
IBM Workload Scheduler for z/OS

Workload Automation Programming
Language for z/OS User's Guide and
Reference
Version 9.3 SPE (Revised March 2018)

IBM

IBM Workload Scheduler for z/OS

Workload Automation Programming
Language for z/OS User's Guide and
Reference
Version 9.3 SPE (Revised March 2018)

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 371.

This edition applies to version 9, release 3, modification level 0 of IBM Workload Scheduler for z/OS (program
number 5698-T08) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Copyright HCL Technologies Limited 2017, 2018.

Contents

Figures ix

Tables xi

About this publication xiii
Accessibility xiii
Technical training xiii
Support information xiii
Conventions used in this publication xiv

Chapter 1. Overview 1
Similarities to the Scheduling Operational
Environment 2
Version compatibility 3

Small product enhancements 5
Setting up the Workload Automation Programming
Language environment 6
Language support 6
Command language 6
Output files. 8
Batch loader 8
IBM Workload Scheduler for z/OS PIF concepts . . 9

Data sources and structures 9
IBM Workload Scheduler for z/OS PIF requests 11

Chapter 2. Running Workload
Automation Programming Language . . 13
Running Workload Automation Programming
Language in batch 14
Running Workload Automation Programming
Language as a load module 16
Running Workload Automation Programming
Language within an online TSO session 19
Running Workload Automation Programming
Language on a started task workstation 21
Running Workload Automation Programming
Language as a console command 23
Specifying the subsystem 24
Using OUTPUT statements 25
Workload Automation Programming Language
commands syntax 26

Using comparators 27
Setting dates and times 27
Termination, line numbers, and continuation . . 28
Inserting comments in a statement. 29
Special resource and user field names 30
Special characters @, !, and # 31
Knowing resource names 32
Variable substitution 32
Using wildcards 33

Controlling the processing within Workload
Automation Programming Language 34

Labeling Workload Automation Programming
Language statements 34

Defining subroutines 34
Protecting against PIF failure 35
Overriding Workload Automation Programming
Language defaults 35
Message log 36

Chapter 3. Core programming
commands 37
CALL – Execute external program, subroutine, or
variable. 37
DISPLAY – Echo information to SYSTPRT 38
DO and END – Block and Loop commands . . . 38

Block DO 38
Repeat DO loop 39
Iterative DO loop 39
DO While loop 40
DO Until loop 40
DO Forever loop 41

DROP – Drop elements from memory 41
EXIT – Terminate processing. 42
FILTER – Post process selected records to reduce
output 42
IF-THEN-ELSE – Conditional execution 44
INCLUDE – Include code from other data sets or
members to be run 45
ITERATE – Proceed to the next iteration of current
loop 46
LEAVE – Exit the current loop 46
LOG – Echo information to the log 46
MERGE – Merge SAVELIST output 47
NOACT – Peform no action 47
OPTIONS – Define run time options and PIF
requests 48
OUTPUT – Define output record 48

Specifying output destinations 50
Setting additional fields 50

READ – Read an external file or the external data
queue 51
RETURN – Exit the subroutine 51
SETMAX – Manipulate the maximum return code 51
SETSEV – Set message severity 53
SHOW – Show diagnostic information 53

SHOW FILES – Display files allocated to
Workload Automation Programming Language . 54
SHOW OBJECT – Display the object structure of
an IBM Workload Scheduler for z/OS record . . 55
SHOW OPTIONS – Display Workload
Automation Programming Language OPTIONS
currently effective 56
SHOW RC – Display return codes 56
SHOW SAVELIST – Display the contents of a
SAVELIST 57
SHOW SPE – Display active Small Product
Enhancements 57

© Copyright IBM Corp. 2016 iii

|
||

|
||
|
||

||

SHOW SYSINFO – Display information about the
LPAR 57
SHOW SUBSYSTEM – Display controller
information 58
SHOW USRF – Display Operation User Fields for
this job 58
SHOW VARIABLES – Display current variable
values 59

SUBROUTINE – Indicate the start of a subroutine 59
TRANSLATE – Define rules for life-cycle translation 59
WAIT – Delay before continuing with the next
command 61
WRITE – Echo information to a file or the external
data queue 61

Chapter 4. Workload Automation
Programming Language functions . . . 63
@ - Date logic function 63
@CMD and @JCL – Check RC of previous command
or JCL step 64
@LOG – Return the date and time in EQQYLOG
format 66
@V – Return the value of a named variable. . . . 66

Chapter 5. Data Access commands
based on PIF 69
DELETE – Delete object from database or plan . . 69

DELETE AD – Application Definition. 69
DELETE AWSCL – All Workstations Closed . . 70
DELETE CL – Calendar 70
DELETE CPCOND – Condition. 70
DELETE CPOC – Current Plan Occurrence . . . 70
DELETE CPOCPRE – Current Plan Occurrence
Predecessor 70
DELETE CPOCSUC – Current Plan Occurrence
Successor 71
DELETE CPOP – Current Plan Operation . . . 71
DELETE CPPRE – Current Plan Predecessor . . 71
DELETE CPSIMP – Conditional predecessor . . 71
DELETE CPSR – Current Plan Operation Special
Resource 72
DELETE CPSUC – Current Plan Successor . . . 72
DELETE CPUSRF – User Field 73
DELETE ETT – Event Trigger 73
DELETE IVL – Current Plan Workstation Interval 73
DELETE JCLV – JCL Variable Table 73
DELETE JL – Job Log 73
DELETE JS – Current Plan JCL 74
DELETE LTOC – Long-Term Plan Occurrence . . 74
DELETE LTCPRE – LTP Conditional Predecessor 74
DELETE LTPRE – Long-Term Plan Predecessor 74
DELETE OI – Operator Instruction 75
DELETE PR – Period 75
DELETE SR – Special Resource 75
DELETE VIVL – CP Virtual Workstation Interval 75
DELETE WS – Workstation 76
DELETE WSV – Virtual workstation destination 76

EXECUTE – Commit updates to the Current Plan . 76
INIT – Initialize communication with IBM Workload
Scheduler for z/OS 77

INIT subsystem 77
INSERT – Add objects into the plan 78

INSERT CPOC – Current Plan Occurrence . . . 79
INSERT CPOCPRE – Current Plan Occurrence
Predecessor 79
INSERT CPOCSUC – Current Plan Occurrence
Successor 80
INSERT CPCOND – Current Plan Condition . . 80
INSERT CPOP – Current Plan Operation . . . 80
INSERT CPPRE – Current Plan Predecessor . . 81
INSERT CPSAI – Current Plan System
Automation Info. 82
INSERT CPSIMP – Current Plan Conditional
Predecessor 82
INSERT CPSR – Current Plan Operation Special
Resource 83
INSERT CPSUC – Current Plan Successor . . . 83
INSERT CPUSRF – User Field 83
INSERT IVL – Current Plan Workstation Interval 84
INSERT JCLPREP – JCL Preparation 84
INSERT LTOC – Long Term Plan Occurrence . . 84
INSERT LTPRE – Long Term Plan Predecessor. . 85
INSERT VIVL – CP Virtual Workstation Interval 85

LIST – Find objects in the Database and Plans . . . 85
OBJECT 86
MATCHTYP Argument 87
SAVELIST Argument 87
TAG Argument 87
Automatic SELECT and DELETE 88
LIST ADCOM, LIST ADKEY – Application ID,
Application Key 89
LIST AWSCL – All Workstations Closed 89
LIST CLCOM - Calendar 89
LIST CPCONDCO – Current Plan Condition
(Common). 89
LIST CPOC – Current Plan Occurrence 90
LIST CPOPCOM – Current Plan Operation . . . 90
LIST CPOPSRU – Current Plan Operation SR
Usage 92
LIST CPWSCOM – Current Plan Workstation . . 92
LIST CPWSVCOM – CP Virtual workstation
destination 93
LIST CSRCOM – Current Plan Special Resource 93
LIST ETT – Event Triggers 93
LIST GENDAYS – Generate dates from a rule . . 93
LIST JCLVCOM – JCL Variable tables 95
LIST JSCOM – Current Plan JCL 95
LIST LTOCCOM – Long Term Plan Occurrence 95
LIST OICOM – Operator Instructions 95
LIST PRCOM – Period. 96
LIST SRCOM – Special Resource 96
LIST WSCOM – Workstation 96
LIST WSVCOM – Virtual workstation destination 97

MODIFY – Modify objects in the plans 97
MODIFY CPCOND – CP Condition 97
MODIFY CPEXT – CP Extended Operation Info 98
MODIFY CPOC – Current Plan Occurrence. . . 98
MODIFY CPOP – Current Plan Operation . . . 99
MODIFY CPREND – Distributed remote job info 100
MODIFY CPRENZ – z/OS remote job info . . 101

iv IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
||
|
||

|
||

MODIFY CPSAI – Current Plan System
Automation Info 101
MODIFY CPUSRF – User Field 102
MODIFY CPWS – Current Plan Workstation . . 102
MODIFY CPWSV – CP Virtual Workstation
Destination 103
MODIFY CSR – Current Plan Special Resource 103
MODIFY IVL – Current Plan Workstation
Interval 104
MODIFY LTOC – Long Term Plan Occurrence 104
MODIFY VIVL – CP Virtual workstation
interval 105

REPLACE 105
RESET – Resets pending changes to the plan . . . 105
SELECT – Retrieve a record or common segment 105

OBJECT Argument 107
TAG Argument 107
SELECT AD/ADCOM – Application Description 107
SELECT AWSCL – All Workstations Closed . . 108
SELECT CL/CLCOM - Calendar 108
SELECT CPCOND/CPCONDCO – CP
Condition 108
SELECT CPOC – Current Plan Occurrence . . 109
SELECT CPOP/CPOPCOM – Current Plan
Operation 109
SELECT CPST – Current Plan Status. 110
SELECT CPUSRF – Current Plan Operation User
Fields 110
SELECT CPWS/CPWSCOM – Current Plan
Workstation 111
SELECT CPWSV/CPWSVCOM – CP Virtual
workstation destination 111
SELECT CRITPATH – Critical Path 111
SELECT CSR/CSRCOM – Current Plan Special
Resource 112
SELECT ETT – Event Trigger 112
SELECT JCLPREP – JCL Preparation. 112
SELECT JCLPREPA – JCL Preparation
simulation 112
SELECT JCLV/JCLVCOM – JCL Variable Table 113
SELECT JL/JLCOM – Job Log 113
SELECT JS/JSCOM – Current Plan JCL. . . . 113
SELECT LTOC/LTOCCOM – Long Term Plan
Occurrence 113
SELECT OI/OICOM – Operator Instructions . . 114
SELECT PR/PRCOM - Period 114
SELECT SR/SRCOM – Special Resource . . . 114
SELECT WS/WSCOM – Workstation 114
SELECT WSV/WSVCOM – Virtual workstation
destination 115

SETSTAT – Sets a Condition status 115
SETSTAT CPSIMP – Condition dependency . . 115

TERM – Terminate IBM Workload Scheduler for
z/OS session 116

Chapter 6. Current Plan Operation
commands 117
Common syntax 117

Identification keywords 117
Filter keywords. 120
Data keywords 121

Performance considerations. 122
Relative date and variables 123
Automatic detection of current state of
operation 123
SAVELIST and USELIST. 124
Relationship to the EQQWXMOD WAPLEXEC 124

ALTER 124
Managing split or inconsistent occurrences . . 126

BIND 128
FIND 128
FORCE 129
HOLD. 129
KILL 129
NOP 130
QUEUE_BEHIND 130
RELEASE. 131
REPLY. 131
UNNOP 132

Chapter 7. Current Plan Occurrence
commands 133
Common keywords 133
ALTIF – Alter operations if specific criteria are true 133
RUNIF – Run operations only if specific criteria are
true 134

Chapter 8. Function Based commands 139
ADD – Add applications or groups to the current
plan 139

Usage notes for ONCE mode 143
Usage notes for REPEAT mode 143
Terminating repeating 145
Persistent data 145

ADDJOB – Add job to the current plan 146
CONSOLE – Issue z/OS console commands . . . 150
GETDATES – Generate a list of run dates from a
run cycle rule 151
LISTJOB – List job attributes from the database . . 152
LISTSTAT – List Status of Current Plan Objects . . 155

OBJECT 157
Performing SRSTAT actions with LISTSTAT . . 157

SENDMAIL – Send an email via z/OS SMTP. . . 159
SENDMSG – Send a TSO message 160
WSALTER – Alter intervals on a workstations in
the current plan 160

Chapter 9. Using TSO commands
within Workload Automation
Programming Language. 163
BACKUP – Initiate JCL or CP backup 163
BULKDISC – Initiate Bulk Discovery 163
JSUACT – Activate/Inactivate Job Submission . . 164
OPINFO – Update Operation User field 164
OPSTAT – Set operation status 164
SRSTAT – Set special resource status 164
WSSTAT – Set workstation status. 164
Other TSO commands 164

Contents v

||

Chapter 10. Batch loader commands 165
Modes of operation 165

OPTIONS DBMODE 165
Batch loader ACTION 166

Output masking 167
Batch loader syntax enhancements 167

SETDEFAULT behaviour in Workload
Automation Programming Language 170
Keyword abbreviation 170
Suffixing 171
NEW_ keywords 172

AD – Application definition record 172
Automatic Operation numbering 173
Automatic dependencies 174
Submitting batch loader directly to the current
plan 175
ADAPD - Application Dependency 176
ADCIV – External conditional dependency
interval 178
ADCNC – Condition 180
ADCNS – Conditional dependency 180
ADDEP - Dependency 182
ADEXT – Extended information (ADOPEXT
segment) 184
ADOP - Operation 185
ADRE – Remote job information 190
ADRULE - Rule 190
ADRUN – Run cycle 192
ADSAI – System Automation information
(ADOPSAI segment) 194
ADSR – Special Resource reference 195
ADSTART – Application common details . . . 196
ADUSF – User Field (ADUSRF segment) . . . 199
ADVDD – Variable durations and deadlines . . 199
ADXIV – External dependency interval. . . . 200

AWSCL – All Workstations Closed record 201
AWCSTART – All workstations closed 201

CL – Calendar record. 201
CLSTART – Calendar common details (CLCOM
segment) 202
CLDATE – Specific date (CLSD segment) . . . 202
CLDAY – Day of the week (CLWD segment) 203

ETT – Event Trigger Record 203
ETTSTART – Trigger definition 203

JB – Ad-hoc in the current plan 204
JBSTART – Application details. 205
JBCIV and JBXIV – External dependency
selection criteria 206
JBCNC and JBCNS – Conditional dependencies 206
JBDEP, JBPRE and JBSUC – Dependencies . . . 206
JBRUN and JBRULE - Run cycle and rule . . . 206

JCLV – JCL Variable Table record 206
JCLVSTART – Variable table common details
(JCLVCOM segment) 207
JCLVVAR – Variable details. 207
JCLVDEP – Dependent value pair 209

JS – Current Plan JCL record 210
JSSTART behaviour 210
JSSTART – Current Plan JCL entry (JSCOM
segment) 211
JST – Line of JCL (JST field of JSCOM) 211

OI – Operator Instruction record 211
OISTART – Period common details (PRCOM
segment) 212
OIT – Line of Text (OIT field of OICOM) . . . 213

PR – Period record 213
PRSTART – Period common details (PRCOM
segment) 213
PRDATE – Interval (PRTAB field of PRCOM) 214
Automatic Interval generation 214

RG – Run cycle group record 215
RGSTART – Run cycle group common details
(RGCOM segment) 215
RGRUN – Run cycle group individual run cycle 216

SR – Special Resource record 218
SRSTART – Special Resource common details
(SRCOM segment). 219
SRDWS – Default workstation 221
SRIVL - Interval 221
SRIWS – Connected workstations. 222

WS – Workstation record 222
WSSTART – Workstation common details
(WSCOM segment) 222
WSAM – Access Method 223
WSSD – Specific date 224
WSWD – Week day 224
WSIVL – Interval details. 224
WSDEST – Virtual Workstation Destination . . 224

WSV – Virtual Workstation destination record . . 225
WSVSTART – Virtual Workstation (WSVCOM
segment) 225
WSVSD – Specific date 226
WSVWD – Week day 226
WSVIVL – Interval details 226

Chapter 11. Variable substitution . . . 229
Variable naming convention 229
Variable value look up process 229
Variable parsing rules 230
Variable resolution and REXX interpretation . . . 231
Object variables 232
SAVELIST as object variables 235
VARDATE – Generate date and time values from
rule 236
VARSAVE – Save variables in a JCL Variable Table 242
VARSET – Set a Workload Automation
Programming Language variable 243
VARSUB – Control variable substitution 250

Chapter 12. Record processing. . . . 253
LIST-SELECT Common Segment vs Record . . . 253

OUTPUT and LOADDEF 253

Appendix A. Resource reference . . . 255
Alternative resource names 255
OUTPUT field definition reference 256
Setting additional fields 287

Reserved fields 287
Composite fields 287
Raw and untranslated fields 288

vi IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

||

||

Appendix B. OPTIONS keywords . . . 289
ACTION – See DBMODE 289
ADOICHK – Consistency check 289
ADPFX – Prefix for dynamically created
applications 289
ADSFX – Suffix for dynamically created
applications 289
ADVALFROM – Valid From generation 289
ADVERS – Application versioning 289
ADWS – Workstation for dynamically submitted
jobs 290
BLSTYLE – Style of Batch Loader output 290
CALENDAR – Set default calendar name 290
CHARAT – Set the at sign (@) for object variables 290
CHARBANG – Set the exclamation mark (!) for
default variable prefix 290
CHARHASH – Set the number sign (#) for count
object field and ENVATTR 291
CHARMAIL – Set the at sign (@) for email
addresses. 291
CHECK – Application integrity 292
COMMIT – File output caching 292
COMPSUCC – Set the default values for the
ADDJOB and JBSTART commands 292
CONINFO – Information level IEExxxI message
numbers 292
CONNAME – MCS console name 292
CONWAIT – Wait timing for response messages 293
CONWARN – Warning level IEExxxI message
numbers 293
CONTENTION – Retry limits 293
CPDEPR – Current Plan dependency resolution 293
CPFAIL – How to handle Current Plan
modification failure 294
DATE – Workload Automation Programming
Language internal date 294
DATA – ILSON data destination 295
DBMODE – Mode of operation for database
updates 295
DECODE – Determine which fields to decode . . 295
DELAY – Post update delay specification 295
DELAYCMD – Commands to wait after 295
DELETE – Automatic delete processing. 296
DELFILE – File to write deferred DELETE to . . . 296
DLM – End of instream data delimiter 296
DROP – Circumvent occurrence split for ALTER
DROPSUCC/PRED 296
DUPAUTO – Allow automatic SELECT statements
to output duplicates 297
DURUNIT – Duration unit for Batch Loader . . . 297
DYNATTR – Set attributes for dynamic log . . . 297
DYNLOG – Create a dynamic copy of the
Workload Automation Programming Language log. 298
EXECUTE – Automatic Current Plan EXECUTE 298
EXPAND – LIST related objects 298
FAIL – Action to take with return codes 299
FASTPATH – Current Plan search option 300
FIELDSEP – ILSON field separator 300
FILESPEC – File Specification DD statement . . . 300
FIRST – Logical First operation 300

FREEMAX – Maximum number of consecutive free
days to skip 301
GTABLE – Default Global Table 301
HIGHRC – Highest accessible return code 301
IFCMD – Default step to consider for command
return code checking 301
IFJCL – Default step to consider for JCL step return
code checking 301
IGNORE – Default value for ADDJOB IGNORE
keyword 302
INCLEVEL – Message level for INCLUDE
statements 302
INPUT – Command input DD statement 302
JSFILE – DD name of input JCL for JSSTART . . . 303
LABELSEP – ILSON label separator 303
LAST – Last logical operation 303
LIMIT – Unconstrained loop limit 303
LOADER – Batch Loader output destination . . . 303
LTDEPR – Long Term Plan dependency resolution 304
MAILDD – DD name of input text for SENDMAIL 304
MAILFROM – Email address of mail sender . . . 304
MAILSERVER – Domain name of the mail server 304
MAILSMTP – DD name of SMTP output 304
MEMORY – Memory usage 304
MSGLEVEL – Output message level 304
OIFILE – DD name of input text for OISTART . . 305
OPID – Identify controlling operation 305
OPMSG – Send messages to console. 305
OUTMASK – Output mask 305
OVERWRITE – Whether to overwrite an object
during rename 306
OWNER – Owner ID for tables created by VAR*
commands 306
PGMPIF – Program to use for IBM Workload
Scheduler for z/OS communication 306
PGMSTOR – Program to use to manage storage 306
PGMWAIT – Program to use to wait 306
POSTPROC – Post process external data queue . . 306
PREMPTY – Action to take when creating period
with DATELIST and ADID 307
REPORT – Report output width 307
RETMSG <unavailable option> 307
RETMSGID <unavailable option> 307
RUNIF – Set defaults for conditional execution . . 307
RUNSTAT – Alter run cycle status 308
SENDDATA – Output ILSON data 308
SENDLOADER – Output Batch Loader. 309
SELECT – Automatic selection. 309
SETMAX – Influence default SETMAX behaviour 309
SETUP – Default SETUP attribute for Workload
Automation Programming Language variables
when saved 309
SEVERITY – Message severity levels. 309
SILENT – Silent running 310
SHOWDFLT – Show values that are set to defaults 310
SHOWKEYS – Display key information 310
SPE – Small Product Enhancements 310
STOPRC – Return code to terminate processing . . 311
STRIP – Remove trailing blanks and leading zeroes 311
SUBSYS – Input file for controller options 311
SUFFIX – Object name suffixing 312

Contents vii

SUPMSG – Message suppression 312
SYNTAX – Legacy syntax compatibility 312
SYSID – Tracker lookup method 313
TAGMODE – Set automatic tagging 313
TAGMASK – Set tagging mask 313
TEMPFILE – DD name of temporary library
allocation. 314
TIME – Workload Automation Programming
Language internal time 314
TRACE – Perform interface tracing 315
TRACKERS – Tracker lookup 315
UPDATE – Default value for UPDATE keyword 316
VARNAMES – Special characters to allow in
variable names 316
VERADGRD – Verify groups exist 316
VERSION – IBM Workload Scheduler for z/OS
version 316
VERSRWSN – Verify workstations 316
XMBLK – Whether to return a message control
block 317
XMSEV – Severity of messages to return in a
message control block 317

Appendix C. Workload Automation
Programming Language variables . . 319
Job level variables 319
Occurrence level variables 319
Operation level variables 321
Current variables 322
Subsystem variables 323

Appendix D. WAPLEXEC programs 325
Running WAPLEXEC programs 325
EQQWXBLX – Extract items from a large Batch
Loader backup 326

Function 326
Process control 326
Running the command 327

EQQWXCSR – Update resources in the Current
Plan 327

Function 327
Process control 327
Running the command 328

EQQWXCSV – Generate applications from a CSV
file 329

Function 329
Process control 329

Running the command 332
EQQWXHTM – Build an HTML version of a
calendar 332

Function 332
Process control 333
Running the command 336
Combining EQQWXHTM with other processes 337

EQQWXIAX – Input Arrival Cross Reference . . . 341
Function 341
Process control 342
Running the command 343

EQQWXJBU – Update applications for a job . . . 343
Function 343
Process control 344
Running the command 346

EQQWXNOE – Protecting against unconnected
applications 346

Function 346
Process control 347
Running the command 347

EQQWXPER – Generate week number variables
for a period 347

Function 347
Process control 348
Running the command 349

Appendix E. Messages and Return
Codes 351
Message Grouping 351
Messages 353

EQQI002 - EQQI099, Workload Automation
Programming Language control messages . . . 353
EQQI100 - EQQI199, Data exception messages 357
EQQI204 - EQQI299, Syntax related messages 364
EQQI300 - EQQI399, EQQYCOM control
messages 367
EQQI400 - EQQI499, Validation messages . . . 368
EQQI500 - EQQI599, Function based messages 368
EQQI900 - EQQI999, Trace messages 369

Notices 371
Trademarks 373
Terms and conditions for product documentation 373

Index 375

viii IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
||
|
||

||

||

||

||

Figures

1. Example of two automatic relinking scenarios 127
2. US calendar for 2015 339

3. Run dates for year 2015 341

© Copyright IBM Corp. 2016 ix

x IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Tables

1. Old and new routines 2
2. IBM Workload Scheduler for z/OS PIF

requests 11
3. DD statements used by Workload Automation

Programming Language 13
4. WPLI command control block 17
5. WPLO control block format 18
6. WPLORECS field content 18
7. DELETE AD – Application Definition 69
8. DELETE AWSCL – All Workstations Closed 70
9. DELETE CL – Calendar 70

10. DELETE CPCOND – Condition 70
11. DELETE CPOC – Current Plan Occurrence 70
12. DELETE CPOCPRE – Current Plan Occurrence

Predecessor 70
13. DELETE CPOCSUC – Current Plan Occurrence

Successor 71
14. DELETE CPOP – Current Plan Operation 71
15. DELETE CPPRE – Current Plan Predecessor 71
16. DELETE CPSIMP – Conditional predecessor 71
17. DELETE CPSR – Current Plan Operation

Special Resource 72
18. DELETE CPSUC – Current Plan Successor 72
19. DELETE CPUSRF – User Field 73
20. DELETE ETT – Event Trigger 73
21. DELETE IVL – Current Plan Workstation

Interval 73
22. DELETE JCLV – JCL Variable Table 73
23. DELETE JL – Job Log 73
24. DELETE JS – Current Plan JCL 74
25. DELETE LTOC – Long-Term Plan Occurrence 74
26. DELETE LTCPRE – LTP Conditional

Predecessor 74
27. DELETE LTPRE – Long-Term Plan Predecessor 74
28. DELETE OI – Operator Instruction 75
29. DELETE PR – Period 75
30. DELETE SR – Special Resource 75
31. DELETE VIVL – CP Virtual Workstation

Interval 75
32. DELETE WS – Workstation 76
33. DELETE WSV – Virtual workstation

destination 76
34. INIT subsystem 77
35. INSERT CPOC – Current Plan Occurrence 79
36. INSERT CPOCPRE – Current Plan Occurrence

Predecessor 79
37. INSERT CPOCSUC – Current Plan Occurrence

Successor 80
38. INSERT CPCOND – Current Plan Condition 80
39. INSERT CPOP – Current Plan Operation 80
40. INSERT CPPRE – Current Plan Predecessor 81
41. INSERT CPSAI – Current Plan System

Automation Info 82
42. INSERT CPSIMP – Current Plan Conditional

Predecessor 82

43. INSERT CPSR – Current Plan Operation
Special Resource 83

44. INSERT CPSUC – Current Plan Successor 83
45. INSERT CPUSRF – User Field 83
46. INSERT IVL – Current Plan Workstation

Interval 84
47. INSERT JCLPREP – JCL Preparation 84
48. INSERT LTOC – Long Term Plan Occurrence 84
49. INSERT LTPRE – Long Term Plan Predecessor 85
50. INSERT VIVL – CP Virtual Workstation

Interval 85
51. LIST ADCOM, LIST ADKEY – Application ID,

Application Key 89
52. LIST AWSCL – All Workstations Closed 89
53. LIST CLCOM - Calendar 89
54. LIST CPCONDCO – Current Plan Condition

(Common) 89
55. LIST CPOC – Current Plan Occurrence 90
56. LIST CPOPCOM – Current Plan Operation 90
57. LIST CPOPSRU – Current Plan Operation SR

Usage 92
58. LIST CPWSCOM – Current Plan Workstation 92
59. LIST CPWSVCOM – CP Virtual workstation

destination 93
60. LIST CSRCOM – Current Plan Special

Resource 93
61. LIST ETT – Event Triggers 93
62. LIST GENDAYS – Generate dates from a rule 94
63. LIST JCLVCOM – JCL Variable tables 95
64. LIST JSCOM – Current Plan JCL 95
65. LIST LTOCCOM – Long Term Plan Occurrence 95
66. LIST OICOM – Operator Instructions 95
67. LIST PRCOM – Period 96
68. LIST SRCOM – Special Resource 96
69. LIST WSCOM – Workstation 96
70. LIST WSVCOM – Virtual workstation

destination 97
71. MODIFY CPCOND – CP Condition 98
72. MODIFY CPEXT – CP Extended Operation

Info 98
73. MODIFY CPOC – Current Plan Occurrence 98
74. MODIFY CPOP – Current Plan Operation 99
75. MODIFY CPREND – Distributed remote job

info 101
76. MODIFY CPRENZ – z/OS remote job info 101
77. MODIFY CPSAI – Current Plan System

Automation Info 101
78. MODIFY CPUSRF – User Field 102
79. MODIFY CPWS – Current Plan Workstation 102
80. MODIFY CPWSV – CP Virtual Workstation

Destination 103
81. MODIFY CSR – Current Plan Special

Resource 103
82. MODIFY IVL – Current Plan Workstation

Interval 104
83. MODIFY LTOC – Long Term Plan Occurrence 104

© Copyright IBM Corp. 2016 xi

||
||
||

|
||
|
||

|
||

84. MODIFY VIVL – CP Virtual workstation
interval 105

85. SELECT AD/ADCOM – Application
Description 107

86. SELECT AWSCL – All Workstations Closed 108
87. SELECT CL/CLCOM - Calendar 108
88. SELECT CPCOND/CPCONDCO – CP

Condition 108
89. SELECT CPOC – Current Plan Occurrence 109
90. SELECT CPOP/CPOPCOM – Current Plan

Operation 109
91. SELECT CPUSRF – Current Plan Operation

User Fields 110
92. SELECT CPWS/CPWSCOM – Current Plan

Workstation 111
93. SELECT CPWSV/CPWSVCOM – CP Virtual

workstation destination 111
94. SELECT CRITPATH – Critical Path 111
95. SELECT CSR/CSRCOM – Current Plan

Special Resource 112
96. SELECT ETT – Event Trigger 112
97. SELECT JCLPREP – JCL Preparation 112
98. SELECT JCLPREPA – JCL Preparation

simulation 112
99. SELECT JCLV/JCLVCOM – JCL Variable

Table 113
100. SELECT JL/JLCOM – Job Log 113
101. SELECT JS/JSCOM – Current Plan JCL 113
102. SELECT LTOC/LTOCCOM – Long Term Plan

Occurrence 113
103. SELECT OI/OICOM – Operator Instructions 114
104. SELECT PR/PRCOM - Period 114
105. SELECT SR/SRCOM – Special Resource 114
106. SELECT WS/WSCOM – Workstation 114
107. SELECT WSV/WSVCOM – Virtual

workstation destination 115
108. SETSTAT CPSIMP – Condition dependency 115
109. Keywords for ADAPD 176
110. Keywords for ADCIV 178
111. Keywords for ADCNC 180
112. Keywords for ADCNS 180
113. Keywords for ADDEP 182
114. Keywords for ADEXT. 185
115. Keywords for ADOP 185
116. Keywords for ADRE 190
117. Keywords for ADRULE 191
118. Keywords for ADRUN 192
119. Keywords for ADSAI 195
120. Keywords for ADSR 195

121. ADSTART keywords 196
122. Additional ADSTART keywords when using

ACTION(SUBMIT) 198
123. Keywords for ADUSF. 199
124. Keywords for ADVDD 199
125. Keywords for ADXIV 200
126. Keywords for AWCSTART 201
127. Keywords for CLSTART 202
128. Keywords for CLDATE 202
129. Keywords for CLDAY. 203
130. Keywords for ETTSTART 203
131. Keywords for JCLVSTART 207
132. Keywords for JCLVVAR 207
133. Keywords for JCLVDEP 209
134. Keywords for JSSTART 211
135. Keywords for OISTART 212
136. Keywords for PRSTART 213
137. Keywords for PRDATE 214
138. Keywords for PRSTART 214
139. Keywords for RGSTART 216
140. Keywords for RGRUN 217
141. Keywords for SRSTART 219
142. Keywords for SRDWS 221
143. Keywords for SRIVL 221
144. Keywords for SRIWS 222
145. Keywords for WSSTART 222
146. Keywords for WSAM 224
147. Keywords for WSSD 224
148. Keywords for WSWD 224
149. Keywords for WSIVL 224
150. Keywords for WSDEST 225
151. Keywords for WSVSTART 225
152. Keywords for WSVSD 226
153. Keywords for WSVWD 226
154. Keywords for WSVIVL 227
155. Values for the FORMAT keywords 237
156. Valid combinations for ENVATTR 246
157. Alternative resource names 255
158. Job level variables 319
159. Occurrence level variables 320
160. Operation level variables. 322
161. Current variables 322
162. Subsystem variables 323
163. Old and new routines. 325
164. DD statements for EQQWXBLX 327
165. DD statements for EQQWXCSV 332
166. DD statements for EQQWXHTM 336
167. DD statements for EQQWXJBU 346

xii IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

||

||
||
||

About this publication

IBM® Workload Automation Programming Language for z/OS: User's Guide and
Reference shows you how to use the Workload Automation Programming Language
to easily access the features of the IBM Workload Scheduler for z/OS
programming interface (PIF).

This guide is part of a set of guides that allows you to program many aspects of
working with the products in the IBM Workload Automation family. These guides
comprise:
v IBM Workload Automation: Developer's Guide: Driving IBM Workload Scheduler for

z/OS

v IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

v IBM Workload Automation: Developer's Guide: Extending IBM Workload Automation

Note: If you control your z/OS® controller using Dynamic Workload Console,
information about the programming interfaces that you can use with the Dynamic
Workload Console are available in both of the other Developer's Guides in the set.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

With this product, you can use assistive technologies to hear and navigate the
interface. You can also use the keyboard instead of the mouse to operate all
features of the graphical user interface.

For full information, see the Accessibility Appendix in the IBM Workload Scheduler
User's Guide and Reference.

Technical training
Cloud & Smarter Infrastructure provides technical training.

For Cloud & Smarter Infrastructure technical training information, see:
http://www.ibm.com/software/tivoli/education

Support information
IBM provides several ways for you to obtain support when you encounter a
problem.

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:
v Searching knowledge bases: You can search across a large collection of known

problems and workarounds, Technotes, and other information.
v Obtaining fixes: You can locate the latest fixes that are already available for your

product.

© Copyright IBM Corp. 2016 xiii

http://www.ibm.com/software/tivoli/education

v Contacting IBM Software Support: If you still cannot solve your problem, and
you need to work with someone from IBM, you can use a variety of ways to
contact IBM Software Support.

For more information about these three ways of resolving problems, see the
appendix about support information in IBM Workload Scheduler: Troubleshooting
Guide.

Conventions used in this publication
Conventions used in this publication.

The publication uses several typeface conventions for special terms and actions.
Technical changes to the text are indicated by a vertical line to the left of the
change. These conventions have the following meanings:

Information type Style convention Example

Commands All capital letters CREATE

References in the text to
fields on panels

All capital letters QUANTITY

File and directory names,
input you should type in
panel fields

Monospace MYAPPLICATION

First time new term
introduced, publication titles

Italics Application

xiv IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 1. Overview

The Workload Automation Programming Language is a programming language
that provides you with easy access to the features of the IBM Workload Scheduler
for z/OS Program Interface (PIF).

Workload Automation Programming Language gives you full access to all the PIF
commands in an easy-to-use syntax, as well as a Batch Loader feature for all
elements of the database. Extended PIF commands perform more complex
functions from a single statement, such as determining the status of elements, and
access to the IBM Workload Scheduler for z/OS TSO commands from within the
same command stream.

Workload Automation Programming Language handles all the complicated
elements of communication blocks and data exchange, allowing you to
communicate with IBM Workload Scheduler for z/OS without having any
specialized knowledge of memory manipulation or data definitions, allowing you
to integrate IBM Workload Scheduler for z/OS with your operational environment
with minimum effort.

After installing APAR PI79321, you can call Workload Automation Programming
Language in the following ways:
v As a stand-alone batch job calling the main compiled REXX EXEC entry point

EQQYXTOP with commands passed as SYSIN. The JCL procedure EQQYXJPX is
provided for this purpose.

v As a batch job, called from your own REXX routines calling the main compiled
REXX EXEC entry point EQQYXTOP, passing commands, and receiving output
through the REXX stack. The JCL procedure EQQYXJPX is provided for this
purpose.

v As a started-task workstation operation, passing the commands through
operation user fields. Samples EQQWCMD1 and EQQWCMD2 are provided to
set up started-task workstation operations.

v As a load module, named EQQWAPL, with commands passed either through
SYSIN or using a control block created by a calling program. The JCL procedure
EQQYXJPL is provided for this purpose. Online within TSO as part of a dialog
process, calling the main compiled REXX EXEC entry point EQQYXTOP, passing
commands, and receiving output through the REXX stack. Samples EQQWTS*
are provided to set up calling WAPL from within TSO dialogs.

Note: The load module EQQWAPL runs without a TSO environment, therefore not
all the commands and options are available to it. For details about the limitations,
see “Running Workload Automation Programming Language as a load module” on
page 16.

Workload Automation Programming Language works as a session-based interface
to IBM Workload Scheduler for z/OS, sending a sequence of commands to a
specified IBM Workload Scheduler for z/OS subsystem. It communicates with only
one controller at a time, but can communicate with multiple subsystems in a single
run, opening and closing communication in turn.

Note: Although Workload Automation Programming Language can perform
functions across many items in the database and plans in a single run, the main

© Copyright IBM Corp. 2016 1

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

design criteria for the processing engine is focused on flexibility, simple syntax,
and ease of use. Because of this, running Workload Automation Programming
Language against large amounts of data in a single run can result in long run
times. For large data handling, use EQQYCAIN or bespoke PIF programs instead.

Similarities to the Scheduling Operational Environment

Workload Automation Programming Language is a supported version of
Scheduling Operational Environment, but not all the original features of
Scheduling Operational Environment are supported as part of the product. Some
unsupported features have been superseded by improved features in the language;
other unsupported features were used for migration purposes only, not for normal
usage.

Some of the unsupported features are still provided with the product, but are not
documented. Others are not provided, but can still be downloaded from the
z/Glue community website.

The following features are not currently supported by Workload Automation
Programming Language:

Segment processing exits
This is an obsolete way to manipulate data from Workload Automation
Programming Language. Basic data translation can be performed by the
TRANSLATE command, and any other data manipulation can be performed
by creating an Object variable and using the native Workload Automation
Programming Language commands to manipulate that data.

WAPLEXEC programming
Writing your own external REXX programs calling Workload Automation
Programming Language is no longer required, because the native
Workload Automation Programming Language engine can perform many
of the same processes that an external REXX routine could.

Some WAPLEXEC routines
Many of the original WAPLEXEC routines have now been superseded by
native Workload Automation Programming Language commands.
Although the syntax might be different, the functionality is broadly similar.
Table 1 shows the old and current routines.

Table 1. Old and new routines

Old routine Now replaced by...

EQQWXADD Workload Automation Programming Language ADD
command.

EQQWXJBF Workload Automation Programming Language LISTJOB
command. Although the output format is different, the
core function is the same, to find jobs in the database.

EQQWXMOD Workload Automation Programming Language Current
Plan Operation commands. For detailed information,
see Chapter 6, “Current Plan Operation commands,” on
page 117.

EQQWXLNK Workload Automation Programming Language ADD
command with LINK(YES).

2 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

The SUBSYSTEM specific input stream, set by OPTIONS SUBSYS
It is no longer supported because subsystem-specific options can now be
set in the default options member by using the ZSUBSYS variable and IF
statements.

EQQYXPRC procedure
The EQQYXPRC procedure that allows ISV product steps to be run in
parallel with Workload Automation Programming Language commands is
part of migration processing, therefore is not provided with Workload
Automation Programming Language nor supported.

SEQQWAPL and WAPLEXEC member names
The PARM members of the Scheduling Operational Environment have
been moved into a library called SEQQWAPL. As official product delivery
enforces a member naming prefix of EQQ for delivery, all of these
members have been renamed. The sample job EQQWPLCO will create
copies of the new members under the original name. The remaining
WAPLEXEC programs have also been renamed; for details, see
Appendix D, “WAPLEXEC programs,” on page 325. The original SOEEXEC
library can still be used with Workload Automation Programming
Language under the original names.

Note: The ILSON utility to convert IBM Workload Scheduler for z/OS data to ISPF
tables is not documented or supported as part of Workload Automation
Programming Language.

For all the supported WAPLEXEC commands, see Appendix D, “WAPLEXEC
programs,” on page 325.

Version compatibility
Workload Automation Programming Language is compatible with IBM Workload
Scheduler for z/OS from version 8.1 to version 9.3.

For cross-version compatibility, you can define to Workload Automation
Programming Language which version of IBM Workload Scheduler for z/OS to
operate as. In this way, Workload Automation Programming Language will allow
you to perform only actions applicable to that release, and will generate only
output compatible with that release. Performing database updates when specifying
an IBM Workload Scheduler for z/OS version other than the version of the
database might result in update failures if the object being updated has different
structures between the two releases.

You can specify the version to operate as by appending the version to the
subsystem name with a hyphen when you call EQQYXTOP, for example
SUBSYS='OPCA-930'. Otherwise Workload Automation Programming Language
loads support for the latest version that was generally available at the time it was
released.

You can change the version during a session with the OPTIONS VERSION statement,
which causes the operating mode to be initialized again. This would allow you to
perform some complex actions, for example, performing some V9.3 specific actions
with a V9.3 controller, and then later generating some V9.2-compatible output
within the same session from a V9.3 controller.

The version itself can be specified in a variety of formats, for example 9.3, 930,
V930, 9.3.0, or V9R3M0. If you use one of these formats as part of your naming

Chapter 1. Overview 3

|
|
|
|
|
|
|
|
|
|

convention for IBM Workload Scheduler for z/OS data sets, such as your message
library or load library, then you will be able to use the &VER symbol in the
EQQYXJPX procedure to form part of the names.

There is a special case of * that you can use either as VER=* from the JCL (only if
you are not using it in data set names), or as OPTIONS VERSION(*). This causes
Workload Automation Programming Language to start up using the latest
supported version available, but when it is connected to an IBM Workload
Scheduler for z/OS subsystem it will detect what version the subsystem is using
and automatically switch to that version.

Note: You can set VER=* only if you are working with IBM Workload Scheduler
for z/OS V9.3, or later. For IBM Workload Scheduler for z/OS earlier than V9.3,
you must set VER to the specific version you want to use (for example, VER=910
to communicate with a controller V9.1.0).

As well as major versions of the product, some new features could be released
between versions by applying PTFs. When this occurs, module EQQYXTOP is
given a new modification (MOD) level, as shown in the EQQB001I message at the
beginning of the Workload Automation Programming Language log. The MOD
level is shown after the version as a plus sign (+) followed by 3 digits:
EQQI001I ADCDMST1,JOB06592 Starting WAPL v9.3 +001

By default Workload Automation Programming Language always runs with the
latest version and MOD level. For any specifically selected version, without
selecting a MOD level Workload Automation Programming Language always
operates at the highest MOD level for that version.

The following features have been delivered by MOD levels:
v V930+001 October 2016 – Enable NOP, and HOLD in the database.

To select a specific MOD level within Workload Automation Programming
Language, specify the MOD level in the OPTIONS VERSION keyword. For
example, OPTIONS VERSION(V930+000) selects MOD level +000, which is the
original version 9.3 of the product, and suppresses the generation of any Batch
Loader keywords relating to NOP or Manually Hold in the database, along with
any other new features added to version 9.3 after the initial release.

Workload Automation Programming Language automatically sets the appropriate
value for the USRLEV keyword for any INIT statements it generates, and any
USRLEV statements that do not include a USRLEV keyword. Workload
Automation Programming Language does not override any USRLEV keywords
already present in an INIT statement.

To select the MOD level from JCL use the MOD symbolic parameter in the JCL, as
shown in the following example:
//RUNWAPL EXEC EQQYXJCL,
// VER=’V930’
// MOD=’+000’

During the rollout of a version upgrade, there could be times when you have
controllers operating at different levels of code. You can manage this by issuing
OPTIONS VERSION statements in your site default member, according to the
controller you are using, as shown in the following example:

4 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

VARSUB SCAN
IF !ZSUBSYS = "WSMC" THEN

OPTIONS VERSION(V930+001)
IF !ZSUBSYS = "WSLC" THEN

OPTIONS VERSION(V920)

Small product enhancements
For some versions of IBM Workload Scheduler for z/OS, new features were added
via PTF as Small Product Enhancements (SPEs). Some SPEs can modify the
structure of data within IBM Workload Scheduler for z/OS and Batch Loader.
Support for these features can be turned on selectively.

The following additional features were added to version 8.2:

WLM Workload Manager Scheduling Environment integration

PEND ACTIVE and PENDING support added to BCIT and BATCH LOADER

SA System Automation Integration

The following additional features were added to version 8.3:

JCLV JCL Variable improvements

VIWS Virtual Workstations

IP TCP/IP connection for IBM Workload Scheduler for z/OS started tasks

Although there is no IBM Workload Scheduler for z/OS version 8.4, because the
following version is 8.5, setting a version 8.4 within Workload Automation
Programming Language allows you to use all post 8.3 SPEs that were released
before version 8.5.

The following additional feature was added to version 8.5.1:

USRF Operation User Fields

To list Small Product Enhancements, use the SHOW SPE command.

To turn on an SPE delivered feature use OPTIONS SPE, as in the following example:
OPTIONS SPE(WLM,PEND)

To turn off an SPE delivered feature, turned on earlier in the session use OPTIONS
SPE; for example, OPTIONS SPE(WLM=N).

Any options added to an earlier version by SPE are automatically included in later
versions. Therefore WLM, PEND, and SA are automatically included in version 8.3
and later, JCLV and VIWS are automatically included in version 8.5 and later.

Using OPTIONS SPE to turn on an SPE that is automatically available for that release
is ignored. Using OPTIONS SPE to turn on an SPE that is not eligible for use with
the version of IBM Workload Scheduler you are running, generates an error.

Note: If you use the OPTIONS SUBSYS keyword to create subsystem-specific OPTIONS
members, the SPE keyword must be maintained within these members, because the
relevant enhancements are installed on each subsystem.

Chapter 1. Overview 5

|
|
|
|
|

Setting up the Workload Automation Programming Language
environment

If you run a version of SOE or Workload Automation Programming Language JCL
that refers to SEQQWAPL members without the EQQ prefix, ensure that you set
up the environment by running the EQQWPLCO sample job.

Note:

1. When you run Workload Automation Programming Language jobs under the
control of current plan, to enable the use of Workload Automation
Programming Language occurrence variables, or of the == short form, ensure
that you run the WAPL job with a user ID that has read access to the CP
occurrence or operation controlling the job. Otherwise, a message similar to the
following might be issued:
EQQI012A Job ZUSRDH1W,JOB02218 is external to IWS

2. To use Operation User fields to contain Workload Automation Programming
Language commands, ensure that you run the job with a user ID that has read
access to the CP occurrence or operation controlling the job, and read access to
the user fields containing the commands. Otherwise, a message similar to the
following might be issued:
EQQI145E No user fields match EQQ-SYN-*

3. To ensure accurate use of queries for input arrival, set CWBASE (century
window base) and HIGHDATE to 00 and 711231, respectively (these are the
default values). If CWBASE and HIGHDATE are set to values different than the
defaults, any queries against input arrival fields fail. If the EQQCPOP DD
statement is used together with the supplied variable &OYMD1, Workload
Automation Programming Language cannot locate itself in the current plan,
message EQQI012A is issued, and the supplied occurrence variables or user
fields are not accessed.
For details about the settings of CWBASE and HIGHDATE in the INIT
statement, see Customization and Tuning.

4. When you use Workload Automation Programming Language, do not set
DATINT to YES in the INIT statement of EQQYPARM. This setting would
create a lock conflict when performing OPTIONS DBMODE(UPDATE) or OPTIONS
DBMODE(COPY), and data could get lost.

Language support
Command syntax is in English, but output messages might be displayed in other
languages in later releases.

The language can be selected by the LANG symbolic parameter in the JCL.

Note: Workload Automation Programming Language does not support DBCS.

Command language
The WAPL command language is a combination of Workload Automation
Programming Language core commands, Data Access commands (native PIF
requests), Current Plan Operation commands, Function Based commands
(extended PIF requests), IBM Workload Scheduler for z/OS TSO commands, and
Batch Loader. The syntax uses the same conventions for all commands, which is
easy to learn and to use.

6 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

|

|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

Commands can be passed to Workload Automation Programming Language in
many ways. Workload Automation Programming Language reads commands from
the following input streams, in the following order:
1. EQQOPTS. You can use the optional EQQOPTS DD statement to set the

defaults for your environment when Workload Automation Programming
Language starts. If you define an EQQOPTS DD statement, it is read and run
before any other statements. Although EQQOPTS is intended to run OPTIONS
statements, you can use it to run any command; therefore you can decide to set
the OPTIONS and variables specific to the LPAR where the job is running.

2. The ARG= symbolic parameter in the JCL. This only passes keywords for an
OPTIONS statement. There are some immediate OPTIONS that can be specified
only as an argument, these take effect as Workload Automation Programming
Language starts and are not valid in OPTIONS statements elsewhere. This allows
Site and Subsystems to be overridden at Workload Automation Programming
Language startup in the program call or JCL.

3. EQQFILE. You can use the optional EQQFILE DD statement to set the default
file specifications for all your output files. Use of this DD statement is
deprecated, use of the LOADDEF statement in the command stream is
recommended instead. The SEQQWAPL library contains an assortment of
predefined members that can be used to load groups of OUTPUT statements. The
EQQFLALL member loads OUTPUT statements for every segment; the LOADDEF
equivalent of this is LOADDEF *. The name of the DD statement can be
overridden by OPTIONS FILESPEC(<dd>).

4. External data queue. If data is detected on the external data queue (REXX
stack) it is read as command input. If you use the INPUT keyword to pass a
control block address in a previous input stream, the contents of the control
block are added to the external data queue at this point, before it starts reading.
It processes only what is in the external data queue at the time it starts reading;
any lines added during the processing of the commands are not read at this
stage.

5. SYSIN. Use this optional DD statement to specify the commands for the session
you are running. By default, the DD name for this input source is called SYSIN
in batch, and INPUT when processed in the foreground, but you can set an
alternative name with the OPTIONS INPUT(<ddname>) statement specified in any
of the previous input sources.

6. Post Processing. If OPTIONS POSTPROC(YES) is set, any further content of the
external data queue will be processed at this point. The queue will be
processed until it is empty, so any additional lines created whilst processing the
queue will also be read.

Although there are many different streams through which you can specify
command input, these are intended to let you separate your statements into
standardized and reusable blocks. You can specify all your command input in one
simple single stream, making it simple to see exactly what you are asking
Workload Automation Programming Language to do in one place.

Note:

1. Each input stream is parsed in its entirety before any statement within it is run,
therefore any OPTIONS statement that has an impact on syntax does not take
effect until the start of the next input stream.

2. You must specify any syntax options in the OPTIONS or ARG streams.
3. You can set any subsystem-specific options in the OPTIONS stream by using the

ZSUBSYS variable and IF statements.

Chapter 1. Overview 7

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

4. If EQQYXTOP is being executed in foreground mode (rather than batch), a
command source is not read if it is referring to the SYSIN DD statement,
because this could lead to the program stalling if SYSIN is left allocated to the
terminal.

Output files

By default, Workload Automation Programming Language does not generate any
output from a LIST or SELECT command. To generate an output, you must specify
OUTPUT statements to define the segments and fields to be extract.

You can produce two kinds of output:

DATA It is produced in ISPF Streamed Output Notation (ILSON). This notation
allows you to easily read and update the records from your own programs,
without having to know much about the underlying record structure.
DATA records are written as a result of LIST and SELECT requests. If LIST is
performed with SELECT(Y), the output is written only for the subsequent
SELECT action, avoiding duplication of common segments.

LOADER
Also known as Batch Loader, this is a structured text representation of a
database object that you can use to define an object in the database. Batch
Loader records are written only as a result of a SELECT request.

Use the OUTPUT statement to define what records you want to extract, and in what
format. This statement defines also where the output is sent.

Use LOADDEF to load predefined sets of statements. The predefined statements
generate both DATA and LOADER output for every field available for each
segment. By default, DATA is sent to DD statement OUTDATA and LOADER is
sent to DD statement OUTBL.

For example, to load:
v OUTPUT statements for every segment available, specify LOADDEF *
v OUTPUT statements for all the segments in an application definition, specify

LOADDEF AD*

v Application definition statements and turn off batch loader, specify LOADDEF AD*
LOADER(-)

v Application definition statements, turn off batch loader, and send DATA output
to the external data queue, specify LOADDEF AD* LOADER(-) DATA(*)

Batch loader
Workload Automation Programming Language can extract all IBM Workload
Scheduler for z/OS database objects and Current Plan JCL into a Batch Loader
format.

To generate Batch Loader, you need a combination of OUTPUT statements (or
LOADDEF statements to load pre-built OUTPUT statements) and a SELECT request. The
SELECT request can either be a direct SELECT statement, or a LIST statement with
SELECT(Y). The SELECT request must select the complete record of the object for
which you require batch loader output.

8 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|

|

||
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|

|

|
|

|
|

|
|

|
|
|
|
|

The output can be complete batch loader, containing every complete field,
including the spaces. If you use OPTIONS STRIP(Y) and SHOWDFLT(N) the leading
zeroes, trailing spaces, and the keywords set to their default values, are removed.

The following example shows how to generate compact Batch Loader for today's
version of an application:
OPTIONS STRIP(Y) SHOWDFLT(N)
LOADDEF AD* DATA(-)
LIST ADCOM ADID(MYAPPL) VALID(=) SELECT(Y)

You can make the Batch Loader format compatible with EQQYLTOP for
Application Definitions and Operator instructions by using OPTIONS
SYNTAX(LEGACY); it uses similar constructs for all other objects. You can then use
this Batch Loader as input commands to Workload Automation Programming
Language to re-create these objects within IBM Workload Scheduler for z/OS.

Use the OUTPUT statements to influence what keywords appear in Batch Loader
statements generated from the database. Use the TRANSLATE command to transform
fields based on rules, to perform lifecycle management of database objects.

You can interchange Batch Loader and Command Language in the same step, in
any sequence you like, the only consideration being that you cannot place
Command Language statements within the scope of Batch Loader statements for
any individual IBM Workload Scheduler for z/OS object.

Command Language statements can cause Batch Loader statements to be
generated that have been modified by TRANSLATE processing. These Batch Loader
statements can be output to the external data queue to be run at the end of the
step by specifying OPTIONS POSTPROC(YES). This means that you can extract an
object from the IBM Workload Scheduler for z/OS database and reload it into the
database, adjusted for your development lifecycle, in a single step.

Use OPTIONS DBMODE to instruct Workload Automation Programming Language
about how to process the Batch Loader statements.
v Specify ADD or REPLACE to take the object exactly as described in the text and

update the database.
v Specify UPDATE or COPY to read the existing object from the database and apply

the changes as described in the text. Specify enough detail to clearly identify
each segment to update and the keywords for the fields to be changed; the
whole object does not need to be specified in text form. For multilevel objects,
set a Batch Loader statement for each segment level leading to the segment
being updated; for example, to update a dependency interval you need to
specify ADSTART, ADOP, and ADXIV.

v Specify EXPORT to use Batch Loader as input, pass through TRANSLATE statements
and generate new translated Batch Loader as output.

v Specify SCAN to check Batch Loader statements for basic syntax only.

IBM Workload Scheduler for z/OS PIF concepts
The following sections explain the basic concepts of the IBM Workload Scheduler
for z/OS programming interface (PIF) and data structure.

