only be used as the target of a goto
statement. A goto statement can use a label before its definition. Identifier labels
have their own namespace; you do not have to worry about identifier labels
conflicting with other identifiers. However, you cannot redeclare a label within a
function. C++

Case and default label statements only appear in switch statements. These labels
are accessible only within the closest enclosing switch statement.

case statement syntax

�� case constant_expression : statement ��

default statement syntax

�� default : statement ��
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The following are examples of labels:
comment_complete : ; /* null statement label */
test_for_null : if (NULL == pointer)

Related reference:
“The goto statement” on page 213
“The switch statement” on page 202

Labels as values (IBM extension)
The address of a label defined in the current function or a containing function can
be obtained and used as a value wherever a constant of type void* is valid. The
address is the return value when the label is the operand of the unary operator &&.
The ability to use the address of label as a value is an extension to C99 and C++,
implemented to facilitate porting programs developed with GNU C.

In the following example, the computed goto statements use the values of label1
and label2 to jump to those spots in the function.
int main()
{

void * ptr1, *ptr2;
...
label1: ...
...
label2: ...
...
ptr1 = &&label1;
ptr2 = &&label2;
if (...) {

goto *ptr1;
} else {

goto *ptr2;
}
...

}

Expression statements
An expression statement contains an expression. The expression can be null.

Expression statement syntax

��
expression

; ��

An expression statement evaluates expression, then discards the value of the
expression. An expression statement without an expression is a null statement.

See the following examples of statements:
printf("Account Number: \n"); /* call to the printf */
marks = dollars * exch_rate; /* assignment to marks */
(difference < 0) ? ++losses : ++gain; /* conditional increment */

Related reference:
Chapter 6, “Expressions and operators,” on page 141

Resolution of ambiguous statements (C++ only)
The C++ syntax does not disambiguate between expression statements and
declaration statements. The ambiguity arises when an expression statement has a
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function-style cast as its left-most subexpression. (Note that, because C does not
support function-style casts, this ambiguity does not occur in C programs.) If the
statement can be interpreted both as a declaration and as an expression, the
statement is interpreted as a declaration statement.

Note: The ambiguity is resolved only on a syntactic level. The disambiguation
does not use the meaning of the names, except to assess whether or not they are
type names.

The following expressions disambiguate into expression statements because the
ambiguous subexpression is followed by an assignment or an operator. type_spec
in the expressions can be any type specifier:
type_spec(i)++; // expression statement
type_spec(i,3)<<d; // expression statement
type_spec(i)->l=24; // expression statement

In the following examples, the ambiguity cannot be resolved syntactically, and the
statements are interpreted as declarations. type_spec is any type specifier:
type_spec(*i)(int); // declaration
type_spec(j)[5]; // declaration
type_spec(m) = { 1, 2 }; // declaration
type_spec(*k) (float(3)); // declaration

The last statement above causes a compile-time error because you cannot initialize
a pointer with a float value.

Any ambiguous statement that is not resolved by the above rules is by default a
declaration statement. All of the following are declaration statements:
type_spec(a); // declaration
type_spec(*b)(); // declaration
type_spec(c)=23; // declaration
type_spec(d),e,f,g=0; // declaration
type_spec(h)(e,3); // declaration

Related reference:
Chapter 3, “Data objects and declarations,” on page 41
Chapter 6, “Expressions and operators,” on page 141
“Function call expressions” on page 149

Block statements
A block statement, or compound statement, lets you group any number of data
definitions, declarations, and statements into one statement. All definitions,
declarations, and statements enclosed within a single set of braces are treated as a
single statement. You can use a block wherever a single statement is allowed.

Block statement syntax

�� � � �{ }
statement type_definition statement

file_scope_data_declaration
block_scope_data_declaration

��

A block defines a local scope. If a data object is usable within a block and its
identifier is not redefined, all nested blocks can use that data object.
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Related reference:
“Command-line arguments” on page 248

Example of blocks
The following program shows how the values of data objects change in nested
blocks:
/**
** This example shows how data objects change in nested blocks.
**/
#include <stdio.h>

int main(void)
{

int x = 1; /* Initialize x to 1 */
int y = 3;

if (y > 0)
{

int x = 2; /* Initialize x to 2 */
printf("second x = %4d\n", x);

}
printf("first x = %4d\n", x);

return(0);
}

The program produces the following output:
second x = 2
first x = 1

Two variables named x are defined in main. The first definition of x retains storage
while main is running. However, because the second definition of x occurs within a
nested block, printf("second x = %4d\n", x); recognizes x as the variable defined
on the previous line. Because printf("first x = %4d\n", x); is not part of the
nested block, x is recognized as the first definition of x.

Selection statements
Selection statements consist of the following types of statements:
v The if statement
v The switch statement

The if statement
An if statement is a selection statement that allows more than one possible flow of
control.

C++ An if statement lets you conditionally process a statement when the
specified test expression, implicitly converted to bool, evaluates to true. If the
implicit conversion to bool fails the program is ill-formed. C++

C In C, an if statement lets you conditionally process a statement when the
specified test expression evaluates to a nonzero value. The test expression must be
of arithmetic or pointer type. C

You can optionally specify an else clause on the if statement. If the test
expression evaluates to false (or in C, a zero value) and an else clause exists, the
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statement associated with the else clause runs. If the test expression evaluates to
true, the statement following the expression runs and the else clause is ignored.

if statement syntax

�� if ( expression ) statement
else statement

��

When if statements are nested and else clauses are present, a given else is
associated with the closest preceding if statement within the same block.

A single statement following any selection statements (if, switch) is treated as a
compound statement containing the original statement. As a result any variables
declared on that statement will be out of scope after the if statement. For example:
if (x)
int i;

is equivalent to:
if (x)
{ int i; }

Variable i is visible only within the if statement. The same rule applies to the else
part of the if statement.

Examples of if statements

The following example causes grade to receive the value A if the value of score is
greater than or equal to 90.
if (score >= 90)

grade = ’A’;

The following example displays Number is positive if the value of number is
greater than or equal to 0. If the value of number is less than 0, it displays Number
is negative.
if (number >= 0)

printf("Number is positive\n");
else

printf("Number is negative\n");

The following example shows a nested if statement:
if (paygrade == 7)

if (level >= 0 && level <= 8)
salary *= 1.05;

else
salary *= 1.04;

else
salary *= 1.06;

cout << "salary is " << salary << endl;

The following example shows a nested if statement that does not have an else
clause. Because an else clause always associates with the closest if statement,
braces might be needed to force a particular else clause to associate with the
correct if statement. In this example, omitting the braces would cause the else
clause to associate with the nested if statement.
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if (kegs > 0) {
if (furlongs > kegs)

fxph = furlongs/kegs;
}
else

fxph = 0;

The following example shows an if statement nested within an else clause. This
example tests multiple conditions. The tests are made in order of their appearance.
If one test evaluates to a nonzero value, a statement runs and the entire if
statement ends.
if (value > 0)

++increase;
else if (value == 0)

++break_even;
else

++decrease;

Related reference:
“Boolean types” on page 55

The switch statement
A switch statement is a selection statement that lets you transfer control to different
statements within the switch body depending on the value of the switch
expression. The switch expression must evaluate to an integral or enumeration
value. The body of the switch statement contains case clauses that consist of
v A case label
v An optional default label
v A case expression
v A list of statements.

If the value of the switch expression equals the value of one of the case
expressions, the statements following that case expression are processed. If not, the
default label statements, if any, are processed.

switch statement syntax

�� switch ( expression ) switch_body ��

The switch body is enclosed in braces and can contain definitions, declarations, case
clauses, and a default clause. Each case clause and default clause can contain
statements.

�� { �

type_definition
file_scope_data_declaration
block_scope_data_declaration

�

case_clause
�

�
default_clause

�

case_clause
} ��
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Note: An initializer within a type_definition, file_scope_data_declaration or
block_scope_data_declaration is ignored.

A case clause contains a case label followed by any number of statements. A case
clause has the form:

Case clause syntax

�� case_label � statement ��

A case label contains the word case followed by an integral constant expression and
a colon. The value of each integral constant expression must represent a different
value; you cannot have duplicate case labels. Anywhere you can put one case
label, you can put multiple case labels. A case label has the form:

case label syntax

�� � case integral_constant_expression : ��

A default clause contains a default label followed by one or more statements. You
can put a case label on either side of the default label. A switch statement can
have only one default label. A default_clause has the form:

Default clause statement

��
case_label

default :
case_label

� statement ��

The switch statement passes control to the statement following one of the labels or
to the statement following the switch body. The value of the expression that
precedes the switch body determines which statement receives control. This
expression is called the switch expression.

The value of the switch expression is compared with the value of the expression in
each case label. If a matching value is found, control is passed to the statement
following the case label that contains the matching value. If there is no matching
value but there is a default label in the switch body, control passes to the default
labelled statement. If no matching value is found, and there is no default label
anywhere in the switch body, no part of the switch body is processed.

When control passes to a statement in the switch body, control only leaves the
switch body when a break statement is encountered or the last statement in the
switch body is processed.

If necessary, an integral promotion is performed on the controlling expression, and
all expressions in the case statements are converted to the same type as the
controlling expression. The switch expression can also be of class type if there is a
single conversion to integral or enumeration type.
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Restrictions on switch statements

You can put data definitions at the beginning of the switch body, but the compiler
does not initialize auto and register variables at the beginning of a switch body.
You can have declarations in the body of the switch statement.

You cannot use a switch statement to jump over initializations.

C When the scope of an identifier with a variably modified type includes a
case or default label of a switch statement, the entire switch statement is
considered to be within the scope of that identifier. That is, the declaration of the
identifier must precede the switch statement. C

C++ In C++, you cannot transfer control over a declaration containing an
explicit or implicit initializer unless the declaration is located in an inner block that
is completely bypassed by the transfer of control. All declarations within the body
of a switch statement that contain initializers must be contained in an inner block.

C++

Examples of switch statements

The following switch statement contains several case clauses and one default
clause. Each clause contains a function call and a break statement. The break
statements prevent control from passing down through each statement in the
switch body.

If the switch expression evaluated to ’/’, the switch statement would call the
function divide. Control would then pass to the statement following the switch
body.
char key;

printf("Enter an arithmetic operator\n");
scanf("%c",&key);

switch (key)
{

case ’+’:
add();
break;

case ’-’:
subtract();
break;

case ’*’:
multiply();
break;

case ’/’:
divide();
break;

default:
printf("invalid key\n");
break;

}

If the switch expression matches a case expression, the statements following the
case expression are processed until a break statement is encountered or the end of
the switch body is reached. In the following example, break statements are not
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present. If the value of text[i] is equal to ’A’, all three counters are incremented.
If the value of text[i] is equal to ’a’, lettera and total are increased. Only
total is increased if text[i] is not equal to ’A’ or ’a’.
char text[100];
int capa, lettera, total;

// ...

for (i=0; i<sizeof(text); i++) {

switch (text[i])
{

case ’A’:
capa++;

case ’a’:
lettera++;

default:
total++;

}
}

The following switch statement performs the same statements for more than one
case label:

CCNRAB1
/**
** This example contains a switch statement that performs
** the same statement for more than one case label.
**/

#include <stdio.h>

int main(void)
{

int month;

/* Read in a month value */
printf("Enter month: ");
scanf("%d", &month);

/* Tell what season it falls into */
switch (month)
{

case 12:
case 1:
case 2:

printf("month %d is a winter month\n", month);
break;

case 3:
case 4:
case 5:

printf("month %d is a spring month\n", month);
break;

case 6:
case 7:
case 8:

printf("month %d is a summer month\n", month);
break;

case 9:
case 10:
case 11:

printf("month %d is a fall month\n", month);
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break;

case 66:
case 99:
default:

printf("month %d is not a valid month\n", month);
}

return(0);
}

If the expression month has the value 3, control passes to the statement:
printf("month %d is a spring month\n", month);

The break statement passes control to the statement following the switch body.
Related reference:
Case and default labels
“The break statement” on page 210
“Generalized constant expressions (C++11)” on page 149

Iteration statements
Iteration statements consist of the following types of statements:
v The while statement
v The do statement
v The for statement
Related reference:
“Boolean types” on page 55

The while statement
A while statement repeatedly runs the body of a loop until the controlling
expression evaluates to false (or 0 in C).

while statement syntax

�� while ( expression ) statement ��

C The expression must be of arithmetic or pointer type. C

C++ The expression must be convertible to bool. C++

The expression is evaluated to determine whether or not to process the body of the
loop. If the expression evaluates to false, the body of the loop never runs. If the
expression does not evaluate to false, the loop body is processed. After the body
has run, control passes back to the expression. Further processing depends on the
value of the condition.

A break, return, or goto statement can cause a while statement to end, even when
the condition does not evaluate to false.

C++ A throw expression also can cause a while statement to end prior to the
condition being evaluated. C++
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In the following example, item[index] triples and is printed out, as long as the
value of the expression ++index is less than MAX_INDEX. When ++index evaluates to
MAX_INDEX, the while statement ends.

CCNRAA7
/**
** This example illustrates the while statement.
**/

#define MAX_INDEX (sizeof(item) / sizeof(item[0]))
#include <stdio.h>

int main(void)
{

static int item[ ] = { 12, 55, 62, 85, 102 };
int index = 0;

while (index < MAX_INDEX)
{

item[index] *= 3;
printf("item[%d] = %d\n", index, item[index]);
++index;

}

return(0);
}

The do statement
A do statement repeatedly runs a statement until the test expression evaluates to
false (or 0 in C). Because of the order of processing, the statement is run at least
once.

do statement syntax

�� do statement while ( expression ) ; ��

C The expression must be of arithmetic or pointer type. C

C++ The controlling expression must be convertible to type bool. C++

The body of the loop is run before the controlling while clause is evaluated.
Further processing of the do statement depends on the value of the while clause. If
the while clause does not evaluate to false, the statement runs again. When the
while clause evaluates to false, the statement ends.

A break, return, or goto statement can cause the processing of a do statement to
end, even when the while clause does not evaluate to false.

C++ A throw expression also can cause a while statement to end prior to the
condition being evaluated. C++

The following example keeps incrementing i while i is less than 5:
#include <stdio.h>

int main(void) {
int i = 0;
do {

i++;

Chapter 7. Statements 207



printf("Value of i: %d\n", i);
}
while (i < 5);
return 0;

}

See the following output of the above example:
Value of i: 1
Value of i: 2
Value of i: 3
Value of i: 4
Value of i: 5

The for statement
A for statement provides the following benefits:
v Evaluate an expression before the first iteration of the statement (initialization)
v Specify an expression to determine whether or not the statement should be

processed (the condition)
v Evaluate an expression after each iteration of the statement (often used to

increment for each iteration)
v Repeatedly process the statement if the controlling part does not evaluate to

false (or 0 in C).

for statement syntax

�� for ( ; ; )
expression1 expression2 expression3

�

� statement ��

expression1 is the initialization expression. It is evaluated only before the statement is
processed for the first time. You can use this expression to initialize a variable. You
can also use this expression to declare a variable, provided that the variable is not
declared as static (it must be automatic and may also be declared as register). If
you declare a variable in this expression, or anywhere else in statement, that
variable goes out of scope at the end of the for loop. If you do not want to
evaluate an expression prior to the first iteration of the statement, you can omit
this expression.

expression2 is the conditional expression. It is evaluated before each iteration of the
statement. C expression2 must be of arithmetic or pointer type. C

C++ expression2 must be convertible to type bool. C++

If expression2 evaluates to C 0 C or C++ false C++ , the
statement is not processed and control moves to the next statement following the
for statement. If expression2 does not evaluate to false, the statement is processed.
If you omit expression2, it is as if the expression had been replaced by true, and the
for statement is not terminated by failure of this condition.

expression3 is evaluated after each iteration of the statement. This expression is often
used for incrementing, decrementing, or assigning to a variable. This expression is
optional.
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A break, return, or goto statement can cause a for statement to end, even when
the second expression does not evaluate to false. If you omit expression2, you must
use a break, return, or goto statement to end the for statement.

Examples of for statements

The following for statement prints the value of count 20 times. The for statement
initially sets the value of count to 1. After each iteration of the statement, count is
incremented.
int count;
for (count = 1; count <= 20; count++)

printf("count = %d\n", count);

The following sequence of statements accomplishes the same task. Note the use of
the while statement instead of the for statement.
int count = 1;
while (count <= 20)
{

printf("count = %d\n", count);
count++;

}

The following for statement does not contain an initialization expression:
for (; index > 10; --index)
{

list[index] = var1 + var2;
printf("list[%d] = %d\n", index,
list[index]);

}

The following for statement will continue running until scanf receives the letter e:
for (;;)
{

scanf("%c", &letter);
if (letter == ’\n’)

continue;
if (letter == ’e’)

break;
printf("You entered the letter %c\n", letter);

}

The following for statement contains multiple initializations and increments. The
comma operator makes this construction possible. The first comma in the for
expression is a punctuator for a declaration. It declares and initializes two integers,
i and j. The second comma, a comma operator, allows both i and j to be
incremented at each step through the loop.
for (int i = 0,
j = 50; i < 10; ++i, j += 50)
{

cout << "i = " << i << "and j = " << j
<< endl;

}

The following example shows a nested for statement. It prints the values of an
array having the dimensions [5][3].
for (row = 0; row < 5; row++)

for (column = 0; column < 3; column++)
printf("%d\n",
table[row][column]);
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The outer statement is processed as long as the value of row is less than 5. Each
time the outer for statement is executed, the inner for statement sets the initial
value of column to zero and the statement of the inner for statement is executed 3
times. The inner statement is executed as long as the value of column is less than 3.

Jump statements
Jump statements consist of the following types of statements:
v “The break statement”
v “The continue statement”
v “The return statement” on page 212
v “The goto statement” on page 213

The break statement
A break statement lets you end an iterative (do, for, or while) statement or a switch
statement and exit from it at any point other than the logical end. A break may
only appear on one of these statements.

break statement syntax

�� break ; ��

In an iterative statement, the break statement ends the loop and moves control to
the next statement outside the loop. Within nested statements, the break statement
ends only the smallest enclosing do, for, switch, or while statement.

In a switch statement, the break passes control out of the switch body to the next
statement outside the switch statement.

The continue statement
A continue statement ends the current iteration of a loop. Program control is passed
from the continue statement to the end of the loop body.

A continue statement has the form:

�� continue ; ��

A continue statement can only appear within the body of an iterative statement,
such as do, for, or while.

The continue statement ends the processing of the action part of an iterative
statement and moves control to the loop continuation portion of the statement. For
example, if the iterative statement is a for statement, control moves to the third
expression in the condition part of the statement, then to the second expression
(the test) in the condition part of the statement.

Within nested statements, the continue statement ends only the current iteration of
the do, for, or while statement immediately enclosing it.
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Examples of continue statements

The following example shows a continue statement in a for statement. The
continue statement causes processing to skip over those elements of the array
rates that have values less than or equal to 1.

CCNRAA3
/**
** This example shows a continue statement in a for statement.
**/

#include <stdio.h>
#define SIZE 5

int main(void)
{

int i;
static float rates[SIZE] = { 1.45, 0.05, 1.88, 2.00, 0.75 };

printf("Rates over 1.00\n");
for (i = 0; i < SIZE; i++)
{

if (rates[i] <= 1.00) /* skip rates <= 1.00 */
continue;

printf("rate = %.2f\n", rates[i]);
}

return(0);
}

The program produces the following output:
Rates over 1.00
rate = 1.45
rate = 1.88
rate = 2.00

The following example shows a continue statement in a nested loop. When the
inner loop encounters a number in the array strings, that iteration of the loop
ends. Processing continues with the third expression of the inner loop. The inner
loop ends when the '\0' escape sequence is encountered.

CCNRAA4
/**
** This program counts the characters in strings that are part
** of an array of pointers to characters. The count excludes
** the digits 0 through 9.
**/

#include <stdio.h>
#define SIZE 3

int main(void)
{

static char *strings[SIZE] = { "ab", "c5d", "e5" };
int i;
int letter_count = 0;
char *pointer;
for (i = 0; i < SIZE; i++) /* for each string */

/* for each each character */
for (pointer = strings[i]; *pointer != ’\0’;
++pointer)
{ /* if a number */

if (*pointer >= ’0’ && *pointer <= ’9’)
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continue;
letter_count++;

}
printf("letter count = %d\n", letter_count);

return(0);
}

The program produces the following output:
letter count = 5

The return statement
A return statement ends the processing of the current function and returns control
to the caller of the function.

return statement syntax

�� return
expression

( )

; ��

A value-returning function should include a return statement, containing an
expression.

C If an expression is not given on a return statement in a function declared
with a non-void return type, the compiler issues a warning message. C

C++ If an expression is not given on a return statement in a function declared
with a non-void return type, the compiler issues an error message. C++

If the data type of the expression is different from the function return type,
conversion of the return value takes place as if the value of the expression were
assigned to an object with the same function return type.

For a function of return type void, a return statement is not strictly necessary. If
the end of such a function is reached without encountering a return statement,
control is passed to the caller as if a return statement without an expression were
encountered. In other words, an implicit return takes place upon completion of the
final statement, and control automatically returns to the calling function.

C++ If a return statement is used, it must not contain an expression. C++

Examples of return statements

The following are examples of return statements:
return; /* Returns no value */
return result; /* Returns the value of result */
return 1; /* Returns the value 1 */
return (x * x); /* Returns the value of x * x */

The following function searches through an array of integers to determine if a
match exists for the variable number. If a match exists, the function match returns
the value of i. If a match does not exist, the function match returns the value -1
(negative one).
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int match(int number, int array[ ], int n)
{

int i;

for (i = 0; i < n; i++)
if (number == array[i])

return (i);
return(-1);

}

A function can contain multiple return statements. For example:
void copy( int *a, int *b, int c)
{

/* Copy array a into b, assuming both arrays are the same size */

if (!a || !b) /* if either pointer is 0, return */
return;

if (a == b) /* if both parameters refer */
return; /* to same array, return */

if (c == 0) /* nothing to copy */
return;

for (int i = 0; i < c; ++i;) /* do the copying */
b[i] = a[1];

/* implicit return */
}

In this example, the return statement is used to cause a premature termination of
the function, similar to a break statement.

An expression appearing in a return statement is converted to the return type of
the function in which the statement appears. If no implicit conversion is possible,
the return statement is invalid.
Related reference:
“Function return type specifiers” on page 234
“Function return values” on page 235

The goto statement
A goto statement causes your program to unconditionally transfer control to the
statement that is associated with the label specified on the goto statement.

goto statement syntax

�� goto label_identifier ; ��

Because the goto statement can interfere with the normal sequence of processing, it
makes a program more difficult to read and maintain. Often, a break statement, a
continue statement, or a function call can eliminate the need for a goto statement.

If an active block is exited using a goto statement, any local variables are
destroyed when control is transferred from that block.

You cannot use a goto statement to jump over initializations.

Chapter 7. Statements 213



C A goto statement is allowed to jump within the scope of a variable length
array, but not past any declarations of objects with variably modified types.

C

The following example shows a goto statement that is used to jump out of a
nested loop. This function could be written without using a goto statement.

CCNRAA6
/**
** This example shows a goto statement that is used to
** jump out of a nested loop.
**/

#include <stdio.h>
void display(int matrix[3][3]);

int main(void)
{

int matrix[3][3]= {1,2,3,4,5,2,8,9,10};
display(matrix);
return(0);

}

void display(int matrix[3][3])
{

int i, j;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
{

if ( (matrix[i][j] < 1) || (matrix[i][j] > 6) )
goto out_of_bounds;

printf("matrix[%d][%d] = %d\n", i, j, matrix[i][j]);
}

return;
out_of_bounds: printf("number must be 1 through 6\n");

}

Computed goto statement (IBM extension)

A computed goto is a goto statement for which the target is a label from the same
function. The address of the label is a constant of type void*, and is obtained by
applying the unary label value operator && to the label. The target of a computed
goto is known at run time, and all computed goto statements from the same
function will have the same targets. The language feature is an extension to C99
and C++, implemented to facilitate porting programs developed with GNU C.

Computed goto statement syntax

�� goto *expression ; ��

The *expression is an expression of type void*.
Related reference:
“Labeled statements” on page 197
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Null statement
The null statement performs no operation. It has the form:

�� ; ��

A null statement can hold the label of a labeled statement or complete the syntax
of an iterative statement.

The following example initializes the elements of the array price. Because the
initializations occur within the for expressions, a statement is only needed to finish
the for syntax; no operations are required.
for (i = 0; i < 3; price[i++] = 0)

;

A null statement can be used when a label is needed before the end of a block
statement. For example:
void func(void) {

if (error_detected)
goto depart;

/* further processing */
depart: ; /* null statement required */

}

Inline assembly statements (IBM extension)
When the ASM compiler option is in effect, the compiler provides support for
embedded assembly code fragments among C and C++ source statements. This
extension allows programs to invoke IBM MVS™ system services directly via
system-provided assembly macros.

Note: For C source files, when the METAL or GENASM option is in effect, the
compiler provides support for embedded assembly code fragments among C
source statements.

The syntax is as follows:

asm statement syntax — statement in local scope

�� asm
__asm
__asm__

volatile
�

� ( code_format_string )
:

output :
input :

clobbers

��

input:

�

,

constraint ( C_expression )
modifier
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output:

�

,

modifier constraint ( C_expression )

asm statement syntax — statement in global scope

�� asm
__asm
__asm__

( code_format_string ) ��

volatile
The qualifier volatile instructs the compiler to perform only minimal
optimizations on the assembly block. The compiler cannot move any
instructions across the implicit fences surrounding the assembly block.

code_format_string
The code_format_string is the source text of the asm instructions and is a
string literal similar to a printf format specifier.

output
The output consists of zero, one or more output operands, separated by
commas. Each operand consists of a constraint(C_expression) pair. The
output operand must be constrained by the = or + modifier (described
below).

input The input consists of zero, one or more input operands, separated by
commas. Each operand consists of a constraint(C_expression) pair.

clobbers

clobbers is a comma-separated list of register names enclosed in double
quotes. If an asm instruction updates registers that are not listed in the
input or output of the asm statement, the registers must be listed as
clobbered registers. The following register names are valid :

r0 or R0 to r15 or R15
General purpose registers

modifier

The modifier can be one of the following operators:

= Indicates that the operand is write-only for this instruction. The
previous value is discarded and replaced by output data.

+ Indicates that the operand is both read and written by the
instruction.

& Indicates that the operand may be modified before the instruction
is finished using the input operands; a register that is used as
input should not be reused here.

Note: The & modifier is ignored in z/OS V1R9.

constraint

The constraint is a string literal that describes the kind of operand that is
permitted, one character per constraint. The following constraints are
supported:
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a Use an address register (general purpose register except r0).

d Use a data register that is an arbitrary general purpose register.
This constraint is the same as the r constraint.

g Use a general register, memory, or immediate operand.

i Use an immediate integer or string literal operand.

m Use a memory operand supported by the machine.

n Use an immediate integer.

o Use a memory operand that is offsetable.

r Use a general register.

s Use a string literal operand.

0, 1, ...8, 9
A matching constraint. Allocate the same register in output as in
the corresponding input.

I, J, K
Constant values. Fold the expression in the operand and substitute
the value into the % specifier.
v I — signed 16-bit
v J — unsigned 16-bit shifted left 16 bits
v K — unsigned 16-bit constant

XL Only valid for METAL. Use only the parameter constraints listed in
this constraint. XL is an optional prefix, followed by a colon (:), to
introduce any of the following parameter constraints:

DS Do not generate a definition for the operand defined in the
assembly statement; instead, substitute an assembly
instruction to define the operand. Optionally, to specify the
data size of the operand defined in the assembly statement,
use a colon (:) followed by a positive integer. If you do not
specify a data size, the size specified in the ASMDATASIZE
option is used.

RP The operand requires a register pair. Optionally, to specify
the constraint for the register pair, specify a :, followed by
the register_type, optionally followed by another : and an
optional register_pair_flag. The register_pair_flag can be one
of the following:

o The operand needs an odd/even register pair.

e The operand needs an even/odd register pair.

If you do not specify a register type, r (general purpose
register) is used as the default. If you do not specify a
register pair flag, e (even/odd pair) is used as the default.

NR Use the named general purpose register. Use a colon (:)
followed by the general purpose register name (see below
for acceptable register names).

Note: The XL constraints can be used for both input and output
operands, with the exception of DS, which can only be used for
output operands.
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C_expression

The C_expression is a C or C++ expression whose value is used as the
operand for the asm instruction. Output operands must be modifiable
lvalues. The C_expression must be consistent with the constraint specified
on it. For example, if i is specified, the operand must be an integer
constant number.

Note: If pointer expressions are used in input or output, the assembly instructions
honor the ANSI aliasing rule (see “Type-based aliasing” on page 102 for more
information). This means that indirect addressing using values in pointer
expression operands should be consistent with the pointer types; otherwise, you
must disable the ANSIALIAS option during compilation.

For more information about ASM and ANSIALIAS options, see ASM and
ANSIALIAS options in the z/OS XL C/C++ User's Guide.

Restrictions on inline assembly statements
The following restrictions are on the use of inline assembly statements:
v The assembler instructions must be self-contained within an asm statement. The

asm statement can only be used to generate instructions. All connections to the
rest of the program must be established through the output and input operand
list.

v If an asm statement is used to define data, it cannot contain assembly
instructions for other purposes.

v Only asm statements that are used to define data can exist in global scope.
v The XL:* constraints are only supported for metal C programs.
v Each assembly statement can define only one variable.
v The symbol used in the assembly statement must be unique within the scope of

the source file and is valid according to the assembler's requirements.
v Using registers that are reserved (for example, killing a register used by the

linkage) is not supported.
v Referencing an external symbol directly without going through the operand list

is not supported.
Related reference:
Variables in specified registers (IBM extension)
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Chapter 8. Functions

In the context of programming languages, the term function means an assemblage
of statements used for computing an output value. The word is used less strictly
than in mathematics, where it means a set relating input variables uniquely to
output variables. Functions in C or C++ programs might not produce consistent
outputs for all inputs, might not produce output at all, or might have side effects.
Functions can be understood as user-defined operations, in which the parameters
of the parameter list, if any, are the operands.

Function declarations and definitions
The distinction between a function declaration and function definition is similar to
that of a data declaration and definition. The declaration establishes the names and
characteristics of a function but does not allocate storage for it, while the definition
specifies the body for a function, associates an identifier with the function, and
allocates storage for it. Thus, the identifiers declared in this example:
float square(float x);

do not allocate storage.

The function definition contains a function declaration and the body of a function.
The body is a block of statements that perform the work of the function. The
identifiers declared in this example allocate storage; they are both declarations and
definitions.
float square(float x)
{ return x*x; }

A function can be declared several times in a program, but all declarations for a
given function must be compatible; that is, the return type is the same and the
parameters have the same type. However, a function can only have one definition.
Declarations are typically placed in header files, while definitions appear in source
files.

Function declarations
A function identifier preceded by its return type and followed by its parameter list
is called a function declaration or function prototype. The prototype informs the
compiler of the format and existence of a function prior to its use. The compiler
checks for mismatches between the parameters of a function call and those in the
function declaration. The compiler also uses the declaration for argument type
checking and argument conversions.

C++ Implicit declaration of functions is not allowed: you must explicitly
declare every function before you can call it. C++

C If a function declaration is not visible at the point at which a call to the
function is made, the compiler assumes an implicit declaration of extern int
func(); However, for conformance to C99, you should explicitly prototype every
function before making a call to it. C

The elements of a declaration for a function are as follows:
v “Function storage class specifiers” on page 225, which specify linkage
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v “Function return type specifiers” on page 234, which specify the data type of a
value to be returned

v “Function specifiers” on page 227, which specify additional properties for
functions

v “Function declarators” on page 235, which include function identifiers as well as
lists of parameters

All function declarations have the form:

Function declaration syntax

��
storage_class_specifier function_specifier

return_type_specifier �

� function_declarator ; ��

C++11

Note: When function_declarator incorporates a trailing return type,
return_type_specifer must be auto. For more information about trailing return type,
see “Trailing return type (C++11)” on page 239.

C++11

Function definitions
The elements of a function definition are as follows:
v “Function storage class specifiers” on page 225, which specify linkage
v “Function return type specifiers” on page 234, which specify the data type of a

value to be returned
v “Function specifiers” on page 227, which specify additional properties for

functions
v “Function declarators” on page 235, which include function identifiers as well as

lists of parameters
v The function body, which is a braces-enclosed series of statements representing

the actions that the function performs
v C++ Constructor-initializers, which are used only in constructor functions

declared in classes; they are described in “Constructors” on page 408.
v Try blocks, which are used in class functions; they are described in “try blocks”

on page 485. C++

Function definitions take the following form:

Function definition syntax (C only)

��
storage_class_specifier function_specifier

�

�
return_type_specifier

function_declarator { function body } ��
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Function definition syntax (C++ only)

��
storage_class_specifier function_specifier

return_type_specifier �

� function_declarator { function body }
: constructor-initializer

try-block
(1)

= default;
(2)

= delete;

��

Notes:

1 This syntax is valid only in the C++11 standard.

2 This syntax is valid only in the C++11 standard.
C++11

Note: When function_declarator incorporates a trailing return type,
return_type_specifer must be auto. For more information about trailing return type,
see “Trailing return type (C++11)” on page 239.

C++11

Explicitly defaulted functions

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Explicitly defaulted function declaration is a new form of function declaration that is
introduced into the C++11 standard. You can append the =default; specifier to the
end of a function declaration to declare that function as an explicitly defaulted
function. The compiler generates the default implementations for explicitly
defaulted functions, which are more efficient than manually programmed function
implementations. A function that is explicitly defaulted must be a special member
function and has no default arguments. Explicitly defaulted functions can save
your effort of defining those functions manually.

You can declare both inline and out-of-line explicitly defaulted functions. For
example:
class A{
public:

A() = default; // Inline explicitly defaulted constructor definition
A(const A&);
~A() = default; // Inline explicitly defaulted destructor definition

};

A::A(const A&) = default; // Out-of-line explicitly defaulted constructor definition

You can declare a function as an explicitly defaulted function only if the function is
a special member function and has no default arguments. For example:
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class B {
public:

int func() = default; // Error, func is not a special member function.
B(int, int) = default; // Error, constructor B(int, int) is not

// a special member function.
B(int=0) = default; // Error, constructor B(int=0) has a default argument.

};

The explicitly defaulted function declarations enable more opportunities in
optimization, because the compiler might treat explicitly defaulted functions as
trivial.
Related reference:
Deleted functions (C++11)
Chapter 14, “Special member functions (C++ only),” on page 407

Deleted functions

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Deleted function declaration is a new form of function declaration that is introduced
into the C++11 standard. To declare a function as a deleted function, you can
append the =delete; specifier to the end of that function declaration. The compiler
disables the usage of a deleted function.

You can declare an implicitly defined function as a deleted function if you want to
prevent its usage. For example, you can declare the implicitly defined copy
assignment operator and copy constructor of a class as deleted functions to prevent
object copy of that class.
class A{
public:

A(int x) : m(x) {}
A& operator = (const A &) = delete; // Declare the copy assignment operator

// as a deleted function.
A(const A&) = delete; // Declare the copy constructor

// as a deleted function.

private:
int m;

};

int main(){
A a1(1), a2(2), a3(3);
a1 = a2; // Error, the usage of the copy assignment operator is disabled.
a3 = A(a2); // Error, the usage of the copy constructor is disabled.

}

You can also prevent problematic conversions by declaring the undesirable
conversion constructors and operators as deleted functions. The following example
shows how to prevent undesirable conversions from double to a class type.
class B{
public:

B(int){}
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B(double) = delete; // Declare the conversioin constructor as a deleted function
};

int main(){
B b1(1);
B b2(100.1); // Error, conversion from double to class B is disabled.

}

A deleted function is implicitly inline. A deleted definition of a function must be
the first declaration of the function. For example:
class C {
public:

C();
};

C::C() = delete; // Error, the deleted definition of function C must be
// the first declaration of the function.

Related reference:
Explicitly defaulted functions (C++11)

Examples of function declarations
The following code fragments show several function declarations (or prototypes).
The first declares a function f that takes two integer arguments and has a return
type of void:

void f(int, int);

This fragment declares a pointer p1 to a function that takes a pointer to a constant
character and returns an integer:

int (*p1) (const char*);

The following code fragment declares a function f1 that takes an integer argument,
and returns a pointer to a function that takes an integer argument and returns an
integer:

int (*f1(int)) (int);

Alternatively, a typedef can be used for the complicated return type of function f1:
typedef int f1_return_type(int);
f1_return_type* f1(int);

The following declaration is of an external function f2 that takes a constant integer
as its first argument, can have a variable number and variable types of other
arguments, and returns type int.

extern int f2(const int, ...);

C++ Function f4 takes no arguments, has return type void, and can throw
class objects of types X and Y.
class X;
class Y;

// ...

void f4() throw(X,Y);

C++
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Examples of function definitions
The following example is a definition of the function sum:
int sum(int x,int y)
{

return(x + y);
}

The function sum has external linkage, returns an object that has type int, and has
two parameters of type int declared as x and y. The function body contains a
single statement that returns the sum of x and y.

The following function set_date declares a pointer to a structure of type date as a
parameter. date_ptr has the storage class specifier register.
void set_date(register struct date *date_ptr)
{

date_ptr->mon = 12;
date_ptr->day = 25;
date_ptr->year = 87;

}

Compatible functions (C only)
For two function types to be compatible, they must meet the following
requirements:
v They must agree in the number of parameters (and use of ellipsis).
v They must have compatible return types.
v The corresponding parameters must be compatible with the type that results

from the application of the default argument promotions.

The composite type of two compatible function types is determined as follows:
v If one of the function types has a parameter type list, the composite type is a

function prototype with the same parameter type list.
v If both function types have parameter type lists, the composite type of each

parameter is determined as follows:
– The composite of parameters of different rank is the type that results from the

application of the default argument promotions.
– The composite of parameters with array or function type is the adjusted type.
– The composite of parameters with qualified type is the unqualified version of

the declared type.

For example, for the following two function declarations:
int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type would be:
int f(int (*)(char *), double (*)[3]);

If the function declarator is not part of the function declaration, the parameters
may have incomplete type. The parameters may also specify variable length array
types by using the [*] notation in their sequences of declarator specifiers. The
following are examples of compatible function prototype declarators:
int myMin(int n, int m, int a[n][m]);
int myMin(int n, int m, int a[*][*]);
int myMin(int n, int m, int a[ ][*]);
int myMin(int n, int m, int a[ ][m]);
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Related reference:
Compatible and composite types

Multiple function declarations (C++ only)
All function declarations for a particular function must have the same number and
type of parameters, and must have the same return type.

These return and parameter types are part of the function type, although the
default arguments and exception specifications are not.

If a previous declaration of an object or function is visible in an enclosing scope,
the identifier has the same linkage as the first declaration. However, a variable or
function that has no linkage and later declared with a linkage specifier will have
the linkage you have specified.

For the purposes of argument matching, ellipsis and linkage keywords are
considered a part of the function type. They must be used consistently in all
declarations of a function. If the only difference between the parameter types in
two declarations is in the use of typedef names or unspecified argument array
bounds, the declarations are the same. A const or volatile type qualifier is also
part of the function type, but can only be part of a declaration or definition of a
nonstatic member function.

If two function declarations match in both return type and parameter lists, then the
second declaration is treated as redeclaration of the first. The following example
declares the same function:
int foo(const string &bar);
int foo(const string &);

Declaring two functions differing only in return type is not valid function
overloading, and is flagged as a compile-time error. For example:
void f();
int f(); // error, two definitions differ only in

// return type
int g()
{

return f();
}

Related reference:
“Overloading functions” on page 327

Function storage class specifiers
For a function, the storage class specifier determines the linkage of the function. By
default, function definitions have external linkage, and can be called by functions
defined in other files. C An exception is inline functions, which are treated
by default as having internal linkage; see “Linkage of inline functions” on page 229
for more information. C

A storage class specifier may be used in both function declarations and definitions.
The only storage class options for functions are:
v static

v extern
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The static storage class specifier
A function declared with the static storage class specifier has internal linkage,
which means that it may be called only within the translation unit in which it is
defined.

The static storage class specifier can be used in a function declaration only if it is
at file scope. You cannot declare functions within a block as static.

C++ This use of static is deprecated in C++. Instead, place the function in
the unnamed namespace. C++

Related reference:
“Internal linkage” on page 7
Chapter 9, “Namespaces (C++ only),” on page 317

The extern storage class specifier
A function that is declared with the extern storage class specifier has external
linkage, which means that it can be called from other translation units. The
keyword extern is optional; if you do not specify a storage class specifier, the
function is assumed to have external linkage.

C++ An extern declaration cannot appear in class scope. You can use the
extern keyword with arguments that specify the type of linkage.

extern function storage class specifier syntax

�� extern " linkage_specification " ��

where linkage_specification can be any of the following:
v builtin
v C
v C++
v COBOL
v FORTRAN
v OS
v OS_DOWNSTACK
v OS_NOSTACK
v OS_UPSTACK
v PLI

For an explanation of these options, see the descriptions in “#pragma linkage (C
only)” on page 566.

The following fragments illustrate the use of extern "C" :
extern "C" int cf(); //declare function cf to have C linkage

extern "C" int (*c_fp)(); //declare a pointer to a function,
// called c_fp, which has C linkage

extern "C" {
typedef void(*cfp_T)(); //create a type pointer to function with C

// linkage
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void cfn(); //create a function with C linkage
void (*cfp)(); //create a pointer to a function, with C

// linkage
}

Linkage compatibility affects all C library functions that accept a user function
pointer as a parameter, such as qsort. Use the extern "C" linkage specification to
ensure that the declared linkages are the same. The following example fragment
uses extern "C" with qsort.
#include <stdlib.h>

// function to compare table elements
extern "C" int TableCmp(const void *, const void *); // C linkage
extern void * GenTable(); // C++ linkage

int main() {
void *table;

table = GenTable(); // generate table
qsort(table, 100, 15, TableCmp); // sort table, using TableCmp

// and C library routine qsort();
}

While the C++ language supports overloading, other languages do not. The
implications of this are:
v You can overload a function as long as it has C++ (default) linkage. Therefore,

z/OS XL C++ allows the following series of statements:
int func(int); // function with C++ linkage
int func(char); // overloaded function with C++ linkage

By contrast, you cannot overload a function that has non-C++ linkage:
extern "FORTRAN"{int func(int);}
extern "FORTRAN"{int func(int,int);} // not allowed

//compiler will issue an error message

v Only one non-C++-linkage function can have the same name as overloaded
functions. For example:
int func(char);
int func(int);
extern "FORTRAN"{int func(int,int);}

However, the non-C++-linkage function cannot have the same parameters as any
of the C++ functions with the same name:
int func(char); // first function with C++ linkage
int func(int, int); // second function with C++ linkage
extern "FORTRAN"{int func(int,int);} // not allowed since the parameter

// list is the same as the one for
// the second function with C++ linkage
// compiler will issue an error message

C++

Related reference:
“External linkage” on page 8
“Class scope (C++ only)” on page 4
Chapter 9, “Namespaces (C++ only),” on page 317

Function specifiers
The available function specifiers for function definitions are:
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v C++11 constexpr, which can be used to declare constexpr functions and
constexpr constructors, and is described in “The constexpr specifier (C++11)” on
page 83. C++11

v inline, which instructs the compiler to expand a function definition at the point
of a function call.

v C++ __cdecl, which sets linkage conventions for C++ function calls to C
functions. C++

v C++ _Export, which makes function definitions available to other modules.
C++

v C++ explicit, which can only be used for member functions of classes, and
is described in “Explicit conversion constructors” on page 425. C++

v C11 _Noreturn, which indicates that a function does not return to its caller.
C11

v C++ virtual, which can only be used for member functions of classes, and
is described in “Virtual functions” on page 399. C++

The inline function specifier
An inline function is one for which the compiler copies the code from the function
definition directly into the code of the calling function rather than creating a
separate set of instructions in memory. Instead of transferring control to and from
the function code segment, a modified copy of the function body may be
substituted directly for the function call. In this way, the performance overhead of
a function call is avoided. Using the inline specifier is only a suggestion to the
compiler that an inline expansion can be performed; the compiler is free to ignore
the suggestion.

C Any function, with the exception of main, can be declared or defined as
inline with the inline function specifier. Static local variables are not allowed to be
defined within the body of an inline function. C

C++ C++ functions implemented inside of a class declaration are
automatically defined inline. Regular C++ functions and member functions
declared outside of a class declaration, with the exception of main, can be declared
or defined as inline with the inline function specifier. Static locals and string
literals defined within the body of an inline function are treated as the same object
across translation units; see “Linkage of inline functions” on page 229 for details.

C++

The following code fragment shows an inline function definition:
inline int add(int i, int j) { return i + j; }

The use of the inline specifier does not change the meaning of the function.
However, the inline expansion of a function may not preserve the order of
evaluation of the actual arguments.

The most efficient way to code an inline function is to place the inline function
definition in a header file, and then include the header in any file containing a call
to the function which you would like to inline.

Note: C To enable the inline function specifier in C, you must compile
with c99 or the LANGLVL(STDC99) or LANGLVL(EXTC99) options. C
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Linkage of inline functions

C

In C, inline functions are treated by default as having static linkage; that is, they
are only visible within a single translation unit. Therefore, in the following
example, even though function foo is defined in exactly the same way, foo in file
a.c and foo in file b.c are treated as separate functions: two function bodies are
generated, and assigned two different addresses in memory:
// a.c

#include <stdio.h>

inline int foo(){
return 3;

}

void g() {
printf("foo called from g: return value = %d, address = %p\n", foo(), &foo);

}

// b.c

#include <stdio.h>

inline int foo(){
return 3;

}

void g();

int main() {
printf("foo called from main: return value = %d, address = %p\n", foo(), &foo);
g();

}

The output from the compiled program is:
foo called from main: return value = 3, address = 0x10000580
foo called from g: return value = 3, address = 0x10000500

Since inline functions are treated as having internal linkage, an inline function
definition can co-exist with a regular, external definition of a function with the
same name in another translation unit. However, when you call the function from
the file containing the inline definition, the compiler may choose either the inline
version defined in the same file or the external version defined in another file for
the call; your program should not rely on the inline version being called. In the
following example, the call to foo from function g could return either 6 or 3:
// a.c

#include <stdio.h>

inline int foo(){
return 6;

}

void g() {
printf("foo called from g: return value = %d\n", foo());

}

// b.c
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#include <stdio.h>

int foo(){
return 3;

}

void g();

int main() {
printf("foo called from main: return value = %d\n", foo());
g();

}

Similarly, if you define a function as extern inline, or redeclare an inline
function as extern, the function simply becomes a regular, external function and is
not inlined.

C

Related reference:
“The static storage class specifier” on page 226
“The extern storage class specifier” on page 226

The _Noreturn function specifier
The _Noreturn function specifier declares a function that does not return to its
caller. When you declare a function with the specifier, the compiler can better
optimize your code without regard to what happens if it returns. Any function,
with the exception of main, can be declared or defined with the _Noreturn function
specifier.

When _Noreturn is enabled, the __IBMC_NORETURN macro is defined as 1.

Include the standard header file stdnoreturn.h in your program when using the
_Noreturn function specifier.

The following code fragment shows a function definition with the _Noreturn
specifier:
_Noreturn void f (void) {

abort();
}

Notes:

v C The _Noreturn keyword is recognized under compilation with the
-qlanglvl=extc89, -qlanglvl=extc99, -qlanglvl=extended, or -qlanglvl=extc1x
compiler option. C

v C++ The _Noreturn keyword is recognized under compilation with the
-qlanglvl=extended, -qlanglvl=extended0x, or -qlanglvl=c1xnoreturn compiler
option. C++

v You can also define your own functions that never return by using the
_Noreturn function specifier. However, any functions that are declared with
_Noreturn must call one of the following functions. Otherwise, the functions will
return the control to their respective caller.
– abort

– exit
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– _Exit

– longjmp

– quick_exit

– thrd_exit

The __cdecl function specifier (C++ only)
You can use the __cdecl keyword to set linkage conventions for function calls in
C++ applications. The __cdecl keyword instructs the compiler to read and write a
parameter list by using C linkage conventions.

To set the __cdecl calling convention for a function, place the linkage keyword
immediately before the function name or at the beginning of the declarator. For
example:
void __cdecl f();
char (__cdecl *fp) (void);

z/OS XL C++ allows the __cdecl keyword on member functions and nonmember
functions. These functions can be static or nonstatic. It also allows the keyword on
pointer-to-member function types and the typedef specifier.

Note: The compiler accepts both _cdecl and __cdecl (both single and double
underscore).

Following is an example:
// C++ nonmember functions
void __cdecl f1();
static void __cdecl f2();

// pointer to member function type
char (__cdecl *A::mfp) (void);

// typedef
typedef void (* _cdecl void_fcn)(int);
// C++ member functions
class A {

public:
void __cdecl func();
static void __cdecl func1();

}

// Template member functions
template <class T> X {

public:
void __cdecl func();
static void __cdecl func1();

}

// Template functions
template <class T> T __cdecl foo(T i) {return i+1;}
template <class T> T static _cdecl foo2(T i) {return i+1;}

The __cdecl linkage keyword only affects parameter passing; it does not prevent
function name mangling. Therefore, you can still overload functions with
non-default linkage. Note that you only acquire linkage by explicitly using the
__cdecl keyword. It overrides the linkage that it inherits from an extern "linkage"
specification.

Following is an example:
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void __cdecl foo(int); // C linkage with name mangled
void __cdecl foo(char) // overload foo() with char is OK

void foo(int(*)());
// overload on linkage of function

void foo(int (__cdecl *)());
//pointer parameter is OK

extern "C++" {
void __cdecl foo(int);
// foo() has C linkage with name mangled

}

extern "C" {
void __cdecl foo(int);
// foo() has C linkage with name mangled

}

If the function is redeclared, the linkage keyword must appear in the first
declaration; otherwise an error message is issued. Following are two examples:
int c_cf();
int __cdecl c_cf();
// Error 1251. The previous declaration did not have a linkage
specification

int __cdecl c_cf();
int c_cf();

// OK, the linkage is inherited from the first declaration

Example of __cdecl use

The following example illustrates how you can use __cdecl to pass in a C
parameter list from C++ code to a C function:
/*------------------------------------------------------------------*/
/* C++ source file */
/*------------------------------------------------------------------*/
//
// C++ Application: passing a C++ function pointer to a C function
//
#include <stdio.h>

// C++ function declared with C calling convention
void __cdecl callcxx() {

printf(" I am a C++ function\n");
}

// declare a function pointer with __cdecl linkage
void (__cdecl *p1)();

// declare an extern C function,
// accepting a__cdecl function pointer
extern "C" {

void CALLC(void (__cdecl *pp)());
}

// assign the function pointer to a __cdecl function
int main() {

p1 = callcxx;

// call the C function with the __cdecl function pointer
CALLC(p1);

}

/*-----------------------------------------------------------------*/
/* C source file */
/*-----------------------------------------------------------------*/
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/* */
/* C Routine: receiving a function pointer with C linkage */
/* */
#include <stdio.h>
extern void CALLC(void (*pp)()){

printf(" I am a C function\n");
(*pp)(); // call the function passed in

}

Related reference:
“Language linkage (C++ only)” on page 9

The _Export function specifier (C++ only)
Use the _Export keyword with a function name to declare that it is to be exported
(made available to other modules). You must define the function in the same
translation unit in which you use the _Export keyword. For example:

int _Export anthony(float);

The above statement exports the function anthony, if you define the function
within the translation unit.

The _Export keyword must immediately precede the function name. If the _Export
keyword is repeated in a declaration, z/OS XL C++ issues a warning when you
specify the INFO(GEN) option.

If you apply the _Export keyword to a class, the z/OS XL C++ compiler
automatically exports all members of the class, whether static, public, private, or
protected. However, if you want it to apply to individual class members, then you
must apply it to each member that can be referenced. The following class
definitions demonstrate this.
class A {

public:
int iii() {

printf("Hi from A::iii()\n");
aaa();
printf("Call to A::ccc() returned %c\n", ccc());
return 88;

}
static void _Export sss();

protected:
void _Export aaa();

private:
char _Export ccc();

};

class _Export B {
public:

int iii() {
printf("Hi from B::iii()\n");
aaa();
printf("Call to B::ccc() returned %c\n", ccc());
return 99;

}
static void sss();

protected:
void _Export aaa();

private:
char _Export ccc();

};

In the example below, both X::Print() and X::GetNext() will be exported.
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class _Export X {
public:

...
void static Print();
int GetNext();
...

};

void X:: static Print() {
...

}
int X::GetNext() {

...
}

The above examples demonstrate that you can either export specific members of a
class or the entire class itself. Note that the _Export keyword can be applied to
class tags in nested class declarations.
Related reference:
“External linkage” on page 8
“#pragma export” on page 553

Function return type specifiers
The result of a function is called its return value and the data type of the return
value is called the return type.

C++ Every function declaration and definition must specify a return type,
whether or not it actually returns a value. C++

C If a function declaration does not specify a return type, the compiler
assumes an implicit return type of int. However, for conformance to C99, you
should specify a return type for every function declaration and definition, whether
or not the function returns int. C

A function may be defined to return any type of value, except an array type or a
function type; these exclusions must be handled by returning a pointer to the array
or function. When a function does not return a value, void is the type specifier in
the function declaration and definition.

A function cannot be declared as returning a data object having a volatile or
const type, but it can return a pointer to a volatile or const object.

A function can have a return type that is a user-defined type. For example:
enum count {one, two, three};
enum count counter();

C The user-defined type may also be defined within the function
declaration. C C++ The user-defined type may not be defined within
the function declaration. C++

enum count{one, two, three} counter(); // legal in C
enum count{one, two, three} counter(); // error in C++

C++ References can also be used as return types for functions. The reference
returns the lvalue of the object to which it refers. C++

Related reference:
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“Type specifiers” on page 54

Function return values
C If a function is defined as having a return type of void, it should not

return a value. C C++ In C++, a function which is defined as having a
return type of void, or is a constructor or destructor, must not return a value.

C++

C If a function is defined as having a return type other than void, it should
return a value. Under compilation for strict C99 conformance, a function defined
with a return type must include an expression containing the value to be returned.

C

C++ A function defined with a return type must include an expression
containing the value to be returned. C++

When a function returns a value, the value is returned via a return statement to
the caller of the function, after being implicitly converted to the return type of the
function in which it is defined. The following code fragment shows a function
definition including the return statement:
int add(int i, int j)
{

return i + j; // return statement
}

The function add() can be called as shown in the following code fragment:
int a = 10,

b = 20;
int answer = add(a, b); // answer is 30

In this example, the return statement initializes a variable of the returned type. The
variable answer is initialized with the int value 30. The type of the returned
expression is checked against the returned type. All standard and user-defined
conversions are performed as necessary.

Each time a function is called, new copies of its variables with automatic storage
are created. Because the storage for these automatic variables may be reused after
the function has terminated, a pointer or reference to an automatic variable should
not be returned. C++ If a class object is returned, a temporary object may be
created if the class has copy constructors or a destructor. C++

Related reference:
“The return statement” on page 212
“Overloading assignments” on page 334
“Overloading subscripting” on page 336
“The auto storage class specifier” on page 49

Function declarators
Function declarators consist of the following elements:
v An identifier, or name
v “Parameter declarations” on page 236, which specify the parameters that can be

passed to the function in a function call.
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v C++ Exception declarations, which include throw expressions; exception
specifications are described in Chapter 16, “Exception handling (C++ only),” on
page 485. C++

v C++ A cv_qualifier_seq, which represents one or a combination of const and
volatile, and can be used only in class member functions. For the details of
constant and volatile member functions, see “Constant and volatile member
functions” on page 360. C++

Function declarator syntax (C only)

�� identifier ( )
parameter_declaration

��

Function declarator syntax (C++ only)

�� identifier ( )
parameter_declaration cv_qualifier_seq

�

�
exception_declaration

��

Note: More complex types might be formed by using the syntax of direct_declarator
in place of identifier. For the details of direct_declarator, see “Overview of
declarators” on page 97.
Related reference:
“Default arguments in C++ functions (C++ only)” on page 254
Chapter 4, “Declarators,” on page 97

Parameter declarations
The function declarator includes the list of parameters that can be passed to the
function when it is called by another function, or by itself.

C++ In C++, the parameter list of a function is referred to as its signature. The
name and signature of a function uniquely identify it. As the word itself suggests,
the function signature is used by the compiler to distinguish among the different
instances of overloaded functions. C++

Function parameter declaration syntax

�� �

,

( )
parameter , ...

��

parameter

��
register

type_specifier
declarator

��
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C++ An empty argument list in a function declaration or definition indicates a
function that takes no arguments. To explicitly indicate that a function does not
take any arguments, you can declare the function in two ways: with an empty
parameter list, or with the keyword void:

int f(void);
int f();

C++

C An empty argument list in a function definition indicates that a function
that takes no arguments. An empty argument list in a function declaration indicates
that a function may take any number or type of arguments. Thus,
int f()
{
...
}

indicates that function f takes no arguments. However,
int f();

simply indicates that the number and type of parameters is not known. To
explicitly indicate that a function does not take any arguments, you can replace the
argument list with the keyword void.
int f(void);

C

An ellipsis at the end of the parameter specifications is used to specify that a
function has a variable number of parameters. The number of parameters is equal
to, or greater than, the number of parameter specifications.

int f(int, ...);

C++ The comma before the ellipsis is optional. In addition, a parameter
declaration is not required before the ellipsis. C++

C At least one parameter declaration, as well as a comma before the
ellipsis, are both required in C. C

Parameter types

In a function declaration, or prototype, the type of each parameter must be
specified. C++ In the function definition, the type of each parameter must also
be specified. C++ C In the function definition, if the type of a parameter
is not specified, it is assumed to be int. C

A variable of a user-defined type may be declared in a parameter declaration, as in
the following example, in which x is declared for the first time:
struct X { int i; };
void print(struct X x);

C The user-defined type can also be defined within the parameter
declaration. C C++ The user-defined type can not be defined within
the parameter declaration. C++

void print(struct X { int i; } x); // legal in C
void print(struct X { int i; } x); // error in C++
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Parameter names

In a function definition, each parameter must have an identifier. In a function
declaration, or prototype, specifying an identifier is optional. Thus, the following
example is legal in a function declaration:
int func(int,long);

C++ The following constraints apply to the use of parameter names in
function declarations:
v Two parameters cannot have the same name within a single declaration.
v If a parameter name is the same as a name outside the function, the name

outside the function is hidden and cannot be used in the parameter declaration.
In the following example, the third parameter name intersects is meant to have
enumeration type subway_line, but this name is hidden by the name of the first
parameter. The declaration of the function subway() causes a compile-time error,
because subway_line is not a valid type name. The first parameter name
subway_line hides the namespace scope enum type and cannot be used again in
the third parameter.
enum subway_line {yonge, university, spadina, bloor};
int subway(char * subway_line, int stations, subway_line intersects);

C++

Static array indices in function parameter declarations (C only)

Except in certain contexts, an unsubscripted array name (for example, region
instead of region[4]) represents a pointer whose value is the address of the first
element of the array, provided that the array has previously been declared. An
array type in the parameter list of a function is also converted to the corresponding
pointer type. Information about the size of the argument array is lost when the
array is accessed from within the function body.

To preserve this information, which is useful for optimization, you may declare the
index of the argument array using the static keyword. The constant expression
specifies the minimum pointer size that can be used as an assumption for
optimizations. This particular usage of the static keyword is highly prescribed.
The keyword may only appear in the outermost array type derivation and only in
function parameter declarations. If the caller of the function does not abide by
these restrictions, the behavior is undefined.

Note: This feature is C99 specific.

The following examples show how the feature can be used.
void foo(int arr [static 10]); /* arr points to the first of at least

10 ints */
void foo(int arr [const 10]); /* arr is a const pointer */
void foo(int arr [static const i]); /* arr points to at least i ints;

i is computed at run time. */
void foo(int arr [const static i]); /* alternate syntax to previous example */
void foo(int arr [const]); /* const pointer to int */

Related reference:
“The static storage class specifier” on page 49
“Arrays” on page 104
“Array subscripting operator [ ]” on page 171
“The void type” on page 59
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“Type specifiers” on page 54
“Type qualifiers” on page 85
“Exception specifications” on page 498

Trailing return type (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

The trailing return type feature removes a C++ limitation where the return type of
a function template cannot be generalized if the return type depends on the types
of the function arguments. For example, a and b are arguments of a function
template multiply(const A &a, const B &b), where a and b are of arbitrary types.
Without the trailing return type feature, you cannot declare a return type for the
multiply function template to generalize all the cases for a*b. With this feature,
you can specify the return type after the function arguments. This resolves the
scoping problem when the return type of a function template depends on the types
of the function arguments.

Trailing return type syntax

�� function_identifier ( )
parameter_declaration cv_qualifier_seq

�

�
exception_declaration

-> return_type ��

Notes:

v This syntax is not the one for a function declaration or definition. The auto
placeholder occurs in the syntax for declarations and definitions where they
specify return_type_specifier.

v As with function declarators without a trailing return type, this syntax might be
used to declare a pointer or reference to function.

v More complex types might be formed by using the syntax of direct_declarator in
place of function_identifier. For the details of direct_declarator, see “Overview of
declarators” on page 97.

To use the trailing return type feature, declare a generic return type with the auto
keyword before the function identifier, and specify the exact return type after the
function identifier. For example, use the decltype keyword to specify the exact
return type.

In the following example, the auto keyword is put before the function identifier
add. The return type of add is decltype(a + b), which depends on the types of the
function arguments a and b.
// Trailing return type is used to represent
// a fully generic return type for a+b.
template <typename FirstType, typename SecondType>
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auto add(FirstType a, SecondType b) -> decltype(a + b){
return a + b;

}

int main(){
// The first template argument is of the integer type, and
// the second template argument is of the character type.
add(1, ’A’);

// Both the template arguments are of the integer type.
add(3, 5);

}

Notes:

v When a trailing return type is used, the placeholder return type must be auto.
For example, the statement auto *f()->char results in a compile-time error,
because auto * is not allowed as the placeholder return type.

v The auto type specifier can be used with a function declarator with a trailing
return type. Otherwise, the auto type specifier is used in accordance to the auto
type deduction feature. For more information about auto type deduction, see
“The auto type specifier (C++11)” on page 76. Because a function declaration
cannot have an initializer as required for auto type deduction, the auto type
specifier cannot be used in a function declaration without a trailing return type.
For declarations of pointers and references to functions, the auto type specifier
can be used with either a corresponding trailing return type or an initializer. For
details of pointers and references to functions, see “Pointers to functions” on
page 257.

v The return type of a function cannot be any of the following types:
– Function
– Array
– Incomplete class

v The return type of a function cannot define any of the following types:
– struct

– class

– union

– enum

However, the return type can be any of these types if the type is not defined in
the function declaration.

In addition, this feature makes your program more compact and elegant in cases
where functions have complicated return types. Without this feature, programs
might be complicated and error prone. See the following example:
template <class A, class B> class K{

public:
int i;

};

K<int, double> (*(*bar())())() {
return 0;

}

You can use the trailing return type feature to make the code compact. See the
following example:
template <class A, class B> class K{

public:
int i;
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};

auto bar()->auto(*)()->K<int, double>(*)(){
return 0;

}

This feature can also be used for member functions of classes. In the following
example, the program is concise because the return type of the member function
bar does not need to be qualified after using a trailing return type:
struct A{

typedef int ret_type;
auto bar() -> ret_type;

};

// ret_type is not qualified
auto A::bar() -> ret_type{

return 0;
}

Another use of this feature is in writing perfect forwarding functions. That is, the
forwarding function calls another function, and the return type of the forwarding
function is the same as that of the called function. See the following example:
double number (int a){

return double(a);
}

int number(double b){
return int(b);

}

template <class A>
auto wrapper(A a) -> decltype(number(a)){

return number(a);
}

int main(){
// The return value is 1.000000.
wrapper(1);

// The return value is 1.
wrapper(1.5);

}

In this example, the wrapper function and the number function have the same
return type.
Related reference:
“The auto type specifier (C++11)” on page 76
“The decltype(expression) type specifier (C++11)” on page 78
“C++11 compatibility” on page 640
“Member functions” on page 359
“Member functions of class templates” on page 445
“Function templates” on page 446
“Function declarations” on page 219
“Function definitions” on page 220
“Pointers to functions” on page 257
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Function attributes (IBM extension)
Function attributes are extensions implemented to enhance the portability of
programs developed with GNU C. Specifiable attributes for functions provide
explicit ways to help the compiler optimize function calls and to instruct it to
check more aspects of the code. Others provide additional functionality.

A function attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires. A
function __attribute__ specification is included in the declaration or definition of
a function. The syntax takes the following forms:

Function attribute syntax: function declaration

�� function declarator __attribute__ �

� �

,

(( attribute_name )) ;
__ attribute_name __

��

Function attribute syntax: function definition (C only)

�� __attribute__ �

,

(( attribute name ))
__ attribute_name __

function_declarator �

� { function body } ��

The function attribute in a function declaration is always placed after the
declarator, including the parenthesized parameter declaration:

/* Specify the attribute on a function prototype declaration */
void f(int i, int j) __attribute__((individual_attribute_name));
void f(int i, int j) { }

C Due to ambiguities in parsing old-style parameter declarations, a function
definition must have the attribute specification precede the declarator:
int __attribute__((individual_attribute_name)) foo(int i) { }

You can specify attribute_name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. These language
features are collectively available when compiling in any of the extended language
levels. C

The following function attributes are supported:
v “always_inline” on page 243
v “amode31 | amode64 (C only)” on page 243
v “armode | noarmode (C only)” on page 244
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v “gnu_inline” on page 244
v “malloc” on page 245
v “used” on page 246
Related reference:
“Variable attributes (IBM extension)” on page 125

always_inline
The always_inline function attribute instructs the compiler to inline a function.
This function can be inlined when all of the following conditions are satisfied:
v The function is an inline function that satisfies any of the following conditions:

– The function is specified with the inline or __inline__ keyword.
– C++ The function is defined within a class declaration. C++

v The function is not specified with the noinline or __noinline__ attribute.
v C The optimization level is at OPTIMIZE(2) or higher. C

v The number of functions to be inlined does not exceed the limit of inline
functions that can be supported by the compiler.

always_inline function attribute syntax

�� __attribute__ (( always_inline ))
__always_inline__

��

The noinline attribute takes precedence over the always_inline attribute. The
always_inline attribute takes precedence over inlining compiler options only if
inlining is enabled. The always_inline attribute is ignored if inlining is disabled.

C++ The compiler might not inline a virtual function even when the function
is specified with the always_inline attribute. The compiler will not issue an
informational message to indicate that a virtual function is not inlined.

When you specialize a function template that is specified with the always_inline
attribute, this attribute is propagated to the template specification. If you apply the
always_inline attribute to the template specification, the duplicate always_inline
attribute is ignored. See the following example.
template<class T> inline __attribute__((always_inline)) T test( ){

return (T)0;
}

// The duplicate attribute "always_inline" is ignored.
template<> inline __attribute__((always_inline)) float test<float>(){

return (float)0;
}

C++

amode31 | amode64 (C only)
When the METAL compiler option is in effect, it is possible for the application to
switch between 31-bit and 64-bit addressing modes during function calls and
returns. You can use the amode31 or amode64 function attribute to identify the
addressing mode of the called function.
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amode31 | amode64 function attribute syntax

�� __attribute__ (( amode31 | amode64 )) ��

The following example declares the function foo to be in AMODE 64 mode:
void foo() __attribute__ ((amode64));

For more information on the METAL compiler option, see the METAL compiler
option description in z/OS XL C/C++ User's Guide. For more information on
AMODE switching, see z/OS Metal C Programming Guide and Reference.

armode | noarmode (C only)
When the METAL compiler option is in effect, you can use the armode function
attribute to specify whether or not a given function is to operate in access-register
(AR) mode. AR mode allows a C function to access multiple additional data
spaces, and manipulate more data in memory.

armode function attribute syntax

�� __attribute__ (( armode ))
noarmode

��

Functions in AR mode can call functions not in AR mode, and vice versa.

The following example declares the function foo to be in AR mode:
void foo() __attribute__((armode));

The attribute overrides the default setting of the ARMODE compiler option for the
specified function. Note that this attribute is only supported when the METAL
compiler option is in effect.

For more information on ARMODE and METAL compiler options, see ARMODE
and METAL compiler options in the z/OS XL C/C++ User's Guide.
Related reference:
“The armode | noarmode type attribute (C only)” on page 94
“The __far type qualifier (C only)” on page 88

gnu_inline
The gnu_inline attribute instructs the compiler to modify the inlining behavior of
a function. When this function attribute is used, the compiler imitates the GNU
legacy inlining extension to C.

This function attribute is only enabled if used in conjunction with an inline
keyword (__inline__, inline, __inline, etc.).

gnu_inline function attribute syntax

�� inline __attribute__ (( gnu_inline )) ��

Note: The behavior of the gnu_inline function attribute is the same when used in
conjunction with either the inline or __inline__ keywords.
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The semantics of the GNU legacy inlining extension to C are as follows:

C

extern gnu_inline:
extern inline __attribute__((gnu_inline)) func() {...};

This definition of func is used only for inlining. It is not compiled as a
standalone function.

static gnu_inline:
static inline __attribute__((gnu_inline)) func() {...};

If the function is generated, it is generated with internal linkage.

plain gnu_inline:
inline __attribute__((gnu_inline)) func() {...};

The definition is used for inlining when possible. It is compiled as a
standalone function (emitted as a strong definition) and emitted with
external linkage.

C

C++

extern gnu_inline:
[extern] inline __attribute__((gnu_inline)) func() {...};

This definition of func is used only for inlining. It is not compiled as a
standalone function. Note that member functions (including static ones and
ones with no linkage) marked with function attribute gnu_inline has
"extern" behavior.

static gnu_inline:
static inline __attribute__((gnu_inline)) func() {...};

If the function is generated, it is generated with internal linkage. Note that
static behavior only applies to non-member static functions.

C++

The gnu_inline attribute can be specified inside double parentheses with keyword
__attribute__ in a function declaration. See the following example.

inline int func() __attribute__((gnu_inline));

As with other GCC function attributes, the double underscores on the attribute
name are optional. The gnu_inline attribute should be used with a function that is
also declared with the inline keyword.

malloc
With the function attribute malloc, you can instruct the compiler to treat a function
as if any non-NULL pointer it returns cannot alias any other valid pointers. This
type of function (such as malloc and calloc) has this property, hence the name of
the attribute. As with all supported attributes, malloc will be accepted by the
compiler without requiring any particular option or language level.
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The malloc function attribute can be specified inside double parentheses via
keyword __attribute__ in a function declaration.

malloc function attribute syntax

�� __attribute__ (( malloc ))
__malloc__

��

As with other GCC function attributes, the double underscores on the attribute
name are optional.

Note:

v Do not use this function attribute unless you are sure that the pointer returned
by a function points to unique storage. Otherwise, optimizations performed
might lead to incorrect behavior at run time.

v If the function does not return a pointer or C++ reference return type but it is
marked with the function attribute malloc, a warning is emitted, and the
attribute is ignored.

Example

A simple case that should be optimized when attribute malloc is used:
#include <stdlib.h>
#include <stdio.h>
int a;
void* my_malloc(int size) __attribute__ ((__malloc__))
{

void* p = malloc(size);
if (!p) {

printf("my_malloc: out of memory!\n");
exit(1);

}
return p;

}
int main() {

int* x = &a;
int* p = (int*) my_malloc(sizeof(int));
*x = 0;
*p = 1;
if (*x) printf("This printf statement to be detected as unreachable

and discarded during compilation process\n");
return 0;

}

used
When a function is referenced only in inline assembly, you can use the used
function attribute to instruct the compiler to emit the code for the function even if
it appears that the function is not referenced.

The used function attribute can be specified inside double parentheses via keyword
__attribute__ in a function declaration, for example, int foo() __attribute__
((__used__)); As with other GCC function attributes, the double underscores on
the attribute name are optional.

used function attribute syntax

�� __attribute__ (( used ))
__used__

��
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If the function attribute gnu_inline is specified in such a way that the function is
discarded, and is specified together with the function attribute used, the
gnu_inline attribute wins, and the function definition is discarded.

The main() function
When a program begins running, the system calls the function main, which marks
the entry point of the program. By default, main has the storage class extern. Every
program must have one function named main, and the following constraints apply:
v No other function in the program can be called main.
v main cannot be defined as inline or static.
v C++ main cannot be called from within a program. C++

v C++ The address of main cannot be taken. C++

v C++ The main function cannot be overloaded. C++

v C++11 The main function cannot be declared with the constexpr specifier.
C++11

The function main can be defined with or without parameters, using any of the
following forms:
int main (void){}

int main ( ){}

int main(int argc, char *argv[]){}

int main (int argc, char ** argv){}

Although any name can be given to these parameters, they are usually referred to
as argc and argv. The first parameter, argc (argument count) is an integer that
indicates how many arguments were entered on the command line when the
program was started. The second parameter, argv (argument vector), is an array of
pointers to arrays of character objects. The array objects are null-terminated strings,
representing the arguments that were entered on the command line when the
program was started.

The first element of the array, argv[0], is a pointer to the character array that
contains the program name or invocation name of the program that is being run
from the command line. argv[1] indicates the first argument passed to the
program, argv[2] the second argument, and so on.

The following example program backward prints the arguments entered on a
command line such that the last argument is printed first:
#include <stdio.h>
int main(int argc, char *argv[])
{

while (--argc > 0)
printf("%s ", argv[argc]);

printf("\n");
}

Invoking this program from a command line:
backward string1 string2

gives the following output:
string2 string1
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The arguments argc and argv would contain the following values at the start of
the program:

Object Value

argc 3
argv[0] pointer to string "backward"
argv[1] pointer to string "string1"
argv[2] pointer to string "string2"
argv[3] NULL

Note: See z/OS XL C/C++ Programming Guide for details about receiving the
parameter list (argv) in C main, preparing your main function to receive parameters,
and on C and C++ parameter passing considerations.
Related reference:
“The extern storage class specifier” on page 51
“The inline function specifier” on page 228
“The static storage class specifier” on page 49
“Function calls” on page 249

Command-line arguments
z/OS XL C/C++ treats arguments that you enter on the command line differently
in different environments. The following lists how argv and argc are handled.

The maximum allowable length of a command-line argument for z/OS Language
Environment is 64K.

Under z/OS batch

argc Returns the number of strings in the argument line

argv[0]
Returns the program name in uppercase

argv[1 to n]
Returns the arguments as you enter them

Under IBM IMS™

argc Returns 1

argv[0]
Is a null pointer

Under IBM CICS®

argc Returns 1

argv[0]
Returns the transaction ID

Under TSO command

argc Returns the number of strings in the argument line

argv[0]
Returns the program name in uppercase
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argv[1 to n]
Arguments entered in uppercase are returned in lowercase. Arguments
entered in mixed or lowercase are returned as entered.

Under TSO call

Without the ASIS option:

argc Returns the number of strings in the argument line

argv Returns the program name and arguments in lowercase

With the ASIS option:

argc Returns the number of strings in the argument line

argv[0]
Returns the program name in uppercase

argv[1 to n]
Arguments entered in uppercase are returned in lowercase. Arguments
entered in mixed or lowercase are returned as entered.

Under z/OS UNIX System Services shell

argc Returns the number of strings in the argument line

argv[0]
Returns the program name as you enter it

argv[1 to n]
Returns the arguments exactly as you enter them

The only delimiter for the arguments that are passed to main() is white space.
z/OS XL C/C++ uses commas passed to main() by JCL as arguments and not as
delimiters.

The following example appends the comma to the ’one’ when passed to main().
//FUNC EXEC PCGO,GPGM=’FUNC’,
// PARM.GO=(’one’,
// ’two’)

For more information on restrictions of the command-line arguments, refer to z/OS
XL C/C++ User's Guide.
Related reference:
“Function calls”
“Type specifiers” on page 54
“Identifiers” on page 16
“Block statements” on page 199

Function calls
After a function is declared and defined, it can be called from anywhere within the
program: from within the main function, from another function, and even from
itself. Calling the function involves specifying the function name, followed by the
function call operator and any data values the function expects to receive. These
values are the arguments for the parameters defined for the function. This process
is called passing arguments to the function.
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You can pass arguments to the called functions in three ways:
v “Pass by value,” which copies the value of an argument to the corresponding

parameter in the called function;
v “Pass by pointer” on page 251, which passes a pointer argument to the

corresponding parameter in the called function;
v C++ “Pass by reference (C++ only)” on page 252, which passes the reference

of an argument to the corresponding parameter in the called function. C++

C++ If a class has a destructor or a copy constructor that does more than a
bitwise copy, passing a class object by value results in the construction of a
temporary object that is actually passed by reference.

The compiler generates an error when a function argument is a class object and all
of the following conditions are true:
v The class needs a copy constructor.
v The class does not have a user-defined copy constructor.
v A copy constructor cannot be generated for that class.

C++

C A function call is always an rvalue. C

C++ A function call belongs to one of the following value categories depending
on the result type of the function:
v An lvalue if the result type is an lvalue reference type C++11 or an rvalue

reference to a function type C++11

v C++11 An xvalue if the result type is an rvalue reference to an object type
C++11

v A C++11 (prvalue) C++11 rvalue in other cases

C++

Related reference:
“Command-line arguments” on page 248
“Function argument conversions” on page 139
“Function call expressions” on page 149
“Constructors” on page 408
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

Pass by value
When you use pass-by-value, the compiler copies the value of an argument in a
calling function to a corresponding non-pointer or non-reference parameter in the
called function definition. The parameter in the called function is initialized with
the value of the passed argument. As long as the parameter has not been declared
as constant, the value of the parameter can be changed, but the changes are only
performed within the scope of the called function only; they have no effect on the
value of the argument in the calling function.

In the following example, main passes func two values: 5 and 7. The function func
receives copies of these values and accesses them by the identifiers a and b. The
function func changes the value of a. When control passes back to main, the actual
values of x and y are not changed.
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/**
** This example illustrates calling a function by value
**/

#include <stdio.h>

void func (int a, int b)
{

a += b;
printf("In func, a = %d b = %d\n", a, b);

}

int main(void)
{

int x = 5, y = 7;
func(x, y);
printf("In main, x = %d y = %d\n", x, y);
return 0;

}

The output of the program is:
In func, a = 12 b = 7
In main, x = 5 y = 7

Pass by pointer
Pass-by-pointer means to pass a pointer argument in the calling function to the
corresponding formal parameter of the called function. The called function can
modify the value of the variable to which the pointer argument points.

The following example shows how arguments are passed by pointer:
#include <stdio.h>

void swapnum(int *i, int *j) {
int temp = *i;
*i = *j;
*j = temp;

}

int main(void) {
int a = 10;
int b = 20;

swapnum(&a, &b);
printf("A is %d and B is %d\n", a, b);
return 0;

}

When the function swapnum() is called, the values of the variables a and b are
exchanged because they are passed by pointer. The output is:
A is 20 and B is 10

When you use pass-by-pointer, a copy of the pointer is passed to the function. If
you modify the pointer inside the called function, you only modify the copy of the
pointer, but the original pointer remains unmodified and still points to the original
variable.

The difference between pass-by-pointer and pass-by-value is that modifications
made to arguments passed in by pointer in the called function have effect in the
calling function, whereas modifications made to arguments passed in by value in
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the called function can not affect the calling function. Use pass-by-pointer if you
want to modify the argument value in the calling function. Otherwise, use
pass-by-value to pass arguments.
Related reference:
“Pointers” on page 100

Pass by reference (C++ only)
Pass-by-reference means to pass the reference of an argument in the calling function
to the corresponding formal parameter of the called function. The called function
can modify the value of the argument by using its reference passed in.

The following example shows how arguments are passed by reference. The
reference parameters are initialized with the actual arguments when the function is
called.

CCNX06A
#include <stdio.h>

void swapnum(int &i, int &j) {
int temp = i;
i = j;
j = temp;

}

int main(void) {
int a = 10;
int b = 20;

swapnum(a, b);
printf("A is %d and B is %d\n", a, b);
return 0;

}

When the function swapnum() is called, the values of the variables a and b are
exchanged because they are passed by reference. The output is:
A is 20 and B is 10

To modify a reference that is qualified by the const qualifier, you must cast away
its constness with the const_cast operator. For example:
#include <iostream>
using namespace std;

void f(const int& x) {
int& y = const_cast<int&>(x);
++y;

}

int main() {
int a = 5;
f(a);
cout << a << endl;

}

This example outputs 6.

Pass-by-references is more efficient than pass-by-value, because it does not copy
the arguments. The formal parameter is an alias for the argument. When the called
function read or write the formal parameter, it is actually read or write the
argument itself.
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The difference between pass-by-reference and pass-by-value is that modifications
made to arguments passed in by reference in the called function have effect in the
calling function, whereas modifications made to arguments passed in by value in
the called function can not affect the calling function. Use pass-by-reference if you
want to modify the argument value in the calling function. Otherwise, use
pass-by-value to pass arguments.

The difference between pass-by-reference and pass-by-pointer is that pointers can
be NULL or reassigned whereas references cannot. Use pass-by-pointer if NULL is a
valid parameter value or if you want to reassign the pointer. Otherwise, use
constant or non-constant references to pass arguments.
Related reference:
“References (C++ only)” on page 107
“The const_cast operator (C++ only)” on page 181

Allocation and deallocation functions (C++ only)
You may define your own new operator or allocation function as a class member
function or a global namespace function with the following restrictions:
v The first parameter must be of type std::size_t. It cannot have a default

parameter.
v The return type must be of type void*.
v Your allocation function may be a template function. Neither the first parameter

nor the return type may depend on a template parameter.
v If you declare your allocation function with the empty exception specification

throw(), your allocation function must return a null pointer if your function
fails. Otherwise, your function must throw an exception of type std::bad_alloc
or a class derived from std::bad_alloc if your function fails.

You may define your own delete operator or deallocation function as a class
member function or a global namespace function with the following restrictions:
v The first parameter must be of type void*.
v The return type must be of type void.
v Your deallocation function may be a template function. Neither the first

parameter nor the return type may depend on a template parameter.

The following example defines replacement functions for global namespace new
and delete:
#include <cstdio>
#include <cstdlib>

using namespace std;

void* operator new(size_t sz) {
printf("operator new with %d bytes\n", sz);
void* p = malloc(sz);
if (p == 0) printf("Memory error\n");
return p;

}

void operator delete(void* p) {
if (p == 0) printf ("Deleting a null pointer\n");
else {

printf("delete object\n");
free(p);

}
}
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struct A {
const char* data;
A() : data("Text String") { printf("Constructor of S\n"); }
~A() { printf("Destructor of S\n"); }

};

int main() {
A* ap1 = new A;
delete ap1;

printf("Array of size 2:\n");
A* ap2 = new A[2];
delete[] ap2;

}

See the following output of the above example:
operator
new with 40 bytes
operator new with 33 bytes
operator new with 4 bytes
Constructor of S
Destructor of S
delete object
Array of size 2:
operator new with 16 bytes
Constructor of S
Constructor of S
Destructor of S
Destructor of S
delete object

Related reference:
“new expressions (C++ only)” on page 185

Default arguments in C++ functions (C++ only)
You can provide default values for function parameters. For example:

CCNX06B
#include <iostream>
using namespace std;

int a = 1;
int f(int a) { return a; }
int g(int x = f(a)) { return x; }

int h() {
a = 2;
{

int a = 3;
return g();

}
}

int main() {
cout << h() << endl;

}

This example prints 2 to standard output, because the a referred to in the
declaration of g() is the one at file scope, which has the value 2 when g() is called.

The default argument must be implicitly convertible to the parameter type.
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A pointer to a function must have the same type as the function. Attempts to take
the address of a function by reference without specifying the type of the function
will produce an error. The type of a function is not affected by arguments with
default values.

The following example shows that default arguments are not considered part of a
function's type. The default argument allows you to call a function without
specifying all of the arguments, it does not allow you to create a pointer to the
function that does not specify the types of all the arguments. Function f can be
called without an explicit argument, but the pointer badpointer cannot be defined
without specifying the type of the argument:
int f(int = 0);
void g()
{

int a = f(1); // ok
int b = f(); // ok, default argument used

}
int (*pointer)(int) = &f; // ok, type of f() specified (int)
int (*badpointer)() = &f; // error, badpointer and f have

// different types. badpointer must
// be initialized with a pointer to
// a function taking no arguments.