Data sources and structures
The use of the IBM Workload Scheduler for z/OS PIF is all about reading and
writing data from IBM Workload Scheduler for z/OS.

Chapter 1. Overview 9

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

|

Data can come from one of the following:
v Database
v Current Plan (including JCL)
v Long-Term Plan (including JCL)

Despite the different sources, the data follows the same basic rules.

Each entity in IBM Workload Scheduler for z/OS is represented by a single record;
for example, an Application record, an ETT rule record, and a Calendar record. The
record is formatted into one or more Segments.

A Segment is a subdivision of a record for a particular type of information.
Sometimes a record has only one segment of a particular type, sometimes it has
several. For example, an Application might have one common segment (ADCOM)
and several run cycle segments (ADRUN) and operation segments (ADOP). The
operations might have several special resources (ADSR), and so on.

The IBM Workload Scheduler for z/OS record structure is hierarchical, this means
that the segments are ordered in parent-child relationships. Hence, an operation’s
child segments follow their parent operation segment and precede the next
operation segment.

Every multi-segment object always begins with a Common Segment that defines
the key and high level information about the object. The easiest way to visualize
what is in the Common Segment is to think about what information appears in the
non-scrollable portion of the first panel you see when you browse an object.

The following example shows the relationships of the AD Record:
ADCOM -+- Common segment (1 per appl)

| |
+= ADAPD =+= Application dependency(ies)
|
+= ADRUN =+= Run Cycle(s)
| |
| +- ADRULE – Rule (1 per run cycle)
|
+= ADOP =+= Operation(s)

|
+= ADDEP = Dependency(ies)
|
+= ADXIV = External dependency interval(s)
|
+= ADSR = Special resource(s)
|
+- ADOPEXT – Extended name (1 per op)
|
+- ADOPSAI – System Automation (1 per op)
|
+= ADCNC = Condition(s)
|
+= ADCNS = Conditional dependency(ies)
|
+= ADCIV = Conditional dependency interval(s)
|
+= ADUSRF = User field(s)
|
+- ADVDD = Variable durations and deadlines
|
+- ADRE = Remote job

10 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

The following example shows the logical layout of the AD record (either an
application or job stream). An AD record could be a sequence of segments:
ADCOM ADAPD ADRUN ADRULE ADRUN ADRULE ADOP ADOP ADDEP ADSR ADSR ADOP ADDEP

When the programming interface retrieves a record it presents a header that lists
each segment name and the offset to where the segment starts. Workload
Automation Programming Language automatically processes the header and
decodes each segment in turn, allowing you to decide the segments to be
processed. If you want to use a Segment Processing Exit, the exit is automatically
called for every segment you referenced with the OUTPUT statement.

Use the SHOW OBJECT command to understand the structure of any IBM Workload
Scheduler for z/OS object.

For example, the SHOW OBJECT(CL) command shows all the available object
variables for a calendar with -n- showing where sequence numbers fit into the
syntax:
08/22 10.47.39 EQQI200I SHOW OBJECT(CL)
08/22 10.47.39 EQQI601A Object: @OBJ-CLNAME
08/22 10.47.39 EQQI601A Object: @OBJ-CLDAYS
08/22 10.47.39 EQQI601A Object: @OBJ-CLSHIFT
08/22 10.47.39 EQQI601A Object: @OBJ-CLDESC
08/22 10.47.39 EQQI601A Object: @OBJ-CLVERS
08/22 10.47.39 EQQI601A Object: @OBJ-CLLDATE
08/22 10.47.39 EQQI601A Object: @OBJ-CLLTIME
08/22 10.47.39 EQQI601A Object: @OBJ-CLLUSER
08/22 10.47.39 EQQI601A Object: @OBJ-CLLUTS
08/22 10.47.39 EQQI601A Object: @OBJ-#CLSD
08/22 10.47.39 EQQI601A Object: @OBJ-CLSD-n-CLSDDATE
08/22 10.47.39 EQQI601A Object: @OBJ-CLSD-n-CLSDSTAT
08/22 10.47.39 EQQI601A Object: @OBJ-CLSD-n-CLSDDESC
08/22 10.47.39 EQQI601A Object: @OBJ-#CLWD
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDDAY
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDNUM
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDSTAT
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDDESC
08/22 10.47.39 EQQI299I Statement completed - RC=0 (00000014)

IBM Workload Scheduler for z/OS PIF requests

A command within the IBM Workload Scheduler for z/OS PIF is known as a
request. Table 2 shows, at a high level, different types of PIF requests.

Table 2. IBM Workload Scheduler for z/OS PIF requests

Request Read/Write Acts upon Purpose

DELETE WRITE Database and Plans Deletes objects

EXECUTE WRITE Current Plan Commits updates to
the Current Plan

INIT Starts a session with
a controller

INSERT WRITE Database and Plans Creates a new record
or segment

LIST READ Database and Plans Searches for records

MODIFY WRITE Plans Updates records in
the plans

OPTIONS Sets session options

Chapter 1. Overview 11

|

Table 2. IBM Workload Scheduler for z/OS PIF requests (continued)

Request Read/Write Acts upon Purpose

REPLACE WRITE Database Updates records in
the database

RESET Current Plan Abandons updates to
the Current Plan

SELECT READ Database and Plans Reads a single record

SETSTAT WRITE Current Plan Changes a condition
status

TERM Terminates a session
with a controller

INIT and TERM requests are done for you automatically, though you can do your
own INIT and TERM requests many times in a Workload Automation Programming
Language session to communicate with different controllers.

For the requests that directly read or write data, you must specify enough of an
item key to uniquely identify a single object, with the exception of LIST. The LIST
statement is used to find records. From the returned LIST you can derive the
unique key for every object found, against which you could then take an action
(for example, SELECT, DELETE, MODIFY).

LIST requests are always performed against the Common Segment. However,
SELECT requests can be performed against the entire record, to retrieve all the
segments or just the common segment.

The requests that write data work in one of the following ways:
v Database updates are performed by creating the whole record in storage before

sending it to IBM Workload Scheduler for z/OS. Database updates are handled
in Workload Automation Programming Language by Batch Loader constructs.

v Plan updates are performed by using keywords with the MODIFY or INSERT
instructions to alter the values of fields within the object. Plan updates are
handled in Workload Automation Programming Language by commands.

12 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 2. Running Workload Automation Programming
Language

You can run Workload Automation Programming Language as a batch job by using
the compiled REXX exec, as a load module, online within a TSO session, as a
started task workstation, or as a console command.

By installing APAR PI79321, you can run Workload Automation Programming
Language without the need of reference files at startup time, and with a JCL that is
simpler and more efficient. Therefore, the old procedure EQQYXJCL is deprecated;
it is still provided to support legacy SOE and WAPL jobs.

You can run Workload Automation Programming Language with the following
methods:

EQQYXTOP
Use this compiled REXX EXEC in batch or online TSO. It can be called by
other REXX EXEC programs and receive commands through the REXX
stack. It can also send data to calling EXEC programs through the REXX
stack. The EQQYXJPX procedure is provided to execute EQQYXTOP.

This should be the primary method to run Workload Automation
Programming Language.

EQQWAPL
Use this load module in batch, or call it from other load modules.
Commands are passed through a control block and data is received by a
control block. The load module does not create an internal TSO
environment, so some commands and options are not available. The
EQQYXJPL procedure is provided to execute EQQWAPL.

Table 3 shows the DD statements used by Workload Automation Programming
Language and their description. You can specify alternative DD statements as
destinations for the output with the LOADDEF statement. The following example
shows how to send ILSON data to MYDATA and Batch loader output to the REXX
stack:
LOADDEF AD* DATA(MYDATA) LOADER(*)

Table 3. DD statements used by Workload Automation Programming Language

DD statement Description

EQQDUMP Optional. A diagnostic log, which might include additional
information about problems. Use this DD statement if you
specified TRACE in EQQYPARM.

EQQMLIB Required. The IBM Workload Scheduler for z/OS message
library, which is normally delivered in the SEQQMSG0 library.

EQQMLOG Required. The log for any message issued from IBM Workload
Scheduler for z/OS.

© Copyright IBM Corp. 2016 13

Table 3. DD statements used by Workload Automation Programming Language (continued)

DD statement Description

EQQOPTS Optional. Use this DD statement to set the options specific for
your environment. It can be either a sequential file, a member in
a partitioned data set, or a library.

When you use EQQWAPL as a service within a permanently
available started task, do not use EQQOPTS, because if the
started task tries to run EQQWAPL in parallel this might
produce I/O problems.

EQQSMTP Optional. This DD statement is needed only if you are issuing
the SENDMAIL command. Define a SYSOUT DD statement
pointing at the SMTP class and writer, for example //EQQSMTP
DD SYSOUT=(B,SMTP)

EQQYLOGx Optional. If you define an EQQYLOGx DD statement, all
Workload Automation Programming Language messages are
directed to this file. x can be a number from 1 to 5, and
determines the message level used. For details, see “MSGLEVEL
– Output message level” on page 304.

EQQYPARM Optional. Use it to provide an override INIT statement, to set
running options.

OUTBL Optional. The default output destination for batch loader
statements when you use LOADDEF to load predefined output
statements.

OUTDATA Optional. The default output destination for ILSON data when
you use LOADDEF to load predefined output statements.

STEPLIB Optional. This DD statement is needed when:

v The IBM Workload Scheduler for z/OS load modules are not
link listed, or the version in the link list is not the version you
need.

v To provide access to user load modules that might call
EQQWAPL.

SYSPROC Used only for EQQYXTOP. Use this DD statement to point to
the library containing the REXX entry point EQQYXTOP. This is
normally delivered in the SEQQMISC library

SYSTSIN Used only for EQQYXTOP. TSO environment terminal simulated
input. Allocate to DUMMY.

SYSTSPRT Required (even if you defined an EQQYLOGx DD statement).
The main message output stream.

Running Workload Automation Programming Language in batch
With APAR PI79321, the JCL EQQYXJPX procedure is provided to run the
complete EXEC version of Workload Automation Programming Language in batch,
by applying the new method of loading EQQREF, EQQLANG, and EQQFILE
internally, and making EQQOPTS optional. Use EQQYXJPX instead of the
EQQYXJCL procedure for all new Workload Automation Programming Language
jobs; this will reduce startup I/O processing.

The simplest use of EQQYXJPX is a call to the procedure, with a SYSIN DD
statement to enter the commands. The following example shows how to add an
application to the plan:

14 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

|
|
|
|
|
|

|
|
|

//RUNWAPL EXEC EQQYXJPX,
// SUBSYS=WSMC
//SYSIN DD *
ADD ADID(ADHOC)

You can use the following symbolic parameters with EQQYXJPX:

ARGS Additional OPTIONS to be passed to Workload Automation Programming
Language. They are run after any statements in EQQOPTS, but before any
statements within the REXX stack, passed control block, or SYSIN.

CMD REXX EXEC entry point to use (default is EQQYXTOP).

To run your own REXX EXEC, call EQQYXTOP and pass the name of your
EXEC using the CMD symbolic. Ensure that your EXEC is included in the
SYSPROC concatenation.

REG REGION to allocate (default is 4M).

MOD

The Workload Automation Programming Language modification level.
Modification level indicates a release of Workload Automation
Programming Language between official versions. Specify the modification
level in the format +nnn, for example MOD=’+001’. The default is the
modification level of Workload Automation Programming Language
installed.

SUBSYS
The controller with which to communicate.

VER The Workload Automation Programming Language version. You can
specify the version in various formats, to allow the same symbolic to be
used in data set names where appropriate (for example VER=930,
VER=V930, VER=V9R3M0). The default is the version of Workload
Automation Programming Language installed.

Use the OUTPUT and LOADDEF statements to specify additional DD statements to be
used. By default, ILSON data is written to OUTDATA and batch loader data is
written to OUTBL, but keywords in LOADDEF overrides original keyword values in
the pre-defined OUTPUT statements.

The following example shows a Workload Automation Programming Language job
to send ILSON data to MYDATA DD statement. Because no LOADER keyword is
specified, Batch Loader data is sent to the OUTBL DD statement, according to the
default behavior.
//RUNWAPL EXEC EQQYXJPX,
// SUBSYS=WSMC
//MYDATA DD SYSOUT=*,LRECL=1024
//OUTBL DD SYSOUT=*
//SYSIN DD *
OPTIONS STRIP(Y) SHOWDFLT(N) SELECT(Y)
LOADDEF AD* DATA(MYDATA)
LIST ADCOM ADID(ADHOC) VALID(=)

Set the ARGS symbolic parameters to specify the OPTIONS keywords rather than
including them in SYSIN, as shown in the following example. In this way, the
OPTIONS are influenced directly in JCL, rather than within SYSIN data sets.
//RUNWAPL EXEC EQQYXJPX,
// ARGS=’STRIP(Y) SHOWDFLT(N) SELECT(Y)’,
// SUBSYS=WSMC
//MYDATA DD SYSOUT=*,LRECL=1024

Chapter 2. Running Workload Automation Programming Language 15

|
|
|
|

|

||
|
|

||

|
|
|

||

|

|
|
|
|
|
|

|
|

||
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

//OUTBL DD SYSOUT=*
//SYSIN DD *
LOADDEF AD* DATA(MYDATA)
LIST ADCOM ADID(ADHOC) VALID(=)

Ordinarily, Workload Automation Programming Language batch jobs check if they
are being controlled within the current plan by searching for a started instance of
the jobname under which they are running, to find an operation with the same JES
number. This works if the job is submitted outside of the controller or tracker but
tracked in the current plan, or if the job is submitted from the controller or tracker.

For jobs that are submitted by the controller or tracker, you can be more efficient in
identifying the controlling occurrence by passing the details directly from supplied
JCL tailoring variables, using the EQQCPOP DD statement, as shown in the
following example:
//RUNWAPL EXEC EQQYXJPX,
// SUBSYS=WSMC
//SYSIN DD *
ADD ADID(ADHOC)
/*
//*%OPC SCAN
//EQQCPOP DD *
&OADID. &OYMD1.&OHHMM. &OOPNO

Running Workload Automation Programming Language as a load
module

In addition to running Workload Automation Programming Language as a
compiled REXX EXEC, you can also use the load module EQQWAPL.

Because EQQWAPL runs without a TSO environment, the following limitations
apply:
v The MEMBER keyword of OISTART and JSSTART is not available. You can specify the

text for these commands only by using the DLM keyword, or the respective OIT or
JST statement.

v The INCLUDE command cannot be used in the format INCLUDE
<DDNAME>(<MEMBER>). You can use other formats, for example INCLUDE <DDNAME>
and INCLUDE USER_FIELD(<name>).

v The JCL keyword of ADDJOB is not available.
v You cannot use the TSO commands BULKDISC, DEFINE, DELETE, JSUACT, and

REPRO. You can use the PIF version of DELETE to delete the database and plan
objects.

v You cannot use the DYNLOG and XLATE keywords of OPTIONS.

Apart from the above limitations, the EQQWAPL load module is equivalent to
EQQYXTOP. EQQWAPL is provided for scenarios where you want to call
Workload Automation Programming Language from other load modules or exits;
in all other cases, you can use EQQYXTOP.

To call the load module version from JCL, use the EQQYXJPL procedure. This
procedure is similar to EQQYXJPX, but it is set to run the load module instead of a
compiled EXEC. Other than the name of the procedure, running Workload
Automation Programming Language as a load module is the same as running the
EXEC. Within the procedure the differences are:
v IKJEFT01 is not run to establish a TSO environment.

16 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|

|
|
|
|
|

|

v The CMD symbolic points directly to the load module to execute (default
EQQWAPL).

v The SYSPROC and SYSTSPRT DD statements are omitted.

The following example shows a simple WAPL step to add an application to the
plan using the load module version of Workload Automation Programming
Language:
//RUNWAPL EXEC EQQYXJPL,
// SUBSYS=WSMC
//SYSIN DD *
ADDJOB ADID(ADHOC)

To call Workload Automation Programming Language from another load module
in batch, use the EQQYXJPL procedure. The following example shows the WAPL
step to call Workload Automation Programming Language from another load
module. There is no SYSIN DD statement, because the commands are passed to
EQQWAPL through a control block.
//RUNWAPL EXEC EQQYXJPL,
// CMD=MYPROG,
// SUBSYS=WSMC

You can pass commands to EQQWAPL through an ordinary SYSIN, but when
EQQWAPL is called by another load module, commands are passed through a
control block. Create the WPLI command control block as follows:

Table 4. WPLI command control block

Offset
(dec)

Offset
(hex) Length Type Field Description

00 00 4 Signed WPLILINE Number of 80 byte
input lines.

04 04 4 Unsigned WPLIOADR Address of output
data block. Must
be initialized to
zero.

08 08 4 Signed WPLIOSIZ Size of output
block. Must be
initialized to zero.

12 0C 4 Unsigned WPLIMADR Address of
message data
block. Must be
initialized to zero.

16 10 4 Signed WPLIMSIZ Size of message
data block. Must
be initialized to
zero.

20 14 80xWPLILINE Character WPLICMDS Each line of WAPL
commands.

Specify the commands to be passed to Workload Automation Programming
Language in the WPLICMDS field. Each line of command text must be long 80 bytes,
with normal continuation rules applying; you can use spaces to reach 80 bytes
length. The WPLILINE field must be set to represent the number of 80 byte lines,
because it refers to the command text in WPLICMDS. The WPLIOADR, WPLIOSIZ,
WPLIMADR, and WPLIMSIZ must be initialized to zero, because they will be set by
Workload Automation Programming Language if any data is returned.

Chapter 2. Running Workload Automation Programming Language 17

|
|

|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

||

|
|
|
|||||

||||||
|

||||||
|
|
|

||||||
|
|

||||||
|
|
|

||||||
|
|
|

||||||
|
|

|
|
|
|
|
|
|

The following example shows a control block running three command statements:
v OPTIONS STRIP(Y) SHOWDFLT(N)
v LOADDEF AD* DATA(-) LOADER(*)
v SELECT AD ADID(DAILYPLANNING)

If any data is directed to the REXX stack within EQQWAPL, this data is returned
to the calling program in a second control block.

After calling EQQWAPL, the calling load module checks the fields WPLIOADR and
WPLIOSIZ in the WPLI control block. If these fields are set to a value different from
zero, the data has been returned in a second control block WPLO. If messages have
been returned, WPLIMADR and WPLIMSIZ are set to a value different from zero, and a
second WPLO control block containing messages is created.

The WPLO control block has the following format:

Table 5. WPLO control block format

Offset
(dec)

Offset
(hex) Length Type Field Description

0 0 4 Signed WPLOLINE Number of WAPL
output lines.

4 4 Variable * WPLORECS Block of WAPL
output records.

Though batch loader data output from Workload Automation Programming
Language is set to 80 bytes, ILSON data output can be extremely variable in
length, therefore the WPLORECS field is made of a repeating pair of fields that
describe the length and text.

Table 6. WPLORECS field content

Offset
(dec)

Offset
(hex) Length Type Field Description

0 0 4 Unsigned WPLRLEN Length of WAPL
output record.

4 4 Variable Character WPLRTEXT WAPL output text.

WPLI:
START ADDRESS: 0000CAA0 LENGTH: 0xFC

00112233 44556677 8899AABB CCDDEEFF -0123456789ABCDEF-
000000 00000003 00000000 00000000 D6D7E3C9 *...OPTI*
000010 D6D5E240 E2E3D9C9 D74DE85D 40E2C8D6 *ONS STRIP(Y) SHO*
000020 E6C4C6D3 E34DD55D 40404040 40404040 *WDFLT(N) *
000030 40404040 40404040 40404040 40404040 * *
000040 40404040 40404040 40404040 40404040 * *
000050 40404040 40404040 40404040 D3D6C1C4 * LOAD*
000060 C4C5C640 C1C45C40 C4C1E3C1 4D605D40 *DEF AD* DATA(-) *
000070 D3D6C1C4 C5D94D5C 5D404040 40404040 *LOADER(*) *
000080 40404040 40404040 40404040 40404040 * *
000090 40404040 40404040 40404040 40404040 * *
0000A0 40404040 40404040 40404040 E2C5D3C5 * SELE*
0000B0 C3E340C1 C440C1C4 C9C44DC4 C1C9D3E8 *CT AD ADID(DAILY*
0000C0 D7D3C1D5 D5C9D5C7 5D404040 40404040 *PLANNING) *
0000D0 40404040 40404040 40404040 40404040 * *
0000E0 40404040 40404040 40404040 40404040 * *
0000F0 40404040 40404040 40404040

18 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|

|

||

|
|
|
|||||

||||||
|

||||||
|
|

|
|
|
|

||

|
|
|
|||||

||||||
|

||||||

Use WPLIOADR and WPLIOSIZ to get the control block data, then use WPLOLINE to
know how many records to retrieve from within the data. The first 4 bytes of
WPLORECS (the WPLRLEN field) describes how long the WPLRTEXT field is, and the offset
to the next WPLRLEN field. Repeat this process for the number specified in the
WPLOLINE field.

To call Workload Automation Programming Language from another load module
and use the WPLI control block, you must include a parameter string when you
call EQQWAPL. The parameter string must include the subsystem name and an
INPUT keyword that includes the address of the WPLI control block. The address
must be passed as an 8 byte hex address prefixed with 0x, for example IWSC
INPUT(0x0000CAA0).

Before calling EQQWAPL, the storage for the WPLI control block is obtained
within the calling program code. The storage for the WPLO control block is
obtained automatically during the running of EQQWAPL. After the control is
returned to the calling program, the storage for the WPLI and WPLO control
blocks is released within the calling program code.

Running Workload Automation Programming Language within an
online TSO session

Workload Automation Programming Language is primarily designed for use in
batch, but you can use it from within an online TSO session, either inside or
outside of the IBM Workload Scheduler for z/OS dialogs.

To use Workload Automation Programming Language from within a TSO session,
allocate the following files.

Note: Ensure that the appropriate level of the IBM Workload Scheduler for z/OS
load library is in the execution path, either through the link list or a STEPLIB
statement.

EQQMLIB
The IBM Workload Scheduler for z/OS message library. If Workload
Automation Programming Language is being run from within IBM
Workload Scheduler for z/OS dialogs, this file is already allocated.

EQQMLOG
The IBM Workload Scheduler for z/OS message log.

EQQOPTS
Optional file to provide environment default options. Allocate this file only
if you want to set environment defaults before any commands that the
process will run. For online performance reasons, to prevent additional
dynamic allocations, it is more efficient to include any relevant statements
in the main command stream.

To allocate the files, you can use one of the following ways:
v Within the TSO logon procedure.
v Within a startup CLIST or REXX, called as part of the TSO logon process.

Chapter 2. Running Workload Automation Programming Language 19

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

v Within an application CLIST or REXX that starts the set of dialogs in which
Workload Automation Programming Language is being called, using ALTLIB
and LIBDEF for REXX and ISPF libraries. This process can also free the files as
the set of dialogs is exited.

v In each individual REXX process that calls Workload Automation Programming
Language, using ALTLIB and LIBDEF for REXX and ISPF libraries. This process
can also free the files as the set of dialogs is exited.

Note: If you use mechanisms that free the files on exit, ensure that you do not
design a process that would cause problems for other applications running in ISPF,
in particular where split screen is needed.

Workload Automation Programming Language can then be called as an external
EXEC from within calling REXX, with the following syntax:
CALL EQQYXTOP (<subsys> <options>)
waplRC = RESULT

When run within TSO, the INPUT stream is read from a file called INPUT.
Workload Automation Programming Language does not read from a file called
SYSIN to prevent the risk of stalling if SYSIN was left allocated to the terminal,
which is the default position of SYSIN in the foreground. Alternatively, input can
be placed on the REXX stack before calling Workload Automation Programming
Language by passing an option of INPUT(-OFF-); commands are read directly from
the stack without having to allocate an input file to pass the commands.

The EQQJOBS process creates some examples in the EQQJOBS output file that you
can use, and optionally customize, as a basis to run Workload Automation
Programming Language online:

EQQWTSO1
Shows how to define a Workload Automation Programming Language
environment, run a complete Workload Automation Programming
Language process, and reset the environment in a single member.

EQQWTSO2
Shows how to run a complete Workload Automation Programming
Language process in a single member, having the environment already set
up.

EQQWTSO3
Shows a generic Workload Automation Programming Language execution
member that defines a Workload Automation Programming Language
environment, calls Workload Automation Programming Language with
commands queued before this member is called, and then resets the
environment without processing any output.

EQQWTSO4
Shows a generic Workload Automation Programming Language execution
member that assumes that a Workload Automation Programming
Language environment has already been defined, calls Workload
Automation Programming Language with commands queued before this
member is called, and then exits, leaving the calling member to process
any output.

EQQWTSX3
Is an example of a process queueing commands to the stack before calling

20 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|

|
|

EQQWTSO3, which manages the Workload Automation Programming
Language environment setup, and then processes the output when
EQQWTSO3 completes.

EQQWTSX4
Is an example of a process queueing commands to the stack before calling
EQQWTSO4, which assumes that the Workload Automation Programming
Language environment is already set up, and then processes the output
when EQQWTSO4 completes.

Running Workload Automation Programming Language on a started
task workstation

You can run Workload Automation Programming Language on an IBM Workload
Scheduler for z/OS started task workstation. In this way, you can code Workload
Automation Programming Language commands within user fields, enabling
commands to be issued without creating individual jobs.

To use this capability, you must create a started task workstation. For details about
configuring a started task workstation, see IBM Workload Scheduler for z/OS:
Planning and installation.

The Started Task Workstation feature operates differently, according to the setting
of the OPCOPTS RCLEANUP statement.

If you set OPCOPTS RCLEANUP(YES):
v The started task JCL can be defined as a job that can call the started task.
v The installed EQQYXJPX procedure can be called directly from the library in which

it is installed either by including it in the necessary concatenation, or by using a
JCLLIB statement.

v Symbolic overrides can reference GLOBAL variables, allowing application tables to
override them for individual jobs.

The following example shows an STC job for RCLEANUP(YES) (EQQJOBS member
EQQWCMD1):
//EQQWCMD1 JOB CLASS=A,MSGCLASS=X
//*%OPC SCAN
//**
//* THIS SHOULD BE USED ON AN STC WORKSTATION TO RUN WAPL COMMANDS FOR
//* INSTALLATIONS WHERE OPCOPTS RCLEANUP(YES) IS USED.
//*
//* IT IS RECOMMENDED THAT THE JOBNAME BE PREFIXED BY THE SUBSYS NAME
//* E.G. TWSACMD1
//*
//* TO ENABLE USER WAPL MEMBERS TO BE INCLUDED FROM WITHIN USER FIELDS
//* ADD A DD STATEMENT POINTING TO YOUR OWN CODE LIBRARY E.G. USRCODE
//*
//**
//EQQYXJCLPX EXEC EQQYXJPX,
// SUBSYS=TWSA
//EQQYLOG3 DD SYSOUT=*
//*USRCODE DD DISP=SHR,DSN=MY.USER.CODE
//SYSIN DD DISP=SHR,DSN=TWS.V920.SEQQWAPL(USRSYSIN)
//EQQCPOP DD *
&OADID. &OYMD1.&OHHMM. &OOPNO

If you set OPCOPTS RCLEANUP(NO):
v Define the JCL as a procedure.

Chapter 2. Running Workload Automation Programming Language 21

v Modify a copy of EQQYXJPX, with additional JCL statements appended for
running as an STC operation.

v Specify OPCOPTS VARPROC(YES) to have the IBM Workload Scheduler for z/OS
JCL variables resolved within a procedure.

Note: If VARPROC is not set to YES, be cautious when turning on this feature.
Check all pre-existing JCL to search for any jobs that contain both //*%OPC SCAN
and any instream procedures, because these might be affected by this change if the
//*%OPC SCAN statement precedes the instream procedure, and symbolic
parameters are coded within the procedure.

The following example shows additional statements to add to EQQYXJPX to create
an STC job for RCLEANUP(NO) (EQQJOBS member EQQWCMD2):
//**
//* THIS SHOULD BE USED ON AN STC WORKSTATION TO RUN WAPL COMMANDS FOR
//* INSTALLATIONS WHERE OPCOPTS RCLEANUP(NO) IS USED.
//*
//* IT IS RECOMMENDED THAT THE JOBNAME BE PREFIXED BY THE SUBSYS NAME
//* E.G. TWSACMD1
//*
//* TO ENABLE USER WAPL MEMBERS TO BE INCLUDED FROM WITHIN USER FIELDS
//* ADD A DD STATEMENT POINTING TO YOUR OWN CODE LIBRARY E.G. USRCODE
//*
//**
//EQQYLOG3 DD SYSOUT=*
//*USRCODE DD DISP=SHR,DSN=MY.USER.CODE
//SYSIN DD DISP=SHR,DSN=TWS.SEQQWAPL(USRSYSIN)
//*%OPC SCAN
//EQQCPOP DD *
&OADID. &OYMD1.&OHHMM. &OOPNO
// PEND

Regardless of how you set RCLEANUP:
v An EQQCPOP DD must be coded as shown to pass the occurrence ID to the

process.
v An OPC SCAN statement is required to resolve the occurrence variables.
v The SYSIN can point to member USRSYSIN in the SEQQWAPL library, which

contains command INCLUDE USER_FIELD(EQQ-SYSIN-*) that points Workload
Automation Programming Language to the user fields of the submitting
operation to find the commands to run.

v Consider adding an additional DD statement, with a name of your choice, that
points to a library in which Workload Automation Programming Language
INCLUDE members could be stored and referenced from within the commands
that are run by this job. If you do this, ensure that either the library is used
regularly, or an appropriate HSM management class is assigned to avoid
migration; an INCLUDE library that is not regularly used could become
migrated and delay Workload Automation Programming Language commands.

v Consider adding an EQQYLOG3 DD statement, because INCLUDE processing
means that the commands run from user fields will appear only at message level
3.

The commands can then be coded as user fields prefixed with EQQ-SYSIN- and
are run in sort order.

There can be up to 100 user fields, some or all of which could be Workload
Automation Programming Language statements, each up to 54 characters in length.

22 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|

Normal Workload Automation Programming Language continuation rules apply,
therefore if a command does not fit within 54 characters it can continue in the next
user field.

The following example shows commands coded in User Fields. This example in
the first operation of an application will seek and HOLD or NOP any operations
tagged with appropriate user fields and values.

Because a started task is not limited to a single occurrence of the same name
running simultaneously, you define only a single Workload Automation
Programming Language started task, which can run many times in parallel. It is
recommended that you use a special resource exclusively for any Workload
Automation Programming Language started task operations, to limit the number of
processes you want to allow in parallel.

Running Workload Automation Programming Language as a console
command

You can create custom versions of the EQQYXJPX procedure, for each controller
you have, that enable simple Workload Automation Programming Language
commands to be run from the console or automation products.

You do this by using a special entry point value of CMD called EQQYXSTC, which
takes the ARGS value and runs it as a command, allowing a single command to be
entered at the console. The custom version would be similar to the normal
EQQYXJPX, but would be specifically customized for the controller values in the
PROC statements and the CMD symbolic would default to EQQYXSTC to call the
special entry point.

The following example shows a custom proc for an IBM Workload Scheduler for
z/OS version 9.2 controller called WSLC to run a single command from the
console:
//WSLCEXEC PROC @=,
// ARGS=’’,
// CMD=EQQYXSTC,
// FILESPEC=FILENONE,
// LANG=EN,
// OPTFILE=’TWS.V920.SEQQWAPL’,
// OPTS=OPTDEFLT,
// REF=REFERNCE,
// REG=4M,
// SUBSYS=WSLC,
// VER=V920,

---------------------------- OPERATION USER FIELDS ----------- Row 1 to 3 of 3
Command ===>

Scroll ===> CSR
Enter/Change data in the rows, and/or enter any of the following
row commands:
I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete
Application : CMDDEMO Demonstrate CMD1 WS
Operation : CMD1 001
Jobname : WSLCCMD1
Row User Field Name User Field Value
cmd ----+----1----+----2----+----3----+----4----+----5----
’’’’ EQQ-SYSIN-01 VARSUB SCAN
’’’’ EQQ-SYSIN-02 HOLD ADID(!OADID.) IA(!OYMD1.!OHHMM.) USRF(HOLD=YES)
’’’’ EQQ-SYSIN-03 NOP ADID(!OADID.) IA(!OYMD1.!OHHMM.) USRF(NOP=YES)
******************************* Bottom of data ********************************

Chapter 2. Running Workload Automation Programming Language 23

// #=
//EQQYXTOP EXEC PGM=IKJEFT01,
// REGION=®,
// PARM=&@’&CMD &SUBSYS-&VER &ARGS’&#

Provided that the customer procedure is placed in the correct library for started
tasks, you can run a console command such as S WSLCEXEC,ARGS=’ADD
ADID(MYAPPL)’.

Note: There is a restriction for this method that the commands to be issued cannot
contain single quotation marks. Single quotation marks are needed only in limited
circumstances with Workload Automation Programming Language, limiting the
impact of this restriction.

For triggering multiple commands from the console, provided that they can be
predefined, you can add a DD statement, for example MYCODE, within the
custom procedure to contain predefined groups of statements, which can then be
called as follows:
S WSLCEXEC,ARGS=’INCLUDE MYCODE(WHATEVER)’

This would include and execute a member called WHATEVER from the MYCODE
DD statement within the customer procedure.

With some automation products it is possible to define command rules to look for
an automation-specific prefix to then translate a short form of the command into a
started task call. For example, if you enter !WSLC ADD ADID(MYAPPL) automation
rules translate it to S WSLCEXEC,ARGS=’ADD ADID(MYAPPL)’.

Specifying the subsystem
To run Workload Automation Programming Language both batch and online, you
must set the SUBSYS parameter to specify the subsystem used when the
communication with IBM Workload Scheduler for z/OS was initialized.

When Workload Automation Programming Language finds a command that
requires communication with the IBM Workload Scheduler for z/OS PIF, it
automatically generates an INIT statement.

Note: Some OPTIONS keywords require communication with the IBM Workload
Scheduler for z/OS PIF.

To communicate with more than one IBM Workload Scheduler for z/OS subsystem
in a Workload Automation Programming Language session, you can initialize your
own connection to IBM Workload Scheduler for z/OS by using an INIT statement
before any other statement that requires the PIF.

SUBSYS is a required positional parameter, so even if you are specifying the
subsystem explicitly using INIT statements, you must provide a value. The default
in EQQYXJCL and EQQYXTSO is set to an asterisk (*) for this purpose.

You can also use the SUBSYS parameter to specify the default version to load at
startup.

24 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Using OUTPUT statements
Use the OUTPUT statements to define what information you want to extract from
IBM Workload Scheduler for z/OS, where to send it, and in what format.
Workload Automation Programming Language writes the output from LIST or
SELECT requests only if you have run OUTPUT statements for the segments
encountered in these commands.

Workload Automation Programming Language provides you with many
predefined OUTPUT statements. They are available either in external members that
you can include with the INCLUDE command, or through in-built statements that
you can specify with the LOADDEF command.

The OUTPUT statements are located in the SEQQWAPL library and consist of the
following types of members:

Segment members
There is a member for every IBM Workload Scheduler for z/OS segment
supported by Workload Automation Programming Language. The member
names match the segment names.

Record members
There is a member for every IBM Workload Scheduler for z/OS record
supported by Workload Automation Programming Language, that contains
each segment within that record. The member names match the record
names.

Group members
There are members for large groupings of records such as all Database
Records, all Current Plan records, and so on. The member names for these
members begin with EQQGRP.

There are also some members in the SEQQWAPL library whose names begin with
EQQFLxxxx. These members are designed to help you use Workload Automation
Programming Language as a command line to IBM Workload Scheduler for z/OS,
without having to consider in detail what OUTPUT statements you need. They are:

EQQFLALL
Includes definitions for all IBM Workload Scheduler for z/OS data
obtained by Program Interface commands (for example, SELECT and
LIST). This does not include all the tracking log records. EQQFLALL is a
historical name chosen before Tracking Log records were considered;
adding all tracking log records into EQQFLALL could result in slower start
times for existing Workload Automation Programming Language jobs.

EQQFLDB
Includes all IBM Workload Scheduler for z/OS database records.

EQQFLCP
Includes all IBM Workload Scheduler for z/OS current plan records.

EQQFLLTP
Includes all IBM Workload Scheduler for z/OS long term plan records.

EQQFLPLN
Includes all IBM Workload Scheduler for z/OS plan records (CP and LTP).

EQQFLSYS
Includes all IBM Workload Scheduler for z/OS system records.

Chapter 2. Running Workload Automation Programming Language 25

|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

Many EQQFLxxx and EQQGRPxxx members contain the same OUTPUT definitions. The
EQQFLxxx members contain also statements to escalate the severity of two messages
that would indicate whether you have referenced a segment or field not supported
by your current version of IBM Workload Scheduler for z/OS. By default, these
messages are advisory and do not set a return code. The FILE members cause
RC=4 if the OUTPUT statements following the content of the supplied member
references something that is not supported. The two different approaches allow for
unsupported fields to be ignored, for example, if running common code against
current and earlier versions of IBM Workload Scheduler for z/OS.

Individual segment, record, or group members can still be used with error
checking in place, either by adding the two SETSEV statements from the EQQFLxxxx
members into your site defaults (which will turn on checking for ALL OUTPUT
statements including the supplied ones) or by coding the statements in your SYSIN
to issue only RC=4 for invalid references in the statements that you create.

The in-built OUTPUT definitions include every field, for every segment, that sends
ILSON data to OUTDATA, and Batch Loader data to OUTBL. You can load these
definitions by using the LOADDEF statement. For example, set LOADDEF AD* to load
the in-built OUTPUT definitions for all the segments beginning with AD. If instead of
exploiting the in-built versions, you want to load the prebuilt members from
SEQQWAPL, use the INCLUDE statement.

The SEQQWAPL library must be allocated in the JCL, then an INCLUDE statement
can load the relevant member. For example, set INCLUDE WAPLMAPS(EQQADW) to load
the member that contains all of the OUTPUT statements for application description
segments. Load the in-built OUTPUT statements only when you need all the fields
for a particular segment, for example when extracting batch loader for database
objects. If you do not need every field from each segment in your output, define
your own OUTPUT statements. For a list of all available segment and field names,
refer to the SEQQWAPL member EQQFLALL described in “Alternative resource
names” on page 255

Workload Automation Programming Language commands syntax
The general syntax for all Workload Automation Programming Language
commands is COMMAND [RESOURCE] KEYWORD(value) KEYWORD(value)

Consider that:
v Some commands require a resource which is either the type of item, or an

individual item the command is acting upon. For these commands this is always
the second word of the command statement.

v Command keywords that have values are specified with the value contained
within parentheses. There must be no space between the keyword and the
opening parenthesis, because this is interpreted as a separate keyword.

v Keywords and their values can be separated from other keywords and their
values by commas, spaces, or both.

v If a keyword value requires parentheses, that value must be enclosed within
single quotation marks inside the keyword parentheses. For example,
KEYWORD('my.value(member)'). In all other cases, the containing quotation marks
are optional.

v Containing quotation marks are not passed through to the underlying process.
v If containing quotation marks are used, you must specify two consecutive single

quotation marks to represent a single quotation mark in the underlying process.

26 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

v A single quotation mark at the start of a value is considered to be a containing
quotation mark, and a terminating quotation mark is required at the end of the
value.

v Double quotation marks are always passed through to the underlying process.

Using comparators
When you need to specify comparators for a command (for example LIST) specify
them in the form KEYWORD-COMPARATOR(value). For example, VALFROM-GE(060124)

If no comparator is specified, EQ is assumed. If the PIF command does not support
comparators, they are ignored.

The following list shows the valid comparators:

EQ Equal to

NE Not equal to

LT Less than

GT Greater than

LE Less than or equal to

GE Greater than or equal to

The native PIF convention for specifying comparators is to specify the comparator
at the end of the field, and the comparison works counter intuitively. For example,
VALFROM=060124<= means when 060124 is less than or equal to the value of VALFROM
in the application in the database NOT when VALFROM in the database is less than
or equal to 060124.

The Workload Automation Programming Language notation works the more
intuitive way, therefore VALFROM-GE(060124) means list applications whose VALID
FROM date is greater than or equal to 060124.

Hence, VALFROM-GE(060124) translates to VALFROM=060124<= in native PIF.

You can still use the native PIF approach to specify comparators, by appending the
comparator onto the value inside the keyword parentheses, as follows:
VALFROM(060124<=)

Note: Comparators are valid only for native PIF commands LIST, SELECT, and
DELETE. They are not valid for keywords of any other command.

Setting dates and times
Some keywords allow you to enter dates, times, or datetimes. To use the current
date, time, or datetime, you can enter the equal sign (=) as the only content of the
keyword.

The following restrictions apply to the use of the equal sign (=) for dates and
times:
v It can be used only for fields whose value is specifically a date, time, or

datetime. You cannot use it for any other type of field, DESCR(=) is not a date or
time short form, DESCR(=) will result in the description being set to a single
equals sign.

Chapter 2. Running Workload Automation Programming Language 27

v It cannot form a part of the data. For example, IA(=) is allowed, while
IA(060124=) is not allowed.

v Do not use the equal sign (=) for field values in conjunction with native PIF
comparators. For example, IA-GE(=) is allowed, while IA(=<=) is not allowed.

The value used must be appropriate to whatever the date and time was when
Workload Automation Programming Language started. You can specify your own
values to substitute for the equal sign (=) by using OPTIONS DATE and OPTIONS
TIME.

You can also use the plus sign (+) or minus sign (–) in date or time fields to set
dates or time relative to the Workload Automation Programming Language
internal date and time. For example, VALFROM(+7) will be a date in 7 days time,
STARTTIME(+10) will be in ten minutes time.

If you use the plus sign (+) or minus sign (–) in a time field, this might result in
carry over to other fields if the addition or subtraction crosses a date boundary. Be
aware that in some cases this can create an invalid value for some fields. The
following fields perform automatic carryover:
v OPTIONS TIME will carry over into OPTIONS DATE
v Long Term Plan IAT will carry over into IAD
v Long Term Plan PREIAT will carry over into PREIAD
v Batch Loader ADOP STARTTIME will carry over into STARTDAY
v Batch Loader ADOP DLTIME will carry over into DLDAY

Note: For consistency, the equal sign (=) short form uses the date and time when
you started your Workload Automation Programming Language session. This
ensures that you can use the equal sign (=) throughout your command statements
with consistency, preventing potential problems with dependencies being missed.
The exception to this is the @ function, which uses the input arrival of the
occurrence in which the Workload Automation Programming Language job is
running, if the job is under IBM Workload Scheduler for z/OS control.

For dates, the plus sign (+) or minus sign (–) adds or subtracts a number of
calendar days to the date. To add or subtract work days, you can use the WD
suffix. For example, ADD ADID(MYAPPL) IADATE(+3WD) adds the application to the
plan 3 working days from the current date.

When the job is being controlled by IBM Workload Scheduler for z/OS, the
calendar used by the calculation is the application calendar; otherwise the default
calendar, that you can set with OPTIONS CALENDAR, is used.

The calendar can be specified within the keyword by following the date offset with
a slash (/) and the calendar name, for example ADD ADID(MYAPPL)
IADATE(+3WD/MYCAL).

Termination, line numbers, and continuation
There is no termination character for a command statement. A command is
terminated when a new command word is identified as the first word on an input
line, or the end of an input stream is encountered. Continuation is automatic; no
continuation character is needed.

28 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Any line ending in a comma is continued onto the next line with no intervening
space, any other ending character results in an intervening space being considered
between the adjoined lines.

If a single keyword needs to be longer than an input line, then continuing that
statement up to the last column of available input (for example, column 80 for
instream SYSIN) results in the following line being directly abutted to the end of
the preceding line.

If line numbers were included in the input statements, column 72 is considered as
the last available input column. Workload Automation Programming Language
considers only line numbers to be set if every record of the input stream has only
numeric digits in columns 73 to 80. If any records have spaces or characters other
than 0 to 9 in columns 73-80, the content of columns 73-80 is considered valid
input for every record. If any record length other than 80 bytes is used for input,
Workload Automation Programming Language does not consider line numbers to
be set.

For compatibility with EQQYCAIN and EQQYLTOP batch loader format, you can
set OPTIONS SYNTAX(LEGACY) , which will ignore anything beyond column 72 and
consider 72 as the continuation column, connecting the following line from column
1.

Using termination characters such as semicolon (;) or period (.) is not accepted by
Workload Automation Programming Language.

Individual sub-segments for Batch Loader statements do not have to start on a new
line, only the xxSTART statement needs to start on a new line. For example, ADSTART
ADID(MYAPPL) ADOP OPNO(001) JOBN(MYJOB)

With a long enough SYSIN record length it would be possible to contain the entire
Batch Loader for a single IBM Workload Scheduler for z/OS object on a single line
of input.

Inserting comments in a statement
You can specify comments by inserting lines that start with /* and terminate with
*/

Comments can use multiple lines, or be included anywhere within a statement.
Unless the comment is started at column 1, the comment start must be preceded
by at least one blank character between it, and the text it follows. For example:
/* ---+
| This is a multi line comment |
+--*/

COMMAND RESOURCE KEYWORD(VAL) /* TAIL COMMENT */

COMMAND RESOURCE /* EMBEDDED COMMENT */ KEYWORD(/*)

Note: Because /* in the KEYWORD(/*) is not preceded by a space, it is treated as
the value for the keyword not as the start of a comment.

Multi-line comments cannot span a text mode block of data, as in the following
example:

Chapter 2. Running Workload Automation Programming Language 29

JSSTART ADID(’CRITBATCH ’) IA(0805121738) OPNO(001)
JSJCL DLM(-END-OF-INPUT-TEXT-) /* Stop JCL
//*>OPC SCAN
//*>OPC TABLE NAME=TESTVAR
//* Y */
-END-OF-INPUT-TEXT-

Because the DLM keyword indicates the following line is text it is contradictory to
the open comment leading into the text. Text data in Workload Automation
Programming Language is treated as unprocessed input, so any comments within
the text are passed into the object it is defining. So in this case the open comment
will lead to a syntax error.

To comment out the data entirely, the following example shows the correct form:
JSSTART ADID(’CRITBATCH ’) IA(0805121738) OPNO(001)
JSJCL MEMBER(MYJOB) /* DLM(-END-OF-INPUT-TEXT-)
//*>OPC SCAN
//*>OPC TABLE NAME=TESTVAR
//* Y
-END-OF-INPUT-TEXT- */

Note: The comment start characters override all other directives, so if you want to
include /* within one of your statements with a preceding space, then you must
alter the comment start character using the OPTIONS COMSTART statement and
similarly with OPTIONS COMEND to use something other than */ to end a comment.
Consider that changing the default comment characters can affect the use of
predefined members such as EQQFLALL, which contains many comments in the
/* */ format.

The /* value can be included within a statement, provided that is not preceded by
a blank character.

For example, the OK variable will work, the NOTOK variable will be treated as
comment from column 33 onwards:
JCLVVAR VARNAME(OK) DEFAULT(’/*’) SETUP(N)
JCLVVAR VARNAME(NOTOK) DEFAULT(’ /*’) SETUP(N)

Special resource and user field names
With IBM Workload Scheduler for z/OS, the names of special resources and user
fields can contain characters different from alphanumeric and national characters,
but this would cause problems when parsing in Workload Automation
Programming Language.

Consider that:
v Quotes, spaces, and parentheses (and) can cause problems to read the syntax

of a command correctly.
v When using Workload Automation Programming Language with instream

SYSIN, characters &, %, and ? could be resolved by JCL tailoring unintentionally.
v The exclamation point (!) could be resolved by Workload Automation

Programming Language variable substitution unintentionally.
v The percent sign (%) and asterisk (*) could cause problems to commands that

need to use wildcards to search.
v /* and */ could be interpreted as a comment by Workload Automation

Programming Language.

30 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

These characters can cause problems especially in object names that form
searchable and key fields. You should avoid them when naming objects to be used
with Workload Automation Programming Language.

Special characters @, !, and #
The characters at sign (@), exclamation mark (!), and number sign (#) have special
usage in the Workload Automation Programming Language syntax.

at sign (@)
Used to identify object variables and to generate email addresses that have
no qualifying domain name.

exclamation mark (!)
The default value for variable prefixing when VARSUB SCAN is activated.

number sign (#)
Used in object variables to prefix count fields to indicate the number of
segments of a particular type. It is also used as a count indicator for VARSET
ENVATTR.

However, these characters can be displayed differently when different code pages
for different countries are used. They appear exactly as documented for US English
(CP 37) and United Kingdom (CP 285); instead, some or all of them might appear
differently in code pages for other languages. To find out what the characters
actually are for your code page, run the SHOW OPTIONS command.

The following example shows the output of the SHOW OPTIONS command using a
non-English code page (CP 280):

The following OPTIONS keywords are available to set the characters to the value
you want to use in your code page:

CHARAT Sets a character to replace the at sign (@) for object variables.

CHARBANG
Sets a character to replace the exclamation mark (!) for the default variable
prefix.

CHARHASH
Sets a character to replace the number sign (#) for object and ENVATTR count
values.

CHARMAIL
Sets a symbol to replace the at sign (@) used in email addresses.

03/07 23.10.25 EQQI200I SHOW OPTIONS
03/07 23.10.25 EQQI602A OPTIONS in effect ADOICHK(N) ADPFX(ADHOC#) ADSFX()

...EQQI602A ADVALFROM(A) ADVERS(Y) ADWS(CPU1) ARGUMENT()

...EQQI602A BLSTYLE(TWS) CALENDAR(DEFAULT) CCREMOVE(A) CHARAT(§)

...EQQI602A CHARBANG(é) CHARHASH(£) CHARMAIL(§) CHECK(Y) COMEND(*/)

...EQQI602A COMMIT(1000) COMPSUCC(WARNING) COMSTART(/*) CONINFO(047

...EQQI602A 059 062 063 064 129 130 136 144 185 252 254 255)

...EQQI602A CONNAME(ADCDMST1) CONTENTION(30,10) CONWAIT(2,1)

...EQQI602A CONWARN(138 341) CPDEPR(Y) CPFAIL(ABORT) DATA()

...EQQI602A DATE(150307) DBMODE(ADD) DECODE(ONLY) DELAY(0)

...EQQI602A DELAYCMD(DELETE EXECUTE INSERT REPLACE) DELETE(N)

...EQQI602A DELFILE(OUTDEL) DLM(-END-OF-INPUT-TEXT-) DROP()

...EQQI602A DUPAUTO(Y) DURSEC(Y) DURUNIT(SECONDS)

Chapter 2. Running Workload Automation Programming Language 31

CHARAT and CHARMAIL are separate keywords, because the at sign (@) for email
addresses must match what is used by the SMTP service, which is external to
Workload Automation Programming Language. The at sign (@) in object variables
affects only Workload Automation Programming Language.

For these OPTIONS you cannot use standard upper or lower case alphabetic
characters, numbers, minus signs (-), or periods (.). They must not be in conflict
with any other CHARxxxx or VARNAMES keyword. Setting OPTIONS CHARAT(@)
CHARBANG(!) CHARHASH(#) CHARMAIL(@) in your code page ensures that the special
characters appear as documented in your system.

Note: These OPTIONS keywords change only these characters for the uses specified.
When the same characters are used as part of the data in your system, or part of
field names in OUTPUT statements or object variables, the characters are displayed
according to your code page.

Knowing resource names
You must know what resources you need, because the resource names are not
always obvious from the modern name of the object. For example the resource
needed to retrieve a job stream is AD, which is derived from the old name of
Application Description.

In addition, sometimes you need use a different resource name when using LIST to
the one you must use when using SELECT.

For example, you would LIST ADCOM to find a list of job streams, but then you
would need to SELECT AD to retrieve each job stream completely.

Workload Automation Programming Language allows alternative, more obvious
names to be used; therefore you can now LIST JOBSTREAM to get a list of job
streams and then SELECT JOBSTREAM to retrieve a complete individual definition. To
retrieve only the common segment of a job stream, you can still SELECT ADCOM just
as before.

For a complete list of the available aliases for each PIF command, see “Alternative
resource names” on page 255.

Variable substitution
Workload Automation Programming Language supports variable substitution
within its control statements. This allows elements that vary at run time to be
incorporated into the commands, such as the running Occurrence Name, Input
Arrival, and Operation number.

Variable substitution is activated by the command VARSUB SCAN, which, by default,
uses the exclamation mark (!) as the prefix to identify variables within the
command text, and optionally a period (.) to terminate the variable name.

For example, Workload Automation Programming Language can update the
Operation Text of the running job to indicate something about the processing that
day, without having to code the SYSIN as instream data in the JCL to use IBM
Workload Scheduler for z/OS variables:
VARSUB SCAN
MODIFY CPOC ADID(!OADID.) IA(!OYMD1.!OHHMM.)
MODIFY CPOP OPNO(!OOPNO) DESC(’NO DATA TODAY’)

32 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

This also means that IBM Workload Scheduler for z/OS information becomes
available to jobs tracked by IBM Workload Scheduler for z/OS that were not
necessarily submitted by IBM Workload Scheduler for z/OS. Variables from the
JCL Variable tables can also be referenced along with Workload Automation
Programming Language variables defined directly in the Workload Automation
Programming Language SYSIN.

For more detailed information about variables, see “Variable naming convention”
on page 229.

Using wildcards
Workload Automation Programming Language supports the use of wildcards in
many commands, either partially or completely.

Wildcards are completely supported for the standard keywords of the Data Access
commands based on PIF, and for the PIF related keywords of the Current Plan
Operation commands. In both cases, you can use wildcards as in the IBM
Workload Scheduler for z/OS PIF commands:

Percentage sign (%)
Represents any single character.

Asterisk (*)
Represents one or more characters.

You can use more than one wildcard in the command. For example:

ABC* Matches values beginning with ABC.

*XYZ Matches values ending with XYZ.

ABC%%%XYZ
Matches values beginning with ABC, followed by 3 characters of any value
and ending with XYZ.

DEF Matches values with DEF positioned anywhere in the value.

Wildcards are partially supported for non-PIF keywords within Workload
Automation Programming Language where wildcard support is explicitly stated. In
this case, you can use wildcards as in the IBM Workload Scheduler for z/OS PIF
commands:

Percentage sign (%)
Represents any single character.

Asterisk (*)
Represents one or more characters.

Only the percentage sign (%) can be used multiple times. If the asterisk (*) is used
more than once, any subsequent asterisk will be treated as an asterisk (*) and not a
wildcard. For example:

ABC* Matches values beginning with ABC.

*XYZ Matches values ending with XYZ.

ABC%%%XYZ
Matches values beginning with ABC, followed by 3 characters of any value
and ending with XYZ.

DEF Matches values ending with DEF.

Chapter 2. Running Workload Automation Programming Language 33

Controlling the processing within Workload Automation Programming
Language

Workload Automation Programming Language runs each command in sequence,
running them from each of the input streams in the order that they are.

If a critical error occurs, no more commands are run except an automatic TERM
command, if needed. A critical error is any statement that issues a return code of
12 or above. This limit can be changed with the OPTIONS STOPRC keyword.

The LISTSTAT command can issue a response code greater than 12 without causing
a problem because the response code from LISTSTAT is only applied to the return
code of the step immediately prior to termination of Workload Automation
Programming Language. A response code is a special case of a return code to
avoid STOPRC processing.

For conditional processing when comparing against a particular step return code,
the highest value of the return code and response code is considered.