In this example, function f3 has a return type int, and takes an int argument with
a default value that is the value returned from function f2:

const int j = 5;
int f3( int x = f2(j) );

Related reference:
“Pointers to functions” on page 257

Restrictions on default arguments (C++ only)
Of the operators, only the function call operator and the operator new can have
default arguments when they are overloaded.

Parameters with default arguments must be the trailing parameters in the function
declaration parameter list. For example:
void f(int a, int b = 2, int c = 3); // trailing defaults
void g(int a = 1, int b = 2, int c); // error, leading defaults
void h(int a, int b = 3, int c); // error, default in middle

Once a default argument has been given in a declaration or definition, you cannot
redefine that argument, even to the same value. However, you can add default
arguments not given in previous declarations. For example, the last declaration
below attempts to redefine the default values for a and b:
void f(int a, int b, int c=1); // valid
void f(int a, int b=1, int c); // valid, add another default
void f(int a=1, int b, int c); // valid, add another default
void f(int a=1, int b=1, int c=1); // error, redefined defaults

You can supply any default argument values in the function declaration or in the
definition. Any parameters in the parameter list following a default argument
value must have a default argument value specified in this or a previous
declaration of the function.

You cannot use local variables in default argument expressions. For example, the
compiler generates errors for both function g() and function h() below:
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void f(int a)
{

int b=4;
void g(int c=a); // Local variable "a" cannot be used here
void h(int d=b); // Local variable "b" cannot be used here

}

Related reference:
“Function call expressions” on page 149
“new expressions (C++ only)” on page 185

Evaluation of default arguments (C++ only)
When a function defined with default arguments is called with trailing arguments
missing, the default expressions are evaluated. For example:
void f(int a, int b = 2, int c = 3); // declaration
// ...
int a = 1;
f(a); // same as call f(a,2,3)
f(a,10); // same as call f(a,10,3)
f(a,10,20); // no default arguments

Default arguments are checked against the function declaration and evaluated
when the function is called. The order of evaluation of default arguments is
undefined. Default argument expressions cannot use other parameters of the
function. For example:
int f(int q = 3, int r = q); // error

The argument r cannot be initialized with the value of the argument q because the
value of q may not be known when it is assigned to r. If the above function
declaration is rewritten:
int q=5;
int f(int q = 3, int r = q); // error

The value of r in the function declaration still produces an error because the
variable q defined outside of the function is hidden by the argument q declared for
the function. Similarly:
typedef double D;
int f(int D, int z = D(5.3) ); // error

Here the type D is interpreted within the function declaration as the name of an
integer. The type D is hidden by the argument D. The cast D(5.3) is therefore not
interpreted as a cast because D is the name of the argument not a type.

In the following example, the nonstatic member a cannot be used as an initializer
because a does not exist until an object of class X is constructed. You can use the
static member b as an initializer because b is created independently of any objects
of class X. You can declare the member b after its use as a default argument
because the default values are not analyzed until after the final bracket } of the
class declaration.
class X
{

int a;
f(int z = a) ; // error
g(int z = b) ; // valid
static int b;

};

256 z/OS V2R1.0 XL C/C++ Language Reference



Pointers to functions
Pointers to functions

A pointer to a function points to the address of the executable code of the function.
You can use pointers to call functions and to pass functions as arguments to other
functions. You cannot perform pointer arithmetic on pointers to functions.

For z/OS XL C/C++, use the __cdecl keyword to declare a pointer to a function as
a C linkage. For more information, refer to “The __cdecl function specifier (C++
only)” on page 231.

The type of a pointer to a function is based on both the return type and parameter
types of the function.

A declaration of a pointer to a function must have the pointer name in
parentheses. Function parameters have precedence over pointers in declarations, so
parentheses are required to alter the precedence and declare a pointer to a
function. Without them, the compiler interprets the declaration as a function that
returns a pointer to a specified return type. For example:
int *f(int a); /* function f returning an int* */
int (*g)(int a); /* pointer g to a function returning an int */

In the first declaration, f is interpreted as a function that takes an int as argument,
and returns a pointer to an int. In the second declaration, g is interpreted as a
pointer to a function that takes an int argument and that returns an int.

C++11

You can use a trailing return type in the declaration or definition of a pointer to a
function. For example:
auto(*fp)()->int;

In this example, fp is a pointer to a function that returns int. You can rewrite the
declaration of fp without using a trailing return type as int (*fp)(void). For more
information on trailing return type, see “Trailing return type (C++11)” on page 239.

C++11

Under z/OS XL C/C++, if you pass a function pointer to a function, or the
function returns a function pointer, the declared or implied linkages must be the
same. Use the extern keyword with declarations in order to specify different
linkages.

The following example illustrates the correct and incorrect uses of function
pointers under z/OS XL C/C++ :
#include <stdlib.h>

extern "C" int cf();
extern "C++" int cxxf(); // C++ is included here for clarity;

// it is not required; if it is
// omitted, cxxf() will still have
// C++ linkage.

extern "C" int (*c_fp)();
extern "C++" int (*cxx_fp)();
typedef int (*dft_fp_T)();
typedef int (dft_f_T)();

Chapter 8. Functions 257



extern "C" {
typedef void (*cfp_T)();
typedef int (*cf_pT)();
void cfn();
void (*cfp)();

}

extern "C++" {
typedef int (*cxxf_pT)();
void cxxfn();
void (*cxxfp)();

}

extern "C" void f_cprm(int (*f)()) {
int (*s)() = cxxf; // error, incompatible linkages-cxxf has

// C++ linkage, s has C linkage as it
// is included in the extern "C" wrapper

cxxf_pT j = cxxf; // valid, both have C++ linkage
int (*i)() = cf; // valid, both have C linkage

}

extern "C++" void f_cxprm(int (*f)()) {
int (*s)() = cf; // error, incompatible linkages-cf has C

// linkage, s has C++ linkage as it is
// included in the extern "C++" wrapper

int (*i)() = cxxf; // valid, both have C++ linkage
cf_pT j = cf; // valid, both have C linkage

}

main() {

c_fp = cxxf; // error - c_fp has C linkage and cxxf has
// C++ linkage

cxx_fp = cf; // error - cxx_fp has C++ linkage and
// cf has C linkage

dft_fp_T dftfpT1 = cf; // error - dftfpT1 has C++ linkage and
// cf has C linkage

dft_f_T *dftfT3 = cf; // error - dftfT3 has C++ linkage and
// cf has C linkage

dft_fp_T dftfpT5 = cxxf; // valid
dft_f_T *dftfT6 = cxxf; // valid

c_fp = cf; // valid
cxx_fp = cxxf; // valid
f_cprm(cf); // valid
f_cxprm(cxxf); // valid

// The following errors are due to incompatible linkage of function
// arguments, type conversion not possible
f_cprm(cxxf); // error - f_cprm expects a parameter with

// C linkage, but cxxf has C++ linkage
f_cxprm(cf); // error - f_cxprm expects a parameter

// with C++ linkage, but cf has C linkage
}

For z/OS, linkage compatibility affects all C library functions that accept a function
pointer as a parameter.

References to functions

A reference to a function is an alias or an alternative name for a function. You
must initialize all references to functions after they are defined. Once defined, a
reference to a function cannot be reassigned. You can use references to call
functions and to pass functions as arguments to other functions. For example:
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int g();

// f is a reference to a function that has no parameters and returns int.
int bar(int(&f)()){

// call function f that is passed as an argument.
return f();

}

int x = bar(g);

C++11

You can also use a trailing return type in the declaration or definition of a
reference to a function. In the following example, fp is a reference to a function
that returns int. For more information on trailing return type, see “Trailing return
type (C++11)” on page 239.
auto(&fp)()->int;

C++11

Related reference:
“Language linkage (C++ only)” on page 9
“Pointers” on page 100
“Pointer conversions” on page 137
“References (C++ only)” on page 107
“The extern storage class specifier” on page 226

Atomic library (C11)
The header file stdatomic.h defines the following macros, types, and functions for
performing atomic operations on data shared among threads:
v “Macros (C11)”
v “Types (C11)” on page 260
v “Atomic library functions (C11)” on page 262

Macros (C11)
Atomic lock-free macros

The following atomic lock-free macros indicate the lock-free property of the
corresponding atomic types (both signed and unsigned).
v #define ATOMIC_BOOL_LOCK_FREE value

v #define ATOMIC_CHAR_LOCK_FREE value

v #define ATOMIC_CHAR16_T_LOCK_FREE value

v #define ATOMIC_CHAR32_T_LOCK_FREE value

v #define ATOMIC_WCHAR_T_LOCK_FREE value

v #define ATOMIC_SHORT_LOCK_FREE value

v #define ATOMIC_INT_LOCK_FREE value

v #define ATOMIC_LONG_LOCK_FREE value

v #define ATOMIC_LLONG_LOCK_FREE value

v #define ATOMIC_POINTER_LOCK_FREE value

The values of the atomic lock-free macros are defined as follows:
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0 Indicates that the atomic type is never lock-free.

1 Indicates that the atomic type is sometimes lock-free.

2 Indicates that the atomic type is always lock-free.

The ATOMIC_FLAG_INIT macro

The following macro expands to an expression that you can use to initialize an
object of type atomic_flag.
#define ATOMIC_FLAG_INIT value

If the value of atomic_flag is not initialized with this macro, it is undefined.

The ATOMIC_VAR_INIT macro

The following macro expands to an expression that you can use to initialize an
atomic variable of a type that is initialization-compatible with value. If an atomic
object of automatic storage duration is not initialized with this macro, its initial
value is undefined.
#define ATOMIC_VAR_INIT(value)

If an atomic object with automatic storage duration is not explicitly initialized with
ATOMIC_VAR_INIT, it is initially in an indeterminate state. However, the default
initialization for objects with static or thread-local storage duration produces a
valid state. Concurrent accesses to the variable that is being initialized, even by an
atomic operation, constitute a data race.

The kill_dependency macro

The following macro ends a dependency chain. That is, the argument does not
carry a dependency to the return value.
type kill_dependency(type y);

The kill_dependency macro returns the value of y.

Types (C11)
The <stdatomic.h> header file defines two types, memory_order and atomic_flag.

The memory_order type

The enumerated type memory_order determines how non-atomic memory accesses
are ordered around an atomic operation.
enum memory_order {

memory_order_relaxed,
memory_order_consume,
memory_order_acquire,
memory_order_release,
memory_order_acq_rel,
memory_order_seq_cst

};

Its enumeration constants define memory order constraints as follows:

memory_order_relaxed
There are no constraints on reordering of memory accesses around the atomic
variable.
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memory_order_consume
In the current thread, no reads that are dependent on the currently loaded
value can be reordered before this load.

memory_order_acquire
In the current thread, no reads can be reordered before this load.

memory_order_release
In the current thread, no writes can be reordered after this store.

memory_order_acq_rel
In the current thread, no reads can be reordered before this load, and that no
writes can be reordered after this store.

memory_order_seq_cst
The operation has the same semantics as the acquire-release operation. In
addition, it has a sequentially consistent operation order.

The atomic_flag type

atomic_flag is a structure type that represents a lock-free, primitive atomic flag,
and several atomic analogs of integer types. It provides the classic test-and-set
function, and has two states: set and clear.

Operations on an object of type atomic_flag must be lock-free.

You can use the macro ATOMIC_FLAG_INIT to initialize an atomic_flag object to the
clear state. If an atomic_flag object is not explicitly initialized with
ATOMIC_FLAG_INIT, it is initially in an indeterminate state.

Atomic integer types (C11)
In the following table, the atomic type name is declared as a type that has the
same representation and alignment requirements as its corresponding direct type.
You can use an atomic type and its corresponding direct type interchangeably as
arguments to functions, return values from functions, or members of unions.

Table 33. Atomic type names and direct types

Atomic type name Direct type

atomic_bool _Atomic _Bool

atomic_char _Atomic char

atomic_schar _Atomic signed char

atomic_uchar _Atomic unsigned char

atomic_short _Atomic short

atomic_ushort _Atomic unsigned short

atomic_int _Atomic int

atomic_uint _Atomic unsigned int

atomic_long _Atomic long

atomic_ulong _Atomic unsigned long

atomic_llong _Atomic long long

atomic_ullong _Atomic unsigned long long

atomic_char16_t _Atomic char16_t

atomic_char32_t _Atomic char32_t
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Table 33. Atomic type names and direct types (continued)

Atomic type name Direct type

atomic_wchar_t _Atomic wchar_t

atomic_int_least8_t _Atomic int_least8_t

atomic_uint_least8_t _Atomic uint_least8_t

atomic_int_least16_t _Atomic int_least16_t

atomic_uint_least16_t _Atomic uint_least16_t

atomic_int_least32_t _Atomic int_least32_t

atomic_uint_least32_t _Atomic uint_least32_t

atomic_int_least64_t _Atomic int_least64_t

atomic_uint_least64_t _Atomic uint_least64_t

atomic_int_fast8_t _Atomic int_fast8_t

atomic_uint_fast8_t _Atomic uint_fast8_t

atomic_int_fast16_t _Atomic int_fast16_t

atomic_uint_fast16_t _Atomic uint_fast16_t

atomic_int_fast32_t _Atomic int_fast32_t

atomic_uint_fast32_t _Atomic uint_fast32_t

atomic_int_fast64_t _Atomic int_fast64_t

atomic_uint_fast64_t _Atomic uint_fast64_t

atomic_intptr_t _Atomic intptr_t

atomic_uintptr_t _Atomic uintptr_t

atomic_size_t _Atomic size_t

atomic_ptrdiff_t _Atomic ptrdiff_t

atomic_intmax_t _Atomic intmax_t

atomic_uintmax_t _Atomic uintmax_t

Atomic library functions (C11)

atomic_init (C11)
Purpose

Initializes an atomic object.

Prototype

void atomic_init(volatile A *object, C value);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to initialize.
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value
The value that is used to initialize the atomic object.

Usage

You can use this function to initialize an atomic object, but this function does not
avoid data races. Concurrent accesses to the variable that is being initialized, even
by an atomic operation, constitute a data race.

atomic_thread_fence (C11)
Purpose

Establishes a memory synchronization order of non-atomic and relaxed atomic
accesses without an associated atomic operation.

Prototype

void atomic_thread_fence(memory_order order);

Parameter

order
The memory order that is executed by this fence.

Usage

The function has the following effects depending on the value of order:
v If the value of order is memory_order_relaxed, the function has no effects.
v If the value of order is memory_order_acquire or memory_order_consume, the

function is an acquire fence.
v If the value of order is memory_order_release, the function is a release fence.
v If the value of order is memory_order_acq_rel, the function is both an acquire

fence and a release fence.
v If the value of order is memory_order_seq_cst, the function is a sequentially

consistent acquire and release fence.

atomic_signal_fence (C11)
Purpose

Establishes a memory synchronization order of non-atomic and relaxed atomic
accesses between a thread and a signal handler that is executed on the same
thread.

Prototype

void atomic_signal_fence(memory_order order);

Parameters

order
The memory order that is executed by this fence.
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Usage

This function is equivalent to atomic_thread_fence, except that the resulting order
constraints are established only between a thread and a signal handler that is
executed in the same thread.

You can use atomic_signal_fence to specify the order in which operations
performed by the thread become visible to the signal handler.

Memory is affected according to the value of order.

atomic_is_lock_free (C11)
Purpose

Indicates whether an atomic object is lock-free.

Prototype

_Bool atomic_is_lock_free(const volatile A *object);

Parameters

A One of the atomic types.

object
A pointer that points to the atomic object to inspect.

Return value

Returns a nonzero value only if the operations of the object are lock-free.
Otherwise, zero is returned.

atomic_store (C11)
Purpose

Stores a value in an atomic object.

Prototypes

void atomic_store(volatile A *object, C value);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

value
The value to be stored in the atomic object.

Usage

You can use this function to atomically store value in the atomic object that object
points to.
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atomic_store_explicit (C11)
Purpose

Stores a value in an atomic object.

Prototype

void atomic_store_explicit(volatile A *object, C value, memory_order order);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

value
The value to be stored in the atomic object.

order
The memory synchronization order for this operation.

Usage

The order argument cannot be memory_order_acquire, memory_order_consume, or
memory_order_acq_rel.

You can use this function to atomically store value in the atomic object that object
points to. Memory is affected according to the value of order.

atomic_load (C11)
Purpose

Reads a value from an atomic object.

Prototypes

C atomic_load(volatile A *object);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to access.

Return value

Atomically returns the value pointed to by object.

atomic_load_explicit (C11)
Purpose

Reads a value from an atomic object.
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Prototypes

C atomic_load_explicit(volatile A *object, memory_order order);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to access.

order
The memory synchronization order for this operation. The order parameter
cannot be memory_order_release or memory_order_acq_rel.

Return value

Atomically returns the value pointed to by object.

Memory is affected according to the value of order.

atomic_exchange (C11)
Purpose

Replaces the value of an atomic object with a specified value.

Prototypes

C atomic_exchange(volatile A *object, C value);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

value
The value to replace the atomic object with.

Usage

You can atomically replace the value pointed to by object with value.

Return value

Atomically returns the value pointed to by object immediately before the exchange.

atomic_exchange_explicit (C11)
Purpose

Replaces the value of an atomic object with a specified value.

Prototypes

C atomic_exchange_explicit(volatile A *object, C value, memory_order order);

266 z/OS V2R1.0 XL C/C++ Language Reference



Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

value
The value to replace the atomic object with.

order
The memory synchronization order for this operation.

Usage

This function atomically replaces the value pointed to by object with value. Memory
is affected according to the value of order.

Return value

Atomically returns the value pointed to by object immediately before the exchange.

atomic_compare_exchange_strong (C11)
Purpose

Performs an atomic compare and exchange operation.

Prototypes

_Bool atomic_compare_exchange_strong(volatile A *object, C *expected, C desired);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to test and modify.

expected
A pointer that points to the value expected to be found in the atomic object.

desired
The value to be stored in the atomic object if the comparison result is true.

Usage

This function atomically compares the value pointed to by object for equality with
the value pointed to by expected.

If the comparison result is true, this function replaces the value pointed to by object
with desired.

If the comparison result is false, this function updates the value pointed to by
expected with the value pointed to by object.
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Return value

Returns the result of the comparison.

atomic_compare_exchange_strong_explicit (C11)
Purpose

Performs an atomic compare and exchange operation.

Prototypes

_Bool atomic_compare_exchange_strong_explicit(volatile A *object, C *expected, C
desired, memory_order success, memory_order failure);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to test and modify.

expected
A pointer that points to the value expected to be found in the atomic object.

desired
The value to be stored in the atomic object if the comparison result is true.

success
The memory synchronization order for the read-modify-write operation if the
comparison succeeds.

failure
The memory synchronization order for the load operation if the comparison
fails. This parameter cannot be memory_order_release or
memory_order_acq_rel. You cannot specify it with a memory synchronization
order that is stronger than success.

Usage

This function atomically compares the value pointed to by object for equality with
the value pointed to by expected.

If the comparison result is true, this function replaces the value pointed to by object
with desired.

If the comparison result is false, this function updates the value pointed to by
expected with the value pointed to by object.

If the comparison result is true, memory is affected according to the value of
success, and if the comparison result is false, memory is affected according to the
value of failure.

Return value

Returns the result of the comparison.
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atomic_compare_exchange_weak (C11)
Purpose

Performs an atomic compare and exchange operation.

Prototypes

_Bool atomic_compare_exchange_weak(volatile A *object, C *expected, C desired);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to test and modify.

expected
A pointer that points to the value expected to be found in the atomic object.

desired
The value to be stored in the atomic object if the comparison result is true.

Usage

This function atomically compares the value pointed to by object for equality with
the value pointed to by expected.

If the comparison result is true, this function replaces the value pointed to by object
with desired.

If the comparison result is false, this function updates the value pointed to by
expected with the value pointed to by object.

A weak compare-and-exchange operation might fail spuriously. That is, even when
the contents of memory pointed to by expected and object are equal, it might return
zero and store back to the place pointed to by expected the same memory contents
that were originally there.

Return value

Returns the result of the comparison.

atomic_compare_exchange_weak_explicit (C11)
Purpose

Performs an atomic compare and exchange operation.

Prototypes

_Bool atomic_compare_exchange_weak_explicit(volatile A *object, C *expected, C
desired, memory_order success, memory_order failure);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.
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object
A pointer that points to the atomic object to test and modify.

expected
A pointer that points to the value expected to be found in the atomic object.

desired
The value to be stored in the atomic object if the comparison result is true.

success
The memory synchronization order for the read-modify-write operation if the
comparison succeeds.

failure
The memory synchronization order for the load operation if the comparison
fails. This parameter cannot be memory_order_release or
memory_order_acq_rel. You cannot specify it with a memory synchronization
order stronger than success.

Usage

This function atomically compares the value pointed to by object for equality with
the value pointed to by expected.

If the comparison result is true, this function replaces the value pointed to by object
with desired.

If the comparison result is false, this function updates the value pointed to by
expected with the value pointed to by object.

If the comparison is true, memory is affected according to the value of success, and
if the comparison is false, memory is affected according to the value of failure.

A weak compare-and-exchange operation might fail spuriously. That is, even when
the contents of memory referred to by expected and object are equal, it might return
zero and store back to the place pointed to by expected the same memory contents
that were originally there.

Return value

Returns the result of the comparison.

atomic_fetch_add (C11)
Purpose

Performs the addition operation on an atomic object.

Prototypes

C atomic_fetch_add(volatile A *object, M operand);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.
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M The type of a specified operand is determined as follows:
v If A is an atomic integer type, M is the corresponding non-atomic type of A.
v If A is an atomic pointer type, M is the ptrdiff_t type.

operand
A specified value to add to the value in the atomic object.

Usage

This function adds the value pointed to by object and the specified operand, and
stores the addition result in the atomic object pointed to by object.

Return value

Returns atomically the value pointed to by object before the addition.

atomic_fetch_add_explicit (C11)
Purpose

Performs the addition operation on an atomic object.

Prototypes

C atomic_fetch_add_explicit(volatile A *object, M operand, memory_order order);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

M The type of a specified operand is determined as follows:
v If A is an atomic integer type, M is the corresponding non-atomic type of A.
v If A is an atomic pointer type, M is the ptrdiff_t type.

operand
A specified value to add to the value in the atomic object.

order
The memory synchronization order for this operation.

Usage

This function adds the value pointed to by object and the specified operand, and
stores the addition result in the atomic object pointed to by object.

Memory is affected according to the value of order.

Return value

Returns atomically the value pointed to by object before the addition.

atomic_fetch_sub (C11)
Purpose

Performs the subtraction operation on an atomic object.
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Prototypes

C atomic_fetch_sub(volatile A *object, M operand);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

M The type of a specified operand is determined as follows:
v If A is an atomic integer type, M is the corresponding non-atomic type of A.
v If A is an atomic pointer type, M is the ptrdiff_t type.

operand
A specified value to subtract from the value in the atomic object.

Usage

This function subtracts the specified operand from the value pointed to by object,
and stores the subtraction result in the atomic object pointed to by object.

Return value

Returns atomically the value pointed to by object before the subtraction.

atomic_fetch_sub_explicit (C11)
Purpose

Performs the subtraction operation on an atomic object.

Prototypes

C atomic_fetch_sub_explicit(volatile A *object, M operand, memory_order order);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

M The type of a specified operand is determined as follows:
v If A is an atomic integer type, M is the corresponding non-atomic type of A.
v If A is an atomic pointer type, M is the ptrdiff_t type.

operand
A specified value to subtract from the value in the atomic object.

order
The memory synchronization order for this operation.

Usage

This function subtracts the specified operand from the value pointed to by object,
and stores the subtraction result in the atomic object pointed to by object.
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Memory is affected according to the value of order.

Return value

Returns atomically the value pointed to by object before the subtraction.

atomic_fetch_or (C11)
Purpose

Performs the bitwise inclusive OR operation on an atomic object.

Prototypes

C atomic_fetch_or(volatile A *object, M operand);

Parameters

A The type of an atomic object.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

M The type of a specified operand is determined as follows:
v If A is an atomic integer type, M is the corresponding non-atomic type of A.
v If A is an atomic pointer type, M is the ptrdiff_t type.

operand
The value to perform the bitwise inclusive OR operation on the value in the
atomic object.

Usage

This function performs the bitwise inclusive OR operation on the value pointed to
by object and the specified operand, and stores the result in the atomic object
pointed to by object.

Return value

Returns atomically the value pointed to by object before the bitwise inclusive OR
operation.

atomic_fetch_or_explicit (C11)
Purpose

Performs the bitwise inclusive OR operation on an atomic object.

Prototypes

C atomic_fetch_or_explicit(volatile A *object, M operand, memory_order order);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.
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M The type of a specified operand is determined as follows:
v If A is an atomic integer type, M is the corresponding non-atomic type of A.
v If A is an atomic pointer type, M is the ptrdiff_t type.

operand
The value to perform the bitwise inclusive OR operation on the value in the
atomic object.

order
The memory synchronization order for this operation.

Usage

This function performs the bitwise inclusive OR operation on the value pointed to
by object and the specified operand, and stores the result in the atomic object
pointed to by object.

Memory is affected according to the value of order.

Return value

Returns atomically the value pointed to by object before the bitwise inclusive OR
operation.

atomic_fetch_xor (C11)
Purpose

Performs the bitwise exclusive OR operation on an atomic object.

Prototypes

C atomic_fetch_xor(volatile A *object, M operand);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

M The type of a specified operand is determined as follows:
v If A is an atomic integer type, M is the corresponding non-atomic type of A.
v If A is an atomic pointer type, M is the ptrdiff_t type.

operand
A specified value to perform the bitwise exclusive OR operation on the value
in the atomic object.

Usage

This function performs the bitwise exclusive OR operation on the value pointed to
by object and the specified operand, and stores the result in the atomic object
pointed to by object.
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Return value

Returns atomically the value pointed to by object before the bitwise exclusive OR
operation.

atomic_fetch_xor_explicit (C11)
Purpose

Performs the bitwise exclusive OR operation on an atomic object.

Prototypes

C atomic_fetch_xor_explicit(volatile A *object, M operand, memory_order order);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

M The type of a specified operand is determined as follows:
v If A is an atomic integer type, M is the corresponding non-atomic type of A.
v If A is an atomic pointer type, M is the ptrdiff_t type.

operand
A specified value to perform the bitwise exclusive OR operation on the value
in the atomic object.

order
The memory synchronization order for this operation.

Usage

This function performs the bitwise exclusive OR operation on the value pointed to
by object and the specified operand, and stores the result in the atomic object
pointed to by object.

Memory is affected according to the value of order. These operations are atomic
read-modify-write operations.

Return value

Returns atomically the value pointed to by object before the bitwise exclusive OR
operation.

atomic_fetch_and (C11)
Purpose

Performs the bitwise AND operation on an atomic object.

Prototypes

C atomic_fetch_and(volatile A *object, M operand);
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Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

M The type of a specified operand is determined as follows:
v If A is an atomic integer type, M is the corresponding non-atomic type of A.
v If A is an atomic pointer type, M is the ptrdiff_t type.

operand
A specified value to perform the bitwise AND operation on the value in the
atomic object.

Usage

This function performs the bitwise AND operation on the value pointed to by
object and the specified operand, and stores the result in the atomic object pointed to
by object.

Return value

Returns atomically the value pointed to by object before the bitwise AND
operation.

atomic_fetch_and_explicit (C11)
Purpose

Performs the bitwise AND operation on an atomic object.

Prototypes

C atomic_fetch_and_explicit(volatile A *object, M operand, memory_order order);

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

M The type of a specified operand is determined as follows:
v If A is an atomic integer type, M is the corresponding non-atomic type of A.
v If A is an atomic pointer type, M is the ptrdiff_t type.

operand
A specified value to perform the bitwise AND operation on the value in the
atomic object.

order
The memory synchronization order for this operation.
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Usage

This function performs the bitwise AND operation on the value pointed to by
object and the specified operand, and stores the result in the atomic object pointed to
by object.

Memory is affected according to the value of order.

Return value

Returns atomically the value pointed to by object before the bitwise AND
operation.

atomic_flag_test_and_set (C11)
Purpose

Sets an atomic_flag object to true.

Prototypes

_Bool atomic_flag_test_and_set(volatile atomic_flag *object);

Parameter

object
The pointer that points to the atomic_flag object to modify.

Usage

This function atomically sets the value pointed to by object to true.

Return value

Returns atomically the value of the object immediately before the update.

atomic_flag_test_and_set_explicit (C11)
Purpose

Sets an atomic_flag object to true.

Prototypes

_Bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object, memory_order
order);

Parameters

object
The pointer that points to the atomic flag object to modify.

order
The memory synchronization order for this operation.

Usage

This function atomically sets the value pointed to by object to true.

Memory is affected according to the value of order.
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Return value

Returns atomically the value of the object immediately before the update.

atomic_flag_clear (C11)
Purpose

Sets an atomic_flag object to false.

Prototypes

void atomic_flag_clear(volatile atomic_flag *object);

Parameter

object
The pointer that points to the atomic_flag object to modify.

Usage

This function atomically sets the value pointed to by object to false.

Return value

Returns no value.

atomic_flag_clear_explicit (C11)
Purpose

Sets an atomic_flag object to false.

Prototypes

void atomic_flag_clear_explicit(volatile atomic_flag *object, memory_order order);

Parameters

object
The pointer that points to the atomic flag object to modify.

order
The memory synchronization order for this operation. The order parameter
cannot be memory_order_acquire or memory_order_acq_rel.

Usage

This function atomically sets the value pointed to by object to false.

Memory is affected according to the value of order.

Return value

Returns no value.
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Atomic library (C++11)
The header <atomic> defines the following types, macros, and functions
performing atomic operations on data that is shared among threads:
v “The memory_order type (C++11)”
v “Lock-free property (C++11)” on page 280
v “The atomic types (C++11)” on page 280
v “Operations on atomic types (C++11)” on page 296
v “Flag type and operations (C++11)” on page 308
v “Initialization (C++11)” on page 311
v “Memory synchronization order (C++11)” on page 312

Note: The keyword noexcept is currently not supported by the compiler, and is
ignored if you use it.

The memory_order type (C++11)
The memory_order type

The enumerated type memory_order determines how nonatomic memory accesses
are to be ordered around an atomic operation.
namespace std {

typedef enum memory_order {
memory_order_relaxed,
memory_order_consume,
memory_order_acquire,
memory_order_release,
memory_order_acq_rel,
memory_order_seq_cst

} memory_order;
}

Its enumeration constants define memory order constraints as follows:

memory_order_relaxed
There are no constraints on reordering of memory accesses around the atomic
variable.

memory_order_consume
In the current thread, no reads that are dependent on the currently loaded
value can be reordered before this load.

memory_order_acquire
In the current thread, no reads can be reordered before this load.

memory_order_release
In the current thread, no writes can be reordered after this store.

memory_order_acq_rel
In the current thread, no reads can be reordered before this load, and that no
writes can be reordered after this store.

memory_order_seq_cst
The operation has the same semantics as the acquire-release operation. In
addition, it has a sequentially consistent operation order.
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Lock-free property (C++11)
The following atomic lock-free macros indicate the lock-free property of the
corresponding atomic types (both signed and unsigned).
v #define ATOMIC_BOOL_LOCK_FREE value

v #define ATOMIC_CHAR_LOCK_FREE value

v #define ATOMIC_CHAR16_T_LOCK_FREE value

v #define ATOMIC_CHAR32_T_LOCK_FREE value

v #define ATOMIC_WCHAR_T_LOCK_FREE value

v #define ATOMIC_SHORT_LOCK_FREE value

v #define ATOMIC_INT_LOCK_FREE value

v #define ATOMIC_LONG_LOCK_FREE value

v #define ATOMIC_LLONG_LOCK_FREE value

v #define ATOMIC_POINTER_LOCK_FREE value

The values of the atomic lock-free macros are defined as follows:

0 Indicates that the atomic type is never lock-free.

1 Indicates that the atomic type is sometimes lock-free.

2 Indicates that the atomic type is always lock-free.

The atomic types (C++11)
Objects of the atomic types are free from data races. You can create atomic objects
by using the following atomic types:
template< class T > struct atomic; //The generic atomic type

template < > struct atomic<Integral>; //Full specializations for integral types

template< class T > struct atomic<T*>; //Partial specializations for all pointer
//types

Specializations and instantiations of the atomic template must have a deleted copy
constructor, a deleted copy assignment operator, and a constexpr value constructor.

The standard library provides full specializations of the atomic template for
integral types, one full specialization for the bool type, and partial specializations
for all pointer types. Each of these specializations has standard layout, a trivial
default constructor, and a trivial destructor. They all support aggregate
initialization syntax.

The following table shows typedef names and the corresponding full
specializations for the bool type and integral types.

Table 34. Typedef names and corresponding full specializations

Typedef name Full specialization

atomic_bool atomic<bool>

atomic_char atomic<char>

atomic_schar atomic<schar>

atomic_uchar atomic<unsigned char>

atomic_short atomic<short>
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Table 34. Typedef names and corresponding full specializations (continued)

Typedef name Full specialization

atomic_ushort atomic<unsigned short>

atomic_int atomic<int>

atomic_uint atomic<unsigned int>

atomic_long atomic<long>

atomic_ulong atomic<unsigned long>

atomic_llong atomic<long long>

atomic_ullong atomic<unsigned long long>

atomic_char16_t atomic<char16_t>

atomic_char32_t atomic<char32_t>

atomic_wchar_t atomic<wchar_t>

atomic_int_least8_t atomic<int_least8_t>

atomic_uint_least8_t atomic<uint_least8_t>

atomic_int_least16_t atomic<int_least16_t>

atomic_uint_least16_t atomic<uint_least16_t>

atomic_int_least32_t atomic<int_least32_t>

atomic_uint_least32_t atomic<uint_least32_t>

atomic_int_least64_t atomic<int_least64_t>

atomic_uint_least64_t atomic<uint_least64_t>

atomic_int_fast8_t atomic<int_fast8_t>

atomic_uint_fast8_t atomic<uint_fast8_t>

atomic_int_fast16_t atomic<int_fast16_t>

atomic_uint_fast16_t atomic<uint_fast16_t>

atomic_int_fast32_t atomic<int_fast32_t>

atomic_uint_fast32_t atomic<uint_fast32_t>

atomic_int_fast64_t atomic<int_fast64_t>

atomic_uint_fast64_t atomic<uint_fast64_t>

atomic_intptr_t atomic<intptr_t>

atomic_uintptr_t atomic<uintptr_t>

atomic_size_t atomic<size_t>

atomic_ptrdiff_t atomic<ptrdiff_t>

atomic_intmax_t atomic<intmax_t>

atomic_uintmax_t atomic<uintmax_t>

Synopsis
namespace std {

template <class T> struct atomic {
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

void store(T, memory_order = memory_order_seq_cst) volatile noexcept;
void store(T, memory_order = memory_order_seq_cst) noexcept;

T load(memory_order = memory_order_seq_cst) const volatile noexcept;
T load(memory_order = memory_order_seq_cst) const noexcept;
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operator T() const volatile noexcept;
operator T() const noexcept;

T exchange(T, memory_order = memory_order_seq_cst) volatile noexcept;
T exchange(T, memory_order = memory_order_seq_cst) noexcept;

bool compare_exchange_weak(T&, T, memory_order, memory_order) volatile
noexcept;
bool compare_exchange_weak(T&, T, memory_order, memory_order) noexcept;
bool compare_exchange_strong(T&, T, memory_order, memory_order) volatile
noexcept;
bool compare_exchange_strong(T&, T, memory_order, memory_order) noexcept;
bool compare_exchange_weak(T&, T, memory_order = memory_order_seq_cst)
volatile noexcept;
bool compare_exchange_weak(T&, T, memory_order = memory_order_seq_cst)
noexcept;
bool compare_exchange_strong(T&, T, memory_order = memory_order_seq_cst)
volatile noexcept;
bool compare_exchange_strong(T&, T, memory_order = memory_order_seq_cst)
noexcept;

atomic() noexcept = default;
constexpr atomic(T) noexcept;
atomic(const atomic&) = delete;

atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

T operator=(T) volatile noexcept;
T operator=(T) noexcept;

};

template <> struct atomic<integral > {
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

void store(integral , memory_order = memory_order_seq_cst)
volatile noexcept;
void store(integral , memory_order = memory_order_seq_cst) noexcept;

integral load(memory_order = memory_order_seq_cst) const volatile noexcept;
integral load(memory_order = memory_order_seq_cst) const noexcept;

operator integral() const volatile noexcept;
operator integral() const noexcept;

integral exchange(integral , memory_order = memory_order_seq_cst)
volatile noexcept;
integral exchange(integral , memory_order = memory_order_seq_cst)
noexcept;

bool compare_exchange_weak(integral &, integral , memory_order,
memory_order) volatile noexcept;
bool compare_exchange_weak(integral &, integral , memory_order,
memory_order) noexcept;
bool compare_exchange_strong(integral &, integral , memory_order,
memory_order) volatile noexcept;
bool compare_exchange_strong(integral &, integral , memory_order,
memory_order) noexcept;
bool compare_exchange_weak(integral &, integral , memory_order =
memory_order_seq_cst) volatile noexcept;
bool compare_exchange_weak(integral &, integral , memory_order =
memory_order_seq_cst) noexcept;
bool compare_exchange_strong(integral &, integral , memory_order =
memory_order_seq_cst) volatile noexcept;
bool compare_exchange_strong(integral &, integral , memory_order =
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memory_order_seq_cst) noexcept;

integral fetch_add(integral , memory_order = memory_order_seq_cst)
volatile noexcept;
integral fetch_add(integral , memory_order = memory_order_seq_cst)
noexcept;
integral fetch_sub(integral , memory_order = memory_order_seq_cst)
volatile noexcept;
integral fetch_sub(integral , memory_order = memory_order_seq_cst)
noexcept;
integral fetch_and(integral , memory_order = memory_order_seq_cst)
volatile noexcept;
integral fetch_and(integral , memory_order = memory_order_seq_cst)
noexcept;
integral fetch_or(integral , memory_order = memory_order_seq_cst)
volatile noexcept;
integral fetch_or(integral , memory_order = memory_order_seq_cst)
noexcept;
integral fetch_xor(integral , memory_order = memory_order_seq_cst)
volatile noexcept;
integral fetch_xor(integral , memory_order = memory_order_seq_cst)
noexcept;

atomic() noexcept = default;
constexpr atomic(integral ) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

integral operator=(integral ) volatile noexcept;
integral operator=(integral ) noexcept;
integral operator++(int) volatile noexcept;
integral operator++(int) noexcept;
integral operator--(int) volatile noexcept;
integral operator--(int) noexcept;
integral operator++() volatile noexcept;
integral operator++() noexcept;
integral operator--() volatile noexcept;
integral operator--() noexcept;
integral operator+=(integral ) volatile noexcept;
integral operator+=(integral ) noexcept;
integral operator-=(integral ) volatile noexcept;
integral operator-=(integral ) noexcept;
integral operator&=(integral ) volatile noexcept;
integral operator&=(integral ) noexcept;
integral operator|=(integral ) volatile noexcept;
integral operator|=(integral ) noexcept;
integral operator^=(integral ) volatile noexcept;
integral operator^=(integral ) noexcept;

};

template <class T> struct atomic<T*> {
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

void store(T*, memory_order = memory_order_seq_cst) volatile noexcept;
void store(T*, memory_order = memory_order_seq_cst) noexcept;

T* load(memory_order = memory_order_seq_cst) const volatile noexcept;
T* load(memory_order = memory_order_seq_cst) const noexcept;

operator T*() const volatile noexcept;
operator T*() const noexcept;

T* exchange(T*, memory_order = memory_order_seq_cst) volatile noexcept;
T* exchange(T*, memory_order = memory_order_seq_cst) noexcept;
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bool compare_exchange_weak(T*&, T*, memory_order, memory_order) volatile
noexcept;
bool compare_exchange_weak(T*&, T*, memory_order, memory_order) noexcept;
bool compare_exchange_strong(T*&, T*, memory_order, memory_order) volatile
noexcept;
bool compare_exchange_strong(T*&, T*, memory_order, memory_order) noexcept;
bool compare_exchange_weak(T*&, T*, memory_order = memory_order_seq_cst)
volatile noexcept;
bool compare_exchange_weak(T*&, T*, memory_order = memory_order_seq_cst)
noexcept;
bool compare_exchange_strong(T*&, T*, memory_order = memory_order_seq_cst)
volatile noexcept;
bool compare_exchange_strong(T*&, T*, memory_order = memory_order_seq_cst)
noexcept;

T* fetch_add(ptrdiff_t, memory_order = memory_order_seq_cst)
volatile noexcept;
T* fetch_add(ptrdiff_t, memory_order = memory_order_seq_cst)
noexcept;
T* fetch_sub(ptrdiff_t, memory_order = memory_order_seq_cst)
volatile noexcept;
T* fetch_sub(ptrdiff_t, memory_order = memory_order_seq_cst)
noexcept;

atomic() noexcept = default;
constexpr atomic(T*) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

T* operator=(T*) volatile noexcept;
T* operator=(T*) noexcept;
T* operator++(int) volatile noexcept;
T* operator++(int) noexcept;
T* operator--(int) volatile noexcept;
T* operator--(int) noexcept;
T* operator++() volatile noexcept;
T* operator++() noexcept;
T* operator--() volatile noexcept;
T* operator--() noexcept;
T* operator+=(ptrdiff_t) volatile noexcept;
T* operator+=(ptrdiff_t) noexcept;
T* operator-=(ptrdiff_t) volatile noexcept;
T* operator-=(ptrdiff_t) noexcept;

};
}

Member functions (C++11)

Constructors (C++11):

atomic::atomic (C++11):
Purpose

Constructs an atomic object.

Prototypes

atomic() = default;

constexpr atomic(T desired) noexcept;

atomic( const atomic& ) = delete;
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Parameter

desired
The value to initialize the atomic object

Usage

The first constructor leaves the atomic object in an uninitialized state.

The second constructor initializes the object with the value desired. The
initialization is not an atomic operation.

The third constructor specifies that the atomic variables cannot be copy-constructed
(copied).

atomic::operator= (C++11):
Purpose

Uses a specified value desired to replace the stored value.

Prototypes

C A ::operator=(C desired) volatile noexcept;

C A ::operator=(C desired) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

desired
The value to be assigned.

Return value

Returns the value desired.

atomic::is_lock_free (C++11):
Purpose

Checks whether the atomic operations on the object are lock-free.

Prototypes

bool A ::is_lock_free() const volatile noexcept;

bool A ::is_lock_free() const noexcept;

Parameter

A One of the atomic types.

Return value

Returns true if the operations on the object are lock-free. Otherwise, false is
returned.
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atomic::store (C++11):
Purpose

Uses a specified value to replace the stored value.

Memory is affected according to the value of order.

Prototypes

void A ::store(C desired, memory_order order = memory_order_seq_cst) volatile
noexcept;

void A ::store(C desired, memory_order order = memory_order_seq_cst) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

desired
The value to store into the atomic variable.

order
The memory order constraints to enforce. The order parameter cannot be
memory_order_relaxed, memory_order_release, or memory_order_seq_cst.

atomic::load (C++11):
Purpose

Obtains the value of an atomic object.

Memory is affected according to the value of order.

Prototypes

C A ::load(memory_order order = memory_order_seq_cst) const volatile noexcept;

C A ::load(memory_order order = memory_order_seq_cst) const noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

order
The memory order constraints to enforce. The order parameter cannot be
memory_order_release or memory_order_acq_rel.

Return value

Returns the value that is stored in *this.

atomic::operator C (C++11):
Purpose

Atomically loads and returns the current value of the atomic variable.

This function is equivalent to load().
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Prototypes

A ::operator C() const volatile noexcept;

A ::operator C() const noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

Return value

Returns the value that is stored in *this.

atomic::exchange (C++11):
Purpose

Atomically replaces the value of the atomic object.

Memory is affected according to the value of order.

Prototypes

C A ::exchange(C desired, memory_order order = memory_order_seq_cst) volatile
noexcept;

C A ::exchange(C desired, memory_order order = memory_order_seq_cst) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

desired
The value to be assigned.

order
The memory order constraints to enforce.

Return value

Returns the value of the atomic variable immediately before the exchange.

atomic::compare_exchange_weak (C++11):
Purpose

Atomically compares the value pointed to by this with the value in expected, and
performs the following operations based on the comparison results:
v If the comparison result is true, the function replaces the value pointed to by this

with the value desired.
v If the comparison result is false, the function updates the value in expected with

the value *this.
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Prototypes

bool A ::compare_exchange_weak(C & expected, C desired, memory_order success,
memory_order failure) volatile noexcept;

bool A ::compare_exchange_weak(C & expected, C desired, memory_order success,
memory_order failure) noexcept;

bool A ::compare_exchange_weak(C & expected, C desired, memory_order order =
memory_order_seq_cst) volatile noexcept;

bool A ::compare_exchange_weak(C & expected, C desired, memory_order order =
memory_order_seq_cst) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

expected
A reference that points to the value expected to be found in the atomic object.

desired
The value to store in the atomic object if it is as expected.

success
The memory synchronization order for the read-modify-write operation if the
comparison result is true.

failure
The memory synchronization order for the load operation if the comparison
result is false. The failure parameter cannot be memory_order_release or
memory_order_acq_rel. The failure parameter cannot be stronger than the
success parameter.

order
The memory synchronization order for both operations.

Return value

Returns the comparison result.

atomic::compare_exchange_strong (C++11):
Purpose

Atomically compares the value pointed to by this with the value pointed to by
expected, and performs the following operations based on the comparison results:
v If the comparison result is true, the function replaces the value pointed to by this

with the value desired.
v If the comparison result is false, the function updates the value in expected with

the value *this .

Prototypes

bool A ::compare_exchange_strong(C & expected, C desired, memory_order success,
memory_order failure) volatile noexcept;
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bool A ::compare_exchange_strong(C & expected, C desired, memory_order success,
memory_order failure) noexcept;

bool A ::compare_exchange_strong(C & expected, C desired, memory_order order =
memory_order_seq_cst) volatile noexcept;

bool A ::compare_exchange_strong(C & expected, C desired, memory_order order =
memory_order_seq_cst) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

expected
A reference that points to the value expected to be found in the atomic object.

desired
The value to store in the atomic object if it is as expected.

success
The memory synchronization order for the read-modify-write operation if the
comparison result is true.

failure
The memory synchronization order for the load operation if the comparison
result is false. The failure parameter cannot be memory_order_release or
memory_order_acq_rel. The failure parameter cannot be stronger than the
success parameter.

order
The memory synchronization order for both operations.

Return value

Returns the comparison result.

Specialized member functions (C++11)

atomic::fetch_add (C++11):
Purpose

Atomically adds a value to an existing value that is stored in an atomic object.

Memory is affected according to the value of order.

Prototypes

C A ::fetch_add (M operand, memory_order order = memory_order_seq_cst) volatile
noexcept;

C A ::fetch_add (M operand, memory_order order = memory_order_seq_cst)
noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.
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M M is the type of the other argument for the addition.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

operand
The other argument of the addition.

order
The memory order constraints to enforce.

Return value

Returns the value of the atomic variable before the addition.

atomic::fetch_sub (C++11):
Purpose

Subtracts a specified value from the stored value.

Memory is affected according to the value of order.

Prototypes

C A ::fetch_sub (M operand, memory_order order = memory_order_seq_cst) volatile
noexcept;

C A ::fetch_sub (M operand, memory_order order = memory_order_seq_cst)
noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the subtraction.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

operand
The other argument of the subtraction.

order
The memory order constraints to enforce.

Return value

Returns the value of the atomic variable before the subtraction.

atomic::fetch_and (C++11):
Purpose

Performs a bitwise AND operation on a value and an existing value that is stored
in an atomic object.

Memory is affected according to the value of order.
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Prototypes

C A ::fetch_and (M operand, memory_order order = memory_order_seq_cst) volatile
noexcept;

C A ::fetch_and (M operand, memory_order order = memory_order_seq_cst)
noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise AND operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

operand
The other argument of the bitwise AND operation.

order
The memory order constraints to enforce.

Return value

Returns the value of the atomic variable before the bitwise AND operation.

atomic::fetch_or (C++11):
Purpose

Performs a bitwise inclusive OR operation on a value and an existing value that is
stored in an atomic object.

Memory is affected according to the value of order.

Prototypes

C A ::fetch_or (M operand, memory_order order = memory_order_seq_cst) volatile
noexcept;

C A ::fetch_or (M operand, memory_order order = memory_order_seq_cst) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise inclusive OR operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

operand
The other argument of the bitwise inclusive OR operation.

order
The memory order constraints to enforce.
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Return value

Returns the value of the atomic variable before the bitwise inclusive OR operation.

atomic::fetch_xor (C++11):
Purpose

Performs a bitwise exclusive OR operation on a value and an existing value that is
stored in an atomic object.

Memory is affected according to the value of order.

Prototypes

C A ::fetch_xor (M operand, memory_order order = memory_order_seq_cst) volatile
noexcept;

C A ::fetch_xor (M operand, memory_order order = memory_order_seq_cst)
noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise exclusive OR operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

operand
The other argument of the bitwise exclusive OR operation.

order
The memory order constraints to enforce.

Return value

Returns the value of the atomic variable before the bitwise exclusive OR operation.

atomic::operator++ (C++11):
Purpose

Increments the atomic value by one.

Prototypes

C A ::operator++() volatile noexcept;

C A ::operator++() noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.
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Return value

Returns the value of the atomic variable after the modification.

atomic::operator++(int) (C++11):
Purpose

Increments the atomic value by one.

Prototypes

C A ::operator++(int) volatile noexcept;

C A ::operator++(int) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

Return value

Returns the value of the atomic variable before the modification.

atomic::operator-- (C++11):
Purpose

Decrements the atomic value by one.

Prototypes

C A ::operator--() volatile noexcept;

C A ::operator--() noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

Return value

Returns the value of the atomic variable after the modification.

atomic::operator--(int) (C++11):
Purpose

Decrements the atomic value by one.

Prototypes

C A ::operator--(int) volatile noexcept;

C A ::operator--(int) noexcept;
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Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

Return value

Returns the value of the atomic variable before the modification.

atomic::operator+= (C++11):
Purpose

Adds a specified value to the stored value.

Prototypes

C A ::operator + =(M operand) volatile noexcept;

C A ::operator + =(M operand) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the addition.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

Operand
The specified argument for the addition.

Return value

Return the result of the addition.

atomic::operator-= (C++11):
Purpose

Subtracts a specified value from the stored value.

Prototypes

C A ::operator - =(M operand) volatile noexcept;

C A ::operator - =(M operand) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the subtraction.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.
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operand
The specified argument for the subtraction.

Return value

Returns the result of the subtraction.

atomic::operator&= (C++11):
Purpose

Performs a bitwise AND operation on a specified value and the value *this.

Prototypes

C A ::operator & =(M operand) volatile noexcept;

C A ::operator & =(M operand) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise AND operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

operand
The specified argument for the bitwise AND operation.

Return value

Returns the result of the bitwise AND operation.

atomic::operator| = (C++11):
Purpose

Performs a bitwise OR operation on a specified value and the value stored in *this.

Prototypes

C A ::operator | =(M operand) volatile noexcept;

C A ::operator | =(M operand) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise OR operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

operand
The specified argument for the bitwise OR operation.
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Return value

Returns the result of the bitwise OR operation.

atomic::operator^ = (C++11):
Purpose

Performs a bitwise exclusive OR operation on a specified value and the value
stored in *this.

Prototypes

C A ::operator ^ =(M operand) volatile noexcept;

C A ::operator ^ =(M operand) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise exclusive OR operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

operand
The specified argument for the bitwise exclusive OR operation.

Return value

Returns the result of the bitwise exclusive OR operation.

Operations on atomic types (C++11)

atomic_is_lock_free (C++11)
Purpose

Checks whether the atomic operations on the object are lock-free.

Prototypes

bool atomic_is_lock_free(const volatile A *object) noexcept;

bool atomic_is_lock_free(const A *object) noexcept;

Parameter

A One of the atomic types.

object
The pointer that points to the atomic object to inspect.

Return value

Returns true if the operations on the object are lock-free. Otherwise, false is
returned.
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atomic_store (C++11)
Purpose

Uses a specified value to replace the stored value.

Prototypes

void atomic_store(volatile A * object, C desired) noexcept;

void atomic_store(A * object, C desired) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
The pointer that points to the atomic object to modify.

desired
The value to store into the atomic object.

atomic_store_explicit (C++11)
Purpose

Uses a specified value to replace the stored value.

Memory is affected according to the value of order.

Prototypes

void atomic_store_explicit(volatile A *object, C desired, memory_order order)
noexcept;

void atomic_store_explicit(A * object, C desired, memory_order order) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
The pointer that points to the atomic object to modify.

desired
The value to store into the atomic object.

order
Memory order constraints to enforce. The order parameter cannot be
memory_order_relaxed, memory_order_release, or memory_order_seq_cst.

atomic_load (C++11)
Purpose

Atomically obtains the value of the atomic object.
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Prototypes

C atomic_load(const volatile A * object) noexcept;

C atomic_load(const A * object) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to access.

Return value

Returns the value that is pointed to by object.

atomic_load_explicit (C++11)
Purpose

Atomically obtains the value of the atomic object.

Memory is affected according to the value of order.

Prototypes

C atomic_load_explicit(const volatile A * object, memory_order order) noexcept;

C atomic_load_explicit(const A * object, memory_order order) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to access.

order
Memory order constraints to enforce. The order argument cannot be
memory_order_release or memory_order_acq_rel.

Return value

Returns the value that is pointed to by object.

atomic_exchange (C++11)
Purpose

Atomically replaces the value of the atomic object and obtains the value held
previously.

Prototypes

C atomic_exchange(volatile A * object, C desired) noexcept;

C atomic_exchange(A * object, C desired) noexcept;
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Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

desired
The value to be assigned.

Return value

Returns the value pointed to by object immediately before the exchange.

atomic_exchange_explicit (C++11)
Purpose

Atomically replaces the value of the atomic object and obtains the value held
previously.

Memory is affected according to the value of order.

Prototypes

C atomic_exchange_explicit(volatile A * object, C desired, memory_order order)
noexcept;

C atomic_exchange_explicit(A * object, C desired, memory_order order) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to the atomic object to modify.

desired
The value to be assigned.

order
Memory order constraints to enforce.

Return value

Returns the value that is pointed to by object immediately before the exchange.

atomic_compare_exchange_weak (C++11)
Purpose

Atomically compares the value pointed to by object with the value pointed to by
expected, and performs the following operations based on the comparison results:
v Replaces the value pointed to by object with the value desired if the comparison

result is true.
v Updates the value pointed to by expected with the value pointed to by object if

the comparison result is false.
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Prototypes

bool atomic_compare_exchange_weak(volatile A * object, C * expected, C desired)
noexcept;

bool atomic_compare_exchange_weak(A * object, C * expected, C desired) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
The pointer that points to the atomic object to test and modify.

expected
The pointer that points to the value expected to be found in the atomic object.

desired
The value to store in the atomic object if it is as expected.

Return value

Returns the result of the comparison.

atomic_compare_exchange_weak_explicit (C++11)
Purpose

Atomically compares the value pointed to by object with the value pointed to by
expected, and performs the following operations based on the comparison results:
v Replaces the value pointed to by object with the value desired if the comparison

result is true.
v Updates the value pointed to by expected with the value pointed to by object if

the comparison result is false.

Prototypes

bool atomic_compare_exchange_weak_explicit(volatile A * object, C * expected, C
desired, memory_order success, memory_order failure) noexcept;

bool atomic_compare_exchange_weak_explicit(A * object, C * expected, C desired,
memory_order success, memory_order failure) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
The pointer that points to the atomic object to test and modify.

expected
The pointer that points to the value expected to be found in the atomic object.

desired
The value to store in the atomic object if it is as expected.
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success
The memory synchronization order for the read-modify-write operation if the
comparison result is true.

failure
The memory synchronization order for the load operation if the comparison
result is false. The failure parameter cannot be memory_order_release or
memory_order_acq_rel. The failure parameter cannot be stronger than the
success parameter.

Return value

Returns the result of the comparison.

atomic_compare_exchange_strong (C++11)
Purpose

Atomically compares the value pointed to by object with the value pointed to by
expected, and performs the following operations based on the comparison results:
v Replaces the value pointed to by object with the value desired if the comparison

result is true.
v Updates the value pointed to by expected with the value pointed to by object if

the comparison result is false.

Prototypes

bool atomic_compare_exchange_strong(volatile A * object, C * expected, C desired)
noexcept;

bool atomic_compare_exchange_strong(A * object, C * expected, C desired) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
The pointer that points to the atomic object to test and modify.

expected
The pointer that points to the value expected to be found in the atomic object.

desired
The value to store in the atomic object if it is as expected.

Return value

Returns the result of the comparison.

atomic_compare_exchange_strong_explicit (C++11)
Purpose

Atomically compares the value pointed to by object with the value pointed to by
expected, and performs the following operations based on the comparison results:
v Replaces the value pointed to by object with the value desired if the comparison

result is true.
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v Updates the value pointed to by expected with the value pointed to by object if
the comparison result is false.

Prototypes

bool atomic_compare_exchange_strong_explicit(volatile A * object, C * expected, C
desired, memory_order success, memory_order failure) noexcept;

bool atomic_compare_exchange_strong_explicit(A * object, C * expected, C desired,
memory_order success, memory_order failure) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
The pointer that points to the atomic object to test and modify.

expected
The pointer that points to the value expected to be found in the atomic object.

desired
The value to store in the atomic object if it is as expected.

success
The memory synchronization order for the read-modify-write operation if the
comparison result is true.

failure
The memory synchronization order for the load operation if the comparison
result is false. The failure parameter cannot be memory_order_release or
memory_order_acq_rel. The failure parameter cannot be stronger than the
success parameter.

Return value

Returns the result of the comparison.

atomic_fetch_add (C++11)
Purpose

Atomically adds a value to the value pointed to by object.

Prototypes

C atomic_fetch_add (volatile A *object, M operand) noexcept;

C atomic_fetch_add (A * object, M operand) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the addition.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.
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object
A pointer that points to the atomic object to modify.

operand
The other argument of the addition.

Return value

Returns the value of the atomic variable before the addition.

atomic_fetch_add_explicit (C++11)
Purpose

Atomically adds a value to the value pointed to by object.

Memory is affected according to the value of order.

Prototypes

C atomic_fetch_add_explicit(volatile A *object, M operand, memory_order order)
noexcept;

C atomic_fetch_add_explicit(A * object, M operand, memory_order order) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the addition.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

object
A pointer that points to the atomic object to modify.

operand
The other argument of the addition.

order
The memory order constraints to enforce.

Return value

Returns the value of the atomic variable before the addition.

atomic_fetch_sub (C++11)
Purpose

Subtracts a specified value from the value pointed to by object.

Prototypes

C atomic_fetch_sub (volatile A *object, M operand) noexcept;

C atomic_fetch_sub (A * object, M operand) noexcept;
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Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the subtraction.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

object
A pointer that points to the atomic object to modify.

operand
The other argument of the subtraction.

Return value

Returns the value of the atomic variable before the subtraction.

atomic_fetch_sub_explicit (C++11)
Purpose

Subtracts a specified value from the value pointed to by object.

Memory is affected according to the value of order.

Prototypes

C atomic_fetch_sub_explicit(volatile A *object, M operand, memory_order order)
noexcept;

C atomic_fetch_sub_explicit(A * object, M operand, memory_order order) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the subtraction.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

object
A pointer that points to the atomic object to modify.

operand
The other argument of the subtraction.

order
The memory order constraints to enforce.

Return value

Returns the value of the atomic variable before the subtraction.
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atomic_fetch_and (C++11)
Purpose

Performs a bitwise AND operation on a specified value and the value pointed to
by object.

Prototypes

C atomic_fetch_and(volatile A *object, M operand) noexcept;

C atomic_fetch_and(A * object, M operand) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise AND operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

object
A pointer that points to the atomic object to modify.

operand
The other argument of the bitwise AND operation.

Return value

Returns the value of the atomic variable before the bitwise AND operation.

atomic_fetch_and_explicit (C++11)
Purpose

Performs a bitwise AND operation on a specified value and the value pointed to
by object.

Memory is affected according to the value of order.

Prototypes

C atomic_fetch_and_explicit(volatile A *object, M operand, memory_order order)
noexcept;

C atomic_fetch_and_explicit(A * object, M operand, memory_order order) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise AND operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

object
A pointer that points to the atomic object to modify.
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operand
The other argument of the bitwise AND operation.

order
The memory order constraints to enforce.

Return value

Returns the value of the atomic variable before the bitwise AND operation.

atomic_fetch_or (C++11)
Purpose

Performs a bitwise inclusive OR operation on a specified value and the value
pointed to by object.

Prototypes

C atomic_fetch_or(volatile A *object, M operand) noexcept;

C atomic_fetch_or(A * object, M operand) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise inclusive OR operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

object
A pointer that points to the atomic object to modify.

operand
The other argument of the bitwise inclusive OR operation.

Return value

Returns the value of the atomic variable before the bitwise inclusive OR operation.

atomic_fetch_or_explicit (C++11)
Purpose

Performs a bitwise inclusive OR operation on a specified value and the value
pointed to by object.

Memory is affected according to the value of order.

Prototypes

C atomic_fetch_or_explicit(volatile A *object, M operand, memory_order order)
noexcept;

C atomic_fetch_or_explicit(A * object, M operand, memory_order order) noexcept;
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Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise inclusive OR operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

object
A pointer that points to the atomic object to modify.

operand
The other argument of the bitwise inclusive OR operation.

order
The memory order constraints to enforce.

Return value

Returns the value of the atomic variable before the bitwise inclusive OR operation.

atomic_fetch_xor (C++11)
Purpose

Performs a bitwise exclusive OR operation on a specified value and the value
pointed to by object.

Prototypes

C atomic_fetch_xor(volatile A *object, M operand) noexcept;

C atomic_fetch_xor(A * object, M operand) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise exclusive OR operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

object
A pointer that points to the atomic object to modify.

operand
The other argument of the bitwise exclusive OR operation.

Return value

Returns the value of the atomic variable before the bitwise exclusive OR operation.

atomic_fetch_xor_explicit (C++11)
Purpose

Performs a bitwise exclusive OR operation on a specified value and the value *this.

Memory is affected according to the value of order.
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Prototypes

C atomic_fetch_xor_explicit(volatile A *object, M operand, memory_order order)
noexcept;

C atomic_fetch_xor_explicit(A * object, M operand, memory_order order) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

M M is the type of the other argument for the bitwise exclusive OR operation.
v For integral atomic types, M is C.
v For atomic address types, M is std::ptrdiff_t.

object
A pointer that points to the atomic object to modify.

operand
The other argument of the bitwise exclusive OR operation.

order
The memory order constraints to enforce.

Return value

Returns the value of the atomic variable before the bitwise exclusive OR operation.

Flag type and operations (C++11)

The atomic_flag type (C++11)
atomic_flag is an atomic boolean type, and provides the classic test-and-set
function. It has two states, set and clear.

Operations on an object of type atomic_flag must be lock-free.

Synopsis
typedef struct atomic_flag {

bool test_and_set(memory_order = memory_order_seq_cst) volatile noexcept;
bool test_and_set(memory_order = memory_order_seq_cst) noexcept;

void clear(memory_order = memory_order_seq_cst) volatile noexcept;
void clear(memory_order = memory_order_seq_cst) noexcept;

atomic_flag() noexcept = default;
atomic_flag(const atomic_flag&) = delete;

atomic_flag& operator=(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) volatile = delete;

} atomic_flag;

Constructor (C++11):

atomic_flag::atomic_flag (C++11):
Purpose

Constructs an object of type atomic_flag.
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Prototypes

atomic_flag() noexcept = default;

atomic_flag( const atomic_flag& ) = delete;

Usage

The atomic_flag() noexcept = default; constructor leaves an atomic_flag object
with unspecified state.

The atomic_flag( const atomic_flag& ) = delete; constructor specifies that the
atomic_flag object cannot be copy-constructed (copied).

atomic_flag::clear (C++11):
Purpose

Atomically sets the value pointed to by this to false.

Memory is affected according to the value of order.

Prototypes

void clear(memory_order order = memory_order_seq_cst) volatile noexcept;

void clear(memory_order order = memory_order_seq_cst) noexcept;

Parameter

order
The memory order constraints to enforce. The order parameter cannot be
memory_order_acquire or memory_order_acq_rel.

atomic_flag::test_and_set (C++11):
Purpose

Atomically sets the value pointed to by this to true.

Memory is affected according to the value of order.

Prototypes

bool atomic_flag::test_and_set(memory_order order = memory_order_seq_cst)
volatile noexcept;

bool atomic_flag::test_and_set(memory_order order = memory_order_seq_cst)
noexcept;

Parameter

order
The memory order constraints to enforce.

Return value

Returns the value of the object immediately before the update.
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atomic_flag_test_and_set (C++11)
Purpose

Atomically sets a flag to true.

Prototypes

bool atomic_flag_test_and_set(volatile atomic_flag *object) noexcept;

bool atomic_flag_test_and_set(atomic_flag *object) noexcept;

Parameter

object
A pointer that points to the flag to be set.

Return value

Returns the value of the flag immediately before the update.

atomic_flag_test_and_set_explicit (C++11)
Purpose

Atomically sets a flag to true.

Prototypes

bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object, memory_order
order) noexcept;

bool atomic_flag_test_and_set_explicit(atomic_flag *object, memory_order order)
noexcept;

Parameters

object
A pointer that points to the flag to be set.

order
The memory order constraints to enforce.

Return value

Returns the value of the flag immediately before the update.

atomic_flag_clear (C++11)
Purpose

Atomically sets a flag to false.

Prototypes

void atomic_flag_clear(volatile atomic_flag *object) noexcept;

void atomic_flag_clear(atomic_flag *object) noexcept;
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Parameter

object
A pointer that points to the flag to be set.

atomic_flag_clear_explicit (C++11)
Purpose

Atomically sets a flag to false.

Memory is affected according to the value of order.

Prototypes

void atomic_flag_clear_explicit(volatile atomic_flag *object, memory_order order)
noexcept;

void atomic_flag_clear_explicit(atomic_flag *object, memory_order order) noexcept;

Parameters

object
A pointer that points to the flag to be set. The order parameter cannot be
memory_order_acquire or memory_order_acq_rel.

order
The memory order constraints to enforce.

Initialization (C++11)

atomic_init (C++11)
Purpose

Initializes an atomic object.

Prototypes

void atomic_init(volatile A *object, C desired) noexcept;

void atomic_init(A *object, C desired) noexcept;

Parameters

A One of the atomic types.

C The corresponding non-atomic type of A.

object
A pointer that points to an atomic object to be initialized.

desired
The value to initialize the atomic object.

ATOMIC_VAR_INIT (C++11)
The following macro expands to an expression that you can use to initialize an
atomic variable that is initialization-compatible with value. The initial value of an
atomic object of automatic storage duration that is not initialized using this macro
is undefined.
#define ATOMIC_VAR_INIT(value)
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Concurrent accesses to the variable that is being initialized, even by an atomic
operation, constitute a data race.

ATOMIC_FLAG_INIT (C++11)
You must define the ATOMIC_FLAG_INIT macro in such a way that it can be used to
initialize an object of type atomic_flag to the clear state.
#define ATOMIC_FLAG_INIT value

For a static-duration object, the initialization must be static.

Memory synchronization order (C++11)

kill_dependency (C++11)
Purpose

Ends a dependency chain.

Prototype

template <class T> T kill_dependency(T y) noexcept;

Parameter

y An expression whose return value is to be removed from a dependency tree.

Return value

Returns y.

atomic_thread_fence (C++11)
Purpose

Establishes a memory synchronization order of non-atomic and relaxed atomic
accesses without an associated atomic operation.

Prototype

extern "C" void atomic_thread_fence (memory_order order) noexcept;

Parameter

order
The memory order that is executed by this fence.

Usage

The function has the following effects depending on the value of order:
v It has no effects if the value of order is memory_order_relaxed.
v It is an acquire fence if the value of order is memory_order_acquire or

memory_order_consume.
v It is a release fence if the value of order is memory_order_release.
v It is both an acquire fence and a release fence if the value of order is

memory_order_acq_rel.
v It is a sequentially consistent acquire and release fence if the value of order is

memory_order_seq_cst.
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atomic_signal_fence (C++11)
Purpose

Establishes memory synchronization order of non-atomic and relaxed atomic
accesses between a thread and a signal handler executed on the same thread.

Prototype

extern "C" void atomic_signal_fence(memory_order order) noexcept;

Parameter

order
The memory order that is executed by this fence.

Usage

This function is equivalent to atomic_thread_fence, except that the resulting order
constraints are established only between a thread and a signal handler executed in
the same thread.

You can use atomic_signal_fence to specify the order in which actions performed
by the thread become visible to the signal handler. Memory is affected according to
the value of order.

Constexpr functions (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

A non-constructor function that is declared with a constexpr specifier is a
constexpr function. A constexpr function is a function that can be invoked within
a constant expression.

A constexpr function must satisfy the following conditions:
v It is not virtual.
v Its return type is a literal type.
v Each of its parameters must be of a literal type.
v When initializing the return value, each constructor call and implicit conversion

is valid in a constant expression.
v Its function body is = delete or = default; otherwise, its function body must

contain only the following statements:
– null statements
– static_assert declarations
– typedef declarations that do not define classes or enumerations
– using directives
– using declarations

Chapter 8. Functions 313



– One return statement

When a nonstatic member function that is not a constructor is declared with the
constexpr specifier, that member function is constant, and the constexpr specifier
has no other effect on the function type. The class of which that function is a
member must be a literal type.

The following examples demonstrate the usage of constexpr functions:
const int array_size1 (int x) {

return x+1;
}
// Error, constant expression required in array declaration
int array[array_size1(10)];

constexpr int array_size2 (int x) {
return x+1;

}
// OK, constexpr functions can be evaluated at compile time
// and used in contexts that require constant expressions.
int array[array_size2(10)];

struct S {
S() { }
constexpr S(int) { }
constexpr virtual int f() { // Error, f must not be virtual.

return 55;
}

};

struct NL {
~NL() { } // The user-provided destructor (even if it is trivial)

// makes the type a non-literal type.
};

constexpr NL f1() { // Error, return type of f1 must be a literal type.
return NL();

}

constexpr int f2(NL) { // Error, the parameter type NL is not a literal type.
return 55;

}

constexpr S f3() {
return S();

}

enum { val = f3() }; // Error, initialization of the return value in f3()
// uses a non-constexpr constructor.

constexpr void f4(int x) { // Error, return type should not be void.
return;

}

constexpr int f5(int x) { // Error, function body contains more than return statement.
if (x<0)

x = -x;
return x;

}

When a function template is declared as a constexpr function, if the instantiation
results in a function that does not satisfy the requirements of a constexpr function,
the constexpr specifier is ignored. For example:

314 z/OS V2R1.0 XL C/C++ Language Reference



template <class C> constexpr NL f6(C c) { // OK, the constexpr specifier ignored
return NL();

}
void g() {

f6(55); // OK, not used in a constant expression
}

A call to a constexpr function produces the same result as a call to an equivalent
non-constexpr function in all respects, except that a call to a constexpr function
can appear in a constant expression.

A constexpr function is implicitly inline.

The main function cannot be declared with the constexpr specifier.
Related reference:
“The constexpr specifier (C++11)” on page 83
“Generalized constant expressions (C++11)” on page 149
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Chapter 9. Namespaces (C++ only)

A namespace is an optionally named scope. You declare names inside a namespace
as you would for a class or an enumeration. You can access names declared inside
a namespace the same way you access a nested class name by using the scope
resolution (::) operator. However namespaces do not have the additional features
of classes or enumerations. The primary purpose of the namespace is to add an
additional identifier (the name of the namespace) to a name.

IBM To be compatible with GNU C, the compiler supports the visibility
attribute to namespaces. IBM

Defining namespaces
In order to uniquely identify a namespace, use the namespace keyword.

Namespace syntax

��
(1)

inline

namespace
identifier

{ namespace_body } ��

Notes:

1 This syntax is valid only at the C++11 language level.

The identifier in an original namespace definition is the name of the namespace.
The identifier may not be previously defined in the declarative region in which the
original namespace definition appears, except in the case of extending namespace.
If an identifier is not used, the namespace is an unnamed namespace.
Related reference:
“Unnamed namespaces” on page 319
“Inline namespace definitions (C++11)” on page 324

Declaring namespaces
The identifier used for a namespace name should be unique. It should not be used
previously as a global identifier.
namespace Raymond {

// namespace body here...
}

In this example, Raymond is the identifier of the namespace. If you intend to access
a namespace's elements, the namespace's identifier must be known in all
translation units.
Related reference:
“File/global scope” on page 3

Creating a namespace alias
An alternate name can be used in order to refer to a specific namespace identifier.
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namespace INTERNATIONAL_BUSINESS_MACHINES {
void f();

}

namespace IBM = INTERNATIONAL_BUSINESS_MACHINES;

In this example, the IBM identifier is an alias for INTERNATIONAL_BUSINESS_MACHINES.
This is useful for referring to long namespace identifiers.

If a namespace name or alias is declared as the name of any other entity in the
same declarative region, a compile-time error will result. Also, if a namespace
name defined at global scope is declared as the name of any other entity in any
global scope of the program, a compile-time error will result.
Related reference:
“File/global scope” on page 3

Creating an alias for a nested namespace
Namespace definitions hold declarations. Since a namespace definition is a
declaration itself, namespace definitions can be nested.

An alias can also be applied to a nested namespace.
namespace INTERNATIONAL_BUSINESS_MACHINES {

int j;
namespace NESTED_IBM_PRODUCT {

void a() { j++; }
int j;
void b() { j++; }

}
}
namespace NIBM = INTERNATIONAL_BUSINESS_MACHINES::NESTED_IBM_PRODUCT

In this example, the NIBM identifier is an alias for the namespace
NESTED_IBM_PRODUCT. This namespace is nested within the
INTERNATIONAL_BUSINESS_MACHINES namespace.
Related reference:
“Creating a namespace alias” on page 317

Extending namespaces
Namespaces are extensible. You can add subsequent declarations to a previously
defined namespace. Extensions may appear in files separate from or attached to
the original namespace definition. For example:
namespace X { // namespace definition

int a;
int b;
}

namespace X { // namespace extension
int c;
int d;
}

namespace Y { // equivalent to namespace X
int a;
int b;
int c;
int d;
}

318 z/OS V2R1.0 XL C/C++ Language Reference



In this example, namespace X is defined with a and b and later extended with c
and d. namespace X now contains all four members. You may also declare all of the
required members within one namespace. This method is represented by namespace
Y. This namespace contains a, b, c, and d.

Namespaces and overloading
You can overload functions across namespaces. For example:
// Original X.h:
int f(int);

// Original Y.h:
int f(char);

// Original program.c:
#include "X.h"
#include "Y.h"

int main(){
f(’a’); // calls f(char) from Y.h

}

Namespaces can be introduced to the previous example without drastically
changing the source code.
// New X.h:
namespace X {

f(int);
}

// New Y.h:
namespace Y {

f(char);
}

// New program.c:
#include "X.h"
#include "Y.h"

using namespace X;
using namespace Y;

int main(){
f(’a’); // calls f() from Y.h

}

In program.c, the main function calls function f(), which is a member of
namespace Y. If you place the using directives in the header files, the source code
for program.c remains unchanged.
Related reference:
Chapter 10, “Overloading (C++ only),” on page 327

Unnamed namespaces
A namespace with no identifier before an opening brace produces an unnamed
namespace. Each translation unit may contain its own unique unnamed namespace.
The following example demonstrates how unnamed namespaces are useful.
#include <iostream>

using namespace std;

namespace {
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const int i = 4;
int variable;
}

int main()
{

cout << i << endl;
variable = 100;
return 0;

}

In the previous example, the unnamed namespace permits access to i and
variable without using a scope resolution operator.

The following example illustrates an improper use of unnamed namespaces.
#include <iostream>

using namespace std;

namespace {
const int i = 4;
}

int i = 2;

int main()
{

cout << i << endl; // error
return 0;

}

Inside main, i causes an error because the compiler cannot distinguish between the
global name and the unnamed namespace member with the same name. In order
for the previous example to work, the namespace must be uniquely identified with
an identifier and i must specify the namespace it is using.

You can extend an unnamed namespace within the same translation unit. For
example:
#include <iostream>

using namespace std;

namespace {
int variable;
void funct (int);
}

namespace {
void funct (int i) { cout << i << endl; }
}

int main()
{

funct(variable);
return 0;

}

both the prototype and definition for funct are members of the same unnamed
namespace.
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Note: Items defined in an unnamed namespace have internal linkage. Rather than
using the keyword static to define items with internal linkage, define them in an
unnamed namespace instead.
Related reference:
“Program linkage” on page 7
“Internal linkage” on page 7

Namespace member definitions
A namespace can define its own members within itself or externally using explicit
qualification. See the following example of a namespace defining a member
internally:
namespace A {

void b() { /* definition */ }
}

Within namespace A member void b() is defined internally.

A namespace can also define its members externally using explicit qualification on
the name being defined. The entity being defined must already be declared in the
namespace and the definition must appear after the point of declaration in a
namespace that encloses the declaration's namespace.

See the following example of a namespace defining a member externally:
namespace A {

namespace B {
void f();

}
void B::f() { /* defined outside of B */ }

}

In this example, function f() is declared within namespace B and defined (outside
B) in A.

Namespaces and friends
Every name first declared in a namespace is a member of that namespace. If a
friend declaration in a non-local class first declares a class or function, the friend
class or function is a member of the innermost enclosing namespace.

The following is an example of this structure:
// f has not yet been defined
void z(int);
namespace A {

class X {
friend void f(X); // A::f is a friend
};

// A::f is not visible here
X x;
void f(X) { /* definition */} // f() is defined and known to be a friend

}

using A::x;

void z()
{

A::f(x); // OK
A::X::f(x); // error: f is not a member of A::X

}
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In this example, function f() can only be called through namespace A using the
call A::f(s);. Attempting to call function f() through class X using the
A::X::f(x); call results in a compile-time error. Since the friend declaration first
occurs in a non-local class, the friend function is a member of the innermost
enclosing namespace and may only be accessed through that namespace.
Related reference:
“Friends” on page 373

The using directive
A using directive provides access to all namespace qualifiers and the scope
operator. This is accomplished by applying the using keyword to a namespace
identifier.

Using directive syntax

�� using namespace name ; ��

The name must be a previously defined namespace. The using directive may be
applied at the global and local scope but not the class scope. Local scope takes
precedence over global scope by hiding similar declarations with some exceptions.

For unqualified name lookup, if a scope contains a using directive that nominates a
second namespace and that second namespace contains another using directive, the
using directive from the second namespace acts as if it resides within the first
scope.
namespace A {

int i;
}
namespace B {

int i;
using namespace A;

}
void f()
{

using namespace B;
i = 7; // error

}

In this example, attempting to initialize i within function f() causes a
compile-time error, because function f() does not know which i to call; i from
namespace A, or i from namespace B.
Related reference:
“The using declaration and class members” on page 388
“Inline namespace definitions (C++11)” on page 324

The using declaration and namespaces
A using declaration provides access to a specific namespace member. This is
accomplished by applying the using keyword to a namespace name with its
corresponding namespace member.

using declaration syntax
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�� using namespace :: member ; ��

In this syntax diagram, the qualifier name follows the using declaration and the
member follows the qualifier name. For the declaration to work, the member must
be declared inside the given namespace. For example:
namespace A {

int i;
int k;
void f(){};
void g(){};

}

using A::k;

In this example, the using declaration is followed by A, the name of namespace A,
which is then followed by the scope operator (::), and k. This format allows k to
be accessed outside of namespace A through a using declaration. After issuing a
using declaration, any extension made to that specific namespace will not be
known at the point at which the using declaration occurs.

Overloaded versions of a given function must be included in the namespace prior
to that given function's declaration. A using declaration may appear at namespace,
block and class scope.
Related reference:
“The using declaration and class members” on page 388

Explicit access
To explicitly qualify a member of a namespace, use the namespace identifier with a
:: scope resolution operator.

Explicit access qualification syntax

�� namespace_name :: member ��

For example:
namespace VENDITTI {

void j()
};

VENDITTI::j();

In this example, the scope resolution operator provides access to the function j
held within namespace VENDITTI. The scope resolution operator :: is used to
access identifiers in both global and local namespaces. Any identifier in an
application can be accessed with sufficient qualification. Explicit access cannot be
applied to an unnamed namespace.
Related reference:
“Scope resolution operator :: (C++ only)” on page 148
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Inline namespace definitions (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Inline namespace definitions are namespace definitions with an initial inline
keyword. A namespace so defined is an inline namespace. You can define and
specialize members of an inline namespace as if they were also members of the
enclosing namespace.

Inline namespace definitions syntax

�� inline namespace_definition ��

When an inline namespace is defined, a using directive is implicitly inserted into
its enclosing namespace. While looking up a qualified name through the enclosing
namespace, members of the inline namespace are brought in and found by the
implicit using directive, even if that name is declared in the enclosing namespace.

For example, if you compile the following code with USE_INLINE_B defined, the
output of the resulting executable is 1; otherwise, the output is 2.
namespace A {
#if USE_INLINE_B

inline
#endif

namespace B {
int foo(bool) { return 1; }

}
int foo(int) { return 2; }

}

int main(void) {
return A::foo(true);

}

The properties of inline namespace definitions are transitive; that is, you can use
members of an inline namespace as if they were also members of any namespace
in its enclosing namespace set, which consists of the innermost non-inline
namespace enclosing the inline namespace, together with any intervening inline
namespaces. For example:
namespace L {

inline namespace M {
inline namespace N {

/ *...* /
}

}
}
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In this example, a namespace L contains an inline namespace M, which in turn
contains another inline namespace N. The members of N can also be used as if
they were members of the namespaces in its enclosing namespace set, i.e., L and
M.

Notes:

v Do not declare the namespace std, which is used for the C++ standard library,
as an inline namespace.

v Do not declare a namespace to be an inline namespace if it is not inline in its
first definition.

v You can declare an unnamed namespace as an inline namespace.

Using inline namespace definitions in explicit instantiation and
specialization

You can explicitly instantiate or specialize each member of an inline namespace as
if it were a member of its enclosing namespace. Name lookup for the primary
template of an explicit instantiation or specialization in a namespace, for example
M, considers the inline namespaces whose enclosing namespace set includes M.
For example:
namespace L {

inline namespace M {
template <typename T> class C;

}

template <typename T> void f(T) { /*...*/ };
}

struct X { /*...*/ };
namespace L {

template<> class C<X> { /*...*/ }; //template specialization
}

int main()
{

L::C<X> r;
f(r); // fine, L is an associated namespace of C

}

In this example, M is an inline namespace of its enclosing namespace L, class C is a
member of inline namespace M, so L is an associated namespace of class C.

The following rules apply when you use inline namespace definitions in explicit
instantiation and specialization:
v An explicit instantiation must be in an enclosing namespace of the primary

template if the template name is qualified; otherwise, it must be in the nearest
enclosing namespace of the primary template or a namespace in the enclosing
namespace set.

v An explicit specialization declaration must first be declared in the namespace
scope of the nearest enclosing namespace of the primary template, or a
namespace in the enclosing namespace set. If the declaration is not a definition,
it may be defined later in any enclosing namespace.

Using inline namespace definitions in library versioning

With inline namespace definitions, you can provide a common source interface for
a library with several implementations, and a user of the library can choose one
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implementation to be associated with the common interface. The following
example demonstrates the use of inline namespace in library versioning with
explicit specialization.
//foo.h
#ifndef SOME_LIBRARY_FOO_H_

#define SOME_LIBRARY_FOO_H_
namespace SomeLibrary
{

#ifdef SOME_LIBRARY_USE_VERSION_2_
inline namespace version_2 { }

#else
inline namespace version_1 { }

#endif
namespace version_1 {

template <typename T> int foo(T a) {return 1;}
}
namespace version_2 {

template <typename T> int foo(T a) {return 2;}
}

}
#endif

//myFooCaller.C
#include <Foo.h>
#include <iostream>

struct MyIntWrapper { int x;};

//Specialize SomeLibrary::foo()
//Should specialize the correct version of foo()

namespace SomeLibrary {
template <> int foo(MyIntWrapper a) { return a.x;}

}

int main(void) {
using namespace SomeLibrary;
MyIntWrapper intWrap = { 4 };
std::cout << foo(intWrap) + foo(1.0) << std::endl;

}

If you compile this example with SOME_LIBRARY_USE_VERSION_2_ defined, the
output of the resulting executable is 6; otherwise, the output is 5. If the function
call, foo(intWrap), is qualified with one of the inline namespaces, then you need to
ensure that the explicit specialization is effective.
Related reference:
“Defining namespaces” on page 317
“Extending namespaces” on page 318
“The using directive” on page 322
“The using declaration and namespaces” on page 322
“Explicit instantiation” on page 456
“Explicit specialization” on page 460
“C++11 compatibility” on page 640
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Chapter 10. Overloading (C++ only)

If you specify more than one definition for a function name or an operator in the
same scope, you have overloaded that function name or operator. Overloaded
functions and operators are described in “Overloading functions” and
“Overloading operators” on page 329, respectively.

An overloaded declaration is a declaration that had been declared with the same
name as a previously declared declaration in the same scope, except that both
declarations have different types.

If you call an overloaded function name or operator, the compiler determines the
most appropriate definition to use by comparing the argument types you used to
call the function or operator with the parameter types specified in the definitions.
The process of selecting the most appropriate overloaded function or operator is
called overload resolution, as described in “Overload resolution” on page 337.

Overloading functions
You overload a function name f by declaring more than one function with the
name f in the same scope. The declarations of f must differ from each other by the
types and/or the number of arguments in the argument list. When you call an
overloaded function named f, the correct function is selected by comparing the
argument list of the function call with the parameter list of each of the overloaded
candidate functions with the name f. A candidate function is a function that can be
called based on the context of the call of the overloaded function name.

Consider a function print, which displays an int. As shown in the following
example, you can overload the function print to display other types, for example,
double and char*. You can have three functions with the same name, each
performing a similar operation on a different data type:
#include <iostream>
using namespace std;

void print(int i) {
cout << " Here is int " << i << endl;

}
void print(double f) {

cout << " Here is float " << f << endl;
}

void print(char* c) {
cout << " Here is char* " << c << endl;

}

int main() {
print(10);
print(10.10);
print("ten");

}

The following is the output of the above example:
Here is int 10
Here is float 10.1
Here is char* ten
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Related reference:
“Restrictions on overloaded functions”
“Derivation” on page 383

Restrictions on overloaded functions
You cannot overload the following function declarations even if they appear in the
same scope. Note that this list applies only to explicitly declared functions and
those that have been introduced through using declarations:
v Function declarations that differ only by return type. For example, you cannot

use the following declarations:
int f();
float f();

v Member function declarations that have the same name and the same parameter
types, but one of these declarations is a static member function declaration. For
example, you cannot use the following two member function declarations of f():
struct A {

static int f();
int f();

};

v Member function template declarations that have the same name, the same
parameter types, and the same template parameter lists, but one of these
declarations is a static template member function declaration.

v Function declarations that have equivalent parameter declarations. These
declarations are not allowed because they would be declaring the same function.

v Function declarations with parameters that differ only by the use of typedef
names that represent the same type. Note that a typedef is a synonym for
another type, not a separate type. For example, the following two declarations of
f() are declarations of the same function:
typedef int I;
void f(float, int);
void f(float, I);

v Function declarations with parameters that differ only because one is a pointer
and the other is an array. For example, see the following declarations of the
same function:
void f(char*);
void f(char[10]);

The first array dimension is insignificant when differentiating parameters; all
other array dimensions are significant. For example, see the following
declarations of the same function:
void g(char(*)[20]);
void g(char[5][20]);

The following two declarations are not equivalent:
void g(char(*)[20]);
void g(char(*)[40]);

v Function declarations with parameters that differ only because one is a function
type and the other is a pointer to a function of the same type. For example, see
the following declarations of the same function:
void f(int(float));
void f(int (*)(float));

v Function declarations with parameters that differ only because of cv-qualifiers
const, volatile, and restrict. This restriction only applies if any of these
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qualifiers appears at the outermost level of a parameter type specification. For
example, see the following declarations of the same function:
int f(int);
int f(const int);
int f(volatile int);

Note that you can differentiate parameters with const, volatile and restrict
qualifiers if you apply them within a parameter type specification. For example,
the following declarations are not equivalent because const and volatile qualify
int, rather than *, and thus are not at the outermost level of the parameter type
specification.
void g(int*);
void g(const int*);
void g(volatile int*);

The following declarations are also not equivalent:
void g(float&);
void g(const float&);
void g(volatile float&);

v Function declarations with parameters that differ only because their default
arguments differ. For example, see the following declarations of the same
function:
void f(int);
void f(int i = 10);

v Multiple functions with extern "C" language-linkage and the same name,
regardless of whether their parameter lists are different.

Related reference:
“The using declaration and namespaces” on page 322
“typedef definitions” on page 74
“Type qualifiers” on page 85
“Language linkage (C++ only)” on page 9

Overloading operators
You can redefine or overload the function of most built-in operators in C++. These
operators can be overloaded globally or on a class-by-class basis. Overloaded
operators are implemented as functions and can be member functions or global
functions.

An overloaded operator is called an operator function. You declare an operator
function with the keyword operator preceding the operator. Overloaded operators
are distinct from overloaded functions, but like overloaded functions, they are
distinguished by the number and types of operands used with the operator.

Consider the standard + (plus) operator. When this operator is used with operands
of different standard types, the operators have slightly different meanings. For
example, the addition of two integers is not implemented in the same way as the
addition of two floating-point numbers. C++ allows you to define your own
meanings for the standard C++ operators when they are applied to class types. In
the following example, a class called complx is defined to model complex numbers,
and the + (plus) operator is redefined in this class to add two complex numbers.

CCNX12B
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// This example illustrates overloading the plus (+) operator.

#include <iostream>
using namespace std;

class complx
{

double real,
imag;

public:
complx( double real = 0., double imag = 0.); // constructor
complx operator+(const complx&) const; // operator+()

};

// define constructor
complx::complx( double r, double i )
{

real = r; imag = i;
}

// define overloaded + (plus) operator
complx complx::operator+ (const complx& c) const
{

complx result;
result.real = (this->real + c.real);
result.imag = (this->imag + c.imag);
return result;

}

int main()
{

complx x(4,4);
complx y(6,6);
complx z = x + y; // calls complx::operator+()

}

You can overload any of the following operators:

+ - * / % ^ & | ~

! = < > += -= *= /= %=
^= &= |= << >> <<= >>= == !=
<= >= && || ++ -- , ->* ->
( ) [ ] new delete new[] delete[]

where () is the function call operator and [] is the subscript operator.

You can overload both the unary and binary forms of the following operators:

+ - * &

You cannot overload the following operators:

. .* :: ?:

You cannot overload the preprocessor symbols # and ##.

An operator function can be either a nonstatic member function, or a nonmember
function with at least one parameter that has class, reference to class, enumeration,
or reference to enumeration type.

You cannot change the precedence, grouping, or the number of operands of an
operator.
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An overloaded operator (except for the function call operator) cannot have default
arguments or an ellipsis in the argument list.

You must declare the overloaded =, [], (), and -> operators as nonstatic member
functions to ensure that they receive lvalues as their first operands.

The operators new, delete, new[], and delete[] do not follow the general rules
described in this section.

All operators except the = operator are inherited.

Overloading unary operators
You overload a unary operator with either a nonstatic member function that has no
parameters, or a nonmember function that has one parameter. Suppose a unary
operator @ is called with the statement @t, where t is an object of type T. A
nonstatic member function that overloads this operator would have the following
form:
return_type operator@()

A nonmember function that overloads the same operator would have the following
form:
return_type operator@(T)

An overloaded unary operator may return any type.

The following example overloads the ! operator:
#include <iostream>
using namespace std;

struct X { };

void operator!(X) {
cout << "void operator!(X)" << endl;

}

struct Y {
void operator!() {

cout << "void Y::operator!()" << endl;
}

};

struct Z { };

int main() {
X ox; Y oy; Z oz;
!ox;
!oy;

// !oz;
}

See the output of the above example:
void operator!(X)
void Y::operator!()

The operator function call !ox is interpreted as operator!(X). The call !oy is
interpreted as Y::operator!(). (The compiler would not allow !oz because the !
operator has not been defined for class Z.)
Related reference:
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“Unary expressions” on page 151

Overloading increment and decrement operators
You overload the prefix increment operator ++ with either a nonmember function
operator that has one argument of class type or a reference to class type, or with a
member function operator that has no arguments.

In the following example, the increment operator is overloaded in both ways:
class X {
public:

// member prefix ++x
void operator++() { }

};

class Y { };

// non-member prefix ++y
void operator++(Y&) { }

int main() {
X x;
Y y;

// calls x.operator++()
++x;

// explicit call, like ++x
x.operator++();

// calls operator++(y)
++y;

// explicit call, like ++y
operator++(y);

}

The postfix increment operator ++ can be overloaded for a class type by declaring a
nonmember function operator operator++() with two arguments, the first having
class type and the second having type int. Alternatively, you can declare a
member function operator operator++() with one argument having type int. The
compiler uses the int argument to distinguish between the prefix and postfix
increment operators. For implicit calls, the default value is zero.

For example:
class X {
public:

// member postfix x++
void operator++(int) { };

};

class Y { };

// nonmember postfix y++
void operator++(Y&, int) { };

int main() {
X x;
Y y;

// calls x.operator++(0)
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// default argument of zero is supplied by compiler
x++;
// explicit call to member postfix x++
x.operator++(0);

// calls operator++(y, 0)
y++;

// explicit call to non-member postfix y++
operator++(y, 0);

}

The prefix and postfix decrement operators follow the same rules as their
increment counterparts.
Related reference:
“Increment operator ++” on page 151
“Decrement operator --” on page 152

Overloading binary operators
You overload a binary operator with either a nonstatic member function that has
one parameter, or a nonmember function that has two parameters. Suppose a
binary operator @ is called with the statement t @ u, where t is an object of type T,
and u is an object of type U. A nonstatic member function that overloads this
operator would have the following form:
return_type operator@(U)

A nonmember function that overloads the same operator would have the following
form:
return_type operator@(T, U)

An overloaded binary operator may return any type.

The following example overloads the * operator:
struct X {

// member binary operator
void operator*(int) { }

};

// non-member binary operator
void operator*(X, float) { }

int main() {
X x;
int y = 10;
float z = 10;

x * y;
x * z;

}

The call x * y is interpreted as x.operator*(y). The call x * z is interpreted as
operator*(x, z).
Related reference:
“Binary expressions” on page 160
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Overloading assignments
You overload the assignment operator, operator=, with a nonstatic member
function that has only one parameter. You cannot declare an overloaded
assignment operator that is a nonmember function. The following example shows
how you can overload the assignment operator for a particular class:
struct X {

int data;
X& operator=(X& a) { return a; }
X& operator=(int a) {

data = a;
return *this;

}
};

int main() {
X x1, x2;
x1 = x2; // call x1.operator=(x2)
x1 = 5; // call x1.operator=(5)

}

The assignment x1 = x2 calls the copy assignment operator X& X::operator=(X&).
The assignment x1 = 5 calls the copy assignment operator X& X::operator=(int).
The compiler implicitly declares a copy assignment operator for a class if you do
not define one yourself. Consequently, the copy assignment operator (operator=) of
a derived class hides the copy assignment operator of its base class.

However, you can declare any copy assignment operator as virtual. The following
example demonstrates this:
#include <iostream>
using namespace std;

struct A {
A& operator=(char) {

cout << "A& A::operator=(char)" << endl;
return *this;

}
virtual A& operator=(const A&) {

cout << "A& A::operator=(const A&)" << endl;
return *this;

}
};

struct B : A {
B& operator=(char) {

cout << "B& B::operator=(char)" << endl;
return *this;

}
virtual B& operator=(const A&) {

cout << "B& B::operator=(const A&)" << endl;
return *this;

}
};

struct C : B { };

int main() {
B b1;
B b2;
A* ap1 = &b1;
A* ap2 = &b1;
*ap1 = ’z’;
*ap2 = b2;
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C c1;
// c1 = ’z’;
}

The following is the output of the above example:
A& A::operator=(char)
B& B::operator=(const A&)

The assignment *ap1 = ’z’ calls A& A::operator=(char). Because this operator has
not been declared virtual, the compiler chooses the function based on the type of
the pointer ap1. The assignment *ap2 = b2 calls B& B::operator=(const &A).
Because this operator has been declared virtual, the compiler chooses the function
based on the type of the object that the pointer ap1 points to. The compiler would
not allow the assignment c1 = ’z’ because the implicitly declared copy assignment
operator declared in class C hides B& B::operator=(char).
Related reference:
“Copy assignment operators” on page 430
“Assignment operators” on page 161

Overloading function calls
The function call operator, when overloaded, does not modify how functions are
called. Rather, it modifies how the operator is to be interpreted when applied to
objects of a given type.

You overload the function call operator, operator(), with a nonstatic member
function that has any number of parameters. If you overload a function call
operator for a class its declaration will have the following form:
return_type operator()(parameter_list)

Unlike all other overloaded operators, you can provide default arguments and
ellipses in the argument list for the function call operator.

The following example demonstrates how the compiler interprets function call
operators:
struct A {

void operator()(int a, char b, ...) { }
void operator()(char c, int d = 20) { }

};

int main() {
A a;
a(5, ’z’, ’a’, 0);
a(’z’);

// a();
}

The function call a(5, ’z’, ’a’, 0) is interpreted as a.operator()(5, ’z’, ’a’,
0). This calls void A::operator()(int a, char b, ...). The function call a(’z’) is
interpreted as a.operator()(’z’). This calls void A::operator()(char c, int d =
20). The compiler would not allow the function call a() because its argument list
does not match any function call parameter list defined in class A.

The following example demonstrates an overloaded function call operator:
class Point {
private:

int x, y;

Chapter 10. Overloading (C++ only) 335



public:
Point() : x(0), y(0) { }
Point& operator()(int dx, int dy) {

x += dx;
y += dy;
return *this;

}
};

int main() {
Point pt;

// Offset this coordinate x with 3 points
// and coordinate y with 2 points.
pt(3, 2);

}

The above example reinterprets the function call operator for objects of class Point.
If you treat an object of Point like a function and pass it two integer arguments,
the function call operator will add the values of the arguments you passed to
Point::x and Point::y respectively.
Related reference:
“Function call expressions” on page 149

Overloading subscripting
You overload operator[] with a nonstatic member function that has only one
parameter. The following example is a simple array class that has an overloaded
subscripting operator. The overloaded subscripting operator throws an exception if
you try to access the array outside of its specified bounds:
#include <iostream>
using namespace std;

template <class T> class MyArray {
private:

T* storage;
int size;

public:
MyArray(int arg = 10) {

storage = new T[arg];
size = arg;

}

~MyArray() {
delete[] storage;
storage = 0;

}

T& operator[](const int location) throw (const char *);
};

template <class T> T& MyArray<T>::operator[](const int location)
throw (const char *) {

if (location < 0 || location >= size) throw "Invalid array access";
else return storage[location];

}

int main() {
try {

MyArray<int> x(13);
x[0] = 45;
x[1] = 2435;
cout << x[0] << endl;
cout << x[1] << endl;
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x[13] = 84;
}
catch (const char* e) {

cout << e << endl;
}

}

See the output of the above example:
45
2435
Invalid array access

The expression x[1] is interpreted as x.operator[](1) and calls int&
MyArray<int>::operator[](const int).

Overloading class member access
You overload operator-> with a nonstatic member function that has no
parameters. The following example demonstrates how the compiler interprets
overloaded class member access operators:
struct Y {

void f() { };
};

struct X {
Y* ptr;
Y* operator->() {

return ptr;
};
};

int main() {
X x;
x->f();

}

The statement x->f() is interpreted as (x.operator->())->f().

The operator-> is used (often in conjunction with the pointer-dereference operator)
to implement "smart pointers." These pointers are objects that behave like normal
pointers except they perform other tasks when you access an object through them,
such as automatic object deletion (either when the pointer is destroyed, or the
pointer is used to point to another object), or reference counting (counting the
number of smart pointers that point to the same object, then automatically deleting
the object when that count reaches zero).

One example of a smart pointer is included in the C++ Standard Library called
auto_ptr. You can find it in the <memory> header. The auto_ptr class implements
automatic object deletion.
Related reference:
“Arrow operator ->” on page 150

Overload resolution
The process of selecting the most appropriate overloaded function or operator is
called overload resolution.

Suppose that f is an overloaded function name. When you call the overloaded
function f(), the compiler creates a set of candidate functions. This set of functions
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includes all of the functions named f that can be accessed from the point where
you called f(). The compiler may include as a candidate function an alternative
representation of one of those accessible functions named f to facilitate overload
resolution.

After creating a set of candidate functions, the compiler creates a set of viable
functions. This set of functions is a subset of the candidate functions. The number
of parameters of each viable function agrees with the number of arguments you
used to call f().

The compiler chooses the best viable function, the function declaration that the C++
runtime environment will use when you call f(), from the set of viable functions.
The compiler does this by implicit conversion sequences. An implicit conversion
sequence is the sequence of conversions required to convert an argument in a
function call to the type of the corresponding parameter in a function declaration.
The implicit conversion sequences are ranked; some implicit conversion sequences
are better than others. The best viable function is the one whose parameters all
have either better or equal-ranked implicit conversion sequences than all of the
other viable functions. The compiler will not allow a program in which the
compiler was able to find more than one best viable function. Implicit conversion
sequences are described in more detail in “Implicit conversion sequences” on page
339.

When a variable length array is a function parameter, the leftmost array dimension
does not distinguish functions among candidate functions. In the following, the
second definition of f is not allowed because void f(int []) has already been
defined.
void f(int a[*]) {}
void f(int a[5]) {} // illegal

However, array dimensions other than the leftmost in a variable length array do
differentiate candidate functions when the variable length array is a function
parameter. For example, the overload set for function f might comprise the
following:
void f(int a[][5]) {}
void f(int a[][4]) {}
void f(int a[][g]) {} // assume g is a global int

but cannot include
void f(int a[][g2]) {} // illegal, assuming g2 is a global int

because having candidate functions with second-level array dimensions g and g2
creates ambiguity about which function f should be called: neither g nor g2 is
known at compile time.

You can override an exact match by using an explicit cast. In the following
example, the second call to f() matches with f(void*):
void f(int) { };
void f(void*) { };

int main() {
f(0xaabb); // matches f(int);
f((void*) 0xaabb); // matches f(void*)

}
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Implicit conversion sequences
An implicit conversion sequence is the sequence of conversions required to convert an
argument in a function call to the type of the corresponding parameter in a
function declaration.

The compiler tries to determine an implicit conversion sequence for each
argument. It then categorizes each implicit conversion sequence in one of three
categories and ranks them depending on the category. The compiler does not allow
any program in which it cannot find an implicit conversion sequence for an
argument.

The following are the three categories of conversion sequences in order from best
to worst:
v “Standard conversion sequences”
v “User-defined conversion sequences”
v “Ellipsis conversion sequences” on page 340

Note: Two standard conversion sequences or two user-defined conversion
sequences might have different ranks.

Standard conversion sequences

Standard conversion sequences are categorized in one of three ranks. The ranks are
listed in order from highest to lowest:
v Exact match: This rank includes the following conversions:

– Identity conversions
– Lvalue-to-rvalue conversions
– Array-to-pointer conversions
– Qualification conversions

v Promotion: This rank includes integral and floating point promotions.
v Conversion: This rank includes the following conversions:

– Integral and floating-point conversions
– Floating-integral conversions
– Pointer conversions
– Pointer-to-member conversions
– Boolean conversions

The compiler ranks a standard conversion sequence by its lowest-ranked standard
conversion. For example, if a standard conversion sequence has a floating-point
conversion, then that sequence has conversion rank.

User-defined conversion sequences

A user-defined conversion sequence consists of the following:
v A standard conversion sequence
v A user-defined conversion
v A second standard conversion sequence

A user-defined conversion sequence A is better than a user-defined conversion
sequence B if both A and B have the same user-defined conversion function or
constructor, and the second standard conversion sequence of A is better than the
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second standard conversion sequence of B.

Ellipsis conversion sequences

An ellipsis conversion sequence occurs when the compiler matches an argument in a
function call with a corresponding ellipsis parameter.

Ranking implicit conversion sequences

Ranking standard conversion sequences

Suppose S1 and S2 are two standard conversion sequences. The compiler checks
whether S1 and S2 satisfy the following conditions in sequence. If one of the
conditions is satisfied, S1 is a better standard conversion sequence than S2.
1. S2 involves a qualification conversion, but S1 does not involve qualification

conversions. See Example 1.
2. The rank of S1 is higher than the rank of S2. See Example 2.
3. Both S1 and S2 involve qualification conversions. T1 is the target type of S1,

and T2 of S2. T2 is more cv-qualified than T1. See Example 3.
4. C++11 S1 and S2 are reference bindings to an rvalue, and neither of them

refers to the implicit object parameter of a nonstatic member function. S1 binds
an rvalue reference and S2 binds an lvalue reference. See Example 4. C++11

5. C++11 S1 and S2 are reference bindings. S1 binds an lvalue reference to a
function lvalue, and S2 binds an rvalue reference to a function lvalue. See
Example 5. C++11

6. S1 and S2 are reference bindings. T1 is the target type referred by S1, and T2 by
S2. T1 and T2 differ only in top-level cv-qualifiers where T2 is more cv-qualified
than T1. See Example 6.

If two standard conversion sequences S1 and S2 have the same rank, S1 is a better
standard conversion sequence than S2 if one of the following conditions is
satisfied:
v S1 converts a pointer, a pointer to member, or a null pointer, and S2 does not.

See Example 7.
v Class A is a parent class of class B. S1 is a conversion from B* to A*, and S2 is a

conversion from B* to void*; or S1 is a conversion from A* to void*, and S2 is a
conversion from B* to void*. See Example 8.

v Class A is a parent class of class B, and class B is a parent class of class C. One of
the following conditions is satisfied:
– S1 is a conversion from C* to B*, and S2 is a conversion from C* to A*.
– S1 binds an expression of type C to a reference of type B&, and S2 binds an

expression of type C to a reference of type A&.
– S1 is a conversion from A::* to B::*, and S2 is a conversion from A::* to

C::*.
– S1 is a conversion from C to B, and S2 is a conversion from C to A.
– S1 is a conversion from B* to A*, and S2 is a conversion from C* to A*. See

Example 9.
– S1 binds an expression of type B to type A&, and S2 binds an expression of

type C to type A&.
– S1 is a conversion from B::* to C::*, and S2 is a conversion from A::* to

C::*.
– S1 is a conversion from B to A, and S2 is a conversion from C to A.
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Example 1
void f(int*); // #1 function
void f(const int*); // #2 function

void test() {
// The compiler calls #1 function
f(static_cast<int*>(0));

}

In this example, for the call of f(static_cast<int*>(0)), the standard conversion
sequence S1 of the f(int*) function is from int* to int*. The standard conversion
sequence S2 of the f(const int*) function is from int* to const int*. S2 involves
a qualification conversion, but S1 does not, so S1 is a better standard conversion
sequence than S2.

Example 2
struct A { };
struct B : A { };

void f(const B*); // #1 function
void f(A*); // #2 function

void test() {
// The compiler calls #1 function
f(static_cast<B*>(0));

}

struct A1 *g(int); // #3 function
struct A2 *g(short); // #4 function

void test2() {
// The compiler calls #4 function
A2* a2 = g(static_cast<short>(0));

// The compiler calls #3 function
A1* a1 = g(’\0’);

}

In this example, for the call of f(static_cast<B*>(0)), the standard conversion
sequence of the f(const B*) function is an exact match, and the standard
conversion sequence of the f(A*) function is a conversion. The rank of exact match
is higher than that of conversion, so f(const B*) is chosen by overload resolution.
Similarly, for the call of g(static_cast<short>(0)), the standard conversion
sequence of the g(short) function is an exact match, and the standard conversion
sequence of the g(int) function is a promotion. The g(short) function is called
because the rank of exact match is higher than that of promotion. For the call of
g(’\0’), the standard conversion sequence of the g(short) function is a
conversion, and the standard conversion sequence of the g(int) function is a
promotion, g(int) is called in this case because the rank of promotion is higher
than that of conversion.

Example 3
struct A { };
struct B : A { };
void g(const A*); // #1 function
void g(const volatile A*); // #2 function
void test2() {

// The compiler calls #1 function
g(static_cast<B*>(0));

}
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In this example, for the call of g(static_cast<B*>(0)), the standard conversion
sequence S1 of the g(const A*) function is from B* to const A*. The standard
conversion sequence S2 of the g(const volatile A*) function is from B* to const
volatile A*. Both S1 and S2 involve qualification conversions, and const volatile
A* is more cv-qualified than const A*, so S1 is a better standard conversion
sequence than S2.

C++11

Example 4
double f1();
int g(const double&&); // #1 function
int g(const double&); // #2 function

// The compiler calls #1 function
int i = g(f1());

struct A {
int operator+(int);

};

int operator+(A &&, int);

A &&f2();

void test() {
f2() + 0; // error

}

In this example, for the call of g(f1()), the standard conversion sequence of the
g(const double&) function binds an lvalue reference, and the standard conversion
sequence for g(const double&&) binds an rvalue reference. Neither of these two
standard conversion sequences refers to the implicit object parameter of a nonstatic
member function. The g(const double&&) function is called because its standard
conversion sequence is a better one. For the expression f2() + 0, the class member
candidate involves a reference binding of the implicit object parameter of a
nonstatic member function and hence cannot be ordered with respect to the
namespace scope candidate.

Example 5
double f();
int g(double(&&)()); // #1 function
int g(double(&)()); // #2 function

// The compiler calls #2 function
int i = g(f)

In this example, for the call of g(f), the standard conversion sequence of the
g(double(&)()) function binds an lvalue reference to a function lvalue, and the
standard conversion sequence of the g(double(&&)()) function binds an rvalue
reference to a function lvalue. The g(double(&)()) function is called because its
standard conversion sequence is a better one.

C++11

Example 6
void f(A&); // #1 function
void f(const A&); // #2 function
void test() {
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A a;
// The compiler calls #1 function
f(a);

}

In this example, for the call of f(a), the standard conversion sequence S1 of the
f(A&) function binds an lvalue reference A& to a, and the standard conversion
sequence S2 of the f(const A&) function binds a const lvalue reference const A& to
a. Because const A and A are the same except for top-level cv-qualifers, and const
A is more cv-qualified than A, S1 is a better standard conversion sequence than S2.

Example 7
void f(void*); // #1 function
void f(bool); // #2 function
void test() {

// The compiler calls #1 function
f(static_cast<int*>(0));

}

In this example, for the call of f(static_cast<int*>(0)), the standard conversion
sequence S1 of the f(void*) function is from int* to void*, and the standard
conversion sequence S2 of the f(bool) function is from int* to bool. S1 and S2
have the same rank. However, because S1 does not convert a pointer, a pointer to
member, or a null pointer to a bool, and S2 converts a pointer to a bool, S1 is a
better standard conversion sequence than S2.

Example 8
//
void f(void*); // #1 function
void f(struct A*); // #2 function
struct A { };
struct B : A { };
void test() {

// The compiler calls #2 function
f(static_cast<B*>(0));

}

In this example, for the call of f(static_cast<B*>(0)), the standard conversion
sequence of the f(void*) function is from B* to void*, and the standard conversion
sequence of the f(struct A*) is from B* to A*. The f(struct A*) is called because
its standard conversion sequence is a better one.

Example 9
void f(struct A *);
struct A { };
struct B : A { };
struct C : B { };
struct S {

operator B*();
operator C*();

}
void test() {

// calls S::operator B*()
f(S());

}

In this example, for the call of f(S()), the standard conversion sequence is from
S() to A*, and the structure S has two conversion operators. The operator function
operator B* () is called, because the conversion from B* to A* is better than from
C* to A*.
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Ranking user-defined conversion sequences

Suppose U1 and U2 are two user-defined conversion sequences. U1 and U2 use the
same user-defined conversion function, constructor, or aggregate initialization. U1 is
a better user-defined conversion sequence than U2 if the second standard
conversion sequence of U1 is better than that of U2. See Example 10:

Example 10
void f(void*); // #1 function
void f(bool); // #2 function
struct A {

operator int*();
}
void test() {

// The compiler calls #1 function
f(A());

}

In this example, for the call of f(A()), the user-defined conversion sequence U1 of
the f(void*) function is from A to void*. The user-defined conversion sequence U2
of the f(bool) function is from A to bool. U1 and U2 use the same user-defined
conversion from A to int*. The standard conversion sequence from int* to void* is
better than the standard conversion sequence from int* to bool, so U1 is a better
user-defined conversion sequence than U2.
Related reference:
“Lvalue-to-rvalue conversions” on page 137
“Pointer conversions” on page 137
“Integral conversions” on page 130
“Floating-point conversions” on page 130
“Boolean conversions” on page 130
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

Resolving addresses of overloaded functions
If you use an overloaded function name f without any arguments, that name can
refer to a function, a pointer to a function, a pointer to member function, or a
specialization of a function template. Because you did not provide any arguments,
the compiler cannot perform overload resolution the same way it would for a
function call or for the use of an operator. Instead, the compiler will try to choose
the best viable function that matches the type of one of the following expressions,
depending on where you have used f:
v An object or reference you are initializing
v The left side of an assignment
v A parameter of a function or a user-defined operator
v The return value of a function, operator, or conversion
v An explicit type conversion

If the compiler chose a declaration of a nonmember function or a static member
function when you used f, the compiler matched the declaration with an
expression of type pointer-to-function or reference-to-function. If the compiler
chose a declaration of a nonstatic member function, the compiler matched that
declaration with an expression of type pointer-to-member function. The following
example demonstrates this:
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struct X {
int f(int) { return 0; }
static int f(char) { return 0; }

};

int main() {
int (X::*a)(int) = &X::f;

// int (*b)(int) = &X::f;
}

The compiler will not allow the initialization of the function pointer b. No
nonmember function or static function of type int(int) has been declared.

If f is a template function, the compiler will perform template argument deduction
to determine which template function to use. If successful, it will add that function
to the list of viable functions. If there is more than one function in this set,
including a non-template function, the compiler will eliminate all template
functions from the set and choose the non-template function. If there are only
template functions in this set, the compiler will choose the most specialized
template function. The following example demonstrates this:
template<class T> int f(T) { return 0; }
template<> int f(int) { return 0; }
int f(int) { return 0; }

int main() {
int (*a)(int) = f;
a(1);

}

The function call a(1) calls int f(int).
Related reference:
“Pointers to functions” on page 257
“Pointers to members” on page 362
“Function templates” on page 446
“Explicit specialization” on page 460
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Chapter 11. Classes (C++ only)

A class is a mechanism for creating user-defined data types. It is similar to the C
language structure data type. In C, a structure is composed of a set of data
members. In C++, a class type is like a C structure, except that a class is composed
of a set of data members and a set of operations that can be performed on the
class.

In C++, a class type can be declared with the keywords union, struct, or class. A
union object can hold any one of a set of named members. Structure and class
objects hold a complete set of members. Each class type represents a unique set of
class members including data members, member functions, and other type names.
The default access for members depends on the class key:
v The members of a class declared with the keyword class are private by default.

A class is inherited privately by default.
v The members of a class declared with the keyword struct are public by default.

A structure is inherited publicly by default.
v The members of a union (declared with the keyword union) are public by

default. A union cannot be used as a base class in derivation.

Once you create a class type, you can declare one or more objects of that class
type. For example:
class X
{

/* define class members here */
};
int main()
{

X xobject1; // create an object of class type X
X xobject2; // create another object of class type X

}

You may have polymorphic classes in C++. Polymorphism is the ability to use a
function name that appears in different classes (related by inheritance), without
knowing exactly the class the function belongs to at compile time.

C++ allows you to redefine standard operators and functions through the concept
of overloading. Operator overloading facilitates data abstraction by allowing you
to use classes as easily as built-in types.
Related reference:
“Structures and unions” on page 60
Chapter 12, “Class members and friends (C++ only),” on page 357
Chapter 13, “Inheritance (C++ only),” on page 381
Chapter 10, “Overloading (C++ only),” on page 327
“Virtual functions” on page 399

Declaring class types
A class declaration creates a unique type class name.
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A class specifier is a type specifier used to declare a class. Once a class specifier has
been seen and its members declared, a class is considered to be defined even if the
member functions of that class are not yet defined.

Class specifier syntax

�� class
struct
union

class_name
: base_clause

{ }
member_list

��

The class_name is a unique identifier that becomes a reserved word within its
scope. Once a class name is declared, it hides other declarations of the same name
within the enclosing scope.

The member_list specifies the class members, both data and functions, of the class
class_name. If the member_list of a class is empty, objects of that class have a
nonzero size. You can use a class_name within the member_list of the class specifier
itself as long as the size of the class is not required.

The base_clause specifies the base class or classes from which the class class_name
inherits members. If the base_clause is not empty, the class class_name is called a
derived class.

A structure is a class declared with the class_key struct. The members and base
classes of a structure are public by default. A union is a class declared with the
class_key union. The members of a union are public by default; a union holds only
one data member at a time.

An aggregate class is a class that has no user-defined constructors, no private or
protected non-static data members, no base classes, and no virtual functions.
Related reference:
“Class member lists” on page 357
“Derivation” on page 383

Using class objects
You can use a class type to create instances or objects of that class type. For
example, you can declare a class, structure, and union with class names X, Y, and Z
respectively:
class X {

// members of class X
};

struct Y {
// members of struct Y

};

union Z {
// members of union Z

};

You can then declare objects of each of these class types. Remember that classes,
structures, and unions are all types of C++ classes.
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int main()
{

X xobj; // declare a class object of class type X
Y yobj; // declare a struct object of class type Y
Z zobj; // declare a union object of class type Z

}

In C++, unlike C, you do not need to precede declarations of class objects with the
keywords union, struct, and class unless the name of the class is hidden. For
example:
struct Y { /* ... */ };
class X { /* ... */ };
int main ()
{

int X; // hides the class name X
Y yobj; // valid
X xobj; // error, class name X is hidden
class X xobj; // valid

}

When you declare more than one class object in a declaration, the declarators are
treated as if declared individually. For example, if you declare two objects of class
S in a single declaration:
class S { /* ... */ };
int main()
{

S S,T; // declare two objects of class type S
}

this declaration is equivalent to:
class S { /* ... */ };
int main()
{

S S;
class S T; // keyword class is required

// since variable S hides class type S
}

but is not equivalent to:
class S { /* ... */ };
int main()
{

S S;
S T; // error, S class type is hidden

}

You can also declare references to classes, pointers to classes, and arrays of classes.
For example:
class X { /* ... */ };
struct Y { /* ... */ };
union Z { /* ... */ };
int main()
{

X xobj;
X &xref = xobj; // reference to class object of type X
Y *yptr; // pointer to struct object of type Y
Z zarray[10]; // array of 10 union objects of type Z

}
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You can initialize classes in external, static, and automatic definitions. The
initializer contains an = (equal sign) followed by a brace-enclosed,
comma-separated list of values. You do not need to initialize all members of a
class.

Objects of class types that are not copy restricted can be assigned, passed as
arguments to functions, and returned by functions.
Related reference:
“Structures and unions” on page 60
“References (C++ only)” on page 107
“Scope of class names” on page 351

Classes and structures
The C++ class is an extension of the C language structure. Because the only
difference between a structure and a class is that structure members have public
access by default and class members have private access by default, you can use
the keywords class or struct to define equivalent classes.

For example, in the following code fragment, the class X is equivalent to the
structure Y:

CCNX10C
class X {

// private by default
int a;

public:

// public member function
int f() { return a = 5; };

};

struct Y {

// public by default
int f() { return a = 5; };

private:

// private data member
int a;

};

If you define a structure and then declare an object of that structure using the
keyword class, the members of the object are still public by default. In the
following example, main() has access to the members of obj_X even though obj_X
has been declared using an elaborated type specifier that uses the class key class:

CCNX10D
#include <iostream>
using namespace std;

struct X {
int a;
int b;
};
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class X obj_X;

int main() {
obj_X.a = 0;
obj_X.b = 1;
cout << "Here are a and b: " << obj_X.a << " " << obj_X.b << endl;

}

See the output of the above example:
Here are a and b: 0 1

Scope of class names
A class declaration introduces the class name into the scope where it is declared.
Any class, object, function or other declaration of that name in an enclosing scope
is hidden.

If a class name is declared in the same scope as a function, enumerator, or object
with the same name, you must refer to that class using an elaborated type specifier:

Elaborated type specifier syntax

�� class identifier
struct :: nested_name_specifier
union
enum

typename nested_name_specifier identifier
:: template_name

template

��

Nested name specifier:

class_name ::
namespace_name template nested_name_specifier

nested_name_specifier

The following example must use an elaborated type specifier to refer to class A
because this class is hidden by the definition of the function A():
class A { };

void A (class A*) { };

int main()
{

class A* x;
A(x);

}

The declaration class A* x is an elaborated type specifier. Declaring a class with
the same name of another function, enumerator, or object as demonstrated above is
not recommended.

An elaborated type specifier can also be used in the incomplete declaration of a
class type to reserve the name for a class type within the current scope.
Related reference:
“Incomplete class declarations” on page 352
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Incomplete class declarations
An incomplete class declaration is a class declaration that does not define any class
members. You cannot declare any objects of the class type or refer to the members
of a class until the declaration is complete. However, an incomplete declaration
allows you to make specific references to a class prior to its definition as long as
the size of the class is not required.

For example, you can define a pointer to the structure first in the definition of the
structure second. Structure first is declared as an incomplete class declaration
prior to the definition of second, and the definition of oneptr in structure second
does not require the size of first:
struct first; // incomplete declaration of struct first

struct second // complete declaration of struct second
{

first* oneptr; // pointer to struct first refers to
// struct first prior to its complete
// declaration

first one; // error, you cannot declare an object of
// an incompletely declared class type

int x, y;
};

struct first // complete declaration of struct first
{

second two; // define an object of class type second
int z;

};

However, if you declare a class with an empty member list, it is a complete class
declaration. For example:
class X; // incomplete class declaration
class Z {}; // empty member list
class Y
{
public:

X yobj; // error, cannot create an object of an
// incomplete class type

Z zobj; // valid
};

Related reference:
“Class member lists” on page 357

Nested classes
A nested class is declared within the scope of another class. The name of a nested
class is local to its enclosing class. Unless you use explicit pointers, references, or
object names, declarations in a nested class can only use visible constructs,
including type names, static members, and enumerators from the enclosing class
and global variables.

Member functions of a nested class follow regular access rules and have no special
access privileges to members of their enclosing classes. Member functions of the
enclosing class have no special access to members of a nested class. The following
example demonstrates this:
class A {

int x;

class B { };
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class C {

// The compiler cannot allow the following
// declaration because A::B is private:
// B b;

int y;
void f(A* p, int i) {

// The compiler cannot allow the following
// statement because A::x is private:
// p->x = i;

}
};

void g(C* p) {

// The compiler cannot allow the following
// statement because C::y is private:
// int z = p->y;

}
};

int main() { }

The compiler would not allow the declaration of object b because class A::B is
private. The compiler would not allow the statement p->x = i because A::x is
private. The compiler would not allow the statement int z = p->y because C::y is
private.

You can define member functions and static data members of a nested class in
namespace scope. For example, in the following code fragment, you can access the
static members x and y and member functions f() and g() of the nested class
nested by using a qualified type name. Qualified type names allow you to define a
typedef to represent a qualified class name. You can then use the typedef with the
:: (scope resolution) operator to refer to a nested class or class member, as shown
in the following example:
class outside
{
public:

class nested
{
public:

static int x;
static int y;
int f();
int g();

};
};
int outside::nested::x = 5;
int outside::nested::f() { return 0; };

typedef outside::nested outnest; // define a typedef
int outnest::y = 10; // use typedef with ::
int outnest::g() { return 0; };

However, using a typedef to represent a nested class name hides information and
may make the code harder to understand.

You cannot use a typedef name in an elaborated type specifier. To illustrate, you
cannot use the following declaration in the above example:
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class outnest obj;

A nested class may inherit from private members of its enclosing class. The
following example demonstrates this:
class A {
private:

class B { };
B *z;

class C : private B {
private:

B y;
// A::B y2;

C *x;
// A::C *x2;

};
};

The nested class A::C inherits from A::B. The compiler does not allow the
declarations A::B y2 and A::C *x2 because both A::B and A::C are private.
Related reference:
“Class scope (C++ only)” on page 4
“Scope of class names” on page 351
“Member access” on page 371
“Static members” on page 366

Local classes
A local class is declared within a function definition. Declarations in a local class
can only use type names, enumerations, static variables from the enclosing scope,
as well as external variables and functions.

For example:
int x; // global variable
void f() // function definition
{

static int y; // static variable y can be used by
// local class

int x; // auto variable x cannot be used by
// local class

extern int g(); // extern function g can be used by
// local class

class local // local class
{

int g() { return x; } // error, local variable x
// cannot be used by g

int h() { return y; } // valid,static variable y
int k() { return ::x; } // valid, global x
int l() { return g(); } // valid, extern function g

};
}

int main()
{

local* z; // error: the class local is not visible
// ...}
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Member functions of a local class have to be defined within their class definition, if
they are defined at all. As a result, member functions of a local class are inline
functions. Like all member functions, those defined within the scope of a local
class do not need the keyword inline.

A local class cannot have static data members. In the following example, an
attempt to define a static member of a local class causes an error:
void f()
{

class local
{

int f(); // error, local class has noninline
// member function

int g() {return 0;} // valid, inline member function
static int a; // error, static is not allowed for

// local class
int b; // valid, nonstatic variable

};
}
// . . .

An enclosing function has no special access to members of the local class.
Related reference:
“Member functions” on page 359
“The inline function specifier” on page 228

Local type names
Local type names follow the same scope rules as other names. Type names defined
within a class declaration have class scope and cannot be used outside their class
without qualification.

If you use a class name, typedef name, or a constant name that is used in a type
name, in a class declaration, you cannot redefine that name after it is used in the
class declaration.

For example:
int main ()
{

typedef double db;
struct st
{

db x;
typedef int db; // error
db y;

};
}

The following declarations are valid:
typedef float T;
class s {

typedef int T;
void f(const T);

};

Here, function f() takes an argument of type s::T. However, the following
declarations, where the order of the members of s has been reversed, cause an
error:
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typedef float T;
class s {

void f(const T);
typedef int T;

};

In a class declaration, you cannot redefine a name that is not a class name, or a
typedef name to a class name or typedef name once you have used that name in
the class declaration.
Related reference:
“Scope” on page 2
“typedef definitions” on page 74
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Chapter 12. Class members and friends (C++ only)

This section discusses the declaration of class members with respect to the
information hiding mechanism and how a class can grant functions and classes
access to its nonpublic members by the use of the friend mechanism. C++ expands
the concept of information hiding to include the notion of having a public class
interface but a private implementation. It is the mechanism for limiting direct
access to the internal representation of a class type by functions in a program.
Related reference:
“Inherited member access” on page 386

Class member lists
An optional member list declares subobjects called class members. Class members can
be data, functions, nested types, and enumerators.

Class member list syntax

�� � member_declaration ;
= 0
= constant_expression

member_definition
access_specifier :

��

The member list follows the class name and is placed between braces. The
following applies to member lists, and members of member lists:
v A member_declaration or a member_definition may be a declaration or definition of

a data member, member function, nested type, or enumeration. (The
enumerators of a enumeration defined in a class member list are also members
of the class.)

v A member list is the only place where you can declare class members.
v Friend declarations are not class members but must appear in member lists.
v The member list in a class definition declares all the members of a class; you

cannot add members elsewhere.
v You cannot declare a member twice in a member list.
v You may declare a data member or member function as static but not auto,

extern, or register.
v You may declare a nested class, a member class template, or a member function,

and define it outside the class.
v You must define static data members outside the class.
v Nonstatic members that are class objects must be objects of previously defined

classes; a class A cannot contain an object of class A, but it can contain a pointer
or reference to an object of class A.

v You must specify all dimensions of a nonstatic array member.

A constant initializer (= constant_expression) may only appear in a class member of
integral or enumeration type that has been declared static.
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A pure specifier (= 0) indicates that a function has no definition. It is only used with
member functions declared as virtual and replaces the function definition of a
member function in the member list.

An access specifier is one of public, private, or protected.

A member declaration declares a class member for the class containing the
declaration.

Suppose A is a name of a class. The following class members of A must have a
name different from A:
v All data members
v All type members
v All enumerators of enumerated type members
v All members of all anonymous union members
Related reference:
“Declaring class types” on page 347
“Member access” on page 371
“Inherited member access” on page 386
“Static members” on page 366

Data members
Data members include members that are declared with any of the fundamental
types, as well as other types, including pointer, reference, array types, bit fields,
and user-defined types. You can declare a data member the same way as a
variable, except that explicit initializers are not allowed inside the class definition.
However, a const static data member of integral or enumeration type may have an
explicit initializer.

If an array is declared as a nonstatic class member, you must specify all of the
dimensions of the array.

A class can have members that are of a class type or are pointers or references to a
class type. Members that are of a class type must be of a class type that has been
previously declared. An incomplete class type can be used in a member declaration
as long as the size of the class is not needed. For example, a member can be
declared that is a pointer to an incomplete class type.

A class X cannot have a member that is of type X, but it can contain pointers to X,
references to X, and static objects of X. Member functions of X can take arguments
of type X and have a return type of X. For example:
class X
{

X();
X *xptr;
X &xlref;
X &&xrref;
static X xcount;
X xfunc(X);

};

Related reference:
“Member access” on page 371
“Inherited member access” on page 386
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“Static members” on page 366

Member functions
Member functions are operators and functions that are declared as members of a
class. Member functions do not include operators and functions declared with the
friend specifier. These are called friends of a class. You can declare a member
function as static; this is called a static member function. A member function that is
not declared as static is called a nonstatic member function.

The definition of a member function is within the scope of its enclosing class. The
body of a member function is analyzed after the class declaration so that members
of that class can be used in the member function body, even if the member
function definition appears before the declaration of that member in the class
member list. When the function add() is called in the following example, the data
variables a, b, and c can be used in the body of add().
class x
{
public:

int add() // inline member function add
{return a+b+c;};

private:
int a,b,c;

};

C++11

You can use trailing return types for member functions, including those that have
complicated return types. For more information, see “Trailing return type (C++11)”
on page 239.

C++11

Inline member functions
You may either define a member function inside its class definition, or you may
define it outside if you have already declared (but not defined) the member
function in the class definition.

A member function that is defined inside its class member list is called an inline
member function. Member functions containing a few lines of code are usually
declared inline. In the above example, add() is an inline member function. If you
define a member function outside of its class definition, it must appear in a
namespace scope enclosing the class definition. You must also qualify the member
function name using the scope resolution (::) operator.

An equivalent way to declare an inline member function is to either declare it in
the class with the inline keyword (and define the function outside of its class) or
to define it outside of the class declaration using the inline keyword.

In the following example, member function Y::f() is an inline member function:
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struct Y {
private:

char* a;
public:

char* f() { return a; }
};

The following example is equivalent to the previous example; Y::f() is an inline
member function:
struct Y {
private:

char* a;
public:

char* f();
};

inline char* Y::f() { return a; }

The inline specifier does not affect the linkage of a member or nonmember
function: linkage is external by default.

Member functions of a local class must be defined within their class definition. As
a result, member functions of a local class are implicitly inline functions. These
inline member functions have no linkage.

Constant and volatile member functions
A member function declared with the const qualifier can be called for constant and
nonconstant objects. A nonconstant member function can only be called for a
nonconstant object. Similarly, a member function declared with the volatile
qualifier can be called for volatile and nonvolatile objects. A nonvolatile member
function can only be called for a nonvolatile object.
Related reference:
“The this pointer” on page 363

Virtual member functions
Virtual member functions are declared with the keyword virtual. They allow
dynamic binding of member functions. Because all virtual functions must be
member functions, virtual member functions are simply called virtual functions.

If the definition of a virtual function is replaced by a pure specifier in the
declaration of the function, the function is said to be declared pure. A class that
has at least one pure virtual function is called an abstract class.
Related reference:
“Virtual functions” on page 399
“Abstract classes” on page 404

Special member functions
Special member functions are used to create, destroy, initialize, convert, and copy
class objects. These include the following elements:
v Default constructors
v Destructors
v Copy constructors
v Copy assignment operators
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For full descriptions of these functions, see Chapter 14, “Special member functions
(C++ only),” on page 407.

Member scope
Member functions and static members can be defined outside their class
declaration if they have already been declared, but not defined, in the class
member list. Nonstatic data members are defined when an object of their class is
created. The declaration of a static data member is not a definition. The declaration
of a member function is a definition if the body of the function is also given.

Whenever the definition of a class member appears outside of the class declaration,
the member name must be qualified by the class name using the :: (scope
resolution) operator.

The following example defines a member function outside of its class declaration.

CCNX11A
#include <iostream>
using namespace std;

struct X {
int a, b ;

// member function declaration only
int add();

};

// global variable
int a = 10;

// define member function outside its class declaration
int X::add() { return a + b; }

int main() {
int answer;
X xobject;
xobject.a = 1;
xobject.b = 2;
answer = xobject.add();
cout << xobject.a << " + " << xobject.b << " = " << answer << endl;

}

The output for this example is: 1 + 2 = 3

All member functions are in class scope even if they are defined outside their class
declaration. In the above example, the member function add() returns the data
member a, not the global variable a.

The name of a class member is local to its class. Unless you use one of the class
access operators, . (dot), or -> (arrow), or :: (scope resolution) operator, you can
only use a class member in a member function of its class and in nested classes.
You can only use types, enumerations and static members in a nested class without
qualification with the :: operator.

The order of search for a name in a member function body is:
1. Within the member function body itself
2. Within all the enclosing classes, including inherited members of those classes
3. Within the lexical scope of the body declaration
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The search of the enclosing classes, including inherited members, is demonstrated
in the following example:
class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class Z : A {

class Y : B {
class X : C { int f(); /* ... */ };

};
};
int Z::Y::X f()
{

char j;
return 0;

}

In this example, the search for the name j in the definition of the function f
follows this order:
1. In the body of the function f

2. In X and in its base class C

3. In Y and in its base class B

4. In Z and in its base class A

5. In the lexical scope of the body of f. In this case, this is global scope.

Note that when the containing classes are being searched, only the definitions of
the containing classes and their base classes are searched. The scope containing the
base class definitions (global scope, in this example) is not searched.

Pointers to members
Pointers to members allow you to refer to nonstatic members of class objects. You
cannot use a pointer to member to point to a static class member because the
address of a static member is not associated with any particular object. To point to
a static class member, you must use a normal pointer.

You can use pointers to member functions in the same manner as pointers to
functions. You can compare pointers to member functions, assign values to them,
and use them to call member functions. Note that a member function does not
have the same type as a nonmember function that has the same number and type
of arguments and the same return type.

Pointers to members can be declared and used as shown in the following example:
#include <iostream>
using namespace std;

class X {
public:

int a;
void f(int b) {

cout << "The value of b is "<< b << endl;
}

};

int main() {

// declare pointer to data member
int X::*ptiptr = &X::a;

// declare a pointer to member function
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void (X::* ptfptr) (int) = &X::f;

// create an object of class type X
X xobject;

// initialize data member
xobject.*ptiptr = 10;

cout << "The value of a is " << xobject.*ptiptr << endl;

// call member function
(xobject.*ptfptr) (20);

}

The output for this example is:
The value of a is 10
The value of b is 20

To reduce complex syntax, you can declare a typedef to be a pointer to a member.
A pointer to a member can be declared and used as shown in the following code
fragment:
typedef int X::*my_pointer_to_member;
typedef void (X::*my_pointer_to_function) (int);

int main() {
my_pointer_to_member ptiptr = &X::a;
my_pointer_to_function ptfptr = &X::f;
X xobject;
xobject.*ptiptr = 10;
cout << "The value of a is " << xobject.*ptiptr << endl;
(xobject.*ptfptr) (20);

}

The pointer to member operators .* and ->* are used to bind a pointer to a
member of a specific class object. Because the precedence of () (function call
operator) is higher than .* and ->*, you must use parentheses to call the function
pointed to by ptf.

Pointer-to-member conversion can occur when pointers to members are initialized,
assigned, or compared. Note that pointer to a member is not the same as a pointer
to an object or a pointer to a function.

The this pointer
The keyword this identifies a special type of pointer. Suppose that you create an
object named x of class A, and class A has a nonstatic member function f(). If you
call the function x.f(), the keyword this in the body of f() stores the address of
x. You cannot declare the this pointer or make assignments to it.

A static member function does not have a this pointer.

The type of the this pointer for a member function of a class type X, is X*. If the
member function is declared with the const qualifier, the type of the this pointer
for that member function for class X, is const X*.

A const this pointer can by used only with const member functions. Data
members of the class will be constant within that function. The function is still able
to change the value, but requires a const_cast to do so:
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void foo::p() const{
member = 1; // illegal
const_cast <int&> (member) = 1; // a bad practice but legal
}

A better technique would be to declare member mutable.

If the member function is declared with the volatile qualifier, the type of the this
pointer for that member function for class X is volatile X* const. For example,
the compiler will not allow the following:
struct A {

int a;
int f() const { return a++; }

};

The compiler will not allow the statement a++ in the body of function f(). In the
function f(), the this pointer is of type A* const. The function f() is trying to
modify part of the object to which this points.

The this pointer is passed as a hidden argument to all nonstatic member function
calls and is available as a local variable within the body of all nonstatic functions.

For example, you can refer to the particular class object that a member function is
called for by using the this pointer in the body of the member function. The
following code example produces the output a = 5:

CCNX11C
#include <iostream>
using namespace std;

struct X {
private:

int a;
public:

void Set_a(int a) {

// The ’this’ pointer is used to retrieve ’xobj.a’
// hidden by the automatic variable ’a’
this->a = a;

}
void Print_a() { cout << "a = " << a << endl; }

};

int main() {
X xobj;
int a = 5;
xobj.Set_a(a);
xobj.Print_a();

}

In the member function Set_a(), the statement this->a = a uses the this pointer
to retrieve xobj.a hidden by the automatic variable a.

Unless a class member name is hidden, using the class member name is equivalent
to using the class member name with the this pointer and the class member access
operator (->).

The example in the first column of the following table shows code that uses class
members without the this pointer. The code in the second column uses the
variable THIS to simulate the first column's hidden use of the this pointer:
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Code without using this pointer
Equivalent code, the THIS variable simulating the
hidden use of the this pointer

#include <string>
#include <iostream>
using namespace std;

struct X {
private:

int len;
char *ptr;

public:
int GetLen() {

return len;
}
char * GetPtr() {

return ptr;
}
X& Set(char *);
X& Cat(char *);
X& Copy(X&);
void Print();

};

X& X::Set(char *pc) {
len = strlen(pc);
ptr = new char[len];
strcpy(ptr, pc);
return *this;

}

X& X::Cat(char *pc) {
len += strlen(pc);
strcat(ptr,pc);
return *this;

}

X& X::Copy(X& x) {
Set(x.GetPtr());
return *this;

}

void X::Print() {
cout << ptr << endl;

}

int main() {
X xobj1;
xobj1.Set("abcd")

.Cat("efgh");

xobj1.Print();
X xobj2;
xobj2.Copy(xobj1)

.Cat("ijkl");

xobj2.Print();
}

#include <string>
#include <iostream>
using namespace std;

struct X {
private:

int len;
char *ptr;

public:
int GetLen (X* const THIS) {

return THIS->len;
}
char * GetPtr (X* const THIS) {

return THIS->ptr;
}
X& Set(X* const, char *);
X& Cat(X* const, char *);
X& Copy(X* const, X&);
void Print(X* const);

};

X& X::Set(X* const THIS, char *pc) {
THIS->len = strlen(pc);
THIS->ptr = new char[THIS->len];
strcpy(THIS->ptr, pc);
return *THIS;

}

X& X::Cat(X* const THIS, char *pc) {
THIS->len += strlen(pc);
strcat(THIS->ptr, pc);
return *THIS;

}

X& X::Copy(X* const THIS, X& x) {
THIS->Set(THIS, x.GetPtr(&x));
return *THIS;

}

void X::Print(X* const THIS) {
cout << THIS->ptr << endl;

}

int main() {
X xobj1;
xobj1.Set(&xobj1 , "abcd")

.Cat(&xobj1 , "efgh");

xobj1.Print(&xobj1);
X xobj2;
xobj2.Copy(&xobj2 , xobj1)

.Cat(&xobj2 , "ijkl");

xobj2.Print(&xobj2);
}

Both examples produce the following output:
abcdefgh
abcdefghijkl

Related reference:
“Overloading assignments” on page 334
“Copy constructors” on page 429
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Static members
Class members can be declared using the storage class specifier static in the class
member list. Only one copy of the static member is shared by all objects of a class
in a program. When you declare an object of a class having a static member, the
static member is not part of the class object.

A typical use of static members is for recording data common to all objects of a
class. For example, you can use a static data member as a counter to store the
number of objects of a particular class type that are created. Each time a new object
is created, this static data member can be incremented to keep track of the total
number of objects.

You access a static member by qualifying the class name using the :: (scope
resolution) operator. In the following example, you can refer to the static member
f() of class type X as X::f() even if no object of type X is ever declared:
struct X {

static int f();
};

int main() {
X::f();

}

Related reference:
“Constant and volatile member functions” on page 360
“Class member lists” on page 357

Using the class access operators with static members
You do not have to use the class member access syntax to refer to a static member;
to access a static member s of class X, you could use the expression X::s. The
following example demonstrates accessing a static member:
#include <iostream>
using namespace std;

struct A {
static void f() { cout << "In static function A::f()" << endl; }

};

int main() {

// no object required for static member
A::f();

A a;
A* ap = &a;
a.f();
ap->f();

}

The three statements A::f(), a.f(), and ap->f() all call the same static member
function A::f().

You can directly refer to a static member in the same scope of its class, or in the
scope of a class derived from the static member's class. The following example
demonstrates the latter case (directly referring to a static member in the scope of a
class derived from the static member's class):

366 z/OS V2R1.0 XL C/C++ Language Reference



#include <iostream>
using namespace std;

int g() {
cout << "In function g()" << endl;
return 0;

}

class X {
public:

static int g() {
cout << "In static member function X::g()" << endl;
return 1;

}
};

class Y: public X {
public:

static int i;
};

int Y::i = g();

int main() { }

See the following output of the above code:
In static member function X::g()

The initialization int Y::i = g() calls X::g(), not the function g() declared in the
global namespace.
Related reference:
“The static storage class specifier” on page 49
“Scope resolution operator :: (C++ only)” on page 148
“Dot operator .” on page 150
“Arrow operator ->” on page 150

Static data members
The declaration of a static data member in the member list of a class is not a
definition. You must define the static member outside of the class declaration, in
namespace scope. For example:
class X
{
public:

static int i;
};
int X::i = 0; // definition outside class declaration

Once you define a static data member, it exists even though no objects of the static
data member's class exist. In the above example, no objects of class X exist even
though the static data member X::i has been defined.

Static data members of a class in namespace scope have external linkage. The
initializer for a static data member is in the scope of the class declaring the
member.

A static data member can be of any type except for void or void qualified with
const or volatile. You cannot declare a static data member as mutable.
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You can only have one definition of a static member in a program. Unnamed
classes, classes contained within unnamed classes, and local classes cannot have
static data members.

Static data members and their initializers can access other static private and
protected members of their class. The following example shows how you can
initialize static members using other static members, even though these members
are private:
class C {

static int i;
static int j;
static int k;
static int l;
static int m;
static int n;
static int p;
static int q;
static int r;
static int s;
static int f() { return 0; }
int a;

public:
C() { a = 0; }
};

C c;
int C::i = C::f(); // initialize with static member function
int C::j = C::i; // initialize with another static data member
int C::k = c.f(); // initialize with member function from an object
int C::l = c.j; // initialize with data member from an object
int C::s = c.a; // initialize with nonstatic data member
int C::r = 1; // initialize with a constant value

class Y : private C {} y;

int C::m = Y::f(); // error
int C::n = Y::r; // error
int C::p = y.r; // error
int C::q = y.f(); // error

The initialization of C::m, C::n, C::p, and C::q causes errors because the values
used to initialize them are private members of class Y which can not be accessed.

If a static data member is of a const integral or const enumeration type, you can
specify a constant initializer in the static data member's declaration. This constant
initializer must be an integral constant expression.

C++11 A static data member of a literal type can be declared with the constexpr
specifier in the class definition, and the data member declaration must specify a
constant initializer. For example:
struct Constants {

static constexpr int bounds[] = { 42, 56 };
};

float a[Constants::bounds[0]][Constants::bounds[1]];

C++11

Note that the constant initializer is not a definition. You still need to define the
static member in an enclosing namespace. The following example demonstrates
this:
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#include <iostream>
using namespace std;

struct X {
static const int a = 76;

};

const int X::a;

int main() {
cout << X::a << endl;

}

The tokens = 76 at the end of the declaration of static data member a is a constant
initializer.
Related reference:
“External linkage” on page 8
“Member access” on page 371
“Local classes” on page 354

Static member functions
You cannot have static and nonstatic member functions with the same names and
the same number and type of arguments.

Like static data members, you may access a static member function f() of a class A
without using an object of class A.

A static member function does not have a this pointer. The following example
demonstrates this:
#include <iostream>
using namespace std;

struct X {
private:

int i;
static int si;

public:
void set_i(int arg) { i = arg; }
static void set_si(int arg) { si = arg; }

void print_i() {
cout << "Value of i = " << i << endl;
cout << "Again, value of i = " << this->i << endl;

}

static void print_si() {
cout << "Value of si = " << si << endl;
cout << "Again, value of si = " << this->si << endl; // error

}

};

int X::si = 77; // Initialize static data member

int main() {
X xobj;
xobj.set_i(11);
xobj.print_i();

// static data members and functions belong to the class and
// can be accessed without using an object of class X
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X::print_si();
X::set_si(22);
X::print_si();

}

The following is the output of the above example:
Value of i = 11
Again, value of i = 11
Value of si = 77
Value of si = 22

The compiler does not allow the member access operation this->si in function
A::print_si() because this member function has been declared as static, and
therefore does not have a this pointer.

You can call a static member function using the this pointer of a nonstatic member
function. In the following example, the nonstatic member function printall() calls
the static member function f() using the this pointer:

CCNX11H
#include <iostream>
using namespace std;

class C {
static void f() {

cout << "Here is i: " << i << endl;
}
static int i;
int j;

public:
C(int firstj): j(firstj) { }
void printall();

};

void C::printall() {
cout << "Here is j: " << this->j << endl;
this->f();

}

int C::i = 3;

int main() {
C obj_C(0);
obj_C.printall();

}

The following is the output of the above example:
Here is j: 0
Here is i: 3

A static member function cannot be declared with the keywords virtual, const,
volatile, or const volatile.

A static member function can access only the names of static members,
enumerators, and nested types of the class in which it is declared. Suppose a static
member function f() is a member of class X. The static member function f()
cannot access the nonstatic members X or the nonstatic members of a base class of
X.
Related reference:
“The this pointer” on page 363
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Member access
Member access determines if a class member is accessible in an expression or
declaration. Suppose x is a member of class A. Class member x can be declared to
have one of the following levels of accessibility:
v public: x can be used anywhere without the access restrictions defined by

private or protected.
v private: x can be used only by the members and friends of class A.
v protected: x can be used only by the members and friends of class A, and the

members and friends of classes derived from class A.

Members of classes declared with the keyword class are private by default.
Members of classes declared with the keyword struct or union are public by
default.

To control the access of a class member, you use one of the access specifiers public,
private, or protected as a label in a class member list. The following example
demonstrates these access specifiers:
struct A {

friend class C;
private:

int a;
public:

int b;
protected:

int c;
};

struct B : A {
void f() {

// a = 1;
b = 2;
c = 3;

}
};

struct C {
void f(A x) {

x.a = 4;
x.b = 5;
x.c = 6;

}
};

int main() {
A y;

// y.a = 7;
y.b = 8;

// y.c = 9;

B z;
// z.a = 10;

z.b = 11;
// z.c = 12;
}

The following table lists the access of data members A::a A::b, and A::c in various
scopes of the above example.
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Scope A::a A::b A::c

function B::f() No access. Member
A::a is private.

Access. Member A::b
is public.

Access. Class B
inherits from A.

function C::f() Access. Class C is a
friend of A.

Access. Member A::b
is public.

Access. Class C is a
friend of A.

object y in

main()

No access. Member
y.a is private.

Access. Member y.a
is public.

No access. Member
y.c is protected.

object z in main() No access. Member
z.a is private.

Access. Member z.a
is public.

No access. Member
z.c is protected.

An access specifier specifies the accessibility of members that follow it until the
next access specifier or until the end of the class definition. You can use any
number of access specifiers in any order. If you later define a class member within
its class definition, its access specification must be the same as its declaration. The
following example demonstrates this:
class A {

class B;
public:

class B { };
};

The compiler will not allow the definition of class B because this class has already
been declared as private.

A class member has the same access control regardless whether it has been defined
within its class or outside its class.

Access control applies to names. In particular, if you add access control to a
typedef name, it affects only the typedef name. The following example
demonstrates this:
class A {

class B { };
public:

typedef B C;
};

int main() {
A::C x;

// A::B y;
}

The compiler will allow the declaration A::C x because the typedef name A::C is
public. The compiler would not allow the declaration A::B y because A::B is
private.

Note that accessibility and visibility are independent. Visibility is based on the
scoping rules of C++. A class member can be visible and inaccessible at the same
time.
Related reference:
“Scope” on page 2
“Class member lists” on page 357
“Inherited member access” on page 386
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Friends
A friend of a class X is a function or class that is not a member of X, but is granted
the same access to X as the members of X. Functions declared with the friend
specifier in a class member list are called friend functions of that class. Classes
declared with the friend specifier in the member list of another class are called
friend classes of that class.

A class Y must be defined before any member of Y can be declared a friend of
another class. In the following example, the friend function print is a member of
class Y and accesses the private data members a and b of class X.

CCNX11I
#include <iostream>
using namespace std;

class X;

class Y {
public:

void print(X& x);
};

class X {
int a, b;
friend void Y::print(X& x);

public:
X() : a(1), b(2) { }

};

void Y::print(X& x) {
cout << "a is " << x.a << endl;
cout << "b is " << x.b << endl;

}

int main() {
X xobj;
Y yobj;
yobj.print(xobj);

}

See the output of the above example:
a is 1
b is 2

You can declare an entire class as a friend. Suppose class F is a friend of class A.
This means that every member function and static data member definition of class
F has access to class A.

In the following example, the friend class F has a member function print that
accesses the private data members a and b of class X and performs the same task
as the friend function print in the above example. Any other members declared in
class F also have access to all members of class X.

CCNX11J
#include <iostream>
using namespace std;

class X {
int a, b;
friend class F;
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public:
X() : a(1), b(2) { }

};

class F {
public:

void print(X& x) {
cout << "a is " << x.a << endl;
cout << "b is " << x.b << endl;

}
};

int main() {
X xobj;
F fobj;
fobj.print(xobj);

}

See the output of the above example:
a is 1
b is 2

You cannot define a class in a friend declaration. For example, the compiler does
not accept the following code:
class F;
class X {

friend class F { };
};

However, you can define a function in a friend declaration. The class must be a
non-local class. The function must have namespace scope, and the function name
must be unqualified. The following example demonstrates this:
class A {

void g();
};

void z() {
class B {

friend void f() { }; // error
};

}

class C {
friend void A::g() { } // error
friend void h() { }

};

The compiler accepts the definition of h(), but not the function definition of f() or
g().

You cannot declare a friend with a storage class specifier.

C++11

Extended friend declarations

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features

374 z/OS V2R1.0 XL C/C++ Language Reference



is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.
In the C++11 standard, the extended friend declarations feature accepts additional
forms of non-function friend declarations.

Note: The syntactic form of extended friend declarations overlaps with the IBM
old friend declaration syntax. This section is focused on the differences between
the C++11 standard and the previous ISO C++ standard.

With this feature enabled, the class-key is no longer required in the context of
friend declarations. This new syntax differs from the C++98 friend class declaration
syntax, where the class-key is necessary as part of an elaborated-type-specifier. See
the following example:
class F;
class G;

class X1 {
//C++98 friend declarations remain valid in C++11.
friend class F;

//Error in C++98 for missing the class-key.
friend G;

};

class X2 {
//Error in C++98 for missing the class-key.
//Error in C++11 for lookup failure (no previous class D declaration).
friend D;

friend class D;
};

In addition to functions and classes, you can also declare template parameters and
basic types as friends. In this case, you cannot use an elaborated-type-specifier in
the friend declaration. In the following example, you can declare the template
parameter T as a friend of class F, and you can use the basic type char in friend
declarations.
class C;

template <typename T, typename U> class F {
//C++11 compiles sucessfully.
//Error in C++98 for missing the class-key.
friend T;

//Error in both C++98 and C++11: a template parameter
//must not be used in an elaborated type specifier.
friend class U;

};

F<C> rc;
F<char> Ri;

You can also declare typedef names as friends, but you still cannot use an
elaborated-type-specifier in the friend declaration. The following example
demonstrates that the typedef name D is declared as a friend of class Base.
class Derived;
typedef Derived D;
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class C;
typedef C Ct;

class Base{
public:

Base() : x(55) {}

//C++11 compiles sucessfully.
//Error in C++98 for missing the class-key.
friend D;

//Error in both C++98 and C++11: a typedef name
//must not be used in an elaborated type specifier.
friend class Ct;

private:
int x;

};

struct Derived : public Base {
int foo() { return this->x; }

};

int main() {
Derived d;
return d.foo();

}

This feature also introduces a new name lookup rule for friend declarations. If a
friend class declaration does not use an elaborated-type-specifier, then the compiler
also looks for the entity name in scopes outside the innermost namespace that
encloses the friend declaration. Consider the following example:
struct T { };

namespace N {
struct A {

friend T;
};

}

In this example, if this feature is in effect, the friend declaration statement does not
declare a new entity T, but looks for T. If there is no T found, then the compiler
issues an error. Consider another example:
struct T { };

namespace N {
struct A {

friend class T; //fine, no error
};

}

In this example, the friend declaration statement does not look for T outside
namespace N, nor does it find ::T. Instead, this statement declares a new class T in
namespace N.

C++11

Related reference:
“Static member functions” on page 369
“The inline function specifier” on page 228
“Local classes” on page 354

376 z/OS V2R1.0 XL C/C++ Language Reference



“Member access” on page 371
“Inherited member access” on page 386
“C++11 compatibility” on page 640

Friend scope
The name of a friend function or class first introduced in a friend declaration is not
in the scope of the class granting friendship (also called the enclosing class) and is
not a member of the class granting friendship.

The name of a function first introduced in a friend declaration is in the scope of
the first nonclass scope that contains the enclosing class. The body of a function
provided inside a friend declaration is handled in the same way as a member
function defined within a class. Processing of the definition does not start until the
end of the outermost enclosing class. In addition, unqualified names in the body of
the function definition are searched for starting from the class containing the
function definition.

A friend class name first introduced by a friend declaration is considered to belong
to the first nonclass enclosing scope. Until a matching declaration is provided in
that scope, the class name is not found by name lookup. For example:
namespace A { //the first nonclass scope

class B {
class C {

friend class D;
}

};
};

In this example, the first nonclass scope that encloses the friend declaration of class
D is namespace A, so friend class D is in the scope of namespace A.

If the name of a friend class has been introduced before the friend declaration, the
compiler searches for a class name that matches the name of the friend class
beginning at the scope of the friend declaration. If the declaration of a nested class
is followed by the declaration of a friend class with the same name, the nested
class is a friend of the enclosing class.

If the friend function is a member of another class, you need to use the scope
resolution operator (::). For example:
class A {
public:

int f() { }
};

class B {
friend int A::f();

};

Friends of a base class are not inherited by any classes derived from that base
class. The following example demonstrates this:
class A {

friend class B;
int a;

};

class B { };

class C : public B {
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void f(A* p) {
p->a = 2; // error

}
};

The compiler does not support the statement p->a = 2 because class C is not a
friend of class A, although C inherits from a friend of A.

Friendship is not transitive. The following example demonstrates this:
class A {

friend class B;
int a;

};

class B {
friend class C;

};

class C {
void f(A* p) {

p->a = 2; // error
}

};

The compiler does not accept the statement p->a = 2 because class C is not a friend
of class A, although C is a friend of a friend of A.

If you declare a friend in a local class, and the friend name is unqualified, the
compiler looks for the name only within the innermost enclosing nonclass scope.
You must declare a function before declaring it as a friend of a local scope class.
You do not have to do so with classes. The following example demonstrates this:
class X { };
void a();

void f() {
class Y { };
void b();
class A {

friend class X;
friend class Y;
friend class Z;
friend void a(); // error
friend void b();
friend void c(); // error

};
::X moocow;

X moocow2;
}

In the above example, the compiler accepts the following statements:
v friend class X: This statement does not declare ::X as a friend of A, but the

local class X as a friend, even though this class is not otherwise declared.
v friend class Y: Local class Y has been declared in the scope of f().
v friend class Z: This statement declares the local class Z as a friend of A even

though Z is not otherwise declared.
v friend void b(): Function b() has been declared in the scope of f().
v ::X moocow: This declaration creates an object of the nonlocal class ::X.
v X moocow2: This declaration also creates an object of the nonlocal class ::X.

The compiler does not accept the following statements:
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v friend void a(): This statement does not consider function a() declared in
namespace scope. Since function a() has not been declared in the scope of f(),
the compiler does not accept this statement.

v friend void c(): Since function c() has not been declared in the scope of f(),
the compiler does not accept this statement.

Related reference:
“Scope of class names” on page 351
“Nested classes” on page 352
“Local classes” on page 354

Friend access
A friend of a class can access the private and protected members of that class.
Normally, you can only access the private members of a class through member
functions of that class, and you can only access the protected members of a class
through member functions of a class or classes derived from that class.

Friend declarations are not affected by access specifiers.
Related reference:
“Member access” on page 371
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Chapter 13. Inheritance (C++ only)

Inheritance is a mechanism of reusing and extending existing classes without
modifying them, thus producing hierarchical relationships between them.

Inheritance is almost like embedding an object into a class. Suppose that you
declare an object x of class A in the class definition of B. As a result, class B will
have access to all the public data members and member functions of class A.
However, in class B, you have to access the data members and member functions
of class A through object x. The following example demonstrates this:
#include <iostream>
using namespace std;

class A {
int data;

public:
void f(int arg) { data = arg; }
int g() { return data; }

};

class B {
public:

A x;
};

int main() {
B obj;
obj.x.f(20);
cout << obj.x.g() << endl;

// cout << obj.g() << endl;
}

In the main function, object obj accesses function A::f() through its data member
B::x with the statement obj.x.f(20). Object obj accesses A::g() in a similar
manner with the statement obj.x.g(). The compiler would not allow the statement
obj.g() because g() is a member function of class A, not class B.

The inheritance mechanism lets you use a statement like obj.g() in the above
example. In order for that statement to be legal, g() must be a member function of
class B.

Inheritance lets you include the names and definitions of another class's members
as part of a new class. The class whose members you want to include in your new
class is called a base class. Your new class is derived from the base class. The new
class contains a subobject of the type of the base class. The following example is the
same as the previous example except it uses the inheritance mechanism to give
class B access to the members of class A:
#include <iostream>
using namespace std;

class A {
int data;

public:
void f(int arg) { data = arg; }
int g() { return data; }

};
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class B : public A { };

int main() {
B obj;
obj.f(20);
cout << obj.g() << endl;

}

Class A is a base class of class B. The names and definitions of the members of class
A are included in the definition of class B; class B inherits the members of class A.
Class B is derived from class A. Class B contains a subobject of type A.

You can also add new data members and member functions to the derived class.
You can modify the implementation of existing member functions or data by
overriding base class member functions or data in the newly derived class.

You may derive classes from other derived classes, thereby creating another level
of inheritance. The following example demonstrates this:
struct A { };
struct B : A { };
struct C : B { };

Class B is a derived class of A, but is also a base class of C. The number of levels of
inheritance is only limited by resources.

Multiple inheritance allows you to create a derived class that inherits properties
from more than one base class. Because a derived class inherits members from all
its base classes, ambiguities can result. For example, if two base classes have a
member with the same name, the derived class cannot implicitly differentiate
between the two members. Note that, when you are using multiple inheritance, the
access to names of base classes may be ambiguous. See “Multiple inheritance” on
page 392 for more detailed information.

A direct base class is a base class that appears directly as a base specifier in the
declaration of its derived class.

An indirect base class is a base class that does not appear directly in the declaration
of the derived class but is available to the derived class through one of its base
classes. For a given class, all base classes that are not direct base classes are
indirect base classes. The following example demonstrates direct and indirect base
classes:
class A {

public:
int x;

};
class B : public A {

public:
int y;

};
class C : public B { };

Class B is a direct base class of C. Class A is a direct base class of B. Class A is an
indirect base class of C. (Class C has x and y as its data members.)

Polymorphic functions are functions that can be applied to objects of more than one
type. In C++, polymorphic functions are implemented in two ways:
v Overloaded functions are statically bound at compile time.
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v C++ provides virtual functions. A virtual function is a function that can be called
for a number of different user-defined types that are related through derivation.
Virtual functions are bound dynamically at run time. They are described in more
detail in “Virtual functions” on page 399.

Derivation
Inheritance is implemented in C++ through the mechanism of derivation.
Derivation allows you to derive a class, called a derived class, from another class,
called a base class.

Derived class syntax

�� derived_class : �

� �

,

qualified_class_specifier
virtual

public
private
protected

public
private virtual
protected

��

In the declaration of a derived class, you list the base classes of the derived class.
The derived class inherits its members from these base classes.

The qualified_class_specifier must be a class that has been previously declared in a
class declaration.

An access specifier is one of public, private, or protected.

The virtual keyword can be used to declare virtual base classes.

The following example shows the declaration of the derived class D and the base
classes V, B1, and B2. The class B1 is both a base class and a derived class because it
is derived from class V and is a base class for D:
class V { /* ... */ };
class B1 : virtual public V { /* ... */ };
class B2 { /* ... */ };
class D : public B1, private B2 { /* ... */ };

Classes that are declared but not defined are not allowed in base lists.

For example:
class X;

// error
class Y: public X { };

The compiler will not allow the declaration of class Y because X has not been
defined.
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When you derive a class, the derived class inherits nonstatic data members of the
base class. You can refer to inherited members (base class members) as if they were
members of the derived class. The derived class can also add new class members.
For example:

CCNX14A
class Base {
public:

int a,b;
};

class Derived : public Base {
public:

int c;
};

int main() {
Derived d;
d.a = 1; // Base::a
d.b = 2; // Base::b
d.c = 3; // Derived::c

}

In the above example, the two inherited members, a and b, of the derived class d,
in addition to the derived class member c, are assigned values.

The derived class can also declare class members with the same name as existing
base class members. You can refer to the base class members by using the ::
(scope resolution) operator. For example:

CCNX14B
#include <iostream>
using namespace std;

class Base {
public:

char* name;
void display() {

cout << name << endl;
}

};

class Derived: public Base {
public:

char* name;
void display() {

cout << name << ", " << Base::name << endl;
}

};

int main() {
Derived d;
d.name = "Derived Class";
d.Base::name = "Base Class";

// call Derived::display()
d.display();

// call Base::display()
d.Base::display();

}

The following is the output of the above example:
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Derived Class, Base Class
Base Class

You can manipulate a derived class object as if it were a base class object. You can
use a pointer or a reference to a derived class object in place of a pointer or
reference to its base class. For example, you can pass a pointer or reference to a
derived class object D to a function expecting a pointer or reference to the base
class of D. You do not need to use an explicit cast to achieve this; a standard
conversion is performed. You can implicitly convert a pointer to a derived class to
point to an accessible unambiguous base class. You can also implicitly convert a
reference to a derived class to a reference to a base class.

The following example demonstrates a standard conversion from a pointer to a
derived class to a pointer to a base class:

CCNX14C
#include <iostream>
using namespace std;

class Base {
public:

char* name;
void display() {

cout << name << endl;
}

};

class Derived: public Base {
public:

char* name;
void display() {

cout << name << ", " << Base::name << endl;
}

};

int main() {
Derived d;
d.name = "Derived Class";
d.Base::name = "Base Class";

Derived* dptr = &d;

// standard conversion from Derived* to Base*
Base* bptr = dptr;

// call Base::display()
bptr->display();

}

The following is the output of the above example:
Base Class

The statement Base* bptr = dptr converts a pointer of type Derived to a pointer of
type Base.

The reverse case is not allowed. You cannot implicitly convert a pointer or a
reference to a base class object to a pointer or reference to a derived class. For
example, the compiler will not allow the following code if the classes Base and
Class are defined as in the above example:
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int main() {
Base b;
b.name = "Base class";

Derived* dptr = &b;
}

The compiler will not allow the statement Derived* dptr = &b because the
statement is trying to implicitly convert a pointer of type Base to a pointer of type
Derived.

If a member of a derived class has the same name as a base class, the base class
name is hidden in the derived class.
Related reference:
“Virtual base classes” on page 393
“Inherited member access”
“Incomplete class declarations” on page 352
“Scope resolution operator :: (C++ only)” on page 148

Inherited member access
The following sections discuss the access rules affecting a protected nonstatic base
class member and how to declare a derived class using an access specifier:
v “Protected members”
v “Access control of base class members” on page 387
Related reference:
“Member access” on page 371

Protected members
A protected nonstatic base class member can be accessed by members and friends
of any classes derived from that base class by using one of the following:
v A pointer to a directly or indirectly derived class
v A reference to a directly or indirectly derived class
v An object of a directly or indirectly derived class

If a class is derived privately from a base class, all protected base class members
become private members of the derived class.

If you reference a protected nonstatic member x of a base class A in a friend or a
member function of a derived class B, you must access x through a pointer to,
reference to, or object of a class derived from A. However, if you are accessing x to
create a pointer to member, you must qualify x with a nested name specifier that
names the derived class B. The following example demonstrates this:
class A {
public:
protected:

int i;
};

class B : public A {
friend void f(A*, B*);
void g(A*);

};

void f(A* pa, B* pb) {
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// pa->i = 1;
pb->i = 2;

// int A::* point_i = &A::i;
int A::* point_i2 = &B::i;

}

void B::g(A* pa) {
// pa->i = 1;

i = 2;

// int A::* point_i = &A::i;
int A::* point_i2 = &B::i;

}

void h(A* pa, B* pb) {
// pa->i = 1;
// pb->i = 2;
}

int main() { }

Class A contains one protected data member, an integer i. Because B derives from
A, the members of B have access to the protected member of A. Function f() is a
friend of class B:
v The compiler would not allow pa->i = 1 because pa is not a pointer to the

derived class B.
v The compiler would not allow int A::* point_i = &A::i because i has not

been qualified with the name of the derived class B.

Function g() is a member function of class B. The previous list of remarks about
which statements the compiler would and would not allow apply for g() except
for the following:
v The compiler allows i = 2 because it is equivalent to this->i = 2.

Function h() cannot access any of the protected members of A because h() is
neither a friend or a member of a derived class of A.

Access control of base class members
When you declare a derived class, an access specifier can precede each base class
in the base list of the derived class. This does not alter the access attributes of the
individual members of a base class as seen by the base class, but allows the
derived class to restrict the access control of the members of a base class.

You can derive classes using any of the three access specifiers:
v In a public base class, public and protected members of the base class remain

public and protected members of the derived class.
v In a protected base class, public and protected members of the base class are

protected members of the derived class.
v In a private base class, public and protected members of the base class become

private members of the derived class.

In all cases, private members of the base class remain private. Private members of
the base class cannot be used by the derived class unless friend declarations within
the base class explicitly grant access to them.

In the following example, class D is derived publicly from class B. Class B is
declared a public base class by this declaration.

Chapter 13. Inheritance (C++ only) 387



class B { };
class D : public B // public derivation
{ };

You can use both a structure and a class as base classes in the base list of a derived
class declaration:
v If the derived class is declared with the keyword class, the default access

specifier in its base list specifiers is private.
v If the derived class is declared with the keyword struct, the default access

specifier in its base list specifiers is public.

See the following example:
struct B{
};

class D : B { // private derivation
};

struct E : B{ // public derivation
};

Members and friends of a class can implicitly convert a pointer to an object of that
class to a pointer to either:
v A direct private base class
v A protected base class (either direct or indirect)
Related reference:
“Member access” on page 371
“Member scope” on page 361

The using declaration and class members
A using declaration in a definition of a class A allows you to introduce a name of a
data member or member function from a base class of A into the scope of A.