You can influence which statements are run within Workload Automation
Programming Language by using a series of process control tags. These tags all
begin with a colon and can be coded anywhere within a Workload Automation
Programming Language statement following the initial command name.

Labeling Workload Automation Programming Language
statements

To control the flow of the Workload Automation Programming Language
statements, or make key statements easier to identify in the job output, you can
label individual Workload Automation Programming Language statements.

You label the statement by inserting a user-defined label before the statement,
followed by a colon:
CHKJOB: LISTSTAT CPOP JOBNAME(WLSCCPEX) IA(&OYMD1.1200)

The label can be up to 8 alphanumeric characters, and must begin with an
alphabetic character to avoid clashing with internal Workload Automation
Programming Language labels, which are 8-character numeric fields.

The label allows other conditional processing functions to reference this statement
directly, for example, IF @CMD(CHKJOB.EQ.4) THEN.

The label assigned to each statement will be shown in the messages 200 and 299
that record the execution of each command, and can also be displayed by running
the SHOW RC command.

Defining subroutines
Define subroutines to allow chunks of code to be reused from different parts of the
main program. Subroutines are called by the CALL SUB command.

You define subroutines by using the SUBROUTINE statement, which must be coded at
the end of the program stream from which they are being called. SUBROUTINE
statements must not be contained within INCLUDE statements, but subroutines can
contain INCLUDE statements.

34 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

A subroutine must start with SUBROUTINE and end with RETURN, but a RETURN
statement is assumed when the next SUBROUTINE statement or the end of the stream
of code is encountered. You can use IF-THEN-ELSE to issue a RETURN statement to
conditionally exit a subroutine.

Protecting against PIF failure
Because Workload Automation Programming Language uses the IBM Workload
Scheduler for z/OS programming interface (PIF), it is vulnerable to a few of types
of problem against which you can protect.

The controller must be available for any job to use the PIF. If you run a Workload
Automation Programming Language job while the controller is down, any PIF
processing fails. Because occasionally the controller might fail and cause a
Workload Automation Programming Language job to fail, for planned controller
downtime you can protect against failure with the following procedure:
1. Ensure that all your production Workload Automation Programming Language

jobs are controlled by IBM Workload Scheduler for z/OS. For Workload
Automation Programming Language jobs that are submitted externally, ensure
that they are submitted with TYPRUN=HOLD and have a corresponding ETT
rule to trigger an application to control them. This ensures that no Workload
Automation Programming Language job starts running while the controller is
unavailable. Any job submitted while the controller is down will wait, and,
providing that Event Data sets are adequately sized, will be released
automatically after the controller is ready. Any Workload Automation
Programming Language jobs that fail due to unexpected failure of the
controller are seen in error when the controller is restarted. This method
requires the EWTROPTS option HOLDJOB keyword setting to USER.

2. Create a special resource specifically for use of the programming interface. Add
this resource to every Workload Automation Programming Language job,
planned and event-triggered, with a usage of SHR. For an unplanned but
controlled shutdown of the controller, you can then make this resource
unavailable and monitor the In-Use list (5.7) for this resource to determine
when it is safe to take the controller down. On restart of the controller, after the
resource is made available again, Workload Automation Programming
Language processing can continue safely.

Some IBM Workload Scheduler for z/OS planning functions make heavy use of the
current plan and long-term plan. These can cause failure due to contention, or
logical failure with elements being changed around the Workload Automation
Programming Language job. It is recommended that you avoid running Workload
Automation Programming Language jobs against the Current Plan Extend, Replan,
Long-Term Plan Extend, and Modify. This can be done by adding the
programming interface resource to these planning jobs with Exclusive usage.

Overriding Workload Automation Programming Language defaults
You can change the Workload Automation Programming Language defaults for
many elements by setting the OPTIONS statement.

If you want to set different values as default, create entries in your own site
default member and store it in one of your libraries, then reference it in the
EQQOPTS statement within the EQQYXJPX and EQQYXJPL procedures. By default, the
EQQOPTS statement is provided commented out, so nothing is read.

Chapter 2. Running Workload Automation Programming Language 35

|
|
|
|

Any statements defined in the EQQOPTS statement are run every time Workload
Automation Programming Language starts, before the ARGS statement is processed
and before any SYSIN or REXX stack commands are run.

You can also create subsystem-specific OPTIONS by using IF statements and the
ZSUBSYS variable.

Including a site default member in EQQOPTS means that it is run every time
Workload Automation Programming Language starts. To prevent unnecessary
storage consumption, include only the statements that are actually required every
time Workload Automation Programming Language runs. In alternative to creating
a site default member, you can create members that set site defaults and variables
for key types of functions. Then INCLUDE only the Workload Automation
Programming Language jobs that need those setup instructions. For example,
create an include member called TRACKERS as follows:
OPTIONS TRACKERS(WSMC.*.WSMT)

Then, include the TRACKERS member in any job that issues TSO commands:
INCLUDE MYWAPL(TRACKERS)
SRSTAT ’MY.RESOURCE’ AVAIL(Y)

Message log
Workload Automation Programming Language produces a message log, with
different levels of detail, according to the OPTIONS MSGLEVEL setting.

If a DD statement called EQQYLOG is specified in the JCL, Workload Automation
Programming Language messages are directed there, with a default MSGLEVEL of 0.
If a numeric suffix is added to the EQQYLOG, this determines the MSGLEVEL setting, if
a number greater than 5 is used the MSGLEVEL are set to 5. For example, //EQQYLOG1
DD SYSOUT=* diverts all Workload Automation Programming Language messages to
this DD statement with a MSGLEVEL of 1.

EQQYLOG* DD statements that define data sets not valid for output are ignored. If
more than one valid variant of EQQYLOG* is specified, the last encountered in the
JCL is used, allowing an EQQYLOG* DD statement to be coded in the EQQYXJPX and
EQQYXJPL procedures, but still be overridden in the executing JCL, even if using a
different MSGLEVEL suffix.

DUMMY DD statements are ignored. If no valid EQQYLOG* data sets are found in
the JCL, SYSTSPRT is used. If writing to an EQQYLOG* data set fails, SYSTSPRT is used
for the remainder of messages.

Output from the DISPLAY command is always directed to SYSTSPRT.

36 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|

|
|
|
|
|
|
|
|

|

|

|
|

|
|
|
|
|

Chapter 3. Core programming commands

The following sections describe the Workload Automation Programming Language
commands that control the behavior and logic of the program. Use the commands
to set options, return codes, determine an output, modify the flow, change
variables, or make decisions.

CALL – Execute external program, subroutine, or variable
Use the CALL command to call routines that might be in another REXX routine or
variable.

You can specify:
CALL EXT(<external REXX>) [STACK(IN|OUT|BOTH|NONE)]

or
CALL SUB(<subroutine name>)

or
CALL VAR(<variable name>)

where:

EXT Specifies an external REXX routine to execute, including arguments if
required. If the external command sets a return code, this will be passed to
the return code of the CALL command.

STACK Defines what to do with the REXX stack around the running of an external
program:

IN Default. Leaves the stack intact for the external program to use. If
the external program does not pull entries from the stack they are
left in place for the remainder of the calling program to access or
add to.

OUT Preserves the stack before calling the external program, then once
the external program completes, processes any new stack entries
on the stack as Workload Automation Programming Language
commands, before restoring the original contents of the stack.
Workload Automation Programming Language commands from
the stack is displayed at MSGLEVEL(2).

BOTH Passes the stack to the external program to use and then processes
the entire content of the stack of Workload Automation
Programming Language commands when the external program
completes. If the input stack was not completely processed by the
external command, any remainder is executed on exit. Workload
Automation Programming Language commands from the stack is
displayed at MSGLEVEL(2).

NONE Keeps the stack before calling the external program and then
restores the stack ahead of any new entries added by the external
program.

SUB Specifies a subroutine to run immediately following the CALL
command. The CALL command fails if the subroutine does not exist.

© Copyright IBM Corp. 2016 37

VAR Specifies a variable that contains a complete Workload Automation
Programming Language command to run immediately following
the CALL command. For batch loader this must be the full construct
for all segments. The VAR keyword causes the command contained
in the variable to be added to the execution stream to execute
following this command. The return code of the CALL command
indicates only the success of finding the variable and adding the
command to be executed. After the command is run, it sets the
appropriate return code. Commands queued by the VAR keyword
are displayed at MSGLEVEL(2).

DISPLAY – Echo information to SYSTPRT
Use the DISPLAY command to echo information to the SYSTSPRT output.

DISPLAY <expression>

Where expression can be any valid REXX expression. For more details about REXX
expressions and available functions, see TSO/E REXX Reference.

Examples:
DISPLAY “Hello World”
DISPLAY @LOG() @V(OBJ-ADID)

DO and END – Block and Loop commands
Use the DO and END commands to designate a block of code to run together. You
can either use them to group multiple commands for IF-THEN-ELSE or to repeat
blocks of code.

The following list shows the variants of the DO commands:

Block A single run block of code: DO

Repeat
A simple repeating block: DO x

Iterative
A block that increments or decrements a variable: DO v = x TO y BY z

While A block that runs only while a condition is true: DO WHILE expression

Until A block that runs until a condition is true: DO UNTIL expression

Forever
A block that runs until LEAVE or EXIT is run.

Block DO
A block DO runs a block of code once, and has no arguments.

For example:
DO

VARSET COLLECT = “Y”
DISPLAY “COLLECT” !COLLECT

END

You can use it together with IF-THEN-ELSE to run more than one command, when
the expression is true, as in the following example:

38 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

IF “!TAG” = “-JOBNAME” THEN DO
VARSET COLLECT = “Y”
DISPLAY “COLLECT” !COLLECT

END
ELSE DO

VARSET COLLECT = “N”
END

Repeat DO loop
A repeat DO runs a block of code for the specified number of times, with a simple
repeat count as the argument.

For example, the DISPLAY command is run 3 times:
DO 3
DISPLAY “HELLO”
END

The ITERATE command can be used at any point in the block to start the next
iteration of the currently active loop from the DO statement again. The LEAVE
command can be used to exit the currently active loop and resume processing
following the corresponding END statement. ITERATE and LEAVE can only exit the
currently active block.

Iterative DO loop
An iterative DO increments or decrements a loop counter. The loop is processed for
each possible value of the variable within the limits specified. By default, the value
is increased by one each time, but you can modify this behavior by using the BY
keyword.

DO <variable> = <start> TO <end> [BY <increment>] [FOR <limit>]

where:

<variable>
The name of the variable to increment or decrement. It must not be
prefixed with the exclamation mark (!) or whatever prefix has been set for
variable.

<start>
The starting value of the variable. Must be an integer.

<end> The ending value of the variable. Must be an integer.

<increment>
The value to increment or decrement the variable. Must be a positive or
negative integer. The default is 1.

<limit>
The maximum number of times the loop will execute. Must be an integer.
The default is the absolute difference between <start> and <end> + 1.

For example:
DISPLAY “Testing... Testing”
DO X = 1 TO 3

DISPLAY !X
END

The ITERATE command can be used at any point in the block to start the next
iteration of the currently active loop from the DO statement again. The LEAVE

Chapter 3. Core programming commands 39

command can be used to exit the currently active loop and resume processing
following the corresponding END statement. ITERATE and LEAVE can exit only the
currently active block.

DO While loop
Use the DO WHILE statement to run the block of code whilst the expression is true.
If the expression is untrue when the DO WHILE statement is processed for the first
time the contents of the DO/END block are not run at all, and processing will
continue from the command following the END statement.

The condition is re-evaluated at the end of each iteration of the DO/END block, and
if still true the block is run again.

DO WHILE <expression>

where:

<expression>
A REXX-based expression. The expression can be any valid REXX
expression that results in 1 or 0.

For more details about REXX expressions and available functions, see
TSO/E REXX Reference.

For example:
VARSET X = 1
DO WHILE “!X” < 10

DISPLAY !X
VARSET X DELTA(1)

END

The ITERATE command can be used at any point in the block to start the next
iteration of the currently active loop from the DO statement again. The LEAVE
command can be used to exit the currently active loop and resume processing
following the corresponding END statement. ITERATE and LEAVE can exit only the
currently active block.

Loops of this type are protected from running forever by accident by the global
loop limit. This is set by OPTIONS LIMIT, which defaults to 100.

DO Until loop
Use the DO UNTIL statement to run the block of code until the expression is true.
The contents of a DO UNTIL block will always run at least once, even if the
expression is true the first time the DO statement is processed. Every time the END
statement is processed the expression is evaluated again; if not true, processing
returns to the DO statement for another pass through the block of code.

The condition is evaluated again at the end of each iteration of the DO/END block; if
it is still not true, the block is run again.

DO UNTIL <expression>

where:

<expression>
A REXX-based expression. The expression can be any valid REXX
expression that results in 1 or 0.

40 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

For more details on REXX expressions and available functions, see TSO/E
REXX Reference.

For example:
VARSET X = 1
DO UNTIL “!X” = 10

DISPLAY !X
VARSET X DELTA(1)

END

The ITERATE command can be used at any point in the block to start the next
iteration of the currently active loop from the DO statement again. The LEAVE
command can be used to exit the currently active loop and resume processing
following the corresponding END statement. ITERATE and LEAVE can only exit the
currently active block.

Loops of this type are protected from running forever by accident by the global
loop limit. This is set by OPTIONS LIMIT, which defaults to 100.

DO Forever loop
Use the DO FOREVER command to repeat a block infinitely, up to the global loop
limit, until a LEAVE or EXIT command is encountered to terminate the loop.

For example:
VARSET X = 1
DO FOREVER

DISPLAY !X
VARSET X DELTA(1)

IF “!X” > 20 THEN LEAVE
END

The ITERATE command can be used at any point in the block to start the next
iteration of the currently active loop from the DO statement again. The LEAVE
command can be used to exit the currently active loop and resume processing
following the corresponding END statement. ITERATE and LEAVE can exit only the
currently active block.

Loops of this type are protected from running forever by accident by the global
loop limit. This is set by OPTIONS LIMIT, which defaults to 100.

DROP – Drop elements from memory
Use the DROP command to drop saved structures from memory.

DROP <type>(<item>) [,<type>(<item>)...]

where:

<type> The type of element being dropped from memory, this can be SAVELIST or
OBJECT.

<item> The name of the element being dropped.

The DROP command drops saved structures from memory. For large elements this
might be required to reduce storage consumption, especially if multiple SAVELIST
elements are merged using the MERGE command, or many large OBJECT elements are
extracted from the database.

Chapter 3. Core programming commands 41

You can drop more than one element at once by repeating the keyword. For
example, DROP OBJECT(AD1) OBJECT(AD2).

Where a LIST request has generated multiple objects, dropping the LIST object also
drops all of the generated objects.

Note: Before Workload Automation Programming Language version 3.4, only one
kind of object could be dropped therefore the object type was not required. For
backwards compatibility, if a SAVELIST name is provided without a keyword, it is
assumed to be a SAVELIST and dropped.

For example, DROP MYLIST is considered equivalent to DROP SAVELIST(MYLIST). DROP
SAVELIST is considered equivalent to DROP SAVELIST(SAVELIST).

EXIT – Terminate processing
Use the EXIT statement to terminate processing at that point.

When an EXIT statement is processed, no further user commands are run; but any
automatic EXECUTE and TERM statements are executed before final termination.

EXIT [<rc>]

where <rc> is the return code (optional).

If you set the return code, it overrides any highest return code or any response
codes from LISTSTAT.

An EXIT statement is assumed when the end of the program is reached or a
SUBROUTINE statement is found.

FILTER – Post process selected records to reduce output
Use the FILTER command to post process what was returned to Workload
Automation Programming Language from IBM Workload Scheduler for z/OS, to
selectively reduce the output actually returned by Workload Automation
Programming Language.

FILTER record [segment1-comparator(count)],[segmentn-comparator(count)]

or

FILTER segment [field1-comparator(value)],[fieldn-comparator(value)]

or

FILTER record|segment OFF

Filtering can be performed at two levels:

Record level
When a record is selected, the FILTER command can include or exclude
segments based on the number of segments available of each type. For
example, FILTER AD ADRUN-GT(0) returns output only for AD records that
contain run cycles.

42 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Segment level
When a segment is being processed, fields within it can be checked that
they match the FILTER argument.

For example, FILTER ADOP ADOPWS(CPU1) returns only operations that use
workstation CPU1. When a segment is excluded by a filter, all of its child
segments are also excluded.

The FILTER command must be issued before any LIST or SELECT command. Any
number of valid segment or field names can be included on a single FILTER
statement, all must be true for the record or segment to be selected for output.

For example, FILTER AD ARUN-EQ(0) ADOP-GT(1) outputs only applications with no
run cycles and more than one operation.

To stop filtering for any subsequent commands use a FILTER command specifying
only the record or segment name and the keyword OFF. For example, FILTER ADOP
OFF turns off filtering of ADOP segments.

Combining FILTER with other commands and options can produce some complex
processing, without having to write any specific REXX code. In the following
example:
INCLUDE EQQFILE(ADCOM,ADRUN)

OPTIONS RUNSTAT(SUSPEND) POSTPROC(Y) LOADER(*) DBMODE(UPDATE) DATA(-)
FILTER AD ADRUN-GT(0)
LIST ADCOM ADID(AB*) SELECT(Y)

the following actions are taken:
v The INCLUDE statement ensures that only the common segment and run cycles are

output.
v OPTIONS RUNSTAT(SUSPEND) ensures that the output Batch Loader statements for

the run cycle will include In and Out of Effect dates of LOWDATE.
v FILTER ensures that only applications with run cycles are selected for output.
v LIST causes every application beginning with AB to be selected for output,

assuming it has at least one run cycle.
v OPTIONS LOADER(*) sends the batch loader statements to the REXX stack.
v OPTIONS DATA(-) ensures no ILSON data is written.
v OPTIONS POSTPROC(Y) tells Workload Automation Programming Language when

it has finished processing the commands in SYSIN to process the command on
the REXX stack.

v OPTIONS DBMODE(UPDATE) tells Workload Automation Programming Language to
process the generated Batch Loader statements in UPDATE mode.

The result is that these four commands change only applications with names
beginning with AB that have run cycles, to set them out of effect; thereby rendering
these applications ineligible for planning, but still available to be manually added
to the plan. Without the FILTER command, this job would attempt to update
applications that have no run cycles, thereby performing a lot of unnecessary
processing.

If you want to create batch loader to perform the “suspension” of the applications
in a later job, removing POSTPROC(Y), LOADER(*) and DBMODE(UPDATE) from the
OPTIONS statement would cause the statements to be written to OUTBL. They could
then be processed by a later job with OPTIONS DBMODE(UPDATE) coded to set the
job into UPDATE mode.

Chapter 3. Core programming commands 43

IF-THEN-ELSE – Conditional execution
Use the IF and THEN construct to conditionally execute a Workload Automation
Programming Language statement, or block of statements if true. Use the ELSE
statement to allow an alternative statement or block to run, if the condition is not
true. These commands use underlying REXX processing to evaluate the expression.

The basic syntax is:
IF <expression> THEN

<command1>
ELSE

<command2>

The expression can be any valid REXX expression that results in 1 or 0. For more
details about REXX expressions and available functions, see TSO/E REXX Reference.

Although Workload Automation Programming Language uses the REXX
interpreter to evaluate the expression, there are some considerations to be made for
Workload Automation Programming Language use:
v Workload Automation Programming Language variables are resolved before the

statement is run, rather than evaluated by the REXX interpreter. This means that
any Workload Automation Programming Language variable that includes special
characters, such as spaces, must be enclosed within double quotation marks:
IF "!TAG" = "-JOBNAME" THEN DO

v If the THEN keyword is surrounded by spaces, it must not appear within the IF
or THEN expression, even if within double quotation marks. Therefore, the
following example is valid because THEN does not have spaces around it:
IF “!MYVAR” = “THEN” THEN DO

When THEN needs spaces around it, you must specify it in a variable, as follows:
VARSET THEN VALUE(THEN)
IF “!MYVAR” = “THIS !THEN THAT” THEN DO

v Workload Automation Programming Language functions can be used within IF,
THEN, and ELSE constructs, but cannot contain any REXX functions within the
bounds of the Workload Automation Programming Language function. Only
literal text or variables can be contained within the arguments of Workload
Automation Programming Language functions. Workload Automation
Programming Language functions are prefixed by the at sign (@).
The following example is not valid:
IF (@JCL(RIGHT(!LINE,8)..EQ.0)) & (LEFT(“!JOB”,1) = “P”) THEN

but must be handled by resolving the REXX function in a previous statement:
VARSET STEP = RIGHT(!LINE,8)
IF (@JCL(!STEP..EQ.0)) & (LEFT(“!JOB”,1) = “P”) THEN

The conditional commands <command1> and <command2> can be included in the
same line as THEN and ELSE, respectively. For example:
IF “!TAG” = “-JOBNAME” THEN VARSET COLLECT = “YES”
ELSE VARSET COLLECT = “NO”

To run multiple commands conditionally, use a DO, END block:
IF “!TAG” = “-JOBNAME” THEN DO

VARSET COLLECT = “Y”
ITERATE

END

44 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

You can use AND or OR within parentheses and the ampersand (&) and vertical bar
(|):
IF (“!DAY” = “WED”) & (“!MONTH” = “JAN”) THEN
IF (“!DAY” = “MON”) | (“!DAY” = “TUE”) THEN

INCLUDE – Include code from other data sets or members to be run
Use the INCLUDE statement to include Workload Automation Programming
Language statements from other data sets or members in the Workload
Automation Programming Language command stream. With this command, you
can also access user fields belonging to the operation that controls the job to use
their values as SYSIN.

INCLUDE ddname-1(member-1,member-2,...,member-n) ddname-2,...,ddname-n

or

INCLUDE USER_FIELD(mask)

The statements can be read from DD statements allocated to the step running
Workload Automation Programming Language.

In a single INCLUDE statement you can include multiple members from one DD
statement and multiple DD statements. Workload Automation Programming
Language reads and runs the statements in the order specified.

You can specify a DD statement without a member name if the DD statement is
allocated to a sequential file, a partitioned data set with a member name specified,
or a concatenation of both.

You can specify a DD statement with a member name if the DD statement is
allocated to either a single partitioned data set without a member name specified,
or a concatenation of partitioned data sets. You can also INCLUDE a member name
when the DD statement is allocated to a partitioned data set with a different
member allocated. If you specify a member when either the partitioned data set
has no member name specified at allocation, or the member name allocated is
different from the one requested, Workload Automation Programming Language
allocates the partitioned data set, in which the member is found, temporarily to
DD statements EQQTEMP to allow the content to be read.

Note:

v To search for a member name, Workload Automation Programming Language
requires that all files in the concatenation are cataloged. If you want to INCLUDE a
member from an uncataloged data set, you must allocate the member explicitly
in the Workload Automation Programming Language step.

v If you use the INCLUDE statement with the EQQWAPL load module, you cannot
specify member names. You can set only DD statements and user fields.

In the following example, you load the in-built OUTPUT definitions ADCOM and ADRUN.
You have activated variable substitution and set two variables that will be
referenced in Batch Loader contained within the skeletons in members DAILY and
WEEKLY of the MYSKELS file:
//WAPLSTEP EXEC EQQYXJPX,
// SUBSYS=IWSA
//MYSKELS DD DISP=SHR,DSN=MY.SKELS.LIB
//OUTDATA DD SYSOUT=*,LRECL=4096

Chapter 3. Core programming commands 45

|
|

|
|
|
|

|
|
|
|

//OUTBL DD SYSOUT=*
//SYSIN DD *
LOADDEF ADCOM
LOADDEF ADRUN
LIST ADCOM ADID(MYAPPLS*) SELECT(Y)
VARSUB SCAN
VARSET LOB=PY
VARSET PHASE=P
INCLUDE MYSKELS(DAILY,WEEKLY)

By default, the contents of any statements loaded by an INCLUDE statement are run
at MSGLEVEL(3), in the same way as whatever is included by being referenced by
the FILESPEC symbolic parameter. This means that ordinarily if you use an INCLUDE
statement the content is not displayed in the SYSTSPRT output of Workload
Automation Programming Language, unless a command fails.

User fields can be included by using a special DD name of USER_FIELD. The
member name is the name of an individual User Field, or it can be a mask, using
the wildcard characters percent sign (%) and asterisk (*) to include values from
many matching user fields.

The comparison with the field name is not case sensitive, and each field is used in
alphabetical order.

ITERATE – Proceed to the next iteration of current loop
Use the ITERATE command to exit the current iteration of a DO block, and resume
processing at the DO statement.

ITERATE

If this is a repeat or iterative loop, the loop counter is incremented. If this is within
a Block DO structure, the block is exited, and the ITERATE applies to the nearest loop
DO structure above.

The ITERATE command applies only to the currently active DO loop, you cannot
ITERATE a higher-level nested loop structure this way.

LEAVE – Exit the current loop
Use the LEAVE command to exit the current iteration of a DO block, and resume
processing following the END statement.

LEAVE

If this is within a Block DO structure, the block is exited, and the LEAVE applies to
the nearest loop DO structure above.

The LEAVE command applies only to the currently active DO loop, you cannot LEAVE
a higher level nested loop structure this way.

LOG – Echo information to the log
Use the LOG command to echo information to the log output.

LOG <expression>

46 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|
|
|
|
|
|

where <expression> can be any valid REXX expression. For more details about
REXX expressions and available functions, see TSO/E REXX Reference.

For example:
VARSET STEP ENVATTR(JCL,STEP,0)
LOG MSGX000I @V(OJOBNAME) @V(STEP) @V(OJJESNO)
LOG MSGX001I @V(OADID) @V(OYMD1)||@V(OHHMM) @V(OOPNO)

MERGE – Merge SAVELIST output
Use the MERGE command to merge the contents of two lists into a single list with no
duplicates.

MERGE <list1> AND|OR|XOR|NOT <list2> INTO <list3> [BY <fields>]

where:

<list1>
The name of the first SAVELIST to merge.

<list2>
The name of the second SAVELIST to merge.

<list3>
The name of the SAVELIST in which to store the results.

<fields>
Optional. The name of the fields to merge by.

The following list shows the different kinds of MERGE:

AND Only output entries that are in both lists.

OR Output the combined content of both lists.

XOR Only output entries that are not in either list.

NOT Only output entries that are in the first list but not in the second list.

The MERGE command combines the contents of two lists into a single list with no
duplicates, based on the criteria. Ordinarily it uses the entire text of each SAVELIST
entry to perform the MERGE, but you can use BY to restrict the MERGE criteria to
named keywords in the SAVELIST text.

Note:

v The MERGE technique relies upon the two lists being ordered in the sort sequence
of the merging criteria. If you select criteria that do not match the sort sequence
the results might not be as expected.

v If an entry exists in both lists, with matching criteria, the entry from the first list
is selected for output.

v When merging LIST GENDAYS output it is recommended to code BY DATE IAT as
criteria, because the GENDAYS SAVELIST also contains FLAGS that might often not
match between entries for the same date.

NOACT – Peform no action
The main purpose of the NOACT command is to be a null action for complex IF
expressions where the action you really want is the ELSE condition.

Chapter 3. Core programming commands 47

The NOACT command has no arguments, does nothing and always ends with return
code zero.

For example:
IF (@CMD(CHK1.EQ.0)) & (@CMD(CHK2.EQ.0)) THEN NOACT
ELSE SENDMSG T(Something failed) U(ADCDMST)

Note: The NOACT statement performs no action at all, but accepts further text
following the command. Therefore, you can use NOACT as a testing or diagnostic aid
to see the value of variables being resolved at that point:
08/21 14.48.03 EQQI200I NOACT !_LSTAT1_CPOPERR
08/21 14.48.03 EQQI201I NOACT SB37
08/21 14.48.03 EQQI299I Statement completed - RC=0 (00000012)

OPTIONS – Define run time options and PIF requests
Use the OPTIONS commands to set both Workload Automation Programming
Language and IBM Workload Scheduler for z/OS options.

OPTIONS <arguments>

The OPTIONS statement has no resource. For Workload Automation Programming
Language it can be used to set both Workload Automation Programming Language
options and IBM Workload Scheduler for z/OS options. It can be used also by
ILSON and WAX, although not all keywords are available in each utility. To
determine which keywords are available for each utility, use the SHOW OPTIONS
command.

For a complete list of the available OPTIONS, see Appendix B, “OPTIONS
keywords,” on page 289.

OUTPUT – Define output record
OUTPUT <segment> [KEYS(field1,field2,...)]

[FIELDS(field3,field4,...)]
[LABEL(YES|NO|NOFIELD|NOSEGMENT)]
[DATA(*|=|<dd-statement>)]
[LOADER(*|=|<dd-statement>)]

The KEYS keyword specifies a list of key fields to be output for the record, the
FIELDS keyword specifies a list of non-key fields for the record. Workload
Automation Programming Language makes no distinction between fields specified
in KEYS or LIST when creating the output record; the distinction is made only if
you are going to load the output file into ISPF using the undocumented
EQQILSON utility.

The OUTPUT statement must precede any LIST or SELECT statements for which you
want to specify the output characteristics.

You can define segment names as follows:
<segment>[=<alias>|*]

where:

segment
Required. The name of the IBM Workload Scheduler for z/OS segment for
which you want to define output.

48 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

alias Optional. An alternative name to use as the record label in the output.

* Optional. A special case of alias that suppresses the segment label in the
output.

You can define fields as follows:
[+|-][<iws-segment>.]<iws-field>[=<alias>|*|<length>]

where:

Indicates that this field is to be used as the sort sequence, if the record is
loaded into ISPF using EQQILSON (optional).

If the plus sign (+) or minus sign (–) is specified for use with EQQYXTOP,
it does not impact the output, therefore the same FILESPEC member can
be used by EQQYXTOP and EQQILSON to ensure that data is written
from IBM Workload Scheduler for z/OS in the same way as it is loaded
into ISPF.

iws-segment
Optional, needed only to reference a field from a parent segment.
Reference only segments that are parents to the current segment; values
from other segments might not be available.

iws-field
Required. The IBM Workload Scheduler for z/OS field name as described
in Appendix A of IBM Workload Automation: Driving IBM Workload Scheduler
for z/OS.

alias Optional. An alternative field label to use in the output record.

* Optional. A special case of alias that suppresses the field label in the
output.

length If a numeric length is specified instead of an alias, it suppresses the field
label and generates a fixed width field.

For valid segment names, see “OUTPUT field definition reference” on page 256.

The LABEL keyword determines what happens with field and segment labels, as
follows:

YES Default. Labels appear at Field and Segment level, unless an asterisk (*) is
specified.

NO No labels appear.

NOFIELD
No field labels appear, but the segment is labeled.

NOSEGMENT
No segment label appears, but the fields are labeled.

The DATA keyword specifies the Output Destination for Data records generated for
this segment. If no DATA Output Destination is specified for this segment and
OPTIONS DATA is not specified, no Data records are written for this segment. If
OPTIONS DATA is specified, the DATA keyword of OUTPUT is ignored and all Data
Records are sent to the destination specified in DATA.

The LOADER keyword specifies the Output Destination for Batch Loader generated
for this segment. If no LOADER Output Destination is specified for this segment and
OPTIONS LOADER is not specified, no Batch Loader statement is written for this

Chapter 3. Core programming commands 49

segment. If OPTIONS LOADER is specified, the LOADER keyword of OUTPUT is ignored
and all Batch Loader is sent to the destination specified by LOADER.

Note: You can have multiple OUTPUT statements for the same segment, only the
keywords specified are effective. If a keyword is not specified in an OUTPUT
statement, the keywords of a previous OUTPUT statement for the same segment are
applied. Therefore, you can specify fields and output destination in one statement
and then divert subsequent output to an alternative destination with a later
statement without having to specify all the fields again.

The following example shows multiple OUTPUT statements for the same segment.
The ADCOM file contains fields ADID and ADDESC and is sent to MYOUT. This
technique allows you to have standard file definitions and override the output
destination without specifying all the fields again.
OUTPUT ADCOM FIELDS(ADID,ADDESC) DATA(OUTBL)
OUTPUT ADCOM DATA(MYOUT)

For each segment there is an in-built OUTPUT definition that includes all fields,
sends ILSON data to OUTDATA, and sends batch loader data to OUTBL. To load
all the fields for a segment, use the LOADDEF command to use these in-built
definitions instead of coding your own OUTPUT statements. The LOADDEF command
overrides the keywords in the OUTPUT statement, in a similar way to the use of
subsequent OUTPUT statements for the same segment.

Specifying output destinations
Specify output destinations to tell Workload Automation Programming Language
where to send output records.

The destinations can be either a DD statement or an asterisk (*). Specify an asterisk
(*) to write the output to the external data queue. If you specify the equal sign (=)
as the output destination, the output is written to the same destination as its
parent record.

Many different segments can be written to the same output destination.

If you specify a DD statement that is not allocated, the first command requiring the
DD statement issues a warning message (setting return code 4), and the output
destination is suppressed.

Setting additional fields
Additional fields are available for each OUTPUT segment.

KEY The fully qualified key of the segment.

TYPE The type of segment, for example ADOP.

PARENT_KEY
The fully qualified key of the parent segment.

PARENT_TYPE
The type of parent segment, for example ADCOM.

TAG The data passed into the LIST or SELECT statement in the TAG keyword.
This allows output from multiple LIST or SELECT commands to be
correlated back to the originating command by tagging each output record.

50 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|
|
|

One single level of a key is formed from the segment type followed by a hex 00
and then each key field separated by hex 00. Therefore, a single level of a key for
an application called MYAPPL with a status of Active that is valid until 31
December 2071 would have a single level key of ADCOM 00x MYAPPL 00x A 00x
711231.

A fully qualified key is a sequence of single keys separated by hex 01, to uniquely
identify a segment within an object within the database. Therefore, operation 010
within the previously described MYAPPL would be ADCOM 00x MYAPPL 00x A 00x
711231 01x ADOP 00x 010.

READ – Read an external file or the external data queue
Use the READ command to load external data sources into OBJECT variables.

READ <file>|* OBJECT(<object>) [COUNT(0|<records>)]

where:

<file> The name of an input DD statement from which to read.

* Indicates that the external data queue is to be used as input.

<object>
The name of the object variable to read the data into.

<records>
The number of records to read. If set to 0 (default), all the available data is
read.

The COUNT keyword allows large files to be read in small blocks to manage memory
usage. If a number of records is specified with the COUNT keyword, the command
reads that number of records in the file. A following READ command starts from
that point in the file rather than at the beginning. If COUNT is higher than the
number of remaining records, all the remaining records are read and a message is
issued, setting RC=4.

RETURN – Exit the subroutine
Use the RETURN command to exit the subroutine and return the processing to the
instruction that follows the CALL command.

►► RETURN ►◄

When multiple subroutines are defined, a RETURN statement is automatically
assumed when the next SUBROUTINE statement is encountered. When the last
statement in SYSIN is reached, a RETURN is assumed if a subroutine is being defined
at that point.

A RETURN statement encountered outside a subroutine is treated like an EXIT
statement.

SETMAX – Manipulate the maximum return code
Use the SETMAX command to modify the maximum return code and maximum
response code, at any point in the Workload Automation Programming Language
command sequence.

Chapter 3. Core programming commands 51

SETMAX POLICY(<in_rc1>=<out_rc1>,<in_rc2>=<out_rc2>,...,
<in_rcn>=<out_rcn>,<catch_all>)

[SET(MAX_RC|MAX_RESP|BOTH)]

The command takes the current maximum return code, or maximum response
code, or both, and use the POLICY keyword, looking for a match on the left side of
each expression (in_rc). If a match is found, it sets the new maximum to the right
side of the expression (out_rc).

If no match is found it, it sets the return code to the specified catch_all return
code. If you omit to supply a catch all return code, and there is no match, the
return code remains unchanged.

This command can influence maximum values: the maximum return code and
maximum response code. The maximum response code is a special case of return
code that is set by commands such as LISTSTAT, which sets the return codes to
communicate the status of an IBM Workload Scheduler for z/OS object to other
steps outside Workload Automation Programming Language. However, the
number of variants of return code to do this usually exceeds the critical return
code (set by OPTIONS STOPRC), which would flush the remaining Workload
Automation Programming Language processing. To avoid this, commands of this
type set a response code, which is returned by Workload Automation
Programming Language when it completes, if it is higher than the maximum
return code.

To specify which maximum code the SETMAX command will affect, use the SET
keyword with one of the following arguments:

MAX_RC Default. Compares the POLICY against the current maximum return code,
and modifies the maximum return code if a match is made within the
POLICY. It also sets the return code of the SETMAX command to the same
value.

MAX_RESP
Compares the POLICY against the current maximum response code, and
modifies the maximum response code if a match is made within the
POLICY. It does not set the return code of the SETMAX command.

BOTH Compares with the higher of the current maximum return code and
maximum response code. It modifies both if a match is found within the
POLICY. It also sets the return code of the SETMAX command to the same
value.

In the following example, the result of a LIST statement is reversed. If something is
found, typically you would get RC=0 and if not found you would get RC=4. The
SETMAX statement reverses that, so you can have a situation where the “good
outcome” is for something to not be there (RC=0) and the “bad outcome” is if it is
found (RC=4).
05/28 12.55.11 EQQI200I LIST CPOPCOM ADID(TWSCDAILYPLAN) OPNO(010)

IA(0805281300)
05/28 12.55.12 EQQI299I Statement completed - RC=4
05/28 12.55.13 EQQI200I SETMAX POLICY(0=4,4=0)
05/28 12.55.13 EQQI122A Maximum return code 4 changed to 0
05/28 12.55.13 EQQI299I Statement completed - RC=0

Another use of this would be to consolidate unexpected return codes. Workload
Automation Programming Language returns only 0, 4, 8, 12, and 16, but the IBM
Workload Scheduler for z/OS PIF could return other higher return codes (for

52 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

example, RC=700 for an uninitialized session). In the following example, return
codes 0, 4, 8, 12, and 16 remain unchanged, but if any other return code is found it
is set to 20.
SETMAX POLICY(0=0,4=4,8=8,12=12,16=16,20)

The following example shows how you can also influence a response code set by
LISTSTAT. This would set the maximum response code from any previous LISTSTAT
commands to zero, but not alter the maximum return code as set by other
processes:
SETMAX POLICY(0) SET(MAX_RESP)

Note: The default value of the SETMAX SET keyword can be influenced by OPTIONS
SETMAX.

SETSEV – Set message severity
Use the SETSEV command to change the severity of an individual message in
Workload Automation Programming Language to allow different return code
processing to take place.

SETSEV <msgID>

Enter the message ID whose severity you want to change.

For example, SETSEV EQQI114W changes the severity of EQQI114E to the value W.

The EQQI prefix can be omitted to simply specify the message number and new
severity, as follows:
SETSEV 114W

In this way, the severity of EQQI114E is changed to W.

Note: SETSEV is available only for Workload Automation Programming Language
messages prefixed with EQQI, although it also allows the use of the prefix EQQB
to be compatible with Workload Automation Programming Language versions 3.3,
or earlier.

SHOW – Show diagnostic information
Use the SHOW command to show diagnostic information, to help you understand
with what information Workload Automation Programming Language is operating.
SHOW FILES|OBJECT|OPTIONS|RC|SPE|SUBSYSTEM|SYSINFO|USRF|VARIABLES

Note:

1. The SHOW command is available within the Workload Automation Programming
Language ILSON and WAX utilities, but not all functions are available in both.

2. USRF and VARIABLES keywords cause the job to attempt to find itself in the
Current Plan if it has not already done so.

3. USRF is a valid keyword only starting from IBM Workload Scheduler for z/OS
version 8.5.1 SPE.

4. You can specify multiple keywords in a single SHOW statement, for example SHOW
USRF VARIABLES.

Chapter 3. Core programming commands 53

SHOW FILES – Display files allocated to Workload Automation
Programming Language

Use the SHOW FILES command to list each file in turn that it detected as being
allocated to the Workload Automation Programming Language step when
Workload Automation Programming Language started.

For each file, the SHOW FILES command lists:

DD Name:Position
The position shows which file number this is in a concatenation. In most
cases it is 1.

DSN(name)
Data set name for this file.

MEM(name)
Member name for this file, if one was set at allocation time.

NOINPUT
Indicates that Workload Automation Programming Language does not
consider this file eligible for INPUT.

NOOUTPUT
Indicates that Workload Automation Programming Language does not
consider this file eligible for OUTPUT processing.

NOINCMEM
Indicates that Workload Automation Programming Language does not
consider this file eligible for member INCLUDE.

LRECL(num)
The record length Workload Automation Programming Language uses to
calculate output line breaks.

RECFM(xxx)
Indicates the record format of the file. If set to a question mark (?), it
means that record format has not been set explicitly in either the JCL or
when the file was opened.

TYPE(NORMAL|SYSIN|SYSOUT|DUMMY)
The type of file.

TMP Indicates that Workload Automation Programming Language considers this
a temporary data set.

CAT Indicates that Workload Automation Programming Language considers this
a cataloged data set.

CC Indicates that the data set is using printer control characters.

The following example shows the output of SHOW FILES:
03/15 14.42.42 EQQI600A STEPLIB:1 - DSN(TWS.V920.SEQQLMD0) LRECL(72)

...EQQI600A TYPE(NORMAL) CAT
03/15 14.42.42 EQQI600A SYSPROC:1 – DSN(MY.USER.REXX)
LRECL(80)

...EQQI600A TYPE(NORMAL) CAT
03/15 14.42.42 EQQI600A SYSPROC:2 – DSN(TWS.V920.SEQQMISC)
LRECL(72) TYPE(NORMAL)

...EQQI600A CAT
03/15 14.42.42 EQQI600A EQQMLIB:1 - DSN(TWS.V920.SEQQMSG0) LRECL(72)

...EQQI600A TYPE(NORMAL) CAT
03/15 14.42.42 EQQI600A EQQMLOG:1 - DSN(ADCDMST.ADCDMSTS.JOB01870.D0000102.?)

54 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

...EQQI600A NOINPUT NOINCMEM LRECL(72) TYPE(SYSOUT) TMP
03/15 14.42.42 EQQI600A EQQDUMP:1 - DSN(ADCDMST.ADCDMSTS.JOB01870.D0000103.?)

...EQQI600A NOINPUT NOINCMEM LRECL(72) TYPE(SYSOUT) TMP

SHOW OBJECT – Display the object structure of an IBM
Workload Scheduler for z/OS record

Various commands allow you to create object variables. The format of the object
variables reflects the structure of the record being retrieved. Use the SHOW OBJECT
command to list the structure of a specific record.

The syntax is SHOW OBJECT(<record>)

Where <record> can be one of the following values:

AD Application Description (database)

AWSCL All workstations closed (database)

CL Calendar (database)

CPCOND Condition (current plan)

CPOC Occurrence (current plan)

CPOP Operation (current plan)

CPOPSRU
Special resource usage (current plan)

CPUSRF User field (current plan)

CRITPATH
Critical path (current plan)

CSR Special resource (current plan)

CPST Status (current plan)

CPWS Workstation (current plan)

CPWSV Workstation destination (current plan)

ETT Event trigger (database)

GENDAYS
Rule date list

JCLV JCL variable table (database)

JL Job log (current plan)

JS JCL (current plan)

JCLPREP
JCL (current plan)

LTOC Occurrence (current plan)

OI Operator instruction (database)

PR Period (database)

RG Run cycle group (database)

SR Special resource (database)

WS Workstation (database)

WSV Workstation destination (database)

Chapter 3. Core programming commands 55

XENV Execution environment

In the following example, the SHOW OBJECT(CL) command shows all the available
object variables for a calendar with -n- showing where sequence numbers fit into
the syntax:
08/22 10.47.39 EQQI200I SHOW OBJECT(CL)
08/22 10.47.39 EQQI601A Object: @OBJ-CLNAME
08/22 10.47.39 EQQI601A Object: @OBJ-CLDAYS
08/22 10.47.39 EQQI601A Object: @OBJ-CLSHIFT
08/22 10.47.39 EQQI601A Object: @OBJ-CLDESC
08/22 10.47.39 EQQI601A Object: @OBJ-CLVERS
08/22 10.47.39 EQQI601A Object: @OBJ-CLLDATE
08/22 10.47.39 EQQI601A Object: @OBJ-CLLTIME
08/22 10.47.39 EQQI601A Object: @OBJ-CLLUSER
08/22 10.47.39 EQQI601A Object: @OBJ-CLLUTS
08/22 10.47.39 EQQI601A Object: @OBJ-#CLSD
08/22 10.47.39 EQQI601A Object: @OBJ-CLSD-n-CLSDDATE
08/22 10.47.39 EQQI601A Object: @OBJ-CLSD-n-CLSDSTAT
08/22 10.47.39 EQQI601A Object: @OBJ-CLSD-n-CLSDDESC
08/22 10.47.39 EQQI601A Object: @OBJ-#CLWD
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDDAY
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDNUM
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDSTAT
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDDESC
08/22 10.47.39 EQQI299I Statement completed - RC=0 (00000014)

SHOW OPTIONS – Display Workload Automation
Programming Language OPTIONS currently effective

Use the SHOW OPTIONS command to show each Workload Automation Programming
Language option, with its current setting. Although some PIF options are ghosted
in Workload Automation Programming Language, not all of them are; only the
options with default settings in Workload Automation Programming Language that
are different from native PIF are shown. This command is designed to show only
the Workload Automation Programming Language settings.

The following example shows the output of the SHOW OPTIONS command:
03/15 14.42.42 EQQI602A OPTIONS in effect ADVALFROM(A) ARGUMENT()

...EQQI602A CALENDAR(CALENDAR) CCREMOVE(A) CHECK(Y) COMMIT(1000)

...EQQI602A COMEND(*/) COMSTART(/*) CPDEPR(N) CONTENTION(30,10)

...EQQI602A DATA() DATE(110315) DBMODE(ADD) DECODE(ONLY) DELAY(0)

...EQQI602A DELAYCMD(DELETE EXECUTE INSERT REPLACE) DELETE(N)

...EQQI602A DELFILE(OUTDEL) DLM(-END-OF-INPUT-TEXT-)

...EQQI602A DURUNIT(SECONDS) EXECUTE(AUTO) EXIT() EXITUSE(N)

...EQQI602A EXPAND(N) FIELDSEP() FIELDSPEC() FIRST(1)

...EQQI602A GTABLE(GLOBAL) HIGHRC(0) INCLEVEL(3) INPUT(SYSIN)

SHOW RC – Display return codes
Use the SHOW RC to list the return codes of each previous job step and Workload
Automation Programming Language command.

The following example shows the output of the SHOW RC command:
08/08 23.48.49 EQQI200I SHOW RC
08/08 23.48.49 EQQI603A JOBNAME JES NUM STEPNAME PROCSTEP RC PROGRAM
08/08 23.48.49 EQQI605A ADCDMSTT JOB05387 STEP0010 0004 EQQRETWM
08/08 23.48.49 EQQI605A ADCDMSTT JOB05387 STEP0020 0008 EQQRETWM
08/08 23.48.49 EQQI605A ADCDMSTT JOB05387 STEP0030 FLUSH EQQRETWM
08/08 23.48.49 EQQI605A ADCDMSTT JOB05387 STEP0040 SB37 EQQRETWM
08/08 23.48.49 EQQI605A ADCDMSTT JOB05387 STEP0050 U4095 EQQRETWM
08/08 23.48.49 EQQI605A ADCDMSTT JOB05387 STEP0060 SD37 EQQRETWM
08/08 23.48.49 EQQI605A ADCDMSTT JOB05387 STEP0070 S0C1 EQQRETWM

56 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

08/08 23.48.49 EQQI605A ADCDMSTT JOB05387 STEP0080 0006 EQQRETWM
08/08 23.48.49 EQQI605A ADCDMSTT JOB05387 STEP0090 FLUSH EQQRETWM
08/08 23.48.49 EQQI605A ADCDMSTT JOB05387 RUNWAPL EQQYXTOP EXEC IKJEFT01
08/08 23.48.49 EQQI605A
08/08 23.48.49 EQQI604A LABEL RC LVL COMMAND
08/08 23.48.49 EQQI605A 00000007 0000 1 SHOW
08/08 23.48.49 EQQI605A LISTSTAT 0099 1 LISTSTAT
08/08 23.48.49 EQQI605A SETMAX1 FLUSH 1 SETMAX
08/08 23.48.49 EQQI605A SETMAX2 FLUSH 1 SETMAX
08/08 23.48.49 EQQI605A SETMAX3 FLUSH 1 SETMAX
08/08 23.48.49 EQQI605A SETMAX4 0004 1 SETMAX

SHOW SAVELIST – Display the contents of a SAVELIST
Use the SHOW SAVELIST command to list the contents of a saved list of results.

The following example shows the output of the SHOW SAVELIST command:
05/25 16.31.55 EQQI606A MYLIST has 12 entries. Content follows -
05/25 16.31.55 EQQI607A GENDAYS DATE(’120101’) IAT(’1000’) FLAGS(’NNYNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’120201’) IAT(’1000’) FLAGS(’NNNNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’120301’) IAT(’1000’) FLAGS(’NNNNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’120401’) IAT(’1000’) FLAGS(’NNYNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’120501’) IAT(’1000’) FLAGS(’NNNNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’120601’) IAT(’1000’) FLAGS(’NNNNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’120701’) IAT(’1000’) FLAGS(’NNYNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’120801’) IAT(’1000’) FLAGS(’NNNNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’120901’) IAT(’1000’) FLAGS(’NNYNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’121001’) IAT(’1000’) FLAGS(’NNNNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’121101’) IAT(’1000’) FLAGS(’NNNNNNN’)
05/25 16.31.55 EQQI607A GENDAYS DATE(’121201’) IAT(’1000’) FLAGS(’NNYNNNN’)

SHOW SPE – Display active Small Product Enhancements

The SHOW SPE command lists all Small Product Enhancements that can affect how
Workload Automation Programming Language processes and identifies which are
active.

The following example shows the output of the SHOW SPE command. For each SPE,
the command shows the version of the SPE when it becomes available, the SPE
name, whether it is active (Y or N), and a simple description of the SPE itself:
03/15 14.42.42 EQQI608A 8.2 SPE WLM=N - Workload Manager integration (SCHENV)
03/15 14.42.42 EQQI608A 8.2 SPE PEND=N - Allow ADSTAT within Batch Loader
03/15 14.42.42 EQQI608A 8.2 SPE SA=N - System Automation integration
03/15 14.42.42 EQQI608A 8.3 SPE JCLV=N - JCL variable improvements
03/15 14.42.42 EQQI608A 8.3 SPE VIWS=N - Virtual Workstation support
03/15 14.42.42 EQQI608A 8.3 SPE IP=N - TCP/IP Server Connect
03/15 14.42.42 EQQI608A 8.5.1 SPE USRF=Y - Operation User Fields

Note: After the version at which functionality is available has been reached, that
functionality is automatically available for all later versions. Hence, if the previous
example was output from a system V8.5.1, the function associated with the SPEs
WLM, PEND, SA, JCLV, VIWS, and IP is automatically available, even if the
individual SPEs have not been activated.

SHOW SYSINFO – Display information about the LPAR
Use the SHOW SYSINFO command to show information about the LPAR where the
Workload Automation Programming Language job is running. This is useful to
determine the correct values to be set for OPTIONS TRACKERS.

The following example shows the output of the SHOW SYSINFO command:

Chapter 3. Core programming commands 57

03/15 14.42.42 EQQI609A System information SYSNAME(ADCD) JESNODE(N1)
...EQQI609A SMFID(SYS1) SYSPLEX(ADCDPL) SYSID()

where:

SYSNAME
Current system name

JESNODE
Current JES Node name

SMFID Current SMFID

SYSPLEX
Current Sysplex Name

SYSID Name of the system field used to determine the tracker subsystem name

SHOW SUBSYSTEM – Display controller information
Use the SHOW SUBSYSTEM command to show information about the connected IBM
Workload Scheduler for z/OS controller.

The following example shows the output of the SHOW SUBSYSTEM command:
03/15 14.42.42 EQQI610A Subsystem information NAME(WSIC) VER(8.5.1)

...EQQI610A FMID(HWSZ510) CWBASE(00) HIGHDATE(711231)

...EQQI610A LOWDATE(720101) CALENDAR() CONLEVEL(00000001)

...EQQI610A FUNCLEVEL(00000006) ADDBCS(N) OWDBCS(N)

where:

NAME Subsystem name of the controller.

VER External version of the IBM Workload Scheduler for z/OS software.

FMID Internal version.

CWBASE Century window base.

HIGHDATE
Highest date IBM Workload Scheduler for z/OS considers part of this
century.

LOWDATE
Lowest date IBM Workload Scheduler for z/OS considers part of last
century.

CALENDAR
Default calendar name.

CONLEVEL
Connector software level.

FUNCLEVEL
Connector function level.

ADDBCS Double byte character support in Application ID.

OWDBCS Double byte character support in Owner ID.

SHOW USRF – Display Operation User Fields for this job
Use the SHOW USRF command to show the names and values of all Operation User
Fields attached to the job.

The following example shows the output for the SHOW USRF command:

58 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

03/17 01.18.10 EQQI200I SHOW USRF
03/17 01.18.11 EQQI013A Job ADCDMSTU,JOB01991 in UFTEST 1409071119 CPU1_010
03/17 01.18.11 EQQI612A User field AUTHGROUP = ADCD
03/17 01.18.11 EQQI612A User field CATEGORY = C
03/17 01.18.11 EQQI299I Statement completed - RC=0

SHOW VARIABLES – Display current variable values
Use the SHOW VARIABLE command to show the current values of the Workload
Automation Programming Language variables and the table to which they belong.

The following example shows the output for the SHOW VARIABLES command:
03/17 15.36.38 EQQI613A Variables BATRACHOLOGY101.MYCOUNT(2) MYFIRST(A)

...EQQI613A MYLAST(F) BATRACHOLOGY101.MYLEFT(HELLO)

...EQQI613A BATRACHOLOGY101.MYRIGHT(WORLD)

...EQQI613A BATRACHOLOGY101.MYVAR(HELLO WORLD) MY5TH(E)

...EQQI613A OJJESNO(JOB02038) OJJSTEP(RUNWAPL) OJOBNAME(ADCDMSTS)

...EQQI613A OJPSTEP(EQQYXTOP) OJWSA(BELOW)

The variables are listed in alphabetical order by name, unless the variable is
assigned to a table. In this case, the table name is prefixed to the variable name.
For example, MYCOUNT belongs to the table BATRACHOLOGY101, while variable MY5TH is
not assigned to a table.

SUBROUTINE – Indicate the start of a subroutine
Use the SUBROUTINE statement to indicate the start of a new subroutine, which can
be run by the CALL SUB command.

LABEL: SUBROUTINE

A label must precede a SUBROUTINE statement.

Subroutines must be coded at the end of the SYSIN. The SUBROUTINE statements
themselves cannot be contained within an INCLUDE statement, but subroutines can
contain INCLUDE statements.

If an EXIT statement is not coded at the end of the main program, the first
SUBROUTINE statement will indicate an implicit EXIT.

TRANSLATE – Define rules for life-cycle translation
Use the TRANSLATE command to set up a series of rules to translate values of
specific fields, or types of fields in the Batch Loader output generated by Workload
Automation Programming Language. This command affects only Batch Loader
output.
TRANSLATE [[<type>|<field>] OLD(<name>) NEW(<name>)]

[[<type>|<field>] LIST(<member>) [DLM(=|<char>)]]
[[<type>|<field>] FILTER(<mask>) OVERLAY(<mask>)]
[[<type>|<field>] RULES(<member>) [DLM(=|<char>)]]
[OFF|ON]

A single TRANSLATE command can generate a single rule, or reference a set of rules,
for an individual field or type of field. The following list shows the available types
of field:

AD Application name

CL Calendar name

Chapter 3. Core programming commands 59

JS Job name

OW Owner ID

PR Period name (includes Run Cycle Group Name)

SR Special Resource Name

Note:

1. When processing TRANSLATE rules, Workload Automation Programming
Language first checks if an OLD/NEW pair of keywords is defined for the field. A
FILTER/OVERLAY pair is processed only if there is no matching pair of OLD/NEW
keywords.

2. The content of the ETTNAME field is automatically considered to be a field of
type SR when ETTTYPE is set to R and JS when ETTYPE is set to J.

3. The content of the ADRPER field is automatically considered to be a field type of
PR when ADRTYPE is set to N or X, otherwise the field type is not set.

4. Periods contained within rule text are translated for run cycles in Applications
and Run Cycle Groups.

The following restrictions apply to the TRANSLATE command:
v TRANSLATE rules can act only upon the value of the field being translated. You

cannot define a rule that relies upon the value of other fields.
v The ETTNAME field can contain both job names and application names, if you

define a rule specifically for the field ETTNAME you must consider this in the
design of your rules, because the automatic detection of the content type will be
overridden by your rule.

v The ADRPER field can contain both period names or just run cycle names, if you
define a rule specifically for the field ADRPER you must consider this in the
design of your rules, because the automatic detection of the content type will be
overridden by your rule.

The following types of rule exist:
v Absolute rules look for an OLD value and exchange it for a NEW value. An entire

set of absolute rules can be defined at the same time by using the LIST keyword
to refer to an external member containing a line for each OLD/NEW pair separated
by an equal sign (=).

v Filter rules look for entries matching the FILTER and OVERLAY a mask on the first
match. A whole set of filter rules can be defined at the same time by using the
RULES keyword to refer to an external member containing a line for each
FILTER/MASK pair separated by the equal sign (=).

v To provide multiple absolute or filter rules for the same field type, you can set
multiple OLD/NEW and FILTER/OVERLAY keyword pairs in the same TRANSLATE
statement.

Note: For fields that contain an equal sign (=), you can remap the equal sign
delimiter to another character by using the DLM keyword.

The TRANSLATE OFF command can be used to stop the existing rules being
processed in any commands that follows. Then issue a TRANSLATE ON command to
turn processing back on at a later point in the SYSIN. Defining any new rule with
the TRANSLATE command will also turn translation processing back on, if it had
been turned off.

When a field is being processed for translation, the following actions are taken:

60 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|

|
|
|

1. The field value is checked for an entry in the absolute list. If one is found, the
new value is substituted at this point, and the new value is passed on for filter
processing.

2. Each filter value is checked, in the order they were defined, for a match. If a
match is found then no more filter rules are evaluated.

3. If a match was made the OVERLAY value is used to modify the value.

The FILTER and OVERLAY keywords can be a combination of characters and the
following wildcard characters:
v Percent sign (%) equates to any single character.
v Asterisk (*) equates to any number of characters.

For example:

FILTER(Z*) looks for anything beginning with Z.

FILTER(%%P*) looks for anything with P in the third position.

FILTER(%%P*) OVERLAY(%%T*) replaces P in the third character position with T.

The order of filter rules is important, you can use some rules to exclude certain
values from processing, by giving the FILTER and the OVERLAY keywords the same
value.

For example, you used names beginning with Z for all your dummy operations on
a non-reporting workstation. These jobs never need to be modified. Their batch
jobs begin with characters different from Z, and have the phase of the life-cycle as
the third character in the job name. The following rules will convert test jobs to
production jobs, without changing the names of the dummy jobs:
TRANSLATE JS FILTER(Z*) OVERLAY(Z*)

FILTER(%%T*) OVERLAY(%%P*)

WAIT – Delay before continuing with the next command
Use the WAIT command to swap out the job for a specified amount of time.

WAIT hh:mm:ss

You can specify the time in the format hh:mm:ss, mmm:ss, or sss. If required, use a
period (.) delimiter instead of a colon (:).

The time cannot exceed 9999 seconds in total.

WRITE – Echo information to a file or the external data queue
Use the WRITE command to echo information to a file or to the external data queue.

WRITE <file>|* <expression>

where:

<file>
Can be any valid output DD statement.

* Indicates write to the external data queue.

Chapter 3. Core programming commands 61

<expression>
Can be any valid REXX expression.

For more details about REXX expressions and available functions, see TSO/E REXX
Reference.

Examples:

WRITE OUTDATA “Hello World”

WRITE * “A B C”

62 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 4. Workload Automation Programming Language
functions

For commands that use the REXX interpreter, you are provided with some
additional @ prefixed functions which you can use as part of an expression.
However, you cannot use any REXX functions or expressions within the @
functions.

@ - Date logic function
The @ function returns a boolean true or false (1 or 0), based on whether the input
string is true for the day that is being evaluated.

The following string allows IF statements and other REXX based commands to
make decisions, based on the characteristics of the date being checked.

@(“<input-string>”,[<date>],[”<additional-keywords>”])

For example, the string IF @(FRI) & @(WORKDAY) THEN would only be true if the
date being checked was both a Friday and a workday.

The following list shows the valid values for <input-string>:
v Day of the week: MON TUE WED THU FRI SAT SUN
v Part of the week: WEEKDAY or WEEKEND
v Day type: WORKDAY or FREEDAY (W, WORK, F and FREE are also valid)
v Day of the month: D01 – D31
v Month of the year: M01 – M12
v Name of the month: JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
v Year: Y00 – Y99
v yymmdd: a specific date
v A valid ADRULE string, for example ONLY LAST(1) DAY(FRIDAY) MONTH. For details

about how you specify the ADRULE statement, see IBM Workload Scheduler for
z/OS Managing the Workload.

Note: The <input-string> should be contained within single or double quotes if it
contains (or), otherwise quotes are optional.

By default, the date being checked is either the input arrival date for jobs
controlled by IBM Workload Scheduler for z/OS, or the current date for jobs not
controlled by IBM Workload Scheduler for z/OS. This date can be overridden by
specifying a date as the second argument of the function. The date can either be a
specific date in the format yymmdd or a relative date, using plus or minus to offset
from the default date for this function.

For example, the string IF @(FRI) & @(FREEDAY,+1) THEN is true if the scheduled
date for the job is a Friday and the following day is a Free day.

When checking WORKDAY and FREEDAY, the calendar to be used is determined as
follows:

© Copyright IBM Corp. 2016 63

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.3.0/com.ibm.tivoli.itws.doc_9.3/zos/src_man/eqqr1mst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.3.0/com.ibm.tivoli.itws.doc_9.3/zos/src_man/eqqr1mst_welcome.html

v If the job is controlled by IBM Workload Scheduler for z/OS, the calendar
associated with the controlling occurrence is used.

v If the job is run outside of IBM Workload Scheduler for z/OS, the calendar
specified by OPTIONS CALENDAR or CALENDAR set within EQQYPARM is used.

v If no calendar is set, the calendar named DEFAULT is used.

The CALENDAR can be overridden by specifying the CALENDAR keyword within the
third argument. For example, the string IF @(WORK,,”CALENDAR(NATIONAL)”) &
@(FREE,,”CALENDAR(LOCAL)”) THEN is true if the date being checked is a Workday
in the National calendar and a Freeday in the Local calendar.

Note: The Work Day End Time is not considered for WORKDAY or FREEDAY. To
exploit Workday End Time, you can use the ADRULE statement. Where you use an
ADRULE statement, the rule is checked to see if it would generate a match for the
date being checked.

The following list shows the additional keywords that you can specify as the third
argument to influence how the rule is evaluated:

CALENDAR
Sets the calendar to use. If not specified, the calendar is decided using the
same method as with WORKDAY and FREEDAY input strings.

FDAYRULE(1|2|3|4|E)
Sets the free day rule. By default, this is set to 3 which does not adjust the
date.

IAT(hhmm)
Sets the input arrival time to evaluate against the rule, for Calendar Work
Day End Time processing. By default, this will use the input arrival time of
the job running the command, if it is controller by IBM Workload
Scheduler for z/OS, otherwise it will use 0000 for a job outside of IBM
Workload Scheduler for z/OS control.

For example:
v @(“EVERY DAY(FREEDAY) WEEK”,,”CALENDAR(MYCAL) IAT(0300)”) evaluates

whether 3am on the date being checked is a Freeday, taking into account the
Work Day End Time of calendar MYCAL.

v @(“ONLY LAST(1) DAY(FRIDAY) MONTH”,-3) evaluates whether it was the last
Friday of the month 3 days ago.

v @(“ONLY LAST(1) DAY(FRIDAY) MONTH”,,”FDAYRULE(1)”) evaluates whether this is
the last working day before or on the last Friday of the month.

Note: The <additional-keywords> must be specified within single or double
quotes, because it contains opening and closing parenthesis.

The date logic expressions can also be used in the CRITERIA user fields for the
ALTIF and RUNIF commands.

@CMD and @JCL – Check RC of previous command or JCL step
This function compares the return code of a previous Workload Automation
Programming Language command, or a previous JCL step in the same job, with a
specified value.

The command returns 1 if the comparison is true, or 0 if the comparison is false.

64 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

@CMD([[<label>.]EQ|NE|LT|LE|GT|GE.]<value>)

@JCL([[<label>.]EQ|NE|LT|LE|GT|GE|EM|NM.]<value>)

where:

<label>
Workload Automation Programming Language label of the command or
step name within the job currently running.

EQ Is true if the return code is equal to <value>.

NE Is true if the return code is not equal to <value>.

LT Is true if the return code is less than <value>.

LE Is true if the return code is less than equal to <value>.

GT Is true if the return code is greater than <value>.

GE Is true if the return code is greater than or equal to <value>.

EM Is true if the abend matches the mask specified as <value> (@JCL only).

NM Is true if the abend does not match the mask specified as <value> (@JCL
only).

<value>
The value with which the return code or abend is being compared.

For @JCL, the <label> can be STEPNAME.PROCSTEP or PROCSTEP, where PROCSTEP is the
actual step name running the program (whether it is in a job or a procedure), and
STEPNAME is the name of the step calling the procedure where the step runs. If the
same PROCSTEP occurs more than once, the return code of the latest step is returned
if only the PROCSTEP is specified. If more than one combination of
STEPNAME.PROCSTEP exists within the job, the latest is used.

Examples:
v @JCL(STEP0040.EQ.0) allows a command to run when STEP0040 has a return

code of 0.
v @JCLL(RUNWAPL.EQQYXTOP.EQ.4) allows a command to run when a step called

RUNWAPL calling the Workload Automation Programming Language procstep
EQQYXTOP ends with return code of 4.

v @JCL(EQQYXTOP.EQ.4) allows a step to run when the latest step using the name
EQQYXTOP occurs.

For both @JCL and @CMD, a positive number can be used for <label> to reference an
absolute step or command number, for example 1 for the first step, 3 for the third
command. Negative numbers can be used for relative steps or command, for
example -1 for the immediately previous step, -2 for the command before the last
one.

Note:

v Workload Automation Programming Language automatically runs commands on
your behalf, and some commands may internally run other commands to
achieve their goal. Use SHOW RC(5) to see all the commands that have run up to
that point. Using SHOW RC without specifying a message level, lists all commands
up to and including the current value of OPTIONS MSGLEVEL.

v The SHOW RC command lists the names of all steps in the job, including the
Workload Automation Programming Language step currently running. This step,

Chapter 4. Workload Automation Programming Language functions 65

however, is not used when looking up steps by name, because it is not a
preceding step. You can reference the step currently running by the relative
address of 0, as follows: VARSET THISSTEP ENVATTR(JCL,STEP,0), and then use
VARSET to find out details of the running step.

To receive step information, you can use the following special values for <label> in
@CMD, @JCL and VARSET:

LAST_RC
Refers to the previous JCL step or Workload Automation Programming
Language command.

LAST_XRC
Refers to the preceding JCL step or Workload Automation Programming
Language command that was actually run.

MAX_RC Refers to the step that set the maximum return code.

MAX_RESP
Refers to the step that set the maximum response code (for LISTSTAT).

For @JCL, the MAX_RC label points to the step issuing the highest return code, unless
an ABEND has occurred, when this will be the last abended step, to allow for
situations where ONLY and EVEN is used. For MAX_RC and MAX_RESP, if SETMAX is used
to lower the maximum return code, it will point to the step issuing the highest
return code from that point, which could be the SETMAX statement itself.

If the <label> is not specified, the last executed step or command is used
(LAST_XRC). This default can be altered by OPTIONS IFJCL or OPTIONS IFCMD as
appropriate. For example, @CMD(EQ.0) would allow only a command to run if the
last command that was not flushed ended with a return code of 0.

If both <label> and the comparator are not specified, <label> defaults to LAST_XRC
and the comparator defaults to EQ. For example, @CMD(0) would allow only a
command to run if the last executed command ended with return code 0.

@LOG – Return the date and time in EQQYLOG format
This function provides the current date and time in the same format used in the
EQQYLOG. It is a function with no arguments, but the parentheses must be coded.

For example, DISPLAY @LOG() “Hello world”

08/24 23.06.55 Hello World

@V – Return the value of a named variable
This function returns the value of a named variable.

@V(<variable-name>)

where <variable-name> is the name of the variable to return. The VARSUB prefix (for
example, the exclamation mark) must be coded only if you want to return the
value of a variable named within a variable.

Variable substitution does not need to be active for @V to work. Variable
substitution can be used as a mechanism to subscript variables, such as object
variables.

66 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

For example, the command:
VARSUB SCAN
SELECT AD ADID(DAILYPLANNING) OBJECT(FREDDO)
DO X = 1 TO !@FREDDO-#ADOP

DISPLAY @V(@FREDDO-ADOP-!X.-ADOPWSID) @V(@FREDDO-ADOP-!X.-ADOPJN)
END

produces output displaying workstation and job name for each operation in the
object:
NONR ZFIRST
CPU1 WSLCLTEX
CPU1 WSLCCPEX
NONR ZLAST

Chapter 4. Workload Automation Programming Language functions 67

68 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 5. Data Access commands based on PIF

The Data Access commands supported by Workload Automation Programming
Language are low level commands based on the IBM Workload Scheduler for
z/OS programming interface (PIF).

PIF provides access to the IBM Workload Scheduler for z/OS database and plans
at a record and segment level. Because Workload Automation Programming
Language is cross version compliant, see Developer's Guide: Driving IBM Workload
Scheduler for z/OS for notes, restrictions, or limitations that apply to the version you
are using.

DELETE – Delete object from database or plan
Use the DELETE request to delete a record or record segment.

DELETE <resource> <arguments>

If you are deleting a record, the arguments identify the specific record to be
deleted. To delete only some information within an occurrence (for example, one of
its operations), you must first use a MODIFY request to identify the occurrence, then
a DELETE request to delete the operation.

To delete a special resource specification for an operation, you must first use a
MODIFY request to identify the occurrence, then a MODIFY request to identify the
operation, and finally a DELETE request to delete the special resource.

To delete an interval of a current plan workstation, you must precede the DELETE
IVL with a MODIFY CPWS to identify the workstation.

To delete the extended name of an operation, you must use the MODIFY request.

If the DELETE request was used to modify information in the current plan, a later
EXECUTE request must be issued for the modification to take effect: Workload
Automation Programming Language will do this automatically if OPTIONS
EXECUTE(AUTO) is set (this is the default).

Return codes have the following meaning:

0 The request was successful.

4 The record is currently being updated by another user. The record is not
deleted.

8 The request was unsuccessful. An error message is issued to the message
log data set.

DELETE AD – Application Definition
Table 7. DELETE AD – Application Definition

Argument Name Description

ADID Application description ID

GROUP Authority group name

© Copyright IBM Corp. 2016 69

Table 7. DELETE AD – Application Definition (continued)

Argument Name Description

GROUPDEF Group definition ID

OWNER Owner ID

PRIORITY Priority

STATUS Status:

v P=Pending

v A=Active

Note: IBM Workload Scheduler for z/OS assumes application type A, if you do
not specify the TYPE argument name.

DELETE AWSCL – All Workstations Closed
Table 8. DELETE AWSCL – All Workstations Closed

Argument Name Description

DATE Date workstations are closed YYMMDD

DELETE CL – Calendar
Table 9. DELETE CL – Calendar

Argument Name Description

CALENDAR Calendar ID

DELETE CPCOND – Condition
Table 10. DELETE CPCOND – Condition

Argument Name Description

CONDID Condition ID (1-999)

Note: Resource CPCOND is valid only for the DELETE request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

DELETE CPOC – Current Plan Occurrence
Table 11. DELETE CPOC – Current Plan Occurrence

Argument Name Description

ADID Application description ID

IA Input arrival date and time YYMMDDHHMM

DELETE CPOCPRE – Current Plan Occurrence Predecessor
Table 12. DELETE CPOCPRE – Current Plan Occurrence Predecessor

Argument Name Description

PREADID Predecessor application ID.

PREIA Predecessor input arrival date and time YYMMDDHHMM.

70 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

||

||

||

||

Table 12. DELETE CPOCPRE – Current Plan Occurrence Predecessor (continued)

PREOPNO Predecessor operation number. If the predecessor is an
occurrence, you do not need to set this argument.

DELETE CPOCSUC – Current Plan Occurrence Successor
Table 13. DELETE CPOCSUC – Current Plan Occurrence Successor

Argument Name Description

SUCADID Successor application ID.

SUCIA Successor input arrival date and time YYMMDDHHMM.

SUCOPNO Successor operation number. If the successor is an occurrence,
you do not need to set this argument.

DELETE CPOP – Current Plan Operation
Table 14. DELETE CPOP – Current Plan Operation

Argument Name Description

OPNO Operation number

DELETE CPPRE – Current Plan Predecessor
Table 15. DELETE CPPRE – Current Plan Predecessor

Argument Name Description

PREADID Predecessor application .

PREIA Predecessor input arrival date and time YYMMDDHHMM.

PREOPNO Predecessor operation number. If the predecessor is an
occurrence, you do not need to set this argument.

Note: To delete an internal predecessor, specify onlyPREOPNO. To delete an external
predecessor, specify all three arguments.

DELETE CPSIMP – Conditional predecessor
Table 16. DELETE CPSIMP – Conditional predecessor

Argument Name Description

PREADID Predecessor application name.

PREIA Predecessor input arrival date and time YYMMDDHHMM.

PREOPNO Predecessor operation number.

PROCSTEP Use it to define a step level dependency. If the step is not in a
procedure, this parameter identifies the job step name,
otherwise it identifies the step name in the JCL procedure. It
must correspond to a step specifying the EXEC PGM=
statement.

STEPNAME Use it in conjunction with PROCSTEP when defining a step
level dependency, only if the step is in a procedure, to identify
the procedure invocation step name.

Chapter 5. Data Access commands based on PIF 71

|

||
|
|

|

||

||

||

||

||
|
|

|

Table 16. DELETE CPSIMP – Conditional predecessor (continued)

TYPE Condition type:

RC To check predecessor return code

ST To check predecessor status

LOG Logical operator:

GE Greater than or equal to (TYPE=RC only)

GT Greater than (TYPE=RC only)

LE Less than or equal to (TYPE=RC only)

LT Less than (TYPE=RC only)

EQ Equal to

NE Not equal to

RG Range (TYPE=RC only)

VALRC Return code value, or lower limit of a return code value range
when TYPE=RC & LOG=RG

VALRC2 Upper limit of a return code value range when TYPE=RC &
LOG=RG

VALST Status (TYPE=ST only)

Note:

1. Resource CPSIMP is valid only for the DELETE request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

2. Before a DELETE CPSIMP request, always identify the occurrence, operation, or
condition by using:
v An INSERT or MODIFY CPOC request
v An INSERT or MODIFY CPOP request
v An INSERT or MODIFY CPCOND request

DELETE CPSR – Current Plan Operation Special Resource
Table 17. DELETE CPSR – Current Plan Operation Special Resource

Argument Name Description

RESNAME Special Resource name

DELETE CPSUC – Current Plan Successor
Table 18. DELETE CPSUC – Current Plan Successor

Argument Name Description

SUCADID Successor application ID.

SUCIA Successor input arrival date and time YYMMDDHHMM.

SUCOPNO Successor operation number. If the successor is an occurrence,
you do not need to set this argument.

Note: To delete an internal successor, specify only SUCOPNO. To delete an external
successor, you must specify all the arguments.

72 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

DELETE CPUSRF – User Field
Table 19. DELETE CPUSRF – User Field

Argument Name Description

UFNAME User Field Name.

Note: Resource CPUSRF is valid only for the DELETE request starting from IBM
Workload Scheduler for z/OS version 8.5.1 SPE, or later.

DELETE ETT – Event Trigger
Table 20. DELETE ETT – Event Trigger

Argument Name Description

ADID Associated application ID

ETTNAME Name of trigger

ETTTYPE Type of trigger:

J Job

R Special resource

DELETE IVL – Current Plan Workstation Interval

An interval can have information originating from the workstation description,
indicator CPIVLDP in segment CPIVL is set to Y, or else to N. If an interval is
changed or created via the dialog or the program interface, the indicator
CPIVLMOD in CPIVL is set to Y, or else to N. DELETE IVL only affects
modifications. Intervals with CPIVLDP=Y remain after a DELETE, the interval is
reset to the daily planning values and CPIVLMOD is set to N. Intervals with
CPIVLDP=N are fully deleted.

Table 21. DELETE IVL – Current Plan Workstation Interval

Argument Name Description

FROM Interval start date and time YYMMDDHHMM

DELETE JCLV – JCL Variable Table
Table 22. DELETE JCLV – JCL Variable Table

Argument Name Description

JCLVTAB JCL variable table ID

DELETE JL – Job Log
Table 23. DELETE JL – Job Log

Argument Name Description

ADID Application ID

IA Input arrival date and time YYMMDDHHMM

JOBNAME z/OS Job name

OPNO Operation number

Chapter 5. Data Access commands based on PIF 73

Table 23. DELETE JL – Job Log (continued)

WSNAME Workstation name

DELETE JS – Current Plan JCL
Table 24. DELETE JS – Current Plan JCL

Argument Name Description

ADID Application ID

IA Input arrival date and time YYMMDDHHMM

JOBNAME z/OS Job name

OPNO Operation number

WSNAME Workstation name

DELETE LTOC – Long-Term Plan Occurrence
Table 25. DELETE LTOC – Long-Term Plan Occurrence

Argument Name Description

ADID Application description ID

IAD Input arrival date YYMMDD

IAT Input arrival time HHMM

DELETE LTCPRE – LTP Conditional Predecessor
Table 26. DELETE LTCPRE – LTP Conditional Predecessor

Argument Name Description

ADID Application description ID

IAD Input arrival date YYMMDD

IAT Input arrival time HHMM

PREADID Conditional predecessor application ID

PREIAD Conditional predecessor input arrival date YYMMDD

PREIAT Conditional predecessor input arrival time HHMM

Note: Resource LTCPRE is valid only for the DELETE request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

DELETE LTPRE – Long-Term Plan Predecessor
Table 27. DELETE LTPRE – Long-Term Plan Predecessor

Argument Name Description

ADID Application description ID

IAD Input arrival date YYMMDD

IAT Input arrival time HHMM

PREADID Predecessor application ID

PREIAD Predecessor input arrival date YYMMDD

74 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 27. DELETE LTPRE – Long-Term Plan Predecessor (continued)

PREIAT Predecessor input arrival time HHMM

Note: DELETE LTPRE is used only to delete external predecessors. No support is
provided in the long-term plan for internal dependencies.

DELETE OI – Operator Instruction
Table 28. DELETE OI – Operator Instruction

Argument Name Description

ADID Application description ID

OPNO Operation number

DELETE PR – Period
Table 29. DELETE PR – Period

Argument Name Description

PERIOD Period name

PRTYPE Period type

DELETE SR – Special Resource
Table 30. DELETE SR – Special Resource

Argument Name Description

RESGROUP Special resource group

RESHIPER DLF resource indicator

RESNAME Special resource name

DELETE VIVL – CP Virtual Workstation Interval

If an interval contains information originating from the Virtual Workstation
Destination description, the indicator CPVIVLDP in segment CPVIVL is set to Y,
otherwise it is set to N. If an interval is changed or created using the dialog or the
program interface, the indicator CPVIVLMOD in segment CPVIVL is set to Y,
otherwise it is set to N.

DELETE VIVL only affects modifications. Intervals with CPVIVLDP=Y remain after a
DELETE, the interval is reset to the daily planning values and CPVIVLMOD is set to
N. Intervals with CPVIVLDP=N are fully deleted.

Table 31. DELETE VIVL – CP Virtual Workstation Interval

Argument Name Description

FROM Interval start date and time YYMMDDHHMM

Note: Resource VIVL is valid only for the DELETE request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

Chapter 5. Data Access commands based on PIF 75

DELETE WS – Workstation
Table 32. DELETE WS – Workstation

Argument Name Description

WSNAME Workstation name

WSREP Workstation reporting attribute

WSRETYPE Remote engine type:

D IBM Workload Scheduler

Z IBM Workload Scheduler for z/OS

blank

WSTWS Fault tolerant workstation, Y or N

WSTYPE Workstation type

WSWAIT WAIT workstation, Y or N

DELETE WSV – Virtual workstation destination
Table 33. DELETE WSV – Virtual workstation destination

Argument Name Description

WSNAME Virtual workstation name.

WSDEST Virtual workstation destination. For using the controller itself as a
destination enter a value of ********.

Note: Resource WSV is valid only for the DELETE request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

EXECUTE – Commit updates to the Current Plan
Use the EXECUTE request to update the current plan after one or more modify,
insert, or delete current plan requests are completed.

EXECUTE [MCPBLK]

If you are changing more than one current plan occurrence or current plan
workstation before an EXECUTE request, you must complete all changes to one
occurrence or workstation before changing the other. If you do not complete all
changes to one occurrence or workstation, a message is issued and all the changes
made since the last EXECUTE request are reset.

For changes to current plan resources, CSR, no EXECUTE is required.

An EXECUTE request is performed automatically by Workload Automation
Programming Language before termination, if updates to the current plan were
detected and OPTIONS EXECUTE(AUTO) was specified (this is the default).

Note: The resource can be only MCPBLK, therefore is optional. Any keywords you
specify on an EXECUTE statement other than MCPBLK are ignored.

Return codes are:

0 The request was successful.

76 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

8 The request was not successful. An error message is issued to the message
log data set.

INIT – Initialize communication with IBM Workload Scheduler for z/OS
Use the INIT request to identify the required IBM Workload Scheduler for z/OS
subsystem and initialize the communication session between the subsystem and
Workload Automation Programming Language.

INIT <resource> <arguments>

Through the parameter file EQQYPARM, you can override the subsystem name
specified in the INIT request, and set a LU name, a TRACE level, and the DATINT
flag.

The parameter file can be a sequential file, or a PDS allocated as //EQQYPARM DD
DISP=SHR,DSN=OPCESA.SYS1.CNTL(YPARM)

If you do not specify any INIT request, Workload Automation Programming
Language automatically executes one before any other PIF requests. It also
generates a TERM request ahead of your INIT request, if you make an INIT request
to a new subsystem while a session is already established.

An automatic INIT request specifies v the subsystem to which to connect, if you
code an INIT request yourself you can specify additional arguments.

Return codes are:

0 The request was successful. A programming interface session is
successfully started. The address of the communication block is placed in
the parameter list.

8 The request was not successful. For details about the error, see the message
log, SYSLOG, and EQQDUMP data sets.

INIT subsystem
Table 34. INIT subsystem

Argument Name Description

LUNAME This argument allows the user to specify a server or
controller LU name for the program interface session to
communicate through.

MLOGDDN This argument identifies a message log that messages are
written to, rather than the default message log, EQQMLOG.

Each INIT request requires its own message log. If you make
more than one INIT request before a TERM request, or if PIF
is invoked by a program or started task that is already using
EQQMLOG, specify MLOGDDN for each additional INIT
request. If MLOGDDN is not specified, and EQQMLOG is
already in use, message EQQZ038E is written to the
SYSLOG and the INIT request fails.

REMHOST The server host name for the program interface TCP/IP
session. REMHOST and LUNAME are mutually exclusive.

REMPORT The server port number for the program interface TCP/IP
session. REMPORT and LUNAME are mutually exclusive.

Chapter 5. Data Access commands based on PIF 77

INSERT – Add objects into the plan
In Workload Automation Programming Language, use the INSERT request to add
occurrences to the Current Plan and Long-Term Plan. The PIF facility to update the
database is handled by Batch Loader within Workload Automation Programming
Language.

INSERT <resource> <arguments> ALIAS(<newname>)

When inserting a new occurrence, the input arrival date and time and deadline
date and time can be provided in the arguments. If the input arrival is not
provided when inserting a current plan occurrence, the current date and time is
used (that is, the date and time at which the occurrence is inserted). However, if an
occurrence already exists with this application ID and input arrival date and time,
the next available minute in which no occurrence of this application exists will be
used. You must supply an input arrival date and time if you are inserting an
occurrence in the LTP.

If arguments are not provided for the deadline, these defaults are observed by IBM
Workload Scheduler for z/OS:
v If the occurrence is being added to the current plan and the input arrival is

provided, the deadline from the first run cycle is used if a run cycle exists. If
there are no run cycles or the input arrival is not provided, the deadline is set to
the input arrival time plus 8 hours.

v When the occurrence is being added to the long-term plan, the deadline is set to
the input arrival plus 8 hours.

By default, external dependencies of the occurrence are not resolved when it is
added to the LTP or CP. If resolution of external dependencies is required, an
OPTIONS LTDEPR or CPDEPR request must be used to specify this.
v To insert the extended name of an operation, use the MODIFY request.
v To insert new information into an existing LTP or CP occurrence, specify the

required arguments. For example, you can insert a new operation into an
existing current plan occurrence, but you must have first identified the actual
occurrence to which the information is to be added with a previous MODIFY or
INSERT request. Similarly, you can insert new information for an existing current
plan operation only if you first identified the operation. This means that you
must first use a MODIFY request to identify the occurrence, then you use a MODIFY
request to identify the operation, before inserting a predecessor (CPPRE),
successor (CPSUC), or special resource (CPSR).
When identified, Workload Automation Programming Language maintains a
current occurrence and current operation.
To insert a new interval into a current plan workstation, first identify the
workstation with a MODIFY CPWS request.

If the INSERT request was used to modify information in the current plan, a later
EXECUTE request must be made for the modification to actually take effect;
Workload Automation Programming Language does this for you automatically if
you set OPTIONS EXECUTE(AUTO) (this is the default).

The return codes are:

0 The request was successful.

4 One or more of the dependencies, specified by the application description

78 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

of the INSERT LTOC request, was not set up because no applicable
predecessor occurrence exists. This return code could also result from an
INSERT request for any of LTPRE, CPOP, CPOC, CPPRE, and CPSR, if the
dependency was not set up.

8 The request was not successful. An error message is issued to the message
log data set.

INSERT CPOC – Current Plan Occurrence
Table 35. INSERT CPOC – Current Plan Occurrence

Argument Name Description

ADID Application description ID as stored in the database

ALIAS Application description ID to use on the Current Plan

DEADLINE Deadline date and time YYMMDDHHMM

DESC Descriptive text

ERRCODE Error code

GROUP Authority group

GROUPDEF Group definition ID

IA Input arrival date and time YYMMDDHHMM

JCLVTAB JCL variable table

ODESC Descriptive text of owner

OWNER Owner ID

PRIORITY Priority

Note:

1. A DEADLINE argument is accepted also when no IA argument is specified. If the
IA selected by IBM Workload Scheduler for z/OS is later than the DEADLINE
argument value, the argument value is ignored. The default, IA plus 8 hours, is
used.

2. If you specify 24.00 as the IA time, it is converted to 00.00 of the following day.
Valid input arrival times are from 00.00 to 23.59.

3. If you specify 00.00 as deadline, it is converted to 24.00 of the previous day.
Valid deadline times are from 00.01 to 24.00.

4. If you use ALIAS, unique occurrences could be created in the plan; but if
another application with the same name exists, this is never run and the JCL
for these occurrences remains in the JS file indefinitely. Consider using the IBM
Workload Scheduler for z/OS sample EQQPIFJX to maintain the JCL repository.

INSERT CPOCPRE – Current Plan Occurrence Predecessor
Table 36. INSERT CPOCPRE – Current Plan Occurrence Predecessor

Argument Name Description

PREADID Predecessor application ID.

PREIA Predecessor input arrival date and time YYMMDDHHMM.

PREOPNO Predecessor operation number. If the predecessor is an
occurrence, you do not need to set this argument.

Chapter 5. Data Access commands based on PIF 79

|

||

||

||

||

||
|
|

INSERT CPOCSUC – Current Plan Occurrence Successor
Table 37. INSERT CPOCSUC – Current Plan Occurrence Successor

Argument Name Description

SUCADID Successor application ID.

SUCIA Successor input arrival date and time YYMMDDHHMM.

SUCOPNO Operation number. If the successor is an occurrence, you
do not need to set this argument.

INSERT CPCOND – Current Plan Condition
Table 38. INSERT CPCOND – Current Plan Condition

Header Header

CONDID Condition ID (1-999)

COUNT Condition Counter. Used to determine how many conditional
predecessors must be met for the condition to be true.

If set to zero ALL conditional predecessors must be true for
the condition to be satisfied. If greater than zero then the
condition will be satisfied if at least that many conditional
predecessors are met.

DESC Descriptive text (16 characters)

Note: Resource CPCOND is valid only for the INSERT request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

INSERT CPOP – Current Plan Operation
Table 39. INSERT CPOP – Current Plan Operation

Argument Name Description

AEC Automatic error completion

AJR Automatic job hold/release

ASUB Automatic job submission

CLATE Cancel if late

CLNTYPE Data Set cleanup type

CONDRJOB Conditional recovery job

CSCRIPT Uses centralized script

DEADWTO Issue deadline WTO

DESC Descriptive text

DURATION Estimated duration in 100th of a second (mutually exclusive
with EDUR)

EDUR Estimated duration HHMM (mutually exclusive with
DURATION)

EXPJCL Expanded JCL option

FORM Form number or blanks

HRC Highest successful return code

JCLASS Job class

80 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

Table 39. INSERT CPOP – Current Plan Operation (continued)

Argument Name Description

JOBCRT Critical job:

N Not eligible for WLM assistance

P Critical path target

W Eligible for WLM assistance

JOBNAME Job name

JOBPOL Workload monitor late job policy:

C Conditional mode

D Deadline

L Long duration

S Latest start time

‘ ’ (blank)
Use default

MONITOR Operation monitored by an external product, Y or N

OPDL Operation deadline date and time YYMMDDHHMM or blank

OPIA Operation input arrival date and time YYMMDDHHMM or
blank

OPNO Operation number

PSUSE Parallel servers required

R1USE Resource 1 required

R2USE Resource 2 required

RERUT Reroutable operation

RESTA Restartable operation

STATUS Operation status

TIMEDEP Time-dependent job

USERDATA Data stored in operation user field

USRSYS User sysout support

WSNAME Workstation name

WLMSCLS WLM service class

INSERT CPPRE – Current Plan Predecessor
Table 40. INSERT CPPRE – Current Plan Predecessor

Argument Name Description

PREADID Predecessor application ID.

PREIA Predecessor input arrival date and time YYMMDDHHMM.

PREOPNO Predecessor operation number. If the predecessor is an
occurrence, you do not need to set this argument.

TRPTTIME Transport time HHMM.

Note: When CPPRE is needed to insert an internal dependency, PREADID and
PREIA must not be used.

Chapter 5. Data Access commands based on PIF 81

INSERT CPSAI – Current Plan System Automation Info
Table 41. INSERT CPSAI – Current Plan System Automation Info

Argument Name Description

AUTFUNC System Automation automated function (for operation). It
must be an alphanumeric value, uppercase format. The first
character cannot be numeric.

COMMETXT System Automation command text. It must be set and cannot
be blank.

COMPINFO System Automation completion information.

SECELEM System Automation security element.

Note:

1. The occurrence and operation to which the system automation information
refers are identified, respectively, by INSERT/MODIFY CPOC and INSERT/MODIFY
CPOP sequences

2. You can only use INSERT CPSAI for an operation that runs on an automation
workstation.

3. Resource CPSAI is valid only for the INSERT request starting from IBM Workload
Scheduler for z/OS version 8.3, or later.

INSERT CPSIMP – Current Plan Conditional Predecessor
Table 42. INSERT CPSIMP – Current Plan Conditional Predecessor

Argument Name Description

PREADID Predecessor application name.

PREIA Predecessor input arrival date and time YYMMDDHHMM.

PREOPNO Predecessor operation number.

PROCSTEP Use it to define a step level dependency. If the step is not
in a procedure, this parameter identifies the job step name,
otherwise it identifies the step name in the JCL procedure.
It must correspond to a step specifying the EXEC PGM=
statement.

STEPNAME Use it in conjunction with PROCSTEP when defining a step
level dependency, only if the step is in a procedure, to
identify the procedure invocation step name.

TYPE Condition type:

RC To check predecessor return code

ST To check predecessor status

LOG Logical operator:

GE Greater than or equal to (TYPE=RC only)

GT Greater than (TYPE=RC only)

LE Less than or equal to (TYPE=RC only)

LT Less than (TYPE=RC only)

EQ Equal to

NE Not equal to

RG Range (TYPE=RC only)

82 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 42. INSERT CPSIMP – Current Plan Conditional Predecessor (continued)

Argument Name Description

VALRC Return code value, or lower limit of a return code value
range when TYPE=RC & LOG=RG.

VALRC2 Upper limit of a return code value range when TYPE=RC &
LOG=RG.

VALST Status (TYPE=ST only).

Note:

1. To create an internal dependency, do not specify either PREADID or PREIA.
2. Resource CPSIMP is valid only for the INSERT request starting from IBM

Workload Scheduler for z/OS version 8.5, or later.

INSERT CPSR – Current Plan Operation Special Resource
Table 43. INSERT CPSR – Current Plan Operation Special Resource

Argument Name Description

ONCOMPL Availability to set on complete:

Y Available

N Unavailable

R Reset availability to default

ONERROR Keep on error, Y or N.

QUANTITY Quantity required. Specify 0 to allocate the total quantity of
the special resource. The value 0 is the same as blank in
the dialogs.

RESNAME Special resource name.

RESUSAGE Special resource usage, S or X.

INSERT CPSUC – Current Plan Successor
Table 44. INSERT CPSUC – Current Plan Successor

Argument Name Description

SUCADID Successor application ID.

SUCIA Successor input arrival date and time YYMMDDHHMM.

SUCOPNO Operation number. If the successor is an occurrence, you
do not need to set this argument.

Note: When you use CPSUC to insert an internal dependency, SUCADID and
SUCIA must not be used.

INSERT CPUSRF – User Field
Table 45. INSERT CPUSRF – User Field

Argument Name Description

UFNAME User Field Name

UFVALUE User Field Value

Chapter 5. Data Access commands based on PIF 83

Note:

v Always identify an operation with an INSERT CPOP or MODIFY CPOP request before
using an INSERT CPUSRF request.

v Resource CPUSRF is valid only for the INSERT request starting from IBM Workload
Scheduler for z/OS version 8.5.1 SPE, or later.

INSERT IVL – Current Plan Workstation Interval
An interval can have information originating from the workstation description,
indicator CPIVLDP in segment CPIVL is set to Y, or otherwise to N. If an interval
is changed via the dialog or the program interface then the indicator CPIVLMOD
is Y, or otherwise N. INSERT IVL can insert an interval spanning existing intervals
with CPIVLMOD=N.

The inserted interval is converted to several intervals as required by daily
planning. Other requests following the INSERT must take this possible split into
account; each request is handled fully before the next request.

Table 46. INSERT IVL – Current Plan Workstation Interval

Argument Name Description

FROM Interval start date/time YYMMDDHHMM

PSCAP Parallel server capacity

R1CAP Resource 1 capacity

R2CAP Resource 2 capacity

TO Interval end date and time YYMMDDHHMM

INSERT JCLPREP – JCL Preparation
Table 47. INSERT JCLPREP – JCL Preparation

Argument Name Description

ADID Application ID

IA Input arrival date and time YYMMDDHHMM

OPNO Integer Operation number

INSERT LTOC – Long Term Plan Occurrence
Table 48. INSERT LTOC – Long Term Plan Occurrence

Argument Name Description

ADID Application ID

DEADLINE Deadline date and time YYMMDDHHMM

ERRCODE Error code

GROUPDEF Group definition ID

IAD Run date YYMMDD

IAT Input arrival time HHMM

JCLVTAB JCL variable table

PRIORITY Priority

84 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

INSERT LTPRE – Long Term Plan Predecessor
Table 49. INSERT LTPRE – Long Term Plan Predecessor

Argument Name Description

ADID Application ID

IAD Run date YYMMDD

IAT Input arrival time HHMM

PREADID Predecessor Application ID

PREIAD Predecessor Run date YYMMDD

PREIAT Predecessor Input arrival time HHMM

Note: INSERT LTPRE is used only to insert external predecessors. No support is
provided in the long-term plan for internal dependencies.

INSERT VIVL – CP Virtual Workstation Interval
An interval can have information originating from the workstation description,
indicator CPVIVLDP in segment CPVIVL is set to Y, or otherwise to N. If an
interval is changed via the dialog or the program interface then the indicator
CPVIVLMOD is Y, or otherwise N. INSERT VIVL can insert an interval spanning
existing intervals with CPVIVLMOD=N.

The inserted interval is converted to several intervals as required by daily
planning. Other requests following the INSERT must take this possible split into
account; each request is handled fully before the next request.

Table 50. INSERT VIVL – CP Virtual Workstation Interval

Argument Name Description

FROM Interval start date/time YYMMDDHHMM

PSCAP Parallel server capacity

R1CAP Resource 1 capacity

R2CAP Resource 2 capacity

TO Interval end date and time YYMMDDHHMM

Note: Resource VIVL is valid only for the INSERT request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

Note:

LIST – Find objects in the Database and Plans
Use the LIST request to retrieve a list of records of a selected type.

LIST <resource> <arguments> VALID(<date>) SAVELIST(<listname>)

When you use LIST, the resulting list includes only the common segments of the
records. By default, no other segments is retrieved and Batch Loader statements are
not generated. To do this, you must SELECT a record by adding the keyword
SELECT(Y) to the LIST statements. To make this the default behaviour, specify
OPTIONS SELECT(Y) for all LIST statements. For more details, see “Automatic
SELECT and DELETE” on page 88.

Chapter 5. Data Access commands based on PIF 85

For retrieving current plan occurrences and operations, the default is to retrieve all
matching objects except those in deleted status. When you specify the argument
STATUS, it overrides the default processing.

Argument names specify field names of the record to be tested to determine if the
record should be included in the list.

Note:

1. Because the first blank or comparison-operator symbol ends the argument
value, you cannot search for fields that contain imbedded blanks or
comparison-operator symbols.

2. The wildcard search arguments asterisk (*) and percent sign (%), cannot be
used in the year part (YY) of date arguments.

3. To use a comparison operator (such as <, >, or ≠) in an argument that contains
an IA value including a date and time, specify the complete value as the
argument. The comparison operator can follow this value.

4. The values of PIF arguments as dates depend on the PIF base year, which is
defined by the PIFCWB keyword on the INTFOPTS statement, or the CWBASE
keyword of the INIT statement. The value of the VALTO argument for default
high date depends on the PIFHD keyword of the INTFOPTS statement or the
HIGHDATE keyword of the INIT statement.

5. The IBM Workload Scheduler for z/OS programming interface requires that
you use the Common Segment in LIST requests. WAPL allows the record to be
specified instead, and translates this internally to the common segment before
passing the request to the PIF.

The return codes are:

0 The request was successful.

4 The request was not successful, for one of the following reasons:
1. The requestor is not authorized to read the records.
2. No records meet the criteria specified by the arguments.

8 The request was not successful. An error message is issued to the message
log data set.

OBJECT
Use the OBJECT keyword to create an object variable for the LISSTAT process and
the record identified.

OBJECT(<name>)

where <name> is the name of the object variable to create.

The primary object for the LISSTAT command is a simple object variable that
contains the number of records found by the LISTSTAT command. This is either 1
or 0, because LISSTAT is designed to identify only one record.

Int the following example, the object for the identified record is the object name
suffixed by 1:
LISTSTAT CPOPCOM ADID(TWSCDAILYPLAN) OPNO(010) IA(0805281200)

POLICY(C=0,?=0,20) OBJECT(CHK)

86 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Therefore !@CHK will contain 1 if the operation is found, and 0 if not.
!@CHK1-CPOPJES will contain the JES number of the job being checked.

MATCHTYP Argument
Use the MATCHTYP argument for LIST requests with searchable fields that might
contain wildcards or spaces.

When you specify the argument MATCHTYP, the asterisk (*) and percent sign (%)
represent normal characters instead of wildcards, and blank represents a normal
character instead of ending the selection value.

MATCHTYP EXA, PFX, and SFX affect:
v The STATUS argument of the CPOPCOM segment
v The ETTNAME argument of the ETT segment
v The RESNAME argument of the SRCOM and CSRCOM segments.

The MATCHTYP argument can have the following values:

EXA Exact match

PFX Treat as a prefix match

SFX Treat as a suffix match

Note:

1. If MATCHTYP has the EXA value specified, a record is selected only if the
value in the record is exactly the same as the argument value.

2. If MATCHTYP has the PFX value specified, a record is selected only if the start
value in the record is the same as the argument value.

3. If MATCHTYP has the SFX value specified, a record is selected only if the end
value in the record is the same as the argument value.

SAVELIST Argument
Use the SAVELIST argument to save the list of objects that were found for input to
Batch Loader commands to identify the objects to update.

In the following example, the command finds all the applications with the owner
ID starting with ABC and pass that list into Batch Loader command ADSTART to
change the owner ID to start with XYZ:
OPTIONS OUTMASK(Y)
LIST ADCOM OWNER(ABC*) SAVELIST(ABCOWNED)
ADSTART SAVELIST(ABC*) OWNER(XYZ*)

Note: Do not use SAVELIST for names beginning with an underscore (_), because
this is the prefix that Workload Automation Programming Language uses for any
SAVELIST commands that is generated internally. Names prefixed with an
underscore (_) are considered temporary and might be automatically dropped by
commands.

TAG Argument
Use the TAG argument in a LIST command to create an additional output field
called TAG, which will be available in any segment generated by the command.
This allows for the output from multiple LIST commands to be correlated back to
the originating command.

Chapter 5. Data Access commands based on PIF 87

In the following example, the command performs 2 LIST requests: one for the
applications whose names begin with ABC, one for the applications whose owner
ID begins with ABC. The returned records lists the TAG and the ADID. By checking
the TAG, you can determine from which LIST request each record comes.
OUTPUT ADCOM FIELDS(TAG,ADID)

LIST ADCOM ADID(ABC*) TAG(ABCAPPS)
LIST ADCOM OWNER(ABC*) TAG(ABCOWNED)

Note: Any SELECT statements generated from a LIST statement using OPTIONS
SELECT(Y) will automatically be passed the same TAG argument.

Automatic SELECT and DELETE
Both the SELECT and DELETE commands require keywords that identify a specific
record. In many cases, you will want to SELECT or DELETE a set of records based on
various criteria, rather than individually create a statement for each record.

The LIST statement can identify sets of records and can be used to automatically
generate and execute SELECT and DELETE statements for each record found by
adding SELECT and DELETE keywords to the LIST statement.

For example, LIST ADCOM ADID(ABC*) VALID(=) SELECT(Y) generates and executes
SELECT statements for each application definition beginning with ABC that is valid
the day of execution.

The SELECT keyword can have values Y or N. If Y is set, every application found by
the LIST statement will also be subsequently have a SELECT command executed for
it. If SELECT is not specified as a keyword N is assumed.

Note: When you use SELECT with LIST CPOPCOM, you can also specify OP,JS,USRF
and ALL (for details, see “LIST CPOPCOM – Current Plan Operation” on page 90).

It is recommended that the DELETE keyword is used in conjunction with the SELECT
keyword so the record is selected before it is deleted. This gives the opportunity
for batch loader to be generated for each object before it is deleted, assuming the
relevant OUTPUT statements are in play. It is recommended that
FILESPEC=EQQFLALL is used to ensure that it is possible to recover the deleted
records.

For example, LIST ADCOM ADID(ABC*) VALID(=) SELECT(Y) DELETE(Y) generates
and executes SELECT and DELETE statements for each application definition
beginning with ABC that is valid the day of execution.

The DELETE keyword can have values Y, N or D. If Y is set, every application found
by the LIST statement will also be subsequently have a DELETE command executed
for it. If D is set, then deletion of every application is deferred. This results in
DELETE statements being generated for each object and written to an output file for
later execution (see OPTIONS DELFILE). If DELETE is not specified as a keyword N is
assumed.

The SELECT and DELETE statements executed by this method are set to message
level 2. This means that by default you will not see these statements in the job
output, unless they fail. To see these statements even if they are successful set
OPTIONS MSGLEVEL(2).

Defaults for the LIST SELECT and LIST DELETE keywords can be set by OPTIONS
SELECT and OPTIONS DELETE.

88 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

LIST ADCOM, LIST ADKEY – Application ID, Application Key
Table 51. LIST ADCOM, LIST ADKEY – Application ID, Application Key

Argument Name Description

ADID Application description ID.

GROUP Authority group name.

GROUPDEF Group definition ID.

MONITOR
Y Application with at least one operation monitored by

an external product.

N Application with no operation monitored by an
external product.

OWNER Owner ID

PRIORITY Priority

STATUS Status:

P Pending.

A Active.

TYPE Application type:

A Application (default, if TYPE not specified).

G Group.

VALID Valid-on date YYMMDD. The Valid-on date is used to find an
application valid on a specific date. Workload Automation
Programming Language uses this to generate the correct
combination of VALFROM and VALTO.

For example, VALID(081125) finds the version of an application
valid on the 25th of November 2008.

VALFROM Valid-from date YYMMDD.

VALTO Valid-to date YYMMDD.

LIST AWSCL – All Workstations Closed
Table 52. LIST AWSCL – All Workstations Closed

Argument Name Description

DATE Date YYMMDD

LIST CLCOM - Calendar
Table 53. LIST CLCOM - Calendar

Argument Name Description

CALENDAR Calendar ID

LIST CPCONDCO – Current Plan Condition (Common)
Table 54. LIST CPCONDCO – Current Plan Condition (Common)

Argument Name Description

ADID Application description

Chapter 5. Data Access commands based on PIF 89

Table 54. LIST CPCONDCO – Current Plan Condition (Common) (continued)

IA Input arrival date and time (YYMMDDHHMM)

OPNO Operation number

CONDID Condition ID (1-999)

CONDVAL Condition status:

F Flase

T True

U Undefined

Note: Resource CPCONDCO is valid only for the LIST request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

LIST CPOC – Current Plan Occurrence
Table 55. LIST CPOC – Current Plan Occurrence

Argument Name Description

ADID Application description ID

GROUP Authority group

GROUPDEF Group definition ID

IA Input arrival date and time YYMMDDHHMM

MCPADDED Add by Modify Current Plan operation, Y or N

MONITOR
Y Occurrence with at least one operation monitored

by an external product.

N Occurrence with no operation monitored by an
external product.

OWNER Owner ID

PRIORITY Priority

RERUN Rerun requested, Y or N

STATUS Occurrence status

Note: By default, occurrences in deleted status are not retrieved when the STATUS
argument is not supplied. If you do not provide the STATUS argument, the request
is processed as STATUS-NE(D).

LIST CPOPCOM – Current Plan Operation
Table 56. LIST CPOPCOM – Current Plan Operation

Argument Name Description

ADID Application description ID

CLNSTAT Data Set cleanup status

CLNTYPE Data Set cleanup type

CONDRJOB Conditional recovery job

DPREM Removable by daily planning

ERRCODE Error code

90 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 56. LIST CPOPCOM – Current Plan Operation (continued)

EXECDEST Execution destination (******** represents the controller)

EXPJCL Expanded JCL option

EXTNAME Operation extended name

EXTSE Scheduling Environment name

GROUP Authority group

IA Input arrival date and time of the occurrence
YYMMDDHHMM

JOBCRT Critical job:

N Not eligible for WLM assistance

P Critical path target

W Eligible for WLM assistance

JOBNAME Job name

JOBPOL Workload monitor late job policy:

C Conditional mode

D Deadline

L Long duration

S Latest start time

blank Default

MONITOR
Y Operation monitored by an external product

N Operation not monitored by an external
product

OPNO Operation number

OWNER Owner ID

PRIORITY Priority

SHADOWJ Shadow job (Y/N)

STATUS Operation status

USRSYS User sysout support

UFNAME User Field Name

UFVALUE User Field Value

UNEXPRC An Unexpected RC was encountered (Y/N)

VIRTDEST Submission destination (******** represents the
controller)

WAITSE Waiting for Scheduling Environment, N or Y

WLMSCLS WLM service class

WSNAME Workstation name

WAITFORW Started on WAIT workstation, Y or N

WMPRED Waiting for mandatory pending predcessors, Y or N

WPMPRED Waiting for either mandatory pending or pending
predecessors, Y or N

WPPRED Waiting for pending predecessors, Y or N

Chapter 5. Data Access commands based on PIF 91

Note:

1. By default, operations in deleted status are not retrieved when the STATUS
argument is not supplied. If you do not provide the STATUS argument, the
request is processed as STATUS-NE(D).

2. UFNAME, UFVALUE and UNEXPRC are only available as keywords from version 8.5.1
with SPE(USRF) applied and beyond.

3. Using SELECT(Y) with LIST CPOP will SELECT the CPOP record. In addition the
SELECT keyword for LIST CPOP has some additional values – SELECT(OP) will
select the CPOP record (equivalent to Y), SELECT(JL) will select the Job Log,
SELECT(JS) will select the JS file entry, SELECT(USRF) will SELECT the CPUSRF
record for the Operation and SELECT(ALL) will SELECT the CPOP, JL, JS and
CPUSRF records.

4. WMPRED, WMPPRED and WPPRED are available as keywords only starting from
version 9.2.

LIST CPOPSRU – Current Plan Operation SR Usage
Table 57. LIST CPOPSRU – Current Plan Operation SR Usage

Argument Name Description

LISTTYPE INUSE or WAITQ

RESNAME Special resource name

Note:

1. Both arguments are required. The argument value specified for RESNAME is the
name of the special resource for which the In-Use list or Wait Queue is to be
retrieved.

2. Generic characters are not supported. It is processed as if MATCHTYP(EXA) was
specified; exact match is required for record selection. The argument MATCHTYP
is NOT supported.

LIST CPWSCOM – Current Plan Workstation
Table 58. LIST CPWSCOM – Current Plan Workstation

Argument Name Description

WSAUTO Automation Workstation, Y or N

WSNAME Workstation name

WSREP Workstation reporting attribute

WSRETYPE Remote engine type:

D Distributed

Z z/OS

blank

WSTWS Fault-tolerant workstation, Y or N

WSTYPE Workstation type

WSWAIT WAIT Workstation, Y or N

WSZCENTR z-Centric workstation, Y or N

92 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

LIST CPWSVCOM – CP Virtual workstation destination
Table 59. LIST CPWSVCOM – CP Virtual workstation destination

Argument Name Description

WSNAME Virtual workstation name

WSDEST Virtual workstation destination (******** represents the
controller)

Note: Resource CPWSVCOM is valid only for the LIST request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

LIST CSRCOM – Current Plan Special Resource
Table 60. LIST CSRCOM – Current Plan Special Resource

Argument Name Description

RESALCS If any operation is currently allocating the resource
shared, Y or N

RESAVAIL Whether or not the resource is available, Y or N

RESGROUP Resource group name

RESHIPER Whether or not it is a DLF control resource, Y or N

RESNAME Resource name

RESWAIT Whether or not any operation is waiting for the resource

Note:

1. All the arguments are optional. The argument MATCHTYP is supported.
2. Fields CSRXUSE, CSRSUSE, CSRXALL, CSRSALL, CSRWAITQ and CSRCIDATE are only set

for a LIST request. If you have used SELECT(Y) on the LIST request or OPTIONS
SELECT(Y) is in effect then these fields will not be set, or return zero for
numeric fields.