You would need a using declaration in a class definition if you want to create a set
of member functions from base and derived classes, or you want to change the
access of a class member.

using declaration syntax

�� using nested_name_specifier unqualified_id ;
typename ::

:: unqualified_id ;

��

A using declaration in a class A may name one of the following options:
v A member of a base class of A
v A member of an anonymous union that is a member of a base class of A
v An enumerator for an enumeration type that is a member of a base class of A

The following example demonstrates this:
struct Z {

int g();
};

struct A {
void f();
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enum E { e };
union { int u; };

};

struct B : A {
using A::f;
using A::e;
using A::u;

// using Z::g;
};

The compiler would not allow the using declaration using Z::g because Z is not a
base class of A.

A using declaration cannot name a template. For example, the compiler will not
allow the following:
struct A {

template<class T> void f(T);
};

struct B : A {
using A::f<int>;

};

Every instance of the name mentioned in a using declaration must be accessible.
The following example demonstrates this:
struct A {
private:

void f(int);
public:

int f();
protected:

void g();
};

struct B : A {
// using A::f;

using A::g;
};

The compiler would not allow the using declaration using A::f because void
A::f(int) is not accessible from B even though int A::f() is accessible.
Related reference:
“Scope of class names” on page 351
“The using declaration and namespaces” on page 322

Overloading member functions from base and derived classes
A member function named f in a class A will hide all other members named f in
the base classes of A, regardless of return types or arguments. The following
example demonstrates this:
struct A {

void f() { }
};

struct B : A {
void f(int) { }

};

int main() {
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B obj_B;
obj_B.f(3);

// obj_B.f();
}

The compiler would not allow the function call obj_B.f() because the declaration
of void B::f(int) has hidden A::f().

To overload, rather than hide, a function of a base class A in a derived class B, you
introduce the name of the function into the scope of B with a using declaration.
The following example is the same as the previous example except for the using
declaration using A::f:
struct A {

void f() { }
};

struct B : A {
using A::f;
void f(int) { }

};

int main() {
B obj_B;
obj_B.f(3);
obj_B.f();

}

Because of the using declaration in class B, the name f is overloaded with two
functions. The compiler will now allow the function call obj_B.f().

Suppose that you introduce a function f from a base class A into a derived class B
with a using declaration, and there exists a function named B::f that has the same
parameter types as A::f. Function B::f will hide, rather than conflict with,
function A::f. The following example demonstrates this:
#include <iostream>
using namespace std;

struct A {
void f() { }
void f(int) { cout << "void A::f(int)" << endl; }

};

struct B : A {
using A::f;
void f(int) { cout << "void B::f(int)" << endl; }

};

int main() {
B obj_B;
obj_B.f(3);

}

See the following output of the above example:
void B::f(int)

You can overload virtual functions with a using declaration. For example:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "void A::f()" << endl; }
virtual void f(int) { cout << "void A::f(int)" << endl; }
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};

struct B : A {
using A::f;
void f(int) { cout << "void B::f(int)" << endl; }

};

int main() {
B obj_B;
A* pa = &obj_B;
pa->f(3);
pa->f();

}

In this example, B::f(int) is a virtual function and overrides A::f(int) even with
the using A::f; declaration. The output is as below:
void B::f(int)
void A::f()

Related reference:
Chapter 10, “Overloading (C++ only),” on page 327
“Name hiding (C++ only)” on page 6
“The using declaration and class members” on page 388

Changing the access of a class member
Suppose class B is a direct base class of class A. To restrict access of class B to the
members of class A, derive B from A using either the access specifiers protected or
private.

To increase the access of a member x of class A inherited from class B, use a using
declaration. You cannot restrict the access to x with a using declaration. You may
increase the access of the following members:
v A member inherited as private. (You cannot increase the access of a member

declared as private because a using declaration must have access to the
member's name.)

v A member either inherited or declared as protected

The following example demonstrates this:
struct A {
protected:

int y;
public:

int z;
};

struct B : private A { };

struct C : private A {
public:

using A::y;
using A::z;

};

struct D : private A {
protected:

using A::y;
using A::z;

};

struct E : D {
void f() {
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y = 1;
z = 2;

}
};

struct F : A {
public:

using A::y;
private:

using A::z;
};

int main() {
B obj_B;

// obj_B.y = 3;
// obj_B.z = 4;

C obj_C;
obj_C.y = 5;
obj_C.z = 6;

D obj_D;
// obj_D.y = 7;
// obj_D.z = 8;

F obj_F;
obj_F.y = 9;
obj_F.z = 10;

}

The compiler would not allow the following assignments from the above example:
v obj_B.y = 3 and obj_B.z = 4: Members y and z have been inherited as private.
v obj_D.y = 7 and obj_D.z = 8: Members y and z have been inherited as private,

but their access have been changed to protected.

The compiler allows the following statements from the above example:
v y = 1 and z = 2 in D::f(): Members y and z have been inherited as private,

but their access have been changed to protected.
v obj_C.y = 5 and obj_C.z = 6: Members y and z have been inherited as private,

but their access have been changed to public.
v obj_F.y = 9: The access of member y has been changed from protected to

public.
v obj_F.z = 10: The access of member z is still public. The private using

declaration using A::z has no effect on the access of z.
Related reference:
“Member access” on page 371
“Inherited member access” on page 386

Multiple inheritance
You can derive a class from any number of base classes. Deriving a class from
more than one direct base class is called multiple inheritance.

In the following example, classes A, B, and C are direct base classes for the derived
class X:
class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class X : public A, private B, public C { /* ... */ };
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The following inheritance graph describes the inheritance relationships of the above
example. An arrow points to the direct base class of the class at the tail of the
arrow:

A B

X

C

The order of derivation is relevant only to determine the order of default
initialization by constructors and cleanup by destructors.

A direct base class cannot appear in the base list of a derived class more than once:
class B1 { /* ... */ }; // direct base class
class D : public B1, private B1 { /* ... */ }; // error

However, a derived class can inherit an indirect base class more than once, as
shown in the following example:

B2 B3

L L

D

class L { /* ... */ }; // indirect base class
class B2 : public L { /* ... */ };
class B3 : public L { /* ... */ };
class D : public B2, public B3 { /* ... */ }; // valid

In the above example, class D inherits the indirect base class L once through class
B2 and once through class B3. However, this may lead to ambiguities because two
subobjects of class L exist, and both are accessible through class D. You can avoid
this ambiguity by referring to class L using a qualified class name. For example:
B2::L

or
B3::L.

You can also avoid this ambiguity by using the base specifier virtual to declare a
base class, as described in “Derivation” on page 383.

Virtual base classes
Suppose you have two derived classes B and C that have a common base class A,
and you also have another class D that inherits from B and C. You can declare the
base class A as virtual to ensure that B and C share the same subobject of A.
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In the following example, an object of class D has two distinct subobjects of class L,
one through class B1 and another through class B2. You can use the keyword
virtual in front of the base class specifiers in the base lists of classes B1 and B2 to
indicate that only one subobject of type L, shared by class B1 and class B2, exists.

For example:

B1 B2

D

L

class L { /* ... */ }; // indirect base class
class B1 : virtual public L { /* ... */ };
class B2 : virtual public L { /* ... */ };
class D : public B1, public B2 { /* ... */ }; // valid

Using the keyword virtual in this example ensures that an object of class D
inherits only one subobject of class L.

A derived class can have both virtual and nonvirtual base classes. For example:

B1

V V

B3B2

X

class V { /* ... */ };
class B1 : virtual public V { /* ... */ };
class B2 : virtual public V { /* ... */ };
class B3 : public V { /* ... */ };
class X : public B1, public B2, public B3 { /* ... */
};

In the above example, class X has two subobjects of class V, one that is shared by
classes B1 and B2 and one through class B3.
Related reference:
“Derivation” on page 383

Multiple access
In an inheritance graph containing virtual base classes, a name that can be reached
through more than one path is accessed through the path that gives the most
access.

For example:
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class L {
public:

void f();
};

class B1 : private virtual L { };

class B2 : public virtual L { };

class D : public B1, public B2 {
public:

void f() {
// L::f() is accessed through B2
// and is public
L::f();

}
};

In the above example, the function f() is accessed through class B2. Because class
B2 is inherited publicly and class B1 is inherited privately, class B2 offers more
access.
Related reference:
“Member access” on page 371
“Protected members” on page 386
“Access control of base class members” on page 387

Ambiguous base classes
When you derive classes, ambiguities can result if base and derived classes have
members with the same names. Access to a base class member is ambiguous if you
use a name or qualified name that does not refer to a unique function or object.
The declaration of a member with an ambiguous name in a derived class is not an
error. The ambiguity is only flagged as an error if you use the ambiguous member
name.

For example, suppose that two classes named A and B both have a member named
x, and a class named C inherits from both A and B. An attempt to access x from
class C would be ambiguous. You can resolve ambiguity by qualifying a member
with its class name using the scope resolution (::) operator.

CCNX14G
class B1 {
public:

int i;
int j;
void g(int) { }

};

class B2 {
public:

int j;
void g() { }

};

class D : public B1, public B2 {
public:

int i;
};

int main() {
D dobj;
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D *dptr = &dobj;
dptr->i = 5;

// dptr->j = 10;
dptr->B1::j = 10;

// dobj.g();
dobj.B2::g();

}

The statement dptr->j = 10 is ambiguous because the name j appears both in B1
and B2. The statement dobj.g() is ambiguous because the name g appears both in
B1 and B2, even though B1::g(int) and B2::g() have different parameters.

The compiler checks for ambiguities at compile time. Because ambiguity checking
occurs before access control or type checking, ambiguities may result even if only
one of several members with the same name is accessible from the derived class.

Name hiding

Suppose two subobjects named A and B both have a member name x. The member
name x of subobject B hides the member name x of subobject A if A is a base class of
B. The following example demonstrates this:
struct A {

int x;
};

struct B: A {
int x;
void f() { x = 0; }

};

int main() {
B b;
b.f();

}

The assignment x = 0 in function B::f() is not ambiguous because the declaration
B::x has hidden A::x.

A base class declaration can be hidden along one path in the inheritance graph and
not hidden along another path. The following example demonstrates this:
struct A { int x; };
struct B { int y; };
struct C: A, virtual B { };
struct D: A, virtual B {

int x;
int y;

};
struct E: C, D { };

int main() {
E e;

// e.x = 1;
e.y = 2;

}

The assignment e.x = 1 is ambiguous. The declaration D::x hides A::x along the
path D::A::x, but it does not hide A::x along the path C::A::x. Therefore the
variable x could refer to either D::x or A::x. The assignment e.y = 2 is not
ambiguous. The declaration D::y hides B::y along both paths D::B::y and C::B::y
because B is a virtual base class.
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Ambiguity and using declarations

Suppose you have a class named C that inherits from a class named A, and x is a
member name of A. If you use a using declaration to declare A::x in C, then x is
also a member of C; C::x does not hide A::x. Therefore using declarations cannot
resolve ambiguities due to inherited members. The following example
demonstrates this:
struct A {

int x;
};

struct B: A { };

struct C: A {
using A::x;

};

struct D: B, C {
void f() { x = 0; }

};

int main() {
D i;
i.f();

}

The compiler will not allow the assignment x = 0 in function D::f() because it is
ambiguous. The compiler can find x in two ways: as B::x or as C::x.

Unambiguous class members

The compiler can unambiguously find static members, nested types, and
enumerators defined in a base class A regardless of the number of subobjects of
type A an object has. The following example demonstrates this:
struct A {

int x;
static int s;
typedef A* Pointer_A;
enum { e };

};

int A::s;

struct B: A { };

struct C: A { };

struct D: B, C {
void f() {

s = 1;
Pointer_A pa;
int i = e;

// x = 1;
}

};

int main() {
D i;
i.f();

}

The compiler allows the assignment s = 1, the declaration Pointer_A pa, and the
statement int i = e. There is only one static variable s, only one typedef
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Pointer_A, and only one enumerator e. The compiler would not allow the
assignment x = 1 because x can be reached either from class B or class C.

Pointer conversions

Conversions (either implicit or explicit) from a derived class pointer or reference to
a base class pointer or reference must refer unambiguously to the same accessible
base class object. (An accessible base class is a publicly derived base class that is
neither hidden nor ambiguous in the inheritance hierarchy.) For example:
class W { /* ... */ };
class X : public W { /* ... */ };
class Y : public W { /* ... */ };
class Z : public X, public Y { /* ... */ };
int main ()
{

Z z;
X* xptr = &z; // valid
Y* yptr = &z; // valid
W* wptr = &z; // error, ambiguous reference to class W

// X’s W or Y’s W ?
}

You can use virtual base classes to avoid ambiguous reference. For example:
class W { /* ... */ };
class X : public virtual W { /* ... */ };
class Y : public virtual W { /* ... */ };
class Z : public X, public Y { /* ... */ };
int main ()
{

Z z;
X* xptr = &z; // valid
Y* yptr = &z; // valid
W* wptr = &z; // valid, W is virtual therefore only one

// W subobject exists
}

A pointer to a member of a base class can be converted to a pointer to a member
of a derived class if the following conditions are true:
v The conversion is not ambiguous. The conversion is ambiguous if multiple

instances of the base class are in the derived class.
v A pointer to the derived class can be converted to a pointer to the base class. If

this is the case, the base class is said to be accessible.
v Member types must match. For example suppose class A is a base class of class

B. You cannot convert a pointer to member of A of type int to a pointer to
member of type B of type float.

v The base class cannot be virtual.

Overload resolution

Overload resolution takes place after the compiler unambiguously finds a given
function name. The following example demonstrates this:
struct A {

int f() { return 1; }
};

struct B {
int f(int arg) { return arg; }

};
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struct C: A, B {
int g() { return f(); }

};

The compiler will not allow the function call to f() in C::g() because the name f
has been declared both in A and B. The compiler detects the ambiguity error before
overload resolution can select the base match A::f().
Related reference:
“Scope resolution operator :: (C++ only)” on page 148
“Virtual base classes” on page 393

Virtual functions
By default, C++ matches a function call with the correct function definition at
compile time. This is called static binding. You can specify that the compiler match
a function call with the correct function definition at run time; this is called
dynamic binding. You declare a function with the keyword virtual if you want the
compiler to use dynamic binding for that specific function.

The following examples demonstrate the differences between static and dynamic
binding. The first example demonstrates static binding:
#include <iostream>
using namespace std;

struct A {
void f() { cout << "Class A" << endl; }

};

struct B: A {
void f() { cout << "Class B" << endl; }

};

void g(A& arg) {
arg.f();

}

int main() {
B x;
g(x);

}

The following is the output of the above example:
Class A

When function g() is called, function A::f() is called, although the argument
refers to an object of type B. At compile time, the compiler knows only that the
argument of function g() is an lvalue reference to an object derived from A; it
cannot determine whether the argument is an lvalue reference to an object of type
A or type B. However, this can be determined at run time. The following example is
the same as the previous example, except that A::f() is declared with the virtual
keyword:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "Class A" << endl; }

};
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struct B: A {
void f() { cout << "Class B" << endl; }

};

void g(A& arg) {
arg.f();

}

int main() {
B x;
g(x);

}

The following is the output of the above example:
Class B

The virtual keyword indicates to the compiler that it should choose the
appropriate definition of f() not by the type of lvalue reference, but by the type of
object that the lvalue reference refers to.

Therefore, a virtual function is a member function you may redefine for other
derived classes, and can ensure that the compiler will call the redefined virtual
function for an object of the corresponding derived class, even if you call that
function with a pointer or reference to a base class of the object.

A class that declares or inherits a virtual function is called a polymorphic class.

You redefine a virtual member function, like any member function, in any derived
class. Suppose you declare a virtual function named f in a class A, and you derive
directly or indirectly from A a class named B. If you declare a function named f in
class B with the same name and same parameter list as A::f, then B::f is also
virtual (regardless whether or not you declare B::f with the virtual keyword) and
it overrides A::f. However, if the parameter lists of A::f and B::f are different, A::f
and B::f are considered different, B::f does not override A::f, and B::f is not
virtual (unless you have declared it with the virtual keyword). Instead B::f hides
A::f. The following example demonstrates this:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "Class A" << endl; }

};

struct B: A {
virtual void f(int) { cout << "Class B" << endl; }

};

struct C: B {
void f() { cout << "Class C" << endl; }

};

int main() {
B b; C c;
A* pa1 = &b;
A* pa2 = &c;

// b.f();
pa1->f();
pa2->f();

}

The following is the output of the above example:
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Class A
Class C

The function B::f is not virtual. It hides A::f. Thus the compiler will not allow the
function call b.f(). The function C::f is virtual; it overrides A::f even though A::f
is not visible in C.

If you declare a base class destructor as virtual, a derived class destructor will
override that base class destructor, even though destructors are not inherited.

The return type of an overriding virtual function may differ from the return type
of the overridden virtual function. This overriding function would then be called a
covariant virtual function. Suppose that B::f overrides the virtual function A::f. The
return types of A::f and B::f may differ if all the following conditions are met:
v The function B::f returns a pointer or a reference to a class of type T, and A::f

returns a pointer or a reference to an unambiguous direct or indirect base class
of T.

v The const or volatile qualification of the pointer or reference returned by B::f
has the same or less const or volatile qualification of the pointer or reference
returned by A::f.

v The return type of B::f must be complete at the point of declaration of B::f, or
it can be of type B.

v A::f returns an lvalue reference if and only if B::f returns an lvalue reference.

The following example demonstrates this:
#include <iostream>
using namespace std;

struct A { };

class B : private A {
friend class D;
friend class F;

};

A global_A;
B global_B;

struct C {
virtual A* f() {

cout << "A* C::f()" << endl;
return &global_A;

}
};

struct D : C {
B* f() {

cout << "B* D::f()" << endl;
return &global_B;

}
};

struct E;

struct F : C {

// Error:
// E is incomplete
// E* f();
};

struct G : C {
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// Error:
// A is an inaccessible base class of B
// B* f();
};

int main() {
D d;
C* cp = &d;
D* dp = &d;

A* ap = cp->f();
B* bp = dp->f();

};

The following is the output of the above example:
B* D::f()
B* D::f()

The statement A* ap = cp->f() calls D::f() and converts the pointer returned to
type A*. The statement B* bp = dp->f() calls D::f() as well but does not convert
the pointer returned; the type returned is B*. The compiler would not allow the
declaration of the virtual function F::f() because E is not a complete class. The
compiler would not allow the declaration of the virtual function G::f() because
class A is not an accessible base class of B (unlike friend classes D and F, the
definition of B does not give access to its members for class G).

A virtual function cannot be global or static because, by definition, a virtual
function is a member function of a base class and relies on a specific object to
determine which implementation of the function is called. You can declare a virtual
function to be a friend of another class.

If a function is declared virtual in its base class, you can still access it directly
using the scope resolution (::) operator. In this case, the virtual function call
mechanism is suppressed and the function implementation defined in the base
class is used. In addition, if you do not override a virtual member function in a
derived class, a call to that function uses the function implementation defined in
the base class.

C++11 A function that has a deleted definition cannot override a function that
does not have a deleted definition. Likewise, a function that does not have a
deleted definition cannot override a function with a deleted definition. C++11

A virtual function must be one of the following:
v Defined
v Declared pure
v Defined and declared pure

A class containing one or more pure virtual member functions is called an abstract
class.
Related reference:
“Abstract classes” on page 404
“Deleted functions” on page 222
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Ambiguous virtual function calls
You cannot override one virtual function with two or more ambiguous virtual
functions. This can happen in a derived class that inherits from two nonvirtual
bases that are derived from a virtual base class.

For example:
class V {
public:
virtual void f() { }
};

class A : virtual public V {
void f() { }

};

class B : virtual public V {
void f() { }
};

// Error:
// Both A::f() and B::f() try to override V::f()
class D : public A, public B { };

int main() {
D d;
V* vptr = &d;

// which f(), A::f() or B::f()?
vptr->f();
}

The compiler will not allow the definition of class D. In class A, only A::f() will
override V::f(). Similarly, in class B, only B::f() will override V::f(). However, in
class D, both A::f() and B::f() will try to override V::f(). This attempt is not
allowed because it is not possible to decide which function to call if a D object is
referenced with a pointer to class V, as shown in the above example. Only one
function can override a virtual function.

A special case occurs when the ambiguous overriding virtual functions come from
separate instances of the same class type. In the following example, class D has two
separate subobjects of class A:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "A::f()" << endl; };

};

struct B : A {
void f() { cout << "B::f()" << endl;};

};

struct C : A {
void f() { cout << "C::f()" << endl;};

};

struct D : B, C { };

int main() {
D d;

B* bp = &d;
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A* ap = bp;
D* dp = &d;

ap->f();
// dp->f();
}

Class D has two occurrences of class A, one inherited from B, and another inherited
from C. Therefore there are also two occurrences of the virtual function A::f. The
statement ap->f() calls D::B::f. However the compiler would not allow the
statement dp->f() because it could either call D::B::f or D::C::f.

Virtual function access
The access for a virtual function is specified when it is declared. The access rules
for a virtual function are not affected by the access rules for the function that later
overrides the virtual function. In general, the access of the overriding member
function is not known.

If a virtual function is called with a pointer or reference to a class object, the type
of the class object is not used to determine the access of the virtual function.
Instead, the type of the pointer or reference to the class object is used.

In the following example, when the function f() is called using a pointer having
type B*, bptr is used to determine the access to the function f(). Although the
definition of f() defined in class D is executed, the access of the member function
f() in class B is used. When the function f() is called using a pointer having type
D*, dptr is used to determine the access to the function f(). This call produces an
error because f() is declared private in class D.
class B {
public:

virtual void f();
};

class D : public B {
private:

void f();
};

int main() {
D dobj;
B* bptr = &dobj;
D* dptr = &dobj;

// valid, virtual B::f() is public,
// D::f() is called
bptr->f();

// error, D::f() is private
dptr->f();

}

Abstract classes
An abstract class is a class that is designed to be specifically used as a base class.
An abstract class contains at least one pure virtual function. You declare a pure
virtual function by using a pure specifier (= 0) in the declaration of a virtual
member function in the class declaration.

The following is an example of an abstract class:
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class AB {
public:

virtual void f() = 0;
};

Function AB::f is a pure virtual function. A function declaration cannot have both
a pure specifier and a definition. For example, the compiler will not allow the
following:
struct A {

virtual void g() { } = 0;
};

You cannot use an abstract class as a parameter type, a function return type, or the
type of an explicit conversion, nor can you declare an object of an abstract class.
You can, however, declare pointers and references to an abstract class. The
following example demonstrates this:
struct A {

virtual void f() = 0;
};

struct B : A {
virtual void f() { }

};

// Error:
// Class A is an abstract class
// A g();

// Error:
// Class A is an abstract class
// void h(A);
A& i(A&);

int main() {

// Error:
// Class A is an abstract class
// A a;

A* pa;
B b;

// Error:
// Class A is an abstract class
// static_cast<A>(b);
}

Class A is an abstract class. The compiler would not allow the function declarations
A g() or void h(A), declaration of object a, nor the static cast of b to type A.

Virtual member functions are inherited. A class derived from an abstract base class
will also be abstract unless you override each pure virtual function in the derived
class.

For example:
class AB {
public:

virtual void f() = 0;
};

class D2 : public AB {
void g();
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};

int main() {
D2 d;

}

The compiler will not allow the declaration of object d because D2 is an abstract
class; it inherited the pure virtual function f()from AB. The compiler will allow the
declaration of object d if you define function D2::f(), as this overrides the
inherited pure virtual function AB::f(). Function AB::f() needs to be overridden if
you want to avoid the abstraction of D2.

Note that you can derive an abstract class from a nonabstract class, and you can
override a non-pure virtual function with a pure virtual function.

You can call member functions from a constructor or destructor of an abstract
class. However, the results of calling (directly or indirectly) a pure virtual function
from its constructor are undefined. The following example demonstrates this:
struct A {

A() {
direct();
indirect();

}
virtual void direct() = 0;
virtual void indirect() { direct(); }

};

The default constructor of A calls the pure virtual function direct() both directly
and indirectly (through indirect()).
Related reference:
“Virtual functions” on page 399
“Virtual function access” on page 404
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Chapter 14. Special member functions (C++ only)

The default constructors, destructors, copy constructors, and copy assignment
operators are special member functions. These functions create, destroy, convert,
initialize, and copy class objects.

C++11 A special member function is user-provided if it is user-declared but not
explicitly defaulted, or deleted on its first declaration. C++11

Overview of constructors and destructors
Because classes have complicated internal structures, including data and functions,
object initialization and cleanup for classes is much more complicated than it is for
simple data structures. Constructors and destructors are special member functions
of classes that are used to construct and destroy class objects. Construction may
involve memory allocation and initialization for objects. Destruction may involve
cleanup and deallocation of memory for objects.

Like other member functions, constructors and destructors are declared within a
class declaration. They can be defined inline or external to the class declaration.
Constructors can have default arguments. Unlike other member functions,
constructors can have member initialization lists. The following restrictions apply
to constructors and destructors:
v Constructors and destructors do not have return types nor can they return

values.
v References and pointers cannot be used on constructors and destructors because

their addresses cannot be taken.
v Constructors cannot be declared with the keyword virtual.
v Constructors and destructors cannot be declared static, const, or volatile.
v Unions cannot contain class objects that have constructors or destructors.

Constructors and destructors obey the same access rules as member functions. For
example, if you declare a constructor with protected access, only derived classes
and friends can use it to create class objects.

The compiler automatically calls constructors when defining class objects and calls
destructors when class objects go out of scope. A constructor does not allocate
memory for the class object its this pointer refers to, but may allocate storage for
more objects than its class object refers to. If memory allocation is required for
objects, constructors can explicitly call the new operator. During cleanup, a
destructor may release objects allocated by the corresponding constructor. To
release objects, use the delete operator.

Derived classes do not inherit or overload constructors or destructors from their
base classes, but they do call the constructor and destructor of base classes.
Destructors can be declared with the keyword virtual.

Constructors are also called when local or temporary class objects are created, and
destructors are called when local or temporary objects go out of scope.
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You can call member functions from constructors or destructors. You can call a
virtual function, either directly or indirectly, from a constructor or destructor of a
class A. In this case, the function called is the one defined in A or a base class of A,
but not a function overridden in any class derived from A. This avoids the
possibility of accessing an unconstructed object from a constructor or destructor.
The following example demonstrates this:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "void A::f()" << endl; }
virtual void g() { cout << "void A::g()" << endl; }
virtual void h() { cout << "void A::h()" << endl; }

};

struct B : A {
virtual void f() { cout << "void B::f()" << endl; }
B() {

f();
g();
h();

}
};

struct C : B {
virtual void f() { cout << "void C::f()" << endl; }
virtual void g() { cout << "void C::g()" << endl; }
virtual void h() { cout << "void C::h()" << endl; }

};

int main() {
C obj;

}

The following is the output of the above example:
void B::f()
void A::g()
void A::h()

The constructor of B does not call any of the functions overridden in C because C
has been derived from B, although the example creates an object of type C named
obj.

You can use the typeid or the dynamic_cast operator in constructors or destructors,
as well as member initializers of constructors.
Related reference:
“new expressions (C++ only)” on page 185

Constructors
A constructor is a member function with the same name as its class. For example:
class X {
public:

X(); // constructor for class X
};

Constructors are used to create, and can initialize, objects of their class type.

You cannot declare a constructor as virtual or static, nor can you declare a
constructor as const, volatile, or const volatile.
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You do not specify a return type for a constructor. A return statement in the body
of a constructor cannot have a return value.

Default constructors
A default constructor is a constructor that either has no parameters, or if it has
parameters, all the parameters have default values.

If no user-defined constructor exists for a class A and one is needed, the compiler
implicitly declares a default parameterless constructor A::A(). This constructor is an
inline public member of its class. The compiler will implicitly define A::A() when
the compiler uses this constructor to create an object of type A. The constructor will
have no constructor initializer and a null body.

The compiler first implicitly defines the implicitly declared C++11 or explicitly
defaulted C++11 constructors of the base classes and nonstatic data members of a
class A before defining the implicitly declared C++11 or explicitly defaulted

C++11 constructor of A. No default constructor is created for a class that has any
constant or reference type members.

A constructor of a class A is trivial if all the following are true:
v It is implicitly declared C++11 or explicitly defaulted C++11 .
v A has no virtual functions and no virtual base classes
v All the direct base classes of A have trivial constructors
v The classes of all the nonstatic data members of A have trivial constructors

If any of the above are false, then the constructor is nontrivial.

A union member cannot be of a class type that has a nontrivial constructor.

Like all functions, a constructor can have default arguments. They are used to
initialize member objects. If default values are supplied, the trailing arguments can
be omitted in the expression list of the constructor. Note that if a constructor has
any arguments that do not have default values, it is not a default constructor.

The following example defines a class with one constructor and two default
constructors.
class X {
public:

X(); // Default constructor with no arguments
X(int = 0); // Default constructor with one default argument
X(int, int , int = 0); // Constructor

};

Note: C++11 You can declare default constructors as explicitly defaulted
functions or deleted functions. For more information, see “Explicitly defaulted
functions” on page 221 and “Deleted functions” on page 222. C++11

Related reference:
“Copy constructors” on page 429
Chapter 14, “Special member functions (C++ only),” on page 407

Delegating constructors (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
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standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Before C++11, common initializations in multiple constructors of the same class
could not be concentrated in one place in a robust, maintainable manner. To
partially alleviate this problem in the existing C++ programs, you could use
assignment instead of initialization or add a common initialization function.

With the delegating constructors feature, you can concentrate common
initializations and post initializations in one constructor named target constructor.
Delegating constructors can call the target constructor to do the initialization. A
delegating constructor can also be used as the target constructor of one or more
delegating constructors. You can use this feature to make programs more readable
and maintainable.

Delegating constructors and target constructors present the same interface as other
constructors. Target constructors do not need special handling to become the target
of a delegating constructor. They are selected by overload resolution or template
argument deduction. After the target constructor completes execution, the
delegating constructor gets control back.

In the following example, X(int x, int y) and X(int x, int y, int z) both
delegate to X(int x). This example demonstrates a typical usage of placing
common initializations in a single constructor.
#include <cstdio>

struct X {
const int i;
X(int x, int y) : X(x+y) { }
X(int x, int y, int z) : X(x*y*z) {}
X(int x) : i(x) { }

};

int main(void){
X var1(55,11);
X var2(2,4,6);
std::printf("%d, %d\n", var1.i, var2.i);
return 0;

}

The output of the example is:
66,48

A delegating constructor can be a target constructor of another delegating
constructor, thus forming a delegating chain. The first constructor invoked in the
construction of an object is called principal constructor. A constructor cannot
delegate to itself directly or indirectly. The compiler can detect this violation if the
constructors involved in a recursive chain of delegation are all defined in one
translation unit. Consider the following example:
struct A{

int x,y;
A():A(42){}
A(int x_):A() {x = x_;}

};
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In the example, there is an infinitely recursive cycle that constructor A() delegates
to constructor A(int x_), and A(int x_) also delegates to A(). The compiler issues
an error to indicate the violation.

You can use the delegating constructors feature interacting with other existing
techniques:
v When several constructors have the same name, name and overload resolution

can determine which constructor is the target constructor.
v When using delegating constructors in a template class, the deduction of

template parameters works normally.
Related reference:
“C++11 compatibility” on page 640

Constexpr constructors (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

A constructor that is declared with a constexpr specifier is a constexpr constructor.
Previously, only expressions of built-in types could be valid constant expressions.
With constexpr constructors, objects of user-defined types can be included in valid
constant expressions.

Definitions of constexpr constructors must satisfy the following requirements:
v The containing class must not have any virtual base classes.
v Each of the parameter types is a literal type.
v Its function body is = delete or = default; otherwise, it must satisfy the

following constraints:
– It is not a function try block.
– The compound statement in it must contain only the following statements:

- null statements
- static_assert declarations
- typedef declarations that do not define classes or enumerations
- using directives
- using declarations

v Each nonstatic data member and base class subobject is initialized.
v Each constructor that is used for initializing nonstatic data members and base

class subobjects is a constexpr constructor.
v Initializers for all nonstatic data members that are not named by a member

initializer identifier are constant expressions.
v When initializing data members, all implicit conversions that are involved in the

following context must be valid in a constant expression:
– Calling any constructors
– Converting any expressions to data member types
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The implicitly defined default constructor performs the set of initializations of the
class that would be performed by a user-written default constructor for that class
with no initializer and an empty compound-statement. If that user-defined default
constructor would satisfy the requirements of a constexpr constructor, the
implicitly defined default constructor is a constexpr constructor.

A constexpr constructor is implicitly inline.

The following examples demonstrate the usage of constexpr constructors:
struct BASE {
};

struct B2 {
int i;

};

//NL is a non-literal type.
struct NL {

virtual ~NL() {
}

};

int i = 11;

struct D1 : public BASE {
//OK, the implicit default constructor of BASE is a constexpr constructor.
constexpr D1() : BASE(), mem(55) { }

//OK, the implicit copy constructor of BASE is a constexpr constructor.
constexpr D1(const D1& d) : BASE(d), mem(55) { }

//OK, all reference types are literal types.
constexpr D1(NL &n) : BASE(), mem(55) { }

//The conversion operator is not constexpr.
operator int() const { return 55; }

private:
int mem;

};

struct D2 : virtual BASE {
//error, D2 must not have virtual base class.
constexpr D2() : BASE(), mem(55) { }

private:
int mem;

};

struct D3 : B2 {
//error, D3 must not be a function try block.
constexpr D3(int) try : B2(), mem(55) { } catch(int) { }

//error, illegal statement is in body.
constexpr D3(char) : B2(), mem(55) { mem = 55; }

//error, initializer for mem is not a constant expression.
constexpr D3(double) : B2(), mem(i) { }

//error, implicit conversion is not constexpr.
constexpr D3(const D1 &d) : B2(), mem(d) { }

//error, parameter NL is a non-literal type.
constexpr D3(NL) : B2(), mem(55) { }
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private:
int mem;

};

Related reference:
“Generalized constant expressions (C++11)” on page 149
“The constexpr specifier (C++11)” on page 83
“Type specifiers” on page 54
“Explicitly defaulted functions” on page 221
“Deleted functions” on page 222

Explicit initialization with constructors
A class object with a constructor must be explicitly initialized or have a default
constructor. Except for aggregate initialization, explicit initialization using a
constructor is the only way to initialize non-static constant and reference class
members.

A class object that has only implicitly declared C++11 or explicitly defaulted
C++11 constructors, and has no virtual functions, no private or protected

non-static data members, and no base classes is called an aggregate. Examples of
aggregates are C-style structures and unions.

You explicitly initialize a class object when you create that object. There are two
ways to initialize a class object:
v Using a parenthesized expression list. The compiler calls the constructor of the

class using this list as the constructor's argument list.
v Using a single initialization value and the = operator. Because this type of

expression is an initialization, not an assignment, the assignment operator
function, if one exists, is not called. The type of the single argument must match
the type of the first argument to the constructor. If the constructor has remaining
arguments, these arguments must have default values.

Initializer syntax

��

�

( expression )
= expression

,

{ expression }
,

��

The following example shows the declaration and use of several constructors that
explicitly initialize class objects:

CCNX13A
// This example illustrates explicit initialization
// by constructor.
#include <iostream>
using namespace std;

class complx {
double re, im;

public:

// default constructor
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complx() : re(0), im(0) { }

// copy constructor
complx(const complx& c) { re = c.re; im = c.im; }

// constructor with default trailing argument
complx( double r, double i = 0.0) { re = r; im = i; }

void display() {
cout << "re = "<< re << " im = " << im << endl;

}
};

int main() {

// initialize with complx(double, double)
complx one(1);

// initialize with a copy of one
// using complx::complx(const complx&)
complx two = one;

// construct complx(3,4)
// directly into three
complx three = complx(3,4);

// initialize with default constructor
complx four;

// complx(double, double) and construct
// directly into five
complx five = 5;

one.display();
two.display();
three.display();
four.display();
five.display();

}

The above example produces the following output:
re = 1 im = 0
re = 1 im = 0
re = 3 im = 4
re = 0 im = 0
re = 5 im = 0

Related reference:
“Initializers” on page 108
Chapter 14, “Special member functions (C++ only),” on page 407

Initialization of base classes and members
Constructors can initialize their members in two different ways. A constructor can
use the arguments passed to it to initialize member variables in the constructor
definition:
complx(double r, double i = 0.0) { re = r; im = i; }

Or a constructor can have an initializer list within the definition but prior to the
constructor body:
complx(double r, double i = 0) : re(r), im(i) { /* ... */ }
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Both methods assign the argument values to the appropriate data members of the
class.

Initializer list syntax

�� : � �

,

identifier ( )
class_name assignment_expression

��

Include the initialization list as part of the constructor definition, not as part of the
constructor declaration. For example:
#include <iostream>
using namespace std;

class B1 {
int b;

public:
B1() { cout << "B1::B1()" << endl; };

// inline constructor
B1(int i) : b(i) { cout << "B1::B1(int)" << endl; }

};
class B2 {

int b;
protected:

B2() { cout << "B2::B2()" << endl; }

// noninline constructor
B2(int i);

};

// B2 constructor definition including initialization list
B2::B2(int i) : b(i) { cout << "B2::B2(int)" << endl; }

class D : public B1, public B2 {
int d1, d2;

public:
D(int i, int j) : B1(i+1), B2(), d1(i) {

cout << "D1::D1(int, int)" << endl;
d2 = j;}

};

int main() {
D obj(1, 2);

}

The output of this example:
B1::B1(int)
B2::B2()
D1::D1(int, int)

If you do not explicitly initialize a base class or member that has constructors by
calling a constructor, the compiler automatically initializes the base class or
member with a default constructor. In the above example, if you leave out the call
B2() in the constructor of class D (as shown below), a constructor initializer with an
empty expression list is automatically created to initialize B2. The constructors for
class D, shown above and below, result in the same construction of an object of
class D:

Chapter 14. Special member functions (C++ only) 415



class D : public B1, public B2 {
int d1, d2;

public:

// call B2() generated by compiler
D(int i, int j) : B1(i+1), d1(i) {

cout << "D1::D1(int, int)" << endl;
d2 = j;}

};

In the above example, the compiler will automatically call the default constructor
for B2().

Note that you must declare constructors as public or protected to enable a derived
class to call them. For example:
class B {

B() { }
};

class D : public B {

// error: implicit call to private B() not allowed
D() { }

};

The compiler does not allow the definition of D::D() because this constructor
cannot access the private constructor B::B().

You must initialize the following cases with an initializer list: base classes with no
default constructors, reference data members, non-static const data members, or a
class type which contains a constant data member. The following example
demonstrates this:
class A {
public:

A(int) { }
};

class B : public A {
static const int i;
const int j;
int &k;

public:
B(int& arg) : A(0), j(1), k(arg) { }

};

int main() {
int x = 0;
B obj(x);

};

The data members j and k, as well as the base class A must be initialized in the
initializer list of the constructor of B.

You can use data members when initializing members of a class. The following
example demonstrate this:
struct A {

int k;
A(int i) : k(i) { }

};
struct B: A {

int x;
int i;
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int j;
int& r;
B(int i): r(x), A(i), j(this->i), i(i) { }

};

The constructor B(int i) initializes the following items:
v B::r to refer to B::x

v Class A with the value of the argument to B(int i)

v B::j with the value of B::i
v B::i with the value of the argument to B(int i)

You can also call member functions (including virtual member functions) or use
the operators typeid or dynamic_cast when initializing members of a class.
However if you perform any of these operations in a member initialization list
before all base classes have been initialized, the behavior is undefined. The
following example demonstrates this:
#include <iostream>
using namespace std;

struct A {
int i;
A(int arg) : i(arg) {

cout << "Value of i: " << i << endl;
}

};

struct B : A {
int j;
int f() { return i; }
B();

};

B::B() : A(f()), j(1234) {
cout << "Value of j: " << j << endl;

}

int main() {
B obj;

}

The output of the above example would be similar to the following result:
Value of i: 8
Value of j: 1234

The behavior of the initializer A(f()) in the constructor of B is undefined. The run
time will call B::f() and try to access A::i even though the base A has not been
initialized.

The following example is the same as the previous example except that the
initializers of B::B() have different arguments:
#include <iostream>
using namespace std;

struct A {
int i;
A(int arg) : i(arg) {

cout << "Value of i: " << i << endl;
}

};

struct B : A {
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int j;
int f() { return i; }
B();

};

B::B() : A(5678), j(f()) {
cout << "Value of j: " << j << endl;

}

int main() {
B obj;

}

See the output of the above example:
Value of i: 5678
Value of j: 5678

The behavior of the initializer j(f()) in the constructor of B is well-defined. The
base class A is already initialized when B::j is initialized.

C++11

If the delegating constructors feature is enabled, initialization can only be done
within the non-delegating constructor. In other words, a delegating constructor
cannot both delegate and initialize. Consider the following example:
struct A{

int x,y;
A(int x):x(x),y(0){}

/* the following statement is not allowed */
A():y(0),A(42) {}

}

Constructor A() delegates to A(int x), but A() also does the initialization, which is
not permitted. The compiler issues an error to indicate the violation.

For more information, see “Delegating constructors (C++11)” on page 409

C++11

Related reference:
“The typeid operator (C++ only)” on page 155
“The dynamic_cast operator (C++ only)” on page 182

Constructor execution order for class objects
When a class object is created using constructors, the execution order of
constructors is:
1. Constructors of Virtual base classes are executed, in the order that they appear

in the base list.
2. Constructors of nonvirtual base classes are executed, in the declaration order.
3. Constructors of class members are executed in the declaration order (regardless

of their order in the initialization list).
4. The body of the constructor is executed.

The following example demonstrates these:
#include <iostream>
using namespace std;
struct V {
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V() { cout << "V()" << endl; }
};
struct V2 {

V2() { cout << "V2()" << endl; }
};
struct A {

A() { cout << "A()" << endl; }
};
struct B : virtual V {

B() { cout << "B()" << endl; }
};
struct C : B, virtual V2 {

C() { cout << "C()" << endl; }
};
struct D : C, virtual V {

A obj_A;
D() { cout << "D()" << endl; }

};
int main() {

D c;
}

The following is the output of the above example:
V()
V2()
B()
C()
A()
D()

The above output lists the order in which the C++ run time calls the constructors
to create an object of type D.

C++11

When the construction of a class object is done through a delegating constructor,
the body of the delegating constructor is processed after the execution of its target
constructor. The rule also applies to the target constructor if the target constructor
is another delegating constructor.

Example:
#include <cstdio>
using std::printf;

class X{
public:

int i,j;
X();
X(int x);
X(int x, int y);
~X();

}

X::X(int x):i(x),j(23) {printf("X:X(int)\n");}
X::X(int x, int y): X(x+y) { printf("X::X(int,int)\n");}
X::X():X(44,11) {printf("X:X()\n");}
X::~X() {printf("X::~X()\n");}

int main(void){
X x;

}

The output of the example is:
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X::X(int)
X::X(int,int)
X:X()
X::~X()

For more information, see “Delegating constructors (C++11)” on page 409

C++11

Related reference:
“Virtual base classes” on page 393

Destructors
Destructors are usually used to deallocate memory and do other cleanup for a class
object and its class members when the object is destroyed. A destructor is called
for a class object when that object passes out of scope or is explicitly deleted.

A destructor is a member function with the same name as its class prefixed by a ~
(tilde). For example:
class X {
public:

// Constructor for class X
X();
// Destructor for class X
~X();

};

A destructor takes no arguments and has no return type. Its address cannot be
taken. Destructors cannot be declared const, volatile, const volatile or static.
A destructor can be declared virtual or pure virtual.

If no user-defined destructor exists for a class and one is needed, the compiler
implicitly declares a destructor. This implicitly declared destructor is an inline
public member of its class.

The compiler will implicitly define an implicitly declared destructor when the
compiler uses the destructor to destroy an object of the destructor's class type.
Suppose a class A has an implicitly declared destructor. The following is equivalent
to the function the compiler would implicitly define for A:

A::~A() { }

The compiler first implicitly defines the implicitly declared C++11 or explicitly
defaulted C++11 destructors of the base classes and nonstatic data members of a
class A before defining the implicitly declared C++11 or explicitly defaulted

C++11 destructor of A.

A destructor of a class A is trivial if all the following are true:
v It is implicitly declared C++11 or explicitly defaulted C++11 .
v All the direct base classes of A have trivial destructors.
v The classes of all the nonstatic data members of A have trivial destructors.

If any of the above are false, then the destructor is nontrivial.

A union member cannot be of a class type that has a nontrivial destructor.
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Class members that are class types can have their own destructors. Both base and
derived classes can have destructors, although destructors are not inherited. If a
base class A or a member of A has a destructor, and a class derived from A does not
declare a destructor, a default destructor is generated.

The default destructor calls the destructors of the base class and members of the
derived class.

The destructors of base classes and members are called in the reverse order of the
completion of their constructor:
1. The destructor for a class object is called before destructors for members and

bases are called.
2. Destructors for nonstatic members are called before destructors for base classes

are called.
3. Destructors for nonvirtual base classes are called before destructors for virtual

base classes are called.

When an exception is thrown for a class object with a destructor, the destructor for
the temporary object thrown is not called until control passes out of the catch
block.

Destructors are implicitly called when an automatic object (a local object that has
been declared auto or register, or not declared as static or extern) or temporary
object passes out of scope. They are implicitly called at program termination for
constructed external and static objects. Destructors are invoked when you use the
delete operator for objects created with the new operator.

For example:
#include <string>

class Y {
private:

char * string;
int number;

public:
// Constructor
Y(const char*, int);
// Destructor
~Y() { delete[] string; }

};

// Define class Y constructor
Y::Y(const char* n, int a) {

string = strcpy(new char[strlen(n) + 1 ], n);
number = a;

}

int main () {
// Create and initialize
// object of class Y
Y yobj = Y("somestring", 10);

// ...

// Destructor ~Y is called before
// control returns from main()

}
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You can use a destructor explicitly to destroy objects, although this practice is not
recommended. However to destroy an object created with the placement new
operator, you can explicitly call the object's destructor. The following example
demonstrates this:
#include <new>
#include <iostream>
using namespace std;
class A {

public:
A() { cout << "A::A()" << endl; }
~A() { cout << "A::~A()" << endl; }

};
int main () {

char* p = new char[sizeof(A)];
A* ap = new (p) A;
ap->A::~A();
delete [] p;

}

The statement A* ap = new (p) A dynamically creates a new object of type A not in
the free store but in the memory allocated by p. The statement delete [] p will
delete the storage allocated by p, but the run time will still believe that the object
pointed to by ap still exists until you explicitly call the destructor of A (with the
statement ap->A::~A()).

Note: C++11 You can declare destructors as explicitly defaulted functions or
deleted functions. For more information, see “Explicitly defaulted functions” on
page 221 and “Deleted functions” on page 222. C++11

Related reference:
Chapter 14, “Special member functions (C++ only),” on page 407

Pseudo-destructors
A pseudo-destructor is a destructor of a nonclass type.

Pseudo-destructor syntax

�� type_name :: ~ type_name
:: nested_name_specifier

nested_name_specifier template template_identifier :: ~ type_name
::

~ type_name
:: nested_name_specifier

��

The following example calls the pseudo destructor for an integer type:
typedef int I;
int main() {

I x = 10;
x.I::~I();
x = 20;

}

The call to the pseudo destructor, x.I::~I(), has no effect at all. Object x has not
been destroyed; the assignment x = 20 is still valid. Because pseudo destructors
require the syntax for explicitly calling a destructor for a nonclass type to be valid,
you can write code without having to know whether or not a destructor exists for
a given type.
Related reference:
Chapter 12, “Class members and friends (C++ only),” on page 357
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“Scope of class names” on page 351

User-defined conversions
User-defined conversions allow you to specify object conversions with constructors or
with conversion functions. User-defined conversions are implicitly used in addition
to standard conversions for conversion of initializers, functions arguments,
function return values, expression operands, expressions controlling iteration,
selection statements, and explicit type conversions.

There are two types of user-defined conversions:
v Conversion constructors
v Conversion functions

The compiler can use only one user-defined conversion (either a conversion
constructor or a conversion function) when implicitly converting a single value.
The following example demonstrates this:
class A {

int x;
public:

operator int() { return x; };
};

class B {
A y;

public:
operator A() { return y; };

};

int main () {
B b_obj;

// int i = b_obj;
int j = A(b_obj);

}

The compiler would not allow the statement int i = b_obj. The compiler would
have to implicitly convert b_obj into an object of type A (with B::operator A()),
then implicitly convert that object to an integer (with A::operator int()). The
statement int j = A(b_obj) explicitly converts b_obj into an object of type A, then
implicitly converts that object to an integer.

User-defined conversions must be unambiguous, or they are not called. A
conversion function in a derived class does not hide another conversion function in
a base class unless both conversion functions convert to the same type. Function
overload resolution selects the most appropriate conversion function. The following
example demonstrates this:
class A {

int a_int;
char* a_carp;

public:
operator int() { return a_int; }
operator char*() { return a_carp; }

};

class B : public A {
float b_float;
char* b_carp;

public:
operator float() { return b_float; }
operator char*() { return b_carp; }
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};

int main () {
B b_obj;

// long a = b_obj;
char* c_p = b_obj;

}

The compiler would not allow the statement long a = b_obj. The compiler could
either use A::operator int() or B::operator float() to convert b_obj into a long.
The statement char* c_p = b_obj uses B::operator char*() to convert b_obj into
a char* because B::operator char*() hides A::operator char*().

When you call a constructor with an argument and you have not defined a
constructor accepting that argument type, only standard conversions are used to
convert the argument to another argument type acceptable to a constructor for that
class. No other constructors or conversions functions are called to convert the
argument to a type acceptable to a constructor defined for that class. The following
example demonstrates this:
class A {
public:

A() { }
A(int) { }

};

int main() {
A a1 = 1.234;

// A moocow = "text string";
}

The compiler allows the statement A a1 = 1.234. The compiler uses the standard
conversion of converting 1.234 into an int, then implicitly calls the converting
constructor A(int). The compiler would not allow the statement A moocow = "text
string"; converting a text string to an integer is not a standard conversion.

Note: C++11 You can declare user-defined conversions as deleted functions. For
more information, see “Deleted functions” on page 222. C++11

Conversion constructors
A conversion constructor is a single-parameter constructor that is declared without
the function specifier explicit. The compiler uses conversion constructors to
convert objects from the type of the first parameter to the type of the conversion
constructor's class. The following example demonstrates this:
class Y {

int a, b;
char* name;

public:
Y(int i) { };
Y(const char* n, int j = 0) { };

};

void add(Y) { };

int main() {

// equivalent to
// obj1 = Y(2)
Y obj1 = 2;

// equivalent to
// obj2 = Y("somestring",0)
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Y obj2 = "somestring";

// equivalent to
// obj1 = Y(10)
obj1 = 10;

// equivalent to
// add(Y(5))
add(5);

}

The above example has the following two conversion constructors:
v Y(int i)which is used to convert integers to objects of class Y.
v Y(const char* n, int j = 0) which is used to convert pointers to strings to

objects of class Y.

The compiler will not implicitly convert types as demonstrated above with
constructors declared with the explicit keyword. The compiler will only use
explicitly declared constructors in new expressions, the static_cast expressions
and explicit casts, and the initialization of bases and members. The following
example demonstrates this:
class A {
public:

explicit A() { };
explicit A(int) { };

};

int main() {
A z;

// A y = 1;
A x = A(1);
A w(1);
A* v = new A(1);
A u = (A)1;
A t = static_cast<A>(1);

}

The compiler would not allow the statement A y = 1 because this is an implicit
conversion; class A has no conversion constructors.

A copy constructor is a conversion constructor.
Related reference:
“new expressions (C++ only)” on page 185
“The static_cast operator (C++ only)” on page 177

Explicit conversion constructors
The explicit function specifier controls unwanted implicit type conversions. It can
only be used in declarations of constructors within a class declaration. For
example, except for the default constructor, the constructors in the following class
are conversion constructors.
class A
{ public:

A();
A(int);
A(const char*, int = 0);

};

The following declarations are legal.
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A c = 1;
A d = "Venditti";

The first declaration is equivalent to A c = A(1).

If you declare the constructor of the class with the explicit keyword, the previous
declarations would be illegal.

For example, if you declare the class as:
class A
{ public:

explicit A();
explicit A(int);
explicit A(const char*, int = 0);

};

You can only assign values that match the values of the class type.

For example, the following statements are legal:
A a1;
A a2 = A(1);
A a3(1);
A a4 = A("Venditti");
A* p = new A(1);
A a5 = (A)1;
A a6 = static_cast<A>(1);

Related reference:
“Conversion constructors” on page 424

Conversion functions
You can define a member function of a class, called a conversion function, that
converts from the type of its class to another specified type.

Conversion function syntax

��
class ::

operator conversion_type

� pointer_operator

( ) �

�
const
volatile

{ function_body }
��

A conversion function that belongs to a class X specifies a conversion from the class
type X to the type specified by the conversion_type. The following code fragment
shows a conversion function called operator int():
class Y {

int b;
public:

operator int();
};
Y::operator int() {

return b;
}
void f(Y obj) {

426 z/OS V2R1.0 XL C/C++ Language Reference



int i = int(obj);
int j = (int)obj;
int k = i + obj;

}

All three statements in function f(Y) use the conversion function Y::operator
int().

Classes, enumerations, typedef names, function types, or array types cannot be
declared or defined in the conversion_type. You cannot use a conversion function to
convert an object of type A to type A, to a base class of A, or to void.

Conversion functions have no arguments, and the return type is implicitly the
conversion type. Conversion functions can be inherited. You can have virtual
conversion functions but not static ones.
Related reference:
“Conversion constructors” on page 424

Explicit conversion operators (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

You can apply the explicit function specifier to the definition of a user-defined
conversion function to inhibit unintended implicit conversions from being applied.
Such conversion functions are called explicit conversion operators.

Explicit conversion operator syntax

�� explicit operator conversion_type

� pointer_operator

( ) �

�
const
volatile

{ function_body }
��

The following example demonstrates both intended and unintended implicit
conversions through a user-defined conversion function, which is not qualified
with the explicit function specifier.

Example 1
#include <iostream>

template <class T> struct S {
operator bool() const; // conversion function

};

void func(S<int>& s) {
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// The compiler converts s to the bool type implicitly through
// the conversion function. This conversion might be intended.
if (s) { }

}

void bar(S<int>& p1, S<float>& p2) {
// The compiler converts both p1 and p2 to the bool type implicitly
// through the conversion function. This conversion might be unintended.
std::cout << p1+p2 << std::endl;

// The compiler converts both p1 and p2 to the bool type implicitly
// through the conversion function and compares results.
// This conversion might be unintended.
if (p1==p2) { }

}

To inhibit unintended implicit conversions from being applied, you can define an
explicit conversion operator by qualifying the conversion function in Example 1
with the explicit function specifier:
explicit operator bool() const;

If you compile the same code as Example 1 but with the explicit conversion
operator, the compiler issues error messages for the following statements:
// Error: The call does not match any parameter list for "operator+".
std::cout << p1+p2 << std::endl;

// Error: The call does not match any parameter list for "operator==".
if(p1==p2)

If you intend to apply the conversion through the explicit conversion operator, you
must call the explicit conversion operator explicitly as in the following statements,
and then you can get the same results as Example 1.
std::cout << bool(p1)+bool(p2) << std::endl;

if(bool(p1)==bool(p2))

In contexts where a Boolean value is expected, such as when &&, ||, or the
conditional operator is used, or when the condition expression of an if statement
is evaluated, an explicit bool conversion operator can be implicitly invoked. So
when you compile Example 1 with the previous explicit conversion operator, the
compiler also converts s in the func function to the bool type through the explicit
bool conversion operator implicitly. Example 2 also demonstrates this:

Example 2
struct T {

explicit operator bool(); //explicit bool conversion operator
};

int main() {
T t1;
bool t2;

// The compiler converts t1 to the bool type through
// the explicit bool conversion operator implicitly.
t1 && t2;

return 0;
}
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Copy constructors
The copy constructor lets you create a new object from an existing one by
initialization. A copy constructor of a class A is a non-template constructor in which
the first parameter is of type A&, const A&, volatile A&, or const volatile A&, and
the rest of its parameters (if there are any) have default values.

If you do not declare a copy constructor for a class A, the compiler will implicitly
declare one for you, which will be an inline public member.

The following example demonstrates implicitly defined and user-defined copy
constructors:
#include <iostream>
using namespace std;

struct A {
int i;
A() : i(10) { }

};

struct B {
int j;
B() : j(20) {

cout << "Constructor B(), j = " << j << endl;
}

B(B& arg) : j(arg.j) {
cout << "Copy constructor B(B&), j = " << j << endl;

}

B(const B&, int val = 30) : j(val) {
cout << "Copy constructor B(const B&, int), j = " << j << endl;

}
};

struct C {
C() { }
C(C&) { }

};

int main() {
A a;
A a1(a);
B b;
const B b_const;
B b1(b);
B b2(b_const);
const C c_const;

// C c1(c_const);
}

The following is the output of the above example:
Constructor B(), j = 20
Constructor B(), j = 20
Copy constructor B(B&), j = 20
Copy constructor B(const B&, int), j = 30

The statement A a1(a) creates a new object from a with an implicitly defined copy
constructor. The statement B b1(b) creates a new object from b with the
user-defined copy constructor B::B(B&). The statement B b2(b_const) creates a
new object with the copy constructor B::B(const B&, int). The compiler would
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not allow the statement C c1(c_const) because a copy constructor that takes as its
first parameter an object of type const C& has not been defined.

The implicitly declared copy constructor of a class A will have the form A::A(const
A&) if the following are true:
v The direct and virtual bases of A have copy constructors whose first parameters

have been qualified with const or const volatile

v The nonstatic class type or array of class type data members of A have copy
constructors whose first parameters have been qualified with const or const
volatile

If the above are not true for a class A, the compiler will implicitly declare a copy
constructor with the form A::A(A&).

A program is ill-formed if it includes a class A whose copy constructor is implicitly
defined C++11 or explicitly defaulted C++11 when one or more of the
following conditions are true:
v Class A has a nonstatic data member of a type which has an inaccessible or

ambiguous copy constructor.
v Class A is derived from a class which has an inaccessible or ambiguous copy

constructor.

The compiler will implicitly define an implicitly declared C++11 or explicitly
defaulted C++11 constructor of a class A if you initialize an object of type A or an
object derived from class A.

An implicitly defined C++11 or explicitly defaulted C++11 copy constructor
will copy the bases and members of an object in the same order that a constructor
would initialize the bases and members of the object.

Note: C++11 You can declare copy constructors as explicitly defaulted functions
or deleted functions. For more information, see “Explicitly defaulted functions” on
page 221 and “Deleted functions” on page 222. C++11

Related reference:
“Overview of constructors and destructors” on page 407
Chapter 14, “Special member functions (C++ only),” on page 407

Copy assignment operators
The copy assignment operator lets you create a new object from an existing one by
initialization. A copy assignment operator of a class A is a nonstatic non-template
member function that has one of the following forms:
v A::operator=(A)

v A::operator=(A&)

v A::operator=(const A&)

v A::operator=(volatile A&)

v A::operator=(const volatile A&)

If you do not declare a copy assignment operator for a class A, the compiler will
implicitly declare one for you that is inline public.

The following example demonstrates implicitly defined and user-defined copy
assignment operators:
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#include <iostream>
using namespace std;

struct A {
A& operator=(const A&) {

cout << "A::operator=(const A&)" << endl;
return *this;

}

A& operator=(A&) {
cout << "A::operator=(A&)" << endl;
return *this;

}

};
class B {

A a;
};

struct C {
C& operator=(C&) {

cout << "C::operator=(C&)" << endl;
return *this;

}
C() { }

};

int main() {
B x, y;
x = y;

A w, z;
w = z;

C i;
const C j();

// i = j;
}

See the output of the above example:
A::operator=(const A&)
A::operator=(A&)

The assignment x = y calls the implicitly defined copy assignment operator of B,
which calls the user-defined copy assignment operator A::operator=(const A&).
The assignment w = z calls the user-defined operator A::operator=(A&). The
compiler will not allow the assignment i = j because an operator
C::operator=(const C&) has not been defined.

The implicitly declared copy assignment operator of a class A will have the form A&
A::operator=(const A&) if the following statements are true:
v A direct or virtual base B of class A has a copy assignment operator whose

parameter is of type const B&, const volatile B&, or B.
v A non-static class type data member of type X that belongs to class A has a copy

constructor whose parameter is of type const X&, const volatile X&, or X.

If the above are not true for a class A, the compiler will implicitly declare a copy
assignment operator with the form A& A::operator=(A&).

The implicitly declared copy assignment operator returns an lvalue reference to the
operator's argument.
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The copy assignment operator of a derived class hides the copy assignment
operator of its base class.

The compiler cannot allow a program in which a copy assignment operator for a
class A is implicitly defined C++11 or explicitly defaulted C++11 when one or
more of the following conditions are true:
v Class A has a nonstatic data member of a const type or a reference type
v Class A has a nonstatic data member of a type which has an inaccessible copy

assignment operator
v Class A is derived from a base class with an inaccessible copy assignment

operator.

An implicitly defined copy assignment operator of a class A will first assign the
direct base classes of A in the order that they appear in the definition of A. Next,
the implicitly defined copy assignment operator will assign the nonstatic data
members of A in the order of their declaration in the definition of A.

Note: C++11 You can declare copy assignment operators as explicitly defaulted
functions or deleted functions. For more information, see “Explicitly defaulted
functions” on page 221 and “Deleted functions” on page 222. C++11

Related reference:
“Assignment operators” on page 161
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Chapter 15. Templates (C++ only)

A template describes a set of related classes or set of related functions in which a
list of parameters in the declaration describe how the members of the set vary. The
compiler generates new classes or functions when you supply arguments for these
parameters; this process is called template instantiation, and is described in detail in
“Template instantiation” on page 456. This class or function definition generated
from a template and a set of template parameters is called a specialization, as
described in “Template specialization” on page 460.

Template declaration syntax

��
export

template < template_parameter_list > declaration ��

The compiler accepts and silently ignores the export keyword on a template.

The template_parameter_list is a comma-separated list of template parameters, which
are described in “Template parameters” on page 434.

The declaration is one of the following options:
v a declaration or definition of a function or a class
v a definition of a member function or a member class of a class template
v a definition of a static data member of a class template
v a definition of a static data member of a class nested within a class template
v a definition of a member template of a class or class template

The identifier of a type is defined to be a type_name in the scope of the template
declaration. A template declaration can appear as a namespace scope or class scope
declaration.

The following example demonstrates the use of a class template:
template<class T> class Key
{

T k;
T* kptr;
int length;

public:
Key(T);
// ...

};

Suppose the following declarations appear later:
Key<int> i;
Key<char*> c;
Key<mytype> m;

The compiler would create three instances of class Key. The following table shows
the definitions of these three class instances if they were written out in source form
as regular classes, not as templates:
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class Key<int> i; class Key<char*> c; class Key<mytype> m;

class Key
{

int k;
int * kptr;
int length;

public:
Key(int);
// ...

};

class Key
{

char* k;
char** kptr;
int length;

public:
Key(char*);
// ...

};

class Key
{

mytype k;
mytype* kptr;
int length;

public:
Key(mytype);
// ...

};

Note that these three classes have different names. The arguments contained within
the angle braces are not just the arguments to the class names, but part of the class
names themselves. Key<int> and Key<char*> are class names.

Template parameters
There are three kinds of template parameters:
v “Type template parameters”
v “Non-type template parameters”
v “Template template parameters” on page 435

C++11

Template parameter packs can also be a kind of template parameter. For more
information, see “Variadic templates (C++11)” on page 468.

C++11

You can interchange the keywords class and typename in a template parameter
declaration. You cannot use storage class specifiers (static and auto) in a template
parameter declaration.
Related reference:
“Type qualifiers” on page 85
“Lvalues and rvalues” on page 141

Type template parameters

Type template parameter declaration syntax

�� class
typename

identifier
= type

��

The identifier is the name of a type.
Related reference:
“The typename keyword” on page 482

Non-type template parameters
The syntax of a non-type template parameter is the same as a declaration of one of
the following types:
v integral or enumeration
v pointer to object or pointer to function
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v lvalue reference to object or lvalue reference to function
v pointer to member
v C++11 std::nullptr_t C++11

Non-type template parameters that are declared as arrays are converted to
pointers, and that are declared as functions are converted to pointers to functions.
The following example demonstrates these rules:
template<int a[4]> struct A { };
template<int f(int)> struct B { };

int i;
int g(int) { return 0;}

A<&i> x;
B<&g> y;

The type of &i is int *, and the type of &g is int (*)(int).

You can qualify a non-type template parameter with const or volatile.

You cannot declare a non-type template parameter as a floating point, class, or
void type.

Non-type non-reference template parameters are not lvalues.
Related reference:
“Type qualifiers” on page 85
“Lvalues and rvalues” on page 141
“References (C++ only)” on page 107

Template template parameters

Template template parameter declaration syntax

�� template < template-parameter-list > class
identifier = id-expression

��

The following example demonstrates a declaration and use of a template template
parameter:
template<template <class T> class X> class A { };
template<class T> class B { };

A<B> a;

Default arguments for template parameters
Template parameters may have default arguments. The set of default template
arguments accumulates over all declarations of a given template. The following
example demonstrates this:
template<class T, class U = int> class A;
template<class T = float, class U> class A;

template<class T, class U> class A {
public:

T x;
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U y;
};

A<> a;

The type of member a.x is float, and the type of a.y is int.

You cannot give default arguments to the same template parameters in different
declarations in the same scope. The compiler will not allow the following example:
template<class T = char> class X;
template<class T = char> class X { };

If one template parameter has a default argument, then all template parameters
following it must also have default arguments. For example, the compiler will not
allow the following:
template<class T = char, class U, class V = int> class X { };

Template parameter U needs a default argument or the default for T must be
removed.

The scope of a template parameter starts from the point of its declaration to the
end of its template definition. This implies that you may use the name of a
template parameter in other template parameter declarations and their default
arguments. The following example demonstrates this:
template<class T = int> class A;
template<class T = float> class B;
template<class V, V obj> class C;
// a template parameter (T) used as the default argument
// to another template parameter (U)
template<class T, class U = T> class D { };

Naming template parameters as friends (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

In the C++11 standard, the extended friend declarations feature is introduced, with
which you can declare template parameters as friends. This makes friend
declarations inside templates easier to use.

If a friend declaration resolves to a template parameter, then you cannot use an
elaborated-type-specifier in this friend declaration; otherwise, the compiler issues
an error.
Related reference:
“Friends” on page 373
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Template arguments
There are three kinds of template arguments corresponding to the three types of
template parameters:
v “Template type arguments”
v “Template non-type arguments” on page 438
v “Template template arguments” on page 440

A template argument must match the type and form specified by the
corresponding parameter declared in the template.

C++11

When a parameter declared in a template is a template parameter pack, it
corresponds to zero or more template arguments. For more information, see
“Variadic templates (C++11)” on page 468

C++11

To use the default value of a template parameter, you omit the corresponding
template argument. However, even if all template parameters have defaults, you
still must use the angle brackets <>. For example, the following will yield a syntax
error:
template<class T = int> class X { };
X<> a;
X b;

The last declaration, X b, will yield an error.
Related reference:
“Block/local scope” on page 2
“No linkage” on page 8
Bit field members
“typedef definitions” on page 74

Template type arguments
You cannot use one of the following types as a template argument for a type
template parameter:
v a local type
v a type with no linkage
v an unnamed type
v a type compounded from any of the above types

If it is ambiguous whether a template argument is a type or an expression, the
template argument is considered to be a type. The following example demonstrates
this:
template<class T> void f() { };
template<int i> void f() { };

int main() {
f<int()>();

}
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The function call f<int()>() calls the function with T as a template argument – the
compiler considers int() as a type – and therefore implicitly instantiates and calls
the first f().
Related reference:
“Block/local scope” on page 2
“No linkage” on page 8
Bit field members
“typedef definitions” on page 74

Template non-type arguments
A non-type template argument provided within a template argument list is an
expression whose value can be determined at compile time. Such arguments must
be constant expressions, addresses of functions or objects with external linkage, or
addresses of static class members. Non-type template arguments are normally used
to initialize a class or to specify the sizes of class members.

For non-type integral arguments, the instance argument matches the corresponding
template parameter as long as the instance argument has a value and sign
appropriate to the parameter type.

For non-type address arguments, the type of the instance argument must be of the
form identifier or &identifier, and the type of the instance argument must match the
template parameter exactly, except that a function name is changed to a pointer to
function type before matching.

The resulting values of non-type template arguments within a template argument
list form part of the template class type. If two template class names have the same
template name and if their arguments have identical values, they are the same
class.

In the following example, a class template is defined that requires a non-type
template int argument as well as the type argument:
template<class T, int size> class Myfilebuf
{

T* filepos;
static int array[size];

public:
Myfilebuf() { /* ... */ }
~Myfilebuf();
advance(); // function defined elsewhere in program

};

In this example, the template argument size becomes a part of the template class
name. An object of such a template class is created with both the type argument T
of the class and the value of the non-type template argument size.

An object x, and its corresponding template class with arguments double and
size=200, can be created from this template with a value as its second template
argument:
Myfilebuf<double,200> x;

x can also be created using an arithmetic expression:
Myfilebuf<double,10*20> x;
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The objects created by these expressions are identical because the template
arguments evaluate identically. The value 200 in the first expression could have
been represented by an expression whose result at compile time is known to be
equal to 200, as shown in the second construction.

Note: Arguments that contain the < symbol or the > symbol must be enclosed in
parentheses to prevent either symbol from being parsed as a template argument
list delimiter when it is in fact being used as a relational operator. For example, the
arguments in the following definition are valid:
Myfilebuf<double, (75>25)> x; // valid

The following definition, however, is not valid because the greater than operator
(>) is interpreted as the closing delimiter of the template argument list:
Myfilebuf<double, 75>25> x; // error

If the template arguments do not evaluate identically, the objects created are of
different types:
Myfilebuf<double,200> x; // create object x of class

// Myfilebuf<double,200>
Myfilebuf<double,200.0> y; // error, 200.0 is a double,

// not an int

The instantiation of y fails because the value 200.0 is of type double, and the
template argument is of type int.

The following two objects:
Myfilebuf<double, 128> x
Myfilebuf<double, 512> y

are objects of separate template specializations. Referring either of these objects
later with Myfilebuf<double> is an error.

A class template does not need to have a type argument if it has non-type
arguments. For example, the following template is a valid class template:
template<int i> class C
{

public:
int k;
C() { k = i; }

};

This class template can be instantiated by declarations such as:
class C<100>;
class C<200>;

Again, these two declarations refer to distinct classes because the values of their
non-type arguments differ.
Related reference:
“Integer constant expressions” on page 144
“References (C++ only)” on page 107
“External linkage” on page 8
“Static members” on page 366
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Template template arguments
A template argument for a template template parameter is the name of a class
template.

When the compiler tries to find a template to match the template template
argument, it only considers primary class templates. (A primary template is the
template that is being specialized.) The compiler will not consider any partial
specialization even if their parameter lists match that of the template template
parameter. For example, the compiler will not allow the following code:
template<class T, int i> class A {

int x;
};

template<class T> class A<T, 5> {
short x;

};

template<template<class T> class U> class B1 { };

B1<A> c;

The compiler will not allow the declaration B1<A> c. Although the partial
specialization of A seems to match the template template parameter U of B1, the
compiler considers only the primary template of A, which has different template
parameters than U.

The compiler considers the partial specializations based on a template template
argument once you have instantiated a specialization based on the corresponding
template template parameter. The following example demonstrates this:
#include <iostream>
#include <typeinfo>

using namespace std;

template<class T, class U> class A {
public:

int x;
};

template<class U> class A<int, U> {
public:

short x;
};

template<template<class T, class U> class V> class B {
V<int, char> i;
V<char, char> j;

};

B<A> c;

int main() {
cout << typeid(c.i.x).name() << endl;
cout << typeid(c.j.x).name() << endl;

}

The following is the output of the above example:
short
int
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The declaration V<int, char> i uses the partial specialization while the declaration
V<char, char> j uses the primary template.
Related reference:
“Partial specialization” on page 465
“Template instantiation” on page 456

Class templates
The relationship between a class template and an individual class is like the
relationship between a class and an individual object. An individual class defines
how a group of objects can be constructed, while a class template defines how a
group of classes can be generated.

Note the distinction between the terms class template and template class:

Class template
is a template used to generate template classes. You cannot declare an
object of a class template.

Template class
is an instance of a class template.

A template definition is identical to any valid class definition that the template
might generate, except for the following:
v The class template definition is preceded by

template< template-parameter-list >

where template-parameter-list is a comma-separated list of one or more of the
following kinds of template parameters:
– type
– non-type
– template

v Types, variables, constants and objects within the class template can be declared
using the template parameters as well as explicit types (for example, int or
char).

C++11

Template parameter packs can also be a kind of parameter for class templates. For
more information, see “Variadic templates (C++11)” on page 468.

C++11

A class template can be declared without being defined by using an elaborated
type specifier. For example:
template<class L, class T> class Key;

This reserves the name as a class template name. All template declarations for a
class template must have the same types and number of template arguments. Only
one template declaration containing the class definition is allowed.

C++11

By using template parameter packs, template declarations for a class template can
have fewer or more arguments than the number of parameters specified in the
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class template.

C++11

Note: When you have nested template argument lists, you must have a separating
space between the > at the end of the inner list and the > at the end of the outer
list. Otherwise, there is an ambiguity between the extraction operator >> and two
template list delimiters >.
template<class L, class T> class Key { /* ... */};
template<class L> class Vector { /* ... */ };

int main ()
{

class Key <int, Vector<int> > my_key_vector;
// implicitly instantiates template

}

C++11

When the right angle bracket feature is enabled, the >> token is treated as two
consecutive > tokens if both the following conditions are true:
v The >> token is in a context where one or more left angle brackets are active. A

left angle bracket is active when it is not yet matched by a right angle bracket.
v The >> token is not nested within a delimited expression context.

If the first > token is in the context of a template_parameter_list, it is treated as
the ending delimiter for the template_parameter_list. Otherwise, it is treated as
the greater-than operator. The second > token terminates an enclosing template_id
construct or a different construct, such as the const_cast, dynamic_cast
reinterpret_cast, or static_cast operator. For example:
template<typename T> struct list {};
template<typename T>

struct vector
{

operator T() const;
};

int main()
{

// Valid, same as vector<vector<int> > v;
vector<vector<int>> v;

// Valid, treat the >> token as two consecutive > tokens.
// The first > token is treated as the ending delimiter for the
// template_parameter_list, and the second > token is treated as
// the ending delimiter for the static_cast operator.
const vector<int> vi = static_cast<vector<int>>(v);

}

A parenthesized expression is a delimited expression context. To use a bitwise shift
operator inside template-argument-list, use parentheses to enclose the operator.
For example:
template <int i> class X {};
template <class T> class Y {};

Y<X<(6>>1)>> y; //Valid: 6>>1 uses the right shift operator

C++11
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Objects and function members of individual template classes can be accessed by
any of the techniques used to access ordinary class member objects and functions.
Given a class template:
template<class T> class Vehicle
{
public:

Vehicle() { /* ... */ } // constructor
~Vehicle() {}; // destructor
T kind[16];
T* drive();
static void roadmap();
// ...

};

and the declaration:
Vehicle<char> bicycle; // instantiates the template

the constructor, the constructed object, and the member function drive() can be
accessed with any of the following (assuming the standard header file string.h is
included in the program file):

constructor Vehicle<char> bicycle;

// constructor called automatically,
// object bicycle created

object bicycle strcpy (bicycle.kind, "10 speed");
bicycle.kind[0] = ’2’;

function drive() char* n = bicycle.drive();

function roadmap() Vehicle<char>::roadmap();

Related reference:
“Declaring class types” on page 347
“Scope of class names” on page 351
“Member functions” on page 359
“The static_cast operator (C++ only)” on page 177
“The dynamic_cast operator (C++ only)” on page 182
“The const_cast operator (C++ only)” on page 181
“The reinterpret_cast operator (C++ only)” on page 179

Class template declarations and definitions
A class template must be declared before any instantiation of a corresponding
template class. A class template definition can only appear once in any single
translation unit. A class template must be defined before any use of a template
class that requires the size of the class or refers to members of the class.

In the following example, the class template Key is declared before it is defined.
The declaration of the pointer keyiptr is valid because the size of the class is not
needed. The declaration of keyi, however, causes an error.
template <class L> class Key; // class template declared,

// not defined yet
//

class Key<int> *keyiptr; // declaration of pointer
//

class Key<int> keyi; // error, cannot declare keyi
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// without knowing size
//

template <class L> class Key // now class template defined
{ /* ... */ };

If a template class is used before the corresponding class template is defined, the
compiler issues an error. A class name with the appearance of a template class
name is considered to be a template class. In other words, angle brackets are valid
in a class name only if that class is a template class.

The previous example uses the elaborated type specifier class to declare the class
template key and the pointer keyiptr. The declaration of keyiptr can also be made
without the elaborated type specifier.
template <class L> class Key; // class template declared,

// not defined yet
//

Key<int> *keyiptr; // declaration of pointer
//

Key<int> keyi; // error, cannot declare keyi
// without knowing size
//

template <class L> class Key // now class template defined
{ /* ... */ };

In the z/OS implementation, the compiler checks the syntax of the entire template
class definition when the template include files are being compiled if the
TEMPINC compiler option is used, or during the original compiler pass if the
NOTEMPINC compiler option is used. Any errors in the class definition are
flagged. The compiler does not generate code or data until it requires a
specialization. At that point it generates appropriate code and data for the
specialization by using the argument list supplied.
Related reference:
“Class templates” on page 441

Static data members and templates
Each class template instantiation has its own copy of any static data members. The
static declaration can be of template argument type or of any defined type.

You must separately define static members. The following example demonstrates
this:
template <class T> class K
{
public:

static T x;
};
template <class T> T K<T> ::x;

int main()
{

K<int>::x = 0;
}

The statement template T K::x defines the static member of class K, while the
statement in the main() function assigns a value to the data member for K <int>.
Related reference:
“Static members” on page 366
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Member functions of class templates
You may define a template member function outside of its class template
definition.

When you call a member function of a class template specialization, the compiler
will use the template arguments that you used to generate the class template. The
following example demonstrates this:
template<class T> class X {

public:
T operator+(T);

};

template<class T> T X<T>::operator+(T arg1) {
return arg1;

};

int main() {
X<char> a;
X<int> b;
a +’z’;
b + 4;

}

The overloaded addition operator has been defined outside of class X. The
statement a + ’z’ is equivalent to a.operator+(’z’). The statement b + 4 is
equivalent to b.operator+(4).

C++11

You can use trailing return types for template member functions, including those
that have the following kinds of return types:
v Return types depending on the types of the function arguments
v Complicated return types

For more information, see “Trailing return type (C++11)” on page 239.

C++11

Related reference:
“Member functions” on page 359

Friends and templates
There are four kinds of relationships between classes and their friends when
templates are involved:
v One-to-many: A non-template function may be a friend to all template class

instantiations.
v Many-to-one: All instantiations of a template function may be friends to a regular

non-template class.
v One-to-one: A template function instantiated with one set of template arguments

may be a friend to one template class instantiated with the same set of template
arguments. This is also the relationship between a regular non-template class
and a regular non-template friend function.

v Many-to-many: All instantiations of a template function may be a friend to all
instantiations of the template class.
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The following example demonstrates these relationships:
class B{

template<class V> friend int j();
}

template<class S> g();

template<class T> class A {
friend int e();
friend int f(T);
friend int g<T>();
template<class U> friend int h();

};

v Function e() has a one-to-many relationship with class A. Function e() is a
friend to all instantiations of class A.

v Function f() has a one-to-one relationship with class A. The compiler will give
you a warning for this kind of declaration similar to the following:
The friend function declaration "f" will cause an error when the enclosing
template class is instantiated with arguments that declare a friend function
that does not match an existing definition. The function declares only one
function because it is not a template but the function type depends on
one or more template parameters.

v Function g() has a one-to-one relationship with class A. Function g() is a
function template. It must be declared before here or else the compiler will not
recognize g<T> as a template name. For each instantiation of A there is one
matching instantiation of g(). For example, g<int> is a friend of A<int>.

v Function h() has a many-to-many relationship with class A. Function h() is a
function template. For all instantiations of A all instantiations of h() are friends.

v Function j() has a many-to-one relationship with class B.

These relationships also apply to friend classes.
Related reference:
“Friends” on page 373

Function templates
A function template defines how a group of functions can be generated.

A non-template function is not related to a function template, even though the
non-template function may have the same name and parameter profile as those of
a specialization generated from a template. A non-template function is never
considered to be a specialization of a function template.

The following example implements the quicksort algorithm with a function
template named quicksort:
#include <iostream>
#include <cstdlib>
using namespace std;

template<class T> void quicksort(T a[], const int& leftarg, const int& rightarg)
{

if (leftarg < rightarg) {

T pivotvalue = a[leftarg];
int left = leftarg - 1;
int right = rightarg + 1;

for(;;) {
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while (a[--right] > pivotvalue);
while (a[++left] < pivotvalue);

if (left >= right) break;

T temp = a[right];
a[right] = a[left];
a[left] = temp;

}

int pivot = right;
quicksort(a, leftarg, pivot);
quicksort(a, pivot + 1, rightarg);
}

}

int main(void) {
int sortme[10];

for (int i = 0; i < 10; i++) {
sortme[i] = rand();
cout << sortme[i] << " ";

};
cout << endl;

quicksort<int>(sortme, 0, 10 - 1);

for (int i = 0; i < 10; i++) cout << sortme[i] << "
";
cout << endl;
return 0;

}

The above example will have output similar to the following:
16838 5758 10113 17515 31051 5627 23010 7419 16212 4086
4086 5627 5758 7419 10113 16212 16838 17515 23010 31051

This quicksort algorithm will sort an array of type T (whose relational and
assignment operators have been defined). The template function takes one
template argument and three function arguments:
v the type of the array to be sorted, T
v the name of the array to be sorted, a
v the lower bound of the array, leftarg
v the upper bound of the array, rightarg

In the above example, you can also call the quicksort() template function with the
following statement:
quicksort(sortme, 0, 10 - 1);

You may omit any template argument if the compiler can deduce it by the usage
and context of the template function call. In this case, the compiler deduces that
sortme is an array of type int.

C++11

Template parameter packs can be a kind of template parameter for function templates,
and function parameter packs can be a kind of function parameter for function
templates. For more information, see “Variadic templates (C++11)” on page 468.
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You can use trailing return types for function templates, include those that have
the following kinds of return types:
v Return types depending on the types of the function arguments
v Complicated return types

For more information, see “Trailing return type (C++11)” on page 239.

C++11

Template argument deduction
When you call a template function, you may omit any template argument that the
compiler can determine or deduce by the usage and context of that template
function call.