LIST ETT – Event Triggers
Table 61. LIST ETT – Event Triggers

Argument Name Description

ADID Associated application ID

ETTNAME Name of trigger

ETTTYPE Type of trigger

LIST GENDAYS – Generate dates from a rule

Note:

1. Specifying FROMDATE or TODATE outside of the allowable range will result in error
message EQQH310E being issued from EQQYCOM and an S0C9 abend.

2. Resource GENDAYS is only valid for the LIST request starting from IBM Workload
Scheduler for z/OS version 8.6 SPE, or later.

Chapter 5. Data Access commands based on PIF 93

Table 62. LIST GENDAYS – Generate dates from a rule

Argument Name Description

CALENDAR The name of the calendar to use, if not specified the default
calendar is used.

FDAYRULE The Free Day Rule, to determine what to do with dates that are
Free Days. This is a required keyword.

1. Move to nearest Work Day preceding

2. Move to nearest Work Day following

3. Keep the date on the Free Day

4. Cancel the date and do not output it

E. Free days excluded.

FROMDATE The date from which dates are generated from the rule in the
format YYMMDD.

The earliest possible value for FROMDATE is the first day of the
current month four years previous to the current year. For example,
on 8 February 2012 the earliest possible value for FROMDATE is 1
February 2008.

The latest possible value for FROMDATE is the 1st of January seven
years after to the current year. For example, on 8 February 2012 the
latest possible value for FROMDATE is 1 January 2019.

If FROMDATE is not specified, the current date is used.

FROMDATE must always be earlier than or equal to TODATE.

IAT The input arrival time in the format HHMM. It is used to determine
the logical day for calendars with a Work Day End Time other than
00.00 (Default 0000).

RULEDEF The run cycle rule, using the same keywords as the Batch Loader
ADRULE statement.

SCOPE Determines the scope of what dates are returned:

NORMAL
Return only run dates within the FROMDATE and TODATE
limits (this is the default).

EXTENDED
Return run dates, including any that may have been
shifted outside of the FROMDATE and TODATE limits due to
the Free Day Rule.

ALL Return all dates generated by the rule, including any free
dates that have been moved or cancelled.

SKIPPED
Return only dates generated by the rule that landed on
free days and were either moved to other dates or
cancelled.

FREEDAY
Return only free days generated by the rule, including
those moved or cancelled.

94 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 62. LIST GENDAYS – Generate dates from a rule (continued)

TODATE The date to which dates will be generated from the rule in the
format YYMMDD.

The latest possible value for TODATE is 31 December of the year
seven years after the current date. For example, on 8 February 2012
the latest possible value for TODATE is 31 December 2019.

If TODATE is not specified, it is set to FROMDATE +90 days.

TODATE must always be later than or equal to FROMDATE.

LIST JCLVCOM – JCL Variable tables
Table 63. LIST JCLVCOM – JCL Variable tables

Argument Name Description

JCLVTAB JCL Variable Table ID

LIST JSCOM – Current Plan JCL
Table 64. LIST JSCOM – Current Plan JCL

Argument Name Description

ADID Application ID

IA Input arrival date and time YYMMDDHHMM

JOBNAME z/OS job name

OPNO Operation number

WSNAME Workstation name

Note: The resource code JSCOM retrieves JCL records from the JCL repository
data set (JS file) and not from a JCL library. But a SELECT request tries to get JCL
records from a JCL library if they are not found in the JCL repository data set.

LIST LTOCCOM – Long Term Plan Occurrence
Table 65. LIST LTOCCOM – Long Term Plan Occurrence

Argument Name Description

ADID Application ID

GROUP Authority group

GROUPDEF Group definition

IAD Run date YYMMDD

IAT Input arrival time HHMM

OWNER Owner ID

LIST OICOM – Operator Instructions
Table 66. LIST OICOM – Operator Instructions

Argument Name Description

ADID Application ID

Chapter 5. Data Access commands based on PIF 95

Table 66. LIST OICOM – Operator Instructions (continued)

OPNO Operation number

VALTO Valid to Date and time for temporary operator instructions in
the format yymmddhhmm.

If VALTO is not specified, all instructions for the operation are
listed, both temporary and permanent.

If only the permanent instructions are required use
VALTO(EMPTY).

Note: VALTO is an undocumented PIF keyword for LIST OICOM. VALTO(EMPTY) is not
part of PIF, it is implemented only by Workload Automation Programming
Language.

LIST PRCOM – Period
Table 67. LIST PRCOM – Period

Argument Name Description

PERIOD Period name

PRTYPE Period type

LIST SRCOM – Special Resource
Table 68. LIST SRCOM – Special Resource

Argument Name Description

RESGROUP Special resource group ID

RESHIPER DLF resource indicator

RESNAME Special resource name

LIST WSCOM – Workstation
Table 69. LIST WSCOM – Workstation

Argument Name Description

WSAUTO Automation workstation, Y or N

WSNAME Workstation name

WSREP Workstation reporting attribute

WSRETYPE Remote engine type:

D Distributed

Z z/OS

blank

WSTWS Fault-tolerant workstation, Y or N

WSTYPE Workstation type

WSVIRT Virtual workstation, Y or N

WSWAIT WAIT Workstation, Y or N

WSZCENTR z-Centric workstation, Y or N

96 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

LIST WSVCOM – Virtual workstation destination
Table 70. LIST WSVCOM – Virtual workstation destination

Argument Name Description

WSNAME Virtual workstation name.

WSDEST Virtual workstation destination. For using the controller as a
destination, enter a value of ********.

Note: Resource WSVCOM is valid only for the LIST request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

MODIFY – Modify objects in the plans
Use the MODIFY request to modify one or more fields in an LTP or CP record.

MODIFY <resource> <arguments>

The arguments can be used both to identify the record to be modified, and to
provide new values for this record. Or, the arguments can be used just to identify a
record, and later requests can be used to perform particular actions. For example,
with a MODIFY request, you can identify a particular current plan occurrence record.
Then, with later INSERT requests, you can insert new operation records for that
occurrence.

The MODIFY request can be used to modify information in the current plan.
Requests that cause a modification of the current plan, except CSR requests,
require a later EXECUTE request for the modification to actually take effect.

With the arguments described here, you specify the names and values of fields,
either to identify a particular record, or provide updated information for a record.

Note: The values of PIF arguments as dates depend on the PIF base year, which is
defined by the PIFCWB keyword on the INTFOPTS statement, or the CWBASE
keyword of the INIT statement. The value of the VALTO argument for default high
date depends on the PIFHD keyword of the INTFOPTS statement or the
HIGHDATE keyword of the INIT statement.

The return codes are:

0 The request was successful.

4 The MODIFY CPOP request might end with return code 4 if the operation
input arrival value specified in the request is earlier than the occurrence. If
this happens, run the EXECUTE request for the modification to be enforced.

8 The request was not successful. An error message is issued to the message
log data set.

MODIFY CPCOND – CP Condition
When you are modifying an existing current plan condition, the CONDID
argument is required to identify the condition to be modified. All remaining
arguments are optional and provide the information used to modify the condition.

Note:

Chapter 5. Data Access commands based on PIF 97

1. Before specifying a MODIFY CPCOND request, you must always identify an
operation with an INSERT or MODIFY CPOP request.

2. Resource CPCOND is valid only for the MODIFY request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

Table 71. MODIFY CPCOND – CP Condition

Argument Name Description

CONDID Condition ID (1-999)

COUNT Condition Counter. Used to determine how many
conditional predecessors must be met for the condition to be
true.

If set to zero ALL conditional predecessors must be true for
the condition to be satisfied. If greater than zero then the
condition will be satisfied if at least that many conditional
predecessors are met.

DESC Descriptive text (16 characters).

MODIFY CPEXT – CP Extended Operation Info

Note: Resource CPEXT is valid only for the MODIFY request starting from IBM
Workload Scheduler for z/OS version 8.2, or later.

Table 72. MODIFY CPEXT – CP Extended Operation Info

Argument Name Description

EXTNAME Operation extended name. To delete the operation extended
name, enter blank.

EXTSE Scheduling Environment name. Special characters are allowed.
To delete the SE name, enter blank.

MODIFY CPOC – Current Plan Occurrence
When you are modifying an existing current plan occurrence, the ADID and IA
arguments identify the occurrence to be modified. All the remaining arguments
provide the information used to modify the occurrence. The valid values for the
STATUS argument are W (Waiting) and C (Complete).

Table 73. MODIFY CPOC – Current Plan Occurrence

Argument Name Description

ADID Application description ID

ALLMON
Y All operations of occurrence monitored by an

external product

N All operations of occurrence not monitored by an
external product

DEADLINE Deadline date and time YYMMDDHHMM

ERRCODE Error code

GROUPDEF Group definition ID

IA Input arrival date and time YYMMDDHHMM

IANEW New input arrival date and time YYMMDDHHMM

JCLVTAB JCL variable table

98 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 73. MODIFY CPOC – Current Plan Occurrence (continued)

PRIORITY Priority

STATUS Occurrence status

MODIFY CPOP – Current Plan Operation

When you are modifying an existing current plan operation, the OPNO argument is
required to identify the operation to be modified. All remaining arguments are
optional and provide the information used to modify the operation. If you are
inserting, modifying, or deleting a predecessor connection or special resource
specification for the operation, the MODIFY CPOP request is required only to identify
the operation that will be referred to in the following INSERT, MODIFY, or DELETE
request. Then, only the OPNO argument is required.

Note: Before using a MODIFY CPOP request, you must always identify an occurrence
with a MODIFY CPOC request.

Table 74. MODIFY CPOP – Current Plan Operation

Argument Name Description

AEC Automatic error completion

AJR Automatic job hold/release

ASUB Automatic job submission

CLATE Cancel if late

CLNTYPE Data Set cleanup type

CONDRJOB Conditional recovery job

DEADWTO Issue deadline WTO

DESC Operation descriptive text

DURATION Estimated duration in 100th of second

EDUR Estimated duration HHMM

ERRCODE Error code
Note: You cannot change the error code if the operation runs on
a fault tolerant workstation and is in error status

EXPJCL Expanded JCL option

FORM Form number or blanks

HRC Highest successful return code

JCLASS Job class

JOBCRT Critical job:

N Not eligible for WLM assistance

P Critical path target

W Eligible for WLM assistance

JOBNAME Job name

Chapter 5. Data Access commands based on PIF 99

Table 74. MODIFY CPOP – Current Plan Operation (continued)

JOBPOL Workload monitor late job policy:

C Conditional mode

D Deadline

L Long duration

S Latest start time

blank This is the default

MONITOR
Y Operation monitored by an external product

N Operation not monitored by an external product

OPCMD Operation command:

BD Bind shadow job

EX Execute operation

KJ Kill operation

KR Kill recovery job

MH Hold operation

MR Release operation

NP NOP operation

PN Prompt reply no

PY Prompt reply yes

UN Un-NOP operation

OPDL Operation deadline date and time or blank YYMMDDHHMM

OPIA Operation input arrival date and time or blank
YYMMDDHHMM

OPNO Operation number

PSUSE Parallel servers required

R1USE Resource 1 required

R2USE Resource 2 required

RERUT Reroutable operation

RESTA Restartable operation

STATUS Operation status

TIMEDEP Time-dependent job

USERDATA Data stored in operation user field

USRSYS User sysout support

WLMSCLS WLM service class

WSNAME Workstation name

MODIFY CPREND – Distributed remote job info

Note:

1. The occurrence and operation to which the remote job information refers are
identified, respectively, by the INSERT or MODIFY CPOC ADID IA and INSERT or
MODIFY CPOP OPNO sequences.

100 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

2. You can use MODIFY CPREND only if the operation runs on a remote engine
workstation.

3. When you run MODIFY CPOP to modify the workstation from one that is a
remote engine type to any other type, the remote job info related to the
operation is automatically deleted.

Table 75. MODIFY CPREND – Distributed remote job info

Argument Name Description

COMPBNDF Complete if bind fails (Y|N)

REJOBNM Remote job name

REJSNM Remote job stream name

REJSWS Remote job stream workstation

MODIFY CPRENZ – z/OS remote job info

Note:

1. The occurrence and operation to which the remote job information refers are
identified, respectively, by the INSERT or MODIFY CPOC ADID IA and INSERT or
MODIFY CPOP OPNO sequences.

2. You can use MODIFY CPRENZ only if the operation runs on a remote engine
workstation.

3. When you run MODIFY CPOP to modify the workstation from one that is a
remote engine type to any other type, the remote job info related to the
operation is automatically deleted.

Table 76. MODIFY CPRENZ – z/OS remote job info

Argument Name Description

COMPBNDF Complete if bind fails (Y|N)

READID Remote application name

REOPNO Remote operation number

MODIFY CPSAI – Current Plan System Automation Info
Table 77. MODIFY CPSAI – Current Plan System Automation Info

Argument Name Description

AUTFUNC Automation automated function (for operation)

COMMETXT System Automation command text

COMPINFO Automation completion information

SECELEM System Automation security element

Note:

1. The occurrence and operation to which the system automation information
refers are identified, respectively, by the INSERT or MODIFY CPOC ADID IA
and INSERT or MODIFY CPOP OPNO sequences.

2. You can use MODIFY CPSAI only if the operation runs on an automation
workstation.

Chapter 5. Data Access commands based on PIF 101

3. Resource CPSAI is valid only for the MODIFY request starting from IBM
Workload Scheduler for z/OS V8.3, or later.

MODIFY CPUSRF – User Field

Before using an INSERT CPOP request, you must always identify an operation with
an INSERT CPOP or MODIFY CPOP request.

Note: Resource CPUSRF is valid only for the MODIFY request starting from IBM
Workload Scheduler for z/OS version 8.5.1 SPE, or later.

Table 78. MODIFY CPUSRF – User Field

Argument Name Description

UFNAME User Field Name

UFVALUE User Field Value

MODIFY CPWS – Current Plan Workstation

When you are modifying a current plan workstation, the WSNAME argument is
required. The remaining arguments contain the modified information.

Table 79. MODIFY CPWS – Current Plan Workstation

Argument Name Description

ALTWS When the workstation is set to failed or offline then another
workstation can be specified for rerouting. Specify ALTWS if
operations should be rerouted; if ALTWS is not supplied then
no rerouting takes place.
Note: For Virtual Workstations this arguments is ignored.

PSC Control on parallel server.
Note: For Virtual Workstations this arguments is ignored.

R1C Control on resource 1.
Note: For Virtual Workstations this arguments is ignored.

R2C Control on resource 2.
Note: For Virtual Workstations this arguments is ignored.

STARTACT Action to be taken on current plan operations that have a
status of started when the workstation status is set to failed or
offline. Values are restart (R), set to error (E), or leave
operation as is (L).
Note: If the STARTACT argument is omitted when a
workstation is set to failed or offline then no action is
performed on the operations, as though STARTACT L was
specified.

STATUS New status of active (A), failed (F), or offline (O).
Note: The status failed is valid only for non-fault tolerant
workstations.

WSLNK
L Workstation Linked (only FTW)

U Workstation Unlinked (only FTW)

Blank Non-fault tolerant Workstation

WSNAME Workstation name.

WSREP Workstation reporting attribute.
Note: For Virtual Workstations this arguments is ignored.

102 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

MODIFY CPWSV – CP Virtual Workstation Destination
When you are modifying a current plan virtual workstation, the WSNAME and WSDEST
arguments are required. The remaining arguments contain the modified
information.

Note: Resource CPWSV is valid only for the MODIFY request starting from IBM
Workload Scheduler for z/OS version 8.5, or later.

Table 80. MODIFY CPWSV – CP Virtual Workstation Destination

Argument Name Description

WSNAME Virtual workstation name.

WSDEST Destination (******** represents the controller).

PSC Control on parallel server.

Note: For Virtual Workstations, this arguments is ignored.

R1C Control on resource 1.

Note: For Virtual Workstations, this arguments is ignored.

R2C Control on resource 2.

Note: For Virtual Workstations, this arguments is ignored.

STARTACT Action to be taken on current plan operations that have a
status of started when the workstation status is set to failed or
offline. Values are restart (R), set to error (E), or leave operation
as is (L).
Note: If the STARTACT argument is omitted when a
workstation is set to failed or offline then no action is
performed on the operations, as though STARTACT L was
specified.

STATUS New status of active (A), failed (F), or offline (O).
Note: The status failed is valid only for non-fault tolerant
workstations.

MODIFY CSR – Current Plan Special Resource

MODIFY CSR takes as selection argument the resource name in the RESNAME
argument. This argument is required. The resource name must be padded to the
full length of 44 characters. It is processed as if MATCHTYP(EXA) was specified and
an exact match is required for record selection. Alternatively, the common segment
CSRCOM can be given as the selection argument. The remaining arguments are
optional and contain modifications.

Note: MATCHTYP is not supported.

Table 81. MODIFY CSR – Current Plan Special Resource

Argument Name Description

DEFAVAIL Default availability, N or Y

DEFQTY Default quantity, 1 to 999999

MAXLIMIT Maximum usage limit. From 0 (no limit) to 999999

Chapter 5. Data Access commands based on PIF 103

Table 81. MODIFY CSR – Current Plan Special Resource (continued)

MAXTYPE Type of action when maximum usage limit is reached:
Y|N|R

ONCOMPL Action on complete Y|N|R

ONERROR Action on error, F, FX, FS, K, or blank

QUANTITY Override quantity, numeric 1 to 999999, or 0 to indicate that
there is no overriding quantity

RESAVAIL Override availability, N, Y, or blank to indicate there is no
overriding availability

RESDEVIA Deviation, -999999 to 999999

RESNAME Resource name

USEDFOR Used for C, P, B, or N

MODIFY IVL – Current Plan Workstation Interval

When you are modifying a workstation open interval, the FROM argument is
required. The remaining arguments are optional and provide the information used
to modify the open interval.

Note: Before using a MODIFY IVL request, you must always identify a workstation
with a MODIFY CPWS request.

Table 82. MODIFY IVL – Current Plan Workstation Interval

Argument Name Description

ALTWS Workstation to take over if this one fails or is set offline

FROM Interval start date and time YYMMDDHHMM

PSCAP Parallel server capacity

R1CAP Resource 1 capacity

R2CAP Resource 2 capacity

MODIFY LTOC – Long Term Plan Occurrence

When you are modifying an existing LTP occurrence, the ADID, IAD, and IAT
arguments identify the occurrence to be modified. The remaining arguments
provide the information used to modify the occurrence.

Table 83. MODIFY LTOC – Long Term Plan Occurrence

Argument Name Description

ADID Application description ID

DEADLINE Deadline date and time YYMMDDHHMM

ERRCODE Error code

GROUPDEF Group definition ID

IAD Input arrival date YYMMDD

IAT Input arrival time HHMM

JCLVTAB JCL variable table

PRIORITY Priority

104 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

MODIFY VIVL – CP Virtual workstation interval

When you are modifying a virtual workstation open interval, the FROM argument is
required. The remaining arguments are optional and provide the information used
to modify the open interval.

Note:

1. Before using a MODIFY VIVL request, you must always identify a workstation
with a MODIFY CPWSV request.

2. Resource VIVL is valid only for the MODIFY request starting from IBM Workload
Scheduler for z/OS version 8.5, or later.

Table 84. MODIFY VIVL – CP Virtual workstation interval

Argument Name Description

FROM Interval start date and time YYMMDDHHMM

PSCAP Parallel server capacity

R1CAP Resource 1 capacity

R2CAP Resource 2 capacity

REPLACE
The REPLACE request is performed by Workload Automation Programming
Language internally using the Batch Loader functionality to build records before
writing them to the database.

Since the REPLACE request needs a fully formed record to be built in storage, it does
not have a direct command line equivalent in Workload Automation Programming
Language.

RESET – Resets pending changes to the plan
Use the RESET request to delete the current Modify Current Plan (MCP) block.

RESET [MCPBLK]

If performed before an EXECUTE request, the RESET request deletes a series of MODIFY
current plan requests that have been collected in an MCP block.

The return codes are:

0 The request was successful.

8 The request was not successful. An error message is issued to the message
log data set.

SELECT – Retrieve a record or common segment
Use the SELECT request to retrieve a record by specifying field names and values
that identify the record you want to retrieve.

SELECT <resource> <arguments>

The SELECT statement is used to retrieve an individual record from the IBM
Workload Scheduler for z/OS database or plans. You must set enough arguments

Chapter 5. Data Access commands based on PIF 105

to identify one record only; if the arguments apply to more than one record, the
SELECT fails with RC=8 and the following message:
EQQY708E A SELECT REQUEST WITH MORE THAN ONE RECORD SELECTED,

RESOURCE IS AD

The SELECT and DELETE statements can be automatically generated from LIST
requests (for details, see “LIST – Find objects in the Database and Plans” on page
85).

LIST statements can be automatically generated for other objects referred to by the
object retrieved by the SELECT statement, or objects that may refer to the SELECT
statement by using OPTIONS EXPAND(Y).

In the following example, the command retrieves the application MYAPPL and
then LIST any event rules that may point to it and any workstation definitions,
special resources, periods, referenced within it. SELECT(Y) causes any items found
by the LIST processes to also have a SELECT statement run for them:
OPTIONS EXPAND(Y) SELECT(Y)
SELECT ADID(MYAPPL)

The end result being, if you have the relevant OUTPUT statements in place, that you
obtain batch loader for the entire object and any other objects needed by it.

When you retrieve a record by using SELECT, you can get the complete record
rather than just the common segment that is available from a LIST request. For
example, SELECT AD retrieves the complete AD record, while SELECT ADCOM retrieves
only the common segment.

Note:

1. The SELECT JS and SELECT JSCOM requests try to retrieve JCL from the JCL
repository. If no JCL is found, it is retrieved from the JCL library or through the
job-library-read exit, EQQUX002. The full key is required, that is, the
application ID, the input arrival time, and the operation number. You might
need to precede the SELECT JS request by a LIST CPOPCOM request to get the key
values.

2. LIST JSCOM requests try to retrieve JCL only from the JCL repository.
3. SELECT CPOPSRU can be issued for list elements only, from a list created by LIST

CPOPSRU.
4. The values of PIF arguments as dates depend on the PIF base year, which is

defined by the PIFCWB keyword on the INTFOPTS statement, or the CWBASE
keyword of the INIT statement. The value of the VALTO argument for default
high date depends on the PIFHD keyword of the INTFOPTS statement or the
HIGHDATE keyword of the INIT statement.

5. CPST (current plan status) is only one record; therefore, select arguments are not
required.

The return codes are:

0 The request was successful.

4 The request was not successful. No records meet the criteria specified by
the arguments.

6 You are not authorized to read the record. You specified a unique key in
the SELECT request; the record exists, but you do not have authority to
read it.

106 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

8 The request was not successful. An error message has been written to the
message log data set. This can occur if more than one record in the
database satisfies the field values specified by your arguments. For
example, you want to select an application description record with the ID
APPL1, and there are two such application descriptions in the database
with different validity dates. Your arguments must specify both the
application ID and the valid-from date to uniquely identify the record.

OBJECT Argument
Use the OBJECT argument to create an object variable for the record retrieved by the
SELECT command.

OBJECT(<name>)

where <name> is the name of the object variable to be created.

The record that is found creates a complete set of object variables containing all the
record information, using the object name as the prefix.

For example, the following request creates a set of object variables named @DAILY,
which will contain the data for the record that is retrieved. Therefore, !@DAILY-ADID
would resolve to the application name of the retrieved record.
SELECT AD ADID(DLYAPPL) OBJECT(DAILY)

TAG Argument
Use the TAG argument in a SELECT command to create an additional output field
named TAG that will be available in any segment generated by the command. This
allows for the output from multiple SELECT commands to be correlated back to the
originating command.

In the following example, the returned records are marked with a TAG value of
TODAY or TOMORROW, depending from which LIST statement they come.
OUTPUT ADCOM FIELDS(TAG,ADID,ADFROM,ADSTAT)
SELECT ADCOM ADID(ABC123) VALID(=) TAG(TODAY)
SELECT ADCOM ADID(ABC123) VALID(+1) TAG(TOMORROW)

Note: Any SELECT statements generated from a LIST statement using OPTIONS
SELECT(Y) is automatically passed the same TAG argument.

SELECT AD/ADCOM – Application Description
Table 85. SELECT AD/ADCOM – Application Description

Argument Name Description

ADID Application description ID

GROUP Authority group name

GROUPDEF Group definition ID

MONITOR
Y Application with at least one operation

monitored by an external product

N Application with no operation monitored by an
external product

OWNER Owner ID

PRIORITY Priority

Chapter 5. Data Access commands based on PIF 107

Table 85. SELECT AD/ADCOM – Application Description (continued)

STATUS Status:

A Active

P Pending

TYPE Application type:

A Application (default)

G Group

VALFROM Valid-from date YYMMDD

VALTO Valid-to date YYMMDD

Note: If you do not specify the AD argument name TYPE, IBM Workload
Scheduler for z/OS assumes application of type A.

SELECT AWSCL – All Workstations Closed
Table 86. SELECT AWSCL – All Workstations Closed

Argument Name Description

DATE Date YYMMDD

SELECT CL/CLCOM - Calendar

Note: If the name of the default calendar is specified in the EQQYPARM INIT
statement, SELECT CL without the CALENDAR argument will return the default
calendar. Otherwise, CALENDAR is a required argument.

Table 87. SELECT CL/CLCOM - Calendar

Argument Name Description

CALENDAR Calendar ID

SELECT CPCOND/CPCONDCO – CP Condition
Table 88. SELECT CPCOND/CPCONDCO – CP Condition

Argument Name Description

ADID Application description

IA Input arrival date and time (YYMMDDHHMM)

OPNO Operation number

CONDID Condition ID (1-999)

CONDVAL Condition status:

F False

T True

U Undefined

Note: Resources CPCOND and CPCONDCO are valid only for the SELECT request starting
from IBM Workload Scheduler for z/OS version 8.5, or later.

108 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

SELECT CPOC – Current Plan Occurrence
Table 89. SELECT CPOC – Current Plan Occurrence

Argument Name Description

ADID Application description

GROUP Authority group

GROUPDEF Group definition ID

IA Input arrival date and time YYMMDDHHMM

MCPADDED Manually added to the Current Plan, Y or N

MONITOR
Y Occurrence with at least one operation

monitored by an external product

N Occurrence with no operation monitored by an
external product

OWNER Owner ID

PRIORITY Priority

RERUN Rerun requested, Y or N

STATUS Occurrence status

SELECT CPOP/CPOPCOM – Current Plan Operation
Table 90. SELECT CPOP/CPOPCOM – Current Plan Operation

Argument Name Description

ADID Application description ID

CLNSTAT Data Set cleanup status

CLNTYPE Data Set cleanup type

CONDRJOB Conditional recovery job

DPREM Removable by Daily Planning

ERRCODE Error code

EXECDEST Execution destination (******** represents the controller)

EXPJCL Expanded JCL option

EXTNAME Operation extended name

EXTSE Scheduling Environment name

GROUP Authority group

IA Input arrival date and time YYMMDDHHMM

JOBCRT Critical job:

N Not eligible for WLM assistance

P Critical path target

W Eligible for WLM assistance

JOBNAME Job name

Chapter 5. Data Access commands based on PIF 109

Table 90. SELECT CPOP/CPOPCOM – Current Plan Operation (continued)

JOBPOL Workload monitor late job policy:

C Conditional mode

D Deadline

L Long duration

S Latest start time

blank Default

MONITOR
Y Operation monitored by an external product

N Operation not monitored by an external product

OPNO Operation number

OWNER Owner ID

PRIORITY Priority

SHADOWJ Shadow job

STATUS Operation status

USRSYS User sysout support

VIRTDEST Submission destination (********represents the controller)

WAITNAME Waiting for Scheduling Environment, Y or N

WLMSCLS WLM service class

WSNAME Workstation name

WAITFORW Started on WAIT workstation, Y or N

WMPRED Waiting for mandatory pending predecessors, Y or N

WPMPRED Waiting for either mandatory pending or pending
predecessors, Y or N

WPPRED Waiting for pending predecessors, Y or N

Note:

1. SELECT CPOP does not return CPCOND or CPUSRF information. For these resources,
you must use separate SELECT statements.

2. WMPRED, WPMPRED and WPPRED are available only from version 9.2.

SELECT CPST – Current Plan Status
This request has no arguments.

SELECT CPUSRF – Current Plan Operation User Fields
Use the SELECT CPUSRF command to generate a record containing a CPUSRF segment
for each user field belonging to the operation.

Table 91. SELECT CPUSRF – Current Plan Operation User Fields

Argument Name Description

ADID Application description ID

IA Input arrival date and time (YYMMDDHHMM)

OPNO Operation number

110 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Note: Resource CPUSRF is valid only for the SELECT request starting from IBM
Workload Scheduler for z/OS version 8.5.1 SPE, or later.

SELECT CPWS/CPWSCOM – Current Plan Workstation
Table 92. SELECT CPWS/CPWSCOM – Current Plan Workstation

Argument Name Description

WSAUTO Automation workstation, Y or N

WSNAME Workstation name

WSREP Workstation reporting attribute

WSRETYPE Remote engine type:

D Distributed

Z z/OS

blank

WSTWS Fault-tolerant workstation, Y or N

WSTYPE Workstation type

WSVIRT Virtual workstation, Y or N

WSWAIT WAIT Workstation, Y or N

WSZCENTR z-Centric workstation, Y or N

SELECT CPWSV/CPWSVCOM – CP Virtual workstation
destination

Table 93. SELECT CPWSV/CPWSVCOM – CP Virtual workstation destination

Argument Name Description

WSNAME Virtual workstation name

WSDEST Destination name (******** represents the controller)

Note: Resources CPWSV and CPWSVCOM are valid only for the SELECT request starting
from IBM Workload Scheduler for z/OS version 8.5, or later.

SELECT CRITPATH – Critical Path
Table 94. SELECT CRITPATH – Critical Path

Argument Name Description

ADID Application ID of the critical job

OPNO Operation number of the critical job

IA Input arrival of the critical job (YYMMDDHHMM)

Note:

1. Arguments, ADID, OPNO, and IA must be specified together.
2. The operation identified by the arguments must be a critical job (P).
3. This Workload Automation Programming Language command exploits an

undocumented PIF request designed for the Dynamic Workload Console.

Chapter 5. Data Access commands based on PIF 111

SELECT CSR/CSRCOM – Current Plan Special Resource
Table 95. SELECT CSR/CSRCOM – Current Plan Special Resource

Argument Name Description

RESALCS Whether or not any operation is currently allocating the
resource shared, Y or N.

RESAVAIL Whether or not the resource is available, Y or N.

RESGROUP Resource group name.

RESHIPER Whether or not it is a DLF control resource, Y or N.

RESNAME Resource name.

RESWAIT Fields CSRXUSE, CSRSUSE, CSRXALL, CSRSALL, CSRWAITQ, and
CSRCIDATE are set only for a LIST request. If you have set
SELECT(Y) on the LIST request or if OPTIONS SELECT(Y) is in
effect, then these fields will not be set, or return zero for
numeric fields. Whether or not any operation is waiting for
the resource.

Note: Fields CSRXUSE, CSRSUSE, CSRXALL, CSRSALL, CSRWAITQ, and CSRCIDATE are set
only for a LIST request. For a SELECT request, these fields are not set or return zero
for numeric fields.

SELECT ETT – Event Trigger
Table 96. SELECT ETT – Event Trigger

Argument Name Description

ADID Associated application ID

ETTNAME Name of trigger

ETTTYPE Type of trigger:

J Job

R Special Resource

SELECT JCLPREP – JCL Preparation
Table 97. SELECT JCLPREP – JCL Preparation

Argument Name Description

ADID Application ID

IA Input arrival date and time YYMMDDHHMM

OPNO Operation number

SELECT JCLPREPA – JCL Preparation simulation
Table 98. SELECT JCLPREPA – JCL Preparation simulation

Argument Name Description

ADID Application ID.

IA Input arrival date and time YYMMDDHHMM.

OPNO Operation number.

112 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 98. SELECT JCLPREPA – JCL Preparation simulation (continued)

SIMTIME Simulated time CCYYMMDDHHMM. CCYY can have a
value from 1984 to 2071.

SIMTYPE Simulation type: FULL or PARTIAL (default).

SELECT JCLV/JCLVCOM – JCL Variable Table
Table 99. SELECT JCLV/JCLVCOM – JCL Variable Table

Argument Name Description

JCLVTAB JCL Variable Table ID

SELECT JL/JLCOM – Job Log
Table 100. SELECT JL/JLCOM – Job Log

Argument Name Description

ADID Application ID

IA Input arrival date and time YYMMDDHHMM

JOBNAME z/OS Job name

OPNO Operation number

WSNAME Workstation name

Note:

1. SELECT JL will cause the job log of the selected operation to be output. If the
job log has not already been retrieved then this will trigger a retrieval action
and Workload Automation Programming Language will attempt the SELECT
command again in accordance with the retry policy set by OPTIONS
CONTENTION.

2. The SELECT JL command exploits an undocumented PIF request designed for
the Dynamic Workload Console.

SELECT JS/JSCOM – Current Plan JCL
Table 101. SELECT JS/JSCOM – Current Plan JCL

Argument Name Description

ADID Application ID

IA Input arrival date and time YYMMDDHHMM

JOBNAME z/OS Job name

OPNO Operation number

WSNAME Workstation name

SELECT LTOC/LTOCCOM – Long Term Plan Occurrence
Table 102. SELECT LTOC/LTOCCOM – Long Term Plan Occurrence

Argument Name Description

ADID Application ID

GROUP Authority group

Chapter 5. Data Access commands based on PIF 113

Table 102. SELECT LTOC/LTOCCOM – Long Term Plan Occurrence (continued)

GROUPDEF Group definition ID

IAD Input arrival date YYMMDD

IAT Input arrival time HHMM

OWNER Owner ID

SELECT OI/OICOM – Operator Instructions
Table 103. SELECT OI/OICOM – Operator Instructions

Argument Name Description

ADID Application ID

OPNO Operation number

VALTO Valid-to date and time YYMMDDHHMM

SELECT PR/PRCOM - Period
Table 104. SELECT PR/PRCOM - Period

Argument Name Description

PERIOD Period name

PRTYPE Period type

SELECT SR/SRCOM – Special Resource
Table 105. SELECT SR/SRCOM – Special Resource

Argument Name Description

RESGROUP Special resource group

RESHIPER DLF resource indicator

RESNAME Special resource name

SELECT WS/WSCOM – Workstation
Table 106. SELECT WS/WSCOM – Workstation

Argument Name Description

WSAUTO Automation workstation, Y or N

WSNAME Workstation name

WSREP Workstation reporting attribute

WSRETYPE Remote engine type:

D Distributed

Z z/OS

blank

WSTWS Fault-tolerant workstation, Y or N

WSTYPE Workstation type

WSVIRT Virtual workstation, Y or N

114 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 106. SELECT WS/WSCOM – Workstation (continued)

WSWAIT WAIT workstation, Y or N

WSZCENTR z-centric workstation, Y or N

SELECT WSV/WSVCOM – Virtual workstation destination
Table 107. SELECT WSV/WSVCOM – Virtual workstation destination

Argument Name Description

WSNAME Virtual workstation name.

WSDEST Destination name. For using the controller itself as a
destination enter a value of ********.

Note: Resources WSV and WSVCOM are valid only for the MODIFY request starting from
IBM Workload Scheduler for z/OS version 8.5, or later.

SETSTAT – Sets a Condition status
The SETSTAT request changes the condition status from undecided to true or false,
if the original status was undecided because of missing step-end information.

SETSTAT <resource> <arguments>

It produces the same result as the T and F commands available from the MCP
dialog.

Return codes are:

0 The request was successful.

8 The request was not successful. An error message is issued to the message
log data set.

SETSTAT CPSIMP – Condition dependency
Table 108. SETSTAT CPSIMP – Condition dependency

Argument Name Description

PREADID Predecessor application name.

PREIA Predecessor input arrival date and time
YYMMDDHHMM.

PREOPNO Predecessor operation number.

PROCSTEP Use it to define a step level dependency. If the step is not
in a procedure, this parameter identifies the job step
name, otherwise it identifies the step name in the JCL
procedure. It must correspond to a step specifying the
EXEC PGM= statement.

STEPNAME Use it together with PROCSTEP when defining a step
level dependency, only if the step is in a procedure, to
identify the procedure invocation step name.

NEWSTAT Requested status:

F False

T True

Chapter 5. Data Access commands based on PIF 115

Note:

1. PREADID, PREIA, PREOPNO, PROCSTEP, and STEPNAME are used to
identify the dependency to update.

2. The SETSTAT request is available only starting from IBM Workload Scheduler for
z/OS version 8.5, or later.

TERM – Terminate IBM Workload Scheduler for z/OS session
Use the TERM request to terminate the programming interface session and
perform the cleanup processing.

TERM

The cleanup processing performs the following actions:
v FREEMAIN of storage
v Closes data sets
v Detaches subtasks
v Terminates the IBM Workload Scheduler for z/OS session.

Before Workload Automation Programming Language terminates, it automatically
performs any required TERM requests.

To communicate with more than one subsystem during a Workload Automation
Programming Language program, you must terminate a session before initializing
a new session. Use the TERM command before the INIT command to another
subsystem. However, Workload Automation Programming Language automatically
generates a TERM session if a new session is required before performing a new INIT.

116 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 6. Current Plan Operation commands

Use the Current Plan Operation commands to perform specific functions against
operations in the current plan, using a common set of keywords to identify the
operation you want.

These commands are designed to simplify the process of finding and updating
operations in the current plan.

Common syntax
Use the current plan operation commands to work with operations, by using a
common syntax with specific sets of keywords.

The current plan operation commands use the following sets of keywords:

Identification keywords
To identify the potential operations to update, using combinations of
Application ID, Job name, Workstation, Input Arrival, Operation, and
Status.

Filter keywords
To choose one or more operation from the list of identified operations.

Data keywords
To manage the data related to the list of identified operations.

Command keywords
Specific to the action to be performed.

You can use the special keyword UPDATE(NO|YES) to verify the process before it is
performed. The keyword determines if the commands actually performs the
updates: if you specify NO, the command reports what it would do to each
operation, but does not perform any updates. The default value is YES, but this
default can be influenced by OPTIONS UPDATE.

Each command can have its own specific optional keywords, followed by common
keywords to identify and select the operations:
<command> <arguments> ADID(<adid>) IA(<iadatetime>)| ==

JOBNAME(<jobn>) OPNO(<opno>) + other identification keywords
WSNAME(<wsid>) DATE(<iadate>) TIME(<iatime>)
STATUS(<status>) USRF(<name>=<value>)
RANGE(<range>) POSITION(EARLIEST|LATEST)
COUNT(<count>)
OBJECT(<object>) SAVELIST(<list>) USELIST(<list>)
[FAIL(SKIP|STOP)]

The MATCHTYP keyword must be used if the <value> for USRF contains an asterisk (*)
or percent sign (%) that is to be treated as non-wildcard character. MATCHTYP is not
needed for STATUS(*), because it is always treated as “Ready with none-reporting
predecessor”.

Identification keywords
Use the following keywords to identify the potential operations to update. You can
use any combination of the following keywords.

© Copyright IBM Corp. 2016 117

|
|

ADID(<adid>)
Searches for operations within applications with name <adid> for the
operations to update. You can use the wildcards asterisk (*) and percent
sign (%).

CLNSTAT(C|E)
Searches for operations by cleanup result.

CLNTYPE(A|I|M|N)
Searches for operations by cleanup type.

CONDRJOB(Y|N)
Searches for operations depending on whether they are conditional recover
jobs.

DPREM(Y|N)
Searches for jobs depending on whether they are marked as removable
from the current plan by planning processes.

ERRCODE(xxxx)
Searches for operations with the specified error code.

EXECDEST(xxxxxxxx)
Searches for jobs that executed on the specified destination.

EXPJCL(Y|N)
Searches for operations based on the expanded JCL setting.

EXTNAME(<extended-jobname>)
Searches for operations by extended job name.

EXTSE(xxxxxxxxxxxxxxxx)
Searches for operations by scheduling environment.

GROUP(xxxxxxxx)
Searches for operations by authority group.

IA(<iadatetime>)
Alternative way to set the DATE and TIME keywords in a single keyword.
Use the equal sign (=) to set the current date and time; use the plus sign
(+) and minus sign (–) to set a relative date, the time portion will be set to
asterisk (*). If you specify only a date, the time will be set to asterisk (*).

== Special short form for a Workload Automation Programming Language job
that is being controlled by IBM Workload Scheduler for z/OS. If you
specify ==, the ADID, DATE, and TIME values are set to the same values as the
controlling occurrence, constraining the command to search only for
operations in the same occurrence.

JOBCRT(P|W|N)
Searches for operations by critical job type.

JOBNAME(<jobname>)
Searches for jobs named <jobname>. You can use wildcards asterisk (*) and
percent sign (%).

JOBPOL(|L|D|S|C)
Searches by late job policy.

MONITOR(Y|N)
Searches for operations by their external monitor setting.

OPNO(<opno>)
Searches for an operation numbered <opno>. You cannot use wildcards.

118 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

OWNER(xxxxxxxxxxxxxxxx)
Searches for operations by owner ID.

PRIORITY(n)
Searches for operations by priority.

SHADOWJ(Y|N)
Allows shadow jobs to be identified.

UNEXPRC(Y|N)
Allows conditional jobs with unexpected return codes to be identified.

USRSYS(Y|N)
Allows jobs that store user sysout to be identified.

VIRTDEST(xxxxxxxx)
Searches for jobs submitted on the specified destination.

WAITFORW(Y|N)
Allows wait operations to be identified.

WAITSE(Y|N)
Allows operations waiting for a scheduling environment to be identified.

WLMSCLS(xxxxxxxx)
Searches for operations by WLM service class.

WMPRED(Y|N)
Allows operations waiting for mandatory pending predecessors to be
identified.

WPMPRED(Y|N)
Allows operations waiting for either mandatory pending or pending
predecessors to be identified.

WPPPRED(Y|N)
Allows operations waiting for pending predecessors to be identified.

WSNAME(<wsname>)
Searches for operations scheduled on the <wsname> workstation. You can
use wildcards asterisk (*) and percent sign (%).

STATUS(<status>)
If not specified, the command uses the status default values, as described
hereafter. You can use the NE modifier to specify all statuses except one. For
example, STATUS-NE(C) finds all statuses except Complete (C). STATUS(*)
selects only the status of * (Ready with none-reporting predecessor). To
find more than one status, you can list all the statuses in the same
keyword; for example STATUS(AR*) lists the statuses Arriving, Ready and
Ready with none-reporting predecessor. To list all possible values for
status, use the percent sign (%), like in STATUS(%).

DATE(<yymmdd>) (or IADATE)
Searches for operations scheduled with a particular application input
arrival date in the format YYMMDD. You cannot use wildcards, but you
can use relative dates:

= The current date

+n The current date + n days

-n The current date - n days

TIME(<hhmm>) (or IATIME)
Searches for operations scheduled at a particular application input arrival

Chapter 6. Current Plan Operation commands 119

time in the format HHMM. TIME cannot be used without DATE and shows as
an invalid value if TIME is set without DATE. You can use only the wildcard
asterisk (*) for the complete time field, but you can also use relative times:

= The current time

+n The current time + n minutes

-n The current time - n minutes

USRF(<name>=<value>)
Searches for operations with the specified user field. The equal sign
(=) is used to separate the field name from the field value, but you
can also use modifiers. For example, USRF-GE(MYFIELD=100) looks
for operations where user field MYFIELD is set to a value of 100 or
greater.

You can use comparators can be used, for exampleDATE-LE, on all identification
keywords except TIME. The DATE and TIME fields are combined to form an Input
Arrival time search, therefore the comparator specified against DATE is used as the
comparator for the combined Input Arrival.

Depending on the command, the default value for STATUS is:

FORCE AR*

KILL S

REPLY E

For all the other commands, the default value is ARW*.

Filter keywords
Use the filter keywords to select the operations to be modified from the list found
by the identification keywords.

The following list describes the filter keywords:

RANGE(<yymmddhhmm> TO <yymmddhhmm>)
Limits the selection to the operations within the specified application input
arrival range. The format is YYMMDDHHMM but if you omit it, the time 0000 is
used as the “from” time and 2359 is used as the “to” time. You can specify
open ended ranges; for example, RANGE(TO 091231) or RANGE(090101 TO),
RANGE(090101) corresponds to RANGE(0901010000 TO 0901012359). You
cannot use wildcards, but you can use relative dates when time the is not
specified:

= Current date

+n Current date +n days

-n Current date -n days

POSITION(EARLIEST|LATEST)
Determines where to start in the list of identified operations for processing.
EARLIEST starts at the operation with the earliest Input Arrival date, LATEST
starts with the latest. The number of operations that will be modified
depends on the COUNT keyword. The default value is EARLIEST.

COUNT Determines the number of operations to select for processing. The default
is 1, therefore POSITION(EARLIEST) selects only the earliest operation it
found within the RANGE, while POSITION(LATEST) only selects the latest.

120 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Any positive number selects that number of operations from the starting
position included; if you specify a number higher than the number or
records found matching the criteria, all matching operations are selected. A
value of COUNT(0) selects however many operation are found matching the
criteria.

A negative value selects however many operations are found, minus the
number in count. For POSITION(EARLIEST), a negative count drops the
latest entries off the list, for POSITION(LATEST) a negative count drops the
earliest entries off the list. For example, POSITION(EARLIEST) COUNT(-1)
selects all except the latest operation found; POSITION(LATEST) COUNT(-1)
selects all except the earliest operation found.

Note:

1. RANGE keywords are processed before POSITION and COUNT
For example, you could find 20 operations, but the RANGE might filter that down
to 10. POSITION will start at the earliest or latest operation within the 10, so at
most you will be able to select 10 operations.

2. MATCHTYP is not compatible with these commands due to the use of not equals
comparators for handling multiple dependencies. This means that for user
fields and special resource names, the asterisk (*) and percent sign (%) are
considered wildcards if used in keywords, and use of comparator characters,
such as =, ¬=, <, >, <= and >= at the end of a keyword, are considered as field
comparators and not part of the field or resource name.

Data keywords
Use the data keywords to specify what to do with the data identified by the
command.

The following list describes the data keywords:

DISPLAY(YES|NO)
Causes a simple line display of each operation found. The display includes
the Application ID, Input Arrival, Workstation, Operation number, and Job
name. It is followed by a description of the status, and key information
relating to that status.
v For A, R, and * – SUB=N shows when SUBMIT is set to No.
v For W – PR(n/max) shows the number of predecessors when

n=complete and max=total number of predecessors.
v For W – CPR(n) shows the number of conditional predecessors.
v For A, R, *, and W – SR(n) shows the number of special resources.
v For E – The error code is shown.
v For C and E – The Job ID is shown.
v For A, R, and * with Time Dependencies – The time dependency is

shown.
v For S – The start time is shown.
v For C, D, E, and X – The completion time is shown.

FORMAT(FIXED|VARIABLE)
Sets the format for the DISPLAY: FIXED keeps a fixed width for all fields,
VARIABLE strips trailing spaces and leading zeroes (default).

OBJECT(<object>)
Specifies the prefix of a set of object variables to store the details of each

Chapter 6. Current Plan Operation commands 121

record identified by the LIST command used as part of the Current Plan
Operation command. The base object will contain the number of ALL of
the records identified by the LIST statement, even ones later discarded by
the filter arguments. Each record is contained in a numerically suffixed
object variable, the list of records that have passed the filter criteria may be
found in the @FILTER attribute of the object.

SAVELIST(<list>)
Saves a list of the selected operations for use by other commands.

USELIST(<list>)
Uses a previously saved list of operations to drive the actions for the
command. Lists from other Current Plan Operation commands and LIST
CPOPCOM can be used. The USELIST keyword is mutually exclusive with
other Identification, Filter, and Data arguments.

FAIL(SKIP|STOP)
When COUNT is set to 0 or a number higher than 1, or USELIST is specified,
one of the actions might fail, leaving the other operations in the list to be
processed. Typically this occurs at occurrence level, such as an occurrence
being locked in the current plan. The FAIL keyword determines what to do
with the rest of the list:

SKIP Skips the updates to the failing occurrence and continues from the
next occurrence in the list. When SKIP is specified, OPTIONS CPFAIL
is temporarily considered as ERROR, therefore an ABORT
condition is not generated. If errors are found when FAIL(SKIP) is
specified, the command ends with RC=8.

STOP If an error is found the command stops, and further operations are
not processed. The command ends with a return code in
accordance with the setting of OPTIONS CPFAIL, therefore
CPFAIL(ERROR) ends with RC=8, and CPFAIL(ABORT) fails with
RC=12.

For example, the following command:
FIND JOBNAME(WT0005) OBJECT(CPO) POSITION(LATEST) COUNT(2)
DISPLAY "Number of objects found" @V(@CPO)
DISPLAY "Filtered list" @V(@CPO-@FILTER)

returns the following output:
Number of objects found 5
Filtered list 4 5

You can then identify the filtered records by using a loop to extract the record
numbers from the @FILTER attribute:
DO X = 1 TO WORDS(@V(@CPO-@FILTER))

VARSET Y = WORD(@V(@CPO-@FILTER),@V(X))
DISPLAY "IA="||@V(@CPO!Y.-CPOPIA)

END

which would return the following output:
IA=1408251241
IA=1408251242

Performance considerations

The Identification keywords run a query against the IBM Workload Scheduler for
z/OS Current Plan, and extract key information for every operation that matches.

122 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

The Filter keywords filter down this information before taking action. The more
precise you are in the Identification keywords, the faster the process will complete.
Therefore, consider how many matches you might expect to find on the current
plan at any one time using the Identification keywords when considering the
estimated duration of the command.

Note: Using these commands can produce a lot of updates to the current plan, if
you use the COUNT(0) feature. This can be across many different occurrences. The
command automatically performs a PIF EXECUTE MCPBLK command after every
change of occurrence to ensure no more than 255 operations are modified in a
single transaction.

Relative date and variables
To produce relative dates, can use the equal sign (=), plus sign (+), or minus sign
(–) in the DATE, TIME, and RANGE keywords.

By default, the date and time is the current date and time when the command is
processed. However, you can change this value to be relative to the Input Arrival
time of the job running the commands by using the OPTIONS statement and set the
Workload Automation Programming Language internal DATE and TIME to match the
variables containing the running job's input arrival details.

For example, to NOP a job the day before the input arrival date of the running job
use the following command:
VARSUB SCAN
OPTIONS DATE(!OYMD1.) TIME(!OHHMM)
NOP JOB(MYJOB) WSNAME(CPU1) DATE(-1)

Note: DATE, TIME, and RANGE refer to the Application Input Arrival time of the
operation being targeted, not to the Operation Input Arrival time.

Automatic detection of current state of operation
The Current Plan Operation commands can be targeted to perform commands that
might already have been actioned in some way, either by manual operator action
or some other automation.

For example, you could run a command that is trying to HOLD an operation that
is already held, or add a dependency that is already present. In most cases, the
IBM Workload Scheduler for z/OS PIF would fail with RC 8, but the Current Plan
Operation commands check the current state before attempting to perform the
command. Therefore, if you attempt to HOLD an operation that is already held, or
QUEUE for an operation that is already a predecessor, Workload Automation
Programming Language issues message EQQI162A and the command ends with
RC 0.

If you require notification when such conflicts occur, use the SETSEV command to
alter the severity of message EQQI162A to issue a return code. For example:
07/02 12.08.22 EQQI200I SETSEV 162W
07/02 12.08.22 EQQI007A Message 162 changed from A to W
07/02 12.08.22 EQQI299I Statement completed - RC=0
07/02 12.08.22 EQQI200I QUEUE SUCC1
07/02 12.08.23 EQQI013A Job QUEUEJOB,JOB01725 in QUEUE 1407011812 CPU1_005
07/02 12.08.24 EQQI161A SELECTED: MODOPTEST1 1406281807 MANC_020 SUCC1 W
07/02 12.08.24 EQQI162W No action - already in correct state
07/02 12.08.24 EQQI299I Statement completed - RC=4

Chapter 6. Current Plan Operation commands 123

SAVELIST and USELIST
Use these commands to save a list of the records that they process into a SAVELIST
format. This allows a series of commands to be guaranteed to run across the same
set of operations.

Use the FIND command to find a set of operations and save the list without
performing any action. You can use other commands to perform the needed
actions. For example:
FIND MYJOB SAVELIST(MYLIST)
HOLD USELIST(MYLIST)
ALTER USELIST(MYLIST) DROPPRED(EXTERNAL)
ALTER USELIST(MYLIST) NEW_STATUS(C)
RELEASE USELIST(MYLIST)

Relationship to the EQQWXMOD WAPLEXEC
The EQQWXMOD WAPLEXEC program was the prototype for many of these
commands and they have been transferred into the base language of Workload
Automation Programming Language. There are a few amendments in syntax to
avoid conflicts with existing Workload Automation Programming Language
commands and some commands have been combined.
v The MODIFY command within EQQWXMOD becomes the ALTER command within base

Workload Automation Programming Language.
v The MOVETO command is now also part of the ALTER command with a new

NEW_WSNAME keyword specifying the workstation to move to.
v The RELEASE keyword of MOVETO has now become the DROPSUCC keyword of the

ALTER command.
v The UPDATE keyword has been moved from the PARM= route into being a

keyword in each command but can still be passed via the PARM= route as this
will set OPTIONS UPDATE.

v The STATUS keyword now allows multiple status values to be specified in a
single command. This was a restriction for EQQWXMOD but Workload Automation
Programming Language V3.3 lifted this with changes in the core engine.

v New commands BIND, KILL and REPLY added to this set of commands that were
not part of the EQQWXMOD set.

v The NOW keyword is not supported in base Workload Automation Programming
Language, because you can use OPTIONS DATE and OPTIONS TIME instead.

The EQQWXMOD WAPLEXEC is now being deprecated and is not developed further to
accommodate any new features of IBM Workload Scheduler for z/OS. Use the
equivalent commands within Workload Automation Programming Language,
instead.

ALTER
Use the ALTER command to modify the attributes on an operation.
ALTER <identification> <filter> <data> <modify-cpop-keywords>

[NEW_WSNAME(<wsname>)] [NEW_JOBNAME(<jobname>)] [NEW_STATUS(<status>)]
[UFNAME(<usrf_name>)] [UFVALUE(<usrf_value>)]
[DROPPRED(INTERNAL|EXTERNAL|ALL|<pred>)]
[DROPSUCC(INTERNAL|EXTERNAL|ALL|<succ>)]
[DROPUSRF(<ufname>)]
[DROPSR(<special-resource>)]

where:

124 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

<modify-cpop-keywords>
Additional keywords to specify the changes you want to make to the
operation. The following keywords are available (for detailed information,
see “MODIFY CPOP – Current Plan Operation” on page 99):
v ASUB(Y|N)
v CLATE(Y|N)
v DEADWTO(Y|N)
v DESC(up to 24 characters)
v DURATION(100th of seconds)
v EDUR(HHMM)
v FORM(form number)
v HRC(0-4095)
v JCLASS(job class)
v NEW_CLNTYPE(A|I|M|N)
v NEW_CONDRJOB(Y|N)
v NEW_ERRCODE(errcode)
v NEW_EXPJCL(Y|N)
v NEW_JOBCRT(N|P|W)
v NEW_JOBNAME(job name)
v NEW_JOBPOL(C|D|L|S)
v NEW_MONITOR(Y|N)
v NEW_STATUS(A|C|E|I|R|S|U|X|*)
v NEW_USRSYS(Y|N)
v NEW_WLMSCLS(WLM service class)
v NEW_WSNAME(workstation name)
v OPDL(YYMMDDHHMM)
v OPIA(YYMMDDHHMM)
v PSUSE(1-99)
v R1USE(1-99)
v R2USE(1-99)
v RERUT(Y|N|blank)
v RESTA(Y|N|blank)
v TIMEDEP(Y|N)
v USERDATA(operation user field)

UFNAME Optional keyword that specifies the name of a user field to be updated for
the selected job. If UFNAME is specified and UFVALUE is not, the field is set to
blanks.

UFVALUE
Optional keyword that specifies the value to set the user field named by
UFNAME for the selected job. If UFVALUE is specified, UFNAME must also be
specified.

DROPPRED and DROPSUCC
Optional keywords that can cause the operation’s predecessor or successor
links to be deleted. The valid values are:

Chapter 6. Current Plan Operation commands 125

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

INTERNAL
Release only internal successors.

EXTERNAL
Release only external successors.

ALL Release all internal and external successors.

The definition of an individual dependency
In the form [admask][/opno|jobmask][/iatime]. For example,
ABC*/255/!OYMD1.* would match operation 255 in any
dependencies within applications beginning with ABC with an
input arrival date matching the operation being modified. Or
/XYZ would match any dependency to a job beginning with XYZ,
regardless of the application or input arrival.

DROPSR Optional keyword to drop a special resource, or resources. The value can
be an absolute name, or use wildcards. MATCHTYP cannot be used with this
command, therefore do not use special resources whose names contain
wildcards.

DROPUSRF
Optional keyword to drop user fields from an operation. You can specify
wildcards. DROPUSRF(*) drops all the user fields from an operation.

Managing split or inconsistent occurrences
In IBM Workload Scheduler for z/OS, an occurrence must always be consistent.
This means that you must ensure that every operation is connected directly or
indirectly.

To remove internal successors, the application must be designed in such a way that
the removal of the dependencies does not create an inconsistent application. By
default, if the result of removing internal dependencies would result in some
operations becoming entirely separate from the rest of the occurrence then the
command will fail. When you useDROPPRED or DROPSUCC, ensure that the application
is designed specifically to manage such eventualities, in preference to OPTIONS
DROP.

The OPTIONS DROP keyword provides 2 mechanisms that prevents occurrence
inconsistencies:
v Making both sides of the broken dependencies a successor to a named operation

number, providing that the named operation number has the status Complete.
v Adding an operation using a named workstation and job name, or reuse a

matching pre-existing one that has no successors, and make this a success to
both sides of the broken dependency.

The syntax of the OPTIONS DROP keyword is
DROP(<predop>,<succws>,<succjob>,<succtext>), where:

<predop>
A named operation number, for example 001, to be used as a predecessor
to both sides of a dropped dependency, but only if <predop> is in Complete
status. It does not add <predop>, if it does not already exist.

<succws>
Name of the workstation that is used to become a successor to both sides
of the dropped dependency. This must be a non-reporting general
workstation.

126 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

<succjob>
Name of the job that is used to become a successor to both sides of the
dropped dependency. The default is ZRELINK.

<succtext>
Operation description that is used if a successor operation is inserted. The
default is Relink dropped deps.

Figure 1 shows the following scenarios:

Scenario 1
When the dependency between operations 010 and 015 is dropped, the
<predop> operation 001 that was set by OPTIONS DROP is in status C. This
allows it to be connected as a predecessor to operations 010 and 015,
preventing an occurrence split.

Scenario 2
When the dependency between operations 010 and 015 is dropped, the
<predop> operation 001 that was set with OPTIONS DROP is in status W. This
prevents the relink processing to occur, therefore the operation 254 is
added using the <succws> and <succjob> keywords of OPTIONS DROP. This
makes operation 254 a successor to operations 010 and 015, preventing in
this way an occurrence split.

When a dependencies is being dropped by this command, the following processing
takes place in this order:
1. If the dropping of the dependency does not cause an occurrence split, no

additional dependencies are added.

Scenario 1: DROP(001),NONR,ZRELINKN,Relink dropped deps Scenario 2: DROP(NONR,ZRELINKN,Relink dropped deps)001,

NONR_001
ZFIRST

STATUS=C

CPU1_005
JOB005

STATUS=C

CPU1_010
JOB010

STATUS=E

CPU1_015
JOB015

STATUS=W

NONR_255
ZLAST

STATUS=W

NONR_001
ZFIRST

STATUS=W

CPU1_005
JOB005

STATUS=W

CPU1_010
JOB010

STATUS=W

CPU1_015
JOB015

STATUS=W

NONR_255
ZLAST

STATUS=W

NONR_254
ZRELINK

STATUS=W

Figure 1. Example of two automatic relinking scenarios

Chapter 6. Current Plan Operation commands 127

2. If <predop> is specified in OPTIONS DROP and the identified operation is in status
Complete, both sides of the dropped dependency become successors to
<predop>.

3. If <predop> is not specified or it has a status different from Complete, if
<succws> is specified it will look for an operation on the <succws> workstation
with the <succjob> job name with no successors. If a match is found, this
operation becomes a successor to both sides of the dropped dependency.

4. If <succws> is specified, but no match is found within the occurrence, the
highest unused operation number is identified and added to the occurrence to
become a successor to both sides of the dropped dependency. If there are no
unused operation numbers, an operation is not added.

5. If none of the preceding processes are specified or criteria are not met, the
command fails to drop the dependencies due to the occurrence split.

Note:

1. If there is already a dependency in place to a valid <predop> or <succws>
operation, the dependency is not dropped, even if identified by the ALTER
command as being a dependency to drop.

2. Specifying OPTIONS DROP causes batch to carry on processing from the point of
the dropped dependency, in contradiction to the original design of the
application. If OPTIONS DROP is coded in a default OPTIONS member, this could
be unknown to some of your user base, and result in unexpected behavior.
OPTIONS DROP must be set only in the jobs where it is to be applied.

BIND
Use the BIND command to trigger an operation on a shadow workstation, to
attempt to bind to its counterpart on the remote engine.

BIND <identification> <filter> <data>

where:

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

FIND
Use FIND to find an operation, or a set of operations, matching the input criteria. It
performs no action against the operation, therefore you can use it to create OBJECT
variables or SAVELISTs to be later processed by other commands.

FIND <identification> <filter> <data>

where:

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

128 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

FORCE
Use FORCE to submit an operation that could otherwise wait for special resources,
workstation shutdown or that has job submission disabled. If the operation has
predecessors outstanding, it cannot be forced. This command is equivalent to the
EX command in ISPF panels.

EXECUTE <identification> <filter> <data>

where:

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

HOLD
Use HOLD to add a Manual Hold condition to an operation. This means the
operation waits to be manually released after all of its prerequisites have been met.

HOLD <identification> <filter> <data>

where:

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

Note: If you try to hold an operation that is already held, the command fails with
RC=8.

KILL
Use KILL to kill an operation on a fault-tolerant or z-centric workstation.

KILL <identification> <filter> <data> [TYPE(JOB|RECOVERY)]

where:

Chapter 6. Current Plan Operation commands 129

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

TYPE Optional keyword to identify whether to kill the actual job (default), or the
fault-tolerant recovery job.

NOP
Use NOP to specify a No Process condition against an operation. This means that
when the operation’s prerequisites have been met, IBM Workload Scheduler for
z/OS sets the operation complete.

NOP <identification> <data> <filter>

where:

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

QUEUE_BEHIND
Use QUEUE_BEHIND to make become the running job, or other jobs in the same
occurrence as the running job, a successor behind the identified operations. The
QUEUE_BEHIND command can be abbreviated to QUEUE.
QUEUE_BEHIND <identification> <filter> <data> [CONNECT(THIS|SUCC)]

[INSERT(CONNECTED|ENDPOINT|NONE)]

where:

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

CONNECT
Specifies the job to connect to the operations identified by the command. If
set to THIS, the job currently running the command becomes a successor to
the identified jobs. If set to SUCC, the internal successors of the job currently
running the command becomes a successor to the identified jobs. If set to

130 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

THIS, the job returns to the Waiting status until the newly applied
predecessors have run. After the predecessors have run, the job is rerun
and might find new predecessors. If CONNECT(SUCC) is specified and the job
running the command has no successors, the command fails.

INSERT Specifies whether to insert the connected job, or occurrence after the
identified job, so that it becomes a predecessor to the successors of the
identified job. Specifying CONNECTED, makes the jobs identified by the
CONNECT keyword a predecessor to the successors of the operations
identified by the command. Specifying ENDPOINT will find the end points of
the occurrence and make them a predecessor to the successors of the
identified job. Specifying NONE will not insert the running occurrence before
the successors of the identified job (this is the default). If anything other
than INSERT(NONE) is specified and the job identified by the QUEUE_BEHIND
command has no successors, the command fails.

Note: The QUEUE_BEHIND command is designed to influence the occurrence where
the job running the command is contained. If the command is run by a job not
being controlled by IBM Workload Scheduler for z/OS, it fails.

RELEASE
Use RELEASE to remove a Manual Hold condition from an operation. This means
that the operation is ready to be run after all of its prerequisites have been met.

RELEASE <identification> <filter> <data>

where:

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

Note: If you try to release an operation that is not already held, the command fails
with RC=8.

REPLY
Use REPLY to reply to a recovery prompt for FT operations.

REPLY YES|NO <identification> <filter> <data>

where:

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

Chapter 6. Current Plan Operation commands 131

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

UNNOP
Use UNNOP to remove a No Process condition against an operation.

Using the UNNOP command means that when the operation’s prerequisites are met,
IBM Workload Scheduler for z/OS will no longer mark the operation complete.

UNNOP <identification> <filter> <data>

where:

<identification>
Keywords to identify the operations to update. For details, see
“Identification keywords” on page 117.

<filter>
Keywords to select the operations from the list. For details, see “Filter
keywords” on page 120.

<data> Keywords to store data from the command. For details, see “Data
keywords” on page 121.

132 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 7. Current Plan Occurrence commands

Use the Current Plan Occurrence commands to perform specific functions against
all operations within a single occurrence in the current plan, using a common set
of keywords to identify the occurrence.

These commands are designed to simplify the process of updating operations
within a single occurrence in the current plan. They are primarily designed to be
run from the initial operation in an occurrence to influence the behaviour of the
occurrence.

Common keywords
Use the Current Plan Occurrence commands to run commands against a specific
occurrence by using a common syntax.

Two primary keywords are ADID(<application-name>) and IA(YYMMDDHHMM) to
identify the occurrence with which you want to work. These keywords are needed
only if you want to work with an occurrence from a job not running within the
occurrence itself. If the occurrence to be modified is the one where the command is
running, these keywords are not required.

You can use the special keyword UPDATE(NO|YES) to verify the process before it is
performed. The keyword determines if the commands actually performs the
updates: if you specify NO, the command reports what it would do to each
operation, but does not perform any updates. The default value is YES, but this
default can be influenced by OPTIONS UPDATE.

ALTIF – Alter operations if specific criteria are true
The ALTIF can be run as the first operation in an occurrence to conditionally ALTER
other operations within the same occurrence.

ALTIF CRITERIA(<field-prefix>) [<common-keywords>]

where CRITERIA names a user field prefix to use for specifying date logic
expressions against. The prefix is used to identify IF, DO, and EL user fields to
define the date logic and a corresponding set of attributes to alter.

The command searches for matching user fields in each operation within the same
occurrence. The fields must be coded with matching <field-prefix> and <tag>
elements of the name with one IF, at least one DO user field, and optional EL fields,
using the following convention:

<field-prefix>-<tag>-IF
The user field with date logic.

<field-prefix>-<tag>-DO
The user fields containing the ALTER keywords to act upon when the
corresponding IF is true. At least one DO keyword must be coded for each
IF.

EL* The user fields containing the ALTER keywords to act upon when the
corresponding IF is false.

© Copyright IBM Corp. 2016 133

In the following example, ABC-01-IF is true on Monday, therefore ABC-01-DO is
processed on Monday. ABC-02-IF is true only on Tuesday, therefore ABC-02-DO1 and
ABC-02-DO2 are processed on Tuesday. On any other day, that operation is left
unaltered, according to the day of the week.
ABC-01-IF = @(MON)
ABC-01-DO = OPIA(!OYMD1.1900)
ABC-02-IF = @(TUE)
ABC-02-DO1 = OPIA(!OYMD1.2100)
ABC-02-DO2 = OPIA(!OYMD1.2300)

In the following example, user field ABC-03-IF checks to see if the day is a
workday: if true, it runs ABC-03-DO, if it is not a workday, it runs ABC-03-EL1 and
ABC-03-EL2.
ABC-03-IF = @(WORKDAY)
ABC-03-DO = TIMEDEP(Y)
ABC-03-EL1 = TIMEDEP(N)
ABC-03-EL2 = DROPSR(’DONT.RUN.WITH.CICS’)

The IF user field can contain any valid REXX Expression, containing date logic
variables, Workload Automation Programming Language variables or IBM
Workload Scheduler for z/OS JCL variables (for details, see “IF-THEN-ELSE –
Conditional execution” on page 44). The variables are evaluated by the operation
running the ALTIF command, hence their values are set in relation to that
operation.

The DO and EL user fields can contain any action keywords from the ALTER
command. The identification, filter, and data keywords are managed internally by
the ALTIF command; you must use only the keywords that cause operation
modification. Each individual DO or EL user field causes an individual ALTER
statement to be run. The ALTER statements are run in the sort sequence of the user
field names. For details, see “ALTER” on page 124.

Note:

v If you set an -IF User Field without at least one corresponding -DO user field,
the ALTIF command fails with RC=8.

v When UPDATE(N) is set, to see the ALTER commands that would have been issued
use OPTIONS MSGLEVEL(2). To see the low level PIF commands that would have
been issued, use OPTIONS TRACE(1).

RUNIF – Run operations only if specific criteria are true
The RUNIF command can be run as the first operation in an occurrence to
conditionally decide which operations are allowed to run, by moving the
unwanted operations to a non-reporting workstation and optionally removing
special resources and time dependencies.
RUNIF [USRF-EQ|NE(field=value)] [CRITERIA(<field-prefix>)]

[DROPSR(YES|NO)] [DROPTIME(YES|NO)] [WSNAME(<workstation>)]
[<common-keywords>]

where:

USRF Specifies a user field and value to decide which operations to run. You can
use the keyword comparators EQ and NE. When EQ is used, it runs only
operations marked with the combination of field name and value. When NE
is used, it runs only operations not marked with the combination of field
name and value.

134 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

CRITERIA
Names a user field prefix to use for specifying date logic expressions
against. The prefix is used to identify positive and negative rule user fields.
For example, CRITERIA(RUNME) looks for user fields with the format
RUNME-POS-nn and RUNME-NEG-nn to contain the date logic rules for each
operation.

DROPSR(YES|NO)
Instructs the RUNIF command to remove special resources from operations
identified as being ineligible to run. If resources are not removed, the
operations could wait for special resources, even if they were moved to a
non-reporting workstation. This might even affect the availability of
resources if the use OnComplete. The default is YES.

DROPTIME(YES|NO)
Instructs the RUNIF command to remove any time dependency from any
operations identified as being ineligible to run. If time dependencies are
not removed the operation will wait until the time dependency has been
satisfied, even if the operation was moved to a non-reporting workstation.

WSNAME Specifies the workstation where the operations that are not required are
moved by the RUNIF process. This must be a general non-reporting
workstation.

All fields are optional, but you must specify at least one USRF and one CRITERIA . If
both USRF and CRITERIA are specified, the USRF keyword is processed first, and only
the operations that pass the USRF test have their CRITERIA fields processed.

When CRITERIA is used, the following considerations are made:
v If an operation has no user fields matching the prefix-POS-nn or prefix-NEG-nn

format, the operation is considered eligible to run.
v If an operation has a user field matching the prefix-POS-nn format, the

operation is considered eligible to run only if the expression contained within
the user field is TRUE.

v If an operation has a user field matching the prefix-NEG-nn format, the
operation is considered ineligible to run if the expression contained within the
user field is TRUE.

nn is expected to be a two-digit numeric value, to ensure that the fields are
evaluated in the correct order, because updates to the current plan might
inadvertently change the sequence of user fields. It does not matter if nn is not
numeric, but it is important to understand that the sort sequence of each
individual field name decides the order in which the CRITERIA rules are combined.
Multiple prefix-POS-nn or prefix-NEG-nn fields are not processed individually, but
they are evaluated as a single positive or a single negative rule, using normal
continuation rules to combine each user field value.

The following example shows a basic RUNIF usage, where:
v Operation 001 runs Monday to Friday
v Operation 005 runs only Monday
v Operation 010 runs Monday to Friday
v Operation 015 runs only on Mondays during October
v Operation 020 runs Monday, Tuesday, Thursday and Friday
v Operation 255 runs Monday to Friday

Chapter 7. Current Plan Occurrence commands 135

The contents of the CRITERIA user fields can contain Workload Automation
Programming Language variables that can be set in the same operation as the
RUNIF command. For substitution to take place, variable substitution must be
activated in the same job as the RUNIF command.

The following example shows a basic RUNIF usage with variables as criteria, where:
v Operation 001 runs Monday to Friday
v Operation 005 runs Monday and Tuesday
v Operation 010 runs Monday and Tuesday
v Operation 015 runs Wednesday and Thursday
v Operation 020 runs Wednesday and Thursday
v Operation 255 runs Monday to Friday

The USRF keyword can be used to provide different execution routes through an
application depending on the contents of a variable in a JCL variable table.

Varying the name of the user field to be used allows the same operation to be
permissible on multiple routes through the application.

Both the variable value and presence of the RUNIF command can be varied at
submission time if the application is added to the current plan dynamically.

Using the same user field name allows an application to be divided into sub
applications, allowing the application to run as a whole if no RUNIF command is
set, or only running a sub set of the operations if RUNIF is executed specifying a
particular value for the user field.

The following example shows a basic RUNIF usage with variables to select the
route, where:

When variable ROUTE in table MYTABLE is set to ROUTE1
v Operation 001 runs
v Operation 005 runs
v Operation 010 runs
v Operation 015 does not run

An application runs Monday to Friday
Operation 001 – Command –
EQQ-SYSIN-01 = RUNIF CRITERIA(RUNME) WSNAME(NONR)
Operation 005 – User Field RUNME-POS-01 = @(MON)
Operation 010 – No user fields
Operation 015 – User Field RUNME-POS-01 = @(MON) & @(OCT)
Operation 020 – User Field RUNME-NEG-01 = @(WED)
Operation 255

An application runs Monday to Friday
Operation 001 – Command –
EQQ-SYSIN-01 = VARSUB SCAN
EQQ-SYSIN-02 = VARSETRULE1 = “@(MON) | @(TUE)”
EQQ-SYSIN-03 = VARSETRULE2 = “@(WEDE) | @(THU)”
EQQ-SYSIN-04 = RUNIF CRITERIA(RUNME) WSNAME(NONR)
Operation 005 – User Field RUNME-POS-01 = !RULE1
Operation 010 – User Field RUNME-POS-01 = !RULE1
Operation 015 – User Field RUNME-POS-01 = !RULE2
Operation 020 – User Field RUNME-POS-01 = !RULE2
Operation 255

136 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

v Operation 020 runs
v Operation 025 does not run
v Operation 255 does not run

When variable ROUTE in table MYTABLE is set to ROUTE2
v Operation 001 runs
v Operation 005 runs
v Operation 010 does not run
v Operation 015 runs
v Operation 020 does not run
v Operation 025 runs
v Operation 255 does not run

The following example shows a basic RUNIF usage with the RUNIF command being
varied at submission time, where:
v EQQ-SYSIN-02 contains a commented template of the RUNIF command to be

replaced at submission time by a real version of the RUNIF command. When
submitted unmodified, all operations will run.

v When an occurrence is submitted as follows:
INSERT CPOC ADID(MYAPPL)
MODIFY CPOP OPNO(001)
MODIFY CPUSRF UFNAME(EQQ-SYSIN-02)

UFVALUE(’RUNIF USRF(SUBAPPL=GRPA) WSNAME(NONR)’)
– Operation 001 runs
– Operation 005 runs
– Operation 010 runs
– Operation 015 runs
– Operation 020 does not run
– Operation 025 does not run
– Operation 255 does not run

v When an occurrence is submitted as follows:
INSERT CPOC ADID(MYAPPL)
MODIFY CPOP OPNO(001)
MODIFY CPUSRF UFNAME(EQQ-SYSIN-02)

UFVALUE(’RUNIF USRF(SUBAPPL=GRPB) WSNAME(NONR)’)
– Operation 001 runs
– Operation 005 does not run
– Operation 010 does not run
– Operation 015 does not run
– Operation 020 runs
– Operation 025 runs
– Operation 255 does not run

An application runs Monday to Friday
Operation 001 – Command –
EQQ-SYSIN-01 = VARSUB SCAN TABLE(MYTABLE)
EQQ-SYSIN-02 = RUNIF USRF(!ROUTE=Y) WSNAME(NONR)
Operation 005 – User Fields ROUTE1 = Y and ROUTE2 = Y
Operation 010 – User Fields ROUTE1 = Y and ROUTE2 = N
Operation 015 – User Fields ROUTE1 = N and ROUTE2 = Y
Operation 020 – User Fields ROUTE1 = Y and ROUTE2 = N
Operation 025 – User Fields ROUTE1 = N and ROUTE2 = Y
Operation 255 – No user fields, but already on workstation NONR

Chapter 7. Current Plan Occurrence commands 137

Note: This command changes the workstation where operations run, alters the
time dependency attribute, and removes special resources from operations. If the
RUNIF criteria were specified incorrectly and a rerun is required, you need to
restore the occurrence to its original state, either by submitting a new occurrence in
its place, or manually restoring the workstation names, time dependency attributes,
and special resources, according to the database definition of the application.

Operation 001 – Commands –
EQQ-SYSIN-01 = VARSUB SCAN
EQQ-SYSIN-02 = /* RUNIF USRF(SUBAPPL=GRPx) WSNAME(NONR) */
Operation 005 – User Field SUBAPPL = GRPA
Operation 010 – User Field SUBAPPL = GRPA
Operation 015 – User Field SUBAPPL = GRPA
Operation 020 – User Field SUBAPPL = GRPB
Operation 025 – User Field SUBAPPL = GRPB
Operation 255 – No user fields, but already on workstation NONR

138 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 8. Function Based commands

The Function Based commands combine various low level PIF commands. Use the
Function Based commands to perform specific scheduling or operational functions.

ADD – Add applications or groups to the current plan
Use the ADD command to add applications or groups of applications to the current
plan. You can add a single occurrence (ONCE mode) or resubmit the currently
running occurrence (REPEAT mode).

When using this command, consider that:
v If the Input Arrival time is later than the end of the current plan, the ADD

command adds the occurrence to the long-term plan, not to the current plan.
v When adding to the long-term plan, if DEPRES is set to Y and some dependencies

cannot be resolved, the ADD command adds the applications, resolve the
dependencies that can be resolved, and end with RC=4.

ADD ADID(<adid>)|GROUPDEF(<groupdef>) [JCLVTAB(<table>)]
[DEPRES(Y|N|P|S)]
[IA(yymmddhhmm) | IADATE(yymmdd) IATIME(hhmm)] [FINDIA(Y|N)]
[FROM(hhmm)] [UNTIL(hhmm)] [EVERY(hhmm)] [COUNT(nnnn)]
[ORIGIN(START|END|IA)] [RESOLVE(NEXT|GAP|BOTH|hhmm)]
[EARLY(ABORT|CONTINUE)] [NOTIFY(N|W|E)]
[DLDAY(n)] [DLTIME(hhmm)] [LINK(YES|NO)] [HOLD(NO|START|ALL)]
[UPDATE(YES|NO)]

Note: The ADD command uses the same keywords used with other PIF and
Workload Automation Programming Language commands. For consistency with
the OCL ADD command, you can use APPL as an alternative to ADID, GROUP as an
alternative to GROUPDEF, VARTAB as an alternative to JCLVTAB, and CPDEPR and
GDEPRES as an alternative to DEPRES. For consistency with repeating run cycles in
Batch Loader, you can use IATIME as an alternative to FROM, RPTEND as an alternative
to UNTIL, and RPTEVRY as an alternative to EVERY.

If you specified the keyword UNTIL or EVERY, the ADD command is used in REPEAT
mode.

The following list shows the general keywords:

ADID|GROUPDEF
Indicates an application or a group to submit. If you specify GROUPDEF, the
ADD command submits every application included in that application
group. When operating in REPEAT mode, neither ADID or GROUPDEF are
required, but you specify them they must match the running application or
group.

JCLVTAB
Indicates a JCL variable table that can be attached to the occurrence.

DEPRES(Y|N|P|S)
Determines whether external dependencies are resolved when the
occurrences are added to the current plan. This also affects the setting of
OPTIONS CPDEPR or LTDEPR for the remainder of the Workload Automation
Programming Language session, depending on the plan that is used. The
default is Y. For additions to the long-term plan, P or S are translated to Y.

© Copyright IBM Corp. 2016 139

UPDATE(YES|NO)
Determines whether the job actually performs the updates to the current
plan or long-term plan. The default behaviour is to perform the updates,
but you can modify it with OPTIONS UPDATE. If UPDATE is set to NO, the
command processes everything and generate the commands to perform the
update, but does not run them. If you specify OPTIONS TRACE(1), messages
EQQI906A are created to list the commands that would have been
performed.

The following list shows keywords for running in ONCE mode:

IA(yymmddhhmm)
A fully qualified input arrival time. This keyword is mutually exclusive
with IADATE and IATIME. You can use relative times; for example, IA(+15)
creates an Input Arrival time 15 minutes later, and the date is adjusted if
midnight is passed.

IADATE(yymmdd)
An input arrival date. If IATIME is not set, the current time is used in
conjunction with the date specified. You can use relative dates; for
example, IADATE(+1) uses tomorrow’s date.

IATIME(hhmm)
An input arrival time to be set independently of the date. You can use
relative times; for example, IATIME(+15) creates an Input Arrival time 15
minutes later, however if midnight is passed the date is not adjusted. Use
the IA keyword only if you want to set a specific time.

FINDIA(Y|N)
If you specified IA, IADATE, or IATIME, the ADD command generates an Input
Arrival time to use when adding the occurrence to the plan. If FINDIA is set
to N and an occurrence already exists with the same Input Arrival, the
submission fails. Setting FINDIA to Y causes the ADD command to find the
next available Input Arrival time following the one determined by the ADD
command. If you specified IA or IATIME, the FINDIA keyword defaults to N;
if you specified only IADATE, the FINDIA keyword defaults to Y. If you did
not specify any IA, IADATE, or IATIME, the ADD command does not allocate
an Input Arrival time, and is automatically assigned the next available
time.

LINK(Y|N)
When you use the ADD command within a job controlled by IBM Workload
Scheduler for z/OS, you can use LINK to make the newly added occurrence
dependent on the submitting job, and become a predecessor to the
successors of the submitting job. This ensures the dynamically added
occurrence will complete before any successors to the submitting job are
able to run. The process automatically finds the start and end points of the
application being added. The LINK keyword can be used only when adding
a single application.

LINK cannot be used with GROUPDEF.

HOLD(NO|START|ALL)
Use HOLD to hold the operations in the occurrence being added. Specifying
START holds all operations with no predecessors. Specifying ALL holds all
operations in the new occurrence. If there are operations within the
occurrence that are on workstations that cannot be held, such as manual
operations, message EQQI051W is issued with RC=4. This warning can be

140 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

downgraded to information by running command SETSEV 051I prior to the
ADD command in the same Workload Automation Programming Language
step.

Note: If FINDIA appears to have skipped an Input Arrival minute, this is due to
occurrences that have been manually deleted from the current plan. IBM Workload
Scheduler for z/OS cannot reuse an input arrival time for an application, even if it
was deleted.

The following list shows keywords for running in REPEAT mode:

Note: To select the REPEAT mode behaviour, you must specify at least UNTIL or
EVERY.

FROM(hhmm)
Sets the earliest Input Arrival time for a repeating cycle to start from. If
FROM is specified earlier than UNTIL, UNTIL is considered to be after
midnight. For values of RESOLVE other than GAP, the FROM time is used as
the base to calculate multiples of EVERY to help chose the next Input Arrival
time. If FROM is not specified, the current time is used for the first instance
and passed to subsequent instances.

UNTIL(hhmm)
Sets the latest Input Arrival time for a repeating cycle to end. If UNTIL is
not specified, one minute prior to the current time is used for the first
instance and passed to subsequent instances.

EVERY(hhmm)
Sets the interval of hours and minutes to use to calculate the next Input
Arrival time. If EVERY is not specified, 1 hour is used.

COUNT(nnnn)
Sets a limit to the number of instances of the occurrence is allowed to
repeat.

ORIGIN Specifies the time used to base the calculation for the next interval:

END The current time (logical end point of the process). This is the
default.

START The start time of the occurrence (Occurrence Actual Arrival).

IA The Input Arrival.

RESOLVE
Specifies the rules used to calculate the next interval:

NEXT Uses the next multiple of the EVERY time after the ORIGIN time.

GAP Adds the EVERY interval to the ORIGIN time.

BOTH Adds the EVERY interval to the ORIGIN time and then take the next
multiple of the EVERY time.

hhmm Uses the next multiple of the EVERY time that is at least hhmm time
from the ORIGIN time

NOTIFY(N|W|E)
Controls behaviour when an ADD command has determined that no more
occurrences are to be added:

N Command ends with RC=0 for standard termination causes.

W Command ends with RC=4 if next detected Input Arrival is outside

Chapter 8. Function Based commands 141

of range, if the COUNT limit has been reached or an existing
occurrence is detected between the ORIGIN time and the next Input
Arrival.

E Command ends with RC=4 if next detected Input Arrival is outside
of range or if the COUNT limit has been reached. It ends with RC=8
if an existing occurrence is detected between the ORIGIN time and
the next Input Arrival.

EARLY(ABORT|CONTINUE)
Controls behaviour when the ADD command finds an ORIGIN time earlier
than the Input Arrival time of the controlling occurrence. By default, the
ADD command fails with RC=8 to protect against the eventuality that a
Time Dependent flag has not been set in the Application Definition. If
however the occurrence has been deliberately released early, restarting the
ADD step with keyword EARLY(CONTINUE) will use the Application Input
arrival time as the ORIGIN point if it is later than the chosen ORIGIN.

Note: EARLY(CONTINUE) must be used only as an option for restart. It must ever be
coded in permanent SYSIN, because it prevents protection for missing Time
Dependencies and might result in many instances of the occurrence running in
close succession.

Deadline keywords are:

DLDAY(n)
Specifies the relative day to the current time to set the deadline for 0 being
the same day, 1 being the following day, and so on. The DLDAY keyword
counts Calendar days, it does not differentiate between Workdays and
Freedays.

DLTIME(hhmm)
Specifies the time of the deadline.

The ONCE mode deadline policy is as follows:
v When DLTIME is set without DLDAY, Workload Automation Programming

Language assumes the same “logical day”. If DLTIME is earlier than the current
time, it is assumed to be post midnight.

v When DLDAY is set to 0 without DLTIME, IBM Workload Scheduler for z/OS sets
the deadline by applying normal rules.

v When DLDAY is set > 0 without DLTIME, Workload Automation Programming
Language assumes current time on relative day.

v If DLDAY is set to 0 and DLTIME is earlier than current time, the submission fails.
v In all other cases, IBM Workload Scheduler for z/OS sets the deadline by

applying normal rules.

The REPEAT mode deadline policy is as follows:
v Deadline is always calculated relative to FROM and adjusted for current

occurrence.
v When DLTIME is set without DLDAY, Workload Automation Programming

Language assumes the same “logical day”. If DLTIME is earlier than the current
time, it is assumed to be post midnight.

v When DLDAY is set to 0 without DLTIME, Workload Automation Programming
Languageuses the EVERY value to calculate the deadline.

v When DLDAY is set > 0 without DLTIME, Workload Automation Programming
Language assumes current time on relative day.

142 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

v When DLDAY and DLTIME are both set, the deadline is the specified time on the
relative day.
If DLDAY is explicitly set to 0 and DLTIME is earlier than the FROM time, the
submission fails.

v In all other cases, the gap between the IA and deadline or the currently running
occurrence will be used to calculate new deadline.

Usage notes for ONCE mode
ONCE mode is applied every time UNTIL or EVERY is not specified. It causes the ADD
command to submit one occurrence of either a single application or every
application in the Application Group.

The following keywords are applicable for ONCE mode:
ADD ADID(<adid>)|GROUPDEF(<groupdef>) [JCLVTAB(<table>)]

[DEPRES(Y|N)]
[IA(yymmddhhmm) | IADATE(yymmdd) IATIME(hhmm)]
[FINDIA(Y|N)] [DLDAY(n)] [DLTIME(hhmm)]

The simplest example of the command is ADD ADID(MYAPPL), which adds a single
occurrence of MYAPPL using the current time, or nearest available minute as the
Input Arrival and lets IBM Workload Scheduler for z/OS determine the deadline
using normal rules.

More complex versions of the command can be used in conjunction with IBM
Workload Scheduler for z/OS relative date and time processing. In the following
example, you set the Input Arrival to be 15 minutes from the current time and the
deadline to be 30 minutes from the current time, automatically adjusting if
midnight is within those timescales. Use of relative times for the IA keyword
allows occurrences to be submitted, with time dependencies to run at a relative
point in the future.
ADD GROUPDEF(MYGROUP) IA(+15) DLTIME(+30)

For consistency with OCL syntax, ADD GROUPDEF(MYGROUP) JCLVTAB(MYTABLE)
DEPRES(Y) is identical to ADD GROUP(MYGROUP) VARTAB(MYTABLE) GDEPRES(Y).

Usage notes for REPEAT mode
REPEAT mode is applied every time you set either UNTIL or EVERY.

The following keywords are applicable for REPEAT mode:
ADD [JCLVTAB(<table>)] [DEPRES(Y|N)]

[FROM(hhmm)] [UNTIL(hhmm)] [EVERY(hhmm)] [COUNT(nnnn)]
[ORIGIN(START|END|IA)] [RESOLVE(NEXT|GAP|BOTH|hhmm)]
[EARLY(ABORT|CONTINUE)] [NOTIFY(N|W|E)]
[DLDAY(n)] [DLTIME(hhmm)]

Use the REPEAT mode to dynamically schedule a repeating occurrence between set
times, or for a certain number of occurrences. The maximum period of repeating is
24 hours, after which a new cycle must be initiated.

When you use the ADD command in REPEAT mode it resubmits only the same
occurrence or group. If it is included in an occurrence that is part of a group, the
entire group is resubmitted, otherwise only the single controlling application is
resubmitted. For this reason, the ADID or GROUPDEF keyword is not needed.
However, if you specify any of them and it does not match the current occurrence
or group, the ADD command fails.

Chapter 8. Function Based commands 143

The initial occurrence in the cycle can be added to the current plan by any of the
following ways:
v Normal planning using a run cycle to add a single occurrence with an Input

Arrival time matching the FROM time
v Adding manually by using 5.1
v Submitting by an ADD command running in ONCE mode
v Submitting by a PIF INSERT command
v An Event Triggered Tracking rule

The occurrence is then repeated by including a Workload Automation
Programming Language step either within an existing job in the occurrence or
group, or as a standalone job, scheduled at the point where you want the next
occurrence to be added to the plan.

Modifying the ORIGIN and RESOLVE keywords will influence when the next
occurrence is scheduled to start.

Note: To ensure that each repeating occurrence waits until the Input Arrival time
is reached, you must set the Time Dependency flag on the first operation in the
occurrence.

The default behaviour is ORIGIN(END) and RESOLVE(NEXT). This means that the time
when the ADD command runs is used to calculate the next run, which is the next
multiple of EVERY following the time ADD runs.

For example, ADD FROM(0900) UNTIL(2100) EVERY(0015) repeats from 9am to 9pm
every 15 minutes. If the occurrence starts at 1000 and ends at 1012, the next
occurrence will be at 1015. If the occurrence starts at 1000 and runs until 1020, the
next occurrence will be at 1030.

This mechanism effectively means that if a single occurrence runs longer than the
EVERY interval, the intervals are skipped to catch up with the next time in the
repeating cycle.

Using RESOLVE(GAP) ensures that the EVERY interval is used to make sure that each
occurrence starts with the same interval between one finishing and the next
starting. For example, ADD FROM(0900) UNTIL(2100) EVERY(0015) RESOLVE(GAP)
repeats from 9am to 9pm every 15 minutes. If the occurrence starts at 1000 and
ends at 1012, the next occurrence is at 1027. If the occurrence starts at 1000 and
runs until 1020, the next occurrence is at 1035.

Using RESOLVE(BOTH) ensures that the EVERY interval is used to make sure that each
occurrence starts with at least the specified EVERY interval between one finishing
and the next starting, but also runs on perfect multiples of the EVERY time. For
example, ADD FROM(0900) UNTIL(2100) EVERY(0015) RESOLVE(BOTH) repeats from
9am to 9pm every 15 minutes. If the occurrence starts at 1000 and ends at 1012, the
next occurrence is at 1030. If the occurrence starts at 1000 and runs until 1020, the
next occurrence is at 1045.

Using RESOLVE(hhmm) ensures that hhmm is used to make sure that there is a
minimum time between one occurrence ending and the next one starting, but the
occurrence starts on a perfect interval of the EVERY time. For example, ADD
FROM(0900) UNTIL(2100) EVERY(0015) RESOLVE(0005) repeats from 9am to 9pm

144 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

every 15 minutes. If the occurrence starts at 1000 and ends at 1012, the next
occurrence is at 1030. If the occurrence starts at 1000 and runs until 1020, the next
occurrence is at 1030.

Modifying the ORIGIN point can modify the characteristics of how the occurrences
are calculated. Using ORIGIN(IA) with RESOLVE(NEXT) reproduces the behaviour
that Repeat Every/Until achieves when using static run cycles. Every possible
interval is scheduled. For example, ADD FROM(0900) UNTIL(2100) EVERY(0015)
ORIGIN(IA) RESOLVE(NEXT) repeats from 9am to 9pm every 15 minutes. If the
occurrence starts at 1000 and ends at 1012, the next occurrence is at 1015. If the
occurrence starts at 1000 and runs until 1020, the next occurrence is at 1015.

COUNT can be used to limit the number of repeats, with or without FROM | UNTIL
limits. For example, in the command ADD EVERY(0015) COUNT(10) the first instance
could have been added by ETT, in which case the second instance is added a
perfect multiple of 15 minutes from the initial triggering event. This will happen
repeatedly until 10 individual runs have occurred.

For consistency between Batch Loader and the REPEAT mode of the ADD command,
to add repeating run cycles ADD FROM(0900) UNTIL(2100) EVERY(0015) is identical
to ADD IATIME(0900) RPTEND(2100) RPTEVRY(0015).

Terminating repeating
If the next calculated Input Arrival time is later than the UNTIL time, or if the
number of occurrences has reached the COUNT value, the ADD command does not
submit any further occurrences.

The ADD command also stops if it detects another occurrence, submitted in other
ways, with an Input Arrival time between the ORIGIN time and up to and including
the calculated next Input Arrival. This prevents instances where multiple triggers
may have added overlapping cycles to leap over each other, compromising the
desired cycle interval.

Use of the NOTIFY keyword can be used to allow extra processing to be added into
the repeating occurrence that only runs when the final occurrence of the cycle as
run.

For example, ADD FROM(0900) UNTIL(2100) EVERY(0015) NOTIFY(W) means that the
2100 instance of the ADD job terminates with RC=4. Conditional dependencies can
then be used to run jobs only when the ADD job terminates with RC=4, allowing
final processes to be run at the end of the repeating cycle.

Conditional dependencies can also be used to terminate the repeating cycle early. If
whatever process is being run by the repeating occurrence can detect it no longer
needs to repeat, for example all the data for the day has arrived, then it too could
issue a return code, that conditional dependencies could use to stop a further run
of the ADD job.

Persistent data
If you do not specify either FROM or UNTIL time in REPEAT mode, these values
default to the current time, and one minute before the current time of the first
instance respectively. To allow this time to be used by subsequent instances, it
must be passed from one occurrence to the next.

Chapter 8. Function Based commands 145

If you specify COUNT, this value needs to keep a running total of occurrences to
pass from one occurrence to the next.

Until IBM Workload Scheduler for z/OS V8.5.1 included, there is no recognized
mechanism to pass information from one occurrence to the other, encapsulated
within the occurrence.

To do this, Workload Automation Programming Language uses the Owner
Description field of the occurrence in the current plan. The Owner description is
left unchanged in the database, so if needed the Application Definition can be
referred to, only the current plan version is changed.

If you wish to keep the Owner Description unchanged in the current plan, you
must always set values for FROM and UNTIL, and you must not set the COUNT
keyword.

ADDJOB – Add job to the current plan
Use the ADDJOB command to add a job to the current plan by using attributes from
the application where the job is defined.
ADDJOB <jobname> [ADID(<adname>)] [COMPSUCC(IGNORE|WARNING|ERROR]

[CPDEPR(YES|PREDECESSORS|SUCCESSORS|NO)]
[CRITERIA(CLOSEST|MANUAL|SAMEDAY)] [DEPTIME(yymmddhhmm)]
[EXTLINK(APPL|JOB|WSJOB)] [GROUPDEF(<application-group>)]
[GROUP(<authority-group>)] [HOLD(YES|NO)
[IA(yymmddhhmm)]
[IGNORE(=ALL,=NONE,=FIRST,=LAST,=<wstype>,<wsname>,<opno>)]
[INTLINK(APPL|JOB|WSJOB)] [JCL(’<library>(<member>)’)
[MULTI(FAIL|FIRST|LAST)]
[NOTFOUND(FAIL|SUBMIT)] [OWNER(<owner>)]
[PFX(<prefix>)]
[SFX(<prefix>)] [VALFROM(yymmdd)] [VALID(yymmdd)]
[VALTO(yymmdd)] [WSNAME(<wsid>)]

where:

The first positional parameter
The job name to find.

ADID A filter field to restrict the search to the application named in this
keyword. Wildcards are allowed.

COMPSUCC
Determines the action to take when a successor is identified as already
completed. A complete successor cannot be added as an external
dependency. The equivalent OPTIONS keyword sets the default.

IGNORE Do not add the dependency and issue an advisory message
(RC=0).

WARNING
Do not add the dependency and issue an advisory message
(RC=4). This is the default.

ERROR Do not add the dependency and issue an advisory message
(RC=8).

CPDEPR Specifies whether to resolve dependencies:

YES Resolve both predecessors and successors (default).

146 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

PREDECESSORS
Resolve only predecessors.

SUCCESSORS
Resolve only successors.

NO Do not resolve any dependencies.

CRITERIA
How to resolve dependencies. The ADDJOB command ignores individual
dependency resolution criteria in the database. Only the CRITERIA keyword
determines the method to be used:

CLOSEST
Use the “Closest preceding” method.

SAMEDAY
Use the “Same day” method.

MANUAL No dependencies as resolved, additional dependencies can be
manually added.

DEPTIME
The time to be used to resolve dependencies from. If specified the job
being added will resolve its dependencies as if the DEPTIME is it's operation
input arrival. If DEPTIME is not specified, the value of the IA keyword is
used. If neither DEPTIME or IA is specified, the current date and time are
used.

EXTLINK
How to find the target external dependencies:

APPL Use the application ID and operation number in the dependency
definition (default).

JOB Use the job name in the dependency definition.

JOBWS Use the job name and workstation name in the dependency
definition.

GROUPDEF
A filter field to restrict the search to the members of the application group
named in this keyword. Wildcards are allowed.

GROUP A filter field to restrict the search to the authority group named in this
keyword. Wildcards are allowed.

HOLD(YES|NO)
Determines whether the added job is held or not when added to the plan
(default is No).

IA The Input Arrival to use when creating the occurrence. If the IA is already
in use for an occurrence, the command fails.

IGNORE Specifies a list of elements to define the internal dependencies to be
ignored when adding the job to the current plan. The default is
=FIRST=LAST to ignore internal dependencies to the first and last
operations. The default is set by OPTIONS IGNORE.

The following elements can be combined:

=ALL Ignore all internal dependencies.

=NONE Do not ignore any internal dependencies.

=FIRST Ignore the first operation (as defined by OPTIONS FIRST).

Chapter 8. Function Based commands 147

=LAST Ignore the last operation (as defined by OPTIONS LAST).

<wstype>
Ignore operations using a particular workstation type. Valid types
are AUTO, CPU, DUMMY, FTA, PRINT, REMOTE-D, REMOTE-Z, SETUP, STC,
VIRTUAL, WAIT, WTO or ZCENTRIC.

<wsname>
Ignore operations that use a particular workstation.

<opno> Ignore operations on a particular operation number.

INTLINK
How to find the target internal dependencies:

JOBWSx(
Use the job name and workstation name in the dependency
definition (default).

APPL Use the application ID and operation number in the dependency
definition.

JOB Use the job name in the dependency definition.

JCL(’<library>(<member>)’)
Specifies the name of a library and member containing the JCL to be run
for this job, instead of the information that would usually retrieved from
the IBM Workload Scheduler for z/OS libraries. This keyword must point
to a member of the specified library, it cannot be provided from a
sequential file. The library and member name must be specified within
single quotation marks.

MULTI Specifies what to do if the job is found more than once. FAIL ends in error
if more than one match is found (default). FIRST reports only the first place
that is found. LAST reports only the last place that is found.

NOTFOUND
Specifies what to do if the job is not found in the database:

SUBMIT Generates an occurrence to submit the job (default).

FAIL Causes the job to fail with RC=8.

OWNER A filter field to restrict the search to applications with the owner ID
specified. Wildcards are allowed.

PFX(<prefix>)
The prefix to use in the generated occurrence name. The occurrence name
is formed from the value of PFX, the job name, and SFX combined. The
default for this value is set by OPTIONS ADPFX.

SFX(<suffix>)
The suffix to use in the generated occurrence name. The occurrence name
is formed from the value of PFX, the job name, and SFX combined. The
default for this value is set by OPTIONS ADSFX.

UPDATE(YES|NO)
Specifies whether the update to the current plan is made. When
UPDATE(NO) is specified, the actions of forming the definition of the
occurrence take place, but no updates are made to the current plan. You
can create a list with the actions that would be performed by specifying
OPTIONS TRACE(1). The default is set by OPTIONS UPDATE.

148 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

VALFROM
A filter field to restrict the search to applications matching the valid from
date specified. Wildcards are allowed.

VALID A filter field to restrict the search to applications that are valid on the date
specified. ildcards are allowed.

VALTO A filter field to restrict the search to applications matching the valid to date
specified. Wildcards are allowed.

WSNAME A filter field to restrict the search to applications containing the
workstation specified. Wildcards are allowed.

The ADDJOB command creates a dynamic occurrence in the current plan, using the
attributes of the job found in the database. They include all operation attributes,
extended information, automation attributes, special resources, and user fields. The
command ignores predecessor selection criteria and conditional dependencies,
because this is a dynamically added occurrence, therefore these elements can be
dealt with by the process performing the add.

The dependencies defined to the job are processed by the ADDJOB command in
accordance with the CPDEPR, EXTLINK, and INTLINK keywords. By default, to find
external dependencies the application name and operation number are used, while
to find the internal dependencies, the job name and workstation name are used.

The CRITERIA keyword specifies how to resolve the dependencies. The predecessor
resolution is done by using the input arrival that is determined as follows:
v DEPTIME specifies the input arrival to use for dependency resolution.
v If DEPTIME is not set, the time specified in IA is used.
v If both DEPTIME and IA are not specified and the Workload Automation

Programming Language job is controlled by IBM Workload Scheduler for z/OS,
the input arrival of the controlling occurrence is used.

v In all other cases, the current date and time are used.

Predecessor resolution is performed using the criteria as if evaluated from the
perspective of the job being added, using the input arrival time as derived above.

Successor resolution is performed using the criteria as if evaluated from the
perspective of the successor to the job being added, using the input arrival time of
the successor to the input arrival of the job being added as derived above.

If a matching job is not found, and NOTFOUND is set to SUBMIT, then a simple
dynamic occurrence using default values for all job attributes will be used. If the
WSNAME keyword was specified without using wildcards then it will be used as the
workstation in the generated occurrence. Otherwise the value of OPTIONS ADWS will
be used, which is CPU1 by default.

If the job name argument of the ADDJOB keyword contained wildcards, the
submission fails if not matching job is found, regardless of the setting of NOTFOUND.

Note: If the combination of PFX, job name, and SFX exceeds 16 characters it will be
truncated at 16 characters.

Chapter 8. Function Based commands 149

CONSOLE – Issue z/OS console commands
Use the CONSOLE command to issue commands to the z/OS console.

CONSOLE <command>

Where <command> can be any valid REXX expression that resolves to a valid console
command. For more details about REXX expressions and available functions, see
TSO/E REXX Reference manual.

Subscripted variables can be used to issue a series of commands in a loop. For
example, to issue a set of commands 10 seconds apart:
VARSUB SCAN
VARSET CMD1 = "F WSIC,STATUS"
VARSET CMD2 = "F WSJC,STATUS"
VARSET CMD3 = "F WSKC,STATUS"
VARSET CMD4 = "F WSLC,STATUS"
DO X = 1 TO 4

CONSOLE @V(CMD!X)
WAIT 10

END

The commands could be contained within a file and read into the process:
//RUNWAPL EXEC EQQYXJPX,
// SUBSYS=WSLC
//COMMANDS DD *
F WSIC,STATUS
F WSJC,STATUS
F WSKC,STATUS
F WSLC,STATUS
//SYSIN DD *
VARSUB SCAN
READ COMMANDS OBJECT(CMDS)
DO X = 1 TO !@CMDS

CONSOLE @V(@CMDS-!X.)
END

To run the commands, ensure the you have the appropriate MCS console authority.

By default the console name will be the same as the job name. This can be altered
by OPTIONS CONNAME.

After the command is issued, the process waits 2 seconds for the first messages to
be issued, then waits up to 1 second for each subsequent message to be displayed.
After one second passed with no new messages, the CONSOLE command completes.
This can be altered by OPTIONS CONWAIT.

IEExxxs messages returned from issuing console commands typically have a
severity of I but are mostly indicators of failure. To ensure errors are not missed all
IEExxxI messages will be considered to be severity E. OPTIONS CONINFO allows
IEExxxI message numbers to be provided to consider these IEExxxI messages to be
considered as INFO level messages. OPTIONS CONWARN allows IEExxxI message
numbers to be provided to consider these IEExxxI messages to be considered as
WARNING level messages. Issue command SHOW OPTIONS to check the current
setting of these options.

Any other messages retrieved will set return codes according to the message
severity:
v I and A return 0

150 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

v W returns 4
v Anything else returns 8

GETDATES – Generate a list of run dates from a run cycle rule
Use the GETDATES command to generate the run dates for an entire set of run cycles
within an application, or a particular input arrival subset. To produce the list of
run dates, the command uses the LIST GENDAYS and MERGE commands internally.
GETDATES ADID(<application>) [TYPE(A|G)]

[STATUS(A|P)]
[VALID(<valid-on>)] [IAT(hhmm]
[FROMDATE(<from>)] [TODATE(<to>)] [SAVELIST(<pfx>)]
[OUTPUT(ALL|COMBINED|INDIVIDUAL)]

where:

<application>
The name of the application for which to generate the run dates. By
default, the command assumes the ACTIVE version of this, as an
APPLICATION definition only, that is valid on the day the command runs.
TYPE can be used to look for GROUP definitions and STATUS can be used to
calculate dates for PENDING versions.

<valid-on>
The date used to find the version of the application. By default, it uses the
current date.

hhmm The input arrival time to select matching run cycles to calculate the run
dates from. For applications that might have multiple runs within one day,
this allows a specific single run to be calculated. If omitted, the run dates
for all run cycles are calculated.

<from> The date from which the run dates are calculated, in the format YYMMDD.
The default is the current date.

<to> The date until which the run dates are calculated, in the format YYMMDD.
The default is the FROMDATE value plus 90 days.

<pfx> The name of the SAVELIST to be produced, containing the combined run
dates for all run cycles. This is also used as a prefix of internally generated
SAVELIST for run cycle. It is required that SAVELIST entries are generated to
enable internal use of the MERGE command to calculate the composite effect
of all run cycles.

Output can be in the form of a SAVELIST and optionally output files if an OUTPUT
GNDAY statement has been coded ahead of the command. The SAVELIST output can
be used to generate interval dates within Periods using the PRSTART DATELIST
keyword.

The amount of output can be influenced by the OUTPUT keyword, which can have
the following values:

ALL Generates SAVELIST and optionally file output for each individual run
cycles and the combined result for all of the run cycles.

COMBINED
Only generate SAVELIST and optional file output for the combined result
for all of the run cycles.

Chapter 8. Function Based commands 151

INDIVIDUAL
Only generate SAVLIST and optional file output for each individual run
cycle. Do not generate any combined output.

Note:

1. For run cycles using the EVERY or UNTIL, only the initial Input Arrival time is
used to select the run cycle with the IAT keyword.

2. Run cycle level SAVELIST output is named using the SAVELIST prefix followed
by _cccc, where cccc is the run cycle sequence number.

3. For run cycles of type N and X, a rule definition is automatically generated
internally, therefore the LIST GENDAYS command can calculate offsets of a
period, for example ONLY(1) DAY(DAY) PERIOD(MYDATES). Period based run
cycles can generate more offsets than a rule definition can support (11 positive
and 11 negative). In these instances, multiple rules are generated until all of the
period offsets have been accounted for. The run cycle SAVELIST name will be
suffixed with _cccc_iiii, where cccc is the run cycle sequence number and
iiii is the instance number of the multiple rules generated for the single run
cycle.

4. For the limitations related to FROMDATE and TODATE, see “LIST GENDAYS –
Generate dates from a rule” on page 93.

5. The LIST GENDAYS PIF call uses the same internal IBM Workload Scheduler for
z/OS code that is used to generate the dates for GENDAYS in ISPF.

6. The GETDATES command is available only starting from IBM Workload
Scheduler for z/OS V8.6 SPE, or later.

LISTJOB – List job attributes from the database
Use LISTJOB to display the job attributes from the database. These can include the
applications where the job is coded, the operation level details, including Special
Resources and User Fields, and dependencies, including internal and external
predecessors and successors.
LISTJOB <jobname> [ADID(<adname>)] [DETAIL(APPL|OPER|SUCC)]

[DISPLAY(YES|NO)]
[FLOW(n)] [GROUPDEF(<application-group>)]
[GROUP(<authority-group>)] [MULTI(ALL|FAIL|FIRST|LAST)]
[IGNORE(=ALL,=NONE,=FIRST,=LAST,=<wstype>,<wsname>,<opno>)]
[OBJECT(<object>)] [OPNO(nnn)] [OUTPUT(*|<ddname>)]
[OWNER(<owner>)][PRIORITY(n)] [SAVELIST(<savelist>)]
[STATUS(A|P|*)] [STYLE(TEXT|LOADER)]
[VALFROM(yymmdd)] [VALID(yymmdd)] [VALTO(yymmdd)]
[WSNAME(<wsid>)]

where:

The first positional parameter
The job name to find.