The compiler tries to deduce a template argument by comparing the type of the
corresponding template parameter with the type of the argument used in the
function call. The two types that the compiler compares (the template parameter
and the argument used in the function call) must be of a certain structure in order
for template argument deduction to work. The following lists these type structures:
T
const T
volatile T
T&
T&&
T*
T[10]
A<T>
C(*)(T)
T(*)()
T(*)(U)
T C::*
C T::*
T U::*
T (C::*)()
C (T::*)()
D (C::*)(T)
C (T::*)(U)
T (C::*)(U)
T (U::*)()
T (U::*)(V)
E[10][i]
B<i>
TT<T>
TT<i>
TT<C>

v T, U, and V represent a template type argument
v 10 represents any integer constant
v i represents a template non-type argument
v [i] represents an array bound of a reference or pointer type, or a non-major

array bound of a normal array.
v TT represents a template template argument
v (T), (U), and (V) represents an argument list that has at least one template type

argument
v () represents an argument list that has no template arguments
v <T> represents a template argument list that has at least one template type

argument
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v <i> represents a template argument list that has at least one template non-type
argument

v <C> represents a template argument list that has no template arguments
dependent on a template parameter

The following example demonstrates the use of each of these type structures. The
example declares a template function using each of the above structures as an
argument. These functions are then called (without template arguments) in order
of declaration. The example outputs the same list of type structures:
#include <iostream>
using namespace std;

template<class T> class A { };
template<int i> class B { };

class C {
public:

int x;
};

class D {
public:

C y;
int z;

};

template<class T> void f (T) { cout << "T" << endl; };
template<class T> void f1(const T) { cout << "const T" << endl; };
template<class T> void f2(volatile T) { cout << "volatile T" << endl; };
template<class T> void g (T*) { cout << "T*" << endl; };
template<class T> void g (T&) { cout << "T&" << endl; };
template<class T> void g1(T[10]) { cout << "T[10]" << endl;};
template<class T> void h1(A<T>) { cout << "A<T>" << endl; };

void test_1() {
A<char> a;
C c;

f(c); f1(c); f2(c);
g(c); g(&c); g1(&c);
h1(a);

}

template<class T> void j(C(*)(T)) { cout << "C(*) (T)" << endl; };
template<class T> void j(T(*)()) { cout << "T(*) ()" << endl; }
template<class T, class U> void j(T(*)(U)) { cout << "T(*) (U)" << endl; };

void test_2() {
C (*c_pfunct1)(int);
C (*c_pfunct2)(void);
int (*c_pfunct3)(int);
j(c_pfunct1);
j(c_pfunct2);
j(c_pfunct3);

}

template<class T> void k(T C::*) { cout << "T C::*" << endl; };
template<class T> void k(C T::*) { cout << "C T::*" << endl; };
template<class T, class U> void k(T U::*) { cout << "T U::*" << endl; };

void test_3() {
k(&C::x);
k(&D::y);
k(&D::z);

}
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template<class T> void m(T (C::*)() )
{ cout << "T (C::*)()" << endl; };

template<class T> void m(C (T::*)() )
{ cout << "C (T::*)()" << endl; };

template<class T> void m(D (C::*)(T))
{ cout << "D (C::*)(T)" << endl; };

template<class T, class U> void m(C (T::*)(U))
{ cout << "C (T::*)(U)" << endl; };

template<class T, class U> void m(T (C::*)(U))
{ cout << "T (C::*)(U)" << endl; };

template<class T, class U> void m(T (U::*)() )
{ cout << "T (U::*)()" << endl; };

template<class T, class U, class V> void m(T (U::*)(V))
{ cout << "T (U::*)(V)" << endl; };

void test_4() {
int (C::*f_membp1)(void);
C (D::*f_membp2)(void);
D (C::*f_membp3)(int);
m(f_membp1);
m(f_membp2);
m(f_membp3);

C (D::*f_membp4)(int);
int (C::*f_membp5)(int);
int (D::*f_membp6)(void);
m(f_membp4);
m(f_membp5);
m(f_membp6);

int (D::*f_membp7)(int);
m(f_membp7);

}

template<int i> void n(C[10][i]) { cout << "E[10][i]" << endl; };
template<int i> void n(B<i>) { cout << "B<i>" << endl; };

void test_5() {
C array[10][20];
n(array);
B<20> b;
n(b);

}

template<template<class> class TT, class T> void p1(TT<T>)
{ cout << "TT<T>" << endl; };

template<template<int> class TT, int i> void p2(TT<i>)
{ cout << "TT<i>" << endl; };

template<template<class> class TT> void p3(TT<C>)
{ cout << "TT<C>" << endl; };

void test_6() {
A<char> a;
B<20> b;
A<C> c;
p1(a);
p2(b);
p3(c);

}

int main() { test_1(); test_2(); test_3(); test_4(); test_5(); test_6(); }
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Deducing type template arguments

The compiler can deduce template arguments from a type composed of several of
the listed type structures. The following example demonstrates template argument
deduction for a type composed of several type structures:
template<class T> class Y { };

template<class T, int i> class X {
public:

Y<T> f(char[20][i]) { return x; };
Y<T> x;

};

template<template<class> class T, class U, class V, class W, int i>
void g( T<U> (V::*)(W[20][i]) ) { };

int main()
{

Y<int> (X<int, 20>::*p)(char[20][20]) = &X<int, 20>::f;
g(p);

}

The type Y<int> (X<int, 20>::*p)(char[20][20])T<U> (V::*)(W[20][i]) is based
on the type structure T (U::*)(V):
v T is Y<int>

v U is X<int, 20>

v V is char[20][20]

If you qualify a type with the class to which that type belongs, and that class (a
nested name specifier) depends on a template parameter, the compiler will not
deduce a template argument for that parameter. If a type contains a template
argument that cannot be deduced for this reason, all template arguments in that
type will not be deduced. The following example demonstrates this:
template<class T, class U, class V>

void h(typename Y<T>::template Z<U>, Y<T>, Y<V>) { };

int main() {
Y<int>::Z<char> a;
Y<int> b;
Y<float> c;

h<int, char, float>(a, b, c);
h<int, char>(a, b, c);
// h<int>(a, b, c);

}

The compiler will not deduce the template arguments T and U in typename
Y<T>::template Z<U> (but it will deduce the T in Y<T>). The compiler would not
allow the template function call h<int>(a, b, c) because U is not deduced by the
compiler.

The compiler can deduce a function template argument from a pointer to function
or pointer to member function argument given several overloaded function names.
However, none of the overloaded functions may be function templates, nor can
more than one overloaded function match the required type. The following
example demonstrates this:
template<class T> void f(void(*) (T,int)) { };

template<class T> void g1(T, int) { };
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void g2(int, int) { };
void g2(char, int) { };

void g3(int, int, int) { };
void g3(float, int) { };

int main() {
// f(&g1);
// f(&g2);

f(&g3);
}

The compiler would not allow the call f(&g1) because g1() is a function template.
The compiler would not allow the call f(&g2) because both functions named g2()
match the type required by f().

The compiler cannot deduce a template argument from the type of a default
argument. The following example demonstrates this:
template<class T> void f(T = 2, T = 3) { };

int main() {
f(6);

// f();
f<int>();

}

The compiler allows the call f(6) because the compiler deduces the template
argument (int) by the value of the function call's argument. The compiler would
not allow the call f() because the compiler cannot deduce template argument from
the default arguments of f().

The compiler cannot deduce a template type argument from the type of a non-type
template argument. For example, the compiler will not allow the following:
template<class T, T i> void f(int[20][i]) { };

int main() {
int a[20][30];
f(a);

}

The compiler cannot deduce the type of template parameter T.

C++11

If a template type parameter of a function template is a cv-unqualified rvalue
reference, but the argument in the function call is an lvalue, the corresponding
lvalue reference is used instead of the rvalue reference. However, if the template
type parameter is a cv-qualified rvalue reference, and the argument in the function
call is an lvalue, the template instantiation fails. For example:
template <class T> double func1(T&&);
template <class T> double func2(const T&&);

int var;

// The compiler calls func1<int&>(int&)
double a = func1(var);

// The compiler calls func1<int>(int&&)
double b = func1(1);
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// error
double c = func2(var);

// The compiler calls func2<int>(const int&&)
double d = func2(1);

In this example, the template type parameter of the function template func1 is a
cv-unqualified rvalue reference, and the template type parameter of the function
template func2 is a cv-qualified rvalue reference. In the initialization of variable a,
the template argument var is an lvalue, so the lvalue reference type int& is used in
the instantiation of the function template func1. In the initialization of variable b,
the template argument 1 is an rvalue, so the rvalue reference type int&& remains in
the template instantiation. In the initialization of c, the template type parameter
T&& is cv-qualified, but var is an lvalue, so var cannot be bound to the rvalue
reference T&&.

C++11

Deducing non-type template arguments

The compiler cannot deduce the value of a major array bound unless the bound
refers to a reference or pointer type. Major array bounds are not part of function
parameter types. The following code demonstrates this:
template<int i> void f(int a[10][i]) { };
template<int i> void g(int a[i]) { };
template<int i> void h(int (&a)[i]) { };

int main () {
int b[10][20];
int c[10];
f(b);
// g(c);
h(c);

}

The compiler would not allow the call g(c); the compiler cannot deduce template
argument i.

The compiler cannot deduce the value of a non-type template argument used in an
expression in the template function's parameter list. The following example
demonstrates this:
template<int i> class X { };

template<int i> void f(X<i - 1>) { };

int main () {
X<0> a;
f<1>(a);
// f(a);

}

To call function f() with object a, the function must accept an argument of type
X<0>. However, the compiler cannot deduce that the template argument i must be
equal to 1 in order for the function template argument type X<i - 1> to be
equivalent to X<0>. Therefore the compiler would not allow the function call f(a).
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If you want the compiler to deduce a non-type template argument, the type of the
parameter must match exactly the type of value used in the function call. For
example, the compiler will not allow the following:
template<int i> class A { };
template<short d> void f(A<d>) { };

int main() {
A<1> a;
f(a);

}

The compiler will not convert int to short when the example calls f().

However, deduced array bounds may be of any integral type.

C++11

Template argument deduction also applies to the variadic templates feature. For
more information, see “Variadic templates (C++11)” on page 468.

C++11

Related reference:
“References (C++ only)” on page 107
“Lvalues and rvalues” on page 141

Overloading function templates
You may overload a function template either by a non-template function or by
another function template.

If you call the name of an overloaded function template, the compiler will try to
deduce its template arguments and check its explicitly declared template
arguments. If successful, it will instantiate a function template specialization, then
add this specialization to the set of candidate functions used in overload resolution.
The compiler proceeds with overload resolution, choosing the most appropriate
function from the set of candidate functions. Non-template functions take
precedence over template functions. The following example describes this:
#include <iostream>
using namespace std;

template<class T> void f(T x, T y) { cout << "Template" << endl; }

void f(int w, int z) { cout << "Non-template" << endl; }

int main() {
f( 1 , 2 );
f(’a’, ’b’);
f( 1 , ’b’);

}

The following is the output of the above example:
Non-template
Template
Non-template
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The function call f(1, 2) could match the argument types of both the template
function and the non-template function. The non-template function is called
because a non-template function takes precedence in overload resolution.

The function call f(’a’, ’b’) can only match the argument types of the template
function. The template function is called.

Argument deduction fails for the function call f(1, ’b’); the compiler does not
generate any template function specialization and overload resolution does not
take place. The non-template function resolves this function call after using the
standard conversion from char to int for the function argument ’b’.
Related reference:
“Overload resolution” on page 337

Partial ordering of function templates
A function template specialization might be ambiguous because template argument
deduction might associate the specialization with more than one of the overloaded
definitions. The compiler will then choose the definition that is the most
specialized. This process of selecting a function template definition is called partial
ordering.

A template X is more specialized than a template Y if every argument list that
matches the one specified by X also matches the one specified by Y, but not the
other way around. The following example demonstrates partial ordering:
template<class T> void f(T) { }
template<class T> void f(T*) { }
template<class T> void f(const T*) { }

template<class T> void g(T) { }
template<class T> void g(T&) { }

template<class T> void h(T) { }
template<class T> void h(T, ...) { }

int main() {
const int *p;
f(p);

int q;
// g(q);
// h(q);
}

The declaration template<class T> void f(const T*) is more specialized than
template<class T> void f(T*). Therefore, the function call f(p) calls
template<class T> void f(const T*). However, neither void g(T) nor void g(T&)
is more specialized than the other. Therefore, the function call g(q) would be
ambiguous.

Ellipses do not affect partial ordering. Therefore, the function call h(q) would also
be ambiguous.

The compiler uses partial ordering in the following cases:
v Calling a function template specialization that requires overload resolution.
v Taking the address of a function template specialization.
v When a friend function declaration, an explicit instantiation, or explicit

specialization refers to a function template specialization.
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v Determining the appropriate deallocation function that is also a function
template for a given placement operator new.

Related reference:
“Template specialization” on page 460
“new expressions (C++ only)” on page 185

Template instantiation
The act of creating a new definition of a function, class, or member of a class from
a template declaration and one or more template arguments is called template
instantiation. The definition created from a template instantiation to handle a
specific set of template arguments is called a specialization.

Template instantiation has two forms: explicit instantiation and implicit
instantiation.
Related reference:
“Template specialization” on page 460

Explicit instantiation
You can explicitly tell the compiler when it should generate a definition from a
template. This is called explicit instantiation. Explicit instantiation includes two
forms: explicit instantiation declaration and explicit instantiation definition.

C++11

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Explicit instantiation declaration

The explicit instantiation declarations feature is introduced in the C++11 standard.
With this feature, you can suppress the implicit instantiation of a template
specialization or its members. The extern keyword is used to indicate explicit
instantiation declaration. The usage of extern here is different from that of a
storage class specifier.

Explicit instantiation declaration syntax

�� extern template template_declaration ��

You can provide an explicit instantiation declaration for a template specialization if
an explicit instantiation definition of the template exists in other translation units
or later in the same file. If one translation unit contains the explicit instantiation
definition, other translation units can use the specialization without having the
specialization instantiated multiple times. The following example demonstrates this
concept:
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//sample1.h:
template<typename T, T val>
union A{

T func();
};
extern template union A<int, 55>;

template<class T, T val>
T A<T,val>::func(void){

return val;
}

//sampleA.C"
#include "sample1.h"

template union A<int,55>;

//sampleB.C:
#include "sample1.h"

int main(void){
return A<int, 55>().func();

}

sampleB.C uses the explicit instantiation definition of A<int, 55>().func()in
sampleA.C.

If an explicit instantiation declaration of a function or class is declared, but there is
no corresponding explicit instantiation definition anywhere in the program, the
compiler issues an error message. See the following example:
// sample2.C
template <typename T, T val>
struct A{

virtual T func();
virtual T bar();

}

extern template int A<int,55>::func();

template <class T, T val>
T A<T,val>::func(void){

return val;
}

template <class T, T val>
T A<T,val>::bar(void){

return val;
}

int main(void){
return A<int,55>().bar();

}

When you use explicit instantiation declaration, pay attention to the following
restrictions:
v You can name a static class member in an explicit instantiation declaration, but

you cannot name a static function because a static function cannot be accessed
by name in other translation units.

v The explicit instantiation declaration of a class is not equivalent to the explicit
instantiation declaration of each of its members.

C++11
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Explicit instantiation definition

An explicit instantiation definition is an instantiation of a template specialization or
its members.

Explicit instantiation definition syntax

�� template template_declaration ��

Here is an example of explicit instantiation definition:
template<class T> class Array { void mf(); };
template class Array<char>; /* explicit instantiation definition */
template void Array<int>::mf(); /* explicit instantiation definition */

template<class T> void sort(Array<T>& v) { }
template void sort(Array<char>&); /* explicit instantiation definition */

namespace N {
template<class T> void f(T&) { }

}

template void N::f<int>(int&);
// The explicit instantiation definition is in namespace N.

int* p = 0;
template<class T> T g(T = &p);
template char g(char); /* explicit instantiation definition */

template <class T> class X {
private:

T v(T arg) { return arg; };
};

template int X<int>::v(int); /* explicit instantiation definition */

template<class T> T g(T val) { return val;}
template<class T> void Array<T>::mf() { }

An explicit instantiation definition of a template is in the same namespace where
you define the template.

Access checking rules do not apply to the arguments in the explicit instantiation
definitions. Template arguments in an explicit instantiation definition can be
private types or objects. In this example, you can use the explicit instantiation
definition template int X<int>::v(int) even though the member function is
declared to be private.

The compiler does not use default arguments when you explicitly instantiate a
template. In this example, you can use the explicit instantiation definition template
char g(char) even though the default argument is an address of the type int.

Note: You cannot use the inline or C++11 constexpr C++11 specifier in an
explicit instantiation of a function template or a member function of a class
template.

C++11
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Explicit instantiation and inline namespace definitions

Inline namespace definitions are namespace definitions with an initial inline
keyword. Members of an inline namespace can be explicitly instantiated or
specialized as if they were also members of the enclosing namespace. For more
information, see “Inline namespace definitions (C++11)” on page 324.

C++11

Related reference:
“C++11 compatibility” on page 640

Implicit instantiation
Unless a template specialization has been explicitly instantiated or explicitly
specialized, the compiler will generate a specialization for the template only when
it needs the definition. This is called implicit instantiation.

C++11

The compiler does not need to generate the specialization for nonclass, noninline
entities when an explicit instantiation declaration is present.

C++11

If the compiler must instantiate a class template specialization and the template is
declared, you must also define the template.

For example, if you declare a pointer to a class, the definition of that class is not
needed and the class will not be implicitly instantiated. The following example
demonstrates when the compiler instantiates a template class:
template<class T> class X {

public:
X* p;
void f();
void g();

1};

X<int>* q;
X<int> r;
X<float>* s;
r.f();
s->g();

The compiler requires the instantiation of the following classes and functions:
v X<int> when the object r is declared
v X<int>::f() at the member function call r.f()
v X<float> and X<float>::g() at the class member access function call s->g()

Therefore, the functions X<T>::f() and X<T>::g() must be defined in order for the
above example to compile. (The compiler will use the default constructor of class X
when it creates object r.) The compiler does not require the instantiation of the
following definitions:
v class X when the pointer p is declared
v X<int> when the pointer q is declared
v X<float> when the pointer s is declared
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The compiler will implicitly instantiate a class template specialization if it is
involved in pointer conversion or pointer to member conversion. The following
example demonstrates this:
template<class T> class B { };
template<class T> class D : public B<T> { };

void g(D<double>* p, D<int>* q)
{

B<double>* r = p;
delete q;

}

The assignment B<double>* r = p converts p of type D<double>* to a type of
B<double>*; the compiler must instantiate D<double>. The compiler must
instantiate D<int> when it tries to delete q.

If the compiler implicitly instantiates a class template that contains static members,
those static members are not implicitly instantiated. The compiler will instantiate a
static member only when the compiler needs the static member's definition. Every
instantiated class template specialization has its own copy of static members. The
following example demonstrates this:
template<class T> class X {
public:

static T v;
};

template<class T> T X<T>::v = 0;

X<char*> a;
X<float> b;
X<float> c;

Object a has a static member variable v of type char*. Object b has a static variable
v of type float. Objects b and c share the single static data member v.

An implicitly instantiated template is in the same namespace where you defined
the template.

If a function template or a member function template specialization is involved
with overload resolution, the compiler implicitly instantiates a declaration of the
specialization.

Template specialization
The act of creating a new definition of a function, class, or member of a class from
a template declaration and one or more template arguments is called template
instantiation. The definition created from a template instantiation is called a
specialization. A primary template is the template that is being specialized.
Related reference:
“Template instantiation” on page 456

Explicit specialization
When you instantiate a template with a given set of template arguments the
compiler generates a new definition based on those template arguments. You can
override this behavior of definition generation. You can instead specify the
definition the compiler uses for a given set of template arguments. This is called
explicit specialization. You can explicitly specialize any of the following templates:
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v Function template
v Class template
v Member function of a class template
v Static data member of a class template
v Member class of a class template
v Member function template of a class template
v Member class template of a class template

Explicit specialization declaration syntax

�� template < > declaration_name declaration_body
< template_argument_list >

��

The template<> prefix indicates that the following template declaration takes no
template parameters. The declaration_name is the name of a previously declared
template. Note that you can forward-declare an explicit specialization so the
declaration_body is optional, at least until the specialization is referenced.

The following example demonstrates explicit specialization:
using namespace std;

template<class T = float, int i = 5> class A
{

public:
A();
int value;

};

template<> class A<> { public: A(); };
template<> class A<double, 10> { public: A(); };

template<class T, int i> A<T, i>::A() : value(i) {
cout << "Primary template, "

<< "non-type argument is " << value << endl;
}

A<>::A() {
cout << "Explicit specialization "

<< "default arguments" << endl;
}

A<double, 10>::A() {
cout << "Explicit specialization "

<< "<double, 10>" << endl;
}

int main() {
A<int,6> x;
A<> y;
A<double, 10> z;

}

See the output of the above example:
Primary template non-type argument is: 6
Explicit specialization default arguments
Explicit specialization <double, 10>

This example declared two explicit specializations for the primary template (the
template which is being specialized) class A. Object x uses the constructor of the
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primary template. Object y uses the explicit specialization A<>::A(). Object z uses
the explicit specialization A<double, 10>::A().

Definition and declaration of explicit specializations

The definition of an explicitly specialized class is unrelated to the definition of the
primary template. You do not have to define the primary template in order to
define the specialization (nor do you have to define the specialization in order to
define the primary template). See the following example:
template<class T> class A;
template<> class A<int>;

template<> class A<int> { /* ... */ };

The primary template is not defined, but the explicit specialization is.

You can use the name of an explicit specialization that has been declared but not
defined the same way as an incompletely defined class. The following example
demonstrates this:
template<class T> class X { };
template<> class X<char>;
X<char>* p;
X<int> i;
// X<char> j;

The compiler does not allow the declaration X<char> j because the explicit
specialization of X<char> is not defined.

Explicit specialization and scope

A declaration of a primary template must be in scope at the point of declaration of
the explicit specialization. In other words, an explicit specialization declaration
must appear after the declaration of the primary template. For example, the
compiler will not allow the following code:
template<> class A<int>;
template<class T> class A;

An explicit specialization is in the same namespace as the definition of the primary
template.

Class members of explicit specializations

A member of an explicitly specialized class is not implicitly instantiated from the
member declaration of the primary template. You have to explicitly define
members of a class template specialization. You define members of an explicitly
specialized template class as you would normal classes, without the template<>
prefix. In addition, you can define the members of an explicit specialization inline;
no special template syntax is used in this case. The following example
demonstrates a class template specialization:
template<class T> class A {

public:
void f(T);

};

template<> class A<int> {
public:

int g(int);
};
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int A<int>::g(int arg) { return 0; }

int main() {
A<int> a;
a.g(1234);

}

The explicit specialization A<int> contains the member function g(), which the
primary template does not.

If you explicitly specialize a template, a member template, or the member of a
class template, then you must declare this specialization before that specialization
is implicitly instantiated. For example, the compiler will not allow the following
code:
template<class T> class A { };

void f() { A<int> x; }
template<> class A<int> { };

int main() { f(); }

The compiler will not allow the explicit specialization template<> class A<int> {
}; because function f() uses this specialization (in the construction of x) before the
specialization.

Explicit specialization of function templates

In a function template specialization, a template argument is optional if the
compiler can deduce it from the type of the function arguments. The following
example demonstrates this:
template<class T> class X { };
template<class T> void f(X<T>);
template<> void f(X<int>);

The explicit specialization template<> void f(X<int>) is equivalent to template<>
void f<int>(X<int>).

You cannot specify default function arguments in a declaration or a definition for
any of the following cases:
v Explicit specialization of a function template
v Explicit specialization of a member function template

For example, the compiler will not allow the following code:
template<class T> void f(T a) { };
template<> void f<int>(int a = 5) { };

template<class T> class X {
void f(T a) { }

};
template<> void X<int>::f(int a = 10) { };

Explicit specialization of members of class templates

Each instantiated class template specialization has its own copy of any static
members. You may explicitly specialize static members. The following example
demonstrates this:
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template<class T> class X {
public:

static T v;
static void f(T);

};

template<class T> T X<T>::v = 0;
template<class T> void X<T>::f(T arg) { v = arg; }

template<> char* X<char*>::v = "Hello";
template<> void X<float>::f(float arg) { v = arg * 2; }

int main() {
X<char*> a, b;
X<float> c;
c.f(10);

}

This code explicitly specializes the initialization of static data member X::v to
point to the string "Hello" for the template argument char*. The function X::f() is
explicitly specialized for the template argument float. The static data member v in
objects a and b point to the same string, "Hello". The value of c.v is equal to 20
after the call function call c.f(10).

You can nest member templates within many enclosing class templates. If you
explicitly specialize a template nested within several enclosing class templates, you
must prefix the declaration with template<> for every enclosing class template you
specialize. You may leave some enclosing class templates unspecialized, however
you cannot explicitly specialize a class template unless its enclosing class templates
are also explicitly specialized. The following example demonstrates explicit
specialization of nested member templates:
#include <iostream>
using namespace std;

template<class T> class X {
public:

template<class U> class Y {
public:

template<class V> void f(U,V);
void g(U);

};
};

template<class T> template<class U> template<class V>
void X<T>::Y<U>::f(U, V) { cout << "Template 1" << endl; }

template<class T> template<class U>
void X<T>::Y<U>::g(U) { cout << "Template 2" << endl; }

template<> template<>
void X<int>::Y<int>::g(int) { cout << "Template 3" << endl; }

template<> template<> template<class V>
void X<int>::Y<int>::f(int, V) { cout << "Template 4" << endl; }

template<> template<> template<>
void X<int>::Y<int>::f<int>(int, int) { cout << "Template 5" << endl; }

// template<> template<class U> template<class V>
// void X<char>::Y<U>::f(U, V) { cout << "Template 6" << endl; }

// template<class T> template<>
// void X<T>::Y<float>::g(float) { cout << "Template 7" << endl; }
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int main() {
X<int>::Y<int> a;
X<char>::Y<char> b;
a.f(1, 2);
a.f(3, ’x’);
a.g(3);
b.f(’x’, ’y’);
b.g(’z’);

}

See the output of the above program:
Template 5
Template 4
Template 3
Template 1
Template 2

v The compiler would not allow the template specialization definition that would
output "Template 6" because it is attempting to specialize a member (function
f()) without specialization of its containing class (Y).

v The compiler would not allow the template specialization definition that would
output "Template 7" because the enclosing class of class Y (which is class X) is
not explicitly specialized.

A friend declaration cannot declare an explicit specialization.

C++11

Explicit specialization and inline namespace definitions

Inline namespace definitions are namespace definitions with an initial inline
keyword. Members of an inline namespace can be explicitly instantiated or
specialized as if they were also members of the enclosing namespace. For more
information, see “Inline namespace definitions (C++11)” on page 324.

C++11

Related reference:
“Function templates” on page 446
“Class templates” on page 441
“Member functions of class templates” on page 445
“Static data members and templates” on page 444
“Deleted functions” on page 222

Partial specialization
When you instantiate a class template, the compiler creates a definition based on
the template arguments you have passed. Alternatively, if all those template
arguments match those of an explicit specialization, the compiler uses the
definition defined by the explicit specialization.

A partial specialization is a generalization of explicit specialization. An explicit
specialization only has a template argument list. A partial specialization has both a
template argument list and a template parameter list. The compiler uses the partial
specialization if its template argument list matches a subset of the template
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arguments of a template instantiation. The compiler will then generate a new
definition from the partial specialization with the rest of the unmatched template
arguments of the template instantiation.

You cannot partially specialize function templates.

Partial specialization syntax

�� template <template_parameter_list> declaration_name �

� <template_argument_list> declaration_body ��

The declaration_name is a name of a previously declared template. Note that you
can forward-declare a partial specialization so that the declaration_body is optional.

The following demonstrates the use of partial specializations:
#include <iostream>
using namespace std;

template<class T, class U, int I> struct X
{ void f() { cout << "Primary template" << endl; } };

template<class T, int I> struct X<T, T*, I>
{ void f() { cout << "Partial specialization 1" << endl;
} };

template<class T, class U, int I> struct X<T*, U, I>
{ void f() { cout << "Partial specialization 2" << endl;
} };

template<class T> struct X<int, T*, 10>
{ void f() { cout << "Partial specialization 3" << endl;
} };

template<class T, class U, int I> struct X<T, U*, I>
{ void f() { cout << "Partial specialization 4" << endl;
} };

int main() {
X<int, int, 10> a;
X<int, int*, 5> b;
X<int*, float, 10> c;
X<int, char*, 10> d;
X<float, int*, 10> e;

// X<int, int*, 10> f;
a.f(); b.f(); c.f(); d.f(); e.f();

}

The following is the output of the above example:
Primary template
Partial specialization 1
Partial specialization 2
Partial specialization 3
Partial specialization 4

The compiler would not allow the declaration X<int, int*, 10> f because it can
match template struct X<T, T*, I>, template struct X<int, T*, 10>, or
template struct X<T, U*, I>, and none of these declarations are a better match
than the others.
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Each class template partial specialization is a separate template. You must provide
definitions for each member of a class template partial specialization.

Template parameter and argument lists of partial specializations

Primary templates do not have template argument lists; this list is implied in the
template parameter list.

Template parameters specified in a primary template but not used in a partial
specialization are omitted from the template parameter list of the partial
specialization. The order of a partial specialization's argument list is the same as
the order of the primary template's implied argument list.

In a template argument list of a partial template parameter, you cannot have an
expression that involves non-type arguments unless that expression is only an
identifier. In the following example, the compiler will not allow the first partial
specialization, but will allow the second one:
template<int I, int J> class X { };

// Invalid partial specialization
template<int I> class X <I * 4, I + 3> { };

// Valid partial specialization
template <int I> class X <I, I> { };

The type of a non-type template argument cannot depend on a template parameter
of a partial specialization. The compiler will not allow the following partial
specialization:
template<class T, T i> class X { };

// Invalid partial specialization
template<class T> class X<T, 25> { };

A partial specialization's template argument list cannot be the same as the list
implied by the primary template.

You cannot have default values in the template parameter list of a partial
specialization.

Matching of class template partial specializations

The compiler determines whether to use the primary template or one of its partial
specializations by matching the template arguments of the class template
specialization with the template argument lists of the primary template and the
partial specializations:
v If the compiler finds only one specialization, then the compiler generates a

definition from that specialization.
v If the compiler finds more than one specialization, then the compiler tries to

determine which of the specializations is the most specialized. A template X is
more specialized than a template Y if every argument list that matches the one
specified by X also matches the one specified by Y, but not the other way
around. If the compiler cannot find the most specialized specialization, then the
use of the class template is ambiguous; the compiler will not allow the program.

v If the compiler does not find any matches, then the compiler generates a
definition from the primary template.
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C++11

Partial specialization also applies to the variadic templates feature. For more
information, see “Variadic templates (C++11)”
Related reference:
“Template parameters” on page 434
“Template arguments” on page 437

Variadic templates (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Before C++11, templates had a fixed number of parameters that must be specified
in the declaration of the templates. Templates could not directly express a class or
function template that had a variable number of parameters. To partially alleviate
this problem in the existing C++ programs, you could use overloaded function
templates that had a different number of parameters or extra defaulted template
parameters.

With the variadic templates feature, you can define class or function templates that
have any number (including zero) of parameters. To achieve this goal, this feature
introduces a kind of parameter called parameter pack to represent a list of zero or
more parameters for templates.

The variadic template feature also introduces pack expansion to indicate that a
parameter pack is expanded.

Two existing techniques, template argument deduction and partial specialization, can
also apply to templates that have parameter packs in their parameter lists.

Parameter packs

A parameter pack can be a type of parameter for templates. Unlike previous
parameters, which can only bind to a single argument, a parameter pack can pack
multiple parameters into a single parameter by placing an ellipsis to the left of the
parameter name.

In the template definition, a parameter pack is treated as a single parameter. In the
template instantiation, a parameter pack is expanded and the correct number of the
parameters are created.

According to the context where a parameter pack is used, the parameter pack can
be either a template parameter pack or a function parameter pack.

Template parameter packs
A template parameter pack is a template parameter that represents any
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number (including zero) of template parameters. Syntactically, a template
parameter pack is a template parameter specified with an ellipsis. Consider
the following example.

template<class...A> struct container{};
template<class...B> void func();

In this example, A and B are template parameter packs.

According to the type of the parameters contained in a template parameter pack,
there are three kinds of template parameter packs:
v Type parameter packs
v Non-type parameter packs
v Template template parameter packs

A type parameter pack represents zero or more type template parameters.
Similarly, a non-type parameter pack represents zero or more non-type template
parameters.

Note: Template template parameter packs are not supported in z/OS XL C/C++
V2R1.

The following example shows a type parameter pack:
template<class...T> class X{};

X<> a; // the parameter list is empty
X<int> b; // the parameter list has one item
X<int, char, float> c; // the parameter list has three items

In this example, the type parameter pack T is expanded into a list of zero or more
type template parameters.

The following example shows a non-type parameter pack:
template<bool...A> class X{};

X<> a; // the parameter list is empty
X<true> b; // the parameter list has one item
X<true, false, true> c; // the parameter list has three items

In this example, the non-type parameter pack A is expanded into a list of zero or
more non-type template parameters.

In a context where template arguments can be deduced; for example, function
templates and class template partial specializations, a template parameter pack
does not need to be the last template parameter of a template. In this case, you can
declare more than one template parameter pack in the template parameter list.
However, if template arguments cannot be deduced, you can declare at most one
template parameter pack in the template parameter list, and the template
parameter pack must be the last template parameter. Consider the following
example:
// error
template<class...A, class...B>struct container1{};

// error
template<class...A,class B>struct container2{};

In this example, the compiler issues two error messages. One error message is for
class template container1 because container1 has two template parameter packs A
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and B that cannot be deduced. The other error message is for class template
container2 because template parameter pack A is not the last template parameter
of container2, and A cannot be deduced.

Default arguments cannot be used for a template parameter pack. Consider the
following example:
template<typename...T=int> struct foo1{};

In this example, the compiler issues an error message because the template
parameter pack T is given a default argument int.

Function parameter packs

A function parameter pack is a function parameter that represents zero or
more function parameters. Syntactically, a function parameter pack is a
function parameter specified with an ellipsis.

In the definition of a function template, a function parameter pack uses a template
parameter pack in the function parameters. The template parameter pack is
expanded by the function parameter pack. Consider the following example:
template<class...A> void func(A...args)

In this example, A is a template parameter pack, and args is a function parameter
pack. You can call the function with any number (including zero) of arguments:
func(); // void func();
func(1); // void func(int);
func(1,2,3,4,5); // void func(int,int,int,int,int);
func(1,’x’, aWidget); // void func(int,char,widget);

A function parameter pack is a trailing function parameter pack if it is the last
function parameter of a function template. Otherwise, it is a non-trailing function
parameter pack. A function template can have trailing and non-trailing function
parameter packs. A non-trailing function parameter pack can be deduced only
from the explicitly specified arguments when the function template is called. If the
function template is called without explicit arguments, the non-trailing function
parameter pack must be empty, as shown in the following example:
#include <cassert>

template<class...A, class...B> void func(A...arg1,int sz1, int sz2, B...arg2)
{

assert( sizeof...(arg1) == sz1);
assert( sizeof...(arg2) == sz2);

}

int main(void)
{

//A:(int, int, int), B:(int, int, int, int, int)
func<int,int,int>(1,2,3,3,5,1,2,3,4,5);

//A: empty, B:(int, int, int, int, int)
func(0,5,1,2,3,4,5);
return 0;

}

In this example, function template func has two function parameter packs arg1
and arg2. arg1 is a non-trailing function parameter pack, and arg2 is a trailing
function parameter pack. When func is called with three explicitly specified
arguments as func<int,int,int>(1,2,3,3,5,1,2,3,4,5), both arg1 and arg2 are
deduced successfully. When func is called without explicitly specified arguments as
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func(0,5,1,2,3,4,5), arg2 is deduced successfully and arg1 is empty. In this
example, the template parameter packs of function template func can be deduced,
so func can have more than one template parameter pack.

Pack expansion

A pack expansion is an expression that contains one or more parameter packs
followed by an ellipsis to indicate that the parameter packs are expanded.
Consider the following example:
template<class...T> void func(T...a){};
template<class...U> void func1(U...b){

func(b...);
}

In this example, T... and U... are the corresponding pack expansions of the
template parameter packs T and U, and b... is the pack expansion of the function
parameter pack b.

A pack expansion can be used in the following contexts:
v Expression list
v Initializer list
v Base specifier list
v Member initializer list
v Template argument list
v Exception specification list

Expression list

Example:
#include <cstdio>
#include <cassert>

template<class...A> void func1(A...arg){
assert(false);

}

void func1(int a1, int a2, int a3, int a4, int a5, int a6){
printf("call with(%d,%d,%d,%d,%d,%d)\n",a1,a2,a3,a4,a5,a6);

}

template<class...A> int func(A...args){
int size = sizeof...(A);
switch(size){

case 0: func1(99,99,99,99,99,99);
break;
case 1: func1(99,99,args...,99,99,99);
break;
case 2: func1(99,99,args...,99,99);
break;
case 3: func1(args...,99,99,99);
break;
case 4: func1(99,args...,99);
break;
case 5: func1(99,args...);
break;
case 6: func1(args...);
break;
default:
func1(0,0,0,0,0,0);

}
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return size;
}

int main(void){
func();
func(1);
func(1,2);
func(1,2,3);
func(1,2,3,4);
func(1,2,3,4,5);
func(1,2,3,4,5,6);
func(1,2,3,4,5,6,7);
return 0;

}

The output of this example:
call with (99,99,99,99,99,99)
call with (99,99,1,99,99,99)
call with (99,99,1,2,99,99)
call with (1,2,3,99,99,99)
call with (99,1,2,3,4,99)
call with (99,1,2,3,4,5)
call with (1,2,3,4,5,6)
call with (0,0,0,0,0,0)

In this example, the switch statement shows the different positions of the pack
expansion args... within the expression lists of the function func1. The output
shows each call of the function func1 to indicate the expansion.

Initializer list

Example:
#include <iostream>
using namespace std;

void printarray(int arg[], int length){
for(int n=0; n<length; n++){

printf("%d ",arg[n]);
}
printf("\n");

}

template<class...A> void func(A...args){
const int size = sizeof...(args) +5;
printf("size %d\n", size);
int res[sizeof...(args)+5]={99,98,args...,97,96,95};
printarray(res,size);

}

int main(void)
{

func();
func(1);
func(1,2);
func(1,2,3);
func(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20);
return 0;

}

The output of this example:
size 5
99 98 97 96 95
size 6
99 98 1 97 96 95
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size 7
99 98 1 2 97 96 95
size 8
99 98 1 2 3 97 96 95
size 25
99 98 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 97 96 95

In this example, the pack expansion args... is in the initializer list of the array
res.

Base specifier list

Example:
#include <iostream>
using namespace std;

struct a1{};
struct a2{};
struct a3{};
struct a4{};

template<class X> struct baseC{
baseC() {printf("baseC primary ctor\n");}

};
template<> struct baseC<a1>{

baseC() {printf("baseC a1 ctor\n");}
};
template<> struct baseC<a2>{

baseC() {printf("baseC a2 ctor\n");}
};
template<> struct baseC<a3>{

baseC() {printf("baseC a3 ctor\n");}
};
template<> struct baseC<a4>{

baseC() {printf("baseC a4 ctor\n");}
};

template<class...A> struct container : public baseC<A>...{
container(){

printf("container ctor\n");
}

};

int main(void){
container<a1,a2,a3,a4> test;
return 0;

}

The output of this example:
baseC a1 ctor
baseC a2 ctor
baseC a3 ctor
baseC a4 ctor
container ctor

In this example, the pack expansion baseC<A>... is in the base specifier list of the
class template container. The pack expansion is expanded into four base classes
baseC<a1>, baseC<a2>, baseC<a3>, and baseC<a4>. The output shows that all the
four base class templates are initialized before the instantiation of the class
template container.

Member initializer list
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Example:
#include <iostream>
using namespace std;

struct a1{};
struct a2{};
struct a3{};
struct a4{};

template<class X> struct baseC{
baseC(int a) {printf("baseC primary ctor: %d\n", a);}

};
template<> struct baseC<a1>{

baseC(int a) {printf("baseC a1 ctor: %d\n", a);}
};
template<> struct baseC<a2>{

baseC(int a) {printf("baseC a2 ctor: %d\n", a);}
};
template<> struct baseC<a3>{

baseC(int a) {printf("baseC a3 ctor: %d\n", a);}
};
template<> struct baseC<a4>{

baseC(int a) {printf("baseC a4 ctor: %d\n", a);}
};

template<class...A> struct container : public baseC<A>...{
container(): baseC<A>(12)...{

printf("container ctor\n");
}

};

int main(void){
container<a1,a2,a3,a4> test;
return 0;

}

The output of this example:
baseC a1 ctor:12
baseC a2 ctor:12
baseC a3 ctor:12
baseC a4 ctor:12
container ctor

In this example, the pack expansion baseC<A>(12)... is in the member initializer
list of the class template container. The constructor initializer list is expanded to
include the call for each base class baseC<a1>(12), baseC<a2>(12), baseC<a3>(12),
and baseC<a4>(12).

Template argument list

Example:
#include <iostream>
using namespace std;

template<int val> struct value{
operator int(){return val;}

};

template <typename...I> struct container{
container(){

int array[sizeof...(I)]={I()...};
printf("container<");
for(int count = 0; count<sizeof...(I); count++){

if(count>0){
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printf(",");
}
printf("%d", array[count]);

}
printf(">\n");

}
};

template<class A, class B, class...C> void func(A arg1, B arg2, C...arg3){
container<A,B,C...> t1; // container<99,98,3,4,5,6>
container<C...,A,B> t2; // container<3,4,5,6,99,98>
container<A,C...,B> t3; // container<99,3,4,5,6,98>

}

int main(void){
value<99> v99;
value<98> v98;
value<3> v3;
value<4> v4;
value<5> v5;
value<6> v6;
func(v99,v98,v3,v4,v5,v6);
return 0;

}

The output of this example:
container<99,98,3,4,5,6>
container<3,4,5,6,99,98>
container<99,3,4,5,6,98>

In this example, the pack expansion C... is expanded in the context of template
argument list for the class template container.

Exception specification list

Example:
struct a1{};
struct a2{};
struct a3{};
struct a4{};
struct a5{};
struct stuff{};

template<class...X> void func(int arg) throw(X...){
a1 t1;
a2 t2;
a3 t3;
a4 t4;
a5 t5;
stuff st;

switch(arg){
case 1:

throw t1;
break;

case 2:
throw t2;
break;

case 3:
throw t3;
break;

case 4:
throw t4;
break;

case 5:
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throw t5;
break;

default:
throw st;
break;

}
}

int main(void){
try{

// if the throw specification is correctly expanded, none of
// these calls should trigger an exception that is not expected
func<a1,a2,a3,a4,a5,stuff>(1);
func<a1,a2,a3,a4,a5,stuff>(2);
func<a1,a2,a3,a4,a5,stuff>(3);
func<a1,a2,a3,a4,a5,stuff>(4);
func<a1,a2,a3,a4,a5,stuff>(5);
func<a1,a2,a3,a4,a5,stuff>(99);

}
catch(...){

return 0;
}
return 1;

}

In this example, the pack expansion X... is expanded in the context of exception
specification list for the function template func.

If a parameter pack is declared, it must be expanded by a pack expansion. An
appearance of a name of a parameter pack that is not expanded is incorrect.
Consider the following example:
template<class...A> struct container;
template<class...B> struct container<B>{}

In this example, the compiler issues an error message because the template
parameter pack B is not expanded.

Pack expansion cannot match a parameter that is not a parameter pack. Consider
the following example:
template<class X> struct container{};

template<class A, class...B>
// Error, parameter A is not a parameter pack
void func1(container<A>...args){};

template<class A, class...B>
// Error, 1 is not a parameter pack
void func2(1...){};

If more than one parameter pack is referenced in a pack expansion, each expansion
must have the same number of arguments expanded from these parameter packs.
Consider the following example:
struct a1{}; struct a2{}; struct a3{}; struct a4{}; struct a5{};

template<class...X> struct baseC{};
template<class...A1> struct container{};
template<class...A, class...B, class...C>
struct container<baseC<A,B,C...>...>:public baseC<A,B...,C>{};

int main(void){
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container<baseC<a1,a4,a5,a5,a5>, baseC<a2,a3,a5,a5,a5>,
baseC<a3,a2,a5,a5,a5>,baseC<a4,a1,a5,a5,a5> > test;

return 0;
}

In this example, the template parameter packs A, B, and C are referenced in the
same pack expansion baseC<A,B,C...>.... The compiler issues an error message to
indicate that the lengths of these three template parameter packs are mismatched
when expanding them during the template instantiation of the class template
container.

Partial specialization

Partial specialization is a fundamental part of the variadic templates feature. A basic
partial specialization can be used to access the individual arguments of a
parameter pack. The following example shows how to use partial specialization for
variadic templates:
// primary template
template<class...A> struct container;

// partial specialization
template<class B, class...C> struct container<B,C...>{};

When the class template container is instantiated with a list of arguments, the
partial specialization is matched in all cases where there are one or more
arguments. In that case, the template parameter B holds the first parameter, and
the pack expansion C... contains the rest of the argument list. In the case of an
empty list, the partial specialization is not matched, so the instantiation matches
the primary template.

A pack expansion must be the last argument in the argument list for a partial
specialization. Consider the following example:
template<class...A> struct container;

// partial specialization
template<class B, class...C> struct container<C...,B>{};

In this example, the compiler issues an error message because the pack expansion
C... is not the last argument in the argument list for the partial specialization.

A partial specialization can have more than one template parameter pack in its
parameter list. Consider the following example:
template<typename T1, typename T2> struct foo{};
template<typename...T> struct bar{};

// partial specialization
template<typename...T1,typename...T2> struct bar<foo<T1,T2>...>{};

In this example, the partial specialization has two template parameter packs T1 and
T2 in its parameter list.

To access the arguments of a parameter pack, you can use partial specialization to
access one member of the parameter pack in the first step, and recursively
instantiate the remainder of the argument list to get all the elements, as shown in
the following example:
#include<iostream>
using namespace std;
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struct a1{}; struct a2{}; struct a3{}; struct a4{}; struct a5{};
struct a6{}; struct a7{}; struct a8{}; struct a9{}; struct a10{};

template<typename X1, typename X2> struct foo{foo();};
template<typename X3, typename X4> foo<X3,X4>::foo(){cout<<"primary foo"<<endl;};
template<> struct foo<a1,a2>{foo(){cout<<"ctor foo<a1,a2>"<<endl;}};
template<> struct foo<a3,a4>{foo(){cout<<"ctor foo<a3,a4>"<<endl;}};
template<> struct foo<a5,a6>{foo(){cout<<"ctor foo<a5,a6>"<<endl;}};
template<> struct foo<a7,a8>{foo(){cout<<"ctor foo<a7,a8>"<<endl;}};
template<> struct foo<a9,a10>{foo(){cout<<"ctor foo<a9,a10>"<<endl;}};

template<typename...T>struct bar{bar{}{cout<<"bar primary"<<endl;}};

template<typename A, typename B, typename...T1, typename...T2>
struct bar<foo<A,B>,foo<T1,T2>...>{

foo<A,B> data;
bar<foo<T1,T2>...>data1;

};

template<> struct bar<foo<a9,a10> > {bar(){cout<<"ctor bar<foo<a9,a10>>"<<endl;}};

int main(){
bar<foo<a1,a2>,foo<a3,a4>,foo<a5,a6>,foo<a7,a8>,foo<a9,a10> > t2;
return 0;

}

The output of the example:
ctor foo<a1,a2>
ctor foo<a3,a4>
ctor foo<a5,a6>
ctor foo<a7,a8>
ctor bar<foo<a9,a10>

Template argument deduction

Parameter packs can be deduced by template argument deduction in the same way
as other normal template parameters. The following example shows how template
argument deduction expands packs from a function call:
template<class...A> void func(A...args){}

int main(void){
func(1,2,3,4,5,6);
return 0;

}

In this example, the function argument list is (1,2,3,4,5,6). Each function
argument is deduced to the type int, so the template parameter pack A is deduced
to the following list of types: (int,int,int,int,int,int). With all the expansions,
the function template func is instantiated as void func(int,int,int,int,int,int),
which is the template function with the expanded function parameter pack.

In this example, if you change the function call statement func(1,2,3,4,5,6) to
func(), template argument deduction deduces that the template parameter pack A
is empty:
template<class...A> void func(A...args){}

int main(void){
func();
return 0;

}
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Template argument deduction can expand packs from a template instantiation, as
shown in the following example:
#include <cstdio>

template<int...A> struct container{
void display(){printf("YIKES\n");}

};

template<int B, int...C> struct container<B,C...>{
void display(){

printf("spec %d\n",B);
container<C...>test;
test.display();

}
};

template<int C> struct container<C>{
void display(){printf("spec %d\n",C);}

};

int main(void)
{

printf("start\n\n");
container<1,2,3,4,5,6,7,8,9,10> test;
test.display();
return 0;

}

The output of this example:
start

spec 1
spec 2
spec 3
spec 4
spec 5
spec 6
spec 7
spec 8
spec 9
spec 10

In this example, the partial specialization of the class template container is
template<int B, int...C> struct container<B,C...>. The partial specialization is
matched when the class template is instantiated to
container<1,2,3,4,5,6,7,8,9,10>. Template argument deduction deduces the
template parameter pack C and the parameter B from the argument list of the
partial specialization. Template argument deduction then deduces the parameter B
to be 1, the pack expansion C... to a list: (2,3,4,5,6,7,8,9,10), and the template
parameter pack C to the following list of types:
(int,int,int,int,int,int,int,int,int).

If you change the statement container<1,2,3,4,5,6,7,8,9,10> test to
container<1> test, template argument deduction deduces that the template
parameter pack C is empty.

Template argument deduction can expand packs after the explicit template
arguments are found. Consider the following example:
#include <cassert>

template<class...A> int func(A...arg){
return sizeof...(arg);
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}

int main(void){
assert(func<int>(1,2,3,4,5) == 5);
return 0;

}

In this example, the template parameter pack A is deduced to a list of types:
(int,int,int,int,int) using the explicit argument list and the arguments in the
function call.
Related reference:
“The sizeof operator” on page 157
“Template parameters” on page 434
“Template arguments” on page 437
“Class templates” on page 441
“Function templates” on page 446
“Template argument deduction” on page 448
“Partial specialization” on page 465
“C++11 compatibility” on page 640

Name binding and dependent names
Name binding is the process of finding the declaration for each name that is
explicitly or implicitly used in a template. The compiler might bind a name in the
definition of a template, or it might bind a name at the instantiation of a template.

A dependent name is a name that depends on the type or the value of a template
parameter. For example:
template<class T> class U : A<T>
{

typename T::B x;
void f(A<T>& y)
{

*y++;
}

};

The dependent names in this example are the base class A<T>, the type name T::B,
and the variable y.

The compiler binds dependent names when a template is instantiated. The
compiler binds non-dependent names when a template is defined. Consider the
following example:
#include <iostream>
using namespace std;

void f(double) { cout << "Function f(double)" << endl; }

template <class A> struct container{ // point of definition of container
void member1(){

// This call is not template dependent,
// because it does not make any use of a template parameter.
// The name is resolved at the point of definition, so f(int) is not visible.
f(1);

}
void member2(A arg);

};
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void f(int) { cout << "Function f(int)" << endl; }

void h(double) { cout << "Function h(double)" << endl; }

template <class A> void container<A>::member2(A arg){
// This call is template dependent, so qualified name lookup only finds
// names visible at the point of instantiation.
::h(arg);

}

template struct container<int>; // point of instantiation of container<int>

void h(int) { cout << "Function h(int)" << endl; }

int main(void){
container<int> test;
test.member1();
test.member2(10);
return 0;

}

The output of this example:
Function f(double)
Function h(double)

The point of definition of a template is located immediately before its definition. In
this example, the point of definition of the template container is located
immediately before the keyword template. Because the function call f(1) does not
depend on a template parameter, the compiler considers names declared before the
definition of the template container. Therefore, the function call f(1) calls
f(double). Although f(int) is a better match, it is not in scope at the point of
definition of container.

The point of instantiation of a template is located immediately before the declaration
that encloses its use. In this example, the point of instantiation of container<int>
is the location of the explicit instantiation. Because the qualified function call
::h(arg) depends on the template argument arg, the compiler considers names
declared before the instantiation of container<int>. Therefore, the function call
h(arg) calls h(double). It does not consider h(int), because this function is not in
scope at the point of instantiation of container<int>.

Point of instantiation binding implies the following:
v A template parameter cannot depend on any local name or class member.
v An unqualified name in a template cannot depend on a local name or class

member.

C++11

The decltype feature can interact with template dependent names. If the operand
expression in the decltype(expression) type specifier is dependent on template
parameters, the compiler cannot determine the validity of expression before the
template instantiation, as shown in the following example:
template <class T, class U> int h(T t, U u, decltype(t+u) v);

In this example, the compiler issues an error message if the operand t+u is invalid
after the instantiation of the function template h.
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For more information, see “The decltype(expression) type specifier (C++11)” on
page 78

C++11

Related reference:
“Template instantiation” on page 456

The typename keyword
Use the keyword typename if you have a qualified name that refers to a type and
depends on a template parameter. Only use the keyword typename in template
declarations and definitions. Consider the following example:
template<class T> class A
{

T::x(y);
typedef char C;
A::C d;

}

The statement T::x(y) is ambiguous. It could be a call to function x() with a
nonlocal argument y, or it could be a declaration of variable y with type T::x. C++
compiler interprets this statement as a function call. In order for the compiler to
interpret this statement as a declaration, you must add the keyword typename to
the beginning of T:x(y). The statement A::C d; is ill-formed. The class A also refers
to A<T> and thus depends on a template parameter. You must add the keyword
typename to the beginning of this declaration:

typename A::C d;

You can also use the keyword typename in place of the keyword class in the
template parameter declarations.
Related reference:
“Template parameters” on page 434

The template keyword as qualifier
Use the keyword template as a qualifier to distinguish member templates from
other entities. The following example illustrates when you must use template as a
qualifier:
class A
{

public:
template<class T> T function_m() { };

};

template<class U> void function_n(U argument)
{

char object_x = argument.function_m<char>(); // ill-formed
}

In this example, the definition of the variable object_x is ill-formed. The compiler
assumes that the symbol < is a less-than operator. In order for the compiler to
recognize the template function call, you must add the template qualifier:
char object_x = argument.template function_m<char>();

If the name of a member template specialization appears after a ., ->, or ::
operator, and that name has explicitly qualified template parameters, prefix the
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member template name with the keyword template. The following example
demonstrates this use of the keyword template:
#include <iostream>
using namespace std;

class X {
public:

template <int j> struct S {
void h() {

cout << "member template’s member function: " << j << endl;
}

};
template <int i> void f() {

cout << "Primary: " << i << endl;
}

};

template<> void X::f<20>() {
cout << "Specialized, non-type argument = 20" << endl;

}

template<class T> void g(T* p) {
p->template f<100>();
p->template f<20>();
typename T::template S<40> s; // use of scope operator on a member template
s.h();

}

int main()
{

X temp;
g(&temp);

}

See the output of this example:
Primary: 100
Specialized, non-type argument = 20
member template’s member function: 40

If you do not use the keyword template in these cases, the compiler will interpret
the < as a less-than operator. For example, the following line of code is ill-formed:
p->f<100>();

The compiler interprets f as a non-template member, and the < as a less-than
operator.
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Chapter 16. Exception handling (C++ only)

Exception handling is a mechanism that separates code that detects and handles
exceptional circumstances from the rest of your program. Note that an exceptional
circumstance is not necessarily an error.

When a function detects an exceptional situation, you represent this with an object.
This object is called an exception object. In order to deal with the exceptional
situation you throw the exception. This passes control, as well as the exception, to a
designated block of code in a direct or indirect caller of the function that threw the
exception. This block of code is called a handler. In a handler, you specify the types
of exceptions that it may process. The C++ run time, together with the generated
code, will pass control to the first appropriate handler that is able to process the
exception thrown. When this happens, an exception is caught. A handler may
rethrow an exception so it can be caught by another handler.

The exception handling mechanism is made up of the following elements:
v try blocks
v catch blocks
v throw expressions
v “Exception specifications” on page 498

try blocks
You use a try block to indicate which areas in your program that might throw
exceptions you want to handle immediately. You use a function try block to indicate
that you want to detect exceptions in the entire body of a function.

try block syntax

�� �try { statements } handler ��

Function try block syntax

�� �try function_body handler
: member_initializer_list

��

The following code is an example of a function try block with a member initializer,
a function try block and a try block:
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { }

};
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class A {
public:

int i;

// A function try block with a member
// initializer
A() try : i(0) {

throw E("Exception thrown in A()");
}
catch (E& e) {

cout << e.error << endl;
}

};

// A function try block
void f() try {

throw E("Exception thrown in f()");
}
catch (E& e) {

cout << e.error << endl;
}

void g() {
throw E("Exception thrown in g()");

}

int main() {
f();

// A try block
try {

g();
}
catch (E& e) {

cout << e.error << endl;
}
try {

A x;
}
catch(...) { }

}

See the following output of the above example:
Exception thrown in f()
Exception thrown in g()
Exception thrown in A()

The constructor of class A has a function try block with a member initializer.
Function f() has a function try block. The main() function contains a try block.
Related reference:
“Initialization of base classes and members” on page 414

Nested try blocks
When try blocks are nested and a throw occurs in a function called by an inner try
block, control is transferred outward through the nested try blocks until the first
catch block is found whose argument matches the argument of the throw
expression.

For example:
try
{

func1();
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try
{

func2();
}
catch (spec_err) { /* ... */ }
func3();

}
catch (type_err) { /* ... */ }
// if no throw is issued, control resumes here.

In the above example, if spec_err is thrown within the inner try block (in this case,
from func2()), the exception is caught by the inner catch block, and, assuming this
catch block does not transfer control, func3() is called. If spec_err is thrown after
the inner try block (for instance, by func3()), it is not caught and the function
terminate() is called. If the exception thrown from func2() in the inner try block
is type_err, the program skips out of both try blocks to the second catch block
without invoking func3(), because no appropriate catch block exists following the
inner try block.

You can also nest a try block within a catch block.

catch blocks

catch block syntax

�� catch ( exception_declaration ) { statements } ��

You can declare a handler to catch many types of exceptions. The objects that a
function can catch are declared in the parentheses following the catch keyword
(the exception_declaration). You can catch both scalar and class objects. You can also
catch cv-qualified objects. An exception declaration can declare an lvalue reference,
in which case the exception object is passed by reference to the catch handler. The
exception_declaration cannot be an incomplete type, abstract class type,

C++11 rvalue reference type C++11 , or a reference or pointer to an incomplete
type other than the following types:
v void*

v const void*

v volatile void*

v const volatile void*

You cannot define a type in an exception_declaration.

You can also use the catch(...) form of the handler to catch all thrown exceptions
that have not been caught by a previous catch block. The ellipsis in the catch
argument indicates that any exception thrown can be handled by this handler.

If an exception is caught by a catch(...) block, there is no direct way to access the
object thrown. Information about an exception caught by catch(...) is very
limited.

You can declare an optional variable name if you want to access the thrown object
in the catch block.

A catch block can only catch accessible objects. The object caught must have an
accessible copy constructor.
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Related reference:
“Type qualifiers” on page 85
“Member access” on page 371
“References (C++ only)” on page 107

Function try block handlers
The scope and lifetime of the parameters of a function or constructor extend into
the handlers of a function try block. The following example demonstrates this:
void f(int &x) try {

throw 10;
}
catch (const int &i)
{

x = i;
}

int main() {
int v = 0;
f(v);

}

The value of v after f() is called is 10.

A function try block on main() does not catch exceptions thrown in destructors of
objects with static storage duration, or constructors of namespace scope objects.

The following example throws an exception from a destructor of a static object.
This example is intended to show that the exception in ~B() is caught by the
function try block of main(), but that the exception in ~A() is not caught because
~A() is executed after main() has completed.
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { }

};

class A {
public: ~A() { throw E("Exception in ~A()"); }

};

class B {
public: ~B() { throw E("Exception in ~B()"); }

};

int main() try {
cout << "In main" << endl;
static A cow;
B bull;

}
catch (E& e) {

cout << e.error << endl;
}

See the output of the above example:
In main
Exception in ~B()
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The run time will not catch the exception thrown when object cow is destroyed at
the end of the program.

The following example throws an exception from a constructor of a namespace
scope object:
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { }

};

namespace N {
class C {
public:

C() {
cout << "In C()" << endl;
throw E("Exception in C()");

}
};

C calf;
};

int main() try {
cout << "In main" << endl;

}
catch (E& e) {

cout << e.error << endl;
}

See the output of the above example:
In C()

The compiler will not catch the exception thrown when object calf is created.

In a function try block's handler, you cannot have a jump into the body of a
constructor or destructor.

A return statement cannot appear in a function try block's handler of a constructor.

When the function try block's handler of an object's constructor or destructor is
entered, fully constructed base classes and members of that object are destroyed.
The following example demonstrates this:
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { };

};

class B {
public:

B() { };
~B() { cout << "~B() called" << endl; };

};

class D : public B {

Chapter 16. Exception handling (C++ only) 489



public:
D();
~D() { cout << "~D() called" << endl; };

};

D::D() try : B() {
throw E("Exception in D()");

}
catch(E& e) {

cout << "Handler of function try block of D(): " << e.error << endl;
};

int main() {
try {

D val;
}
catch(...) { }

}

See the output of the above example:
~B() called
Handler of function try block of D(): Exception in D()

When the function try block's handler of D() is entered, the run time first calls the
destructor of the base class of D, which is B. The destructor of D is not called
because val is not fully constructed.

The run time will rethrow an exception at the end of a function try block's handler
of a constructor or destructor. All other functions will return once they have
reached the end of their function try block's handler. The following example
demonstrates this:
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { };

};

class A {
public:

A() try { throw E("Exception in A()"); }
catch(E& e) { cout << "Handler in A(): " << e.error << endl; }

};

int f() try {
throw E("Exception in f()");
return 0;

}
catch(E& e) {

cout << "Handler in f(): " << e.error << endl;
return 1;

}

int main() {
int i = 0;
try { A cow; }
catch(E& e) {

cout << "Handler in main(): " << e.error << endl;
}

try { i = f(); }
catch(E& e) {
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cout << "Another handler in main(): " << e.error << endl;
}

cout << "Returned value of f(): " << i << endl;
}

See the output of the above example:
Handler in A(): Exception in A()
Handler in main(): Exception in A()
Handler in f(): Exception in f()
Returned value of f(): 1

C++11

If the delegating process exists and an exception occurs in the body of a target
constructor, the exception can be caught by an appropriate handler in the try block
of the delegating constructor. The following example demonstrates this:
#include <cstdio>
using std::printf;

int global_argc;

struct A{
int _x;
A();
A(int);

};

A::A(int x):_x((printf("In A::A(int) initializer for A::_x.\n"),x)){
printf("In A::A(int) constructor body.\n");

if(global_argc % 2 !=0){
printf("Will throw.\n");
throw 0;

}
printf("Will not throw.\n");

}

A::A() try:A((printf("In A::A() initializer for delegating to A::A(int).\n"),42)){
printf("In A::A() function-try-block body.\n");

}
catch(...){

printf("In catch(...) handler for A::A() function-try-block.\n");
}

int main(int argc, char **argv){
printf("In main().\n");
global_argc = argc;
try{

A a;
printf("Back in main().\n");

}
catch(...){

printf("In catch(...) handler for try-block in main().\n");
}
return 0;

}

The example can produce different output depending on how many arguments are
passed on the invocation of the resulting program. With an even number of
arguments, the exception is thrown. The output is:
In main().
In A::A() initializer for delegating to A:A(int).
In A::A(int) initializer for A::_x.
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In A::A(int) constructor body.
Will throw.
In catch(...) handler for A::A() function-try-block.
In catch(...) handler for try-block in main().

With an odd number of arguments, there is no exception thrown. The output is:
In main().
In A::A() initializer for delegating to A::A(int).
In A::A(int) initializer for A::_x.
In A::A(int) constructor body.
Will not throw.
In A::A() function-try-block body.
Back in main().

For more information, see “Delegating constructors (C++11)” on page 409

C++11

Related reference:
“The main() function” on page 247
“The static storage class specifier” on page 49
Chapter 9, “Namespaces (C++ only),” on page 317
“Destructors” on page 420

Arguments of catch blocks
If you specify a class type for the argument of a catch block (the
exception_declaration), the compiler uses a copy constructor to initialize that
argument. If that argument does not have a name, the compiler initializes a
temporary object and destroys it when the handler exits.

The ISO C++ specifications do not require the compiler to construct temporary
objects in cases where they are redundant. The compiler takes advantage of this
rule to create more efficient, optimized code. Take this into consideration when
debugging your programs, especially for memory problems.

Matching between exceptions thrown and caught
An argument in the catch argument of a handler matches an argument in the
assignment_expression of the throw expression (throw argument) if any of the
following conditions is met:
v The catch argument type matches the type of the thrown object.
v The catch argument is a public base class of the thrown class object.
v The catch specifies a pointer type, and the thrown object is a pointer type that

can be converted to the pointer type of the catch argument by standard pointer
conversion.

Note: If the type of the thrown object is const or volatile, the catch argument
must also be a const or volatile for a match to occur. However, a const, volatile,
or reference type catch argument can match a nonconstant, nonvolatile, or
nonreference object type. A nonreference catch argument type matches a reference
to an object of the same type.
Related reference:
“Pointer conversions” on page 137
“Type qualifiers” on page 85
“References (C++ only)” on page 107
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Order of catching
If the compiler encounters an exception in a try block, it will try each handler in
order of appearance.

If a catch block for objects of a base class precedes a catch block for objects of a
class derived from that base class, the compiler issues a warning and continues to
compile the program despite the unreachable code in the derived class handler.

A catch block of the form catch(...) must be the last catch block following a try
block or an error occurs. This placement ensures that the catch(...) block does
not prevent more specific catch blocks from catching exceptions intended for them.

If the run time cannot find a matching handler in the current scope, the run time
will continue to find a matching handler in a dynamically surrounding try block.
The following example demonstrates this:
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { };

};

class F : public E {
public:

F(const char* arg) : E(arg) { };
};

void f() {
try {

cout << "In try block of f()" << endl;
throw E("Class E exception");

}
catch (F& e) {

cout << "In handler of f()";
cout << e.error << endl;

}
};

int main() {
try {

cout << "In main" << endl;
f();

}
catch (E& e) {

cout << "In handler of main: ";
cout << e.error << endl;

};
cout << "Resume execution in main" << endl;

}

The following is the output of the above example:
In main
In try block of f()
In handler of main: Class E exception
Resume execution in main

In function f(), the run time could not find a handler to handle the exception of
type E thrown. The run time finds a matching handler in a dynamically
surrounding try block: the try block in the main() function.
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If the run time cannot find a matching handler in the program, it calls the
terminate() function.
Related reference:
“try blocks” on page 485

throw expressions
You use a throw expression to indicate that your program has encountered an
exception.

throw expression syntax

�� throw
assignment_expression

��

The type of assignment_expression cannot be an incomplete type, abstract class type,
or a pointer to an incomplete type other than the following types:
v void*

v const void*

v volatile void*

v const volatile void*

The assignment_expression is treated the same way as a function argument in a call
or the operand of a return statement.

If the assignment_expression is a class object, the copy constructor and destructor of
that object must be accessible. For example, you cannot throw a class object that
has its copy constructor declared as private. The constructor used to copy

C++11 or move C++11 that object is chosen by overload resolution.

If the assignment_expression is an integral constant expression of integer type that
evaluates to zero, this assignment_expression does not match a handler of pointer or
pointer to member type.
Related reference:
Incomplete types

Rethrowing an exception
If a catch block cannot handle the particular exception it has caught, you can
rethrow the exception. The rethrow expression (throw without
assignment_expression) causes the originally thrown object to be rethrown.

Because the exception has already been caught at the scope in which the rethrow
expression occurs, it is rethrown out to the next dynamically enclosing try block.
Therefore, it cannot be handled by catch blocks at the scope in which the rethrow
expression occurred. Any catch blocks for the dynamically enclosing try block have
an opportunity to catch the exception.

The following example demonstrates rethrowing an exception:
#include <iostream>
using namespace std;

struct E {
const char* message;
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E() : message("Class E") { }
};

struct E1 : E {
const char* message;
E1() : message("Class E1") { }

};

struct E2 : E {
const char* message;
E2() : message("Class E2") { }

};

void f() {
try {

cout << "In try block of f()" << endl;
cout << "Throwing exception of type E1" << endl;
E1 myException;
throw myException;

}
catch (E2& e) {

cout << "In handler of f(), catch (E2& e)" << endl;
cout << "Exception: " << e.message << endl;
throw;

}
catch (E1& e) {

cout << "In handler of f(), catch (E1& e)" << endl;
cout << "Exception: " << e.message << endl;
throw;

}
catch (E& e) {

cout << "In handler of f(), catch (E& e)" << endl;
cout << "Exception: " << e.message << endl;
throw;

}
}

int main() {
try {

cout << "In try block of main()" << endl;
f();

}
catch (E2& e) {

cout << "In handler of main(), catch (E2& e)" << endl;
cout << "Exception: " << e.message << endl;

}
catch (...) {

cout << "In handler of main(), catch (...)" << endl;
}

}

The following is the output of the above example:
In try block of main()
In try block of f()
Throwing exception of type E1
In handler of f(), catch (E1& e)
Exception: Class E1
In handler of main(), catch (...)

The try block in the main() function calls function f(). The try block in function
f() throws an object of type E1 named myException. The handler catch (E1 &e)
catches myException. The handler then rethrows myException with the statement
throw to the next dynamically enclosing try block: the try block in the main()
function. The handler catch(...) catches myException.
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Stack unwinding
When an exception is thrown and control passes from a try block to a handler, the
C++ run time calls destructors for all automatic objects constructed since the
beginning of the try block. This process is called stack unwinding. The automatic
objects are destroyed in reverse order of their construction. (Automatic objects are
local objects that have been declared auto or register, or not declared static or
extern. An automatic object x is deleted whenever the program exits the block in
which x is declared.)

If an exception is thrown during construction of an object consisting of subobjects
or array elements, destructors are only called for those subobjects or array
elements successfully constructed before the exception was thrown. A destructor
for a local static object will only be called if the object was successfully
constructed.

If during stack unwinding a destructor throws an exception and that exception is
not handled, the terminate() function is called. The following example
demonstrates this:
#include <iostream>
using namespace std;

struct E {
const char* message;
E(const char* arg) : message(arg) { }

};

void my_terminate() {
cout << "Call to my_terminate" << endl;

};

struct A {
A() { cout << "In constructor of A" << endl; }
~A() {

cout << "In destructor of A" << endl;
throw E("Exception thrown in ~A()");

}
};

struct B {
B() { cout << "In constructor of B" << endl; }
~B() { cout << "In destructor of B" << endl; }

};

int main() {
set_terminate(my_terminate);

try {
cout << "In try block" << endl;
A a;
B b;
throw("Exception thrown in try block of main()");

}
catch (const char* e) {

cout << "Exception: " << e << endl;
}
catch (...) {

cout << "Some exception caught in main()" << endl;
}

cout << "Resume execution of main()" << endl;
}
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The output of this example:
In try block
In constructor of A
In constructor of B
In destructor of B
In destructor of A
Call to my_terminate

In the try block, two automatic objects are created: a and b. The try block throws
an exception of type const char*. The handler catch (const char* e) catches this
exception. The C++ run time unwinds the stack, calling the destructors for a and b
in reverse order of their construction. The destructor for a throws an exception.
Since there is no handler in the program that can handle this exception, the C++
run time calls terminate(). (The function terminate() calls the function specified
as the argument to set_terminate(). In this example, terminate() has been
specified to call my_terminate().)

C++11

When the delegating constructors feature is enabled, if an exception is thrown in
the body of a delegating constructor, the destructors of the objects constructed
through target constructor will be invoked automatically. The destructors must be
called in such a way that it calls the destructors of subobjects as appropriate. In
particular, it should call the destructors for virtual base classes if the virtual base
classes are created through the target constructor.

If an exception is thrown in the body of a delegating constructor, the destructor is
invoked for the object created by the target constructor. If an exception escapes
from a non-delegating constructor, the unwinding mechanism will call the
destructors for the completely constructed subobjects. The following example
demonstrates this:
class D{

D():D(’a’) { printf("D:D().\n");}

D:D(char) try: D(55){
printf("D::D(char). Throws.\n");
throw 0;

}
catch(...){

printf("D::D(char).Catch block.\n");
}

D:D(int i):i(i_) {printf("D::D(int).\n");}

D:~D() {printf("D::~D().\n");}
}

int main(void){
D d;

}

The output of the example is:
D::D(int).
D::D(char).Throws.
D::~D().
D::D(char).Catch block.

In this example, an exception occurs in the delegating constructor D:D(char), so
destructor D:~D() is invoked for object d.
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For more information, see “Delegating constructors (C++11)” on page 409

C++11

Exception specifications
C++ provides a mechanism to ensure that a given function is limited to throw only
a specified list of exceptions. An exception specification at the beginning of any
function acts as a guarantee to the function's caller that the function will throw
only the exceptions contained in the exception specification.

For example, a function:
void translate() throw(unknown_word,bad_grammar) { /* ... */ }

explicitly states that it will only throw exception objects whose types are
unknown_word or bad_grammar, or any type derived from unknown_word or
bad_grammar.

Exception specification syntax

�� throw ( )
type_id_list

��

The type_id_list is a comma-separated list of types. In this list you cannot specify
an incomplete type, abstract class type, C++11 rvalue reference type C++11 , or
a pointer or reference to an incomplete type other than the following types:
v void*

v const void*

v volatile void*

v const volatile void*

You can qualify the types in type_id_list with cv-qualifiers, but you cannot define a
type in an exception specification.

A function with no exception specification allows all exceptions. A function with
an exception specification that has an empty type_id_list, throw(), does not allow
any exceptions to be thrown.

An exception specification is not part of a function's type.

An exception specification may only appear at the end of the top-level function
declarator in a declaration or definition of a function, pointer to function, reference
to function, or pointer to member function. An exception specification cannot
appear in a typedef declaration. The following declarations demonstrate this:

void f() throw(int);
void (*g)() throw(int);
void h(void i() throw(int));
// typedef int (*j)() throw(int); This is an error.

The compiler would not allow the last declaration, typedef int (*j)()
throw(int).

Suppose that class A is one of the types in the type_id_list of an exception
specification of a function. That function may throw exception objects of class A, or
any class publicly derived from class A. The following example demonstrates this:
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class A { };
class B : public A { };
class C { };

void f(int i) throw (A) {
switch (i) {

case 0: throw A();
case 1: throw B();
default: throw C();

}
}

void g(int i) throw (A*) {
A* a = new A();
B* b = new B();
C* c = new C();
switch (i) {

case 0: throw a;
case 1: throw b;
default: throw c;

}
}

Function f() can throw objects of types A or B. If the function tries to throw an
object of type C, the compiler will call unexpected() because type C has not been
specified in the function's exception specification, nor does it derive publicly from
A. Similarly, function g() cannot throw pointers to objects of type C; the function
may throw pointers of type A or pointers of objects that derive publicly from A.

A function that overrides a virtual function can only throw exceptions specified by
the virtual function. The following example demonstrates this:
class A {

public:
virtual void f() throw (int, char);

};

class B : public A{
public: void f() throw (int) { }

};

/* The following is not allowed. */
/*

class C : public A {
public: void f() { }

};

class D : public A {
public: void f() throw (int, char, double) { }

};
*/

The compiler allows B::f() because the member function may throw only
exceptions of type int. The compiler would not allow C::f() because the member
function may throw any kind of exception. The compiler would not allow D::f()
because the member function can throw more types of exceptions (int, char, and
double) than A::f().

Suppose that you assign or initialize a pointer to function named x with a function
or pointer to function named y. The pointer to function x can only throw
exceptions specified by the exception specifications of y. The following example
demonstrates this:
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void (*f)();
void (*g)();
void (*h)() throw (int);

void i() {
f = h;

// h = g; This is an error.
}

The compiler allows the assignment f = h because f can throw any kind of
exception. The compiler would not allow the assignment h = g because h can only
throw objects of type int, while g can throw any kind of exception.

Implicitly declared special member functions (default constructors, copy
constructors, destructors, and copy assignment operators) have exception
specifications. An implicitly declared special member function will have in its
exception specification the types declared in the functions' exception specifications
that the special function invokes. If any function that a special function invokes
allows all exceptions, then that special function allows all exceptions. If all the
functions that a special function invokes allow no exceptions, then that special
function will allow no exceptions. The following example demonstrates this:
class A {

public:
A() throw (int);
A(const A&) throw (float);
~A() throw();

};

class B {
public:

B() throw (char);
B(const A&);
~B() throw();

};

class C : public B, public A { };

The following special functions in the above example have been implicitly
declared:
C::C() throw (int, char);
C::C(const C&); // Can throw any type of exception, including float
C::~C() throw();

The default constructor of C can throw exceptions of type int or char. The copy
constructor of C can throw any kind of exception. The destructor of C cannot throw
any exceptions.
Related reference:
Incomplete types
“Function declarations and definitions” on page 219
“Pointers to functions” on page 257
Chapter 14, “Special member functions (C++ only),” on page 407
“References (C++ only)” on page 107
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Special exception handling functions
Not all thrown errors can be caught and successfully dealt with by a catch block.
In some situations, the best way to handle an exception is to terminate the
program. Two special library functions are implemented in C++ to process
exceptions not properly handled by catch blocks or exceptions thrown outside of a
valid try block. These functions are:
v “The unexpected() function”
v “The terminate() function” on page 502

The unexpected() function
When a function with an exception specification throws an exception that is not
listed in its exception specification, the C++ run time does the following:
1. The unexpected() function is called.
2. The unexpected() function calls the function pointed to by unexpected_handler.

By default, unexpected_handler points to the function terminate().

You can replace the default value of unexpected_handler with the function
set_unexpected().

Although unexpected() cannot return, it may throw (or rethrow) an exception.
Suppose the exception specification of a function f() has been violated. If
unexpected() throws an exception allowed by the exception specification of f(),
then the C++ run time will search for another handler at the call of f(). The
following example demonstrates this:
#include <iostream>
using namespace std;

struct E {
const char* message;
E(const char* arg) : message(arg) { }

};

void my_unexpected() {
cout << "Call to my_unexpected" << endl;
throw E("Exception thrown from my_unexpected");

}

void f() throw(E) {
cout << "In function f(), throw const char* object" << endl;
throw("Exception, type const char*, thrown from f()");

}

int main() {
set_unexpected(my_unexpected);
try {

f();
}
catch (E& e) {

cout << "Exception in main(): " << e.message << endl;
}

}

The following is the output of the above example:
In function f(), throw const char* object
Call to my_unexpected
Exception in main(): Exception thrown from my_unexpected
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The main() function's try block calls function f(). Function f() throws an object of
type const char*. However the exception specification of f() allows only objects
of type E to be thrown. The function unexpected() is called. The function
unexpected() calls my_unexpected(). The function my_unexpected() throws an
object of type E. Since unexpected() throws an object allowed by the exception
specification of f(), the handler in the main() function may handle the exception.

If unexpected() did not throw (or rethrow) an object allowed by the exception
specification of f(), then the C++ run time does one of two things:
v If the exception specification of f() included the class std::bad_exception,

unexpected() will throw an object of type std::bad_exception, and the C++ run
time will search for another handler at the call of f().

v If the exception specification of f() did not include the class
std::bad_exception, the function terminate() is called.

Related reference:
“Special exception handling functions” on page 501
“The set_unexpected() and set_terminate() functions” on page 503

The terminate() function
In some cases, the exception handling mechanism fails and a call to void
terminate() is made. This terminate() call occurs in any of the following
situations:
v The exception handling mechanism cannot find a handler for a thrown

exception. The following cases are more specific:
– During stack unwinding, a destructor throws an exception and that exception

is not handled.
– The expression that is thrown also throws an exception, and that exception is

not handled.
– The constructor or destructor of a nonlocal static object throws an exception,

and the exception is not handled.
– A function registered with atexit() throws an exception, and the exception is

not handled. The following demonstrates this:
v A throw expression without an operand tries to rethrow an exception, and no

exception is presently being handled.
v A function f() throws an exception that violates its exception specification. The

unexpected() function then throws an exception which violates the exception
specification of f(), and the exception specification of f() did not include the
class std::bad_exception.

v The default value of unexpected_handler is called.

The following example demonstrates that if a function registered with atexit()
throws an exception and the exception is not handled, an invocation to void
terminate() is made.
extern "C" printf(char* ...);
#include <exception>
#include <cstdlib>
using namespace std;

extern "C" void f() {
printf("Function f()\n");
throw "Exception thrown from f()";

}

extern "C" void g() { printf("Function g()\n"); }
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extern "C" void h() { printf("Function h()\n"); }

void my_terminate() {
printf("Call to my_terminate\n");
abort();

}

int main() {
set_terminate(my_terminate);
atexit(f);
atexit(g);
atexit(h);
printf("In main\n");

}

See the output of the above example:
In main
Function h()
Function g()
Function f()
Call to my_terminate

To register a function with atexit(), you pass a parameter to atexit() a pointer to
the function you want to register. At normal program termination, atexit() calls
the functions you have registered with no arguments in reverse order. The
atexit() function is in the <cstdlib> library.

The terminate() function calls the function pointed to by terminate_handler. By
default, terminate_handler points to the function abort(), which exits from the
program. You can replace the default value of terminate_handler with the function
set_terminate().

A terminate function cannot return to its caller, either by using return or by
throwing an exception.
Related reference:
“The set_unexpected() and set_terminate() functions”

The set_unexpected() and set_terminate() functions
The function unexpected(), when invoked, calls the function most recently
supplied as an argument to set_unexpected(). If set_unexpected() has not yet
been called, unexpected() calls terminate().

The function terminate(), when invoked, calls the function most recently supplied
as an argument to set_terminate(). If set_terminate() has not yet been called,
terminate() calls abort(), which ends the program.

You can use set_unexpected() and set_terminate() to register functions you
define to be called by unexpected() and terminate(). The functions
set_unexpected() and set_terminate() are included in the standard header files.
Each of these functions has as its return type and its argument type a pointer to
function with a void return type and no arguments. The pointer to function you
supply as the argument becomes the function called by the corresponding special
function: the argument to set_unexpected() becomes the function called by
unexpected(), and the argument to set_terminate() becomes the function called
by terminate().

Both set_unexpected() and set_terminate() return a pointer to the function that
was previously called by their respective special functions (unexpected() and
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terminate()). By saving the return values, you can restore the original special
functions later so that unexpected() and terminate() will once again call
terminate() and abort().

If you use set_terminate() to register your own function, the function should no
return to its caller but terminate execution of the program.

Example using the exception handling functions
The following example shows the flow of control and special functions used in
exception handling:
#include <iostream>
#include <exception>
using namespace std;

class X { };
class Y { };
class A { };

// pfv type is pointer to function returning void
typedef void (*pfv)();

void my_terminate() {
cout << "Call to my terminate" << endl;
abort();

}

void my_unexpected() {
cout << "Call to my_unexpected()" << endl;
throw;

}

void f() throw(X,Y, bad_exception) {
throw A();

}

void g() throw(X,Y) {
throw A();

}

int main()
{

pfv old_term = set_terminate(my_terminate);
pfv old_unex = set_unexpected(my_unexpected);
try {

cout << "In first try block" << endl;
f();

}
catch(X) {

cout << "Caught X" << endl;
}
catch(Y) {

cout << "Caught Y" << endl;
}
catch (bad_exception& e1) {

cout << "Caught bad_exception" << endl;
}
catch (...) {

cout << "Caught some exception" << endl;
}

cout << endl;

try {
cout << "In second try block" << endl;
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g();
}
catch(X) {

cout << "Caught X" << endl;
}
catch(Y) {

cout << "Caught Y" << endl;
}
catch (bad_exception& e2) {

cout << "Caught bad_exception" << endl;
}
catch (...) {

cout << "Caught some exception" << endl;
}

}

The following is the output of the above example:
In first try block
Call to my_unexpected()
Caught bad_exception

In second try block
Call to my_unexpected()
Call to my terminate

At run time, this program behaves as follows:
1. The call to set_terminate() assigns to old_term the address of the function last

passed to set_terminate() when set_terminate() was previously called.
2. The call to set_unexpected() assigns to old_unex the address of the function

last passed to set_unexpected() when set_unexpected() was previously called.
3. Within the first try block, function f() is called. Because f() throws an

unexpected exception, a call to unexpected() is made. unexpected() in turn
calls my_unexpected(), which prints a message to standard output. The function
my_unexpected() tries to rethrow the exception of type A. Because class A has
not been specified in the exception specification of function f(), and
bad_exception has been specified, the exception thrown by my_unexpected() is
replaced by an exception of type bad_exception.

4. The handler catch (bad_exception& e1) is able to handle the exception.
5. Within the second try block, function g() is called. Because g() throws an

unexpected exception, a call to unexpected() is made. unexpected() in turn
calls my_unexpected(), which prints a message to standard output. The function
my_unexpected() tries to rethrow the exception of type A. Because neither class
A nor bad_exception has been specified in the exception specification of
function g(), unexpected() calls terminate(), which calls the function
my_terminate().

6. my_terminate() displays a message then calls abort(), which terminates the
program.
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Chapter 17. Preprocessor directives

Preprocessing is an initial phase to process text before compilation. Preprocessor
directives are lines of the source file where the first non-whitespace character is #,
which distinguishes them from other lines of text. The effect of each preprocessor
directive is a change to the text and the result is a transformation of the text that
does not contain the directives nor comments. The compiler can optionally output
the preprocessed text to a file that has a .i suffix. Preprocessing is always the
initial phase of compilation, even when the text has already been preprocessed.

Preprocessor directives consist of the following:
v “Macro definition directives,” which replace tokens in the current file with

specified replacement tokens
v “File inclusion directives” on page 516, which imbed files within the current file
v “Conditional compilation directives” on page 518, which conditionally compile

sections of the current file
v “Message generation directives” on page 523, which control the generation of

diagnostic messages
v “The null directive (#)” on page 525, which performs no action
v “Pragma directives” on page 525, which apply compiler-specific rules to

specified sections of code
v “C99 preprocessor features adopted in C++11” on page 526

Preprocessor directives begin with the # token followed by a preprocessor
keyword. The # token must appear as the first character that is not white space on
a line. The # is not part of the directive name and can be separated from the name
with white spaces.