ADID A filter field to restrict the search to the application specified. Wildcards
are allowed.

DETAIL How much detail to return. APPL lists only the applications in which the
job is found. OPER also lists the operation attributes, extended information,
automation information, special resources, dependencies, conditional
dependencies, and user fields. SUCC lists external successors.

DISPLAY
Whether to generate the output to SYSTSPRT.

152 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

FLOW The column width at which one line of output flows to another. If not
specified, the data will flow appropriate to the length of the output stream.

GROUPDEF
A filter field to restrict the search to the members of the application group
specified. Wildcards are allowed.

GROUP A filter field to restrict the search to the authority group specified.
Wildcards are allowed.

IGNORE A list of elements that define the internal dependencies to be ignored when
listing the dependencies of the job. The default is =FIRST =LAST to ignore
the internal dependencies to the first and last operations. The default is set
by OPTIONS IGNORE.

You can combine the following arguments:

=ALL Ignore all internal dependencies.

=NONE Do not ignore any internal dependencies.

=FIRST Ignore the first operation (as defined by OPTIONS FIRST).

=LAST Ignore the last operation (as defined by OPTIONS LAST).

<wstype>
Ignore the operations that use a specific workstation type. Valid
types are: AUTO, CPU, DUMMY, FTA, PRINT, REMOTE-D,
REMOTE-Z, SETUP, STC, VIRTUAL, WAIT, WTO, or
ZCENTRIC.

<wsname>
Ignore the operations that use a specific workstation.

<opno> Ignore the operations on a specific operation number.

MULTI Specifies what to do if the job is found more than once:

ALL Reports all places found.

FAIL Ends with RC=8, if more than one match is found.

FIRST Reports only the first place found.

LAST Reports only the last place found.

SAVELIST and OBJECT always return all matches.

OBJECT Sets an object variable in which to store all the attributes.

OPNO A filter field to restrict the search to the operation number specified in this
keyword.

OUTPUT Sets an output destination for display style output, either * to output to the
stack, or a DD statement.

OWNER A filter field to restrict the search to applications with the specified owner
ID. Wildcards are allowed.

SAVELIST
Saves the record selection criteria for each application containing the job to
a specified list.

STATUS A filter field to restrict the search to applications with a specific status:

A Active applications.

P Pending applications.

Chapter 8. Function Based commands 153

* All applications (default).

STYLE The output style:

TEXT Uses descriptive text to identify each record.

LOADER Uses batch loader keywords to identify each record.

VALFROM
A filter field to restrict the search to applications matching the valid from
date specified. Wildcards are allowed.

VALID A filter field to restrict the search to applications that are valid on the date
specified. Wildcards are allowed.

VALTO A filter field to restrict the search to applications matching the valid to date
specified. Wildcards are allowed.

WSNAME A filter field to restrict the search to applications containing the specified
workstation. Wildcards are allowed.

For example, LISTJOB JOB040 lists all the applications in which JOB040 is
contained.

The following example is a simple list of applications containing JOB040:
Application: ADID(CMDDEMO3) ADVALFROM(141024) DESCR(’Demonstrate CMD1 WS’)

OWNER(TWS)
Application: ADID(DEEPFROG1) ADVALFROM(141030) DESCR(’Demonstrate CMD1 WS’)

OWNER(TWS)
Application: ADID(DROPTEST) ADVALFROM(140922) DESCR(’Test DROP command’)

OWNER(TWS)
Application: ADID(DROPTEST2) ADVALFROM(140924) DESCR(’Test DROP command’)

OWNER(TWS)

The command LISTJOB JOB005 ADID(DEEPFROG6) DETAIL(SUCC) lists all details of
JOB005 as defined in application DEEPFROG6:
Application: ADID(DEEPFROG6) ADVALFROM(141102) DESCR(’Demo RUNIF’) OWNER(TWS)

Operation: WSID(CPU1) OPNO(005) JOBN(JOB005) DURATION(1) HIGHRC(00000006)
STARTTIME(2100) R1NUM(00000002) R2NUM(00000004) FORM(ABD00123)
TIME(Y) CRITICAL(P)

Predecessor-INT: WSLCCMD1 PREADID(DEEPFROG6) PREWSID(CMD1) PREOPNO(001)
Predecessor-EXT: ZLAST PREADID(DEEPFROG4) PREWSID(NONR) PREOPNO(255)

PRECSEL(R) PREMAND(C)
Resource: RESOURCE(JOHN) USAGE(X)
User field: UFNAME(EQQ-SYSIN-01) UFVALUE(’VARSUB SCAN’)
User field: UFNAME(EQQ-SYSIN-02) UFVALUE(’SHO OPTIONS’)
Ext criteria: ADID(DEEPFROG4) WSID(NONR) OPNO(255) TYPE(R) TOWHEN(B)

TOHHH(000) TOMM(01)
Successor-INT: JOB010 SUCADID(DEEPFROG6) SUCWSID(CPU1) SUCOPNO(010)
Successor-INT: JOB020 SUCADID(DEEPFROG6) SUCWSID(CPU1) SUCOPNO(020)
Successor-EXT: WSLCCMD1 SUCADID(DEEPFROG5) SUCWSID(CMD1) SUCOPNO(001)

The output from LISTJOB is similar to Batch Loader, though not directly executable
as Batch Loader. The fields shown are the fields that are not set to their default
values, and the values themselves are stripped of trailing spaces.

For the DISPLAY output, each segment type is shown as descriptive labels.

For the OBJECT output, the Batch Loader command name prefixes each record, with
the exception of dependencies. The OBJECT structure includes a record counter
contained in the high level object variable and a record for each segment of output.
The following command:

154 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

VARSUB SCAN
LISTJOB JOB005 DETAIL(SUCC) OBJECT(FREDDO) DISPLAY(N) MULTI(FAIL)

ADID(DEEPFROG6)
DO X = 1 TO !@FREDDO

DISPLAY @V(@FREDDO-!X.)
END

returns the following OBJECT output:
ADSTART ADID(DEEPFROG6) ADVALFROM(141102) DESCR(’Demo RUNIF’) OWNER(TWS)
ADOP WSID(CPU1) OPNO(005) JOBN(JOB005) DURATION(1) HIGHRC(00000006) STARTTIME(2100)
R1NUM(0000002) R2NUM(0000004) FORM(ABD0123) TIME(Y) CRITICAL(P) TIME(Y) CRITICAL(P)
ADPRE-INT WSLCCMD1 PREADID(DEEPFROG6) PREWSID(CMD1) PREOPNO(001)
ADPRE-EXT ZLAST PREADID(DEEPFR4) PREWSID(NONR) PREOPNO(255) PRECSEL(R) PREMAND(C)
ADSR RESOURCE(JOHN) USAGE(X)
ADUSF UFNAME(EQQ-SYSIN-01) UFVALUE(’VARSUB SCAN’)
ADUSF UFNAME(EQQ-SYSIN-02) UFVALUE(’SHO OPTIONS’)
ADXIV ADID(DEEPFROG4) WSID(NONR) OPNO(255) TYPE(R) TOWHEN(B) TOHHH(000) TOMM(01)
ADSUC-INT JOB010 SUCADID(DEEPFROG6) SUCWSID(CPU1) SUCOPNO(010)
ADSUC-INT JOB020 SUCADID(DEEPFROG6) SUCWSID(CPU1) SUCOPNO(020)
ADSUC-EXT WSLCCMD1 SUCADID(DEEPFROG5) SUCWSID(CMD1) SUCOPNO(001)

The exception to Batch Loader format is how dependencies are presented. The
database works only with predecessors, but LISTJOB shows also successor
relationships for each job. Instead of ADDEP, the dependencies are represented by
ADPRE and ADSUC with -INT or -EXT appended to show whether the dependency is
internal or external. The application name is shown, even for internal
dependencies, so that the ADDJOB function can use this to resolve relationships. Also
in an exception to the Batch Loader convention the job name is listed as the first
word on any ADPRE or ADSUC record.

LISTSTAT – List Status of Current Plan Objects
Use LISTSTAT to LIST items and set a return code based on their status.

LISTSTAT <resource> <arguments> [POLICY(<RC-expression>)]

The LISTSTAT command is similar to the Batch Command Interface Tool (BCIT)
command of LISTSTAT, but supports more resources. The return codes for the BCIT
supported resources are the same for Workload Automation Programming
Language.

Note: LISTSTAT performs a LIST request to find the relevant elements within IBM
Workload Scheduler for z/OS. If the LIST request returns multiple records, the
command ends with RC=8.

The arguments for LISTSTAT are the same as the arguments for the related LIST
request for the same resource with the exception of POLICY which is used to set the
return code policy for the request.

If you want to set your own Return Code policy you can add the POLICY keyword
to the LISTSTAT command. The POLICY keyword allows you to set specific return
codes for groups of status values, and set a return code for anything that does not
match any of your listed statuses:
POLICY(<status_list1>=<rc1>,<status_list2>=<rc2>,...,

<status_listn>=<rcn>,<catch_all>)

If you omit to supply a catch all return code then you will get RC=99 when no
match occurs. The return code must be a non-negative whole number.

Chapter 8. Function Based commands 155

There is a special status of ? that occurs if the LISTSTAT statement does not find an
operation. This allows you to decide what return code to set for an operation not
found.

For example, the following command:
LISTSTAT CPOPCOM ADID(TWSCDAILYPLAN) OPNO(010) IA(0805281200)

POLICY(AR*=10,SW=20,C=30,?=90,40)

would return 10 if the status was A, R or *, it would return 20 if the status was S
or W, it would return 30 if the status was C and return 40 if any other status was
encountered. If the operation was not found in the current plan then 90 would be
returned.

Another use of POLICY is to separate acceptable from unacceptable conditions, as in
the following example:
LISTSTAT CPOPCOM ADID(TWSCDAILYPLAN) OPNO(010) IA(0805281200)

POLICY(C=0,?=0,20)

This command ends with return code zero if the operation is complete or it is not
in the current plan, but returns 20 if it is in any other state.

Note:

v Workload Automation Programming Language will return 4 if the item being
listed is not found, 8 if more than one item is found, 12 if you have made a
syntax error and 16 if an initialization error occurs. It is recommended, that you
avoid using these return codes in your POLICY if you need to distinguish those
errors from your return codes.

v If you run multiple LISTSTAT commands in one session, the highest return code
is returned.

v If any command other than LISTSTAT breaches the OPTIONS STOPRC setting, the
LISTSTAT return code is not returned.

v The LISTSTAT command itself will only ever complete with return codes 0, 4, 8
or 12. The actual return code for the status is returned as Workload Automation
Programming Language terminates.

v The SETMAX command has no impact on the return code set by LISTSTAT.
v If the LISTSTAT command does not find an operation, a return code of 4 is set.

However if you have a POLICY keyword and you have not added a specific entry
for the special status of ?, then the “catch all” return code will be returned
which may override the 4 if it is higher. This allows you to treat “not found” as
a undesired status along with any others in the scope of the “catch all”.

The following list shows the supported resources for LISTSTAT:

CPOC Occurrences in the Current Plan

CPOPCOM
Operations in the Current Plan

CPWSCOM
Workstations in the Current Plan

CSRCOM
Special Resources in the Current Plan

The following list shows the standard return codes are:
8 More than one record identified

156 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

12 Workload Automation Programming Language error
99 Unexpected status returned or no match in POLICY

The following list shows the return codes that are set when POLICY is not specified:
4 Resource not found or user ID has no RACF authorization to read the

resource
31 Occurrence status C (completed)
32 Occurrence status D (deleted)
33 Occurrence status E (ended in error)
34 Occurrence status P (processor pending)
35 Occurrence status S (started)
36 Occurrence status U (undecided)
37 Occurrence status W (no started operations)
40 Operation status *
41 Operation status A (waiting for input to arrive)
42 Operation status R (ready)
43 Operation status S (started)
44 Operation status C (completed)
45 Operation status D (deleted)
46 Operation status I (interrupted)
47 Operation status E (ended in error)
48 Operation status W (waiting for a predecessor)
49 Operation status U (undecided)
50 Operations status X (excluded)
60 Workstation status A (active)
61 Workstation status O (offline)
62 Workstation status F (failed)
63 FT Workstation status L (linked FTA)
64 FT Workstation status U (unlinked FTA)
70 Special resource available
71 Special resource unavailable

OBJECT
Use the OBJECT keyword to create an object variable for the LISSTAT process and
the record identified.

OBJECT(<name>)

where <name> is the name of the object variable to create.

The primary object for the LISSTAT command is a simple object variable that
contains the number of records found by the LISTSTAT command. This is either 1
or 0, because LISSTAT is designed to identify only one record.

Int the following example, the object for the identified record is the object name
suffixed by 1:
LISTSTAT CPOPCOM ADID(TWSCDAILYPLAN) OPNO(010) IA(0805281200)

POLICY(C=0,?=0,20) OBJECT(CHK)

Therefore !@CHK will contain 1 if the operation is found, and 0 if not.
!@CHK1-CPOPJES will contain the JES number of the job being checked.

Performing SRSTAT actions with LISTSTAT
As well as setting return codes, the POLICY statement can also perform SRSTAT
actions based on the object status.

Chapter 8. Function Based commands 157

The complete syntax of the action to perform is as follows:
[rc/][[+|-|!]special-resource[/subsys]]

The plus sign (+), minus sign (–), or exclamation mark (!) used as prefix for special
resources indicates whether to set the availability to YES (+), NO (–) or RESET (!).
If neither the plus sign (+), minus sign (–), or exclamation mark (!) is specified,
YES is assumed.

To direct the SRSTAT event to a tracker or controller different from the value
specified in the SUBSYS= symbolic in combination with any setting of OPTIONS
TRACKERS, you can append the subsystem to the end of the special resource name
using the slash (/).

If a return code is not specified in front of a special resource name, RC=0 is
assumed.

Note:

v Special Resource names containing the slash (/) or the parenthesis cannot be
used with this command.

v If the special resource name begins with the plus sign (+) or minus sign (–), you
must specify an additional plus sign or minus sign to explicitly set the
availability.

In the following example, the job looks for operation 10 of an application called
DAILYPLANNING that runs at 12:00 on the same input arrival date as the
application running this Workload Automation Programming Language job.
v It ends with RC=0 if the operation is complete.
v It ends with RC=2 if the operation is not found in the current plan.
v It ends with RC=8 and generate an SRSTAT event to set resource

MY.SR.TRIGGER to available, which will be sent to SUBSYS(WSIT).

In the following example, the job looks for MYJOB10 and MYJOB20 of an
application called MYJOBS that arrives at 23:00 the day before input arrival date as
the application running this Workload Automation Programming Language job.
v The command ends always with RC=0.
v If MYJOB10 is in error it sets resource JOB.FAIL.MYJOB10 to available.
v If MYJOB10 is waiting it sets resource JOB.WAIT.MYJOB10 to available.
v If MYJOB20 is in error it sets resource JOB.FAIL.MYJOB20 to available.
v If MYJOB20 is waiting it sets resource JOB.WAIT.MYJOB20 to available.
v OPTIONS TRACKERS is used to determine where to send the event. Ordinarily this

would be specified in your site options member.

//RUNWAPL EXEC EQQYXJPX,
// SUBSYS=WSIC
//SYSIN DD *
VARSUB SCAN
LISTSTAT CPOP ADID(DAILYPLANNING) OPNO(10) IA(!OYMD1.1200)

POLICY(C=0,?=2,W=8/MY.SR.TRIGGER/WSIT)

158 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

These special resources could be used to trigger different escalation or notification
applications, therefore a failed job could use a Special Resource ETT rule with
JOB.FAIL.* to trigger an application to indicate in Problem Management records
that the job was still in a failed state during the night's processing. In the same
way, using a JOB.WAIT.* trigger you could run a job to automatically send an email
to support staff notifying them of the delay.

If you set //*%OPC SETVAR TJOB=SUBSTR(&OETEVNM,10,8) in the triggered
application, you can obtain the job name, that was the reason for triggering the
event, for use in that notification or escalation process.

SENDMAIL – Send an email via z/OS SMTP
Use SENDMAIL to send a simple email to a single named recipient. The command
relies upon SMTP having already been set up within the z/OS system on which
the job runs. Workload Automation Programming Language requires that an email
has both a subject and text.
SENDMAIL [FROM(<address>)] [SERVER(<server>)] SUBJECT(<text>)

[TEXTDD(<ddname>)] TO(<addresses>) [CC(<addresses>)]
[BCC(<addresses>)]
[TXT(line of text)]
[TXT(line of text)]

Note: To enable Workload Automation Programming Language to send emails, the
EQQSMTP DD statement must be added either to the Workload Automation
Programming Language procedure being used, or the executing JCL of the step.
The DD statement needs to contain a SYSOUT class pointing to the correct class
and writer for SMTP email via z/OS. The name of the SMTP DD statement can be
set by OPTIONS MAILSMTP.

The following keywords are available:

FROM Allows the email sender's address to be specified. If no domain is specified
the SERVER domain is appended to the address. If FROM is not specified the
OPTIONS value for MAILFROM will be used. If no FROM address is provided
either by the FROM keyword or OPTIONS MAILFROM the command will fail.

SERVER Provides the domain name to be used as part of the HELLO handshake
with the mail server. If the SERVER keyword is not specified the OPTIONS
value for MAILSERV will be used. If no SERVER is provided either by the
SERVER keyword or OPTIONS MAILSERV the command will fail.

SUBJECT
Specifies the subject line of the email.

TEXTDD Refers to a DD statement in the JCL from which the text of the email will
be read. The DD statement must refer to either a sequential file or an

//RUNWAPL EXEC EQQYXJPX,
// SUBSYS=WSIC
//SYSIN DD *
OPTIONS TRACKERS(WSIC.*.WSIT)
VARSUB SCAN
VARDATE YESTERDAY BASE(!OYMD1.) OFFSET(-1)
LISTSTAT CPOP ADID(MYJOBS) JOBNAME(MYJOB10) IA(!YESTERDAY.2300)

POLICY(E=JOB.FAIL.MYJOB10,W=JOB.WAIT.MYJOB10,0)
LISTSTAT CPOP ADID(MYJOBS) JOBNAME(MYJOB20) IA(!YESTERDAY.2300)

POLICY(E=JOB.FAIL.MYJOB20,W=JOB.WAIT.MYJOB20,0)

Chapter 8. Function Based commands 159

individual member within a partitioned dataset or library. The value of the
TEXTDD keyword will default to EQQEMAIL if not specified. The default value
can be altered by OPTIONS MAILDD.

TO Specifies the primary recipients of the email. If no domain is specified the
SERVER domain is appended to the address.

CC Specifies the copy list of recipients.

BCC Specifies the blind copy list of recipients.

TXT Specifies an individual line of text for the email. Multiple TXT keywords
can be coded.

The following example shows a SENDMAIL command:
OPTIONS MAILSERVER(frog1.frogpond.ibm.com)
VARSUB SCAN
SENDMAIL FROM(dean) TO(warren@nj.com) SUBJECT(Test SENDMAIL)

CC(doug@pa.com,ann@pa.com) BCC(dean) :IFCMD(LISTSTAT.EQ.4)
TXT(Here is the text in the main command stream)
TXT(you can have as many TXT statements as you like)
TXT(and they can have variables like JOBNAME=!OJOBNAME.)

SENDMSG – Send a TSO message
Use SENDMSG to send a message from the job to a TSO user.

SENDMSG TEXT(<text>) [USER(<userid>)]

where:

<text> The text of the message to send.

<userid>
The TSO user ID to whom to send the message.

If the USER keyword is omitted, the message is sent to the JES job log and can be
displayed on SYSLOG and the console.

WSALTER – Alter intervals on a workstations in the current plan
Use WSALTER to set parallel server values across multiple workstations in the
current plan.
WSALTER [EXCLUDE(<wsid1>,<wsid2>,...)] FROM(yymmddhhmm)

[PSCAP(n|RESET)]
[R1CAP(n|RESET)] [R2CAP(n|RESET)] TO(yymmddhhmm)
[UPDATE(Y|N)]
[WSAUTO(Y|N)] [WSNAME(<wsid>)] [WSREP(A|S|C|M)]
[WSRETYPE(D|Z)]
[WSTWS(Y|N)] [WSTYPE(G|C|P|R)] [WSWAIT(Y|N)] [WSZCENTR(Y|N)]

where:

EXCLUDE(<wsid1>,<wsid2>,...)
Allows a list of workstations to be specified to exclude from being
processed by the command.

FROM(yymmddhhmm)
Specifies the start of the period to alter the parallel server capacity for.

PSCAP(n|RESET)
Specifies the number of parallel servers to set for this interval. RESET can be

160 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

used to reset the parallel servers to the level planned for this interval.
RESET can be used only if this interval has already been set by a previous
command. If this keyword is not set, for a new interval IBM Workload
Scheduler for z/OS will assume 0.

R1CAP(n|RESET)
Specifies the number of workstation resource 1 to set for this interval.
RESET can be used to reset the parallel servers to the level planned for this
interval. RESET can be used only if this interval has already been set by a
previous command. If this keyword is not set, for a new interval IBM
Workload Scheduler for z/OS will assume 0.

R2CAP(n|RESET)
Specifies the number of workstation resource 2 to set for this interval.
RESET can be used to reset the parallel servers to the level planned for this
interval. RESET can only be used if this interval has already been set by a
previous command. If this keyword is not set, for a new interval IBM
Workload Scheduler for z/OS will assume 0.

TO(yymmddhhmm)
Specifies the end of the period to alter parallel server capacity for.

UPDATE(Y|N)
Determines whether to perform the updates described by the command. If
updates are requested to not be performed setting OPTIONS TRACE(1) will
show what update commands would have been executed.

WSAUTO(Y|N)
Optional search criteria to search for workstations by the automation
attribute.

WSNAME (<wsid>)
Optional search criteria to search for workstations to alter by name.
Wildcards are allowed.

WSREP(A|S|C|M)
Optional search criteria to search for workstations by the reporting type.

WSRETYPE(D|Z)
Optional search criteria to search for workstations by remote engine type.

WSTWS(Y|N)
Optional search criteria to search for workstations by the fault tolerant
attribute.

WSTYPE(G|C|P|R)
Optional search criteria to search for workstations by workstation type.

WSWAIT(Y|N)
Optional search criteria to search for workstations by the wait attribute.

WSZCENTR(Y|N)
Optional search criteria to search for workstations by the z-centric
attribute.

Chapter 8. Function Based commands 161

162 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 9. Using TSO commands within Workload Automation
Programming Language

Some TSO commands are specific to IBM Workload Scheduler for z/OS; you can
run them natively in TSO, through program EQQEVPGM, and through Workload
Automation Programming Language.

Within Workload Automation Programming Language, you specify IBM Workload
Scheduler for z/OS TSO commands almost in the same way as the normal IBM
Workload Scheduler for z/OS TSO command with the same name. The only
difference is that you are not required to specify SUBSYS.

If you omit SUBSYS from the command, Workload Automation Programming
Language adds it by using the information that you set in OPTIONS TRACKERS, to set
the correct tracker subsystem name for the controller with which you are
communicating. If you did not specify any OPTIONS TRACKERS, the SUBSYS value that
was passed to Workload Automation Programming Language at startup is used.

The SUBSYS keyword cannot be abbreviated within Workload Automation
Programming Language.

Note:

v IBM Workload Scheduler for z/OS TSO commands are asynchronous: they
generate an event to perform the action. Successful completion of the command
indicates only that the event was generated, it does not mean that the event
reached the target or that the keywords identified an object with the correct state
for update.

v With the EQQWAPL load module, you cannot use the TSO commands
BULKDISC, DEFINE, DELETE, JSUACT, and REPRO.

For detailed documentation and syntax about TSO commands, see IBM Workload
Scheduler for z/OS: Managing the Workload.

BACKUP – Initiate JCL or CP backup
Use BACKUP to initiate a backup of either the current plan or JCL repository.

BACKUP <arguments>

BULKDISC – Initiate Bulk Discovery
Use BULKDISC to initiate a bulk discovery request.

BULKDISC <arguments>

Note: The BULKDISC request is available only starting from IBM Workload
Scheduler for z/OS V8.3, or later.

© Copyright IBM Corp. 2016 163

|
|

JSUACT – Activate/Inactivate Job Submission
Use JSUACT to activate or inactivate job submission.

JSUACT <arguments>

OPINFO – Update Operation User field
Use OPINFO to update the User Field of an operation in the current plan.

OPINFO <arguments>

OPSTAT – Set operation status
Use OPSTAT to set the status of an operation in the current plan.

OPSTAT <arguments>

SRSTAT – Set special resource status
Use SRSTAT to set the status of a special resource in the current plan.

SRSTAT '<resource>' <arguments>

WSSTAT – Set workstation status
Use WSSTAT to set the status of a workstation in the current plan.

WSSTAT <arguments>

Other TSO commands
You can also run a small subset of TSO commands, including IDCAMS commands,
directly from the Workload Automation Programming Language command stream.

The following commands are available:

DEFINE IDCAMS DEFINE statement.

DELETE IDCAMS DELETE statement. Note that there is also a PIF DELETE
command accessible to Workload Automation Programming Language. If
the first word of the command is a known IBM Workload Scheduler for
z/OS record or segment, the delete command is directed to IBM Workload
Scheduler for z/OS, otherwise it is considered to be an IDCAMS DELETE
command. To ensure that you are issuing an IDCAMS DELETE, the first
word can be quoted fully qualified. Even if the fully qualified data set
matches an IBM Workload Scheduler for z/OS record or segment name,
the quotes will ensure the IDCAMS DELETE is used.

REPRO IDCAMS REPRO statement.

Depending on the TSO PROFILE PREFIX setting for the user running the job, any
data set names in TSO commands can be prefixed with the user ID. To avoid
prefixing, you can specify data set names within single quotes.

164 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 10. Batch loader commands

The batch loader function of Workload Automation Programming Language uses a
set of statements to define or modify objects within the IBM Workload Scheduler
for z/OS database.

Batch loader can be freely intermingled with other Workload Automation
Programming Language commands, but no other Workload Automation
Programming Language commands must intervene within a set of batch loader
statements for a single IBM Workload Scheduler for z/OS database object.

Each IBM Workload Scheduler for z/OS object can be constructed using one or
more batch loader statements, each statement relates to a component of the object.
For example, an Application needs and ADSTART statement to define the core
elements, such as the name and owner ID, an ADRUN statement for each run cycle
and ADOP statements for each operation. The statements are hierarchical, so each
ADOP statement can be followed by multiple ADDEP statements to define
dependencies and ADSR statements to define Special Resource usage.

Every Batch Loader construct begins with a command that ends in START, such as
ADSTART or ETTSTART. The end of the construct will be when either a new xxxSTART
statement, or a statement not belonging to that object is encountered.

Modes of operation
The batch loader processing supports several modes of operation, which you can
specify by setting either OPTIONS DBMODE or the ACTION keyword of individual batch
loader statements. Behaviors are different at the different levels.

OPTIONS DBMODE
The following values are valid for the OPTIONS DBMODE statement.

ADD The entire content of the object must be specified within Batch Loader
statements and cannot exist already within the database (this is the
default).

COPY An object and its segments can be identified for updating using key fields
(or SAVELIST), then only the fields that require changing need to be
specified. If new values for key fields are given, a new object is created in
the database and the original object is also kept in the database at
completion. If an object with the same name already exists, the COPY fails.

EXPORT An object is built from a combination of TRANSLATE and batch loader
statements, then, instead of sending the object to the database, it is written
out again as batch loader statements. In this way, input batch loader is
translated to new batch loader, as part of life-cycle management, before
applying to a database.

REPLACE
The entire content of the object must be specified within Batch Loader
statements, but can already exist within the database and is replaced if an
object with the same name and type already exists. If an object had been
selected for replacing but given a new name for output, the original object
is deleted from the database at completion.

© Copyright IBM Corp. 2016 165

UPDATE
An object and its segments can be identified for updating using key fields
(or SAVELIST), then only the fields that require changing need to be
specified. If the object does not already exist, the UPDATE command acts like
ADD. If new values for key fields are given, a new object is created in the
database and the original object is deleted from the database at completion.

Note:

v With OPTIONS FIRST and OPTIONS LAST, you cannot use COPY and UPDATE in
conjunction with AUTOPRED, AUTOSUCC, or LINK.

v Under EQQYLTOP, OPTIONS ACTION is the equivalent to OPTIONS DBMODE.
Workload Automation Programming Language also recognizes OPTIONS ACTION
for backwards compatibility. Use OPTIONS DBMODE to distinguish database
between Record and Segment level actions.

Batch loader ACTION
The ACTION keyword is available on every batch loader statement and determines
for what action the statement is to be used.

The default (and most used action) is ADD, meaning that the statement is used to
define a segment.

The following values are valid for ACTION within batch loader statements:

ADD The statement is defining an object or part of an object to be stored in the
database.

DELETE
The segment is removed from the object. DELETE is not valid for primary
batch loader statements (for example, ADSTART, CLSTART), objects
themselves must be deleted by the DELETE command, not ACTION(DELETE)
within batch loader statements. DELETE is valid only in conjunction with
OPTIONS DBMODE(COPY) or OPTIONS DBMODE(UPDATE).

EXPORT The Batch Loader input is translated into ISPF loader output without being
sent to the database. This is to allow Batch Loader to be sent into ISPF
format, using ILSON, for manipulation before being sent into the database.

SUBMIT When an Application is created using ACTION(SUBMIT), instead of being
stored in the Database it is inserted into the Current Plan without updating
the database (only valid for ADSTART). Any occurrence created using this
option will be Valid for all dates.

SETDEFAULT
If you specify SETDEFAULT, the remaining keyword values of the statement
become default values for all the statements of the same type that follow.
No database element is updated. Keywords that you do not specify are
assigned their standard defaults. For more information about how
SETDEFAULT works within Workload Automation Programming Language,
see “SETDEFAULT behaviour in Workload Automation Programming
Language” on page 170.

SETDEFAULT cannot be used for the following keywords:
v On ADDEP keywords PREWSID, PREOPNO, PREJOBN and PREADID can not be used

with SETDEFAULT.

166 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

v On ADOP keywords WSID, JOBN, PREWSID, PREOPNO and PREJOBN can not be used
with SETDEFAULT. Using OPNO with SETDEFAULT does not set the default operation
number, instead it sets the interval to add to previous operation numbers when
automatic operation numbering is used.

v On ADOPEXTN keyword EXTNAME can not be used with SETDEFAULT.
v On ADRULE no keywords can be used with SETDEFAULT.
v On ADRUN keywords NAME and PERIOD can not be used with SETDEFAULT.
v On ADSR keyword RESOURCE can not be used with SETDEFAULT.
v On OISTART keywords ADID, JOBN, OPNO and MEMBER can not be used with

SETDEFAULT.

Output masking
Use output masking to update the content of existing fields using the percent sign
(%) and asterisk (*).

Use the percent sign (%) as a wildcard for a single character, use the asterisk (*) as
a wildcard for any number of characters at the end of the mask. Using the *
anywhere but the end of the mask will cause the character to be treated as a literal
asterisk.

For example, to modify a workstation NOVO with a description “New
workstation”, issue the following command:

WSSTART WSNAME(NOVO) DESCR(“NEW *”) results in “NEW workstation”

WSSTART WSNAME(NOVO) DESCR(“%%% CPU”) results in “New CPU”

Note: By default, the output masking facility is turned off, to prevent accidental
changes if you have the percent sign (%) or asterisk (*) in any of your database
fields. To turn it on, use OPTIONS OUTMASK(Y).

Batch loader syntax enhancements
By default, Workload Automation Programming Language supports the same
format of batch loader supported by EQQYLTOP. However, the following syntax
enhancements make the batch loader function easier to use.

Some enhancements are automatically available and do not require any OPTIONS to
be set to exploit them or stop them.
v Quotation marks: Workload Automation Programming Language does not

require you to specify the keyword values within quotation marks, but it
supports them if used.

v Only primary batch loader statements (for example ADSTART, CLSTART) are
required at the beginning of a new line.

v You can use as input alternative keywords that are shorter, more consistent, and
meaningful.

Continuation rules have been amended to be able to use the full width of the input
dataset, whatever the width may be, but to process batch loader generated under
EQQYLTOP syntax rules you can set OPTIONS SYNTAX(LEGACY) to force EQQYLTOP
compliance.

Chapter 10. Batch loader commands 167

With SYNTAX(LEGACY), Workload Automation Programming Language uses only
keywords compatible with the legacy Batch Loader. With SYNTAX(EXTENDED), the
alternate syntax is listed as output.

The following list shows the alternative and extra keywords available:
v ADSTART

– ADSTAT becomes STATUS
– ADTYPE becomes TYPE
– ADVALFROM becomes VALFROM
– GROUP becomes AUTHGRP
– ADGROUPID becomes GROUPDEF

v ADCIV

– ADCIVADID becomes ADID
– ADCIVID becomes CONDID
– ADCIVOPNO becomes OPNO
– ADCIVTYPE becomes TYPE
– ADCIVFWHE becomes FROMWHEN
– ADCIVFHHH becomes FROMHHH
– ADCIVFHH becomes FROMHH
– ADCIVFMM becomes FROMMM
– ADCIVFD becomes FROMDAYS
– ADCIVTWHE becomes TOWHEN
– ADCIVTHHH becomes TOHHH
– ADCIVTHH becomes TOHH
– ADCIVTMM becomes TOMM
– ADCIVTD becomes TODAYS

v ADCNC

– CONDDEPNO is no longer required
– CONDCOUNT becomes COUNT
– CONDDESCR becomes DESCR

v ADCNS

– CONDDEPCONDID is no longer required
– CONDDEPPREADID becomes PREADID
– CONDDEPPRECSEL becomes PRECSEL
– CONDDEPPREWSID becomes PREWSID
– CONDDEPPREOPNO becomes PREOPNO
– CONDDEPDEPTYP is no longer required
– CONDDEPTYP becomes CHECK
– CONDDEPLOG becomes LOGIC
– CONDDEPVALRC becomes RC1
– CONDDEPVALRC2 becomes RC2
– CONDDEPVALST becomes STATUS
– CONDDEPPROCSTEP becomes PROCSTEP
– CONDDEPSTEPNAME becomes STEPNAME

v ADDEP

– PRINT is a new keyword to allow the LTP Print option to be set

168 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

v ADOP

– ADOPWTO becomes WTO
– ADOPCATM becomes CLEANUP
– ADOPJOBCRT becomes CRITICAL
– ADOPJOBPOL becomes POLICY
– ADOPUSRSYS becomes USRSYS
– ADOPEXPJCL becomes EXPJCL
– ADOPWLMCLASS becomes WLMCLASS

v ADRUN

– SEQ is a new keyword to enable a specific run cycle to be identified for
update, rather than having to specify every ADRUN statement again.

– ADRJTAB becomes JCLVTAB
v ADOPSAI

– COMMTEXT is no longer required.
– CT1 is a new keyword that maps to the first 64 characters of COMMTEXT in line

with the way the command is displayed within the ISPF interface.
– CT2 is a new keyword that maps to the second 64 characters of COMMTEXT.
– CT3 is a new keyword that maps to the third 64 characters of COMMTEXT.
– CT4 is a new keyword that maps to the final 63 characters of COMMTEXT.
– COMPINFO becomes CI.

The original syntax for ADOPSAI breaks keyword values across multiple lines. In the
following example, the text is meaningless, used only to show the flow of complete
keywords.
ADOPSAI
COMMTEXT('AA
AABBCCCCCC
CCDDDDDDDDDDDDDD
DDD')
AUTFUNC(AFAFAFAF) SECELEM(SESESESE)
COMPINFO('CI
CI')

SYNTAX(EXTENDED) presents the same values in the following format, which is easier
to read and follows the layout used to enter the information through the product
dialogs.
ADOPSAI

CT1(AA)
CT2(BB)
CT3(CC)
CT4(DDD)
AUTFUNC(AFAFAFAF) SECELEM(SESESESE)
CI(CI)

v ADXIV

– ADXIVADID becomes ADID
– ADXIVWSID becomes WSID
– ADXIVOPNO becomes OPNO
– ADXIVTYPE becomes TYPE
– ADXIVFWHE becomes FROMWHEN
– ADXIVFHHH becomes FROMHHH
– ADXIVFHH becomes FROMHH

Chapter 10. Batch loader commands 169

– ADXIVFMM becomes FROMMM
– ADXIVFD becomes FROMDAYS
– ADXIVTWHE becomes TOWHEN
– ADXIVTHHH becomes TOHHH
– ADXIVTHH becomes TOHH
– ADXIVTMM becomes TOMM
– ADXIVTD becomes TODAYS

v RGSTART

– RGNAME becomes RGID
– RGIATIME becomes IATIME
– RGJVTAB becomes JVTAB
– RGCALEND becomes CALENDAR
– RGDESCR becomes DESCR
– RGOWNER becomes OWNER
– RGDLDAY becomes DLDAY
– RGDLTIME becomes DLTIME

SETDEFAULT behaviour in Workload Automation
Programming Language

An element of the EQQYLTOP syntax that is not compatible with Workload
Automation Programming Language is the ability to SETDEFAULT for a segment
without first providing a SETDEFAULT for the record itself.

For example, in EQQYLTOP the following commands set the default workstation
to CPU1 and use that default value in the remaining statements:
ADOP ACTION(SETDEFAULT) DURATION(10)
ADSTART ADID(NEWAPPL)
ADOP WSID(CPU1) OPNO(001) JOBN(JOB1)
ADOP WSID(CPU1) OPNO(002) JOBN(JOB2)

Because Workload Automation Programming Language uses object based
structures throughout the syntax, to do the same thing you need to add an ADSTART
statement before the ADOP statement to ensure that the structures are coherent:
ADSTART ACTION(SETDEFAULT)
ADOP ACTION(SETDEFAULT) DURATION(10)
ADSTART ADID(NEWAPPL)
ADOP WSID(CPU1) OPNO(001) JOBN(JOB1)
ADOP WSID(CPU1) OPNO(002) JOBN(JOB2)

Note: All the statements within a SETDEFAULT structure can specify only the
SETDEFAULT ACTION. If ACTION is not specified for child batch loader statements,
SETDEFAULT is assumed.

Keyword abbreviation
In Workload Automation Programming Language, you must specify all keywords
completely, they cannot be abbreviated. This allows optimum performance for the
Workload Automation Programming Language parsing engine. However, the
EXTENDED syntax shortens many of the longer EQQYLTOP keywords.

170 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Suffixing
Some Batch Loader statements support the SUFFIX keyword. This allows a variable
value to be suffixed onto the name of the object.

SUFFIX supports the following variables:

CDAY Current day of the week as a number 1=Monday.

CDD Current day of the month.

CDDD Current day of the year.

CDDMMYY
Current date in DDMMYY format.

CHH Current hour.

CHHMM Current time in HHMM format.

CHHMMSS
Current time in HHMMSS format.

CHHMMSSX
Current time in HHMMSSXX format.

CMM Current month.

CMMYY Current month and year in MMYY format.

CYMD Current date in YYYYMMDD format.

CYY Current year in YY format.

CYYDDD Current Julian day in YYDDD format.

CYYMM Current year and month in YYMM format.

CYYMMDD
Current date in YYMMDD format.

CYYYY Current year in YYYY format.

CYYYYMM
Current year and month in YYYYMM format.

If SUFFIX is used to specify anything other than these variables, it is treated as a
literal.

Once a particular variable has been referenced in an execution of Workload
Automation Programming Language, any subsequent references return the same
value. For example, CHHMMSSX referenced twice in the same Batch Loader, returns
exactly the same value, despite the fact the second reference might be processed a
few hundredths of a second later. This is to allow SUFFIX to be used to create an
Application name, and then be able to reliably make dependencies to it.

The following example creates two dynamic applications using CHHMMSSX to
create an Application name containing the time down to one hundredth of a
second. Because the variables are static within Workload Automation Programming
Language, both applications will have the same timestamp, but importantly the
second Application can be made dependent on the first.
OPTIONS CPDEPR(Y)
ADSTART ACTION(SETDEFAULT) ADOP DURATION(1)
ADSTART ACTION(SUBMIT) ADID(DYNAMIC1) SUFFIX(CHHMMSSX)

DESCR(’SEQUENCE OF JOBS’) OWNER(TWS)

Chapter 10. Batch loader commands 171

ADOP WSID(NONR) OPNO(FIRST) AUTOPRED(PREV)
ADOP WSID(CPU1) JOBN(JOB1)
ADOP WSID(CPU1) JOBN(JOB2)
ADOP WSID(CPU1) JOBN(JOB3)
ADOP WSID(NONR) OPNO(LAST)
ADSTART ACTION(SUBMIT) ADID(DYNAMIC2) SUFFIX(CHHMMSSX)

DESCR(’SEQUENCE OF JOBS’) OWNER(TWS)
ADOP WSID(NONR) OPNO(FIRST) AUTOPRED(PREV)
ADDEP PREADID(DYNAMIC1) SUFFIX(CHHMMSSX) PREOPNO(LAST) PREWSID(NONR)
ADOP WSID(CPU1) JOBN(JOB4)
ADOP WSID(CPU1) JOBN(JOB5)
ADOP WSID(CPU1) JOBN(JOB6)
ADOP WSID(NONR) OPNO(LAST)

Note: OPTIONS SUFFIX is used to control the behavior of the SUFFIX keyword, to
manage situations where the addition of the suffix might exceed the maximum
allowed length of the object name.

NEW_ keywords
With OPTIONS DBMODE(UPDATE) you can change the "name" of an object, by
modifying its key fields. In the same way, with OPTION DBMODE(COPY) new key
fields must be specified to save a copy to. To do this, the key fields of any IBM
Workload Scheduler for z/OS object can have alternate names specified by using a
NEW_ prefix for any of the key fields you wish to alter.

For example:
OPTIONS DBMODE(COPY)
ADSTART ADID(MYAPPL1) NEW_ADID(MYAPPL1COPY)

The key fields can be identified by looking in the default OUTPUT definitions
shipped with Workload Automation Programming Language in the SEQQWAPL
library.

Note: This does not apply to temporary Operator Instructions. They cannot have
their validity range changed by NEW_ keywords. To modify the validity of
temporary Operator Instructions they must be deleted and created again.

AD – Application definition record
The AD record is a multi segment record with the following structure.
ADCOM -+- Common segment (1 per appl)

|
+= ADAPD =+= Application dependency(ies)
|
+= ADRUN =+= Run Cycle(s)
| |
| +- ADRULE – Rule (1 per run cycle)
|
+= ADOP =+= Operation(s)

|
+= ADDEP = Dependency(ies)
|
+= ADXIV = External dependency interval(s)
|
+= ADSR = Special resource(s)
|
+- ADOPEXT – Extended name (1 per op)
|
+- ADOPSAI – System Automation (1 per op)
|
+= ADCNC = Condition(s)

172 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

|
+= ADCNS = Conditional dependency(ies)
|
+= ADCIV = Conditional dependency interval(s)
|
+= ADUSRF = User field(s)
|
+= ADVDD = Variable duration(s)
|
+- ADRE =- Remote job (1 per op)

Note: Some segments have Batch Loader statements with slightly different names:
v ADCOM has a Batch Loader statement of ADSTART
v ADOPEXT has a Batch Loader statement of ADEXT
v ADOPSAI has a Batch Loader statement of ADSAI
v ADUSRF has a Batch Loader statement of ADUSF

Automatic Operation numbering
The Operation number is the unique identifier of an Operation within an
Application. It is specified by the OPNO argument on the ADOP statement which
defines each operation.

If you omit the OPNO argument from an ADOP statement, Workload Automation
Programming Language can automatically allocate operation numbers for you.
Workload Automation Programming Language calculates the operation number by
adding an interval (the default is 1) to the previous operation number. If the first
operation number is omitted, the previous operation number is assumed to be
zero, meaning the first operation number will be equal to the interval.

The interval can be set by using the ACTION(SETDEFAULT) process to set OPNO, the
operation number you set using this method is not the default operation number,
but becomes the interval between them when OPNO is omitted.

For example, the following command sets an interval of 5 between automatically
allocated operation numbers:
ADSTART ACTIONS(SETDEFAULT)

ADOP OPNO(005)

If the interval is larger than the previous operation number, the generated
operation number is set to the value of the interval. In the following example,
JOB1 is given an operation number of 005, with 010 and 015 for JOB2, and JOB3
respectively:
ADSTART ACTIONS(SETDEFAULT)

ADOP OPNO(005) DURATION(1)
ADSTART ADID(MYAPPL) OWNER(TWS)
ADOP WSID(NONR) OPNO(001) JOBN(START) AUTOPRED(PREV)
ADOP WSID(CPU1) JOBN(JOB1)
ADOP WSID(CPU1) JOBN(JOB2)
ADOP WSID(CPU1) JOBN(JOB3)
ADOP WSID(NONR) OPNO(255) JOBN(LAST)

Automatically allocated operation numbers can be identified in the Workload
Automation Programming Language output as the OPNO keyword is prefixed with
a plus sign (+) on the listed ADOP statements:
EQQI200I ADSTART ADID(TESTSORT) OWNER(TWS)
EQQI203I ADOP WSID(DUMM) JOBN(JOB1) AUTOPRED(PREV) OPNO(1)
EQQI203I ADOP WSID(DUMM) JOBN(JOB2) +OPNO(005)

Chapter 10. Batch loader commands 173

EQQI203I +ADDEP PREOPNO(1)
EQQI203I ADOP WSID(DUMM) JOBN(JOB3) +OPNO(010)
EQQI203I +ADDEP PREOPNO(5)
EQQI203I ADOP WSID(DUMM) JOBN(JOB4) +OPNO(015)
EQQI203I +ADDEP PREOPNO(10)
EQQI203I ADOP WSID(DUMM) JOBN(JOB5) +OPNO(020)

Automatic dependencies
Batch loader can create automatic dependencies within an application by using the
OPTIONS ADDEP keyword and the ADOP AUTOPRED and ADOP AUTOSUCC statements,
when adding or replacing an entire application.

The AUTOPRED and AUTOSUCC keywords are set in the ADOP statements and cause the
automatic creation of dependencies based on the batch loader statements for any
operations that follow.

The keywords can contain the following values:

nnn Operation number. Predecessors or successors will be made to the specified
operation number automatically.

FIRST Predecessors or successors will be made to theWorkload Automation
Programming Language designated first operation number automatically.

LAST Predecessors or successors will be made to the Workload Automation
Programming Language designated last operation number automatically.

OFF The current level of AUTOPRED or AUTOSUCC will be stopped. If a previous
AUTOPRED or AUTOSUCC was specified but not stopped by an OFF argument,
then the previous setting will be resumed.

PREV This is valid only for AUTOPRED and will make any subsequent operations
automatically dependent on the operation identified by the preceding ADOP
statement.

The OPTIONS FIRST and OPTIONS LAST keywords can also specify automatic
dependencies to the FIRST and LAST operations by using LINK argument.

For example, OPTIONS FIRST(1,LINK) names operation 1 as the first operation and
will make operation 1 an automatic predecessor to any operations specified in
batch loader with no explicit predecessors.

By default, automatic dependencies are only made to operations without any
explicit dependencies made from or to them in the batch loader.

For example, AUTOPRED(FIRST) will only make operations dependent on the first
operation that do not have any explicitly specified predecessors, equally
AUTOSUCC(LAST) will only make the last operation dependent on operations that
have no explicit successors.

To make automatic dependencies take place regardless of whether explicit
dependencies exist you can use the ALL argument.

For example, AUTOPRED(010,ALL) will make every operation dependent on
operation 010, or OPTIONS LAST(255,LINK,ALL) will make operation 255 a successor
to every operation in the application.

Precedence: When deciding whether an automatic dependency when ALL is not
specified, the following dependencies are assessed in this order:

174 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

1. ADOP and ADDEP statements created explicitly by the user
2. AUTOSUCC keywords
3. AUTOPRED keywords
4. OPTIONS LAST

5. OPTIONS FIRST

Note:

1. Automatic dependencies can ONLY be addressed to specific operations by the
operation number, not by using Jobname or Workstation name. When
considering whether an operation already has a predecessor or successor
Workload Automation Programming Language only acknowledges them from a
statement that uses the operation number. It is therefore recommended that any
manual dependencies made in conjunction with automatic dependencies should
be performed using PREOPNO to ensure the desired result is achieved.

2. Automatic dependencies are not permitted when using OPTIONS UPDATE or
OPTIONS COPY.

3. Automatic dependencies are for internal dependencies only.
4. Automatic dependencies rely on the order of the ADOP statements when

resolving dependencies. The ADOP statements do not have to be specified in
numerical order to build an application, as Workload Automation Programming
Language will ensure the resulting application has operations in numeric
sequence so it is possible to exploit this, for example, to have 255 as your
logical end point of an application, and still have higher numbered operations
as predecessors to it, as long as you specify operation 255 last.
In the following example, operations 010 to 110 are all successors to 001 and
predecessors to 255.
OPTIONS FIRST(1,LINK) LAST(255,LINK)
ADSTART ADID(MYAD) OWNER(TWS)
ADOP OPNO(001) WSID(NONR) DURATION(1)
ADOP OPNO(010) WSID(CPU1) JOBN(JOB01) DURATION(1)
ADOP OPNO(020) WSID(CPU1) JOBN(JOB02) DURATION(1)
ADOP OPNO(030) WSID(CPU1) JOBN(JOB03) DURATION(1)
ADOP OPNO(040) WSID(CPU1) JOBN(JOB04) DURATION(1)
ADOP OPNO(050) WSID(CPU1) JOBN(JOB05) DURATION(1)
ADOP OPNO(060) WSID(CPU1) JOBN(JOB06) DURATION(1)
ADOP OPNO(070) WSID(CPU1) JOBN(JOB07) DURATION(1)
ADOP OPNO(080) WSID(CPU1) JOBN(JOB08) DURATION(1)
ADOP OPNO(090) WSID(CPU1) JOBN(JOB09) DURATION(1)
ADOP OPNO(100) WSID(CPU1) JOBN(JOB10) DURATION(1)
ADOP OPNO(110) WSID(CPU1) JOBN(JOB11) DURATION(1)
ADOP OPNO(099) WSID(NONR) DURATION(1)

Submitting batch loader directly to the current plan
Within Workload Automation Programming Language, you can use batch loader
statements to create an occurrence directly in the current plan without creating the
application in the database. To do that, set ACTION(SUBMIT) in the ADSTART
statement.

If OPTIONS DBMODE(ADD) or OPTIONS DBMODE(REPLACE) is used, only the statements
in Batch Loader are used to build the occurrence in the plan. If OPTIONS
DBMODE(COPY) or OPTIONS DBMODE(UPDATE) is used, any existing application with the
same name in the database is used as a model with the batch loader statements
making amendments to the version being added to the current plan, the database
remains unchanged.

Chapter 10. Batch loader commands 175

The ADSTART and subsequent segments perform the equivalent of an INSERT CPOC,
so the batch loader must be followed by an EXECUTE MCPBLK to commit the
occurrence to the plan. Unless you specify OPTIONS EXECUTE(MANUAL), this happens
automatically before Workload Automation Programming Language terminates
your session with IBM Workload Scheduler for z/OS.

It is possible to follow the batch loader statements with MODIFY or INSERT
statements to amend the newly created occurrence before it is committed to the
current plan with an EXECUTE statement. This makes it possible to INSERT
predecessors or successors between the occurrence being created and specific
occurrences already in the plan.

For example:
OPTIONS ADDEP(AUTO)
ADSTART ACTION(SETDEFAULT)
ADOP DURATION(1)
ADSTART ACTION(SUBMIT) ADID(DYNAMAPPL) DESCR(’DEMONSTRATE SUBMIT’)

OWNER(TWS) ODESCR(’TWS INFRASTRUCTURE’) PRIORITY(5)
ADOP WSID(CPU1) OPNO(1) JOBN(JOB1) DESCR(’FIRST JOB’)
ADOP WSID(CPU1) OPNO(10) JOBN(JOB2) DESCR(’SECOND JOB’)
ADOP WSID(CPU1) OPNO(20) JOBN(JOB3) DESCR(’THIRD JOB’)
ADOP WSID(CPU1) OPNO(30) JOBN(JOB4) DESCR(’FOURTH JOB’)
ADOP WSID(CPU1) OPNO(255) JOBN(JOB5) DESCR(’LAST JOB’)
MODIFY CPOP OPNO(1)
INSERT CPPRE PREADID(PLANNEDAPPL) PREIA(0803081200) PREOPNO(030)
EXECUTE MCPBLK

Note: The entire object must be specified in batch loader before any INSERT or
MODIFY statements can be used to alter it. Batch loader statements (such as, for
example, ADSTART and ADOP) cannot be interleaved with current plan commands
(such as, for example, MODIFY and INSERT).

ADAPD - Application Dependency
Use the ADAPD statement to define a predecessor for an application.

Table 109. Keywords for ADAPD

Keyword Description

PREADID Name of the predecessor application.

176 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

|

||

||

||

Table 109. Keywords for ADAPD (continued)

Keyword Description

PRECSEL Specifies on which basis a matching predecessor is selected:

C Closest preceding. The matching predecessor is the
one with the nearest preceding input arrival time.
This is the default.

S Same scheduled date. The matching predecessor is the
one with the nearest input arrival time within the
same day of the operation (occurrence) under
consideration. A matching predecessor is first
searched before the IA time of the operation. Then, if
not found, it is searched after the IA time of the
operation.

A Within an absolute interval. The matching predecessor
is the one with the closest input arrival time in the
specified interval. The interval boundaries are
specified by a time and a number of days before or
after the IA time of the operation (occurrence). The
interval can be timed entirely before, entirely after, or
across the IA time of the operation (occurrence).

R Within a relative interval. The matching predecessor is
the one with the closest input arrival time in the
specified interval. The interval boundaries are
calculated using an offset expressed in hours and
minutes before or after the IA time of the operation
(occurrence). The interval can be timed entirely before,
entirely after, or across the IA time of the operation
(occurrence).

PREOPNO The operation number of a predecessor operation to this
application. If the predecessor is an application, PREOPNO is 0.

PREWSID The four-character workstation name of a predecessor
operation to this application. If the predecessor is an
application, PREWSID is blank.

FROMDAYS The start of the absolute interval in days. The allowed range is
0-7.

FROMHH The start of the absolute interval in the HH format. The
allowed range is 00-24. To be specified together with FROMMM.
For example, if the absolute interval starts at 10:30 of the day
before the input arrival time of the successor, it is defined by
FROMHH(10) FROMMM(30) FROMDAYS(1) FROMWHEN(B)

FROMHHH The start of the relative interval in hours. The format is HHH
and the allowed range is 0-167. To be specified together with
FROMMM.

FROMMM The minutes fraction of the start of the relative or absolute
interval.

FROMWHEN Specifies if the start of the relative or absolute interval is before
(B) or after (A) the input arrival time of the successor.

For relative intervals only, you can choose to make the interval
start at an indefinite time in the plan (in this case the
mechanism used is similar to that of the closest preceding
predecessor). To do this, do not specify this parameter, nor any
of the other FROM... ones.