A preprocessor directive ends at the new-line character unless the last character of
the line is the \ (backslash) character. If the \ character appears as the last
character in the preprocessor line, the preprocessor interprets the \ and the
new-line character as a continuation marker. The preprocessor deletes the \ (and
the following new-line character) and splices the physical source lines into
continuous logical lines. White space is allowed between backslash and the end of
line character or the physical end of record. However, this white space is usually
not visible during editing.

Except for some #pragma directives, preprocessor directives can appear anywhere in
a program.

Macro definition directives
Macro definition directives include the following directives and operators:

The #define directive
A preprocessor define directive directs the preprocessor to replace all subsequent
occurrences of a macro with specified replacement tokens.

The #define directive can contain:
v “Object-like macros” on page 508
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v “Function-like macros”

The following are some differences between using a macro for a constant and a
declared constant:
v A const object is subject to the scoping rules for variables, whereas a constant

created using #define is not.
v Unlike a const object, the value of a macro does not appear in the intermediate

representation used by the compiler because they are expanded inline. The inline
expansion makes the macro value unavailable to the debugger.

v C A macro can be used in a compile-time constant expression, such as a
bit field length, whereas a const object cannot.

v C++ The compiler does not type-check a macro, including macro
arguments.

Object-like macros

An object-like macro definition replaces a single identifier with the specified
replacement tokens. For example, the following object-like definition causes the
preprocessor to replace all subsequent instances of the identifier COUNT with the
constant 1000 :
#define COUNT 1000

If the statement
int arry[COUNT];

is after this macro definition and in the same compilation unit, the preprocessor
would change the statement to
int arry[1000];

in the output of the preprocessor.

Other definitions can make reference to the identifier COUNT:
#define MAX_COUNT COUNT + 100

The preprocessor replaces each subsequent occurrence of MAX_COUNT with
COUNT + 100, which the preprocessor then replaces with 1000 + 100.

If a number that is partially built by a macro expansion is produced, the
preprocessor does not consider the result to be a single value. For example, the
following will not result in the value 10.2 but in a syntax error.
#define a 10
doubl d = a.2

C++11 In C++11, the diagnostic for object-like macros in the C99 preprocessor is
adopted to provide a common preprocessor interface for C and C++ compilers. The
C++11 compiler issues a warning message if there are no white spaces between an
object-like macro name and its replacement list in a macro definition. For more
information, see “C99 preprocessor features adopted in C++11” on page 526.

C++11

Function-like macros

More complex than object-like macros, a function-like macro definition declares the
names of formal parameters within parentheses, separated by commas. An empty
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formal parameter list is legal: such a macro can be used to simulate a function that
takes no arguments. C99 adds support for function-like macros with a variable
number of arguments.

Function-like macro definition:
An identifier followed by a parameter list in parentheses and the
replacement tokens. The parameters are imbedded in the replacement code.
White space cannot separate the identifier (which is the name of the
macro) and the left parenthesis of the parameter list. A comma must
separate each parameter.

For portability, you should not have more than 31 parameters for a macro.
The parameter list may end with an ellipsis (...) as the formal parameter. In
this case, the identifier __VA_ARGS__ may appear in the replacement list.

Function-like macro invocation:
An identifier followed by a comma-separated list of arguments in
parentheses. The number of arguments should match the number of
parameters in the macro definition, unless the parameter list in the
definition ends with an ellipsis. In this latter case, the number of
arguments in the invocation should match or exceed the number of
parameters in the definition. The excess are called trailing arguments. Once
the preprocessor identifies a function-like macro invocation, argument
substitution takes place. A parameter in the replacement code is replaced
by the corresponding argument. If trailing arguments are permitted by the
macro definition, they are merged with the intervening commas to replace
the identifier __VA_ARGS__, as if they were a single argument. Any macro
invocations contained in the argument itself are completely replaced before
the argument replaces its corresponding parameter in the replacement
code.

A macro argument can be empty (consisting of zero preprocessing tokens).
For example,
#define SUM(a,b,c) a + b + c
SUM(1,,3) /* No error message.

1 is substituted for a, 3 is substituted for c. */

If the parameter list does not end with an ellipsis, the number of arguments in a
macro invocation must be the same as the number of parameters in the
corresponding macro definition. During parameter substitution, any arguments
remaining after all specified arguments have been substituted (including any
separating commas) are combined into one argument called the variable argument.
The variable argument will replace any occurrence of the identifier __VA_ARGS__ in
the replacement list. The following example illustrates this:
#define debug(...) fprintf(stderr, __VA_ARGS__)

debug("flag"); /* Becomes fprintf(stderr, "flag"); */

Commas in the macro invocation argument list do not act as argument separators
when they are:
v In character constants
v In string literals
v Surrounded by parentheses

The following line defines the macro SUM as having two parameters a and b and
the replacement tokens (a + b):
#define SUM(a,b) (a + b)
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This definition would cause the preprocessor to change the following statements (if
the statements appear after the previous definition):
c = SUM(x,y);
c = d * SUM(x,y);

In the output of the preprocessor, these statements would appear as:
c = (x + y);
c = d * (x + y);

Use parentheses to ensure correct evaluation of replacement text. For example, the
definition:
#define SQR(c) ((c) * (c))

requires parentheses around each parameter c in the definition in order to correctly
evaluate an expression like:
y = SQR(a + b);

The preprocessor expands this statement to:
y = ((a + b) * (a + b));

Without parentheses in the definition, the intended order of evaluation is not
preserved, and the preprocessor output is:
y = (a + b * a + b);

Arguments of the # and ## operators are converted before replacement of
parameters in a function-like macro.

Once defined, a preprocessor identifier remains defined independent of the scoping
rules of the language. The scope of a macro definition begins at the definition and
does not end until a corresponding #undef directive is encountered. If there is no
corresponding #undef directive, the scope of the macro definition lasts until the
end of the translation unit.

A recursive macro is not fully expanded. For example, the definition
#define x(a,b) x(a+1,b+1) + 4

expands
x(20,10)

to
x(20+1,10+1) + 4

rather than trying to expand the macro x over and over within itself. After the
macro x is expanded, it is a call to function x().

A definition is not required to specify replacement tokens. The following definition
removes all instances of the token debug from subsequent lines in the current file:
#define debug

You can change the definition of a defined identifier or macro with a second
preprocessor #define directive only if the second preprocessor #define directive is
preceded by a preprocessor #undef directive. The #undef directive nullifies the first
definition so that the same identifier can be used in a redefinition.
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Within the text of the program, the preprocessor does not scan comments,
character constants, or string constants for macro definitions, undefining a macro,
or macro invocations.

The following example program contains two macro definitions and a macro
invocation that refers to both of the defined macros:

CCNRAA8
/**This example illustrates #define directives.**/

void printf(const char*, ...);
#define SQR(s) ((s) * (s))
#define PRNT(a,b) \

printf("value 1 = %d\n", a); \
printf("value 2 = %d\n", b)

int main(void)
{

int x = 2;
int y = 3;

PRNT(SQR(x),y);

return(0);
}

After being preprocessed, this program is replaced by code equivalent to the
following:

CCNRAA9
void printf(const char*, ...);

int main(void)
{

int x = 2;
int y = 3;

printf("value 1 = %d\n", ( (x) * (x) ) );
printf("value 2 = %d\n", y);

return(0);
}

This program produces the following output:
value 1 = 4
value 2 = 3

IBM

Variadic macro extensions

Variadic macro extensions refer to two extensions to C99 and Standard C++ related
to macros with variable number of arguments. One extension is a mechanism for
renaming the variable argument identifier from __VA_ARGS__ to a user-defined
identifier. The other extension provides a way to remove the dangling comma in a
variadic macro when no variable arguments are specified. Both extensions have
been implemented to facilitate porting programs developed with GNU C and C++.
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The following examples demonstrate the use of an identifier in place of
__VA_ARGS__. The first definition of the macro debug exemplifies the usual usage of
__VA_ARGS__. The second definition shows the use of the identifier args in place of
__VA_ARGS__.
#define debug1(format, ...) printf(format, ## __VA_ARGS__)
#define debug2(format, args ...) printf(format, ## args)

Invocation Result of macro expansion

debug1("Hello %s/n", "World"); printf("Hello %s/n", "World");
debug2("Hello %s/n", "World"); printf("Hello %s/n", "World");

The preprocessor removes the trailing comma if the variable arguments to a
function macro are omitted or empty and the comma followed by ## precedes the
variable argument identifier in the function macro definition.

IBM

C++11 In C++11, the variadic macros feature and changes concerning empty
macro arguments are adopted from the C99 preprocessor to provide a common
preprocessor interface for C and C++ compilers. Variadic macros and empty macro
arguments are supported in C++11. For more information, see “C99 preprocessor
features adopted in C++11” on page 526.
Related reference:
“The const type qualifier” on page 88
“Operator precedence and associativity” on page 190
“Parenthesized expressions ( )” on page 145

The #undef directive
A preprocessor undef directive causes the preprocessor to end the scope of a
preprocessor definition.

#undef directive syntax

�� # undef identifier ��

If the identifier is not currently defined as a macro, #undef is ignored.

The following directives define BUFFER and SQR:
#define BUFFER 512
#define SQR(x) ((x) * (x))

The following directives nullify these definitions:
#undef BUFFER
#undef SQR

Any occurrences of the identifiers BUFFER and SQR that follow these #undef
directives are not replaced with any replacement tokens. Once the definition of a
macro has been removed by an #undef directive, the identifier can be used in a
new #define directive.
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The # operator
The # (single number sign) operator converts a parameter of a function-like macro
into a character string literal. For example, if macro ABC is defined using the
following directive:

#define ABC(x) #x

all subsequent invocations of the macro ABC would be expanded into a character
string literal containing the argument passed to ABC. For example:

Invocation Result of macro expansion

ABC(1) "1"
ABC(Hello there) "Hello there"

The # operator should not be confused with the null directive.

Use the # operator in a function-like macro definition according to the following
rules:
v A parameter following # operator in a function- like macro is converted into a

character string literal containing the argument passed to the macro.
v White-space characters that appear before or after the argument passed to the

macro are deleted.
v Multiple white-space characters imbedded within the argument passed to the

macro are replaced by a single space character.
v If the argument passed to the macro contains a string literal and if a \

(backslash) character appears within the literal, a second \ character is inserted
before the original \ when the macro is expanded.

v If the argument passed to the macro contains a " (double quotation mark)
character, a \ character is inserted before the " when the macro is expanded.

v The conversion of an argument into a string literal occurs before macro
expansion on that argument.

v If more than one ## operator or # operator appears in the replacement list of a
macro definition, the order of evaluation of the operators is not defined.

v If the result of the macro expansion is not a valid character string literal, the
behavior is undefined.

The following examples demonstrate the use of the # operator:
#define STR(x) #x
#define XSTR(x) STR(x)
#define ONE 1

Invocation Result of macro expansion

STR(\n "\n" ’\n’) "\n \"\\n\" ’\\n’"
STR(ONE) "ONE"
XSTR(ONE) "1"
XSTR("hello") "\"hello\""

Related reference:
“The null directive (#)” on page 525
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The ## operator
The ## (double number sign) operator concatenates two tokens in a macro
invocation (text and/or arguments) given in a macro definition.

If a macro XY was defined using the following directive:
#define XY(x,y) x##y

the last token of the argument for x is concatenated with the first token of the
argument for y.

Use the ## operator according to the following rules:
v The ## operator cannot be the very first or very last item in the replacement list

of a macro definition.
v The last token of the item in front of the ## operator is concatenated with first

token of the item following the ## operator.
v Concatenation takes place before any macros in arguments are expanded.
v If the result of a concatenation is a valid macro name, it is available for further

replacement even if it appears in a context in which it would not normally be
available.

v If more than one ## operator and/or # operator appears in the replacement list
of a macro definition, the order of evaluation of the operators is not defined.

The following examples demonstrate the use of the ## operator:
#define ArgArg(x, y) x##y
#define ArgText(x) x##TEXT
#define TextArg(x) TEXT##x
#define TextText TEXT##text
#define Jitter 1
#define bug 2
#define Jitterbug 3

Invocation Result of macro expansion

ArgArg(lady, bug) ladybug
ArgText(con) conTEXT
TextArg(book) TEXTbook
TextText TEXTtext
ArgArg(Jitter, bug) 3

Related reference:
“The #define directive” on page 507

Standard predefined macro names
The C compiler provides the following predefined macro names as specified in the
ISO C language standard. C++ The z/OS XL C/C++ compiler supports these
macros as an extension to be compatible with the C99 standard. C++ Except
for __FILE__ and __LINE__, the value of the predefined macros remains constant
throughout the translation unit. The predefined macro names typically start and
finish with 2 underscore characters.

__DATE__
A character string literal containing the date when the source file was
preprocessed.

The value of __DATE__ changes depending on when the input is
preprocessed. The date is in the form:
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"Mmm dd yyyy"

where:

Mmm Represents the month in an abbreviated form (Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec).

dd Represents the day. If the day is less than 10, the first d is a blank
character.

yyyy Represents the year.

__FILE__
A character string literal containing the name of the source file.

The value of __FILE__ changes as included files that are part of the source
program are preprocessed. It can be set with the #line directive.

__LINE__
An integer representing the current source line number.

The value of __LINE__ changes during compilation as the compiler
processes subsequent lines of your source program. It can be set with the
#line directive.

__STDC__
For C, the integer 1 (one) indicates that the C compiler supports the ISO
standard. If you set the language level to COMMONC, this macro is
undefined. (When a macro is undefined, it behaves as if it had the integer
value 0 when used in a #if statement.)

For C++, this macro is predefined to have the value 0 (zero). This indicates
that the C++ language is not a proper superset of C, and that the compiler
does not conform to ISO C.

__STDC_HOSTED__ (C only)
The value of this C99 macro is 1, indicating that the C compiler is a hosted
implementation. Note that this macro is only defined if __STDC__ is also
defined.

__STDC_VERSION__ (C only)
The integer constant of type long int: 199409L for the C89 language level,
199901L for C99. Note that this macro is only defined if __STDC__ is also
defined.

__TIME__
A character string literal containing the time when the source file was
preprocessed.

The value of __TIME__ changes as included files that are part of the source
program are preprocessed. The time is in the form:

"hh:mm:ss"

where:

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

__cplusplus (C++ only)
For C++ programs, this macro expands to the long integer literal 199711L,
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indicating that the compiler is a C++ compiler. For C programs, this macro
is not defined. Note that this macro name has no trailing underscores.

Related reference:
“The #line directive” on page 523
Object-like macros

File inclusion directives
File inclusion directives consist of:
v “The #include directive,” which inserts text from another source file

v IBM “The #include_next directive (IBM extension)” on page 517, which
causes the compiler to omit the directory of the including file from the search
path when searching for include files. IBM

The #include directive
A preprocessor include directive causes the preprocessor to replace the directive with
the contents of the specified file.

#include directive syntax

�� # include " file_name "
file_path
//

< file_name >
file_path
//

��

You can specify a data set or a z/OS UNIX file for file_name. Use double slashes
(//) before the file_name to indicate that the file is a data set. Use a single slash (/)
anywhere in the file_name to indicate a z/OS UNIX file.

If the file_name is enclosed in double quotation marks, for example:
#include "payroll.h"

it is treated as a user-defined file, and may represent a header or source file.

If the file_name is enclosed in angle brackets, for example:
#include <stdio.h>

it is treated as a system-defined file, and must represent a header file.

The new-line and > characters cannot appear in a file name delimited by < and >.
The new-line and " (double quotation marks) characters cannot appear in a file
name delimited by " and ", although > can.

The file_path can be an absolute or relative path. If the double quotation marks are
used, and file_path is a relative path, or is not specified, the preprocessor adds the
directory of the including file to the list of paths to be searched for the included
file. If the double angle brackets are used, and file_path is a relative path, or is not
specified, the preprocessor does not add the directory of the including file to the
list of paths to be searched for the included file.
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The preprocessor resolves macros contained in an #include directive. After macro
replacement, the resulting token sequence consists of a file name enclosed in either
double quotation marks or the characters < and >. For example:
#define MONTH <july.h>
#include MONTH

Declarations that are used by several files can be placed in one file and included
with #include in each file that uses them. For example, the following file defs.h
contains several definitions and an inclusion of an additional file of declarations:
/* defs.h */
#define TRUE 1
#define FALSE 0
#define BUFFERSIZE 512
#define MAX_ROW 66
#define MAX_COLUMN 80
extern int hour;
extern int min;
extern int sec;
#include "mydefs.h"

You can embed the definitions that appear in defs.h with the following directive:
#include "defs.h"

In the following example, a #define combines several preprocessor macros to
define a macro that represents the name of the C standard I/O header file. A
#include makes the header file available to the program.
#define C_IO_HEADER <stdio.h>

/* The following is equivalent to:
* #include <stdio.h>
*/

#include C_IO_HEADER

The z/OS implementation has specially defined behavior and compiler options for
include file search paths, which are documented in greater detail in the
descriptions of the SEARCH and LSEARCH options in the z/OS XL C/C++ User's
Guide.

C++11 In C++11, the changes to header and include file names in the C99
preprocessor are adopted to provide a common preprocessor interface for C and
C++ compilers. The first character of a header file name in an #include directive
must not be a digit in C++11. For more information, see “C99 preprocessor features
adopted in C++11” on page 526. C++11

The #include_next directive (IBM extension)
The preprocessor directive #include_next behaves like the #include directive,
except that it specifically excludes the directory of the including file from the paths
to be searched for the named file. All search paths up to and including the
directory of the including file are omitted from the list of paths to be searched for
the included file. This allows you to include multiple versions of a file with the
same name in different parts of an application; or to include one header file in
another header file with the same name (without the header including itself
recursively). Provided that the different file versions are stored in different
directories, the directive ensures you can access each version of the file, without
requiring that you use absolute paths to specify the file name.
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#include_next directive syntax

�� # include_next " file_name "
file_path
//

< file_name >
file_path
//

��

The directive must only be used in header files, and the file specified by the
file_name must be a header file. There is no distinction between the use of double
quotation marks and angle brackets to enclose the file name. You can specify a
data set for file_name. Use double slashes (//) before the file_name to indicate that
the file is a data set.

As an example of how search paths are resolved with the #include_next directive,
assume that there are two versions of the file t.h: the first one, which is included
in the source file t.c, is located in the subdirectory path1; the second one, which is
included in the first one, is located in the subdirectory path2. Both directories are
specified as include file search paths when t.c is compiled.
/* t.c */

#include "t.h"

int main()
{
printf(", ret_val);
}

/* t.h in path1 */

#include_next "t.h"

int ret_val = RET;

/* t.h in path2 */

#define RET 55;

The #include_next directive instructs the preprocessor to skip the path1 directory
and start the search for the included file from the path2 directory. This directive
allows you to use two different versions of t.h and it prevents t.h from being
included recursively.

Conditional compilation directives
A preprocessor conditional compilation directive causes the preprocessor to
conditionally suppress the compilation of portions of source code. These directives
test a constant expression or an identifier to determine which tokens the
preprocessor should pass on to the compiler and which tokens should be bypassed
during preprocessing. The directives are:
v “The #if and #elif directives” on page 519, which conditionally include or

suppress portions of source code, depending on the result of a constant
expression

v “The #ifdef directive” on page 520, which conditionally includes source text if a
macro name is defined

v “The #ifndef directive” on page 521, which conditionally includes source text if a
macro name is not defined
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v “The #else directive” on page 521, which conditionally includes source text if the
previous #if, #ifdef, #ifndef, or #elif test fails

v “The #endif directive” on page 521, which ends conditional text

The preprocessor conditional compilation directive spans several lines:
v The condition specification line (beginning with #if, #ifdef, or #ifndef)
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to a nonzero value (optional)
v The #elif line (optional)
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to a nonzero value (optional)
v The #else line (optional)
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to zero (optional)
v The preprocessor #endif directive

For each #if, #ifdef, and #ifndef directive, there are zero or more #elif
directives, zero or one #else directive, and one matching #endif directive. All the
matching directives are considered to be at the same nesting level.

Conditional compilation directives can be nested. A #else, if present, can be
matched unambiguously because of the required #endif.
#ifdef MACNAME

/* tokens added if MACNAME is defined */
# if TEST <=10

/* tokens added if MACNAME is defined and TEST <= 10 */
# else

/* tokens added if MACNAME is defined and TEST > 10 */
# endif
#else

/* tokens added if MACNAME is not defined */
#endif

Each directive controls the block immediately following it. A block consists of all
the tokens starting on the line following the directive and ending at the next
conditional compilation directive at the same nesting level.

Each directive is processed in the order in which it is encountered. If an expression
evaluates to zero, the block following the directive is ignored.

When a block following a preprocessor directive is to be ignored, the tokens are
examined only to identify preprocessor directives within that block so that the
conditional nesting level can be determined. All tokens other than the name of the
directive are ignored.

Only the first block whose expression is nonzero is processed. The remaining
blocks at that nesting level are ignored. If none of the blocks at that nesting level
has been processed and there is a #else directive, the block following the #else
directive is processed. If none of the blocks at that nesting level has been processed
and there is no #else directive, the entire nesting level is ignored.

The #if and #elif directives
The #if directive conditionally includes text for preprocessing. If the condition that
follows the #if directive evaluates to a nonzero value, the text following up to but
excluding the associated #endif is included as preprocessing input.
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The #elif (a contraction of else-if) directive, if used, must be contained within a
section of text subject to an #if directive. This directive optionally includes a
section of text based on the evaluation result of the condition that immediately
follows the directive. The #elif directive evaluates its condition only when the
original condition on the #if evaluates to false and all conditions associated with
preceding #elif directives subject to the original #if also evaluate to false.

#if and #elif directive syntax

�� # if
elif

constant_expression ��

All macros are expanded, except macros that are the operand of a defined
operator. Any uses of the defined operator are processed, and all remaining
keywords and identifiers are replaced with the token 0 C++ except true and
false C++ .

The behavior is undefined if expanding the macros resulted in the token defined.

Notes:

v Casts cannot be performed. For example, the following code can be compiled
successfully by both the C and C++ compilers.
#if static_cast<int>(1)
#error Unexpected
#endif

int main() {
}

v Arithmetic is performed using long int type. C++11 In C++11, arithmetic is
performed using long long int type. See “C99 preprocessor features adopted in
C++11” on page 526 for detailed information. C++11

v The constant_expression can contain defined macros.
v The constant_expression can contain the unary operator defined. This operator

can be used only with the preprocessor keyword #if or #elif. The following
expressions evaluate to 1 if the identifier is defined in the preprocessor, otherwise
to 0:
defined identifier
defined(identifier)

For example:
#if defined(TEST1) || defined(TEST2)

v The constant_expression must be an integral constant expression.

If a macro is not defined, a value of 0 (zero) is assigned to it. In the following
example, TEST is a macro identifier.
#include <stdio.h>
int main()
{

#if TEST != 0 // No error even when TEST is not defined.
printf("Macro TEST is defined to a non-zero value.");

#endif
}

The #ifdef directive
The #ifdef directive checks for the existence of macro definitions.
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If the identifier specified is defined as a macro, the lines of code that immediately
follow the condition are passed on to the compiler. You must use the #endif
directive to end the conditional compilation directive.

#ifdef directive syntax

�� # ifdef identifier ��

The following example defines MAX_LEN to be 75 if EXTENDED is defined for the
preprocessor. Otherwise, MAX_LEN is defined to be 50.
#ifdef EXTENDED
# define MAX_LEN 75
#else
# define MAX_LEN 50
#endif

The #ifndef directive
The #ifndef directive checks whether a macro is not defined.

If the identifier specified is not defined as a macro, the lines of code immediately
follow the condition are passed on to the compiler.

#ifndef directive syntax

�� # ifndef identifier ��

An identifier must follow the #ifndef keyword. The following example defines
MAX_LEN to be 50 if EXTENDED is not defined for the preprocessor. Otherwise, MAX_LEN
is defined to be 75.
#ifndef EXTENDED
# define MAX_LEN 50
#else
# define MAX_LEN 75
#endif

The #else directive
If the condition specified in the #if, #ifdef, or #ifndef directive evaluates to 0,
and the conditional compilation directive contains a preprocessor #else directive,
the lines of code located between the preprocessor #else directive and the
preprocessor #endif directive is selected by the preprocessor to be passed on to the
compiler.

#else directive syntax

�� # else ��

The #endif directive
The preprocessor #endif directive ends the conditional compilation directive.

#endif directive syntax

�� # endif ��
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Extension of #endif and #else (IBM extension)
The C/C++ language standards do not allow extra text after #endif or #else. IBM
XL C and XL C/C++ compilers comply with the standards. When you are porting
code from a compiler that allows extra text after #endif or #else, you can specify
option LANGLVL(TEXTAFTERENDIF) to suppress the warning message that is emitted.

One use is to comment on what is being tested by the corresponding #if or
#ifdef. For example:
#ifdef MY_MACRO
...
#else MY_MACRO not defined
...
#endif MY_MACRO

In this case, if you want the compiler to be silent about this deviation from the
standards, you can suppress the message by specifying option
LANGLVL(TEXTAFTERENDIF), while allowing the message to be emitted in other
contexts, for example, if there is additional text after #undef.

The suboption TEXTAFTERENDIF can be specified with any of the supported
language levels. In almost all cases the default for this suboption is
LANGLVL(NOTEXTAFTERENDIF), indicating that a message will be emitted if there is
any extraneous text after #else or #endif. The one exception is in the C compiler,
when the language level is "classic". In this case, the default for the suboption is
LANGLVL(TEXTAFTERENDIF), because this language level already allows extra text
after #else or #endif without generating a message.

Examples of conditional compilation directives
The following example shows how you can nest preprocessor conditional
compilation directives:
#if defined(TARGET1)
# define SIZEOF_INT 16
# ifdef PHASE2
# define MAX_PHASE 2
# else
# define MAX_PHASE 8
# endif
#elif defined(TARGET2)
# define SIZEOF_INT 32
# define MAX_PHASE 16
#else
# define SIZEOF_INT 32
# define MAX_PHASE 32
#endif

The following program contains preprocessor conditional compilation directives:

CCNRABC
/**
** This example contains preprocessor
** conditional compilation directives.
**/

#include <stdio.h>

int main(void)
{

static int array[ ] = { 1, 2, 3, 4, 5 };
int i;
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for (i = 0; i <= 4; i++)
{

array[i] *= 2;

#if TEST >= 1
printf("i = %d\n", i);
printf("array[i] = %d\n",
array[i]);

#endif

}
return(0);

}

Message generation directives
Message generation directives include the following ones:
v “The #error directive,” which defines text for a compile-time error message
v “The #line directive,” which supplies a line number for compiler messages
Related reference:
“Conditional compilation directives” on page 518

The #error directive
A preprocessor error directive causes the preprocessor to generate an error message
and causes the compilation to fail.

#error directive syntax

�� # error � preprocessor_token ��

The #error directive is often used in the #else portion of a #if–#elif–#else
construct, as a safety check during compilation. For example, #error directives in
the source file can prevent code generation if a section of the program is reached
that should be bypassed.

For example, the directives
#define BUFFER_SIZE 255

#if BUFFER_SIZE < 256
#error "BUFFER_SIZE is too small."
#endif

generate the error message:
BUFFER_SIZE is too small.

The #line directive
A preprocessor line control directive supplies line numbers for compiler messages. It
causes the compiler to view the line number of the next source line as the specified
number.
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#line directive syntax

�� # line � decimal_constant
0 " file_name "

characters

��

In order for the compiler to produce meaningful references to line numbers in
preprocessed source, the preprocessor inserts #line directives where necessary (for
example, at the beginning and after the end of included text).

A file name specification enclosed in double quotation marks can follow the line
number. If you specify a file name, the compiler views the next line as part of the
specified file. If you do not specify a file name, the compiler views the next line as
part of the current source file.

For z/OS XL C/C++ compilers, the file_name should be:
v A fully qualified sequential data set
v A fully qualified PDS or PDSE member
v A z/OS UNIX path name

The entire string is taken unchanged as the alternate source file name for the
translation unit (for example, for use by the debugger). Consider if you are using it
to redirect the debugger to source lines from this alternate file. In this case, you
must ensure the file exists as specified and the line number on the #line directive
matches the file contents. The compiler does not check this.

In all C and C++ implementations, the token sequence on a #line directive is
subject to macro replacement. After macro replacement, the resulting character
sequence must consist of a decimal constant, optionally followed by a file name
enclosed in double quotation marks.

You can use #line control directives to make the compiler provide more
meaningful error messages. The following example program uses #line control
directives to give each function an easily recognizable line number:

CCNRABD
/**
** This example illustrates #line directives.
**/

#include <stdio.h>
#define LINE200 200

int main(void)
{

func_1();
func_2();

}

#line 100
func_1()
{

printf("Func_1 - the current line number is %d\n",__LINE__);
}

#line LINE200
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func_2()
{

printf("Func_2 - the current line number is %d\n",__LINE__);
}

This program produces the following output:
Func_1 - the current line number is 102
Func_2 - the current line number is 202

C++11 In C++11, the increased limit for #line directive from the C99
preprocessor are adopted to provide a common preprocessor interface for C and
C++ compilers. The upper limit of #line <integer> preprocessor directives has
been increased from 32,767 to 2,147,483,647 for the C++ preprocessor in
conformance with the C99 preprocessor. For more information, see “C99
preprocessor features adopted in C++11” on page 526. C++11

The null directive (#)
The null directive performs no action. It consists of a single # on a line of its own.

The null directive should not be confused with the # operator or the character that
starts a preprocessor directive.

In the following example, if MINVAL is a defined macro name, no action is
performed. If MINVAL is not a defined identifier, it is defined 1.
#ifdef MINVAL

#
#else

#define MINVAL 1
#endif

Related reference:
“The # operator” on page 513

Pragma directives
A pragma is an implementation-defined instruction to the compiler. It has the
general form:

#pragma directive syntax

�� # pragma
STDC

� character_sequence new-line ��

The character_sequence is a series of characters giving a specific compiler instruction
and arguments, if any. The token STDC indicates a standard pragma; consequently,
no macro substitution takes place on the directive. The new-line character must
terminate a pragma directive.

The character_sequence on a pragma is not subject to macro substitutions.

Note: C You can also use the _Pragma operator syntax to specify a pragma
directive; for details, see “The _Pragma preprocessing operator” on page 526.

C
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More than one pragma construct can be specified on a single pragma directive. The
compiler ignores unrecognized pragmas.

Standard C pragmas are described in “Standard pragmas.” IBM Pragmas
available for z/OS XL C/C++ are described in Chapter 18, “z/OS XL C/C++
pragmas,” on page 531. IBM

The _Pragma preprocessing operator
The unary operator _Pragma, allows a preprocessor macro to be contained in a
pragma directive.

_Pragma operator syntax

�� _Pragma ( " string_literal " ) ��

The string_literal can be prefixed with L, making it a wide-string literal.

The string literal is destringized and tokenized. The resulting sequence of tokens is
processed as if it appeared in a pragma directive. For example, the following two
statements are equivalent:
_Pragma ( "pack(full)" )
#pragma pack(full)

C++11 In C++11, the _Pragma operator feature of the C99 preprocessor is adopted
to provide a common preprocessor interface for C and C++ compilers. The _Pragma
operator is an alternative method of specifying the #pragma directive. For more
information, see “C99 preprocessor features adopted in C++11.”

Standard pragmas
A standard pragma is a pragma preprocessor directive for which the C Standard
defines the syntax and semantics and for which no macro replacement is
performed. A standard pragma must be one of the following:

�� #pragma STDC FP_CONTRACT
FENV_ACCESS
CX_LIMITED_RANGE

ON
OFF
DEFAULT

new-line ��

These pragmas are recognized and ignored.

C99 preprocessor features adopted in C++11

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

In the C++11 standard, several C99 preprocessor features are adopted to provide a
common preprocessor interface for C and C++ compilers. This eases porting C
source files to the C++ compiler and eliminates some subtle semantic differences
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that exist between the old C and C++ preprocessors, thus avoiding preprocessor
compatibility issues or diverging preprocessor behaviors.

The following C99 preprocessor features are adopted in C++11:
v Preprocessor arithmetic with extended integer types
v Mixed string literal concatenation
v Diagnostic for header files and include names
v Increased limit for #line directives
v Diagnostic for object-like macro definitions
v The _Pragma operator
v Variadic macros and empty macro arguments
v Predefined macros

Preprocessor arithmetic with extended integer types

In the C89, C++98, and C++03 preprocessors, integer literals that have int or
unsigned int type are widened to long or unsigned long. However, in the C99 and
C++11 preprocessors, all signed and unsigned integer types (character types
included) are widened to long long or unsigned long long under normal
circumstances in XL C/C++.

If this feature is enabled, and both -qnolonglong and -qlanglvl=noc99longlong are
set in either -q32 or -q64 modes, the preprocessor still uses long long or unsigned
long long representations for all integral and character literals in preprocessor
controlling expressions.

The following example is valid on the where the underlying type of wchar_t is
unsigned short.

The following example shows a case where the long long support is enabled in
-q32 mode, this feature causes different inclusion branches to be chosen between
the non-C++11 preprocessor and the C++11 preprocessor.
#if ~0ull == 0u + ~0u
#error C++11 preprocessor arithmetic! 0u has the same representation as 0ull,\

hence ~0ull == 0u + ~0u
#else
#error non-C++11 preprocessor arithmetic. 0ul does not have the same \

representation as 0ull, hence ~0ull != 0u + ~0u
#endif

If this feature is disabled and -qwarn0x is set, the C++11 preprocessor evaluates the
controlling expressions in the #if and #elif directives, and compares the
evaluation results against that of the non-C++11 preprocessor. If they are different,
the compiler warns you that the preprocessor controlling expression evaluates
differently between C++11 and non-C++11 language levels.

Mixed string literal concatenation

Regular strings can be concatenated with wide-string literals, for example:
#include <wchar.h>
#include <stdio.h>

int main()
{
wprintf(L"Guess what? %ls\n", "I can now concate" L"nate regular strings\
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and wide strings!");
printf("Guess what? %ls\n", L"I can now concate" "nate strings\

this way too!");
}

This example prints the following output when it is executed:
Guess what? I can now concatenate regular strings and wide strings!
Guess what? I can now concatenate strings this way too!

Diagnostic for header files and include names

When this feature is enabled, if the first character of a header file name in an
#include directive is a digit, the compiler issues a warning message. Consider the
following example:
//inc.C

#include "0x/mylib.h"

int main()
{
return 0;
}

When compiling or preprocessing this example with this feature enabled, the
compiler issues the following warning message:
"inc.C", line 1.10: 1540-0893 (W) The header file name "0x/mylib.h"
in #include directive shall not start with a digit.

Increased limit for #line directives

The upper limit of the #line <integer> preprocessor directives has been increased
from 32,767 to 2,147,483,647 for the C++11 preprocessor in conformance with the
C99 preprocessor.
#line 1000000 //Valid in C++11, but invalid in C++98
int main()
{

return 0;
}

Diagnostic for object-like macro definitions

If there is no white space between object-like macro name and its replacement list
in a macro definition, the C++11 compiler issues a warning message. Consider the
following example:
//w.C

//With -qnodollar, ’$’ is not part of the macro name,
//thus it begins the replacement list
#define A$B c
#define STR2( x ) # x
#define STR( x ) STR2( x )
char x[] = STR( A$B );

When compiling or preprocessing this example with this feature enabled and
-qnodollar is specified, the compiler issues the following warning message:
"w.C", line 1.10: 1540-0891 (W) Missing white space between
the identifier "A" and the replacement list.
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The _Pragma operator

The _Pragma operator is an alternative method of specifying #pragma directives. For
example, the following two statements are equivalent:
#pragma comment(copyright, "IBM 2010")
_Pragma("comment(copyright, \"IBM 2010\")")

The string IBM 2010 is inserted into the C++ object file when the following code is
compiled:
_Pragma("comment(copyright, \"IBM 2010\")")
int main()
{

return 0;
}

Variadic macros and empty macro arguments

Variadic macros and empty macro arguments are supported in C99 and C++11. For
details, see Variadic macros.

Predefined macros

The __STDC_HOSTED__ macro is predefined to 1, regardless of whether the following
macros are defined or not:
v __STDC__

v __STDC_VERSION__

v __STDC_ISO_10646_

Related reference:
“Integer literals” on page 19
“String literals” on page 28
“The #include directive” on page 516
“The #line directive” on page 523
“The #define directive” on page 507
“The _Pragma preprocessing operator” on page 526
“C++11 compatibility” on page 640
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Chapter 18. z/OS XL C/C++ pragmas

The following sections describe the pragmas available in z/OS XL C/C++:
v “Pragma directive syntax”
v “Scope of pragma directives”
v “IPA effects” on page 532
v “Summary of compiler pragmas by functional category” on page 532
v “Individual pragma descriptions” on page 536

Pragma directive syntax
z/OS XL C/C++ supports the following pragma directive:

#pragma name
This form uses the following syntax:

�� �# pragma name
( suboptions )

��

The name is the pragma directive name, and the suboptions are any required
or optional suboptions that can be specified for the pragma, where
applicable.

You can specify more than one name and suboptions in a single #pragma statement.

The compiler ignores unrecognized pragmas, issuing an informational message
indicating this.

If you have any pragmas that are not common to both C and C++ in code that will
be compiled by both compilers, you may add conditional compilation directives
around the pragmas. (This is not strictly necessary since unrecognized pragmas are
ignored.) For example, #pragma object_model is only recognized by the C++
compiler, so you may decide to add conditional compilation directives around the
pragma.
#ifdef __cplusplus
#pragma object_model(pop)
#endif

Scope of pragma directives
Many pragma directives can be specified at any point within the source code in a
compilation unit; others must be specified before any other directives or source
code statements. In the individual descriptions for each pragma, the "Usage"
section describes any constraints on the pragma's placement.

In general, if you specify a pragma directive before any code in your source
program, it applies to the entire compilation unit, including any header files that
are included. For a directive that can appear anywhere in your source code, it
applies from the point at which it is specified, until the end of the compilation
unit.
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You can further restrict the scope of a pragma's application by using
complementary pairs of pragma directives around a selected section of code. For
example, using #pragma checkout (suspend) and #pragma checkout (resume)
directives as follows requests that the selected parts of your source code be
excluded from being diagnosed by the CHECKOUT compiler option:
#pragma checkout (suspend)

/*Source code between the suspend and resume pragma
checkout is excluded from CHECKOUT analysis*/

#pragma checkout (resume)

Many pragmas provide "pop" or "reset" suboptions that allow you to enable and
disable pragma settings in a stack-based fashion; examples of these are provided in
the relevant pragma descriptions.

IPA effects
Interprocedural Analysis (IPA), through the IPA compiler option, is a mechanism
for performing optimizations across the translation units of your C or C++
program. IPA also performs optimizations not otherwise available with the z/OS
XL C/C++ compiler.

You may see changes during the IPA link step, due to the effect of a pragma. The
IPA link step detects and resolves the conflicting effects of pragmas, and the
conflicting effects of pragmas and compiler options that you specified for different
translation units. There may also be conflicting effects between pragmas and
equivalent compiler options that you specified for the IPA link step.

IPA resolves these conflicts similar to the way it resolves conflicting effects of
compiler options that are specified for the IPA compile step and the IPA link step.
The compiler Options Map section of the IPA link step listing shows the conflicting
effects between compiler options and pragmas, along with the resolutions.

Summary of compiler pragmas by functional category
The z/OS XL C/C++ pragmas available on the z/OS platform are grouped into the
following categories:
v “Language element control”
v “C++ template pragmas” on page 533
v “Floating point and integer control” on page 533
v “Error checking and debugging” on page 534
v “Listings, messages and compiler information” on page 534
v “Optimization and tuning” on page 534
v “Object code control” on page 535
v “Portability and migration” on page 536

For descriptions of these categories, see "Summary of compiler options" in the z/OS
XL C/C++ User's Guide.

Language element control
Table 35. Language element control pragmas

Pragma Description

“#pragma extension” on
page 554

Enables extended language features.
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Table 35. Language element control pragmas (continued)

Pragma Description

“#pragma filetag” on page
556

Specifies the code set in which the source code was entered.

“#pragma langlvl (C only)”
on page 564

Determines whether source code and compiler options
should be checked for conformance to a specific language
standard, or subset or superset of a standard.

“#pragma
margins/nomargins” on
page 572

Specifies the columns in the input line to scan for input to
the compiler.

“#pragma options (C only)”
on page 581

Specifies a list of compiler options that are to be processed as
if you had typed them on the command line or on the
CPARM parameter of the IBM-supplied catalogued
procedures.

“#pragma runopts” on page
593

Specifies a list of runtime options for the compiler to use at
execution time.

“#pragma sequence” on
page 594

Defines the section of the input record that is to contain
sequence numbers.

“#pragma XOPTS” on page
604

Passes suboptions directly to the CICS integrated translator
for processing CICS statements embedded in C/C++ source
code.

C++ template pragmas
Table 36. C++ template pragmas

Pragma Description

“#pragma define (C++
only)” on page 546

Provides an alternative method for explicitly instantiating a
template class.

“#pragma
do_not_instantiate (C++
only)” on page 549

Prevents the specified template declaration from being
instantiated.

“#pragma implementation
(C++ only)” on page 558

For use with the TEMPINC compiler option, supplies the
name of the file containing the template definitions
corresponding to the template declarations contained in a
header file.

Floating point and integer control
Table 37. Floating point and integer control pragmas

Pragma Description

#pragma chars Determines whether all variables of type char are treated as
either signed or unsigned.

“#pragma enum” on page
549

Specifies the amount of storage occupied by enumerations.
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Error checking and debugging
Table 38. Error checking and debugging pragmas

Pragma Description

“#pragma operator_new
(C++ only)” on page 578

Determines whether the new and new[] operators throw an
exception if the requested memory cannot be allocated.

Listings, messages and compiler information
Table 39. Listings, messages and compiler information pragmas

Pragma Description

“#pragma checkout” on
page 540

Controls the diagnostic messages that are generated by the
compiler.

“#pragma info (C++ only)”
on page 558

Controls the diagnostic messages that are generated by the
compiler.

“#pragma page (C only)” on
page 587

Specifies that the code following the pragma begins at the
top of the page in the generated source listing.

“#pragma pagesize (C
only)” on page 587

Sets the number of lines per page for the generated source
listing.

“#pragma report (C++
only)” on page 591

Controls the generation of diagnostic messages.

“#pragma skip (C only)” on
page 595

Skips lines of the generated source listing.

“#pragma subtitle (C only)”
on page 597

Places subtitle text on all subsequent pages of the generated
source listing.

“#pragma title (C only)” on
page 598

Places title text on all subsequent pages of the generated
source listing.

Optimization and tuning
Table 40. Optimization and tuning pragmas

Pragma Description

“#pragma disjoint” on page
547

Lists identifiers that are not aliased to each other within the
scope of their use.

“#pragma
execution_frequency” on
page 552

Marks program source code that you expect will be either
very frequently or very infrequently executed.

“#pragma inline (C only) /
noinline” on page 559

Specifies that a C function is to be inlined, or that a C or
C++ function is not to be inlined.

#pragma isolated_call Specifies functions in the source file that have no side effects
other than those implied by their parameters.

“#pragma leaves” on page
565

Informs the compiler that a named function never returns to
the instruction following a call to that function.

“#pragma option_override”
on page 579

Allows you to specify optimization options at the
subprogram level that override optimization options given
on the command line.

“#pragma reachable” on
page 590

Informs the compiler that the point in the program after a
named function can be the target of a branch from some
unknown location.
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Table 40. Optimization and tuning pragmas (continued)

Pragma Description

#pragma unroll Controls loop unrolling, for improved performance.

Object code control
Table 41. Object code control pragmas

Pragma Description

“#pragma arch_section (IBM
extension)” on page 537

Overrides the architecture of a statement in the source file.
This pragma directive enables your program to leverage
specific hardware features like using newer and faster
instructions through built-ins or compiler generated
instructions based on the architecture sections within the
source file. You do not need to maintain code customized for
a specific hardware model in separate source files. This
pragma directive reduces the overhead of the call to an
external routine and permits code for different machine
architectures to coexist in one source file.

“#pragma comment” on
page 541

Places a comment into the object module.

“#pragma csect” on page
545

Identifies the name for the code, static, or test control section
(CSECT) of the object module.

“#pragma environment (C
only)” on page 551

Uses C code as an assembler substitute.

“#pragma export” on page
553

Declares that an external function or variable is to be
exported.

“#pragma hashome (C++
only)” on page 556

Informs the compiler that the specified class has a home
module that will be specified by #pragma ishome.

“#pragma insert_asm (C
only)” on page 560

Enables users to provide additional assembler statements
that are inserted into the compiler-generated High-Level
Assembler (HLASM) code.

“#pragma ishome (C++
only)” on page 561

Informs the compiler that the specified class's home module
is the current compilation unit.

“#pragma linkage (C only)”
on page 566

Identifies the entry point of modules that are used in
interlanguage calls from C programs as well as the linkage
or calling convention that is used on a function call.

“#pragma
longname/nolongname” on
page 569

Specifies whether the compiler is to generate mixed-case
names that can be longer than 8 characters in the object
module.

“#pragma map” on page
570

Converts all references to an identifier to another, externally
defined identifier.

“#pragma pack” on page
583

Sets the alignment of all aggregate members to a specified
byte boundary.

#pragma priority (C++ only) Specifies the priority level for the initialization of static
objects.

“#pragma prolog (C only),
#pragma epilog (C only)”
on page 589

When used with the METAL option, inserts High-Level
Assembly (HLASM) prolog or epilog code for a specified
function.

#pragma strings Specifies the storage type for string literals.

“#pragma target (C only)”
on page 597

Specifies the operating system or runtime environment for
which the compiler creates the object module.

Chapter 18. z/OS XL C/C++ pragmas 535



Table 41. Object code control pragmas (continued)

Pragma Description

“#pragma variable” on page
601

Specifies whether the compiler is to use a named external
object in a reentrant or non-reentrant fashion.

Portability and migration
Table 42. Portability and migration pragmas

Pragma Description

“#pragma convert” on page
543

Provides a way to specify more than one coded character set
in a single compilation unit to convert string literals.

“#pragma convlit” on page
544

Suspends the string literal conversion that the CONVLIT
compiler option performs during specific portions of your
program.

“#pragma namemangling
(C++ only)” on page 573

Chooses the name mangling scheme for external symbol
names generated from C++ source code.

“#pragma
namemanglingrule (C++
only)” on page 575

Provides fined-grained control over the name mangling
scheme in effect for selected portions of source code,
specifically with respect to the mangling of cv-qualifiers in
function parameters.

“#pragma object_model
(C++ only)” on page 577

Sets the object model to be used for structures, unions, and
classes.

“#pragma wsizeof” on page
602

Toggles the behavior of the sizeof operator between that of
a compiler prior the C/C++ for MVS/ESA V3R2 and the
z/OS XL C/C++ compiler.

Individual pragma descriptions
This section contains descriptions of individual pragmas available in z/OS XL
C/C++.

For each pragma, the following information is given:

Category
The functional category to which the pragma belongs is listed here.

Purpose
This section provides a brief description of the effect of the pragma, and
why you might want to use it.

Syntax
This section provides the syntax for the pragma. For convenience, the
#pragma name form of the directive is used in each case. However (in C),
it is perfectly valid to use the alternate C99-style _Pragma operator syntax;
see “Pragma directive syntax” on page 531 for details.

Parameters
This section describes the suboptions that are available for the pragma,
where applicable.

Usage This section describes any rules or usage considerations you should be
aware of when using the pragma. These can include restrictions on the
pragma's applicability, valid placement of the pragma, and so on.
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IPA effects
For those pragmas where there are special considerations for IPA, the
pragma descriptions include IPA-related information.

Examples
Where appropriate, examples of pragma directive use are provided in this
section.

#pragma arch_section (IBM extension)
Category

“Object code control” on page 535

Purpose

Overrides the architecture of a statement in the source file. This pragma directive
enables your program to leverage specific hardware features like using newer and
faster instructions through built-ins or compiler generated instructions based on
the architecture sections within the source file. You do not need to maintain code
customized for a specific hardware model in separate source files. This pragma
directive reduces the overhead of the call to an external routine and permits code
for different machine architectures to coexist in one source file.

Syntax

�� # pragma arch_section ( architecture level ) statement ��

Defaults

Not applicable.

Parameters

architecture level
Specifies the hardware architecture level for the code section that follows the
directive. Valid architecture levels are 5 and above, which are described under
the ARCHITECTURE option in z/OS XL C/C++ User's Guide.

statement
A single statement or a compound statement that is enclosed by curly braces.

Usage

Upon encountering the #pragma arch_section directive in the source, the compiler
replaces the architecture level specified by compiler option ARCH or a parent
scope #pragma options(architecture(n)) until the end of the statement.

The #pragma arch_section directive can be nested. When nesting, the outer sections
should be lower than the inner sections, as the older hardware features are a
subset of the newer ones.

The TUNE compiler option should be equal or greater than the highest architecture
level specified in the #pragma arch_section directive.
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Options that enable language extensions associated with a hardware feature should
be specified on compiler command line invocation. For example, DFP to enable
_Decimal{32, 64, 128} type, and VECTOR to enable vector type.

Specifying the following options on the compiler command line invocation does
not enable the hardware features associated with them for the statements following
the #pragma arch_section directive. These options and their associated hardware
features are as follow:
v RTCHECK for #pragma arch_section 8 or higher
v HGPR for #pragma arch_section 5 or higer
v FLOAT(HEX,MAF),OPTIMIZE for #pragma arch_section 9 or higher

When using #pragma arch_section in the source, check the hardware model to
ensure that the specified functionality is available at execution time. You can use
one of the compiler supported built-ins functions, which are documented in z/OS
XL C/C++ Programming Guide.

Examples

The following example shows that architecture levels must be specified in an
increasing order. Suppose that you have the following program with name nest.c:
#include <builtins.h>

extern unsigned int c, a, b, d;
int countzero();

int main(void){
unsigned long zero=0ul;
__builtin_cpu_init();
if (__builtin_cpu_supports("popcount"))

#pragma arch_section(11)
{

c = a + b;
#pragma arch_section(9)

d = __popcnt(zero);
}

return 55;
}

If you compile this program with the following command:
xlc -c -qlanglvl=extended nest.c

The following warning message will be issued:
The value "9" specified on pragma "arch_section" is lower than the effective
architecture value "11". The pragma is ignored.

The following example shows that you cannot use decimal floating-point in
sections of the source when effective architecture level is lower than 7. Suppose
that you have the following program with name dfp.c:
#include <stdio.h>
#include <builtins.h>

_Decimal64 dec_n=-1.0;

int main(){
__builtin_cpu_init();
if(__builtin_cpu_supports("dfp"))

#pragma arch_section(7){
dec_n=-6.4;
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dec_n = __d64_abs(dec_n);
printf("%f\n", dec_n);

}
return 55;

}

If you compile this program with the following command:
xlC -c dfp.c -qphsinfo -qarch=5 -qDFP

The following error message will be issued:
The use of decimal floating-point is invalid for architecture level "5".

Related information
v ARCHITECTURE option in the z/OS XL C/C++ User's Guide.
v Hardware model and feature built-ins section in z/OS XL C/C++ Programming

Guide.

#pragma chars
Category

Floating-point and integer control

Purpose

Determines whether all variables of type char are treated as either signed or
unsigned.

Syntax

Pragma syntax

��
unsigned

# pragma chars ( signed ) ��

Defaults

See the CHARS option in the z/OS XL C/C++ User's Guide.

Parameters

unsigned
Variables of type char are treated as unsigned char.

signed
Variables of type char are treated as signed char.

Usage

Regardless of the setting of this pragma, the type of char is still considered to be
distinct from the types unsigned char and signed char for purposes of
type-compatibility checking or C++ overloading.

If the pragma is specified more than once in the source file, the first one will take
precedence. Once specified, the pragma applies to the entire file and cannot be
disabled; if a source file contains any functions that you want to compile without
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#pragma chars, place these functions in a different file. C The pragma must
appear before any source statements, except for the pragmas filetag, longname,
langlvl or target, which may precede it. C++ The pragma must appear before
any source statements.

Related information
v The CHARS option in the z/OS XL C/C++ User's Guide.

#pragma checkout
Category

“Listings, messages and compiler information” on page 534

Purpose

Controls the diagnostic messages that are generated by the compiler.

You can suspend the diagnostics that the INFO or CHECKOUT compiler options
perform during specific portions of your program. You can then resume the same
level of diagnostics later in the file. C++ You can use this pragma directive in
place of the INFO option or #pragma info directive. C++

Syntax

C

�� # pragma checkout ( resume )
suspend

��

C

C++

�� �

,

# pragma checkout ( suboption )
resume
suspend

��

C++

Defaults

See the INFO and CHECKOUT options in the z/OS XL C/C++ User's Guide.

Parameters

C++ suboption
Any suboption supported by the INFO compiler option. For details, see the
INFO option in the z/OS XL C/C++ User's Guide. C++

suspend
Instructs the compiler to suspend all diagnostic operations for the code
following the directive.
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resume
Instructs the compiler to resume all diagnostic operations for the code
following the directive.

Usage

This pragma can appear anywhere that a preprocessor directive is valid.

Related information
v “#pragma info (C++ only)” on page 558
v The INFO and CHECKOUT options in the z/OS XL C/C++ User's Guide.

#pragma comment
Category

Object code control

Purpose

Places a comment into the object module.

Syntax

C++

�� # pragma comment ( compiler )
date
timestamp

copyright
user , " token_sequence "

��

C++

C

�� # pragma comment �

� ( compiler )
date
timestamp

copyright
csect_copyright , csect_name , " token_sequence "
user

��

C

Parameters

compiler
Appends the name and version of the compiler in an END information record
at the end of the generated object module. The name and version are not
included in the generated executable, nor are they loaded into memory when
the program is run.

date
The date and time of the compilation are appended in an END information
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record at the end of the generated object module. The date and time are not
included in the generated executable, nor are they loaded into memory when
the program is run.

timestamp
Appends the date and time of the last modification of the source in an END
information record at the end of the generated object module. The date and
time are not included in the generated executable, nor are they loaded into
memory when the program is run.

If the compiler cannot find the timestamp for a source file, the directive returns
Mon Jan 1 0:00:01 1990.

copyright
Places the text specified by the token_sequence, if any, into the generated object
module. The token_sequence is included in the generated executable and loaded
into memory when the program is run.

C csect_copyright
Places the text specified by the token_sequence, if any, into a CSECT section
named csect_name in the generated object module. token_sequence is included in
the generated executable and loaded into memory when the program is run.

C

C csect_name
The user-specified csect_name should not conflict with CODE, STATIC or TEST
CSECT names specified using #pragma csect. C

user
Places the text specified by the token_sequence, if any, into the generated object
module. The characters are placed in two locations in the generated object
module. One copy of the string is placed in the code image so that the string
will be included in the executable load module. This copy is not necessarily
loaded into memory when the program is run. A second copy of the string is
placed on the END records in columns 34 to 71 for XOBJ-format object
modules, or in columns 4 to 80 for GOFF-format object modules.

token_sequence
The characters in this field, if specified, must be enclosed in double quotation
marks ("). This field has a 32767-byte limit.

Usage

More than one comment directive can appear in a translation unit, and each type
of comment directive can appear more than once, with the exception of copyright,
which can appear only once.

You can display the object-file comments by using the MAP option for the C370LIB
utility.

IPA effects

This directive affects the IPA compile step only if the OBJECT suboption of the IPA
compiler option is in effect.

During the IPA link step, the compiler may combine multiple objects into one. In
the case where multiple csect_copyright comment directives are found, the
compiler will keep one and discard the rest.
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During the partitioning process in the IPA link step, the compiler places the text
string information #pragma comment at the beginning of a partition.

#pragma convert
Category

“Portability and migration” on page 536

Purpose

Provides a way to specify more than one coded character set in a single
compilation unit to convert string literals.

Unlike the related CONVLIT, ASCII/EBDCIC, and LOCALE compiler options, it
allows for more than one character encoding to be used for string literals in the
same compilation unit.

Syntax

�� # pragma convert ( ccsid )
" code_set_name "
base
source
pop
pop_all

��

Defaults

See the z/OS XL C/C++ User's Guide for information about default code pages.

Parameters

ccsid
Represents the Coded Character Set Identifier, which is an integer value
between 0 and 65535 inclusive. The coded character set can be based on either
EBCDIC or ASCII.

code_set_name
Is a string that specifies an ASCII or EBCDIC based codepage.

base
Represents the codepage determined by the current locale or the LOCALE
compiler option. If the ASCII option has been specified, then base is the
ISO8859-1 codepage; if the CONVLIT option has been specified, then base is
the codepage indicated by that option. If both ASCII and CONVLIT options
have been specified, then base is the codepage indicated by the CONVLIT
option.

source
Represents the codepage the source file is written in; that is, the filetag. If there
is no filetag, then source is the codepage indicated by the LOCALE option
specified at compile time.

pop
Resets the code set to that which was previously in effect immediately before
the current codepage.
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pop_all
Resets the codepage to that which was in effect before the introduction of any
convert pragmas.

Usage

The compiler options CONVLIT, ASCII/EBCDIC, and LOCALE determine the code
set in effect before any #pragma convert directives are introduced, and after all
#pragma convert directives are popped from the stack.

The conversion continues from the point of placement of the first #pragma convert
directive until another #pragma convert directive is encountered, or until the end
of the source file is reached. For every #pragma convert directive in your program,
it is good practice to have a corresponding #pragma convert(pop) as well. This will
prevent one file from potentially changing the codepage of another file that is
included.

#pragma convert takes precedence over #pragma convlit.

The following are not converted:
v A string or character constant specified in hexadecimal or octal escape sequence

format (because it represents the value of the desired character on output).
v A string literal that is part of a #include or pragma directive.
v C++ String literals that are used to specify linkage (for example, extern

"C"). C++

Related information
v “#pragma convlit”
v The LOCALE, ASCII, and CONVLIT options in the z/OS XL C/C++ User's Guide.

#pragma convlit
Category

“Portability and migration” on page 536

Purpose

Suspends the string literal conversion that the CONVLIT compiler option performs
during specific portions of your program.

You can then resume the conversion at some later point in the file.

Syntax

�� # pragma convlit ( resume )
suspend

��

Defaults

See the z/OS XL C/C++ User's Guide for information about default code pages.
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Parameters

suspend
Instructs the compiler to suspend all string literal conversions for the code
following the directive.

resume
Instructs the compiler to resume all string literal conversions for the code
following the directive.

Usage

If you use the PPONLY option, the compiler echoes the convlit pragma to the
expanded source file.

Related information
v “#pragma convert” on page 543
v The CONVLIT option in the z/OS XL C/C++ User's Guide.

#pragma csect
Category

“Object code control” on page 535

Purpose

Identifies the name for the code, static, or test control section (CSECT) of the object
module.

Syntax

�� # pragma csect ( CODE , " name " )
STATIC
TEST

��

Defaults

See the CSECT option in the z/OS XL C/C++ User's Guide.

Parameters

CODE
Specifies the CSECT that contains the executable code (C functions) and
constant data.

STATIC
Designates the CSECT that contains all program variables with the static
storage class and all character strings.

TEST
Designates the CSECT that contains debug information. You must also specify
the TEST compiler option.

name
The name that is used for the applicable CSECT. The compiler does not map
the name in any way. If the name is greater than 8 characters, the
LONGNAME option must be in effect and you must use the binder. The name
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must not conflict with the name of an exposed name (external function or
object) in a source file. In addition, it must not conflict with another #pragma
csect directive or #pragma map directive. For example, the name of the code
CSECT must differ from the name of the static and test CSECTs. For more
information on CSECT naming rules, see the CSECT compiler option
description in the z/OS XL C/C++ User's Guide.

Usage

At most, three #pragma csect directives can appear in a source program as follows:
v One for the code CSECT
v One for the static CSECT
v One for the debug CSECT

When both #pragma csect and the CSECT compiler option are specified, the
compiler first uses the option to generate the CSECT names, and then the #pragma
csect overrides the names generated by the option.

Examples

Suppose that you compile the following code with the option CSECT(abc) and
program name foo.c.
#pragma csect (STATIC, "blah")
int main ()
{

return 0;
}

First, the compiler generates the following csect names:
STATIC:abc#foo#S
CODE: abc#foo#C
TEST: abc#foo#T

Then the #pragma csect overrides the static CSECT name, which renders the final
CSECT name to be:
STATIC: blah
CODE: abc#foo#C
TEST: abc#foo#T

IPA effects

Use the #pragma csect directive when naming regular objects only if the OBJECT
suboption of the IPA compiler option is in effect. Otherwise, the compiler discards
the CSECT names that #pragma csect generated.

Related information
v CSECT option in the z/OS XL C/C++ User's Guide.

#pragma define (C++ only)
Category

Template control
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Purpose

Provides an alternative method for explicitly instantiating a template class.

Syntax

�� # pragma define ( template_class_name ) ��

Parameters

template_class_name
The name of the template class to be instantiated.

Usage

This pragma provides the equivalent functionality to C++ explicit instantiation
definitions. It is provided for compatibility with earlier releases only. New
applications should use C++ explicit instantiation definitions.

This pragma can appear anywhere an explicit instantiation definition can appear.

Examples

The following directive:
#pragma define(Array<char>)

is equivalent to the following explicit instantiation:
template class Array<char>;

Related information
v “Explicit instantiation” on page 456

#pragma disjoint
Category

Optimization and tuning

Purpose

Lists identifiers that are not aliased to each other within the scope of their use.

By informing the compiler that none of the identifiers listed in the pragma shares
the same physical storage, the pragma provides more opportunity for
optimizations.

Syntax

�� #pragma disjoint �
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� �

� �

( variable_name , variable_name )

* *

��

Parameters

variable_name
The name of a variable. It must not refer to any of the following:
v A member of a structure, class, or union
v A structure, union, or enumeration tag
v An enumeration constant
v A typedef name
v A label

Usage

The #pragma disjoint directive asserts that none of the identifiers listed in the
pragma share physical storage; if any the identifiers do actually share physical
storage, the pragma may give incorrect results.

The pragma can appear anywhere in the source program that a declaration is
allowed. An identifier in the directive must be visible at the point in the program
where the pragma appears.

You must declare the identifiers before using them in the pragma. Your program
must not dereference a pointer in the identifier list nor use it as a function
argument before it appears in the directive.

Examples

The following example shows the use of #pragma disjoint.
int a, b, *ptr_a, *ptr_b;

one_function()
{

#pragma disjoint(*ptr_a, b) /* *ptr_a never points to b */
#pragma disjoint(*ptr_b, a) /* *ptr_b never points to a */

b = 6;
*ptr_a = 7; /* Assignment will not change the value of b */

another_function(b); /* Argument "b" has the value 6 */
}

External pointer ptr_a does not share storage with and never points to the external
variable b. Consequently, assigning 7 to the object to which ptr_a points will not
change the value of b. Likewise, external pointer ptr_b does not share storage with
and never points to the external variable a. The compiler can assume that the
argument to another_function has the value 6 and will not reload the variable
from memory.
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#pragma do_not_instantiate (C++ only)
Category

Template control

Purpose

Prevents the specified template declaration from being instantiated.

You can use this pragma to suppress the implicit instantiation of a template for
which a definition is supplied.

Syntax

�� # pragma do_not_instantiate template_class_name ��

Parameters

template_class_name
The name of the template class that should not be instantiated.

Usage

If you are handling template instantiations manually (that is, NOTEMPINC and
NOTEMPLATEREGISTRY are specified), and the specified template instantiation
already exists in another compilation unit, using #pragma do_not_instantiate
ensures that you do not get multiple symbol definitions during the link step.

C++11 #pragma do_not_instantiate on a class template specialization is treated
as an explicit instantiation declaration of the specialization. This pragma provides a
subset of the functionality of standard C++11 explicit instantiation declarations. It
is provided for compatibility purposes only and is not recommended. New
applications should use standard C++11 explicit instantiation declarations instead.

C++11

Examples

The following shows the usage of the pragma:
#pragma do_not_instantiate Stack < int >

Related information
v “#pragma define (C++ only)” on page 546

#pragma enum
Category

“Floating point and integer control” on page 533

Purpose

Specifies the amount of storage occupied by enumerations.
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Syntax

�� # pragma enum
small

( int )
1
2
4
8
intlong
reset
pop

��

Defaults

The default is small.

Parameters

small
Specifies that an enumeration occupies the minimum amount of storage
required by the smallest predefined type that can represent that range of
enumeration constants: either 1, 2, or 4 bytes of storage. If the specified storage
size is smaller than that required by the range of the enumeration constants,
the compiler issues a diagnostic message. For example:
#pragma enum(1)
enum e_tag {

a=0,
b=SHRT_MAX /* diagnostic message */

} e_var;
#pragma enum(reset)

int
Specifies that an enumeration occupies 4 bytes of storage and is represented by
int.

1 Specifies that an enumeration occupies 1 byte of storage.

2 Specifies that an enumeration occupies 2 bytes of storage.

4 Specifies that an enumeration occupies 4 bytes of storage.

8 Specifies that an enumeration occupies 8 bytes of storage. This suboption is
only valid with LP64.

C++ intlong
Specifies that an enumeration occupies 8 bytes of storage and is represented as
a long if the range of the enumeration constants exceeds the limit for type int.
Otherwise, enumerations occupy 4 bytes of storage and are of type int. This
suboption is only valid with LP64. C++

reset
pop

Sets the enum setting to that which was in effect before the current setting.

Usage

The directive is in effect until the next valid #pragma enum directive is
encountered. For every #pragma enum directive in your program, it is good
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practice to have a corresponding #pragma enum(reset) or #pragma enum(pop) as
well. This is the only way to prevent one file from potentially changing the enum
setting of another file that is included.

You cannot have #pragma enum directives within the declaration of an
enumeration. The following code segment generates a warning message and the
second occurrence of the pragma is ignored:
#pragma enum(small)
enum e_tag {

a,
b,

#pragma enum(int) /*cannot be within a declaration */
c

} e_var;

Related information

For detailed information on the preferred sign and type for each range of
enumeration constants, see the description of the ENUMSIZE compiler option in
the z/OS XL C/C++ User's Guide.

#pragma environment (C only)
Category

“Object code control” on page 535

Purpose

Uses C code as an assembler substitute.

The directive allows you to do the following:
v Specify a function as an entry point other than main

v Omit setting up a C environment on entry to the named function
v Specify several system exits that are written in C code in the same executable

Syntax

�� # pragma environment ( identifier )
,nolib

��

Defaults

Not applicable.

Parameters

identifier
The name of the function that is to be the alternate entry point.

nolib
The Language Environment is established, but the LE runtime library is not
loaded at run time. If you omit this argument, the library is loaded.
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Usage

If you specify any other value than nolib after the function name, behavior is not
defined.

#pragma execution_frequency
Category

“Optimization and tuning” on page 534

Purpose

Marks program source code that you expect will be either very frequently or very
infrequently executed.

When optimization is enabled, the pragma is used as a hint to the optimizer.

Syntax

�� # pragma execution_frequency ( very_low )
very_high

��

Parameters

very_low
Marks source code that you expect will be executed very infrequently.

very_high
Marks source code that you expect will be executed very frequently.

Usage

Use this pragma in conjunction with an optimization option; if optimization is not
enabled, the pragma has no effect.

The pragma must be placed within block scope, and acts on the closest point of
branching.

Examples

In the following example, the pragma is used in an if statement block to mark
code that is executed infrequently.
int *array = (int *) malloc(10000);

if (array == NULL) {
/* Block A */
#pragma execution_frequency(very_low)
error();

}

In the next example, the code block Block B is marked as infrequently executed
and Block C is likely to be chosen during branching.
if (Foo > 0) {

#pragma execution_frequency(very_low)
/* Block B */
doSomething();
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} else {
/* Block C */
doAnotherThing();

}

In this example, the pragma is used in a switch statement block to mark code that
is executed frequently.
while (counter > 0) {

#pragma execution_frequency(very_high)
doSomething();

} /* This loop is very likely to be executed. */

switch (a) {
case 1:

doOneThing();
break;

case 2:
#pragma execution_frequency(very_high)
doTwoThings();
break;

default:
doNothing();

} /* The second case is frequently chosen. */

The following example shows how the pragma must be applied at block scope and
affects the closest branching.
int a;
#pragma execution_frequency(very_low)
int b;

int foo(boolean boo) {
#pragma execution_frequency(very_low)
char c;

if (boo) {
/* Block A */
doSomething();
{

/* Block C */
doSomethingAgain();
#pragma execution_frequency(very_low)
doAnotherThing();

}
} else {

/* Block B */
doNothing();

}

return 0;
}

#pragma execution_frequency(very_low)

#pragma export
Category

“Object code control” on page 535

Purpose

Declares that an external function or variable is to be exported.
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The pragma also specifies the name of the function or variable to be referenced
outside the module. You can use this pragma to export functions or variables from
a DLL module.

Syntax

#pragma export

�� # pragma export ( identifier ) ��

Defaults

Not applicable.

Parameters

identifier
The name of a variable or function to be exported.

Usage

You can specify this pragma anywhere in the DLL source code, on its own line, or
with other pragmas. You can also specify it before or after the definition of the
variable or function. You must externally define the exported function or variable.

If the specification for a const variable in a #pragma export directive conflicts with
the ROCONST option, the pragma directive takes precedence over the compiler
option, and the compiler issues an informational message. The const variable gets
exported and it is considered reentrant.

The main function can not be exported.

IPA effects

If you specify this pragma in your source code in the IPA compile step, you cannot
override the effects of this pragma on the IPA link step.
Related reference:
“The _Export qualifier (C++ only)” on page 125
“The _Export function specifier (C++ only)” on page 233

#pragma extension
Category

“Language element control” on page 532

Purpose

Enables extended language features.

Syntax

�� # pragma extension
( pop )

��
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Defaults

See the description of the LANGLVL compiler option in the z/OS XL C/C++ User's
Guide.

Parameters

pop
Reverts the language level setting to the previous one defined for the file (if
any).

Usage

The directive must only occur outside external declarations.

Multiple #pragma extension and #pragma extension(pop) directive pairs can
appear in the same file. You should place a #pragma extension(pop) directive at
the end of the section of code to which the #pragma extension applies within the
same file; if you do not do so, the compiler will insert a pop directive.

Do not pop a #pragma extension directive from within a nested include file.

C When #pragma langlvl is embedded in #pragma extension and #pragma
extension (pop) directives, an informational message is issued and #pragma
langlvl is ignored.

Examples

The following example shows how #pragma extension is applied to an included
file, assuming that the default language level setting is ANSI:
#pragma extension
#include_next <stddef.h> /* C++: langlvl = extended; C: langlvl = extc89 */
#pragma extension(pop)
#include <pthread.h> /* langlvl = ansi */

The following example shows how #pragma extension is applied to a section of
code, assuming that the default language level setting is ANSI:
int alignofChar()
{
return __alignof__(char); /* langlvl = ansi, __alignof__ is treated as an

identifier and a diagnostic message
is issued */

}
#pragma extension

int alignofInt() /* C++: langlvl = extended; C: langlvl = extc89 */
{
return __alignof__(int); /* __alignof__ is treated as a keyword

and no error message is issued */
}

Related information
v “#pragma langlvl (C only)” on page 564
v The LANGLVL option in the z/OS XL C/C++ User's Guide.
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#pragma filetag
Category

“Language element control” on page 532

Purpose

Specifies the code set in which the source code was entered.

Syntax

�� # pragma filetag ( " code_set_name " ) ��

Defaults

See the z/OS XL C/C++ User's Guide for information about default code pages.

Parameters

code_set_name
The name of the source code set.

Usage

Since the # character is variant between code sets, use the trigraph representation
??= instead of # as illustrated below.

The #pragma filetag directive can appear only once per source file. It must appear
before the first statement or directive, except for conditional compilation directives
or the #line directive. For example:
??=line 42
??=ifdef COMPILER_VER /* This is allowed. */
??=pragma filetag ("code set name")
??=endif

The #pragma filetag directive should not appear in combination with any other
#pragma directives. For example, the following is incorrect:

??=pragma filetag ("IBM-1047") export (baffle_1)

If there are comments before the pragma, the compiler does not translate them to
the code page that is associated with the LOCALE option.

Related information
v The LOCALE, ASCII, and CONVLIT options in the z/OS XL C/C++ User's Guide.

#pragma hashome (C++ only)
Category

Object code control

Purpose

Informs the compiler that the specified class has a home module that will be
specified by #pragma ishome.
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This class's virtual function table, along with certain inline functions, will not be
generated as static. Instead, they will be referenced as externals in the compilation
unit of the class in which #pragma ishome is specified.

Syntax

�� # pragma hashome ( class_name )
allinlines

��

Parameters

class_name
The name of a class to be referenced externally. class_name must be a class and
it must be defined.

allinlines
Specifies that all inline functions from within class_name should be referenced
as being external.

Usage

A warning will be produced if there is a #pragma ishome without a matching
#pragma hashome.

Examples

In the following example, compiling the code samples will generate virtual
function tables and the definition of S::foo() only for compilation unit a.o, but
not for b.o. This reduces the amount of code generated for the application.
// a.h
struct S
{

virtual void foo() {}

virtual void bar();
};

// a.C
#pragma ishome(S)
#pragma hashome (S)

#include "a.h"

int main()
{

S s;
s.foo();
s.bar();

}

// b.C
#pragma hashome(S)
#include "a.h"

void S::bar() {}
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Related information
v “#pragma ishome (C++ only)” on page 561

#pragma implementation (C++ only)
Category

Template control

Purpose

For use with the TEMPINC compiler option, supplies the name of the file
containing the template definitions corresponding to the template declarations
contained in a header file.

Syntax

�� # pragma implementation ( " file_name " ) ��

Parameters

file_name
The name of the file containing the definitions for members of template classes
declared in the header file.

Usage

This pragma is not normally required if your template implementation file has the
same name as the header file containing the template declarations, and a .c
extension. You only need to use the pragma if the template implementation file
does not conform to this file-naming convention. For more information about using
template implementation files, see "Using templates in C++ programs" in the z/OS
XL C/C++ Programming Guide.

#pragma implementation is only effective if the TEMPINC option is in effect.
Otherwise, the pragma has no meaning and is ignored.

The pragma can appear in the header file containing the template declarations, or
in a source file that includes the header file. It can appear anywhere that a
declaration is allowed.

Related information
v The TEMPINC option in the z/OS XL C/C++ User's Guide.
v "Using templates in C++ programs" in the z/OS XL C/C++ Programming Guide.

#pragma info (C++ only)
Category

“Listings, messages and compiler information” on page 534

Purpose

Controls the diagnostic messages that are generated by the compiler.

You can use this pragma directive in place of the INFO option.
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Syntax

�� # pragma info �

,

( suboption )
suspend
resume

��

Defaults

See the INFO option in the z/OS XL C/C++ User's Guide.

Parameters

suboption
Any suboption allowed by the INFO compiler option. For details, see the
description of the INFO option in the z/OS XL C/C++ User's Guide.

suspend
Suspends the diagnostics that the pragma or INFO compiler option performs
during specific portions of your program.

resume
Resumes the same level of diagnostics in effect before the suspend pragma
was specified.

Related information
v “#pragma checkout” on page 540
v The INFO option in the z/OS XL C/C++ User's Guide.

#pragma inline (C only) / noinline
Category

“Optimization and tuning” on page 534

Purpose

Specifies that a C function is to be inlined, or that a C or C++ function is not to be
inlined.

Syntax

C

�� # pragma inline ( identifier )
noinline

��

C

C++

�� # pragma noinline ( identifier ) ��

C++
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Defaults

The default is noinline.

Parameters

inline
Inlines the named function on every call, provided you have specified the
INLINE or the OPT compiler options (otherwise it has no effect). The function
is inlined in both selective (NOAUTO) and automatic (AUTO) mode.

noinline

Prevents the named function from being inlined on any call, disabling any
effects of the INLINE or OPT compiler options (the pragma has no effect in
selective (NOAUTO) mode). It also takes precedence over the C/C++ keyword
inline.

identifier
The name of a function to be included or excluded for inlining.

Usage

C The directive must be at file scope. C

C++ The directive can be placed anywhere. C++

IPA effects

If you use either the #pragma inline or the #pragma noinline directive in your
source, you can later override them with an appropriate IPA link control file
directive during the IPA link step. The compiler uses the IPA link control file
directive in the following cases:
v If you specify both the #pragma noinline directive and the IPA link control file

inline directive for a function.
v If you specify both the #pragma inline directive and the IPA link control file

noinline directive for a function.

Related information
v “The inline function specifier” on page 228
v The INLINE option in the z/OS XL C/C++ User's Guide.

#pragma insert_asm (C only)
Category

“Object code control” on page 535

Purpose

Enables users to provide additional assembler statements that are inserted into the
compiler-generated High-Level Assembler (HLASM) code.

Syntax

�� # pragma insert_asm ( " assembler_statement " ) ��
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Defaults

Not applicable.

Parameters

assembler_statement
Valid assembler statement inserted into the generated HLASM code.

Usage

#pragma insert_asm can be used with a _Pragma operator. You must use the '\'
character before double quotation marks when specifying the statements in the
_Pragma operator; for example, _Pragma ("insert_asm(\"MYSTATEMENT\")").

Multiple insert_asm pragmas can be specified in a program. The compiler will
insert the statements into the generated HLASM in the order they are specified.
The statements are inserted at the end of the compiler-generated code for the
compilation unit and are placed before the END statement.

The compiler does not have any knowledge of the contents of the specified
statements. You must ensure that the statements do not cause assembly errors
when compiling the final HLASM code.

You must specify the METAL compiler option in order to use #pragma insert_asm.
For more information on the METAL compiler option, see z/OS XL C/C++ User's
Guide.

IPA effects

Not applicable.

#pragma ishome (C++ only)
Category

Object code control

Purpose

Informs the compiler that the specified class's home module is the current
compilation unit.

The home module is where items, such as the virtual function table, are stored. If
an item is referenced from outside of the compilation unit, it will not be generated
outside its home. This can reduce the amount of code generated for the
application.

Syntax

�� # pragma ishome ( class_name ) ��

Parameters

class_name
The name of the class whose home will be the current compilation unit.
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Usage

A warning will be produced if there is a #pragma ishome without a matching
#pragma hashome.

Examples

See “#pragma hashome (C++ only)” on page 556

Related information
v “#pragma hashome (C++ only)” on page 556

#pragma isolated_call
Category

Optimization and tuning

Purpose

Specifies functions in the source file that have no side effects other than those
implied by their parameters.

Essentially, any change in the state of the runtime environment is considered a side
effect, including:
v Accessing a volatile object
v Modifying an external object
v Modifying a static object
v Modifying a file
v Accessing a file that is modified by another process or thread
v Allocating a dynamic object, unless it is released before returning
v Releasing a dynamic object, unless it was allocated during the same invocation
v Changing system state, such as rounding mode or exception handling
v Calling a function that does any of the above

Marking a function as isolated indicates to the optimizer that external and static
variables cannot be changed by the called function and that pessimistic references
to storage can be deleted from the calling function where appropriate. Instructions
can be reordered with more freedom, resulting in fewer pipeline delays and faster
execution in the processor. Multiple calls to the same function with identical
parameters can be combined, calls can be deleted if their results are not needed,
and the order of calls can be changed.

Syntax

Pragma syntax

�� # pragma isolated_call ( function ) ��

Defaults

Not applicable.
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Parameters

function
The name of a function that does not have side effects or does not rely on
functions or processes that have side effects. function is a primary expression
that can be an identifier, operator function, conversion function, or qualified
name. An identifier must be of type function or a typedef of function. C++

If the name refers to an overloaded function, all variants of that function are
marked as isolated calls. C++

Usage

The only side effect that is allowed for a function named in the pragma is
modifying the storage pointed to by any pointer arguments passed to the function,
that is, calls by reference. The function is also permitted to examine nonvolatile
external objects and return a result that depends on the nonvolatile state of the
runtime environment. Do not specify a function that causes any other side effects;
that calls itself; or that relies on local static storage. If a function is incorrectly
identified as having no side effects, the program behavior might be unexpected or
produce incorrect results.

The #pragma isolated_call directive can be placed at any point in the source file,
before or after calls to the function named in the pragma.

Predefined macros

None.

Examples

The following example shows you when to use the #pragma isolated_call directive
(on the addmult function). It also shows you when not to use it (on the same and
check functions):
#include <stdio.h>
#include <math.h>

int addmult(int op1, int op2);
#pragma isolated_call(addmult)

/* This function is a good candidate to be flagged as isolated as its */
/* result is constant with constant input and it has no side effects. */
int addmult(int op1, int op2) {

int rslt;

rslt = op1*op2 + op2;
return rslt;

}

/* The function ’same’ should not be flagged as isolated as its state */
/* (the static variable delta) can change when it is called. */
int same(double op1, double op2) {

static double delta = 1.0;
double temp;

temp = (op1-op2)/op1;
if (fabs(temp) < delta)

return 1;
else {

delta = delta / 2;
return 0;

}
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}

/* The function ’check’ should not be flagged as isolated as it has a */
/* side effect of possibly emitting output. */
int check(int op1, int op2) {

if (op1 < op2)
return -1;

if (op1 > op2)
return 1;

printf("Operands are the same.\n");
return 0;

}

IPA effects

If you specify this pragma in your source code in the IPA compile step, you cannot
override the effects of the pragma on the IPA link step.

#pragma langlvl (C only)
Category

“Language element control” on page 532

Purpose

Determines whether source code and compiler options should be checked for
conformance to a specific language standard, or subset or superset of a standard.

This pragma is equivalent to the LANGLVL compiler option.

Syntax

�� # pragma langlvl ( ansi )
commonc
extc89
extc99
extc1x
extended
saa
saal2
stdc89
stdc99

��

Defaults

See the LANGLVL option in the z/OS XL C/C++ User's Guide.

Parameters

ansi
Allows only language constructs that support the ISO C standards. It does not
permit packed decimal types and issues an error message when it detects
assignment between integral types and pointer types.

extc89
Allows language constructs that support the ISO C89 standard, and accepts
implementation-specific language extensions.
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extc99
Allows language constructs that support the ISO C99 standard, and accepts
implementation-specific language extensions.

extc1x
Allows compilation that is based on the C11 standard, invoking all the C and
currently-supported C11 features that are implemented.

extended
The option permits packed decimal types and it issues a warning message
when it detects assignment between integral types and pointer types.

commonc
Allows compilation of code that contains constructs defined by the X/Open
Portability Guide (XPG) Issue 3 C language (referred to as Common Usage C).
It is roughly equivalent to K&R C.

saa
Compilation conforms to the IBM SAA C Level 2 CPI language definition.

saal2
Compilation conforms to the SAA C Level 2 CPI language definition, with
some exceptions.

stdc89
Allows language constructs that support the ISO C89 standard.

stdc99
Allows language constructs that support the ISO C99 standard.

Usage

You can only specify this pragma only once in a source file, and must appear
before any statements. The compiler uses predefined macros in the header files to
make declarations and definitions available that define the specified language
level. When both the pragma and the compiler option are specified, the compiler
option takes precedence over the pragma. Note that if you would like to specify
the extc89 language level, you can also do by using #pragma extension.

Note: In z/OS UNIX System Services, if the c89 environment variable
{_NOCMDOPTS} is set to 1, #pragma langlvl has no effect. You must use the
compiler option LANGLVL instead of the pragma.

Related information
v “Standard pragmas” on page 526
v “#pragma extension” on page 554
v The LANGLVL option in the z/OS XL C/C++ User's Guide.

#pragma leaves
Category

Optimization and tuning

Purpose

Informs the compiler that a named function never returns to the instruction
following a call to that function.
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By informing the compiler that it can ignore any code after the function, the
directive allows for additional opportunities for optimization.

This pragma is commonly used for custom error-handling functions, in which
programs can be terminated if a certain error is encountered.

Syntax

�� �

,

# pragma leaves ( function_name ) ��

Parameters

function_name
The name of the function that does not return to the instruction following the
call to it.

Defaults

Not applicable.

Usage

If you specify the LIBANSI compiler option (which informs the compiler that
function names that match functions in the C standard library are in fact C library
functions), the compiler checks whether the longjmp family of functions (longjmp,
_longjmp, siglongjmp, and _siglongjmp) contain #pragma leaves. If the functions
do not contain this pragma directive, the compiler will insert this directive for the
functions. This is not shown in the listing.

Examples
#pragma leaves(handle_error_and_quit)
void test_value(int value)
{
if (value == ERROR_VALUE)
{
handle_error_and_quit(value);
TryAgain(); // optimizer ignores this because

// never returns to execute it
}
}

IPA effects

If you specify the #pragma leaves directive in your source code in the IPA compile
step, you cannot override the effects of this directive in the IPA link step.

Related information
v “#pragma reachable” on page 590.

#pragma linkage (C only)
Category

“Object code control” on page 535

566 z/OS V2R1.0 XL C/C++ Language Reference



Purpose

Identifies the entry point of modules that are used in interlanguage calls from C
programs as well as the linkage or calling convention that is used on a function
call.

The directive also designates other entry points within a program that you can use
in a fetch operation.

Syntax

�� # pragma linkage ( identifier, OS )
FETCHABLE
PLI
COBOL
FORTRAN

, RETURNCODE
OS_DOWNSTACK
OS_UPSTACK
OS_NOSTACK
REFERENCE

��

Defaults

C linkage.

Parameters

identifier
The name of a function that is to be the entry point of the module, or a
typedef name that will be used to define the entry point. (See below for an
example.)

FETCHABLE
Indicates that identifier can be used in a fetch operation. A fetched XPLINK
module must have its entry point defined with a #pragma linkage(...,
fetchable) directive.

OS Designates identifier as an OS linkage entry point. OS linkage is the basic
linkage convention that is used by the operating system. If the caller is
compiled with NOXPLINK, on entry to the called routine, its register 13 points
to a standard Language Environment stack frame, beginning with a 72-byte
save area. The stack frame is compatible with Language Environment
languages that expect by-reference calling conventions and with the Language
Environment-supplied assembler prologue macro. If the caller is compiled with
XPLINK, the behavior depends on the OSCALL suboption of the XPLINK
compiler option. This suboption selects the behavior for linkage OS from
among OS_DOWNSTACK, OS_UPSTACK, and OS_NOSTACK (the default).
This means that applications which use linkage OS to communicate among C
or C++ functions will need source changes when recompiled with XPLINK. See
the description that follows for REFERENCE.

PLI
Designates identifier as a PL/I linkage entry point.

COBOL
Designates identifier as a COBOL linkage entry point.
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FORTRAN
Designates identifier as a FORTRAN linkage entry point.

RETURNCODE indicates to the compiler that the routine named by identifier is
a FORTRAN routine, which returns an alternate return code. It also indicates
that the routine is defined outside the translation unit. You can retrieve the
return code by using the fortrc function. If the compiler finds the function
definition inside the translation unit, it issues an error message. Note that you
can define functions outside the translation unit, even if you do not specify the
RETURNCODE keyword.

OS_DOWNSTACK
Designates identifier as an OS linkage entry point in XPLINK mode with a
downward growing stack frame.

If the function identified by identifier is defined within the translation unit and
is compiled using the NOXPLINK option, the compiler issues an error
message.

OS_UPSTACK
Designates identifier as an OS linkage entry point in XPLINK mode with a
traditional upward growing stack frame.

This linkage is required for a new XPLINK downward-stack routine to be able
to call a traditional upward-stack OS routine. This linkage explicitly invokes
compatibility code to swap the stack between the calling and the called
routines.

If the function identified by identifier is defined within the translation unit and
is compiled using the XPLINK option, the compiler issues an error message.
Typically, the identifier will not be defined in a compilation. This is acceptable.
In this case, it is a reference to an external procedure that is separately
compiled with NOXPLINK.

OS_NOSTACK
Designates identifier as an OS linkage entry point in XPLINK mode with no
preallocated stack frame. An argument list is constructed containing the
addresses of the actual arguments. The size of the address is 4-byte for 31-bit
and 8-byte for 64-bit. Register 1 is set to point to this argument list. For 31-bit
only, the last item in this list has its high order bit set. For integer type
arguments, the value passed is widened to the size of the int type, that is
4-byte. Register 13 points to a save area that may not be followed by z/OS
Language Environment control structures, such as the NAB. The size of the
save area is 72-byte for 31-bit and 144-byte for 64-bit. Register 14 contains the
return address. Register 15 contains the entry point of the called function.

REFERENCE
This is synonymous with OS_UPSTACK in non-XPLINK mode and
synonymous with OS_DOWNSTACK in XPLINK mode. Unlike the linkage OS,
this is not affected by the OSCALL suboption of XPLINK. Consider using this
option instead to make the source code portable between XPLINK and
non-XPLINK

Usage

You can use a typedef in a #pragma linkage directive to associate a specific linkage
convention with a function type. In the following example, the directive associates
the OS linkage convention with the typedef func_t:
typedef void func_t(void);
#pragma linkage (func_t,OS)
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This typedef can then be used in C declarations wherever a function should have
OS linkage. In the following example:
func_t myfunction;

myfunction is declared as having type func_t, which is associated with OS linkage;
myfunction would therefore have OS linkage.

Related information
v The XPLINK option in the z/OS XL C/C++ User's Guide.

#pragma longname/nolongname
Category

“Object code control” on page 535

Purpose

Specifies whether the compiler is to generate mixed-case names that can be longer
than 8 characters in the object module.

Syntax

�� # pragma longname
nolongname

��

Defaults

v C nolongname C

v C++ longname C++

Parameters

longname
The compiler generates mixed-case names in the object module. Names can be
up to 1024 characters in length.

nolongname
The compiler generates truncated and uppercase names in the object module.

C++ Only functions that do not have C++ linkage are given truncated and
uppercase names. C++

Usage

If you use the #pragma longname directive, you must either use the binder to
produce a program object in a PDSE, or you must use the prelinker. The binder,
IPA link step, and prelinker support the long name directory that is generated by
the Object Library utility for autocall.

If you specify the NOLONGNAME or LONGNAME compiler option, the compiler
ignores the #pragma longname directive. If you specify either #pragma
nolongname or the NOLONGNAME compiler option, and this results in mapping
of two different source code names to the same object code name, the compiler will
not issue an error message.
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C If you have more than one preprocessor directive, #pragma longname
may be preceded only by #pragma filetag, #pragma chars, #pragma langlvl, and
#pragma target. Some directives, such as #pragma variable and #pragma linkage,
are sensitive to the name handling. C

C++ You must specify #pragma longname/nolongname before any code.
Otherwise, the compiler issues a warning message. #pragma nolongname must
also precede any other preprocessing directive. C++

IPA effects

You must specify either the LONGNAME compile option or the #pragma
longname preprocessor directive for the IPA compile step (unless you are using the
c89 or cc utility from z/OS UNIX System Services, both of which already specify
the LONGNAME compiler option). Otherwise, you will receive an unrecoverable
compiler error.

Related information
v “#pragma map”

#pragma map
Category

Object code control

Purpose

Converts all references to an identifier to another, externally defined identifier.

Syntax

#pragma map syntax (C only)

�� # pragma map ( name1 , " name2 " ) ��

#pragma map syntax (C++ only)

�� # pragma map ( name1 ( argument_list ) , " name2 " ) ��

Parameters

name1

The name used in the source code. C name1 can represent a data object
or function with external linkage. C C++ name1 can represent a
data object, a non-overloaded or overloaded function, or overloaded operator,
with external linkage. C++ If the name to be mapped is not in the global
namespace, it must be fully qualified.

name1 should be declared in the same compilation unit in which it is
referenced, but should not be defined in any other compilation unit. name1
must not be used in another #pragma map directive anywhere in the program.

C++ argument_list
The list of arguments for the overloaded function or operator function
designated by name1. If name1 designates an overloaded function, the function
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must be parenthesized and must include its argument list if it exists. If name1
designates a non-overloaded function, only name1 is required, and the
parentheses and argument list are optional. C++

name2

The name that will appear in the object code. C name2 can represent a
data object or function with external linkage. The compiler preserves
mixed-case names. If the name is longer than 8 characters, you must use the
binder and specify the LONGNAME compiler option. C

C++ name2 can represent a data object, a non-overloaded or overloaded
function, or overloaded operator, with external linkage. If the name is longer
than 8 characters you must use the binder. name2 must be specified using its
mangled name. To obtain C++ mangled names, compile your source to object
files only, using the -c compiler option, and use the nm operating system
command on the resulting object file. C++

If the name exceeds 65535 bytes, an informational message is emitted and the
pragma is ignored.

name2 may or may not be declared in the same compilation unit in which
name1 is referenced, but must not be defined in the same compilation unit.
Also, name2 should not be referenced anywhere in the compilation unit where
name1 is referenced. name2 must not be the same as that used in another
#pragma map directive or #pragma csect directive in the same compilation
unit. The map name is not affected by the CONVLIT or the ASCII compiler
options.

Usage

The #pragma map directive can appear anywhere in the program. Note that in
order for a function to be actually mapped, the map target function (name2) must
have a definition available at link time (from another compilation unit), and the
map source function (name1) must be called in your program.

C++ #pragma map will look at the declarations prior to it and if satisfied will
map the declaration. If it is not satisfied, it will check all declarations at the end of
the compilation to see if it can find a match. C++

You cannot use #pragma map with compiler built-in functions.

Examples

The following is an example of #pragma map used to map a function name (using
the mangled name for the map name in C++):
/* Compilation unit 1: */

#include <stdio.h>

void foo();
extern void bar(); /* optional */

#if __cplusplus
#pragma map (foo, "bar__Fv")
#else
#pragma map (foo, "bar")
#endif
int main()
{
foo();
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}

/* Compilation unit 2: */

#include <stdio.h>

void bar()
{
printf("Hello from foo bar!\n");
}

The call to foo in compilation unit 1 resolves to a call to bar:
Hello from foo bar!

#pragma margins/nomargins
Category

“Language element control” on page 532

Purpose

Specifies the columns in the input line to scan for input to the compiler.

Syntax

�� # pragma margins ( first_column , last_column )
nomargins

��

Defaults

v C margins(1,72) for fixed-length records. nomargins for variable-length
records. C

v C++ nomargins for all records. C++

Parameters

margins
Specifies that only text within a range of margins, specified by first_column and
last_column, is to be scanned by the compiler. The compiler ignores any text in
the source input that does not fall within the range.

C++ Specifying margins with no parameters is equivalent to margins(1,72)
for both fixed or variable length records. C++

nomargins
Specifies that all input is to be scanned by the compiler.

first_column
A number representing the first column of the source input to be scanned. The
value of first_column must be greater than 0, less than 32761, and less than or
equal to the value of last_column.

last_column
A number representing the last column of the source input to be scanned. The
value of last_column must be greater than the value of first_column, and less
than 32761.
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You can also use an asterisk (*) to indicate the last column of the input record.
For example, if you specify #pragma margins (8, *), the compiler scans from
column 8 to the end of input record.

Usage

The pragmas override the MARGINS or NOMARGINS compiler options. The
setting specified by the #pragma margins directive applies only to the source file
or include file in which it is found. It has no effect on other include files.

You can use #pragma margins and #pragma sequence together. If they reserve the
same columns, #pragma sequence has priority and it reserves the columns for
sequence numbers. For example, assume columns 1 to 20 are reserved for the
margin, and columns 15 to 25 are reserved for sequence numbers. In this case, the
margin will be from column 1 to 14, and the columns reserved for sequence
numbers will be from 15 to 25.

Related information
v “#pragma sequence” on page 594
v The MARGINS compiler option in the z/OS XL C/C++ User's Guide.

#pragma namemangling (C++ only)
Category

“Portability and migration” on page 536

Purpose

Chooses the name mangling scheme for external symbol names generated from
C++ source code.

Syntax

�� # pragma namemangling ( )
ansi
zosv2r1m1_ansi
zosv2r1_ansi
zosv1r12_ansi
zosv1r11_ansi
zosv1r10_ansi
zosv1r9_ansi
zosv1r8_ansi
zosv1r7_ansi
zosv1r5_default
zosv1r5_ansi
zosv1r2
osv2r10
compat

pop

��

Defaults

See the NAMEMANGLING option in the z/OS XL C/C++ User's Guide.
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Parameters

ansi
Indicates that the name mangling scheme complies with the most recent C++
language features. This setting is equivalent to zosv2r1m1_ansi.

zosv2r1m1_ansi
Use this scheme for compatibility with link modules from z/OS C++ V2R1M1
that were created with the #pragma namemangling(ansi) directive or with the
NAMEMANGLING(ANSI) compiler option in effect.

zosv2r1_ansi
Use this scheme for compatibility with link modules from z/OS C++ Version 2
Release 1 that were created with the #pragma namemangling(ansi) directive or
with the NAMEMANGLING(ANSI) compiler option in effect.

zosv1r12_ansi
Use this scheme for compatibility with link modules from z/OS C++ Version 1
Release 12 that were created with the #pragma namemangling(ansi) directive
or with the NAMEMANGLING(ANSI) compiler option in effect.

zosv1r11_ansi
Use this scheme for compatibility with link modules from z/OS C++ Version 1
Release 11 that were created with the #pragma namemangling(ansi) directive
or with the NAMEMANGLING(ANSI) compiler option in effect.

zosv1r10_ansi
Use this scheme for compatibility with link modules from z/OS C++ Version 1
Release 10 that were created with the #pragma namemangling(ansi) directive
or with the NAMEMANGLING(ANSI) compiler option in effect.

zosv1r9_ansi
Use this scheme for compatibility with link modules from z/OS C++ Version 1
Release 9 that were created with the #pragma namemangling(ansi) directive or
with the NAMEMANGLING(ANSI) compiler option in effect.

zosv1r8_ansi
Use this scheme for compatibility with link modules from z/OS C++ Version 1
Release 8 that were created with the #pragma namemangling(ansi) directive or
with the NAMEMANGLING(ANSI) compiler option in effect.

zosv1r7_ansi
Use this scheme for compatibility with link modules from z/OS C++ Version 1
Release 7 that were created with the #pragma namemangling(ansi) directive or
with the NAMEMANGLING(ANSI) compiler option in effect.

zosv1r5_ansi
Use this scheme for compatibility with link modules from z/OS C++ Version 1
Release 5 that were created with the #pragma namemangling(ansi) directive or
with the NAMEMANGLING(ANSI) compiler option in effect.

zosv1r5_default
Use this scheme for compatibility with link modules from z/OS C++ Version 1
Release 5 that were created with the default mangling for that compiler. This
suboption uses the same name mangling scheme as modules created with
z/OS C++ Version 1 Release 2 that were created with the #pragma
namemangling(ansi) directive or with the NAMEMANGLING(ANSI) compiler
option in effect.

zosv1r2
Same semantics as the zosv1r5_default suboption: instructs the compiler that
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the name mangling scheme is compatible with z/OS V1R2 link modules that
were created with NAMEMANGLING(ANSI).

osv2r10
Use this scheme for compatibility with link modules created with the IBM
OS/390® C++ Version 2 Release 10 compiler or earlier versions, or with link
modules that were created with the #pragma namemangling(compat) directive
or with the NAMEMANGLING(COMPAT) compiler option in effect.

compat
Same semantics as the osv2r10 suboption: instructs the compiler that the name
mangling scheme is compatible with that in OS/390 V2R10 and earlier
versions.

pop
Restores the name mangling scheme to that which was in effect immediately
before the current setting. If no previous name mangling scheme was specified
in the file, the scheme specified by the NAMEMANGLING compiler option is
used.

Usage

For every #pragma namemangling directive in your program, it is good practice to
have a corresponding #pragma namemangling(pop) as well. In this way, it is
possible to prevent one file from potentially changing the name mangling setting
of another file that is included.

Related information
v “#pragma namemanglingrule (C++ only)”
v The NAMEMANGLING option in the z/OS XL C/C++ User's Guide.

#pragma namemanglingrule (C++ only)
Category

Portability and migration

Purpose

Provides fined-grained control over the name mangling scheme in effect for
selected portions of source code, specifically with respect to the mangling of
cv-qualifiers in function parameters.

When a function name is mangled, repeated function arguments of the same type
are encoded according to the following compression scheme:
parameter → T param number [_] #single repeat of a previous parameter

→ N repetition digit param number [_] #2 to 9 repetitions

where:

param number
Indicates the number of the previous parameter which is repeated. It is
followed by an underscore (_) if param number contains multiple digits.

repetition digit
Must be greater than 1 and less than 10. If an argument is repeated more than
9 times, this rule is applied multiple times. For example, a sequence of 38
parameters that are the same as parameter 1 mangles to N91N91N91N91N21.
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The #pragma namemanglingrule directive allows you to control whether top-level
cv-qualifiers are mangled in function parameters.

Syntax

��
on

# pragma namemanglingrule ( fnparmtype , off )
pop
on

fnparmscmp , off
pop

��

Defaults
v fnparmtype, on when the #pragma namemangling(ansi) directive or the

NAMEMANGLING(ANSI) compiler option is in effect. Otherwise the default is
fnparmtype,off.

v fnparmscmp, on when the #pragma namemangling(ansi) directive or the
NAMEMANGLING(ANSI) compiler option is in effect. Otherwise the default is
fnparmscmp,off.

Parameters

fnparmtype, on
Top-level cv-qualifiers are not encoded in the mangled name of a function
parameter. Also, top-level cv-qualifiers are ignored when repeated function
parameters are compared for equivalence; function parameters that differ only
by the use of a top-level cv-qualifier are considered equivalent and are
mangled according to the compressed encoding scheme.

fnparmtype, off
Top-level cv-qualifiers are encoded in the mangled name of a function
parameter. Also, repeated function parameters that differ by the use of
cv-qualifiers are not considered equivalent and are mangled as separate
parameters. This setting is compatible with z/OS C++ Version 1 Release 5.

fnparmtype, pop
Reverts to the previous fnparmtype setting in effect. If no previous settings are
in effect, the default fnparmtype setting is used.

Note: This pragma fixes function signature ambiguities in 32-bit mode, but it is
not needed in 64-bit mode since those ambiguities do not exist in 64-bit mode.

fnparmscmp, on
Intermediate-level cv-qualifiers are considered when repeated function
parameters are compared for equivalence; repeated function parameters that
differ by the use of intermediate-level cv-qualifiers are mangled as separate
parameters.

fnparmscmp, off
Intermediate-level cv-qualifiers are ignored when repeated function parameters
are compared for equivalence; function parameters that differ only by the use
of an intermediate-level cv-qualifier are considered equivalent and are mangled
according to the compressed encoding scheme. This setting is compatible with
z/OS C++ Version 1 Release 5.

fnparmscmp, pop
Reverts to the previous fnparmscmp setting in effect. If no previous settings
are in effect, the default fnparmscmp setting is used.
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Usage

#pragma namemanglingrule is allowed in global, class, and function scopes. It has
no effect on a block scope function declaration with external linkage.

Different pragma settings can be specified in front of function declarations and
definitions. If #pragma namemanglingrule settings in subsequent declarations and
definitions conflict, the compiler ignores those settings and issues a warning
message.

Examples

The following tables show the effects of this pragma applied to different function
signatures.

Table 43. Mangling of function parameters with top-level cv-qualifiers

Source name

Mangled name

fnparmtype, off
fnparmtype, on

void foo (const int) foo__FCi foo__Fi

void foo (int* const) foo__FCPi foo__FPi

void foo (int** const) foo__FCPPi foo__FPPi

void foo (int, const int) foo__FiCi foo__FiT1

Table 44. Mangling of function parameters with intermediate level cv-qualifiers

Source name

Mangled name

fnparmscmp, on
fnparmscmp, off

void foo (int** a, int* const *
b)

foo__FPPiPCPi foo__FPPiT1

void bar (int* const* a, int**
b)

bar__FPCPiPPi bar__FPCPiT1

Table 45. Mangling of function parameters with top-level and intermediate-level cv-qualifiers

Source name

Mangled name

fnparmscmp, on
fnparmtype, on

fnparmscmp, off
fnparmtype, on

fnparmscmp, on
fnparmtype, off

fnparmscmp, off
fnparmtype, off

void foo (int** const,
int* const *)

foo__FPPiPCPi foo__FPPiT1 foo__FCPPiPCPi foo__FPPiT1

Related information
v “#pragma namemangling (C++ only)” on page 573
v The NAMEMANGLING option in the z/OS XL C/C++ User's Guide.

#pragma object_model (C++ only)
Category

“Portability and migration” on page 536
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Purpose

Sets the object model to be used for structures, unions, and classes.

The object models differ in the areas of layout for the virtual function table,
support for virtual base classes, and name mangling scheme.

Syntax

�� # pragma object_model
classic

( ibm )
pop

��

Defaults

The default is classic.

Parameters

classic
Is compatible with name mangling and the virtual function table that was
available with the previous releases of the z/OS C++ compiler.

Note: The parameter compat is changed to classic, but compat is still accepted
as the synonym of classic.

ibm
Provides improved performance. Class hierarchies with many virtual base
classes can benefit from this option because the size of the derived class is
smaller and access to the virtual function table is faster. You must use XPLINK
when specifying this option.

pop
Sets the object model setting to that which was in effect before the current
setting.

Usage

Classes implicitly inherit the object model of their parent, overriding any local
object model specification. All classes in the same inheritance hierarchy must have
the same object model.

Related information
v The OBJECTMODEL option in the z/OS XL C/C++ User's Guide.

#pragma operator_new (C++ only)
Category

Error checking and debugging

Purpose

Determines whether the new and new[] operators throw an exception if the
requested memory cannot be allocated.

This pragma is equivalent to the LANGLVL(NEWEXCP) option.
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Syntax

��
returnsnull

# pragma operator_new ( throwsexception ) ��

Defaults

returnsnull

Parameters

returnsnull
If the memory requested by the new operator cannot be allocated, the compiler
returns 0, the null pointer. Use this option for compatibility with versions of
the XL C++ compiler previous to V1R7.

throwsexception
If the memory requested by the new operator cannot be allocated, the compiler
throws a standard exception of type std::bad_alloc. Use this option in new
applications, for conformance with the C++ standard.

Usage

The pragma can be specified only once in a source file. It must appear before any
statements in the source file. This pragma takes precedence over the
LANGLVL(NEWEXCP) compiler option.

Restrictions

This pragma applies only to versions of the new operator that throw exceptions; it
does not apply to the nothrow or empty throw versions of the new operator (for the
prototypes of all the new operator versions, see the description of the <new>
header in the Standard C++ Library Reference). It also does not apply to class-specific
new operators, user-defined new operators, and new operators with placement
arguments.

Related information
v “new expressions (C++ only)” on page 185
v “Allocation and deallocation functions (C++ only)” on page 253
v The LANGLVL compiler option in the z/OS XL C/C++ User's Guide.

#pragma option_override
Category

Optimization and tuning

Purpose

Allows you to specify optimization options at the subprogram level that override
optimization options given on the command line.

This enables finer control of program optimization, and can help debug errors that
occur only under optimization.
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Syntax

�� # pragma option_override �

� �( identifier , " opt ( compact ) " )
, yes
, no

level , 0
2
3

spill , size
strict

, yes

��

Parameters

identifier
The name of a function for which optimization options are to be overridden.

The following table shows the equivalent command line option for each pragma
suboption.

#pragma option_override value Equivalent compiler option

compact COMPACT

compact, yes

compact, no NOCOMPACT

level, 0 OPT(0)

level, 1 OPT(2)

level, 2 OPT(2)

level, 3 OPT(3)

spill, size SPILL(size)

strict STRICT

strict, yes

strict, no NOSTRICT

Notes:

1. If optimization level -O3 or higher is specified on the command line, #pragma
option_override(identifier, "opt(level, 0)") or #pragma
option_override(identifier, "opt(level, 2)") does not turn off the
implication of the -qhot and -qipa options.

Defaults

See the descriptions in the z/OS XL C/C++ User's Guide for the options listed in the
table above for default settings.
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Usage

The pragma takes effect only if optimization is already enabled by a command-line
option. You can only specify an optimization level in the pragma lower than the
level applied to the rest of the program being compiled.

The #pragma option_override directive only affects functions that are defined in
the same compilation unit. The pragma directive can appear anywhere in the
translation unit. That is, it can appear before or after the function definition, before
or after the function declaration, before or after the function has been referenced,
and inside or outside the function definition.

C++ This pragma cannot be used with overloaded member functions.

Examples

Suppose you compile the following code fragment containing the functions foo
and faa using OPT(2). Since it contains the #pragma option_override(faa,
"opt(level, 0)"), function faa will not be optimized.
foo(){

.

.

.
}

#pragma option_override(faa, "opt(level, 0)")

faa(){
.
.
.
}

IPA effects

You cannot specify the IPA compiler option for #pragma option_override.

During IPA compile processing, subprogram-specific options will be used to
control IPA compile-time optimizations.

During IPA link processing, subprogram-specific options will be used to control
IPA link-time optimizations, as well as program partitioning. They will be retained,
even if the related IPA link command line option is specified.

Related information
v The OPT, COMPACT, SPILL and STRICT options in the z/OS XL C/C++ User's

Guide.

#pragma options (C only)
Category

“Language element control” on page 532
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Purpose

Specifies a list of compiler options that are to be processed as if you had typed
them on the command line or on the CPARM parameter of the IBM-supplied
catalogued procedures.

Syntax

�� # pragma options �( aggregate )
noaggregate
alias
noalias
ansialias
noansialias
architecture
checkout
nocheckout
gonumber
nogonumber
ignerrno
noignerrno
inline
noinline
libansi
nolibansi
maxmem
nomaxmem
object
noobject
optimize
nooptimize
rent
norent
service
noservice
spill
nospill
start
nostart
test
notest
tune
upconv
noupconv
xref
noxref

��

Defaults

See the z/OS XL C/C++ User's Guide for the default settings for these options.

Parameters

See the z/OS XL C/C++ User's Guide for descriptions of these options.
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Usage

If you use a compile option that contradicts the options that are specified on the
#pragma options directive, the compiler option overrides the options on the
#pragma options directive.

If you specify an option more than once, the compiler uses the last one you
specified.

IPA effects

You cannot specify the IPA compiler option for #pragma options.

Related information
v z/OS XL C/C++ User's Guide

v For a detailed description of the interaction between the INLINE compiler
option on the invocation line and the #pragma options preprocessor directive,
see the INLINE compiler option description in the z/OS XL C/C++ User's Guide.

#pragma pack
Category

Object code control

Purpose

Sets the alignment of all aggregate members to a specified byte boundary.

If the byte boundary number is smaller than the natural alignment of a member,
padding bytes are removed, thereby reducing the overall structure or union size.

Syntax

�� # pragma pack ( number )
full
num:C_Compat
packed
pop
twobyte
reset

��

Defaults

Members of aggregates (structures, unions, and classes) are aligned on their natural
boundaries and a structure ends on its natural boundary. The alignment of an
aggregate is that of its strictest member (the member with the largest alignment
requirement).

Parameters

number
is one of the following:

1 Aligns structure members on 1-byte boundaries, or on their natural
alignment boundary, whichever is less.
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2 Aligns structure members on 2-byte boundaries, or on their natural
alignment boundary, whichever is less.

4 Aligns structure members on 4-byte boundaries, or on their natural
alignment boundary, whichever is less.

8 Reserved for possible future use.

16 Reserved for possible future use.

full
Aligns structure members on 4-byte boundaries, or on their natural alignment
boundary, whichever is less. This is the same as #pragma pack(4).

num:C_Compat
num is one of the following:
v 1 (aligns structure members on 1-byte boundaries, or on their natural

alignment boundary, whichever is less)
v 2 (aligns structure members on 2-byte boundaries, or on their natural

alignment boundary, whichever is less)

C++

num:C_Compat aligns structure members so that the class layout will be
compatible with the layout produced by the XL C compiler. This applies when:
v You have a class layout that is guarded by #pragma pack(1) or #pragma

pack(2).
v Your class data member contains a bit field that has an alignment that

exceeds the alignment defined by #pragma pack(1) or #pragma pack(2).
v The bit length of the bit field exceeds the maximum number that the bit

field type is allowed to contain.

C++

packed
Aligns structure members on 1-byte boundaries, or on their natural alignment
boundary, whichever is less. This is the same as #pragma pack(1).

pop
Removes the previous value added with #pragma pack. Specifying #pragma
pack() with no parameters is equivalent to specifying C++ #pragma
pack(pop)

C++

or C #pragma pack(4) C .

Note: #pragma pack() with no parameters is deprecated. Use #pragma pack(4)
instead.

twobyte
Aligns structure members on 2-byte boundaries, or on their natural alignment
boundary, whichever is less. This is the same as #pragma pack(2).

reset
Sets the packing rule to that which was in effect before the current setting.
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Usage

The #pragma pack directive applies to the definition of an aggregate type, rather
than to the declaration of an instance of that type; it therefore automatically applies
to all variables declared of the specified type.

The #pragma pack directive modifies the current alignment rule for only the
members of structures whose declarations follow the directive. It does not affect
the alignment of the structure directly, but by affecting the alignment of the
members of the structure, it may affect the alignment of the overall structure.

The #pragma pack directive cannot increase the alignment of a member, but rather
can decrease the alignment. For example, for a member with data type of short, a
#pragma pack(1) directive would cause that member to be packed in the structure
on a 1-byte boundary, while a #pragma pack(4) directive would have no effect.

The #pragma pack directive applies only to complete declarations of structures or
unions; this excludes forward declarations, in which member lists are not specified.
For example, in the following code fragment, the alignment for struct S is 4, since
this is the rule in effect when the member list is declared:
#pragma pack(1)
struct S;
#pragma pack(4)
struct S { int i, j, k; };

A nested structure has the alignment that precedes its declaration, not the
alignment of the structure in which it is contained, as shown in the following
example:
#pragma pack (4) // 4-byte alignment

struct nested {
int x;
char y;
int z;

};

#pragma pack(1) // 1-byte alignment
struct packedcxx{

char a;
short b;
struct nested s1; // 4-byte alignment

};

If more than one #pragma pack directive appears in a structure defined in an
inlined function, the #pragma pack directive in effect at the beginning of the
structure takes precedence.

Examples

The following example shows how the #pragma pack directive can be used to set
the alignment of a structure definition:
// header file file.h

#pragma pack(1)

struct jeff{ // this structure is packed
short bill; // along 1-byte boundaries
int *chris;

};
#pragma pack(reset) // reset to previous alignment rule
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// source file anyfile.c

#include "file.h"

struct jeff j; // uses the alignment specified
// by the pragma pack directive
// in the header file and is
// packed along 1-byte boundaries

This example shows how a #pragma pack directive can affect the size and
mapping of a structure:
struct s_t {
char a;
int b;
short c;
int d;
}S;

Default mapping: With #pragma pack(1):

size of s_t = 16 size of s_t = 11

offset of a = 0 offset of a = 0

offset of b = 4 offset of b = 1

offset of c = 8 offset of c = 5

offset of d = 12 offset of d = 7

alignment of a = 1 alignment of a = 1

alignment of b = 4 alignment of b = 1

alignment of c = 2 alignment of c = 1

alignment of d = 4 alignment of d = 1

The following example defines a union uu containing a structure as one of its
members, and declares an array of 2 unions of type uu:

union uu {
short a;
struct {

char x;
char y;
char z;

} b;
};

union uu nonpacked[2];

Since the largest alignment requirement among the union members is that of short
a, namely, 2 bytes, one byte of padding is added at the end of each union in the
array to enforce this requirement:

┌───── nonpacked[0] ─────────── nonpacked[1] ───┐
│ │ │
│ a │ │ a │ │
│ x │ y │ z │ │ x │ y │ z │ │
!─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘

0 1 2 3 4 5 6 7 8

The next example uses #pragma pack(1) to set the alignment of unions of type uu
to 1 byte:
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#pragma pack(1)

union uu {
short a;
struct {

char x;
char y;
char z;

} b;
};

union uu pack_array[2];

Now, each union in the array packed has a length of only 3 bytes, as opposed to
the 4 bytes of the previous case:

┌─── packed[0] ───┬─── packed[1] ───┐
│ │ │
│ a │ │ a │ │
│ x │ y │ z │ x │ y │ z │
!─────┴─────┴─────┴─────┴─────┴─────┘
0 1 2 3 4 5 6

Related reference:
“The _Packed qualifier (C only)” on page 124

#pragma page (C only)
Category

“Listings, messages and compiler information” on page 534

Purpose

Specifies that the code following the pragma begins at the top of the page in the
generated source listing.

Syntax

�� # pragma page ( )
number

��

Defaults

Not applicable.

Parameters

number
The number of pages from the current page on which to begin writing the line
of source code that follows the pragma. #pragma page() is the same as
#pragma page(1): the source line that follows the pragma will start on a new
page. If you specify #pragma page(2), the listing will skip one blank page and
the source line following the pragma will start on the second page after the
current page. In all cases, the listing continues.

#pragma pagesize (C only)
Category

“Listings, messages and compiler information” on page 534
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Purpose

Sets the number of lines per page for the generated source listing.

Syntax

�� # pragma pagesize ( )
number

��

Defaults

The default page size is 66 lines.

Parameters

number
The number of lines per page for the generated source listing.

Usage

The minimum page size that you should set is 25.

IPA effects

This pragma has the same effect on the IPA compile step as it does on a regular
compilation. It has no effect on the IPA link step.

#pragma priority (C++ only)
Category

Object code control

Purpose

Specifies the priority level for the initialization of static objects.

The C++ standard requires that all global objects within the same translation unit
be constructed from top to bottom, but it does not impose an ordering for objects
declared in different translation units. The #pragma priority directive allows you to
impose a construction order for all static objects declared within the same load
module. Destructors for these objects are run in reverse order during termination.

Syntax

Defaults

The default priority level is 0.

Parameters

number
An integer literal in the range of -2147482624 to 2147483647. A lower value
indicates a higher priority; a higher value indicates a lower priority. Numbers
from -2147483648 to -2147482623 are reserved for system use. If you do not
specify a number, the compiler assumes 0.
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Usage

More than one #pragma priority can be specified within a translation unit. The
priority value specified in one pragma applies to the constructions of all global
objects declared after this pragma and before the next one. However, in order to be
consistent with the Standard, priority values specified within the same translation
unit must be strictly increasing. Objects with the same priority value are
constructed in declaration order.

The effect of a #pragma priority exists only within one load module. Therefore,
#pragma priority cannot be used to control the construction order of objects in
different load modules. Refer to z/OS XL C/C++ Programming Guide for further
discussions on techniques used in handling DLL static object initialization.

#pragma prolog (C only), #pragma epilog (C only)
Category

“Object code control” on page 535

Purpose

When used with the METAL option, inserts High-Level Assembly (HLASM) prolog
or epilog code for a specified function.

Prologs are inserted after function entry, and epilogs are inserted before function
return in the generated HLASM code. These directives allow you to provide your
own function entry and exit code for system programming.

Syntax

�� # pragma epilog
prolog

( function_name , "HLASM Statements" ) ��

Starting from z/OS V1R11, the following syntax is also supported:

�� # pragma epilog
prolog

( function_name , main ) ��

Defaults

Not applicable.

Parameters

function_name
The name of a function to which the epilog or prolog is to be inserted in the
generated HLASM code.

HLASM Statements
HLASM Statements is a C string, which must contain valid HLASM statements.
If the HLASM Statements consists of white-space characters only, or if the
HLASM Statements is not provided, then the compiler ignores the option
specification. If the HLASM Statements does not contain any white-space
characters, then the compiler will insert leading spaces in front. Otherwise, the
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compiler will insert the HLASM Statements into the function prolog location of
the generated assembler source. The compiler does not understand or validate
the contents of the HLASM Statements. In order to satisfy the assembly step
later, the given HLASM Statements must form valid HLASM code with the
surrounding code generated by the compiler.

Note: Special characters like newline and quote are shell (or command line)
meta characters, and maybe preprocessed before reaching the compiler. It is
advisable to avoid using them.

main
When the keyword main is specified instead of HLASM Statements, the default
prolog/epilog code generated by the compiler for function_name is the same as
if it was generated for function main.

Usage

If a #pragma prolog/epilog directive is specified, the pragma directive overrides its
respective compiler option.

An HLASM macro name, or any HLASM statements can be specified in the string
parameter. Normal programming language (C/C++) rules for string literals apply
to the string arguments of the pragma directives as well as to the compiler options.

These directives are only recognized when the z/OS XL C METAL compiler option
is in effect.

Only one #pragma epilog or #pragma prolog directive is allowed for a specific
function.

Related information
v EPILOG, PROLOG, and METAL options in the z/OS XL C/C++ User's Guide.

v Default prolog and epilog code information in the z/OS Metal C Programming
Guide and Reference.

#pragma reachable
Category

Optimization and tuning

Purpose

Informs the compiler that the point in the program after a named function can be
the target of a branch from some unknown location.

By informing the compiler that the instruction after the specified function can be
reached from a point in your program other than the return statement in the
named function, the pragma allows for additional opportunities for optimization.

Syntax

�� # pragma reachable �

,

( function_name ) ��
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Parameters

function_name
The name of a function preceding the instruction which is reachable from a
point in the program other than the function's return statement.

Defaults

Not applicable.

Usage

Unlike the #pragma leaves, #pragma reachable is required by the compiler
optimizer whenever the instruction following the call may receive control from
some program point other than the return statement of the called function. If this
condition is true and #pragma reachable is not specified, then the subprogram
containing the call should not be compiled with OPT(1), OPT(2), OPT(3), or IPA.
See also “#pragma leaves” on page 565.

If you specify the LIBANSI compiler option (which informs the compiler that
function names that match functions in the C standard library are in fact C library
functions), the compiler checks whether the setjmp family of functions (setjmp,
_setjmp, sigsetjmp, and _sigsetjmp) contain #pragma reachable. If the functions
do not contain this pragma directive, the compiler will insert this directive for the
functions. This is not shown in the listing.

IPA effects

If you specify the #pragma reachable directive in your source code in the IPA
compile step, you cannot override the effects of this directive in the IPA link step.

If you specify the LIBANSI compile option for any translation unit in the IPA
compile step, the compiler generates information which indicates the setjmp family
of functions contain the reachable status. If you specify the NOLIBANSI option for
the IPA link step, the attribute remains in effect.

Related information
v “#pragma leaves” on page 565

#pragma report (C++ only)
Category

Listings, messages and compiler information

Purpose

Controls the generation of diagnostic messages.

The pragma allows you to specify a minimum severity level for a message for it to
display, or allows you to enable or disable a specific message regardless of the
prevailing report level.

Syntax
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��
I

# pragma report ( level , E )
W

enable , "message_number"
disable

pop

��

Defaults

The default report level is Informational (I), which displays messages of all types.

Parameters

level
Indicates that the pragma is set according to the minimum severity level of
diagnostic messages to display.

E Indicates that only error messages will display. Error messages are of the
highest severity. This is equivalent to the FLAG(E) compiler option.

W Indicates that warning and error messages will display. This is equivalent to
the FLAG(W) compiler option.

I Indicates that all diagnostic messages will display: warning, error and
informational messages. Informational messages are of the lowest severity. This
is equivalent to the FLAG(I) compiler option.

enable
Enables the specified "message_number".

disable
Disables the specified "message_number".

"message_number"
Represents a message identifier, which consists of a prefix followed by the
message number in quotation marks; for example, "CCN1004".

Note: You must use quotation marks with message_number as in the preceding
example "CCN1004".

pop
Reverts the report level to that which was previously in effect. If no previous
report level has been specified, a warning is issued, and the report level
remains unchanged.

Usage

The pragma takes precedence over most compiler options. For example, if you use
#pragma report to disable a compiler message, that message will not be displayed
with any FLAG compiler option setting. Similarly, if you specify the SUPPRESS
compiler option for a message but also specify #pragma report(enable) for the
same message, the pragma will prevail.

Related information
v The FLAG option in the z/OS XL C/C++ User's Guide.
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#pragma runopts
Category

“Language element control” on page 532

Purpose

Specifies a list of runtime options for the compiler to use at execution time.

Syntax

�� # pragma runopts �

,

( suboption ) ��

Defaults

Not applicable.

Parameters

suboption
A z/OS Language Environment run-time option or any of the compiler
run-time options ARGPARSE, ENV, PLIST, REDIR, or EXECOPS. For more
information on z/OS run-time options, see the z/OS XL C/C++ User's Guide
and z/OS Language Environment Programming Guide.

Usage

Specify your #pragma runopts directive in the translation unit that contains main.
If more than one translation unit contains a #pragma runopts directive,
unpredictable results can occur; the #pragma runopts directive only affects
translation units containing main.

If a suboption to #pragma runopts is not a valid C or C++ token, you can
surround the suboptions to #pragma runopts in double quotes. For example, use:
#pragma runopts ( " RPTSTG(ON)
TEST(,,,VADTCPIP&1.2.3.4:*) " )

instead of:
#pragma runopts ( RPTSTG(ON) TEST(,,,VADTCPIP&1.2.4.3:*))

IPA effects

This pragma only affects the IPA compile step if you specify the OBJECT suboption
of the IPA compiler option.

The IPA compile step passes the effects of this directive to the IPA link step.

Consider if you specify ARGPARSE|NOARGPARSE, EXECOPS|NOEXECOPS,
PLIST, or REDIR|NOREDIR either on the #pragma runopts directive or as a
compile-time option on the IPA compile step, and then specify the compile-time
option on the IPA link step. In this case, you override the value that you specified
on the IPA compile step.
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If you specify the TARGET compile-time option on the IPA link step, it has the
following effects on #pragma runopts :
v It overrides the value you specified for #pragma runopts(ENV). If you specify

TARGET(LE) or TARGET(), the compiler sets the value of #pragma
runopts(ENV) to MVS. If you specify TARGET(IMS), the compiler sets the value
of #pragma runopts(ENV) to IMS.

v It may override the value you specified for #pragma runopts(PLIST). If you
specify TARGET(LE) or TARGET(), and you specified something other than
HOST for #pragma runopts(PLIST), the compiler sets the value of #pragma
runopts(PLIST) to HOST. If you specify TARGET(IMS), the compiler sets the
value of #pragma runopts(PLIST) to IMS.

For #pragma runopts options other than those that are listed above, the IPA link
step follows these steps to determine which #pragma runopts value to use:
1. The IPA link step uses the #pragma runopts specification from the main routine,

if the routine exists.
2. If no main routine exists, the IPA link step follows these steps:

a. If you define the CEEUOPT variable, the IPA link step uses the #pragma
runopts value from the first translation unit that it finds that contains
CEEUOPT.

b. If you have not defined the CEEUOPT variable in any translation unit, the
IPA link step uses the #pragma runopts value from the first translation unit
that it processes.

The sequence of translation unit processing is arbitrary.

To avoid problems, you should specify #pragma runopts only in your main routine.
If you do not have a main routine, specify it in only one other module.

Related information
v “#pragma target (C only)” on page 597
v The TARGET option in the z/OS XL C/C++ User's Guide.

#pragma sequence
Category

“Language element control” on page 532

Purpose

Defines the section of the input record that is to contain sequence numbers.

The #pragma nosequence directive specifies that the input record does not contain
sequence numbers.

Syntax

�� # pragma sequence ( left_column_margin , right_column_margin )
nosequence

��
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Defaults

v C Sequence numbers are assigned to columns 73 through 80 of the input
record for fixed-length-records, and no sequence numbers are assigned for
variable-length records. C

v C++ No sequence numbers are assigned for fixed or variable-length records.
C++

Parameters

left_column_margin
The column number of the first (left-hand) margin. The value of
left_column_margin must be greater than 0, and less than 32767.

Also, left_column_margin must be less than or equal to the value of
right_column_margin.

right_column_margin
The column number of the last (right-hand) margin. The value of
right_column_margin must be greater than that of left_column_margin, and less
than 32767.

You can also use an asterisk (*) to indicate the last column of the input record.
For example, sequence(74,*) indicates that sequence numbers are between
column 74 and the end of the input record.

Usage

C++ In C++ only, you can specify the sequence option with no parameters,
which instructs the compiler to number columns 73 through 80 of the input record
(fixed or variable length). C++

If you use the compiler options SEQUENCE or NOSEQUENCE with the #pragma
sequence/nosequence directive, the directive overrides the compiler options. The
compiler option is in effect up to the first #pragma sequence/nosequence directive.
The sequence setting specified by the #pragma sequence directive applies only to
the file (source file or include file) that contains it. The setting has no effect on
other include files in the file.

You can use #pragma sequence and #pragma margins together. If they reserve the
same columns, #pragma sequence has priority, and the compiler reserves the
columns for sequence numbers. For example, consider if the columns reserved for
the margin are 1 to 20 and the columns reserved for sequence numbers are 15 to
25. In this case, the margin will be from column 1 to 14, and the columns reserved
for sequence numbers will be from 15 to 25. For more information on the #pragma
margins directive, refer to “#pragma margins/nomargins” on page 572.

Related information
v The SEQUENCE compiler option in the z/OS XL C/C++ User's Guide.

#pragma skip (C only)
Category

“Listings, messages and compiler information” on page 534
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Purpose

Skips lines of the generated source listing.

Syntax

#pragma skip directive syntax

�� # pragma skip ( )
number

��

Defaults

Not applicable.

Parameters

number
The number of lines to skip in the generated source listing. The value of
number must be a positive integer less than 255. If you omit number, the
compiler skips one line.

#pragma strings
Category

Object code control

Purpose

Specifies the storage type for string literals.

Syntax

Pragma syntax

��
readonly

# pragma strings ( writable )
writeable

��

Defaults

C and C++ strings are read-only.

Parameters

readonly
String literals are to be placed in read-only memory.

writeable
String literals are to be placed in read-write memory.

Usage

Placing string literals in read-only memory can improve runtime performance and
save storage. However, code that attempts to modify a read-only string literal may
generate a memory error.
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The pragma must appear before any source statements in a file.

IPA effects

During the IPA link step, the compiler compares the #pragma strings specifications
for individual translation units. If it finds differences, it treats the strings as if you
specified #pragma strings(writeable) for all translation units.

Related information
v The ROSTRINGS option in the z/OS XL C/C++ User's Guide.

#pragma subtitle (C only)
Category

“Listings, messages and compiler information” on page 534

Purpose

Places subtitle text on all subsequent pages of the generated source listing.

Syntax

�� # pragma subtitle ( " text " ) ��

Defaults

Not applicable.

Parameters

text
The subtitle to appear in on all pages of the generated source listing.

#pragma target (C only)
Category

“Object code control” on page 535

Purpose

Specifies the operating system or runtime environment for which the compiler
creates the object module.

Syntax

�� # pragma target
LE

( IMS ) ��

Defaults

The default is LE.
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Parameters

LE Generates code to run under the z/OS Language Environment run-time library.
This is equivalent to specifying #pragma target(). This suboption has the
following effects on #pragma runopts(ENV) and #pragma runopts(PLIST):
v If you did not specify values for #pragma runopts(ENV) or #pragma

runopts(PLIST), the compiler sets the pragmas to #pragma
runopts(ENV(MVS)) and #pragma runopts(PLIST(HOST)).

v If you did specify values for #pragma runopts(ENV) or #pragma
runopts(PLIST), the values do not change.

IMS
Generates object code to run under IMS. This suboption has the following
effects on #pragma runopts(ENV) and #pragma runopts(PLIST) :
v If you did not specify values for #pragma runopts(ENV) or #pragma

runopts(PLIST), the compiler sets the pragmas to #pragma
runopts(ENV(IMS)) and #pragma runopts(PLIST(OS)).

v If you did specify values for #pragma runopts(ENV) or #pragma
runopts(PLIST), the values do not change.

Usage

Note that you cannot specify the release suboptions using the #pragma target
directive as you can with the TARGET compiler option.

The only pragma directives that can precede #pragma target are filetag, chars,
langlvl, and longname.

IPA effects

This pragma only affects the IPA compile step if you specify the OBJECT suboption
of the IPA compiler option.

The IPA compile step passes the effects of this pragma to the IPA link step.

If you specify different #pragma target directives for different translation units, the
IPA link step uses the ENV and PLIST information from the translation unit
containing main. If there is no main, it uses information from the first translation
unit it finds. If you specify the TARGET compile option for the IPA link step, it
overrules the #pragma target directive.

Related information
v “#pragma runopts” on page 593
v The TARGET option in the z/OS XL C/C++ User's Guide.

#pragma title (C only)
Category

“Listings, messages and compiler information” on page 534

Purpose

Places title text on all subsequent pages of the generated source listing.
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Syntax

�� # pragma title ( " text " ) ��

Defaults

Not applicable.

Parameters

text
The title to appear in on all pages of the generated source listing.

#pragma unroll
Category

Optimization and tuning

Purpose

Controls loop unrolling, for improved performance.

When unroll is in effect, the optimizer determines and applies the best unrolling
factor for each loop; in some cases, the loop control might be modified to avoid
unnecessary branching. The compiler remains the final arbiter of whether the loop
is unrolled.

Syntax

Pragma syntax

�� # pragma nounroll
unroll

( n )

��

Defaults

See the description of the UNROLL option in the z/OS XL C/C++ User's Guide.

Parameters

The following suboptions are for -qunroll only.

n Instructs the compiler to unroll loops by a factor of n. In other words, the body
of a loop is replicated to create n copies and the number of iterations is
reduced by a factor of 1/n. The -qunroll=n option specifies a global unroll
factor that affects all loops that do not have an unroll pragma yet. The value of
n must be a positive integer.

Specifying #pragma unroll(1) or -qunroll=1 disables loop unrolling, and is
equivalent to specifying #pragma nounroll or -qnounroll.

The compiler might limit unrolling to a number smaller than the value you
specify for n. This is because the option form affects all loops in source files to
which it applies and large unrolling factors might significantly increase
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compile time without necessarily improving runtime performance. To specify
an unrolling factor for particular loops, use the #pragma form in those loops.

Usage

The pragma overrides the [NO]UNROLL option setting for a designated loop.
However, even if #pragma unroll is specified for a given loop, the compiler
remains the final arbiter of whether the loop is unrolled.

Only one pragma can be specified on a loop.

The pragma affects only the loop that follows it. An inner nested loop requires a
#pragma unroll directive to precede it if the wanted loop unrolling strategy is
different from that of the prevailing [NO]UNROLL option.

The #pragma unroll and #pragma nounroll directives can only be used on for
loops. They cannot be applied to do while and while loops.

The loop structure must meet the following conditions:
v There must be only one loop counter variable, one increment point for that

variable, and one termination variable. These cannot be altered at any point in
the loop nest.

v Loops cannot have multiple entry and exit points. The loop termination must be
the only means to exit the loop.

v Dependencies in the loop must not be "backwards-looking". For example, a
statement such as A[i][j] = A[i -1][j + 1] + 4 must not appear within the
loop.

Predefined macros

None.

Examples

In the following example, the #pragma unroll(3) directive on the first for loop
requires the compiler to replicate the body of the loop three times. The #pragma
unroll on the second for loop allows the compiler to decide whether to perform
unrolling.
#pragma unroll(3)
for( i=0;i < n; i++)
{

a[i] = b[i] * c[i];
}

#pragma unroll
for( j=0;j < n; j++)
{

a[j] = b[j] * c[j];

}

In this example, the first #pragma unroll(3) directive results in:
i=0;
if (i>n-2) goto remainder;
for (; i<n-2; i+=3) {

a[i]=b[i] * c[i];
a[i+1]=b[i+1] * c[i+1];
a[i+2]=b[i+2] * c[i+2];
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}
if (i<n) {

remainder:
for (; i<n; i++) {

a[i]=b[i] * c[i];
}

}

Related information
v The UNROLL option in the z/OS XL C/C++ User's Guide.

#pragma variable
Category

“Object code control” on page 535

Purpose

Specifies whether the compiler is to use a named external object in a reentrant or
non-reentrant fashion.

Syntax

�� # pragma variable ( identifier , rent )
norent

��

Defaults

C++ Variables are reentrant (rent). C++

C Variables are not reentrant (norent). C

Parameters

identifier
The name of an external variable.

rent
Specifies that the variable's references or definition will be in the writable static
area that is in modifiable storage.

norent
Specifies that the variable's references or its definition is in the code area and is
in potentially read-only storage. This suboption does not apply to, and has no
effect on, program variables with static storage class.

Usage

If an identifier is defined in one translation unit and used in another, the reentrant
or non-reentrant status of the variable must be the same in all translation units.

C To specify that variables declared as const not be placed into the
writeable static area, you must use the ROCONST and RENT compiler options.

C
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If the specification for a const variable in a #pragma variable directive conflicts
with the ROCONST option, the pragma directive takes precedence over the
compiler option, and the compiler issues an informational message.

If you use the norent suboption for a variable, ensure that your program never
writes to this variable. Program exceptions or unpredictable program behavior may
result should this be the case.

The following code fragment leads to undefined behavior when compiled with the
RENT option.
int i;
int *p = &i;
#pragma variable(p, norent)

The variable i is reentrant, but the pointer p is non-reentrant. If the code is in a
DLL, there will only be one copy of p but multiple copies of i, one for each caller
of the DLL.

A non-reentrant pointer variable cannot take an address as an initializer: the
compiler will treat the variable as reentrant if necessary (in other words, it will
ignore the pragma). Initializers for non-reentrant variables should be compile-time
constants. Due to code relocation during execution time, an address in a program
that has both reentrant and non-reentrant variables is never considered a
compile-time constant. This restriction includes the addresses of string literals.

Examples

The following program fragment shows how to use the #pragma variable directive
to force an external program variable to be part of a program that includes
executable code and constant data.
#pragma variable(rates, norent)
extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.0 };

extern float totals[5];

int main(void) {...
}

In this example, you compile the source file with the RENT option. The executable
code includes the variable rates because #pragma variable(rates, norent) is
specified. The writeable static area includes the variable totals. Each user has a
personal copy of the array totals, and all users of the program share the array
rates. This sharing may yield a performance and storage benefit.

Related information
v The RENT option in the z/OS XL C/C++ User's Guide.

#pragma wsizeof
Category

“Portability and migration” on page 536
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Purpose

Toggles the behavior of the sizeof operator between that of a compiler prior the
C/C++ for MVS/ESA V3R2 and the z/OS XL C/C++ compiler.

When the sizeof operator was applied to a function return type, older z/OS C and
C++ compilers returned the size of the widened type instead of the original type.
For example, in the following code fragment, using the older compilers, i has a
value of 4.
char foo();
i = sizeof foo();

Using the z/OS XL C/C++ compiler, i has a the value of 1, which is the size of the
original type, char.

Syntax

�� #pragma wsizeof ( on )
resume

��

Defaults

The sizeof operator returns the original type for function return types.

Parameters

on Enables the old compiler behavior of the sizeof operator, so that the widened
size is returned for function return types.

resume
Re-enables the normal behavior of the sizeof operator.

Usage

You can use this pragma in old header files where you require the old behavior of
the sizeof operator. By guarding the header file with a #pragma wsizeof(on) at
the start of the header, and a #pragma wsizeof(resume) at the end, you can use the
old header file with new applications.

The compiler will match on and resume throughout the entire compilation unit.
That is, the effect of the pragma can extend beyond a header file. Ensure the on
and resume pragmas are matched in your compilation unit.

The pragma only affects the use of sizeof on function return types. Other
behaviors of sizeof remain the same.

Note: Dangling the resume pragma leads to undefined behavior. The effect of an
unmatched on pragma can extend to the end of the source file.

IPA effects

During the IPA compile step, the size of each function return value is resolved
during source processing. The IPA compile and link steps do not alter these sizes.
The IPA object code from translation units with different wsizeof settings is
merged together during the IPA link step.
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Related information
v The WSIZEOF option in the z/OS XL C/C++ User's Guide.

#pragma XOPTS
Category

“Language element control” on page 532

Purpose

Passes suboptions directly to the CICS integrated translator for processing CICS
statements embedded in C/C++ source code.

Syntax

�� #pragma XOPTS ( suboptions ) ��

Defaults

Not applicable.

Parameters

XOPTS
Must be specified in all uppercase.

suboptions
Are options to be passed to the CICS integrated translator.

Usage

The directive is only valid when the CICS compiler option is in effect. It must
appear before any C/C++ or CICS statements in the source, and must appear at
file scope (C) or global namespace scope (C++).

Note that if you invoke the compiler with any of the preprocessing-only options,
the directive will be preserved in the preprocessed output.

Related information

For detailed information on acceptable embedded CICS statements and
preprocessed output, see the description of the CICS compiler option in the z/OS
XL C/C++ User's Guide.

Pragma directives for parallel processing
Parallel processing operations are controlled by pragma directives in your program
source. The pragmas have effect only when parallelization is enabled with the
SMP compiler option.

You can use the OpenMP directives in your C and C++ programs. Each directive
has its own usage characteristics.
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#pragma omp atomic
Purpose

The omp atomic directive allows access of a specific memory location atomically. It
ensures that race conditions are avoided through direct control of concurrent
threads that might read or write to or from the particular memory location. With
the omp atomic directive, you can write more efficient concurrent algorithms with
fewer locks.

Syntax

��
update

# pragma omp atomic
read
write
capture

expression_statement
structured_block

��

where expression_statement is an expression statement of scalar type, and
structured_block is a structured block of two expression statements.

Clauses

update
Updates the value of a variable atomically. Guarantees that only one thread at
a time updates the shared variable, avoiding errors from simultaneous writes
to the same variable. An omp atomic directive without a clause is equivalent to
an omp atomic update.

Note: Atomic updates cannot write arbitrary data to the memory location, but
depend on the previous data at the memory location.

read
Reads the value of a variable atomically. The value of a shared variable can be
read safely, avoiding the danger of reading an intermediate value of the
variable when it is accessed simultaneously by a concurrent thread.

write
Writes the value of a variable atomically. The value of a shared variable can be
written exclusively to avoid errors from simultaneous writes.

capture
Updates the value of a variable while capturing the original or final value of
the variable atomically.

The expression_statement or structured_block takes one of the following forms,
depending on the atomic directive clause:
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Directive clause expression_statement structured_block

update
(equivalent to no clause)

x++;

x--;

++x;

--x;

x binop = expr;

x = x binop expr;

x = expr binop x;

read v = x;

write x = expr;

capture v = x++;

v = x--;

v = ++x;

v = --x;

v = x binop = expr;

v = x = x binop expr;

v = x = expr binop x;

{v = x; x binop = expr;}

{v = x; xOP;}

{v = x; OPx;}

{x binop = expr; v = x;}

{xOP; v = x;}

{OPx; v = x;}

{v = x; x = x binop expr;}

{x = x binop expr; v = x;}

{v = x; x = expr binop x;}

{x = expr binop x; v = x;}

{v = x; x = expr;}1

Note:

1. This expression is to support atomic swap operations.

where:

x, v are both lvalue expressions with scalar type.

expr is an expression of scalar type that does not reference x.

binop is one of the following binary operators:
+ * - / & ^ | << >>

OP is one of ++ or --.

Note: binop, binop=, and OP are not overloaded operators.

Usage

Objects that can be updated in parallel and that might be subject to race conditions
should be protected with the omp atomic directive.

All atomic accesses to the storage locations designated by x throughout the
program should have a compatible type.
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Within an atomic region, multiple syntactic occurrences of x must designate the
same storage location.

All accesses to a certain storage location throughout a concurrent program must be
atomic. A non-atomic access to a memory location might break the expected atomic
behavior of all atomic accesses to that storage location.

Neither v nor expr can access the storage location that is designated by x.

Neither x nor expr can access the storage location that is designated by v.

All accesses to the storage location designated by x are atomic. Evaluations of the
expression expr, v, x are not atomic.

For atomic capture access, the operation of writing the captured value to the
storage location represented by v is not atomic.

Examples

Example 1: Atomic update
extern float x[], *p = x, y;

/* Protect against race conditions among multiple updates. */
#pragma omp atomic
x[index[i]] += y;

/* Protect against race conditions with updates through x. */
#pragma omp atomic
p[i] -= 1.0f;

Example 2: Atomic read, write, and update
extern int x[10];
extern int f(int);
int temp[10], i;

for(i = 0; i < 10; i++)
{

#pragma omp atomic read
temp[i] = x[f(i)];

#pragma omp atomic write
x[i] = temp[i]*2;

#pragma omp atomic update
x[i] *= 2;

}

Example 3: Atomic capture
extern int x[10];
extern int f(int);
int temp[10], i;

for(i = 0; i < 10; i++)
{

#pragma omp atomic capture
temp[i] = x[f(i)]++;

#pragma omp atomic capture
{
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temp[i] = x[f(i)]; //the two occurences of x[f(i)] must evaluate to the
x[f(i)] -= 3; //same memory location, otherwise behavior is undefined.

}
}

#pragma omp barrier
Purpose

The omp barrier directive identifies a synchronization point at which threads in a
parallel region will not execute beyond the omp barrier until all other threads in
the team complete all explicit tasks in the region.

Syntax

�� # pragma omp barrier ��

Usage

The omp barrier directive must appear within a block or compound statement. For
example:
if (x!=0) {

#pragma omp barrier /* valid usage */
}

if (x!=0)
#pragma omp barrier /* invalid usage */

#pragma omp critical
Purpose

The omp critical directive identifies a section of code that must be executed by a
single thread at a time.

Syntax

�� �

,

# pragma omp critical (name) ��

where name can optionally be used to identify the critical region. Identifiers
naming a critical region have external linkage and occupy a namespace distinct
from that used by ordinary identifiers.

Usage

A thread waits at the start of a critical region identified by a given name until no
other thread in the program is executing a critical region with that same name.
Critical sections not specifically named by omp critical directive invocation are
mapped to the same unspecified name.

#pragma omp flush
Purpose

The omp flush directive identifies a point at which the compiler ensures that all
threads in a parallel region have the same view of specified objects in memory.
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Syntax

�� �

,

# pragma omp flush
list

��

where list is a comma-separated list of variables that will be synchronized.

Usage

If list includes a pointer, the pointer is flushed, not the object being referred to by
the pointer. If list is not specified, all shared objects are synchronized except those
inaccessible with automatic storage duration.

An implied flush directive appears in conjunction with the following directives:
v omp barrier

v Entry to and exit from omp critical.
v Exit from omp parallel.
v Exit from omp for.
v Exit from omp sections.
v Exit from omp single.

The omp flush directive must appear within a block or compound statement. For
example:
if (x!=0) {

#pragma omp flush /* valid usage */
}

if (x!=0)
#pragma omp flush /* invalid usage */

#pragma omp for
Purpose

The omp for directive instructs the compiler to distribute loop iterations within the
team of threads that encounters this work-sharing construct.

Syntax

�� �

,

# pragma omp for
clause for-loop

��

Parameters

clause is any of the following clauses:

collapse (n)
Allows you to parallelize multiple loops in a nest without introducing nested
parallelism.
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�� COLLAPSE ( n ) ��

v Only one collapse clause is allowed on a worksharing for or parallel for
pragma.

v The specified number of loops must be present lexically. That is, none of the
loops can be in a called subroutine.

v The loops must form a rectangular iteration space and the bounds and stride
of each loop must be invariant over all the loops.

v If the loop indices are of different size, the index with the largest size will be
used for the collapsed loop.

v The loops must be perfectly nested; that is, there is no intervening code nor
any OpenMP pragma between the loops which are collapsed.

v The associated do-loops must be structured blocks. Their execution must not
be terminated by an break statement.

v If multiple loops are associated to the loop construct, only an iteration of the
innermost associated loop may be curtailed by a continue statement. If
multiple loops are associated to the loop construct, there must be no
branches to any of the loop termination statements except for the innermost
associated loop.

Ordered construct
During execution of an iteration of a loop or a loop nest within a loop
region, the executing thread must not execute more than one ordered
region which binds to the same loop region. As a consequence, if
multiple loops are associated to the loop construct by a collapse clause,
the ordered construct has to be located inside all associated loops.

Lastprivate clause
When a lastprivate clause appears on the pragma that identifies a
work-sharing construct, the value of each new list item from the
sequentially last iteration of the associated loops, is assigned to the
original list item even if a collapse clause is associated with the loop

Other SMP and performance pragmas
stream_unroll,unroll,unrollandfuse,nounrollandfuse pragmas cannot
be used for any of the loops associated with the collapse clause loop
nest.

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized as if there was an implied declaration
within the statement block. Data variables in list are separated by commas.

lastprivate (list)
Declares the scope of the data variables in list to be private to each thread. The
final value of each variable in list, if assigned, will be the value assigned to
that variable in the last iteration. Variables not assigned a value will have an
indeterminate value. Data variables in list are separated by commas.

reduction (operator: list)
Performs a reduction on all scalar variables in list using the specified operator.
Reduction variables in list are separated by commas.
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A private copy of each variable in list is created for each thread. At the end of
the statement block, the final values of all private copies of the reduction
variable are combined in a manner appropriate to the operator, and the result
is placed back in the original value of the shared reduction variable. For
example, when the max operator is specified, the original reduction variable
value combines with the final values of the private copies by using the
following expression:
original_reduction_variable = original_reduction_variable < private_copy ?
private_copy : original_reduction_variable;

For variables specified in the reduction clause, they must satisfy the following
conditions:
v Must be of a type appropriate to the operator. If the max or min operator is

specified, the variables must be one of the following types with or without
long, short, signed, or unsigned:
– _Bool (C only)
– bool (C++ only)
– char
– wchar_t (C++ only)
– int
– float
– double

v Must be shared in the enclosing context.
v Must not be const-qualified.
v Must not have pointer type.

ordered
Specify this clause if an ordered construct is present within the dynamic extent
of the omp for directive.

schedule (type)
Specifies how iterations of the for loop are divided among available threads.
Acceptable values for type are:

auto With auto, scheduling is delegated to the compiler and runtime
system. The compiler and runtime system can choose any possible
mapping of iterations to threads (including all possible valid
schedules) and these may be different in different loops.

dynamic
Iterations of a loop are divided into chunks of size
ceiling(number_of_iterations/number_of_threads).

Chunks are dynamically assigned to active threads on a "first-come,
first-do" basis until all work has been assigned.

dynamic,n
As above, except chunks are set to size n. n must be an integral
assignment expression of value 1 or greater.

guided
Chunks are made progressively smaller until the default minimum
chunk size is reached. The first chunk is of size
ceiling(number_of_iterations/number_of_threads). Remaining chunks are
of size ceiling(number_of_iterations_left/number_of_threads).

The minimum chunk size is 1.

Chunks are assigned to active threads on a "first-come, first-do" basis
until all work has been assigned.
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guided,n
As above, except the minimum chunk size is set to n; n must be an
integral assignment expression of value 1 or greater.

runtime
Scheduling policy is determined at run time. Use the
OMP_SCHEDULE environment variable to set the scheduling type and
chunk size.

static Iterations of a loop are divided into chunks of size
ceiling(number_of_iterations/number_of_threads). Each thread is assigned
a separate chunk.

This scheduling policy is also known as block scheduling.

static,n
Iterations of a loop are divided into chunks of size n. Each chunk is
assigned to a thread in round-robin fashion.

n must be an integral assignment expression of value 1 or greater.

This scheduling policy is also known as block cyclic scheduling.

nowait
Use this clause to avoid the implied barrier at the end of the for directive. This
is useful if you have multiple independent work-sharing sections or iterative
loops within a given parallel region. Only one nowait clause can appear on a
given for directive.

and where for_loop is a for loop construct with the following canonical shape:
for (init_expr; exit_cond; incr_expr)
statement

where:

init_expr takes the form: iv = b
integer-type iv = b

exit_cond takes the form: iv <= ub
iv < ub
iv >= ub
iv > ub

incr_expr takes the form: ++iv
iv++
--iv
iv--
iv += incr
iv -= incr
iv = iv + incr
iv = incr + iv
iv = iv - incr

and where:

iv Iteration variable. The iteration variable must be a signed integer not
modified anywhere within the for loop. It is implicitly made private for
the duration of the for operation. If not specified as lastprivate, the
iteration variable will have an indeterminate value after the operation
completes.

b, ub, incr Loop invariant signed integer expressions. No synchronization is
performed when evaluating these expressions and evaluated side effects
may result in indeterminate values.
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Usage

This pragma must appear immediately before the loop or loop block directive to be
affected.

Program sections using the omp for pragma must be able to produce a correct
result regardless of which thread executes a particular iteration. Similarly, program
correctness must not rely on using a particular scheduling algorithm.

The for loop iteration variable is implicitly made private in scope for the duration
of loop execution. This variable must not be modified within the body of the for
loop. The value of the increment variable is indeterminate unless the variable is
specified as having a data scope of lastprivate.

An implicit barrier exists at the end of the for loop unless the nowait clause is
specified.

Restrictions:
v The for loop must be a structured block, and must not be terminated by a break

statement.
v Values of the loop control expressions must be the same for all iterations of the

loop.
v An omp for directive can accept only one schedule clause.
v The value of n (chunk size) must be the same for all threads of a parallel region.

#pragma omp master
Purpose

The omp master directive identifies a section of code that must be run only by the
master thread.

Syntax

�� # pragma omp master ��

Usage

Threads other than the master thread will not execute the statement block
associated with this construct.

No implied barrier exists on either entry to or exit from the master section.

#pragma omp ordered
Purpose

The omp ordered directive identifies a structured block of code that must be
executed in sequential order.

Syntax

�� # pragma omp ordered ��
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Usage

The omp ordered directive must be used as follows:
v It must appear within the extent of a omp for or omp parallel for construct

containing an ordered clause.
v It applies to the statement block immediately following it. Statements in that

block are executed in the same order in which iterations are executed in a
sequential loop.

v An iteration of a loop must not execute the same omp ordered directive more
than once.

v An iteration of a loop must not execute more than one distinct omp ordered
directive.

#pragma omp parallel
Purpose

The omp parallel directive explicitly instructs the compiler to parallelize the
chosen block of code.

Syntax

�� �

,

# pragma omp parallel clause ��

Parameters

clause is any of the following clauses:

if (exp)
When the if argument is specified, the program code executes in parallel only
if the scalar expression represented by exp evaluates to a nonzero value at run
time. Only one if clause can be specified.

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized with the value of the original variable as
if there was an implied declaration within the statement block. Data variables
in list are separated by commas.

num_threads (int_exp)
The value of int_exp is an integer expression that specifies the number of
threads to use for the parallel region. If dynamic adjustment of the number of
threads is also enabled, then int_exp specifies the maximum number of threads
to be used.

shared (list)
Declares the scope of the comma-separated data variables in list to be shared
across all threads.

default (shared | none)
Defines the default data scope of variables in each thread. Only one default
clause can be specified on an omp parallel directive.
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Specifying default(shared) is equivalent to stating each variable in a
shared(list) clause.

Specifying default(none) requires that each data variable visible to the
parallelized statement block must be explcitly listed in a data scope clause,
with the exception of those variables that are:
v const-qualified,
v specified in an enclosed data scope attribute clause, or,
v used as a loop control variable referenced only by a corresponding omp for

or omp parallel for directive.

copyin (list)
For each data variable specified in list, the value of the data variable in the
master thread is copied to the thread-private copies at the beginning of the
parallel region. Data variables in list are separated by commas.

Each data variable specified in the copyin clause must be a threadprivate
variable.

reduction (operator: list)
Performs a reduction on all scalar variables in list using the specified operator.
Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end of
the statement block, the final values of all private copies of the reduction
variable are combined in a manner appropriate to the operator, and the result
is placed back in the original value of the shared reduction variable. For
example, when the max operator is specified, the original reduction variable
value combines with the final values of the private copies by using the
following expression:
original_reduction_variable = original_reduction_variable < private_copy ?
private_copy : original_reduction_variable;

For variables specified in the reduction clause, they must satisfy the following
conditions:
v Must be of a type appropriate to the operator. If the max or min operator is

specified, the variables must be one of the following types with or without
long, short, signed, or unsigned:
– _Bool (C only)
– bool (C++ only)
– char
– wchar_t (C++ only)
– int
– float
– double

v Must be shared in the enclosing context.
v Must not be const-qualified.
v Must not have pointer type.

Usage

When a parallel region is encountered, a logical team of threads is formed. Each
thread in the team executes all statements within a parallel region except for
work-sharing constructs. Work within work-sharing constructs is distributed
among the threads in a team.

Loop iterations must be independent before the loop can be parallelized. An
implied barrier exists at the end of a parallelized statement block.
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By default, nested parallel regions are serialized.

#pragma omp parallel for
Purpose

The omp parallel for directive effectively combines the omp parallel and omp for
directives. This directive lets you define a parallel region containing a single for
directive in one step.

Syntax

�� �

,

# pragma omp parallel for
clause for-loop

��

Usage

With the exception of the nowait clause, clauses and restrictions described in the
omp parallel and omp for directives also apply to the omp parallel for directive.

#pragma omp parallel sections
Purpose

The omp parallel sections directive effectively combines the omp parallel and
omp sections directives. This directive lets you define a parallel region containing
a single sections directive in one step.

Syntax

�� �

,

# pragma omp parallel sections
clause

��

Usage

All clauses and restrictions described in the omp parallel and omp sections
directives apply to the omp parallel sections directive.

#pragma omp section, #pragma omp sections
Purpose

The omp sections directive distributes work among threads bound to a defined
parallel region.

Syntax

�� �

,

# pragma omp sections clause ��
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Parameters

clause is any of the following clauses:

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized as if there was an implied declaration
within the statement block. Data variables in list are separated by commas.

lastprivate (list)
Declares the scope of the data variables in list to be private to each thread. The
final value of each variable in list, if assigned, will be the value assigned to
that variable in the last section. Variables not assigned a value will have an
indeterminate value. Data variables in list are separated by commas.

reduction (operator: list)
Performs a reduction on all scalar variables in list using the specified operator.
Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end of
the statement block, the final values of all private copies of the reduction
variable are combined in a manner appropriate to the operator, and the result
is placed back in the original value of the shared reduction variable. For
example, when the max operator is specified, the original reduction variable
value combines with the final values of the private copies by using the
following expression:
original_reduction_variable = original_reduction_variable < private_copy ?
private_copy : original_reduction_variable;

For variables specified in the reduction clause, they must satisfy the following
conditions:
v Must be of a type appropriate to the operator. If the max or min operator is

specified, the variables must be one of the following types with or without
long, short, signed, or unsigned:
– _Bool (C only)
– bool (C++ only)
– char
– wchar_t (C++ only)
– int
– float
– double

v Must be shared in the enclosing context.
v Must not be const-qualified.
v Must not have pointer type.

nowait
Use this clause to avoid the implied barrier at the end of the sections directive.
This is useful if you have multiple independent work-sharing sections within a
given parallel region. Only one nowait clause can appear on a given sections
directive.

Usage

The omp section directive is optional for the first program code segment inside the
omp sections directive. Following segments must be preceded by an omp section
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directive. All omp section directives must appear within the lexical construct of the
program source code segment associated with the omp sections directive.

When program execution reaches a omp sections directive, program segments
defined by the following omp section directive are distributed for parallel
execution among available threads. A barrier is implicitly defined at the end of the
larger program region associated with the omp sections directive unless the
nowait clause is specified.

#pragma omp single
Purpose

The omp single directive identifies a section of code that must be run by a single
available thread.

Syntax

�� �

,

# pragma omp single
clause

��

Parameters

clause is any of the following:

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

A variable in the private clause must not also appear in a copyprivate clause
for the same omp single directive.

copyprivate (list)
Broadcasts the values of variables specified in list from one member of the
team to other members. This occurs after the execution of the structured block
associated with the omp single directive, and before any of the threads leave
the barrier at the end of the construct. For all other threads in the team, each
variable in the list becomes defined with the value of the corresponding
variable in the thread that executed the structured block. Data variables in list
are separated by commas. Usage restrictions for this clause are:
v A variable in the copyprivate clause must not also appear in a private or

firstprivate clause for the same omp single directive.
v If an omp single directive with a copyprivate clause is encountered in the

dynamic extent of a parallel region, all variables specified in the copyprivate
clause must be private in the enclosing context.

v Variables specified in copyprivate clause within dynamic extent of a parallel
region must be private in the enclosing context.

v A variable that is specified in the copyprivate clause must have an accessible
and unambiguous copy assignment operator.

v The copyprivate clause must not be used together with the nowait clause.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.

618 z/OS V2R1.0 XL C/C++ Language Reference



Each new private object is initialized as if there was an implied declaration
within the statement block. Data variables in list are separated by commas.

A variable in the firstprivate clause must not also appear in a copyprivate
clause for the same omp single directive.

nowait
Use this clause to avoid the implied barrier at the end of the single directive.
Only one nowait clause can appear on a given single directive. The nowait
clause must not be used together with the copyprivate clause.

Usage

An implied barrier exists at the end of a parallelized statement block unless the
nowait clause is specified.

#pragma omp task
Purpose

The task pragma can be used to explicitly define a task.

Use the task pragma when you want to identify a block of code to be executed in
parallel with the code outside the task region. The task pragma can be useful for
parallelizing irregular algorithms such as pointer chasing or recursive algorithms.
The task directive takes effect only if you specify the SMP compiler option.

Syntax

�� �

,

# pragma omp task clause ��

Parameters

The clause parameter can be any of the following types of clauses:

default (shared | none)
Defines the default data scope of variable in each task. Only one default
clause can be specified on an omp task directive.

Specifying default(shared) is equivalent to stating each variable in a
shared(list) clause.

Specifying default(none) requires that each data variable visible to the
construct must be explicitly listed in a data scope clause, with the exception of
variables with the following attributes:
v Threadprivate
v Automatic and declared in a scope inside the construct
v Objects with dynamic storage duration
v Static data members
v The loop iteration variables in the associated for-loops for a work-sharing

for or parallel for construct
v Static and declared in a scope inside the construct
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final (exp)
If you specify a final clause and exp evaluates to a nonzero value, the
generated task is a final task. All task constructs encountered inside a final task
create final and included tasks.

You can specify only one final clause on the task pragma.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized with the value of the original variable as
if there was an implied declaration within the statement block. Data variables
in list are separated by commas.

if (exp)
When the if clause is specified, an undeferred task is generated if the scalar
expression exp evaluates to a nonzero value. Only one if clause can be
specified.

mergeable
If you specify a mergeable clause and the generated task is an undeferred task
or included task, a merged task might be generated.

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

shared (list)
Declares the scope of the comma-separated data variables in list to be shared
across all threads.

untied
When a task region is suspended, untied tasks can be resumed by any thread
in a team. The untied clause on a task construct is ignored if either of the
following conditions is met:
v A final clause is specified on the same task construct and the final clause

expression evaluates to a nonzero value.
v The task is an included task.

Usage

A final task is a task that makes all its child tasks become final and included tasks.
A final task is generated when either of the following conditions is a nonzero
value:
v A final clause is specified on a task construct and the final clause expression

evaluates to nonzero value.
v The generated task is a child task of a final task.

An undeferred task is a task whose execution is not deferred with respect to its
generating task region. In other words, the generating task region is suspended
until the undeferred task has finished running. An undeferred task is generated
when an if clause is specified on a task construct and the if clause expression
evaluates to zero.

An included task is a task whose execution is sequentially included in the
generating task region. In other words, an included task is undeferred and
executed immediately by the encountering thread. An included task is generated
when the generated task is a child task of a final task.
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A merged task is a task that has the same data environment as that of its
generating task region. A merged task might be generated when both the following
conditions nonzero values:
v A mergeable clause is specified on a task construct.
v The generated task is an undeferred task or an included task.

The if clause expression and the final clause expression are evaluated outside of
the task construct, and the evaluation order cannot be specified.
Related reference:
“#pragma omp taskwait”

#pragma omp taskwait
Purpose

Use the taskwait pragma to specify a wait for child tasks to be completed that are
generated by the current task.

Syntax

Related reference:
“#pragma omp task” on page 619

#pragma omp taskyield
Purpose

The omp taskyield pragma instructs the compiler to suspend the current task in
favor of running a different task. The taskyield region includes an explicit task
scheduling point in the current task region.

Syntax

�� # pragma omp taskyield ��

#pragma omp threadprivate
Purpose

The omp threadprivate directive makes the named file-scope, namespace-scope, or
static block-scope variables private to a thread.

Syntax

�� �

,

# pragma omp threadprivate (identifier) ��

where identifier is a file-scope, name space-scope or static block-scope variable.

�� # pragma omp taskwait ��
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Usage

Each copy of an omp threadprivate data variable is initialized once prior to first
use of that copy. If an object is changed before being used to initialize a
threadprivate data variable, behavior is unspecified.

A thread must not reference another thread's copy of an omp threadprivate data
variable. References will always be to the master thread's copy of the data variable
when executing serial and master regions of the program.

Use of the omp threadprivate directive is governed by the following points:
v An omp threadprivate directive must appear at file scope outside of any

definition or declaration.
v The omp threadprivate directive is applicable to static-block scope variables and

may appear in lexical blocks to reference those block-scope variables. The
directive must appear in the scope of the variable and not in a nested scope, and
must precede all references to variables in its list.

v A data variable must be declared with file scope prior to inclusion in an omp
threadprivate directive list.

v An omp threadprivate directive and its list must lexically precede any reference
to a data variable found in that list.

v A data variable specified in an omp threadprivate directive in one translation
unit must also be specified as such in all other translation units in which it is
declared.

v Data variables specified in an omp threadprivate list must not appear in any
clause other than the copyin, copyprivate, if, num_threads, and schedule
clauses.

v The address of a data variable in an omp threadprivate list is not an address
constant.

v A data variable specified in an omp threadprivate list must not have an
incomplete or reference type.
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Chapter 19. Compiler predefined macros

Predefined macros can be used to conditionally compile code for specific
compilers, specific versions of compilers, specific environments, and specific
language features.

Predefined macros fall into several categories:
v “General macros”
v “Macros related to the platform” on page 626
v “Macros related to compiler features” on page 627

“Examples of predefined macros” on page 637 show how you can use them in
your code.

General macros
The following predefined macros are always predefined by the compiler. Unless
noted otherwise, all the following macros are protected, which means that the
compiler will issue a warning if you try to undefine or redefine them.

Table 46. General predefined macros

Predefined macro
name

Description Predefined value

__COUNTER__ Expands to an integer that starts from 0. The value
increases by 1 each time this macro is expanded.

You can use this macro with the ## operator to
generate unique variable or function names. The
following example shows the declaration of distinct
identifiers with a single token:

#define CONCAT(a, b) a##b
#define CONCAT_VAR(a, b) CONCAT(a, b)
#define VAR CONCAT_VAR(var, __COUNTER__)

//Equivalent to int var0 = 1;
int VAR = 1;

//Equivalent to char var1 = ’a’;
char VAR = ’a’;

An integer variable that starts from 0.
The value increases by 1 each time
this macro is expanded.

__FUNCTION__ Indicates the name of the function currently being
compiled.

A character string containing the
name of the function currently being
compiled.

__LIBREL__ Indicates the Language Environment library level
under which the compiler is running.

The return value of a compiler call to
the librel library function.

__ptr31__ Expands to the pointer qualifier __ptr32. Not
protected.

__ptr32

__PTR32 Indicates that the pointer qualifier __ptr32 is
recognized. Not protected.

1
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Table 46. General predefined macros (continued)

Predefined macro
name

Description Predefined value

__TARGET_LIB__ Indicates the version of the target library. A hexadecimal string literal
representing the version number of
the target library. The format of the
version number is hex PVRRMMMM,
where:

P Represents the z/OS XL C or
C/C++ library product. The
possible values are:

v 2 for OS/390

v 4 for z/OS Release 2 and
later

V Represents the version
number

RR Represents the release
number

MMMM
Represents the modification
number

The value of the __TARGET_LIB__
macro depends on the setting of the
TARGET compiler option, which
allows you to specify the runtime
environment and release for the
generated object module. The
__TARGET_LIB__ macro is set as
follows:

v 0x42010000 (for zOSV2R1 TARGET
suboption)

v 0x410D0000 (for zOSV1R13
TARGET suboption)

v 0x410C0000 (for zOSV1R12
TARGET suboption)

If the TARGET suboption is specified
as a hexadecimal string literal, this
macro is also defined to that literal.
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Table 46. General predefined macros (continued)

Predefined macro
name

Description Predefined value

__TIMESTAMP__ Indicates the date and time when the source file was
last modified. The value changes as the compiler
processes any include files that are part of your
source program.

This macro is available for partitioned data sets
(PDSs/PDSEs) and z/OS UNIX files only. For PDSE
or PDS members, the ISPF timestamp for the
member is used if present. For PDSE/PDS members
with no ISPF timestamp, sequential data sets, or in
stream source in JCL, the compiler returns a dummy
timestamp. For z/OS UNIX files, the compiler uses
the system timestamp on a source file. Otherwise, it
returns a dummy timestamp, "Mon Jan 1 0:00:01
1990".

A character string literal in the form
"Day Mmm dd hh:mm:ss yyyy", where:

Day Represents the day of the
week (Mon, Tue, Wed, Thu, Fri,
Sat, or Sun).

Mmm Represents the month in an
abbreviated form (Jan, Feb,
Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dd Represents the day. If the
day is less than 10, the first d
is a blank character.

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

yyyy Represents the year.

Macros indicating the z/OS XL C/C++ compiler
Macros related to the z/OS XL C/C++ compiler are always predefined, and they
are protected, which means that the compiler will issue a warning if you try to
undefine or redefine them. You can specify the SHOWMACROS(PRE) compiler option to
view predefined macro definitions in preprocessed output.

Table 47. Compiler product predefined macros

Predefined macro
name

Description Predefined value

__COMPILER_VER__ Indicates the version of the
compiler.

A hexadecimal integer in the format PVRRMMMM,
where :

P Represents the compiler product

v 0 for C/370™

v 1 for IBM AD/Cycle C/370 and C/C++ for
MVS/ESA

v 2 for OS/390 C/C++

v 4 for z/OS Release 2 and later

V Represents the version number

RR Represents the release number

MMMM
Represents the modification number
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Table 47. Compiler product predefined macros (continued)

Predefined macro
name

Description Predefined value

C __IBMC__ Indicates the level of the XL C
compiler.

An integer in the format PVRRM, where :

P Represents the compiler product

v 0 for C/370

v 1 for AD/Cycle C/370 and C/C++ for
MVS/ESA

v 2 for OS/390 C/C++

v 4 for z/OS Release 2 and later

V Represents the version number

RR Represents the release number

M Represents the modification number
C

C++

__IBMCPP__

Indicates the level of the XL C++
compiler.

An integer in the format PVRRM, where :

P Represents the compiler product

v 0 for C/370

v 1 for AD/Cycle C/370 and C/C++ for
MVS/ESA

v 2 for OS/390 C/C++

v 4 for z/OS Release 2 and later

V Represents the version number

RR Represents the release number

M Represents the modification number
C++

Macros related to the platform
The following predefined macros are provided to facilitate porting applications
between platforms. All platform-related predefined macros are unprotected and
can be undefined or redefined without warning unless otherwise specified.

Table 48. Platform-related predefined macros

Predefined macro name Description Predefined value
Predefined under the
following conditions

__370__ Indicates that the program is
compiled or targeted to run on
IBM System/370.

1 Always predefined.

__HHW_370__ Indicates that the host
hardware is System/370.

1 Always predefined for
z/OS.

__HOS_MVS__ Indicates that the host
operating system is z/OS.

1 Always predefined for
z/OS.

__MVS__ Indicates that the host
operating system is z/OS.

1 Always predefined for
z/OS.

__THW_370__ Indicates that the target
hardware is System/370.

1 Always predefined for
z/OS__THW_PPC__
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Table 48. Platform-related predefined macros (continued)

Predefined macro name Description Predefined value
Predefined under the
following conditions

__TOS_MVS__ Indicates that the host
operating system is z/OS.

1 Always predefined for
z/OS.

Macros related to compiler features
Feature-related macros are predefined according to the setting of specific compiler
options or pragmas. Unless noted otherwise, all feature-related macros are
protected, which means that the compiler will issue a warning if you try to
undefine or redefine them.

Feature-related macros are discussed in the following sections:
v “Macros related to compiler option settings”
v “Macros related to language levels” on page 632

Macros related to compiler option settings
The following macros can be tested for various features, including source input
characteristics, output file characteristics, and optimization. All of these macros are
predefined by a specific compiler option or suboption, or any invocation or
pragma that implies that suboption. If the suboption enabling the feature is not in
effect, then the macro is undefined.

See the description of each option in the z/OS XL C/C++ User's Guide for detailed
information about the option.

Table 49. General option-related predefined macros

Predefined macro name Description Predefined
value

Predefined when the following
compiler option or equivalent
pragma is in effect:

__64BIT__ Indicates that 64-bit
compilation mode is in
effect.

1 -q64 or LP64

__ARCH__ Indicates the target
architecture for which
the source code is being
compiled.

The integer
value specified
in the ARCH
compiler
option.

ARCH(integer value)

__BFP__ Indicates that binary
floating point (BFP)
mode is in effect.

1 FLOAT(IEEE)

C++ __BOOL__ 0 NOKEYWORD(BOOL)

C++ __C99_RESTRICT 1 KEYWORD(RESTRICT)

_CHAR_SIGNED Indicates that the default
character type is signed
char.

1 CHARS(SIGNED)

_CHAR_UNSIGNED Indicates that the default
character type is
unsigned char.

1 CHARS(UNSIGNED)
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Table 49. General option-related predefined macros (continued)

Predefined macro name Description Predefined
value

Predefined when the following
compiler option or equivalent
pragma is in effect:

__CHARSET_LIB 0 NOASCII

1 ASCII

__CICS__ Indicates that embedded
CICS statements are
accepted

1 CICS

__CODESET__ Indicates the character
code set in effect.

The compiler
uses the
following
runtime
function to
determine the
compile-time
character code
set:

nl_langinfo
(CODESET)

LOCALE

C++ _CPPUNWIND Indicates that C++
exception handling is
enabled.

1 EXH

__DIGRAPHS__ Indicates support for
digraphs.

1 DIGRAPH

__DLL__ Indicates that the
program is compiled as
DLL code.

1 C DLL

C++ Always predefined.

__ENUM_OPT Indicates that the
compiler supports the
ENUMSIZE option and
the #pragma enum
directive.

1 Always predefined.

__FILETAG__ Indicates the character
code set of the current
file.

The string
literal specified
by the
#pragma
filetag
directive. The
value changes
as the compiler
processes
include files
that make up
the source
program.

#pragma filetag(string literal)

__GOFF__ 1 GOFF

__IBM_ASM_SUPPORT Indicates that inline
assembly statements are
supported.

1 ASM

C

__IBM_FAR_IS_SUPPORTED__

Indicates that the __far
type qualifier is
supported.

1 METAL

628 z/OS V2R1.0 XL C/C++ Language Reference



Table 49. General option-related predefined macros (continued)

Predefined macro name Description Predefined
value

Predefined when the following
compiler option or equivalent
pragma is in effect:

C++ __IBM__TYPEOF__ 1 KEYWORD(TYPEOF)

__IBM_DFP__ Indicates support for
decimal floating-point
types.

1 DFP

C __IBM_METAL__ Indicates that
LE-independent HLASM
code is to be generated
by the compiler.

1 METAL

__IBM_UTF_LITERAL Indicates support for
UTF-16 and UTF-32
string literals.

1 LANGLVL(EXTENDED)

C++ LANGLVL
(EXTENDED0X)

C++ __IBMCPP_LONGNAME__ Indicates that the
LONGNAME compiler
option is specified
(which is the default for
z/OS XL C++). This
macro is only defined
for LONGNAME.

This macro is only
available starting with
z/OS V1R10. Users
should check their z/OS
XL C++ compiler level
by using __IBMCPP__
when using this macro.

1 LONGNAME

__IGNERRNO__ Indicates that system
calls do not modify
errno, thereby enabling
certain compiler
optimizations.

1 IGNERRNO

_ILP32 Indicates that 32-bit
compilation mode is in
effect.

1 -q32 or ILP32

__INITAUTO__ Indicates the value to
which automatic
variables which are not
explicitly initialized in
the source program are
to be initialized.

A hexadecimal
constant in the
form (0xnnU),
including the
parentheses,
where nn
represents the
value specified
in the
INITAUTO
compiler
option.

INITAUTO(hex value)
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Table 49. General option-related predefined macros (continued)

Predefined macro name Description Predefined
value

Predefined when the following
compiler option or equivalent
pragma is in effect:

__INITAUTO_W__ Indicates the value to
which automatic
variables which are not
explicitly initialized in
the source program are
to be initialized.

A hexadecimal
constant in the
form
(0xnnnnnnnnU),
including the
parentheses,
where
nnnnnnnn
represents one
of the
following:

v If you
specified an
eight-digit
("word")
value in the
INITAUTO
compiler
option,
nnnnnnnn is
the value
you
specified.

v If you
specified a
two-digit
("byte")
value in the
INITAUTO
compiler
option,
nnnnnnnn is
the two-digit
value
repeated 4
times.

INITAUTO(hex value)

_LARGE_FILES Indicates that large file
support is enabled,
which allows access to
hierarchical file system
files that are larger than
2 gigabytes.

1 DEFINE(_LARGE_FILES)

__LIBANSI__ Indicates that calls to
functions whose names
match those in the C
Standard Library are in
fact the C library
functions, enabling
certain compiler
optimizations.

1 LIBANSI
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Table 49. General option-related predefined macros (continued)

Predefined macro name Description Predefined
value

Predefined when the following
compiler option or equivalent
pragma is in effect:

__LOCALE__ Contains a string literal
that represents the locale
of the LOCALE compiler
option. The following
example shows how to
use the __LOCALE__
macro:

int main()
{
#ifdef __LOCALE__
/* If the locale option
is not specified,*/

/* we can just follow
the default locale*/

setlocale(LC_ALL,
__LOCALE__);
#endif
...
}

The compiler
uses the
following
runtime
function to
determine the
compile-time
locale:

setlocale
(LC_ALL,
"string
literal");

LOCALE(string literal)

__LONGNAME__ Indicates that identifiers
longer than 8 characters
are allowed.

1 C LONGNAME

C++ Always predefined.

_LP64 Indicates that 64-bit
compilation mode is in
effect.

1 -q64 or LP64

__LP64__ Indicates that 64-bit
compilation mode is in
effect.

1 -q64 or LP64

C++

__OBJECT_MODEL_CLASSIC__

Indicates that the
"classic" object model is
in effect.

1
OBJECTMODEL
(CLASSIC)

C++

__OBJECT_MODEL_IBM__

Indicates that the IBM
object is in effect.

1 OBJECTMODEL(IBM)

__OPTIMIZE__ Indicates the level of
optimization in effect.

The integer
value specified
in the OPT
compiler
option.

OPT(integer value)

C++ __RTTI_DYNAMIC_CAST__ Indicates that runtime
type identification
(RTTI) information for
the typeid and
dynamic_cast operator is
generated.

1 RTTI | RTTI(ALL |
DYNAMICCAST)

__SQL__ Indicates that processing
of embedded SQL
statements is enabled.

1 SQL
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Table 49. General option-related predefined macros (continued)

Predefined macro name Description Predefined
value

Predefined when the following
compiler option or equivalent
pragma is in effect:

C++ __TEMPINC__ Indicates that the
compiler is using the
template-implementation
file method of resolving
template functions.

1 TEMPINC

__TUNE__ Indicates the architecture
for which the compiler
generated executable
code is optimized.

The integer
value specified
in the TUNE
compiler
option.

TUNE(integer value)

__VEC__ Indicates support for
vector data types.

10206 VECTOR

__XPLINK__ Indicates that a z/OS
linkage is in effect to
increase performance.

1 XPLINK

Macros related to language levels
The following macros can be tested for C99 features, features related to GNU C or
C++, and other IBM language extensions. All of these macros are predefined to a
value of 1 by a specific language level, represented by a suboption of the
LANGLVL compiler option, or any invocation or pragma that implies that
suboption. If the suboption enabling the feature is not in effect, then the macro is
undefined.

Table 50. Predefined macros for language features

Predefined macro name Description Predefined when the following
language level is in effect

C __ANSI__ Indicates that only
language constructs that
support the ISO C89
Standard are allowed.

ansi | stdc89 | stdc99

C++ __BOOL__ Indicates that the bool
keyword is accepted.

Always defined except when
NOKEYWORD(bool) is in effect.

C __C99_BOOL Indicates support for the
_Bool data type.

extc1x | stdc99 | extc99 |
extc89 | extended

C++ __C99_COMPLEX Indicates that the support
for C99 complex types is
enabled or that the C99
complex header should be
included.

extc1x | stdc99 | extc99 |
extc89 | extended

C __C99_CPLUSCMT Indicates support for C++
style comments

extc1x | stdc99 | extc99 |
stdc89 | extc89 | extended (also
SSCOM)

__C99_COMPOUND_LITERAL Indicates support for
compound literals.

extc1x | stdc99 | extc99 |
extc89 | extended

C __C99_DESIGNATED_INITIALIZER Indicates support for
designated initialization.

extc1x | stdc99 | extc99 |
extc89 | extended
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Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

C __C99_DUP_TYPE_QUALIFIER Indicates support for
duplicated type qualifiers.

extc1x | stdc99 | extc99 |
extc89 | extended

C __C99_EMPTY_MACRO_ARGUMENTS Indicates support for
empty macro arguments.

extc1x | stdc99 | extc99 |
extc89 | extended

C __C99_FLEXIBLE_ARRAY_MEMBER Indicates support for
flexible array members.

extc1x | stdc99 | extc99 |
extc89 | extended

__C99__FUNC__ Indicates support for the
__func__ predefined

identifier.

C extc1x | stdc99 |
extc99 | extc89 | extended

C++ extended |
extended0x |c99__func__

__C99_HEX_FLOAT_CONST Indicates support for
hexadecimal floating
constants.

extc1x | stdc99 | extc99 |
extc89 | extended

C __C99_INLINE Indicates support for the
inline function specifier.

extc1x | stdc99 | extc99

__C99_LLONG Indicates support for
C99-style long long data
types and literals.

extc1x | stdc99 | extc99

C++ extended0x |
c99longlong

__C99_MACRO_WITH_VA_ARGS Indicates support for
function-like macros with
variable arguments.

extc1x | stdc99 | extc99 |
extc89 | extended

C++ extended

__C99_MAX_LINE_NUMBER Indicates that the
maximum line number is
2147483647.

extc1x | stdc99 | extc99 |
extc89 | extended

C++ extended0x |
c99preprocessor

C

__C99_MIXED_DECL_AND_CODE

Indicates support for
mixed declaration and
code.

extc1x | stdc99 | extc99 |
extc89 | extended

__C99_MIXED_STRING_CONCAT Indicates support for
concatenation of wide
string and non-wide string
literals.

extc1x | stdc99 | extc99 |
extc89 | extended

C++ extended0x |
c99preprocessor

C __C99_NON_LVALUE_ARRAY_SUB Indicates support for
non-lvalue subscripts for
arrays.

extc1x | stdc99 | extc99 |
extc89 | extended

C

__C99_NON_CONST_AGGR_INITIALIZER

Indicates support for
non-constant aggregate
initializers.

extc1x | stdc99 | extc99 |
extc89 | extended

__C99_PRAGMA_OPERATOR Indicates support for the
_Pragma operator.

extc1x | stdc99 | extc99 |
extc89 | extended

C++ extended
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Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

C __C99_REQUIRE_FUNC_DECL Indicates that implicit
function declaration is not
supported.

stdc99

C __C99_RESTRICT Indicates support for the
C99 restrict qualifier.

extc1x | stdc99 | extc99

C __C99_STATIC_ARRAY_SIZE Indicates support for the
static keyword in array
parameters to functions.

extc1x | stdc99 | extc99 |
extc89 | extended

C __C99_STD_PRAGMAS Indicates support for
standard pragmas.

extc1x | stdc99 | extc99 |
extc89 | extended

C __C99_TGMATH Indicates support for
type-generic macros in
tgmath.h

extc1x | stdc99 | extc99 |
extc89 | extended

__C99_UCN Indicates support for
universal character names.

C extc1x | stdc99 |
extc99 | extc89 | extended

C __C99_VAR_LEN_ARRAY Indicates support for
variable length arrays.

extc1x | stdc99 | extc99 |
extc89 | extended

C++

__C99_VARIABLE_LENGTH_ARRAY

Indicates support for
variable length arrays.

extended | extended0x | c99vla

C __COMMONC__ Indicates that language
constructs defined by XPG
are allowed.

commonc

C++ __COMPATMATH__ Indicates that the newer
C++ function declarations
are not to be introduced
by the math.h header file.

oldmath

_EXT Used in features.h to
control the availability of
extensions to the general
ISO run-time libraries.

LIBEXT, or any LANGLVL
suboption that implies it. (See
the description of the
LANGLVL option in the z/OS
XL C/C++ User's Guide for a list
of suboptions that imply
LIBEXT.)

__EXTENDED__ Indicates that language
extensions are supported.

extended

__IBM_COMPUTED_GOTO Indicates support for
computed goto statements.

C extc1x | extc99 |
extc89 | extended

C++ extended |
extended0x |
gnu_computedgoto

__IBM_INCLUDE_NEXT Indicates support for the
#include_next
preprocessing directive.

Always defined.

__IBM_LABEL_VALUE Indicates support for labels
as values.

C extc1x | extc99 |
extc89 | extended

C++ extended |
extended0x |gnu_labelvalue
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Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

__IBM__TYPEOF__ Indicates support for the
__typeof__ or typeof
keyword.

C Always defined

C++ extended |
extended0x (Also
KEYWORD(TYPEOF))

__IBMC_COMPLEX_INIT Indicates support for the
initialization of complex
types: float _Complex,
double _Complex, and
long double _Complex.

extc1x

__IBMC_GENERIC Indicate support for the
generic selection feature.

C extc89 | extc99 |
extended | extc1x

__IBMC_NORETURN Indicates support for the
_Noreturn function
specifier.

C extc89 | extc99 |
extended | extc1x

C++ extended |
extended0x | c1xnoreturn

C11 __IBMC_STATIC_ASSERT Indicates support for the
static assertions feature.

extc89 | extc99 | extended |
extc1x

C++11 __IBMCPP_AUTO_TYPEDEDUCTION Indicates support for the
auto type deduction
feature.

extended0x |
autotypededuction

C++11 __IBMCPP_C99_LONG_LONG Indicates support for the
C99 long long feature.

extended0x | c99longlong

C++11 __IBMCPP_C99_PREPROCESSOR Indicates support for the
C99 preprocessor features
adopted in the C++11
standard.

extended0x | c99preprocessor

__IBMCPP_COMPLEX_INIT Indicates support for the
initialization of complex
types: float _Complex,
double _Complex, and
long double _Complex.

extended

C++11 __IBMCPP_CONSTEXPR Indicates support for the
generalized constant
expressions feature.

extended0x | constexpr

C++11 __IBMCPP_DECLTYPE Indicates support for the
decltype feature.

extended0x | decltype

C++11 __IBMCPP_DEFAULTED_AND_
DELETED_FUNCTIONS

Indicates support for the
defaulted and deleted
functions feature.

extended0x | defaultanddelete

C++11 __IBMCPP_DELEGATING_CTORS Indicates support for the
delegating constructors
feature.

extended0x | delegatingctors

C++11 __IBMCPP_EXPLICIT_CONVERSION_
OPERATORS

Indicates support for the
explicit conversion
operators feature.

extended0x |
explicitconversionoperators
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Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

C++11 __IBMCPP_EXTENDED_FRIEND Indicates support for the
extended friend
declarations feature.

extended0x | extendedfriend

C++11 __IBMCPP_EXTERN_TEMPLATE Indicates support for the
explicit instantiation
declarations feature.

extended | extended0x |
externtemplate

C++11 __IBMCPP_INLINE_NAMESPACE Indicates support for the
inline namespace
definitions feature.

extended0x | inlinenamespace

C++11

__IBMCPP_REFERENCE_COLLAPSING

Indicates support for the
reference collapsing
feature.

extended0x |
referencecollapsing

C++11

__IBMCPP_RIGHT_ANGLE_BRACKET

Indicates support for the
right angle bracket feature.

extended0x | rightanglebracket

C++11 __IBMCPP_RVALUE_REFERENCES Indicates support for the
rvalue references feature.

extended0x | rvaluereferences

C++11 __IBMCPP_SCOPED_ENUM Indicates support for the
scoped enumeration
feature.

extended0x | scopedenum

C++11 __IBMCPP_STATIC_ASSERT Indicates support for the
static assertions feature.

C++ extended0x |
static_assert

C++11

__IBMCPP_VARIADIC_TEMPLATES

Indicates support for the
variadic templates feature.

extended0x |
variadic[templates]

_LONG_LONG Indicates support for long
long data types.

C extc1x | stdc99 |
extc99 | | stdc89 | extc89 |
extended | longlong

C++ extended0x |
c99longlong | extended |
longlong

_MI_BUILTIN Indicates that the machine
instruction built-in
functions are available.

LIBEXT, or any LANGLVL
suboption that implies it. (See
the description of the
LANGLVL option in the z/OS
XL C/C++ User's Guide for a list
of suboptions that imply
LIBEXT.)

C __RESTRICT__ Indicates that the
__restrict__ or
__restrict keywords are
supported.

Predefined at all language
levels.

C __SAA__ Indicates that only
language constructs that
support the most recent
level of SAA C standards
are allowed.

saa
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Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

C __SAA_L2__ Indicates that only
language constructs that
conform to SAA Level 2 C
standards are allowed.

saal2

Examples of predefined macros
This example illustrates use of the __FUNCTION__ and the __C99__FUNC__
macros to test for the availability of the C99 __func__ identifier to return the
current function name:
#include <stdio.h>

#if defined(__C99__FUNC__)
#define PRINT_FUNC_NAME() printf (" In function %s \n", __func__);
#elif defined(__FUNCTION__)
#define PRINT_FUNC_NAME() printf (" In function %s \n", __FUNCTION__);
#else
#define PRINT_FUNC_NAME() printf (" Function name unavailable\n");
#endif

void foo(void);

int main(int argc, char **argv)
{

int k = 1;
PRINT_FUNC_NAME();
foo();
return 0;

}

void foo (void)
{

PRINT_FUNC_NAME();
return;

}

The output of this example is:
In function main
In function foo

C++ This example illustrates use of the __FUNCTION__ macro in a C++
program with virtual functions.

CCNX08C
#include <stdio.h>
class X { public: virtual void func() = 0;};

class Y : public X {
public: void func() { printf("In function %s \n", __FUNCTION__);}

};

int main() {
Y aaa;
aaa.func();

}

The output of this example is:
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In function Y::func()
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Chapter 20. The IBM XL C/C++ language extensions

The IBM XL C++ extensions include C++ features as extensions in the following
categories:
v “General IBM extensions”
v “Extensions for C11 compatibility” on page 640
v “C++11 compatibility” on page 640
v “Extensions for GNU C/C++ compatibility” on page 642
v “Extensions for Unicode support” on page 643
v “Extensions for vector processing support” on page 643

General IBM extensions
The following feature is enabled by default at all extended language levels:

Table 51. General IBM extensions

Language feature Discussed in:

Allowed types in typedef definitions “typedef definitions” on page 74

The following feature is disabled by default at all language levels. It also can be
enabled or disabled by an individual option.

Table 52. General IBM extensions with individual option controls

Language feature Discussed in: Individual option controls

A non-const or
volatile lvalue
reference bound to an
rvalue of a
user-defined type

“Initialization of
references (C++ only)” on
page 119

LANGLVL([NO]
COMPATRVALUEBINDING)

Extra text after #endif
or #else

“Extension of #endif and
#else (IBM extension)” on
page 522

LANGLVL([NO]TEXTAFTERENDIF)

The following feature is enabled with the LANGLVL(COMPAT366 | EXTENDED)
option. It can also be enabled or disabled by a specific compiler option, listed in
the following table:

Table 53. General IBM extensions with individual option controls

Language feature Discussed in: Individual option controls

Non-C99 IBM long long
extension

“Types of integer literals
outside of C99 and C++11”
on page 20

[NO]LONGLONG

The following feature is enabled with the LANGLVL(EXTENDED0X) option. It can
also be enabled or disabled by specific compiler options, listed in the following
table:
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Table 54. General IBM extensions with individual option controls

Language feature Discussed in: Individual option controls

C99 long long feature
with the associated
IBM extensions

Types of integer literals in
C99 and C++11

C++11

LANGLVL([NO]C99LONGLONG),
IBM

LANGLVL([NO]
EXTENDEDINTEGERSAFE)

Extensions for C11 compatibility

Note: C11 is a new version of the C programming language standard. IBM
continues to develop and implement the features of the new standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the features of the C11 standard is
complete, including the support of a new C standard library, the implementation
may change from release to release. IBM makes no attempt to maintain
compatibility with earlier releases, in source, binary, or options, of IBM's
implementation of the new features of the C11 standard and therefore they should
not be relied on as a stable programming interface.

The following features are part of a continual phased release process leading
towards full compliance with C11. They can be enabled by using the
LANGLVL(EXTC1X) group option.

Table 55. IBM XL C language extensions for compatibility with C11

Language feature Discussed in:

Anonymous structures “Anonymous structures (C11)” on page 68

Complex type
initialization

“Initialization of complex types (C11)” on page 123

Generic selection “Generic selection (C11)” on page 146

Static assertions “_Static_assert declaration (C11)” on page 45

The _Noreturn function
specifier

“The _Noreturn function specifier” on page 230

C++11 compatibility

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

The following features are part of a continual phased release process leading
towards full compliance with C++11. They can be enabled by using the
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LANGLVL(EXTENDED0X) group option. You can also use specific compiler
options to enable or disable these features. See the following table.

Table 56. Supported C++11 features

Language feature Discussed in: C++11 individual suboption control

Auto type
deduction

“The auto type
specifier (C++11)” on
page 76

LANGLVL([NO]AUTOTYPEDEDUCTION)

C99 long long “Types of integer
literals in C99 and
C++11” on page 21

LANGLVL([NO]C99LONGLONG),
IBM

LANGLVL([NO]EXTENDEDINTEGERSAFE)

C99 preprocessor
features adopted in
C++11

“C99 preprocessor
features adopted in
C++11” on page 526

LANGLVL([NO]C99PREPROCESSOR)

Decltype “The
decltype(expression)
type specifier
(C++11)” on page 78

LANGLVL([NO]DECLTYPE)

Defaulted and
deleted functions

“Explicitly defaulted
functions” on page
221

“Deleted functions”
on page 222

LANGLVL([NO]DEFAULTANDDELETE)

Delegating
constructors

“Delegating
constructors (C++11)”
on page 409

LANGLVL([NO]DELEGATINGCTORS)

Explicit conversion
operators

“Explicit conversion
operators (C++11)” on
page 427

LANGLVL([NO]EXPLICITCONVERSIONOPERATORS)

Explicit instantiation
declarations

“ Explicit instantiation
declaration” on page
456

LANGLVL([NO]EXTERNTEMPLATE)

Extended friend
declarations

“Friends” on page 373 LANGLVL([NO]EXTENDEDFRIEND)

Forward declaration
of enumerations

“Enumerations” on
page 70

N/A

Generalized
constant expressions

“Generalized constant
expressions (C++11)”
on page 149

LANGLVL([NO]CONSTEXPR)

Inline namespace
definitions

“Inline namespace
definitions (C++11)”
on page 324

LANGLVL([NO]INLINAMESPACE)

Reference collapsing “Reference collapsing
(C++11)” on page 194

LANGLVL([NO]REFERENCECOLLAPSING)

Right angle brackets “Class templates” on
page 441

LANGLVL([NO]RIGHTANGLEBRACKET)

Rvalue references Using rvalue
reference (C++11) in
z/OS XL C/C++
Programming Guide

LANGLVL([NO]RVALUEREFERENCES)
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Table 56. Supported C++11 features (continued)

Language feature Discussed in: C++11 individual suboption control

Scoped
enumerations

“Enumerations” on
page 70

LANGLVL([NO]SCOPEDENUM)

static_assert “static_assert
declaration (C++11)”
on page 46

LANGLVL([NO]STATIC_ASSERT)

Trailing comma
allowed in enum
declarations

“Enumerations” on
page 70

LANGLVL([NO]TRAILENUM)

Trailing return type “Trailing return type
(C++11)” on page 239

LANGLVL([NO]AUTOTYPEDEDUCTION)

Variadic templates “Variadic templates
(C++11)” on page 468

LANGLVL([NO]VARIADIC[TEMPLATES])

Notes:

v You can also use the LANGLVL(EXTENDED) group option to enable the explicit
instantiation declarations feature.

v If you try to use a C++11 feature when the feature is not enabled, the compiler
issues an information message that follows a syntax error message. The
information message indicates how to turn on the C++11 feature to recover from
the syntax error. The involved C++11 features are listed as follows:
– C99 preprocessor features adopted in C++11

- Mixed string literal concatenation
- The __STDC_HOSTED__ macro

– Defaulted and deleted functions
– Delegating constructors
– Explicit conversion operators
– Generalized constant expressions
– Inline namespace definitions
– nullptr

– Reference collapsing
– Right angle brackets
– Rvalue references
– Scoped enumerations
– Variadic templates

Extensions for GNU C/C++ compatibility
The following subset of the GNU C/C++ language extension is enabled with the
LANGLVL(EXTENDED) option, which is the default language level.

Table 57. Default IBM XL C/C++ extensions for compatibility with GNU C/C++

Language feature Discussed in:

Placement of flexible array members
anywhere in structure or union

Flexible array members (C only)

Static initialization of flexible array members
of aggregates

Flexible array members (C only)
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Table 57. Default IBM XL C/C++ extensions for compatibility with GNU C/C++ (continued)

Language feature Discussed in:

__alignof__ operator “The __alignof__ operator (IBM extension)”
on page 156

__typeof__ operator “The typeof operator (IBM extension)” on
page 159

Generalized lvalues “Lvalues and rvalues” on page 141

Complex type arguments to unary operators “Unary expressions” on page 151

__imag__ and __real__ complex type
operators

“The __real__ and __imag__ operators (IBM
extension)” on page 160

Function attributes “Function attributes (IBM extension)” on
page 242

Some extensions can also be enabled or disabled by specific compiler options,
which are listed in the following table:

Table 58. Default IBM XL C/C++ extensions for compatibility with GNU C/C++, with
individual option controls

Language feature Discussed in: Individual option controls

Labels as values “Labels as values (IBM
extension)” on page 198

LANGLVL([NO]GNU_LABELVALUE)

Computed goto
statements

“Computed goto
statement (IBM
extension)” on page 214

LANGLVL([NO]GNU_
COMPUTEDGOTO)

Extensions for Unicode support
The ISO C and ISO C++ Committees have approved the implementation of
u-literals and U-literals to support Unicode UTF-16 and UTF-32 character literals,
respectively. They are enabled under the EXTENDED and EXTENDED0X
language levels.

Table 59. IBM XL C++ extensions for unicode support

Language feature Discussed in: Required compilation option

UTF-16, UTF-32
literals

“UTF literals (IBM extension)”
on page 36

LANGLVL(EXTENDED0X)

Extensions for vector processing support
XL C/C++ V2R1M1 web deliverable for z/OS 2.1 provides vector programming
support for programmers to make use of the Vector Facility for z/Architecture,
which is based on the AltiVec Programming Interface specification with suitable
changes and extensions.

See Using vector programming support in z/OS XL C/C++ Programming Guide,
SC14-7315 for detailed information about the language extensions for vector
processing support, including compiler options, vector data types and operators,
macro, and built-in functions.
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Appendix A. C and C++ compatibility on the z/OS platform

This information pertains to the differences between C and C++ that apply
specifically to the z/OS platform. The contents describe the constructs that are
found in both ISO C and ISO C++, but which are treated differently in the two
languages.

String initialization

In C++, when you initialize character arrays, a trailing ’\0’ (zero of type char) is
appended to the string initializer. You cannot initialize a character array with more
initializers than there are array elements.

In C, space for the trailing ’\0’ can be omitted in this type of initialization.

The following initialization, for instance, is not valid in C++:
char v[3] = "asd"; /* not valid in C++, valid in C */

because four elements are required. This initialization produces an error because
there is no space for the implied trailing ’\0’ (zero of type char).

Class/structure and typedef names

In C++, a class or structure and a typedef cannot both use the same name to refer
to a different type within the same scope (unless the typedef is a synonym for the
class or structure name). In C, a typedef name and a struct tag name declared in
the same scope can have the same name because they have different name spaces.
For example:
int main ()
{

typedef double db;
struct db; /* error in C++, valid in C */

typedef struct st st; /* valid C and C++ */
}

The same distinction applies within class/structure declarations. For example:
int main ()
{

typedef double db;
struct st
{

db x;
double db; /* error in C++, valid in C */

};
}

Class/structure and scope declarations

In C++, a class declaration introduces the class or structure name into the scope
where it is declared and hides any object, function, or other declaration of that
name in an outer scope. In C, an inner scope declaration of a struct name does
not hide an object or function of that name in an outer scope. For example:
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double db;
int main ()
{

struct db /* hides double object db in C++ */
{ char* str; };
int x = sizeof(db); /* size of struct in C++ */

/* size of double in C */
}

const object initialization

In C++, const objects must be initialized. In C, they can be left uninitialized.

Definitions

An object declaration is a definition in C++. In C, it is a declaration (also known as
a tentative definition). For example:
int i;

In C++, a global data object must be defined only once. In C, a global data object
can be declared several times without using the extern keyword.

In C++, multiple definitions for a single variable cause an error. A C compilation
unit can contain many identical declarations for a variable.

Definitions within return or argument types

In C++, types may not be defined in return or argument types. C allows such
definitions. For example, the following declarations produce errors in C++, but are
valid declarations in C:
void print(struct X { int i;} x); /* error in C++ */
enum count{one, two, three} counter(); /* error in C++ */

Enumerator type

An enumerator has the same type as its enumeration in C++. In C, an enumeration
has type int.

Enumeration type

The assignment to an object of enumeration type with a value that is not of that
enumeration type produces an error in C++. In C, an object of enumeration type
can be assigned values of any integral type.

Function declarations

In C++, all declarations of a function must match the unique definition of a
function. C has no such restriction.

Functions with an empty argument list

Consider the following function declaration:
int f();

In C++, this function declaration means that the function takes no arguments. In C,
it could take any number of arguments, of any type.
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Global constant linkage

In C++, an object declared const has internal linkage, unless it has previously been
given external linkage. In C, it has external linkage.

Jump statements

C++ does not allow you to jump over declarations containing initializations. C
does allow you to use jump statements for this purpose.

Keywords

C++ contains some additional keywords not found in C. C programs that use these
keywords as identifiers are not valid C++ programs:

Table 60. C++ keywords

bool
catch
class
const_cast
delete
dynamic_cast
explicit

export
false
friend
inline
mutable
namespace
new
operator

private
protected
public
reinterpret_cast
static_cast
template
this
throw

true
try
typeid
typename
using
virtual
wchar_t

main() recursion

In C++, main() cannot be called recursively and cannot have its address taken. C
allows recursive calls and allows pointers to hold the address of main().

Names of nested classes/structures

In C++, the name of a nested class is local to its enclosing class. In C, the name of
the nested structure belongs to the same scope as the name of the outermost
enclosing structure.

Pointers to void

C++ allows void pointers to be assigned only to other void pointers. In C, a
pointer to void can be assigned to a pointer of any other type without an explicit
cast.

Prototype declarations

C++ requires full prototype declarations. C allows nonprototyped functions.

Return without declared value

In both C and C++, the function main() must be declared to return a value of type
int. In C++, if no value is explicitly returned from function main() by means of a
return statement and if program execution reaches the end of function main() (that
is, the program does not terminate due to a call toexit(), std::terminate(), or a
similar function), then the value 0 is implicitly returned. A return (either explicit or
implicit) from all other functions that are declared to return a value must return a
value. In C, a function that is declared to return a value can return with no value,
with unspecified results.
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__STDC__ macro

The predefined macro variable __STDC__ is defined for C++, and it has the integer
value 0 when it is used in an #if statement, indicating that the C++ language is
not a proper superset of C, and that the compiler does not conform to C. In C,
__STDC__ has the integer value 1.
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Appendix B. Common Usage C language level for the z/OS
platform

The X/Open Portability Guide (XPG) Issue 3 describes a C language definition
referred to as Common Usage C. This language definition is roughly equivalent to
K&R C, and differs from the ISO C language definition. It is based on various C
implementations that predate the ISO standard.

Common Usage C is supported with the LANGLVL(COMMONC) compiler option
or the #pragma langlvl(commonc) directive. These cause the compiler to accept C
source code containing Common Usage C constructs.

Many of the Common Usage C constructs are already supported by #pragma
langlvl(extended). The following language elements are different from those
accepted by pragma langlvl(extended).
v Standard integral promotions preserve sign. For example, unsigned char or

unsigned short are promoted to unsigned int. This is functionally equivalent to
specifying the UPCONV compiler option.

v Trigraphs are not processed in string or character literals. For example, consider
the following source line:
??=define STR "??= not processed"

The above line gets preprocessed to:
#define STR "??= not processed"

v The sizeof operator is permitted on bitfields. The result is the size of an
unsigned int (4).

v Bitfields other than type int are permitted. The compiler issues a warning and
changes the type to unsigned int.

v Macro parameters found within single or double quotation marks are expanded.
For example, consider the following source lines:

#define STR(AAA) "String is: AAA"
#define ST STR(BBB)

The above lines are preprocessed to:
"String is: BBB"

v Macros can be redefined without first being undefined (that is, without an
intervening #undef). An informational message is issued saying that the second
definition is used.

v The empty comment (/**/) in a function-like macro is equivalent to the ISO
token concatenation operator ##.

The LANGLVL compiler option is described in z/OS XL C/C++ User's Guide. The
#pragma langlvl is described in “#pragma langlvl (C only)” on page 564.
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Appendix C. Conforming to POSIX 1003.1

The implementation resulting from the combination of z/OS UNIX System Services
and the z/OS Language Environment supports the ISO/IEC 9945-1:1990/IEEE
POSIX 1003.1-1990 standard. POSIX stands for Portable Operating System Interface.

For a description of how the z/OS UNIX System Services implementation meets
the criteria, see IBM Corporation Conformance Statement.
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Appendix D. Implementation-defined behavior

This information describes how the z/OS XL C/C++ compilers define some of the
implementation-specific behavior from the ISO C and C++ standards. In-depth
usage information is provided in z/OS XL C/C++ User's Guide and z/OS XL C/C++
Programming Guide.

Identifiers

The number of significant characters in an identifier with no external linkage:
v 1024

The number of significant characters in an identifier with external linkage:
v 1024 with the compile-time option LONGNAME specified
v 8 otherwise

The C++ compiler truncates external identifiers without C++ linkage after 8
characters if the NOLONGNAME compiler option or pragma is in effect.

Case sensitivity of external identifiers:
v The binder accepts all external names up to 1024 characters, and is optionally

case sensitive. The linkage editor accepts all external names up to 8 characters,
and may not be case sensitive, depending on whether you use the
NOLONGNAME compiler option or pragma. When the NOLONGNAME option
is used, all external names are truncated to 8 characters. As an aid to portability,
identifiers that are not unique after truncation are flagged as an error.

Characters

Source and execution characters which are not specified by the ISO standard:
v The caret (^) character in ASCII (bitwise exclusive OR symbol) or the equivalent

not (¬) character in EBCDIC.
v The vertical broken line (¦) character in ASCII which may be represented by the

vertical line (|) character on EBCDIC systems.

Shift states used for the encoding of multibyte characters:
v The shift states are indicated with the SHIFTOUT (hex value \x0E) characters

and SHIFTIN (hex value \x0F).

The number of bits that represent a single-byte character:
v 8 bits

The mapping of members of the source character set (characters and strings) to the
execution character set:
v The same code page is used for the source and execution character set.

The value of an integer character constant that contains a character/escape
sequence not represented in the basic execution character set:
v A warning is issued for an unknown character/escape sequence and the char is

assigned the character following the back slash.
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The value of a wide character constant that contains a character/escape sequence
not represented in the extended execution character set:
v A warning is issued for the unknown character/escape sequence and the

wchar_t is assigned the wide character following the back slash.

The value of an integer character constant that contains more than one character:
v The lowest four bytes represent the character constant.

The value of a wide character constant that contains more than one multibyte
character:
v The lowest four bytes of the multibyte characters are converted to represent the

wide character constant.

Equivalent type of char: signed char, unsigned char, or user-defined:
v The default for char is unsigned

Sequence of white-space characters (excluding the new-line):
v Any spaces or comments in the source program are interpreted as one space.

String conversion

Additional implementation-defined sequence forms that can be accepted by strtod,
strtol and strtoul functions in other than the C locale:
v None

Integers

Type Amount of
storage

Range (in limits.h)

signed short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

signed int 4 bytes -2,147,483,647 minus 1 to 2,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

signed long 4 bytes -2,147,483,647 minus 1 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

signed long long 8 bytes -9,223,372,036,854,775,807 minus 1 to
9,223,372,036,854,775,807

unsigned long long 8 bytes 0 to 18,446,744,073,709,551,615

The result of converting an integer to a signed char:
v The lowest 1 byte of the integer is used to represent the char

The result of converting an integer from a shorter signed integer:
v The lowest 2 bytes of the integer are used to represent the short int.

The result of converting an unsigned integer to a signed integer of equal length, if
the value cannot be represented:
v The bit pattern is preserved and the sign bit has no significance.

The result of bitwise operations (|, &, ^) on signed int:
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v The representation is treated as a bit pattern and 2's complement arithmetic is
performed.

The sign of the remainder of integer division if either operand is negative:
v The remainder is negative if exactly one operand is negative.

The result of a right shift of a negative-valued signed integral type:
v The result is sign-extended and the sign is propagated.

Floating-point numbers

Type Amount of
storage

Range (approximate)

IBM z/Architecture
hexadecimal format IEEE binary format

float 4 bytes 5.5x10-79 to 7.2x1075 1.2x10-38 to 3.4x1038

double 8 bytes 5.5x10-79 to 7.2x1075 2.2x10-308 to 1.8x10308

long double 16 bytes 5.5x10-79 to 7.2x1075 3.4x10-4932 to 1.2x104932

The following is the direction of truncation (or rounding) when you convert an
integer number to an IBM z/Architecture hexadecimal floating-point number, or to
an IEEE binary floating-point number:
v IBM z/Architecture hexadecimal format:

When the floating-point cannot exactly represent the original value, the value is
truncated.
When a floating-point number is converted to a narrower floating-point number,
the floating-point number is truncated.

v IEEE binary format:
The rounding direction is determined by the ROUND compiler option. The
ROUND option only affects the rounding of floating-point values that the z/OS
XL C/C++ compiler can evaluate at compile time. It has no effect on rounding at
run time.

C/C++ data mapping

The z/Architecture has the following boundaries in its memory mapping:
v Byte
v Halfword
v Fullword
v Doubleword

The code that is produced by the C/C++ compiler places data types on natural
boundaries. Some examples are:

v Byte boundary for char, _Bool/bool, and C decimal (n,p) C

v Halfword boundary for short int

v Fullword boundary for int, long int, pointers, float, and C float
_Complex C

v Doubleword boundary for double, long double, C double _Complex, and
long double _Complex C
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For each external defined variable, the z/OS XL C/C++ compiler defines a
writeable static data instance of the same name. The compiler places other external
variables, such as those in programs that you compile with the NORENT compiler
option, in separate csects that are based on their names.

Arrays and pointers

The type of size_t:
v unsigned int in 32–bit mode
v unsigned long in 64–bit mode

The type of ptrdiff_t:
v int in 32–bit mode
v long in 64–bit mode

The result of casting a pointer to an integer:
v The bit patterns are preserved.

The result of casting an integer to a pointer:
v The bit patterns are preserved.

Registers

The effect of the register storage class specifier on the storage of objects in
registers:
v The register storage class indicates to the compiler that a variable in a block

scope data definition or a parameter declaration is heavily used (such as a loop
control variable). It is equivalent to auto, except that the compiler might, if
possible, place the variable into a machine register for faster access.

Structures, unions, enumerations, bit fields

The result when a member of a union object is accessed using a member of a
different type:
v The result is undefined.

The alignment/padding of structure members:
v If the structure is not packed, then padding is added to align the structure

members on their natural boundaries. If the structure is packed, no padding is
added.

The padding at the end of structure/union:
v Padding is added to end the structure on its natural boundary. The alignment of

the structure or union is that of its strictest member.

The type of an int bit field (signed int, unsigned int, user defined):
v The default is unsigned.

The order of allocation of bit fields within an int :
v Bit fields are allocated from low memory to high memory. For example,

0x12345678 would be stored with byte 0 containing 0x12, and byte 3 containing
0x78.
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The rule for bit fields crossing a storage unit boundary:
v Bit fields can cross storage unit boundaries.

The integral type that represents the values of an enumeration type:
v Enumerations can have the type char, short or long and be either signed or

unsigned depending on their smallest and largest values.

Declarators

The maximum number of declarators (pointer, array, function) that can modify an
arithmetic, structure, or union type:
v The only constraint is the availability of system resources.

Statements

The maximum number of case values in a switch statement:
v Because the case values must be integers and cannot be duplicated, the limit is

INT_MAX.

Preprocessing directives

Value of a single-character constant in a constant expression that controls
conditional inclusion:
v Matches the value of the character constant in the execution character set.

Such a constant may have a negative value:
v Yes

The method of searching include source files (<...>):
v See z/OS XL C/C++ User's Guide.

The method of searching quoted source files:
v User include files can be specified in double quotes. See z/OS XL C/C++ User's

Guide.

The mapping between the name specified in the include directive and the external
source file name:
v See z/OS XL C/C++ User's Guide.

The definitions of __DATE__ and __TIME__ when date and time of translation is not
available:
v For z/OS XL C/C++, the date and time of translation are always available.

Translation limits

System-determined means that the limit is determined by your system resources.

Table 61. Translation Limits

Nesting levels of:
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Table 61. Translation Limits (continued)

v Compound statements

v Iteration control

v Selection control

v Conditional inclusion

v Parenthesized declarators

v Parenthesized expression

v System-determined

v System-determined

v System-determined

v System-determined

v System-determined

v System-determined
Number of pointer, array and function declarators modifying
an arithmetic a structure, a union, and incomplete type
declaration

v System-determined

Significant initial characters in:

v Internal identifiers

v Macro names

v C external identifiers (without LONGNAME)

v C external identifiers (with LONGNAME)

v C++ external identifiers

v 1024

v 1024

v 8

v 1024

v 1024
Number of:

v External identifiers in a translation unit

v Identifiers with block scope in one block

v Macro identifiers simultaneously declared in a translation
unit

v Parameters in one function definition

v Arguments in a function call

v Parameters in a macro definition

v Parameters in a macro invocation

v Characters in a logical source line

v Characters in a string literal

v Bytes in an object

v Nested include files

v Enumeration constants in an enumeration

v Levels in nested structure or union

v System-determined

v System-determined

v System-determined

v System-determined

v System-determined

v System-determined

v System-determined

v 32760 under MVS

v 32K minus 1

v LONG_MAX (See 1)

v SHRT_MAX

v System-determined

v System-determined

Note:

1. LONG_MAX is the limit for automatic variables only. For all
other variables, the limit is 16 megabytes.
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Appendix E. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

z/OS information
z/OS information is accessible using screen readers with the BookServer/Library
Server versions of z/OS books in the Internet library at:
http://www.ibm.com/systems/z/os/zos/bkserv/
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Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.
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IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted
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for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see:
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write z/OS XL C/C++ programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of
others.

Standards
The following standards are supported in combination with the Language
Environment element:
v The C language is consistent with Programming languages - C (ISO/IEC 9899:1999)

and a subset of Programming languages - C (ISO/IEC 9899:2011). For more
information on ISO, visit their website at http://www.iso.org.
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v The C++ language is consistent with Programming languages - C++ (ISO/IEC
14882:1998), Programming languages - C++ (ISO/IEC 14882:2003(E)), and a subset
of Programming languages - C++ (ISO/IEC 14882:2011).

The following standards are supported in combination with the Language
Environment and z/OS UNIX System Services elements:
v A subset of IEEE Std. 1003.1-2001 (Single UNIX Specification, Version 3). For more

information on IEEE, visit their website at http://www.iso.org.
v IEEE Std 1003.1—1990, IEEE Standard Information Technology—Portable Operating

System Interface (POSIX)—Part 1: System Application Program Interface (API) [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

v The core features of IEEE P1003.1a Draft 6 July 1991, Draft Revision to Information
Technology—Portable Operating System Interface (POSIX), Part 1: System Application
Program Interface (API) [C Language], copyright 1992 by the Institute of Electrical
and Electronic Engineers, Inc.

v IEEE Std 1003.2—1992, IEEE Standard Information Technology—Portable Operating
System Interface (POSIX)—Part 2: Shells and Utilities, copyright 1990 by the
Institute of Electrical and Electronic Engineers, Inc.

v The core features of IEEE Std P1003.4a/D6—1992, IEEE Draft Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System Application
Program Interface (API)—Amendment 2: Threads Extension [C language], copyright
1990 by the Institute of Electrical and Electronic Engineers, Inc.

v The core features of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), copyright 1985 by the Institute of Electrical and Electronic
Engineers, Inc.

v X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2,
copyright 1994 by The Open Group

v X/Open CAE Specification, Networking Services, Issue 4, copyright 1994 by The
Open Group

v X/Open Specification Programming Languages, Issue 3, Common Usage C, copyright
1988, 1989, and 1992 by The Open Group

v United States Government's Federal Information Processing Standard (FIPS)
publication for the programming language C, FIPS-160, issued by National Institute
of Standards and Technology, 1991
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__cdecl 231, 257
__func__ 16
__ptr32 90
__ptr64 91
__VA_ARGS__ 507
_Export 125, 233
_far 88
_Noreturn

function specifier 230
functions 230

_Pragma 526
- (subtraction operator) 164
- (unary minus operator) 153
-- (decrement operator) 152
-> (arrow operator) 150
, (comma operator) 172
:: (scope resolution operator) 148
! (logical negation operator) 153
!= (not equal to operator) 167
? : (conditional operators) 174
/ (division operator) 163
/= (compound assignment

operator) 161
. (dot operator) 150
$ 16, 32
* (indirection operator) 155
* (multiplication operator) 163
*= (compound assignment operator) 161
\ continuation character 28, 507
\ escape character 34
[ ] (array subscript operator) 171
% (remainder) 164
> (greater than operator) 165
>> (right-shift operator) 165
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operator) 161
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operator) 165
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<< (left-shift operator) 165
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operator) 161
<= (less than or equal to operator) 165
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| (vertical bar), locale 32
|| (logical OR operator) 170
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& (bitwise AND operator) 168
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&& (label value operator) 198
&& (logical AND operator) 169
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operator) 161
# preprocessor directive character 507
# preprocessor operator 513
## (macro concatenation) 514
+ (addition operator) 164
+ (unary plus operator) 153
++ (increment operator) 151

+= (compound assignment
operator) 161

= (simple assignment operator) 161
== (equal to operator) 167
^ (bitwise exclusive OR operator) 168
^ (caret), locale 32
^= (compound assignment

operator) 161
~ (bitwise negation operator) 153

A
aborting functions 502
abstract classes 399, 404
access rules

base classes 387
class types 347, 371
friends 379
members 371
multiple access 394
protected members 386
virtual functions 404

access specifiers 357, 371, 383, 391
in class derivations 387

accessibility 371, 394
addition operator (+) 164
address operator (&) 154

GNU C extension 198
aggregate types 41, 413

initialization 112, 413
alias 107

function 16
pragma disjoint 547
type-based aliasing 102

aliasing 547
alignment 126, 583

bit fields 60
pragma pack 583
structure members 60
structures 126

alignof operator 156
allocation

expressions 185
functions 253

always_inline function attribute 243
ambiguities

base and derived member names 395
base classes 392
resolving 198, 395
virtual function calls 403

amode31
function attribute 243
type attribute 93

amode64
function attribute 243
type attribute 93

AND operator, bitwise (&) 168
AND operator, logical (&&) 169
arch_section pragma 537
argc (argument count) 247

example 247

argc (argument count) (continued)
restrictions 248

arguments
command-line 248
default 254
evaluation 256
macro 507
main function 247
of catch blocks 492
passing 219, 249

restrictions 248
passing by pointer 251
passing by reference 252
passing by value 250
trailing 507

argv (argument vector) 247
example 247
restrictions 248

arithmetic conversions 129
arithmetic types

type compatibility 85
armode

function attribute 94, 244
arrays

array-to-pointer conversions 137
as function parameter 49, 236
declaration 49, 236, 358
description 104
flexible array member 60
initialization 110
initializing 116
ISO support 656
multidimensional 104
subscripting operator 171
type compatibility 107
variable length 99, 106
zero-extent 60

ASCII character codes 34
asm 13

keyword 16, 52
labels 16
statements 215

assembly
labels 16
statements 215

assignment operator (=)
compound 161
pointers 103
simple 161

associativity of operators 190
atexit function 502
atomic 60, 87
Atomic library (C++11) 279

atomic_compare_exchange_strong 301
atomic_compare_exchange_strong_explicit 301
atomic_compare_exchange_weak 299
atomic_compare_exchange_weak_explicit 300
atomic_exchange 298
atomic_exchange_explicit 299
atomic_fetch_add 302
atomic_fetch_add_explicit 303
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Atomic library (C++11) (continued)
atomic_fetch_and 305
atomic_fetch_and_explicit 305
atomic_fetch_or 306
atomic_fetch_or_explicit 306
atomic_fetch_sub 303
atomic_fetch_sub_explicit 304
atomic_fetch_xor 307
atomic_fetch_xor_explicit 307
ATOMIC_FLAG_INIT 312
atomic_init 311
atomic_is_lock_free 296
atomic_load 297
atomic_load_explicit 298
atomic_signal_fence 313
atomic_store 297
atomic_store_explicit 297
atomic_thread_fence 312
ATOMIC_VAR_INIT 311
kill_dependency 312
Lock-free property 280
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atomic::atomic 284
atomic::compare_exchange_strong 288
atomic::compare_exchange_weak 287
atomic::exchange 287
atomic::fetch_add 289
atomic::fetch_and 290
atomic::fetch_or 291
atomic::fetch_sub 290
atomic::fetch_xor 292
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atomic::load 286
atomic::operator T 286
atomic::operator-- 293
atomic::operator--(int) 293
atomic::operator-= 294
atomic::operator| = 295
atomic::operator&= 295
atomic::operator++ 292
atomic::operator++(int) 293
atomic::operator+= 294
atomic::operator= 285
atomic::operator^ = 296
atomic::store 286
Constructor 284
Synopsis 281

The atomic_flag type 308
atomic_flag_clear 310
atomic_flag_clear_explicit 311
atomic_flag_test_and_set 310
atomic_flag_test_and_set_explicit 310
atomic_flag::atomic_flag 308
atomic_flag::clear 309
atomic_flag::test_and_set 309

The memory_order type 279
atomic library (C11) 259

atomic integer types 261
atomic library functions 262

atomic_compare_exchange_strong 267
atomic_compare_exchange_strong_explicit 268
atomic_compare_exchange_weak 269
atomic_compare_exchange_weak_explicit 269
atomic_exchange 266
atomic_exchange_explicit 266
atomic_fetch_add 270
atomic_fetch_add_explicit 271

atomic library (C11) (continued)
atomic library functions (continued)

atomic_fetch_and 275
atomic_fetch_and_explicit 276
atomic_fetch_or 273
atomic_fetch_or_explicit 273
atomic_fetch_sub 271
atomic_fetch_sub_explicit 272
atomic_fetch_xor 274
atomic_fetch_xor_explicit 275
atomic_flag_clear 278
atomic_flag_clear_explicit 278
atomic_flag_test_and_set 277
atomic_flag_test_and_set_explicit 277
atomic_init 262
atomic_is_lock_free 264
atomic_load 265
atomic_load_explicit 265
atomic_signal_fence 263
atomic_store 264
atomic_store_explicit 265
atomic_thread_fence 263

atomic lock-free macros 259
memory_order 260

atomic_flag 260
ATOMIC_FLAG_INIT 259
auto storage class specifier 49

B
base classes

abstract 404
access rules 387
ambiguities 392, 395
direct 392
indirect 381, 392
initialization 414
multiple access 394
pointers to 383
virtual 393, 395

base list 392
best viable function 337
binary expressions and operators 160
binding 119

direct 119
dynamic 399
static 399
virtual functions 399

bit field
integral promotion 135

bit fields 60
as structure member 60
ISO support 656
type name 159

bitwise negation operator (~) 153
block statement 199
block visibility 2
BookManager documents xv
Boolean

conversions 130
data types 55
integral promotion 135
literals 23

boundaries, data 655
break statement 210
built-in data types 41

C
C++11

auto type deduction 76
C99 long long 19
C99 preprocessor features adopted in

C++11
Diagnostic for header files and

include names 526
Diagnostic for object-like macro

definitions 526
Increased limit for #line

directives 526
Mixed string literal

concatenation 526
Preprocessor arithmetic with

extended integer types 526
string literal concatenation 28
The _Pragma operator 526
Variadic macros and empty macro

arguments 526
constexpr constructors 411
constexpr functions 313
decltype 78
delegating constructors 409
deleted functions 222
explicit conversion operators 427
explicit instantiation declarations 456
explicitly defaulted functions 221
extended friend declarations 373
generalized constant expressions 149
inline namespace definitions 324
reference collapsing 194
static assertion 46
the constexpr specifier 83
trailing return type 239
variadic templates 468

C++11 compatibility 640
C11

_Static assertion 45
extensions 640

candidate functions 327, 337
case label 202
cast expressions 176

union type 176
catch blocks 485, 487

argument matching 492
order of catching 493

CCSID (coded character set
identifier) 543

char type specifier 59
character

data types 59
literals 27
multibyte 28, 33

character literals
multicharacter literal 27
narrow character literal 27
ordinary character literal 27
universal character name 27
wide character literal 27

character set
extended 33
source 32

checkout pragma 540
CICS 604
class members

access operators 150
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class members (continued)
access rules 371
class member list 357
declaration 357
initialization 414
order of allocation 357

class templates
declaration and definition 443
distinction from template class 441
member functions 445
static data members 444

classes 350
abstract 404
access rules 371
aggregate 347
base 383
base list 383
class objects 41
class specifiers 347
class templates 441
constructors execution order 418
declarations 347

incomplete 352, 358
derived 383
friends 373
inheritance 381
keywords 347
local 354
member functions 359
member lists 357
member scope 361
nested 352, 377
overview 347
polymorphic 347
scope of names 351
static members 366
this pointer 363
using declaration 388
virtual 393, 399

COBOL linkage 567
comma 172

in enumerator list 70
comment pragma 541
comments 38
Common Usage C 649
compatibility

data types 41
user-defined types 73
XL C and C11 640
XL C/C++ and GCC 642

compatibility of z/OS XL C and XL
C++ 645

compatible functions 224
compatible types

across source files 73
arithmetic types 85
arrays 107
in conditional expressions 174

complex literals 23
complex types 56

initializing 123
composite types 41

across source files 73
compound

assignment 161
expression 161
literal 185

compound (continued)
statement 199
types 41

computed goto 198, 213
concatenation

macros 514
multibyte characters 28
u-literals, U-literals 35

conditional compilation directives 518
elif preprocessor directive 519
else preprocessor directive 521
endif preprocessor directive 521
examples 522
if preprocessor directive 519
ifdef preprocessor directive 520
ifndef preprocessor directive 521

conditional expression (? :) 161, 174
const 88

casting away constness 252
member functions 360
object 141
placement in type name 99
qualifier 85
vs. #define 507

const_cast 181, 252
constant 19
constant expressions 70, 144
constant initializers 357
constants

fixed-point decimal 27
constructors 408

constexpr constructors 411
converting 424, 425
copy 429
default constructors 409
exception handling 496
exception thrown in constructor 488
initialization

explicit 413
nontrivial 420
overview 407
trivial 420
user-provided 407

continuation character 28, 507
continue statement 210
conversion

constructors 424
function 426
implicit conversion sequences 339

conversion functions
explicit conversion operators 427

conversion sequence
ellipsis 339
implicit 339
standard 339
user-defined 339

conversions
arithmetic 129
array-to-pointer 137
Boolean 130
cast 176
complex to real 130
explicit keyword 425
function arguments 139
function-to-pointer 137
integral 130
lvalue-to-rvalue 137, 141, 339

conversions (continued)
packed decimal 132
pointer 137
pointer to derived class 395
pointer to member 362
references 139
standard 129
user-defined 423
void pointer 139

convert pragma 543
convlit pragma 544
copy assignment operators 430
copy constructors 429
covariant virtual functions 399
CPLUSPLUS macro 514
csect pragma 545
cv-qualifier 85, 97

in parameter type specification 328
syntax 85

D
data declarations 41
Data declarations 41
data mapping 655
data members

description 358
scope 361
static 367

data objects 41
Data objects 41
data types

aggregates 41
atomic 60
Boolean 55
built-in 41
character 59
compatible 41
complex 56
composite 41
compound 41
enumerated 70
fixed point decimal 58
floating 56
incomplete 41
integral 54
scalar 41
user-defined 41, 60
void 59

DATE macro 514
deallocation

expressions 189
functions 253

decimal data type operators 160
decimal integer literals 19
declaration 219, 460
declarations

classes 347, 352
description 43
duplicate type qualifiers 85
friend specifier in member list 373
friends 379
pointers to members 362
resolving ambiguous statements 198
syntax 43, 99, 219
unsubscripted arrays 104

declarative region 2
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declarators 97
description 97
examples 99
reference 107
restrictions 657

decrement operator (--) 152
default

clause 202
label 202

default constructors 409
user-provided 407

define pragma 546
define preprocessor directive 507
defined unary operator 519
definitions

description 43
macro 507
member function 359
packed union 124
tentative 43

delegating constructor 409
delete operator 189
dependent names 480
dereferencing operator 155
derivation 383

array type 104
public, protected, private 387

derived classes
catch block 493
pointers to 383

designated initializer
aggregate types 110
union 112

designator 110
designation 110
designator list 110
union 112

destructors 420
exception handling 496
exception thrown in destructor 488
overview 407
pseudo 422
user-provided 407

digitsof operator 160
digraph characters 37
direct base class 392
disjoint pragma 547
division operator (/) 163
do statement 207
dollar sign 16, 32
dot operator 150
double type specifier 56
downcast 182
dynamic binding 399
dynamic_cast 182

E
EBCDIC character codes 34
elaborated type specifier 351
elif preprocessor directive 519
ellipsis

conversion sequence 339
in function declaration 236
in function definition 236
in macro argument list 507

else
preprocessor directive 521
statement 200

enclosing class 359, 377
endif preprocessor directive 521
entry point

linkage 566
program 247

enum
keyword 70
pragma 549

enumerations 70
compatibility 73
declaration 70
initialization 114
ISO support 656
trailing comma 70

enumerator 70
environment pragma 551
epilog pragma 589
equal to operator (==) 167
error preprocessor directive 523
escape character \ 34
escape sequence 34, 653

alarm \a 34
backslash \\ 34
backspace \b 34
carriage return \r 34
double quotation mark \" 34
form feed \f 34
horizontal tab \t 34
new-line \n 34
question mark \? 34
single quotation mark \' 34
vertical tab \v 34

examples
block 200
ccnraa3 210
ccnraa4 210
ccnraa6 213
ccnraa7 206
ccnraa8 507
ccnraa9 507
ccnrab1 202
ccnrabc 522
ccnrabd 523
ccnx02j 9
ccnx02k 28
ccnx06a 252
ccnx06b 254
ccnx10c 350
ccnx10d 350
ccnx11a 361
ccnx11c 363
ccnx11h 369
ccnx11i 373
ccnx11j 373
ccnx12b 329
ccnx13a 413
ccnx14a 383
ccnx14b 383
ccnx14c 383
ccnx14g 395
conditional expressions 175
scope C 4

examples labelling xv
exception handling 485, 578

exception handling (continued)
argument matching 492
catch blocks 487

arguments 492
constructors 496
destructors 496
example, C++ 504
exception objects 485
function try blocks 485
handlers 485, 487
order of catching 493
rethrowing exceptions 494
set_terminate 503
set_unexpected 503
special functions 501
stack unwinding 496
terminate function 502
throw expressions 486, 494
try blocks 485
try exceptions 488
unexpected function 501

exceptions
declaration 487
function try block handlers 488
specification 498

exclusive OR operator, bitwise (^) 168
execution_frequency pragma 552
explicit

instantiation, templates 456
keyword 424, 425
specializations, templates 460
type conversions 176

explicit instantiation
templates 456

explicit specializations 460
exponent 23
export pragma 553
expressions

allocation 185
assignment 161
binary 160
cast 176
comma 172
conditional 174
deallocation 189
description 141
generalized constant expressions 149
integer constant 144
new initializer 188
parenthesized 145
pointer to member 173
primary 143
resolving ambiguous statements 198
statement 198
throw 190, 494
unary 151

extended friend declarations
friends 373
template parameters 436
typedef names 74

extension pragma 554
extensions

IBM XL C++ language
C++11 639
C99 639
general 639
GNU C 639
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extensions (continued)
IBM XL C++ language (continued)

GNU C++ 639
Unicode support 639
vector processing support 639

extern storage class specifier 8, 9, 51,
226

with function pointers 257
with template declaration 456
with variable length arrays 106

F
FETCHABLE preprocessor directive 567
file inclusion 516, 517
FILE macro 514
file scope data declarations

unsubscripted arrays 104
filetag pragma 556
fixed point decimal

data type 58
fixed-point constant

number of decimal places
(precision) 27

number of digits (size) 27
fixed-point decimal

constants 27
flexible array member 60
float type specifier 56
floating point

constant 23
literals 23
promotion 135

floating-point
range 655
storage 655

floating-point literals
complex 23
real 23

floating-point types 56
for statement 208
FORTRAN linkage 568
free store

delete operator 189
new operator 185

friend
access rules 379
implicit conversion of pointers 387
member functions 359
nested classes 377
relationships with classes when

templates are involved 445
scope 377
specifier 373
virtual functions 399

function
aliases 16
definitions 220

function attribute
always_inline 243

function attributes 242
function declarators 235
function definitions 220
function designator 141
function specifier

explicit 424, 425
function specifiers 227

function templates
explicit specialization 460

function try blocks 485
handlers 488

function-like macro 507
functions 219

_Noreturn 230
allocation 253
arguments 219, 249

conversions 139
attributes 219
block 219
body 219
calling 249
calls 149

as lvalue 141
class templates 445
compatible 224
constexpr functions 313
conversion function 426
deallocation 253
declaration 219

C++ 360
examples 223
multiple 225
parameter names 236

default arguments 254
evaluation 256
restrictions 255

definition 219
examples 224

deleted functions 222
exception handling 501
exception specification 498
explicitly defaulted functions 221
friends 373
function call operator 219
function templates 446
function-to-pointer conversions 137
inline 228, 359
library functions 219
main 247
name 219

diagnostic 16
nested functions 219
overloading 327
parameters 249
pointers to 257
polymorphic 381
predefined identifier 16
prototype 219
return statements 212
return type 219, 234, 235
return value 219, 235
signature 236
specifiable attributes 242
specifiers 228, 230
template function

template argument deduction 448
type name 99
virtual 360, 399, 403

G
generic macro 146
generic selection 146
global register variables 52

global variable 3, 8
uninitialized 109

goto statement 213
computed goto 213
restrictions 213

greater than operator (>) 165
greater than or equal to operator

(>=) 165

H
handlers 487
hashome pragma 556
hexadecimal

floating constants 23
hexadecimal integer literals 19
hidden names 348, 351

I
identifiers 16, 143

case sensitivity 16
id-expression 97, 145
ISO support 653
labels 197
linkage 8
namespaces 5
predefined 16
reserved 13, 16
special characters 16, 32
truncation 16

if
preprocessor directive 519
statement 200

ifdef preprocessor directive 520
ifndef preprocessor directive 521
implementation pragma 558
implementation-defined behavior 653
implicit conversion 129

Boolean 130
integral 130
lvalue 141
packed decimal 132
pointer to derived class 383, 387
pointers to base class 383
types 129

implicit conversions
complex to real 130

implicit instantiation
templates 459

include preprocessor directive 516
include_next preprocessor directive 517
inclusive OR operator, bitwise (|) 169
incomplete type 104

as structure member 60
class declaration 352

incomplete types 41
increment operator (++) 151
indentation of code 507
indirect base class 381, 392
indirection operator (*) 155
info pragma 558
information hiding 2, 357, 383
inheritance

multiple 381, 392
overview 381
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initialization
aggregate types 112
auto object 109
base classes 414
class members 414
extern object 109
references 139
register object 109
static data members 367
static object 109, 185
union member 112

initializer lists 108, 185, 414
initializers 108

aggregate types 110, 112
enumerations 114
unions 112

inline
assembly statements 215
function specifier 228
functions 228, 359

inline pragma 559
input record 594
insert_asm pragma 560
integer

constant expressions 70, 144
data types 54
ISO support 654
literals 19

integral
conversions 130
promotion 135

ishome pragma 561

K
keyboard 659
keywords 13

__cdecl 231
_Export 125, 233
description 16
exception handling 485
language extension 13
template 433, 482
underscore characters 13

kill_dependency 259

L
label

as values 198
implicit declaration 3
in switch statement 202
statement 197

langlvl pragma 564
language extensions

IBM XL C++
C++11 639
C99 639
general 639
GNU C 639
GNU C++ 639
Unicode support 639
vector processing support 639

language level 554, 564
leaves pragma 565
left-shift operator (<<) 165

less than operator (<) 165
less than or equal to operator (<=) 165
lexical element 13
limits

floating-point 655
integer 654

LINE macro 514
line preprocessor directive 523
linkage 1

auto storage class specifier 49
COBOL 567
const cv-qualifier 88
extern storage class specifier 9, 51
external 8
FORTRAN 568
in function definition 226
inline member functions 359
internal 7, 49, 226
language 9, 566
multiple function declarations 225
none 8
PL/I 567
program 7
register storage class specifier 52
specifications 9
static storage class specifier 49
with function pointers 257

linkage pragma 566
linking to non-C++ programs 9
literal constant 19
literals 19, 144

Boolean 23
character 27
compound 185
floating point 23
integer 19

decimal 19
hexadecimal 19
octal 19

Pointer 30
string 28
Unicode 35

local
classes 354
type names 355

logical operators
! (logical negation) 153
|| (logical OR) 170
&& (logical AND) 169

long double type specifier 56
long long

types of integer literals in C99 and
C++11 19

types of integer literals outside of C99
and C++11 19

long long type specifier 54
long type specifier 54
LONGNAME compiler option 16
longname pragma 569
loop optimization 599
lvalues 85, 141, 143

casting 176
conversions 137, 141, 339

M
macro

definition 507
typeof operator 159

function-like 507
invocation 507
object-like 507
variable argument 507

macros 623
related to compiler options 627
related to language features 632
related to the compiler 625
related to the platform 626

main function 247
arguments 247
example 247

margins pragma 572
member functions

const and volatile 360
definition 359
friend 359
special 360
static 369
this pointer 363, 403

member lists 347, 357
members

access 371
access control 391
class member access operators 150
data 358
pointers to 173, 362
protected 386
scope 361
static 352, 366
virtual functions 360

memory
data mapping 655

modifiable lvalue 141, 161
modulo operator (%) 164
multibyte character 33

concatenation 28
ISO support 653
overview 653

multicharacter literal 27
multidimensional arrays 104
multiple

access 394
inheritance 381, 392

multiplication operator (*) 163
mutable storage class specifier 52

N
name binding 480
name hiding 6, 148

accessible base class 395
ambiguities 395

name mangling
function 231
pragma 575
scheme 578

name mangling pragma 573
names

conflicts 5
hidden 148, 348, 351
local type 355
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names (continued)
long name support 16
mangling 9
resolution 2, 388, 395

namespaces 317
alias 317, 318
associated namespace 324
class names 351
context 5
declaring 317
defining 317
explicit access 323
extending 318
friends 321
inline namespace definitions 324
member definitions 321
namespace scope object

exception thrown in
constructor 488

of identifiers 5
overloading 319
unnamed 319
user-defined 3
using declaration 322
using directive 322

narrow character literal 27
narrow string literal 28
nested classes

friend scope 377
scope 352

nesting level limits 657
new operator

default arguments 255
description 185
initializer expression 188
placement syntax 187
set_new_handler function 188

noinline pragma 559
NOLONGNAME compiler option 16
nolongname pragma 569
nomargins pragma 572
non-delegating constructor 409
nosequence pragma 594
not equal to operator (!=) 167
Notices 661
null

character '\0' 28
pointer 116
pointer constants 137
preprocessor directive 525
statement 215

number sign (#)
preprocessor directive character 507
preprocessor operator 513

O
object_model pragma 577
object-like macro 507
objects 141

class
declarations 348

description 41
lifetime 1
namespace scope

exception thrown in
constructor 488

objects (continued)
restrict-qualified pointer 91
static

exception thrown in
destructor 488

octal integer literals 19
one's complement operator (~) 153
operator functions 329
operator_new pragma 578
operators 30

__real__and__imag__ 160
- (subtraction) 164
- (unary minus) 153
-- (decrement) 152
-> (arrow) 150
->* (pointer to member) 173
, (comma) 172
:: (scope resolution) 148
! (logical negation) 153
!= (not equal to) 167
? : (conditional) 174
/ (division) 163
. (dot) 150
.* (pointer to member) 173
() (function call) 149, 219
* (indirection) 155
* (multiplication) 163
[] (array subscripting) 171
% (remainder) 164
> (greater than) 165
>> (right- shift) 165
>= (greater than or equal to) 165
< (less than) 165
<< (left- shift) 165
<= (less than or equal to) 165
| (bitwise inclusive OR) 169
|| (logical OR) 170
& (address) 154
& (bitwise AND) 168
&& (logical AND) 169
+ (addition) 164
++ (increment) 151
= (simple assignment) 161
== (equal to) 167
^ (bitwise exclusive OR) 168
alternative representations 30
assignment 161

copy assignment 430
associativity 190
binary 160
bitwise negation operator (~) 153
compound assignment 161
const_cast 181
defined 519
delete 189
digitsof 160
dynamic_cast 182
equality 167
new 185
overloading 329, 359

binary 333
unary 331

pointer to member 173, 362
precedence 190

examples 193
type names 99

precisionof 160

operators (continued)
preprocessor

# 513
## 514
pragma 526

reinterpret_cast 179
relational 165
scope resolution 383, 395, 399
sizeof 157
static_cast 177
typeid 155
typeof 159
unary 151
unary plus operator (+) 153

optimization
controlling, using option_override

pragma 579
inlining 559

option_override pragma 579
options pragma 581
OR operator, logical (||) 170
ordinary character literal 27
ordinary string literal 28
OS linkage 567
overload resolution 337, 395

resolving addresses of overloaded
functions 344

overloading
description 327
function templates 454
functions 327, 389

restrictions 328
operators 329, 347

assignment 334
binary 333
class member access 337
decrement 332
function call 335
increment 332
subscripting 336
unary 331

overriding virtual functions 403
covariant virtual function 399

P
pack pragma 583
packed

structure member 60
structures 73
unions 73, 124

packed decimal
conversions 132

Packed qualifier 124
page pragma 587
pagesize pragma 587, 588
parallel processing

pragma directives 604
parameter packs

function parameter packs 468
template parameter packs 468

parenthesized expressions 99, 145
pass by pointer 251
pass by reference 107, 252
pass by value 250
PDF documents xv
PL/I linkage 567
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placement syntax 187
Pointer

literals 30
pointer to member

conversions 362
declarations 362
operators 173, 362

pointers
arrays 656
conversions 137, 395
cv-qualified 100
dereferencing 102
description 100
generic 139
null 116
pointer arithmetic 101
restrict-qualified 91
this 363
to functions 257
to members 173, 362
type-qualified 100
void* 137

polymorphism
polymorphic classes 347, 399
polymorphic functions 381

portability issues 653
POSIX 651
postfix

++ and -- 151, 152
pound sign (#)

preprocessor directive character 507
preprocessor operator 513

pragma operator 526
pragmas

_Pragma 526
arch_section 537
checkout 540
comment 541
convert 543
convlit 544
csect 545
define 546
disjoint 547
do_not_instantiate 549
enum 549
environment 551
epilog 589
execution_frequency 552
export 553
extension 554
filetag 556
hashome 556
implementation 558
info 558
inline 559
insert_asm 560
IPA effects 532
ishome 561
langlvl 564
leaves 565
linkage 566
longname 569
margins 572
namemangling 573
namemanglingrule 575
noinline 559
nolongname 569

pragmas (continued)
nomargins 572
nosequence 594
object_model 577
operator_new 578
option_override 579
options 581, 582
pack 583
page 587
pagesize 587, 588
preprocessor directive 525
priority 588
prolog 589
reachable 590
report 591
runopts 593
sequence 594
skip 595
standard 526
subtitle 597
target 597
title 598
variable 601
wsizeof 602
XOPTS 604

precedence of operators 190
precisionof operator 160
predefined identifier 16
predefined macros

CPLUSPLUS 514
DATE 514
FILE 514
LINE 514
STDC 514
STDC_HOSTED 514
STDC_VERSION 514
TARGET_LIB 624
TIME 514

prefix
++ and -- 151, 152
hexadecimal floating constants 23
hexadecimal integer literals 19
octal integer literals 19

preprocessor directives 507
C99 preprocessor features adopted in

C++11 526
conditional compilation 518
ISO support 657
preprocessing overview 507

preprocessor operator
_Pragma 526
# 513
## 514

primary expressions 143
principal constructor 409
priority pragma 588
prolog pragma 589
promotions

integral and floating-point 135
pseudo-destructors 422
punctuators 30

alternative representations 30
pure specifier 357, 360, 399, 404
pure virtual functions 404

Q
qualifers

_far 88
qualified name 148, 352
qualifiers

__callback 87
__ptr32 90
__ptr64 91
_Packed 124
atomic 87
const 85
in parameter type specification 328
restrict 91
volatile 85, 92

R
real literals

binary floating point 23
hexadecimal floating point 23

record
margins 572
sequence numbers 594

reentrant variables 601
reference collapsing 194
references

as return types 235
binding 119
conversions 139
declarator 154
description 107
initialization 119

register storage class specifier 52
register variables 52
registers

ISO support 656
reinterpret_cast 179
related documents xv
remainder operator (%) 164
report

pragma 591
restrict 91

in parameter type specification 328
return statement 212, 235
return type

reference as 235
size_t 157

right-shift operator (>>) 165
RTTI support 155, 182
runopts pragma 593
rvalues 141

S
scalar types 41, 100
scope 1

class 4
class names 351
description 2
enclosing and nested 2
friends 377
function 3
function prototype 3
global 3
global namespace 3
identifiers 5
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scope (continued)
local (block) 2
local classes 354
macro names 512
member 361
nested classes 352

scope resolution operator
ambiguous base classes 395
description 148
inheritance 383
virtual functions 399

sequence point 172
sequence pragma 594
set_new_handler function 188
set_terminate function 503
set_unexpected function 501, 503
shift operators << and >> 165
shift states 653
short type specifier 54
shortcut keys 659
side effect 92
signed type specifiers

char 59
int 54
long 54
long long 54

size_t 157
sizeof operator 157

with variable length arrays 106
sizeof... operator 157
skip pragma 595
softcopy documents xv
source

program
margins 572

special characters 32
special member functions 360
specifiers

_Noreturn 230
access control 387
constexpr 83
inline 228
pure 360
storage class 48

splice preprocessor directive ## 514
stack unwinding 496
Standard C 653
Standard C++ 653
standard type conversions 129
statements 197

block 199
break 210
continue 210
do 207
expressions 198
for 208
goto 213
if 200
inline assembly

restrictions 218
iteration 206
jump 210
jump statements 210
labels 197
null 215
resolving ambiguities 198
restriction 657

statements (continued)
return 212, 235
selection 200, 202
switch 202
while 206

static
binding 399
data members 367
in array declaration 49, 236
initialization of data members 367
member functions 369
members 352, 366
storage class specifier 49, 226

linkage 49
with variable length arrays 106

static storage class specifier 8
static_cast 177
STDC macro 514
STDC_HOSTED macro 514
STDC_VERSION macro 514
storage class specifiers 48

auto 49
extern 51, 226
function 225
mutable 52
register 52
static 49, 226

storage duration 1
auto storage class specifier 49
extern storage class specifier 51
register storage class specifier 52
static 49, 226

exception thrown in
destructor 488

storage of variables 656
string

conversion 654
literals 28

string literals
narrow string literal 28
ordinary string literal 28
string concatenation 28
wide string literal 28

stringize preprocessor directive # 513
struct type specifier 60
structures 60, 350

anonymous structures 60
as base class 387
as class type 347
compatibility 73
flexible array member 60
identifier (tag) 60
initialization 112
ISO support 656
members 60

alignment 60
incomplete types 60
layout in memory 60, 112
packed 60
padding 60
zero-extent array 60

namespaces within 5
packed 60
unnamed members 112

subscript declarator
in arrays 104

subscripting operator 104, 171

subscripting operator (continued)
in type name 99

subtitle pragma 597
subtraction operator (-) 164
suffix

floating-point literals 23
hexadecimal floating constants 23
integer literal constants 19

switch statement 202

T
tags

enumeration 70
structure 60
union 60

target constructor 409
target pragma 597
TARGET_LIB macro 624
template

variadic templates 468
template arguments 437

deduction 448
deduction, non-type 448
deduction, type 448
non-type 438
template 440
type 437

template keyword 482
templates 460, 558

arguments
non-type 438
type 437

class
declaration and definition 443
distinction from template

class 441
member functions 445
static data members 444

declaration 433
dependent names 480
explicit instantiation

explicit instantiation
declarations 456

explicit instantiation
definitions 456

explicit specializations 460
class members 460
definition and declaration 460
function templates 460

function
argument deduction 448
overloading 454
partial ordering 455

function templates 446
type template argument

deduction 448
instantiation 433, 456, 460

explicit 456
forward declaration 456
implicit 459

name binding 480
parameters 434

default arguments 435
friends 436
non-type 434
template 435
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templates (continued)
parameters (continued)

type 434
partial specialization 465

matching 465
parameter and argument lists 465

point of definition 480
point of instantiation 480
pragma define 546
pragma do_not_instantiate 549
pragma implementation 558
relationship between classes and their

friends 445
scope 460
specialization 433, 456, 460

temporary objects 492
tentative definition 43
terminate function 485, 486, 493, 496,

501, 502
set_terminate 503

this pointer 363, 403
throw expressions 190, 485, 494

argument matching 492
rethrowing exceptions 494
within nested try blocks 486

TIME macro 514
title pragma 598
tokens 13, 507

alternative representations for
operators and punctuators 30

trailing return type 239
translation limits 657
translation unit 1
trigraph sequences 38
truncation

integer division 163
try blocks 485

nested 486
try keyword 485
type attributes 93

may_alias 94
type name 99

local 355
qualified 148, 352
typename keyword 482
typeof operator 159

type qualifiers 88
__callback 87
__ptr32 90
__ptr64 91
_Packed 124
atomic 87
const 85, 88
const and volatile 97
duplicate 85
in function parameters 328
restrict 85, 91
volatile 85

type specifiers 54
_Bool 55
atomic 60
auto 76
auto type deduction 76
bool 55
char 59
class types 347
complex 56

type specifiers (continued)
decltype(expression) 78
double 56
elaborated 351
enumeration

scoped enumeration 70
unscoped enumeration 70

fixed point decimal 58
float 56
int 54
long 54
long double 56
long long 54
short 54
unsigned 54
void 59
wchar_t 54, 59

typedef names
friends 74

typedef specifier 74
class declaration 355
local type names 355
pointers to members 362
qualified type name 352
with variable length arrays 106

typeid operator 155
typename keyword 482
typeof operator 159
types

class 347
conversions 176
type-based aliasing 102
variably modified 104

U
u-literal, U-literal 35
unary expressions 151
unary operators 151

minus (-) 153
plus (+) 153

undef preprocessor directive 512
underscore character 13, 16

in identifiers 16
unexpected function 485, 501, 502

set_unexpected 503
Unicode 35
unions 60

as class type 347
cast to union type 176
compatibility 73
designated initializer 110
initialization 112
ISO support 656
packing

using _Packed qualifier 124
specifier 60
unnamed members 112

universal character name 16, 27, 35
unnamed namespaces 319
unsigned type specifiers

char 59
int 54
long 54
long long 54
short 54

unsubscripted arrays
description 104, 236

user interface
accessibility 659
disability 659

user-defined conversions 423
user-defined data types 41, 60
user-provided 407
using declarations 322, 388, 395

changing member access 391
overloading member functions 389

using directive 322
usual arithmetic conversions 133
UTF-16, UTF-32 35

V
variable

in specified registers 52
variable attributes 125
variable length array 41, 106, 213

as function parameter 106, 249, 337
sizeof 144
type name 99

variable pragma 601
variables

storage of 656
variably modified types 104, 106, 202
variadic templates

pack expansion 468
parameter packs 468
partial specialization 468
template argument deduction 468

vector processing support 643
vector types 159

in typedef declarations 74
virtual

base classes 383, 393, 395
virtual functions 360, 399

access 404
ambiguous calls 403
overriding 403
pure specifier 404

visibility 1, 6
block 2
class members 371

void 59
in function definition 234, 236
pointer 137, 139

volatile
member functions 360
qualifier 85, 92

W
wchar_t

integral promotion 135
wchar_t type specifier 27, 54, 59
while statement 206
white space 13, 38, 507, 513
wide character literal 27
wide characters

ISO support 653
wide string literal 28
wsizeof pragma 602
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XOPTS pragma 604

Z
zero-extent array 60
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