Chapter 10. Batch loader commands 177

|

||

||

||
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|
|

||
|

||
|
|

||
|

||
|
|
|
|

||
|
|

||
|

||
|

|
|
|
|
|

Table 109. Keywords for ADAPD (continued)

Keyword Description

TODAYS The end of the absolute interval in days. The allowed range is
0-7.

TOHH The end of the absolute interval in the HH format. The allowed
range is 00-24. To be specified together with TOMM. For example,
if the absolute interval ends at 12:30 two days after the input
arrival time of the successor, it is defined by TOHH(12)
TOMM(30) TODAYS(2) TOWHEN(A)

TOHHH The end of the relative interval in hours. The format is HHH
and the allowed range is 0-167. To be specified together with
TOMM.

TOMM The minutes fraction of the end of the relative or absolute
interval.

TOWHEN Specifies if the end of the relative or absolute interval is before
(B) or after (A) the input arrival time of the successor.

TYPE The interval type:

A Absolute interval. Must be defined by the following
parameters:

FROMWHEN, FROMHH, FROMMM, FROMDAYS,

TOWHEN, TOHH, TOMM, TODAYS.

R Relative interval. Must be defined by the following
parameters:

[FROMWHEN, FROMHHH, FROMMM,]

TOWHEN, TOHHH, TOMM.

DESCR A free-format description of the dependency. It can be up to 50
characters.

PRINT Specifies the Long Term Plan print option:

A Always

C Conditional

ADCIV – External conditional dependency interval
Use the ADCIV statement to define the absolute or relative interval specified with
the A or R value in the ADCNS PRECSEL parameter.

You can set only one ADCIV per ADCNS, but the same ADCIV can be used by more
ADCNS statements if they refer to the same external predecessor application and
operation. The statement must be nested within the ADCNS to which it refers.

Note: The ADCIV statement is available only starting from IBM Workload Scheduler
for z/OS V9.1, or later.

Table 110. Keywords for ADCIV

Keyword Description

ADID The application name of the conditional external predecessor to
which the interval applies.

178 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

||

||
|

||
|
|
|
|

||
|
|

||
|

||
|

||

||
|

|

|

||
|

|

|

||
|

||

||

||
|

|

Table 110. Keywords for ADCIV (continued)

Keyword Description

CONDID The condition ID of the conditional external predecessor to
which the

interval applies.

FROMDAYS The start of the absolute interval in days. The allowed range is
0-7.

FROMHH The start of the absolute interval in the HH format. The allowed
range is 00-24. Goes together with FROMMM. For example, if the
absolute interval starts at 10:30 of the day before the input
arrival time of the successor, it is defined by FROMHH(10)
FROMMM(30) FROMDAYS(1) FROMWHEN(B) .

FROMHHH The start of the relative interval in hours. The format is HHH
and the allowed range is 0-167. To be specified together with
FROMMM.

FROMMM The minutes fraction of the start of the relative or absolute
interval.

FROMWHEN Specifies if the start of the relative or absolute interval is before
(B) or after (A) the input arrival time of the successor.

For relative intervals only, you can choose to make the interval
start at an indefinite time in the plan (in this case the
mechanism used is similar to that of the closest preceding
predecessor). To do this, do not specify this parameter, nor any
of the other FROM... ones.

OPNO The operation number of the conditional external predecessor to
which the interval applies.

TODAYS The end of the absolute interval in days. The allowed range is
0-7.

TOHH The end of the absolute interval in the HH format. The allowed
range is 00-24. To be specified together with TOMM. For example,
if the absolute interval ends at 12:30 two days after the input
arrival time of the successor, it is defined by TOHH(12) TOMM(30)
TODAYS(2) TOWHEN(A)

TOHHH The end of the relative interval in hours. The format is HHH
and the allowed range is 0-167. To be specified together with
TOMM.

TOMM The minutes fraction of the end of the relative or absolute
interval.

TOWHEN Specifies if the end of the relative or absolute interval is before
(B) or after (A) the input arrival time of the successor.

TYPE The interval type:

A Absolute interval. Must be defined by the following
parameters:

FROMWHEN, FROMHH, FROMMM, FROMDAYS,

TOWHEN, TOHH, TOMM, TODAYS.

R Relative interval. Must be defined by the following
parameters:

[FROMWHEN, FROMHHH, FROMMM,]

TOWHEN, TOHHH, TOMM.

Chapter 10. Batch loader commands 179

ADCNC – Condition
Use the ADCNC statement to define a condition for an operation that combines a set
of following conditional dependencies (ADCNS).

Note:

1. Workload Automation Programming Language does not require an equivalent
to the CONDDEPNO keyword, this is calculated automatically.

2. The ADCNC statement is available only starting from IBM Workload Scheduler
for z/OS V8.5, or later.

Table 111. Keywords for ADCNC

Keyword Description

CONDID Condition identified (1 -999).

COUNT Count of conditional dependencies that must be true for
the condition to be met:

0 All conditions must be true (default).

Any number higher than zero
Minimum number of conditional dependencies
that must be true for this condition to be met.

Formerly CONDCOUNT with EQQYLTOP.

DESCR A free format description of the condition (up to 16
characters).

Formerly CONDDESCR with EQQYLTOP.

ADCNS – Conditional dependency
Use the ADCNS statement to define a conditional dependency for an operation. You
must set at least one ADCNS statement for each ADCNC statement, matched by the
CONDID keyword.

Note:

1. Workload Automation Programming Language does not require an equivalent
to the following keywords:
v CONDDEPCONDID is inherited from the preceding ADCNC statement.
v CONDDEPDEPTYPE is determined from the setting of PREADID.

2. The ADCNS statement is available only starting from IBM Workload Scheduler
for z/OS V8.5, or later.

Table 112. Keywords for ADCNS

Keyword Description

CONDID The CONDID keyword should be set to the same value as in
the ADCNC statement to which this belongs.

PREADID If the predecessor operation is in a different application
from the one being built, or is in a different occurrence of
the same application, you must identify the application ID
with this keyword. If you use DBCS characters, you must
enter them as a quoted string started by a shift-out and
ended by a shift-in.

180 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 112. Keywords for ADCNS (continued)

Keyword Description

PRECSEL Specifies on which basis a matching predecessor is selected:

C Closest preceding. The matching predecessor is the
one with the nearest preceding input arrival time.
This is the default.

S Same scheduled date. The matching predecessor is
the one with the nearest input arrival time within
the same day of the operation (occurrence) under
consideration. A matching predecessor is first
searched before the IA time of the operation. Then,
if not found, it is searched after the IA time of the
operation.

A Within an absolute interval. The matching
predecessor is the one with the closest input arrival
time in the specified interval. The interval
boundaries are specified by a time and a number
of days before or after the IA time of the operation
(occurrence). The interval can be timed entirely
before, entirely after, or across the IA time of the
operation (occurrence).

If you select this option, the ADCIV statement must
follow ADCNS with the specification of the interval
boundaries.

R Within a relative interval. The matching
predecessor is the one with the closest input arrival
time in the specified interval. The interval
boundaries are calculated using an offset expressed
in hours and minutes before or after the IA time of
the operation (occurrence). The interval can be
timed entirely before, entirely after, or across the
IA time of the operation (occurrence).

If you select this option, the ADCIV statement must
follow ADCNS with the specification of the interval
boundaries.

Note: The PRECSEL keyword is available only starting from
IBM Workload Scheduler for z/OS V9.1, or later.

PREOPNO Operation number of conditional predecessor.

PROCSTEP Proc Step name for a step dependency.

STEPNAME Job Step name for a step dependency.

CHECK What element to check:

ST Check the status

RC Check the return code

Chapter 10. Batch loader commands 181

Table 112. Keywords for ADCNS (continued)

Keyword Description

LOGIC What logic to use when comparing values:

EQ Equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

NE Not equal to

RG Range

STATUS The value of operation status to use in the comparison.

RC1 The return code to use in the comparison. When LOGIC(RG)
is used, RC1 is the lower limit of the range.

RC2 When LOGIC(RG) is used, RC2 is the upper limit of the
range.

ADDEP - Dependency
Use the ADDEP statement to define a predecessor for an operation.

Table 113. Keywords for ADDEP

Keyword Description

PREADID If the predecessor operation is in a different application from
the one being built, or is in a different occurrence of the same
application, you must identify the application ID with the
PREADID keyword.

182 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 113. Keywords for ADDEP (continued)

Keyword Description

PRECSEL Specifies on which basis a matching predecessor is selected:

C Closest preceding. The matching predecessor is the
one with the nearest preceding input arrival time.
This is the default.

S Same scheduled date. The matching predecessor is the
one with the nearest input arrival time within the
same day of the operation (occurrence) under
consideration. A matching predecessor is first
searched before the IA time of the operation. Then, if
not found, it is searched after the IA time of the
operation.

A Within an absolute interval. The matching predecessor
is the one with the closest input arrival time in the
specified interval. The interval boundaries are
specified by a time and a number of days before or
after the IA time of the operation (occurrence). The
interval can be timed entirely before, entirely after, or
across the IA time of the operation (occurrence).

If you select this option, the ADXIV statement must
follow ADDEP with the specification of the interval
boundaries.

R Within a relative interval. The matching predecessor is
the one with the closest input arrival time in the
specified interval. The interval boundaries are
calculated using an offset expressed in hours and
minutes before or after the IA time of the operation
(occurrence). The interval can be timed entirely before,
entirely after, or across the IA time of the operation
(occurrence).

If you select this option, the ADXIV statement must
follow ADDEP with the specification of the interval
boundaries.

Note: The PRECSEL keyword is available only starting from
IBM Workload Scheduler for z/OS V9.1, or later.

Chapter 10. Batch loader commands 183

Table 113. Keywords for ADDEP (continued)

Keyword Description

PREMAND Specifies if it is mandatory that the dependency be resolved
before the operation can start:

N The dependency is not mandatory. This means that, if
the predecessor is not found, the dependency is
considered resolved unless failure is required (within
the dynamic addition of a dependency in the Modify
Current Plan panel). This is the default value.

C The dependency is mandatory at ad hoc add level.
The predecessor is required, but might not be in the
plan at the time the occurrence that includes the
successor is added and might be made available later
via ETT, PIF, or manual intervention.

This means that if the predecessor is not found when
an occurrence is added to the current plan, a pending
mandatory predecessor entry is created and the
occurrence is added in the waiting status. The
pending mandatory predecessor entry is created also
when LTP and DP batch start running and the
predecessor is not found.

P The dependency is mandatory at plan level. The
predecessor is expected to exist at the time the
occurrence that includes the successor is dynamically
added into the current plan (via the MCP panel). If it
does not, the addition of the occurrence fails. Also
LTP and DP batch will fail if the predecessor is not
found when they run.

Note: The PREMAND keyword is available only starting from
IBM Workload Scheduler for z/OS V9.1, or later.

PREOPNO The operation number of a predecessor operation to this
operation.

PREWSID The four-character workstation name of a predecessor
operation to this operation.

PREJOBN The job name of a predecessor operation to this operation.

TRANSPT When IBM Workload Scheduler for z/OS creates the plan, it
allows these minutes between the completion of the
predecessor and the start of the successor operation that is
being defined. You must specify an integer. The default is the
time specified for the workstation.

DESCR A free-format description of the dependency. It can be up to 50
characters.

IBM Workload Scheduler for z/OS holds descriptions only for
external dependencies. This field cannot be used to hold a
description for an internal dependency.

PRINT Specifies the Long Term Plan print option:

A Always

C Conditional

ADEXT – Extended information (ADOPEXT segment)
Use the ADOPEXT statement to define extended information for an operation.

184 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Note: The ADEXT statement is available only starting from IBM Workload
Scheduler for z/OS V8.2, or later.

Table 114. Keywords for ADEXT

Keyword Description

EXTNAME A free-format name for the operation. It can include blanks
and special characters for a maximum of 54 characters.

EXTSE The name of the scheduling environment for this operation.
Special characters are allowed.

ADOP - Operation
Use the ADOP statement to define an operation.

Table 115. Keywords for ADOP

Keyword Description

AUTOPRED Defines an automatic predecessor for operations following this
one that do not have an explicit dependency set:

FIRST Make dependencies to the default first operation.

LAST Make dependencies to the default last operation.

PREV To make the operation automatically dependent on the
one preceding it in the batch loader statements.

nnn Identifies the operation number to which the
dependency can be made.

OFF Ends the most recent setting of AUTOPRED and returns to
any previous value, if set within the application.

A second argument of ALL (for example, AUTOPRED(FIRST,ALL))
causes automatic dependencies to be made for all following
operations, including ones with explicit dependencies.
Note: AUTOPRED is not allowed with OPTIONS DBMODE(COPY) or
OPTIONS DBMODE(UPDATE).

AUTOSUCC Defines an automatic successor for operations following this one
that do not have an explicit dependency set:

FIRST Make dependencies to the default first operation.

LAST Make dependencies to the default last operation.

nnn Identifies the operation number to which the
dependency can be made.

OFF Ends the most recent setting of AUTOPRED and returns to
any previous value, if set within the application.

A second argument of ALL (for example, AUTOPRED(FIRST,ALL))
causes automatic dependencies to be made for all following
operations, including ones with explicit dependencies.
Note:

1. The ADOP statement for the operation named by AUTOSUCC
must be included in the Batch Loader statements after any
operations that you want it to be made an automatic
successor to.

2. AUTOPRED is not allowed with OPTIONS DBMODE(COPY) or
OPTIONS DBMODE(UPDATE).

Chapter 10. Batch loader commands 185

Table 115. Keywords for ADOP (continued)

Keyword Description

PREOPNO The operation number of an internal predecessor operation to
this operation.

PREJOBN The job name of an internal predecessor operation to this
operation.

PREWSID The workstation name of an internal predecessor operation to
this operation.

OPNO The operation number for this operation, in the range 1 to 255.
Each operation within an application must have a unique
number.

WSID Specified the workstation on which the operation will run.

DURATION The estimated duration of this operation in minutes or seconds
according to the DURUNIT value in OPTIONS. It must be an integer
greater than 0. The maximum value is 99 hours 59 minutes 00
seconds. If you specify 99 hours 59 minutes 01 seconds, you do
not receive an alert message if the actual duration is greater
than the planned duration.

CLEANUP The cleanup type for this operation:

A Automatic. When the operation is ready to be
submitted and the controller selects it for submissions,
the controller automatically finds the cleanup actions to
be taken and also inserts them as the first step in the
JCL of the restarted job. Whenever the operation is
started from the panels, the cleanup actions are shown
to the user for confirmation, only if the AUTOMATIC
CHECK OPC panel option is set to YES.

I Immediate. data set cleanup is immediately performed
if the operation ends in error. The operation is treated
as if it had the automatic option when it is rerun.

M Manual. data set cleanup actions are deferred for the
operation. They are performed when initiated manually
from the panel.

N None. No data set cleanup actions are performed.

Formerly ADOPCATM with EQQYLTOP.

EXPJCL Specifies if the scheduler uses the JCL extracted from the JES
JCL sysout:

Y Uses the fully expanded JCL.

N Uses the JCL contained in the libraries of the scheduler.

Formerly ADOPEXPJCL with EQQYLTOP.

186 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 115. Keywords for ADOP (continued)

Keyword Description

CRITICAL Specifies if the operation is to be considered critical:

W The operation is considered eligible for WLM
assistance, if late.

P The operation is considered the target job of a critical
path and eligible, with all the operations belonging to
that critical path, for WLM assistance.

N The operation is not to be considered critical. This is
the default. For W and P, the scheduler automatically
sends a request to WLM to promote the job or started
task to the specified WLM service class, whenever the
conditions of the specified assistance policy are met.

Formerly ADOPJOBCRT with EQQYLTOP.

MH Specifies how to set the value for the MH (Manually Hold)
option of the operation when the operation is added to the AD
database:

N Default. The MH option for the operation is set to N.

Y The MH option for the operation is set to Y.

NOP Specifies how to set the value for the NOP option of the
operation when the operation is added to the AD database:

N Default. The NOP option for the operation is set to N.

Y The NOP option for the operation is set to Y.

POLICY Specifies which policy is to be applied for WLM assistance, if
the job is defined as critical:

blank Default. WLM uses the policy specified in OPCOPTS. If
no WLM policy is specified and the operation belongs
to a critical path, the policy of the critical path target
job is applied.

L Long duration. The job is assisted if it runs beyond its
estimated duration time.

D Deadline. The job is assisted if it has not finished when
its deadline time is reached.

S Latest start time. The job is assisted if it is submitted
after the latest start time.

C Conditional. An algorithm calculates whether to apply
the Deadline or the Latest start time policy.

Formerly ADOPJOBPOL with EQQYLTOP.

USRSYS Specifies if user sysout support is needed. If you specify Y, the
data store logs user sysout.

Formerly ADOPUSRSYS with EQQYLTOP.

WLMCLASS The name of the WLM service class to which late critical jobs
are promoted. It can be an existing service class or a new
service class created for this purpose. If you do not set this
keyword and the operation belongs to a critical path, the WLM
service class of the critical path target job is used.

Formerly ADOPWLMCLASS with EQQYLTOP.

Chapter 10. Batch loader commands 187

||
|
|

||

||

||
|

||

||

Table 115. Keywords for ADOP (continued)

Keyword Description

WTO If you specify Y, a WTO message is issued if the operation
passes its deadline and is in started status.

Formerly ADOPWTO with EQQYLTOP.

AEC For operations on automatic reporting workstations, IBM
Workload Scheduler for z/OS does some processing when a job
completes to determine whether the operation should be given
error status or completed status. If you specify AEC(N), IBM
Workload Scheduler for z/OS does not check for errors and
assigns to the operation the Completed status, regardless of any
error reported by job tracking.

AJR Jobs can be placed in HOLD status on the job queue by the
event writer (an event writer option). Such jobs can either be
released when all IBM Workload Scheduler for z/OS scheduling
conditions are met, or be released immediately. AJR(Y) means
that IBM Workload Scheduler for z/OS should control the
scheduling. AJR(N) means that IBM Workload Scheduler for
z/OS releases the job immediately. The automatic job release
option is applicable only when the HOLDJOB keyword of the
EWTROPTS is set to USER or YES.

AJSUB Automatic job submission.

CLATE Specify Y to cancel this operation if it is time-dependent and
late.
Note: IBM Workload Scheduler for z/OS never cancels a job
that has already started running.

CSCRIPT Use this keyword to set the centralized script flag (Y or N).

DESCR A free-format description of the operation. It can be up to 24
characters.

DLDAY Specifies the number of days, relative to the start of the
application, when this operation must be completed. This must
be an integer. 0 means that the deadline is on the same day as
the occurrence input arrival.

DLTIME Required if you have specified DLDAY. DLTIME specifies the time,
on the day specified by the DLDAY keyword, by which this
operation should be completed. This must be in the format
hhmm.

FORM If this operation is a printing operation, the printer form
number that will appear on the daily plan and on ready lists.
For printer workstations with automatic reporting, the printer
class and form number let IBM Workload Scheduler for z/OS
identify the different print operations belonging to a specific job.
This can be up to 8 characters.

Note: Operations not on Print workstations do not use this field,
but it can still be set and read.

HIGHRC If this operation is a z/OS job, the highest return code that
should not be considered an error. If the job ends with this
return code or less, the operation will be treated by IBM
Workload Scheduler for z/OS as completed. This must be an
integer less than 4096. If you leave out the parameter, IBM
Workload Scheduler for z/OS takes the value you specified in
the JTOPTS statement.

188 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 115. Keywords for ADOP (continued)

Keyword Description

JOBCLASS A single character that appears on workstation ready lists for
information only. This must be the z/OS job class from the JCL.

JOBN The job name for this operation, if applicable.

LIMFDBK The default is the value you set in the job-tracking initialization
statement JTOPTS. The feedback limit must be an integer in the
range 100-999.

MONITOR If you specify Y, the operation is monitored by an external
monitor, for example by Tivoli Business Systems Manager.

PRTCLASS If this operation is a printing operation, the printer SYSOUT
class that appears on the daily plan and on ready lists. For
printer workstations with automatic reporting, the printer class
and form number let IBM Workload Scheduler for z/OS identify
the different print operations belonging to a specific job. This is
a single character, and must be specified for print operations.

PSNUM The number of workstation parallel servers required by this
operation. This must be an integer.

R1NUM The amount of workstation type 1 resources required by this
operation. This must be an integer.

R2NUM The amount of workstation type 2 resources required by this
operation. This must be an integer.

REROUTABLE This keyword specifies the reroute option for the operation. The
default is that the operation is reroutable if the WSFAILURE
initialization statement RESTART keyword is set to REROUTE.

Y The operation is always reroutable.

N The operation is never reroutable.

RESTARTABLE This keyword specifies the restart option for the operation. The
default is that the operation is restartable if the WSFAILURE
initialization statement RESTART keyword is set to RESTART.

Y The operation is always restartable.

N The operation is never restartable.

SMOOTHING The default is the value you set in the job-tracking initialization
statement JTOPTS. The smoothing factor must be an integer in
the range 0-999.

STARTDAY Specifies the input arrival day of this operation, as a number of
days offset from the occurrence input arrival day (0 means the
same day). This must be an integer. Specifying a separate input
arrival day and time for an operation can be useful if the
operation is time-dependent and you want to ensure that it will
not start before the specified time.

STARTTIME Required if you have specified STARTDAY. It specifies the input
arrival time of this operation, on the day specified with the
STARTDAY keyword. This must be in the format hhmm. If you
specify STARTTIME but not STARTDAY, STARTDAY defaults to 0
(zero), which is the occurrence input arrival day.

TIME If you specify Y, the job is made time-dependent.

USESAI Determines whether the system automation information for the
operation is used in the current plan. This keyword must be set
to Y if the workstation has the system AUTOMATION option set to
Y.

Chapter 10. Batch loader commands 189

Table 115. Keywords for ADOP (continued)

Keyword Description

USEXTNAME Determines whether or not the operation extended name is used
in the current plan.

USEXTSE Determines if the Scheduling Environment name of the
operation is used in the current plan:

Y Scheduling Environment name specified and stored in
CP by the DP or dynamic addition process.

N Scheduling Environment name not specified or
specified in AD and not stored in CP by the DP or
dynamic addition process.

ADRE – Remote job information
Use the ADRE statement to define remote job information for an operation.

Note: The ADRE statement is available only starting from IBM Workload Scheduler
for z/OS V8.6, or later.

Table 116. Keywords for ADRE

Keyword Description

RECOMPL Specifies if the shadow job status must be automatically set to
complete, if the remote job does not exist:

Y Sets the operation status to complete.

N Sets the operation status to error.

REJOBNAME Specifies the remote job name. It can be up to 40 characters
and must be specified between single quotation marks. This
parameter is required if the remote job runs on an IBM
Workload Scheduler for z/OS remote engine.

REJSNAME Specifies the name of the remote application (for IBM
Workload Scheduler for z/OS) or of the remote job stream (for
IBM Workload Scheduler for z/OS). It can be up to 16
characters and must be specified between single quotation
marks.

REJSWS Specifies the name of the remote job stream workstation. It
can be up to 16 characters and must be specified between
single quotation marks. This parameter is required if the
remote job runs on an IBM Workload Scheduler for z/OS
remote engine.

REOPNO Specifies the remote operation number. It must be a number in
the range 1-255. This parameter is required if the remote job
runs on an IBM Workload Scheduler for z/OS remote engine.

ADRULE - Rule
The ADRULE statement defines a run cycle rule.

Note: Individual keywords on ADRULE statements cannot be specified individually
when using OPTIONS DBMODE(UPDATE), you must specify the entire rule. Set ONLY or
EVERY as the first keyword.

190 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 117. Keywords for ADRULE

Keyword Description

EVERY

ONLY

Specifies the number (for ONLY) of the day or days to be
selected. For EVERY, this specifies the interval of the series. The
number is in the range 1 to 999.

Use EVERY to specify a series of days. For example, EVERY(2)
DAY(DAY) FEBRUARY specifies days 1, 3, 5, 7 etc. in February. The
origin of the series is 1 unless you also specify ORIGINSHIFT.

Use ONLY to specify the days precisely. For example, ONLY(2)
DAY(DAY) FEBRUARY specifies only February 2.

LAST Specifies the number (for ONLY) of the day or days to be
selected. For LAST(3), read “third last,” so ONLY LAST(3)
DAY(DAY) JANUARY specifies JANUARY 29.

For EVERY, this specifies the interval of the series, starting from
the end, so EVERY LAST(3) DAY(DAY) JANUARY specifies January
31, 28, 25 etc. The origin of the series is the last day unless you
also specify ORIGINSHIFT. The number is in the range 1 to 999.

DAY Specifies the day or days. You can abbreviate the names of the
days to MON TUE WED THU FRI SAT SUN WORK and FREE.

WEEK Specifies the week number or numbers. The number might
range from 1 to 53. Week 1 is defined as the first week with at
least 4 days of the new year. If you omit the number, the rule
selects every week.

MONTH Specifies the month or months. If you omit the name of the
month, the rule selects every month.
Note: You can abbreviate the names of the months to the first
three characters.
v JANUARY
v FEBRUARY
v MARCH
v APRIL
v MAY
v JUNE
v JULY
v AUGUST
v SEPTEMBER
v OCTOBER
v NOVEMBER
v DECEMBER

YEAR Used to specify that the cycle is a year, as in EVERY(2) DAY(DAY)
YEAR, which gives January 1, January 3, January 5 etc. for each
year. ONLY LAST DAY(FRIDAY) YEAR gives the last Friday in each
year.

PERIOD The name of a user-defined period, which must be in the period
database. If you specify a period name such as JULY, which is
the same name as a predefined cycle, IBM Workload Scheduler
for z/OS looks for a user-defined period JULY, and gives an
error if one does not exist.

Chapter 10. Batch loader commands 191

Table 117. Keywords for ADRULE (continued)

Keyword Description

ORIGINSHIFT Specifies the origin shift in days. The number is in the range 1
to 999. Use this only with the EVERY keyword, when the origin
is not the first (or, with LAST, the last) day of the cycle or
period. If you specify EVERY(4) DAY(DAY) MONTH
ORIGINSHIFT(1), for example, the rule selects a series starting at
the second day of each month, with an interval of 4 days:
January 2, 6, 10 etc., then February 2, 6, 10 etc., for each month
in the year.

ADRUN – Run cycle
Use the ADRUN statement to define a run cycle.

Table 118. Keywords for ADRUN

Keyword Description

SEQ When using OPTIONS DBMODE(UPDATE), the SEQ keyword can be
used to identify a specific run cycle. The value must be the
numeric sequence number of the run cycle.
Note: This must be the sequence as shown by Workload
Automation Programming Language when the application is
output. Do not rely on the sequence as displayed through the
dialogs, because you may have sorted the display.

NAME For rule-based run cycles, this is the name of the rule (up to 8
characters) and unique for this application. Specify NAME, and
type R or E, if you are creating a rule-based run cycle.

PERIOD For offset-based run cycles, this is the name of a cyclic or
noncyclic period defined in the calendar database, or a run
cycle group. Specify PERIOD, and type N or X, if you are creating
an offset-based run cycle.

JCLVTAB Specifies the JCL variable table to be used for the occurrences
generated by this run cycle. For offset-based run cycles, this
JCL variable table overrides the one specified for the period.
For rule-based run cycles, specify the JCL variable table here,
because IBM Workload Scheduler for z/OS ignores any JCL
variable table associated with the period. The first character
must be alphabetic, up to 16 characters.

Formerly ADRJTAB with EQQYLTOP.

DESCR A free-format description of the run cycle, up to 50 characters

DLDAY Specifies the number of days from the input arrival day that
the application should be completed in: 0 means that the
deadline is on the same day as the input arrival day. This must
be an integer.

DLTIME Specifies the time on the deadline day that the application
should be completed by, in the format hhmm.

EIADAYS Depending on the TYPE keyword, this keyword specifies one or
more days relative to the start of the period when the
application should be scheduled (TYPE(N)) or when it should
not be scheduled (TYPE(X)). The numbers count from the end of
the period; 1 is the last day.

192 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 118. Keywords for ADRUN (continued)

Keyword Description

IADAYS Depending on the TYPE keyword, this keyword specifies one or
more days relative to the start of the period when the
application should be scheduled (TYPE(N)) or when it should
not be scheduled (TYPE(X)). The numbers count from the start
of the period; 1 is the first day.

IATIME Specifies the time, in the format hhmm, that the application is to
arrive at the first workstation.

RPTEND Specifies the repeat end time for the EVERY options, in the
format hhmm. It must be a time between the IA time of the run
cycle and the calendar work day end time of the application.

RPTEVRY Specifies the repeating frequency for the EVERY options, in the
format hhmm. It specifies that the application has an occurrence
in the long-term plan every hhmm, starting from the IA time to
the repeat end time (RPTENDT keyword). If this keyword is not
set, only the occurrence related to the IA time is added to the
long-term plan.

RULE Defines which free-day rule is in effect:

E Count only work days when using the rule or offset.
That is, free days are excluded. This option ensures
that the scheduled day will always be a work day.
This is the default for offset-based run cycles.

1 Count work days and free days when using the rule
or offset. If this gives a free day, schedule the
application on the closest work day before the free day.

2 Count work days and free days when using the rule
or offset. If this gives a free day, schedule the
application on the closest work day after the free day.

3 Count work days and free days when using the rule
or offset. If this gives a free day, schedule the
application on the free day. This is the default for
rule-based run cycles.

4 Count work days and free days when using the rule
or offset. If this gives a free day, do not schedule the
application at all.

SHIFT The number of days to shift the rule dates. This field is
optional. It provides the means to define a run cycle relative to
another, where the run cycle without the shifting offset is used
to schedule an application in relation to which, using the same
rule with a negative or positive shift of days, another
application is scheduled.

By default, the value is considered positive, and will make the
new date be after the original run cycle group. Prefix the
number with the minus sign (-) to shift the date before the run
cycle group.
Note:

1. The SHSIGN keyword is supported, but not necessary for
Workload Automation Programming Language, because +
and – can be used within SHIFT.

2. The SHIFT keyword is available only starting from IBM
Workload Scheduler for z/OS V9.1, or later.

Chapter 10. Batch loader commands 193

Table 118. Keywords for ADRUN (continued)

Keyword Description

SHTYPE Defines the type of days that are to be counted for the shift. W
implies work days, while D implies any day in the calendar.
This keyword is required if you used SHIFT.
Note: The SHTYPE keyword is available only starting from IBM
Workload Scheduler for z/OS V9.1, or later.

TYPE Specify R (Regular) or E (Exclusion) without IADAYS or EIADAYS
when you create a rule-based run cycle. You must specify the
NAME keyword, and an ADRULE statement must follow this ADRUN
statement. R means that the ADRULE statement specifies days
when the application should be scheduled. E means that the
ADRULE statement specifies days when the application should
not be scheduled.

Specify N (Normal) or X (Negative) together with IADAYS or
EIADAYS when you create an offset-based run cycle. You must
specify the PERIOD keyword. N means that the IADAYS and
EIADAYS parameters define days when the application should
be scheduled. X means that the IADAYS and EIADAYS parameters
define days when the application should not be scheduled.

VALFROM The start date of validity of this run cycle, in the format
yymmdd. See the note described for VALTO.

VALTO The end date of validity of this run cycle, in the format yymmdd.
Note: IBM Workload Scheduler for z/OS interprets the yy part
in the VALTO and VALFROM keywords as follows:

YY Year
72 - 99 1972 - 1999
00 - 71 2000 – 2071

Note: VALTO specifies the last day when the run cycle is valid.
This is not the same as displayed in the ISPF panels, which
uses “Out of effect” date that shows the first date when the
run cycle is no longer valid. The “Out of effect” date is the day
after the VALTO date, with the exception of the use of HIGHDATE
(711231) as VALTO, which will show the same in the ISPF
panels.

ADSAI – System Automation information (ADOPSAI segment)
Use the ADOPSAI statement to define System Automation Information for an
operation.

Note: The ADSAI statement is available only starting from IBM Workload
Scheduler for z/OS V8.3, or later.

194 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 119. Keywords for ADSAI

Keyword o LouDescription

CT1

CT2

CT3

CT4

Free-format name for the command text of the operation. It
can include blanks and special characters for a maximum
of 255 characters.

CT1 to CT4 specify the four lines of Command Text in
accordance with how the field is broken up within the ISPF
interface. CT1 to CT3 can be up to 64 characters in length,
CT4 can be up to 63 characters in length.

Formerly COMTEXT with EQQYLTOP.

AUTOFUNC Alphanumeric name for the automated function field of the
operation. It can be up to 8 characters.

SECELEM Free-format name for the security element of the operation.
It can be up to 8 characters and include blanks and special
characters.

CI The completion information for the operation. It can be up
to 64 characters. This parameter is positional. You can
specify the following information, in the following order,
separated by commas:

1. Maximum wait time, in the format hh:mm:ss

2. Maximum return code accepted as successful running

3. Name of an optional user-supplied completion checking
routine

To delete this information, set CI to blank.

Formerly COMPINFO with EQQYLTOP.

ADSR – Special Resource reference
Use the ADSR statement to define a special resource requirement for an operation.

Table 120. Keywords for ADSR

Keyword Description

RESOURCE The name of the resource required by this operation. You can
specify up to 44 characters.

USAGE Defines whether the resource should be allocated as shared
(S) or exclusive (X).

KEEPONERR Defines whether the resource should be kept if the operation
ends in error. If you do not specify this keyword, the default
action is taken from the resource definition or RESOPTS
statement.

QUANTITY The number of this resource that the operation needs, in the
range 1 to 999999. If you do not specify this keyword, the
operation takes all the resource exclusively, if USAGE is X, or
prevents the exclusive use of any of this resource by any
other operation, if USAGE is S.

ONCOMPLETE Defines the value to which the global availability of the
resource is reset at operation completion. If you do not
specify this keyword, the default action is taken from the
resource definition or RESOPTS statement.

Chapter 10. Batch loader commands 195

ADSTART – Application common details
Use the ADSTART statement to define the common part of an Application
Description.

Table 121. ADSTART keywords

Keyword Description

ADID Specifies the application name.

OWNER Specifies the owner of the application, up to 16 characters.

STATUS Specifies the status of the application:

A Active

P Pending
Note: This keyword is enabled by SPE(PEND) for IBM Workload
Scheduler for z/OS V8.2 when SYNTAX(LEGACY) is in use.

Formerly ADSTAT with EQQYLTOP.

VALFROM Specifies the start date of the validity period of the AD. Only the
start date can be specified. The end of the validity period is set so
that the time up to 31 December 2071 is covered, taking existing
application descriptions into account.

IBM Workload Scheduler for z/OSinterprets yy as follows:

YY Year
72 - 99 1972 - 1999
00 - 71 2000 – 2071

For DBMODE(ADD), the VALFROM keyword sets the valid from date of
the application. For all other DBMODE values, VALFROM identifies the
application to REPLACE, UPDATE, or COPY. The nearest match with the
same value or earlier will be selected. To set a new valid from date
for an existing application, use NEW_VALFROM.

Formerly ADVALFROM with EQQYLTOP.

GROUPDEF Specifies the name of the group definition used by this application
to generate run cycle information.

This keyword is valid only for an ADTYPE of A and should not be
specified with CALENDAR.

Formerly GROUPID with EQQYLTOP.

TYPE Specifies the type of object:

A Application definition

G Group definition

Formerly ADTYPE with EQQYLTOP.

CALENDAR Specifies the name of the calendar to be used when run days are
calculated for this application or group definition. Do not specify
this keyword for applications that are members of a group.

DESCR Specifies the description of the Application, up to 24 characters.

196 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 121. ADSTART keywords (continued)

Keyword Description

DLIMFDBK The deadline limit for feedback. This keyword determines if the
estimated deadline in the application description run cycle or
operation is updated when an occurrence of the application
reaches the complete status. The DLIMFDBK keyword value you set
in this keyword is used only if no value is set in the application
description.

Feedback values are in the range 100 through 999, or 0 if the
deadline must be always updated, regardless of the estimated and
actual values.

The feedback limits for ADL are calculated as follows:

Lower limit = ODL * 100/DLF

Upper limit = ODL * DLF/100

Where:

ADL The actual deadline, considered as the elapsed minutes
between the IA and the completion time of the occurrence
or operation.

ODL The old deadline estimated for the run cycle or operation
(considered as offset in minutes from the IA) currently
stored in the application description database.

DLF The deadline limit for feedback.

When the deadline feedback limit is set to 100, no new estimated
deadline is stored in the application description database. If the
actual deadline lies within the feedback limits, a smoothing factor
is applied before the application description is updated.

If the deadline feedback limit is set to 0, the application
description database is always updated, unless:

v The same limit is also specified in the application.

v The smoothing factor does not allow the change.

If the completion time occurs before the IA time, the deadline is
not updated and a missed feedback record is generated.

When the occurrence is generated, an identifier of the run cycle
that generates the occurrence is stored in the occurrence record.
This identifier is used to determine which run cycle must be
updated. If the application description or the occurrence input
arrival was modified, the run cycle might no longer be matchable.
In this case, the deadline is not updated and a missed feedback
record is generated.

Chapter 10. Batch loader commands 197

Table 121. ADSTART keywords (continued)

Keyword Description

DSMOOTHING The smoothing factor. It determines how much the actual deadline
influences the new deadline estimated for a run cycle or operation
in the application description database. The smoothing factor is
applied only if the actual deadline lies within the deadline
feedback limits. The DSMOOTHING keyword value is used only
if you did not set a smoothing factor in the application
description.

The smoothing factor is in the range 0 through 999. The value 0
means that the deadline is not updated, the value 100 means that
the actual deadline replaces the existing estimated deadline.

The new deadline is calculated as follows:

NDL = ODL + ((ADL - ODL) * DSF/100)

Where:

NDL The new deadline estimated for the run cycle or operation
(considered as offset in minutes from the IA) to be stored
in the application description database.

ODL The old deadline estimated for the run cycle or operation
(considered as offset in minutes from the IA) currently
stored in the application description database.

ADL The actual deadline, considered as the elapsed minutes
between the IA and the completion time of the occurrence
or operation.

DSF The smoothing factor.

AUTHGRP Specifies the name of the application authority group to be used
for additional authority checking, up to 8 characters.

Formerly GROUP with EQQYLTOP.

ODESCR Description of the application owner, up to 24 characters.

PRIORITY The scheduling priority of the application. Must be a single digit
in the range 1-9. This keyword is valid only for an ADTYPE of A.

When using ACTION(SUBMIT), the following additional keywords are available:

Table 122. Additional ADSTART keywords when using ACTION(SUBMIT)

Keyword Description

IA Input Arrival in the format YYMMDDHHMM.

DEADLINE Deadline in the format YYMMDDHHMM.

JCLVTAB Name of a JCL Variable Table to attach to this occurrence.

SUFFIX Allows an IBM Workload Scheduler for z/OS variable to be
appended to the Application Name. For more details, see
“Suffixing” on page 171.
Note: If you useSUFFIX unique occurrences could be created in the
plan; but if another application with the same name exists, this is
never run and the JCL for these occurrences remains in the JS file
indefinitely. Consider using the IBM Workload Scheduler for z/OS
sample EQQPIFJX to maintain the JCL repository

198 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

ADUSF – User Field (ADUSRF segment)
Use the ADUSF statement to define a user field for an operation.

Note: The ADUSF statement is available only starting from IBM Workload Scheduler
for z/OS V8.5.1 SPE, or later.

Table 123. Keywords for ADUSF

Keyword Description

UFNAME User Field name, up to 16 characters long.

UFVALUE User Field value, up to 54 characters long.

ADVDD – Variable durations and deadlines
Use the ADVDD statement to define variable durations and deadlines for an
operation.

Note: The ADVDD statement is available only starting from IBM Workload Scheduler
for z/OS V9.3, or later.

Table 124. Keywords for ADVDD

Keyword Description

CRIT Specifies a variable job critical indicator to be associated
with a variable run cycle:

N Not eligible for WLM assistance.

P Critical Path target.

Y Eligible for WLM assistance.

DLDAY Relative deadline day (00-99).

DLTIME Deadline time (HHMM).

DURATION Estimated duration for this run (in seconds).

MH Specifies a variable MH (Manually Hold) option to be
associated with a variable run cycle:

Y The MH option is set to Y in the AD database
that is associated with the related variable
duration and deadline run cycle.

N The MH option is set to N in the AD database
that is associated with the related variable
duration and deadline run cycle.

NOP Specifies a variable NOP option to be associated with a
variable run cycle:

Y The NOP option is set to Y in the AD database
that is associated with the related variable
duration and deadline run cycle.

N The NOP option is set to N in the AD database
that is associated with the related variable
duration and deadline run cycle.

RCGROUP Run cycle or run cycle group name to which you
associate the variable duration and deadline.

Chapter 10. Batch loader commands 199

||
|

||

||

||

||
|

||
|
|

||
|
|

||
|

||
|
|

||
|
|

ADXIV – External dependency interval
Use the ADXIV statement to define the absolute or relative interval specified with
the A or R value in the ADDEP PRECSEL parameter.

You can use only one ADXIV for each ADDEP statement. The statement must be
nested within the ADDEP to which it refers.

Note: The ADXIV statement is available only starting from IBM Workload Scheduler
for z/OS V9.1, or later.

Table 125. Keywords for ADXIV

Keyword Description

ADID The application name of the external predecessor to
which the interval applies.

FROMDAYS The start of the absolute interval in days. The allowed
range is 0-7.

FROMHH The start of the absolute interval in the HH format. The
allowed range is 00-24. To be specified together with
FROMMM. For example, if the absolute interval starts at
10:30 of the day before the input arrival time of the
successor, it is defined by FROMHH(10) FROMMM(30)
FROMDAYS(1) FROMWHEN(B)

FROMHHH The start of the relative interval in hours. The format is
HHH and the allowed range is 0-167. To be specified
together with FROMMM.

FROMMM The minutes fraction of the start of the relative or
absolute interval.

FROMWHEN Specifies if the start of the relative or absolute interval is
before (B) or after (A) the input arrival time of the
successor.

For relative intervals only, you can choose to make the
interval start at an indefinite time in the plan (in this
case the mechanism used is similar to that of the closest
preceding predecessor). To do this, do not specify this
parameter, nor any of the other FROM... ones.

OPNO The operation number of the external predecessor to
which the interval applies.

TODAYS The end of the absolute interval in days. The allowed
range is 0-7.

TOHH The end of the absolute interval in the HH format. The
allowed range is 00-24. To be specified together with
TOMM. For example, if the absolute interval ends at 12:30
two days after the input arrival time of the successor, it
is defined by TOHH(12) TOMM(30) TODAYS(2) TOWHEN(A)

TOHHH The end of the relative interval in hours. The format is
HHH and the allowed range is 0-167. To be specified
together with TOMM.

TOMM The minutes fraction of the end of the relative or
absolute interval.

TOWHEN Specifies if the end of the relative or absolute interval is
before (B) or after (A) the input arrival time of the
successor.

200 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 125. Keywords for ADXIV (continued)

Keyword Description

TYPE The interval type:

A Absolute interval. Must be defined by the
following parameters:

FROMWHEN, FROMHH, FROMMM, FROMDAYS,

TOWHEN, TOHH, TOMM, TODAYS.

R Relative interval. Must be defined by the
following parameters:

[FROMWHEN, FROMHHH, FROMMM,]

TOWHEN, TOHHH, TOMM.

WSID The name of the workstation running the external
predecessor to which the interval applies.

AWSCL – All Workstations Closed record
The AWSCL record is a single segment record with the following structure.

There is one AWSCL record for every day that all workstations are to be closed.

AWCSTART – All workstations closed
Use the AWCSTART statement to define an entire All Workstations Closed record. A
statement begins with AWCSTART and can be followed by any of the following
additional arguments.

Table 126. Keywords for AWCSTART

Keyword Description

DATE Specifies a date, in the YYMMDD format, when all
workstations are closed.

DESCR Specifies text of up to 30 characters that describes why all
workstations are closed.

FROM Specifies the start of the period when the workstations are
closed, in the HHMM format.

TO Specifies the end of the period when the workstations are
closed, in the HHMM format.

CL – Calendar record
The CL record is a multi segment record, with the following structure.
CLCOM -+- Common segment (1 per CL)

|
+= CLSD = A specific date (many per CL)
|
+= CLWD = A day of the week (up to 7 per CL)

Note: Some segments have Batch Loader statements with slightly different names:
v CLCOM has a Batch Loader statement of CLSTART
v CLSD has a Batch Loader statement of CLDATE
v CLWD has a Batch Loader statement of CLDAY

Chapter 10. Batch loader commands 201

CLSTART – Calendar common details (CLCOM segment)
Use the CLSTART statement to define the common part of a Calendar.

Table 127. Keywords for CLSTART

Keyword Description

DROP Specifies a date in the format YYMMDD, or + or – a number
of days, which ensures that any calendar date preceding th
date specified is dropped from the Calendar.

For example, to drop any dates over a year old issue the
following command:

OPTIONS DBMODE(UPDATE)
CLSTART CALENDAR(BATCHCAL) DROP(-365)

Note: Using DROP when you have defined cyclic periods of
type W (count only working days), results in interval dates
shifting if you drop the dates that are after the period origin
date.

CALENDAR Specifies the name of the Calendar.

DESCR Specifies the description of the Calendar, up to 30 characters.

SHIFT Specifies a value, in the HHMM format, to define the end of
a work day that comes immediately before a free day in the
calendar. The default value is 0000.

CLDATE – Specific date (CLSD segment)
Use the CLDATE statement to define a specific date.

Table 128. Keywords for CLDATE

Keyword Description

DATE Specifies a date in the YYMMDD format, optionally followed by
days of the week on which this date must fall to be set as a
specific date.

DESCR Specifies a description of the specific date, up to 30
characters.

STATUS Specifies the status of the specific date (which override the
status assigned to a day of the week):

F A free day

W A working day

In the following example, you create a free day for 18 May 2014:
CLDATE DATE(140518) STATUS(F)

In the following example, you create a free day if 24 December is Monday:
VARDATE CL_BRIDGE ONLY(24) MONTH(DEC)
CLDATE DATE(!CL_BRIDGE,MONDAY)

In the following example, you create a free day if 25 December is a weekday:
VARDATE CL_XMAS ONLY(25) MONTH(DEC)
CLDATE DATE(!CL_XMAS,MONDAY,TUESDAY,WEDNESDAY,THURSDAY,FRIDAY)

202 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

CLDAY – Day of the week (CLWD segment)
Use the CLDAY statement to define a day of the week.

Table 129. Keywords for CLDAY

Keyword Description

DAY Specifies a day of the week:

v MONDAY

v TUESDAY

v WEDNESDAY

v THURSDAY

v FRIDAY

v SATURDAY

v SUNDAY

DESCR Specifies a description of the day of the week, up to 30
characters.

STATUS Specifies the status of the day of the week (which can be
overridden by the status assigned to a specific date):

F A free day

W A working day

ETT – Event Trigger Record
The ETT record is a single segment structure.

ETTSTART – Trigger definition
Use the ETTSTART statement to define an entire Event Trigger record.

A statement begins with ETTSTART and can be followed by the following additional
arguments.

Table 130. Keywords for ETTSTART

Keyword Description

ETTNAME Specifies the name of a job or a special resource, up to 44
characters.

You can also use the wildcards asterisk (*) and percent sign
(%) to specify a generic name.

ETTTYPE Specifies the type of event that you want to cause a dynamic
update of the current plan. Required.

J A job reader event is the triggering event.

R A special resource availability event is the triggering
event.

ADID Specifies the name of an application defined in the application
description (AD) database that you want adding to the current
plan when the event occurs.

Chapter 10. Batch loader commands 203

Table 130. Keywords for ETTSTART (continued)

Keyword Description

AS Availability status switch indicator. Valid only with
ETTTYPE(R). Indicates if ETT adds an occurrence only if there is
a true availability status switch for a special resource from
status Available=N to Available=Y, or if ETT adds an
occurrence each time the availability status is set to
Available=Y (regardless of the previous status of the special
resource).

For ETTTYPE(J) this field must have the value N or blank.

Y ETT adds an occurrence only when there is a true
availability status switch from status Available=N to
Available=Y.

N ETT adds an occurrence each time the availability
status is set to Available=Y.

DR Specifies the dependency resolution, which determines if
external dependencies should be added when occurrences are
added to the current plan.

Y External dependencies are to be added.

N External dependencies are not to be added.

P Add only predecessor dependencies.

S Add only successor dependencies.

JR Specifies job-name replace, which is valid only with
ETTTYPE(J). This determines if the job name of the first
operation in the associated application should be replaced
with the triggering job.

Y The name of the first operation is replaced by the job
name of the triggering job.

N The application is added unchanged.

MATCHTYP This argument is needed when spaces, asterisks (*) or percent
signs (%) form part of the name of the object, to indicate how
to treat the special characters.

EXA Use the name exactly as typed, treating asterisks (*)
and percent signs (%) as characters to include in the
name.

PFX Treat as a prefix match, to find an item beginning
with what was typed but treating asterisks (*) and
percent signs (%) as characters included in the name.

SFX Treat as a suffix match, to find an item ending with
what was typed but treating asterisks (*) and percent
signs (%) as characters included in the name.

JB – Ad-hoc in the current plan
The JB Batch Loader statements do not map to a record within IBM Workload
Scheduler for z/OS, instead this is pseudo batch loader generated as output from
the LISTJOB command.

The LISTJOB command extracts application and job details from the database for a
single job, but can be made to output this detail in the form of a JBSTART

204 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

command. So where the ADDJOB command will extract job details and then submit
the job directly to the plan with the extracted attributes, by using LISTJOB to create
the JBSTART command this allows you to manipulate the extracted attributes before
submitting the job to the current plan.

For example, issue the following LISTJOB command:
LISTJOB JOB005 ADID(ALTIF) OUTPUT(OUTDATA) STYLE(LOADER) DISPLAY(N)

DETAIL(SUCC)

to create the following JB command:
JBSTART ADID(ALTIF) ADVALFROM(141202) DESCR(’ALTIF test’) OWNER(TWS)
JBOP WSID(CPU1) OPNO(005) JOBN(JOB005) DURATION(1)
JBPRE-INT WSLCCMD1 PREADID(ALTIF) PREWSID(CMD1) PREOPNO(001)
JBSUC-INT JOB010 SUCADID(ALTIF) SUCWSID(CPU1) SUCOPNO(010)

The JB batch loader statements are similar to the equivalent AD statements, with
the difference that the AD prefix is replaced with JB. For a complete description of
the AD syntax, see “AD – Application definition record” on page 172.

JBSTART – Application details
The JBSTART statement describes the application level information, based on the
ADSTART statement and using all the same keywords, except for ADID. ADID is
ignored and replaced with a name formed by PFX, the job name, and SFX.

In addition to the JB versions of the ADSTART keywords, the JBSTART command also
supports the following keywords from the ADDJOB command:

COMPSUCC
Specifies how to manage completed successors.

CPDEPR Specifies whether to resolve dependencies.

CRITERIA
Specifies the dependency resolution criteria.

DEPTIME
Specifies the input arrival time to consider for resolving dependencies.

EXTLINK
Specifies which elements to use to identify an external predecessor.

HOLD Specifies whether to hold the job that was added.

IA Specifies the Input Arrival with which to submit the occurrence.

INTLINK
Specifies which elements to use to identify an internal predecessor.

JCL Provides external JCL to the submitted job.

PFX Specifies the prefix to use for the application name.

SFX Specifies the suffix to use for the application name.

UPDATE Determines whether to actually perform the updates, or just trial the
process to see what actions would have been taken.

For detailed information about these keywords, see “ADDJOB – Add job to the
current plan” on page 146.

Chapter 10. Batch loader commands 205

JBCIV and JBXIV – External dependency selection criteria
These are generated by LISTJOB for information purposes only. Dependency
selection criteria is handled by the CRITERIA, DEPTIME, INTLINK, and EXTLINK
keywords of the JBSTART statement. They are ignored when the JBSTART command
is run.

JBCNC and JBCNS – Conditional dependencies
These are generated by LISTJOB for information purposes only. JBSTART is used to
dynamically submit jobs on demand, therefore the decision as whether the job is to
be run must be made before running the JBSTART statement. They are ignored
when the JBSTART command is run.

JBDEP, JBPRE and JBSUC – Dependencies
JBDEP is not a supported statement for JBSTART, because JBSTART allows
dependencies in both directions. JBDEP is replaced by JBPRE to define predecessors
and by JBSUC to define successors.

Both JBPRE and JBSUC have a suffix of either -INT or -EXT to define whether this
was originally an internal or external dependency, as the selection criteria can be
managed differently for each by using the INTLINK and EXTLINK keywords of the
JBSTART statements respectively.

For example, JBPRE-INT describes an internal predecessor, and JBSUC-EXT describes
an external successor.

Both JBPRE and JBSUC have a positional first argument of the job name of the
dependency. If the operation being referred to has no job name, then -BLANK is
presented by LISTJOB. If the operation being referred to does not exist -MISSING is
presented by LISTJOB.

For JBPRE, the remaining keywords are identical to ADDEP. For JBSUC the keywords
are similar to ADDEP, with the difference that the PRE prefix is replaced by SUC.

JBRUN and JBRULE - Run cycle and rule
LISTJOB does not generate a JBRUN or JBRULE statement, because it only lists
application level information, then the complete specification of the job with the
JBOP statement and statements for any child segments of the operation being listed.

JCLV – JCL Variable Table record
The JCLV record is a multi segment record, with the following structure.
JCLVCOM -+- Common segment (1 per JCLV)

|
+= JCLVVAR =+= Variable (many per JCLV)

|
+= JCLVDEP = Dependency

(many per Variable)

Note: Some segments have Batch Loader statements with slightly different names.
JCLVCOM has a Batch Loader statement of JCLVSTART.

206 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

JCLVSTART – Variable table common details (JCLVCOM
segment)

Use the JCLVSTART statement to define the common part of a JCL Variable table.

Table 131. Keywords for JCLVSTART

Keyword Description

JCLVTAB Specifies the name of the variable table, up to 16
characters.

OWNER Specifies the owner ID of the variable table, up to 16
characters.

DESCR Specified the description of the variable table, up to 24
characters.

JCLVVAR – Variable details
Use the JCLVVAR statement to define a variable.

Table 132. Keywords for JCLVVAR

Keyword Description

VARNAME Specifies the name of the variable.

COMP Specifies the way in which the LENGTH field is used to validate
the length of the replaced value. This field is optional, unless
you specify a length value.

For example, EQ 12 means that the replaced value must be
exactly 12 characters long.

EQ or =
Equal to

GT or >
Greater than

LT or < Less than

GE or >=
Greater than or equal to

LE or <=
Less than or equal to

NE or ¬=
Not equal to

NG or ¬>
Not greater than

NL or ¬<
Not less than

DEFAULT Specifies the value the variable must have if another values is
not explicitly assigned, up to 44 characters.

DEPENDENCY Specifies the name of a variable on which the value of this
variable is dependent. This requires JCLVDEP statements to be
defined.

DESCR Specifies a description of, for example, the purpose and use of
the variable, up to 20 characters.

DIALOG1 Specifies line 1 (of 4) of information for the preparer. Each line
can be up to 51 characters long.

Chapter 10. Batch loader commands 207

Table 132. Keywords for JCLVVAR (continued)

Keyword Description

DIALOG2 Specifies line 2 (of 4) of information for the preparer. Each line
can be up to 51 characters long.

DIALOG3 Specifies line 3 (of 4) of information for the preparer. Each line
can be up to 51 characters long.

DIALOG4 Specifies line 4 (of 4) of information for the preparer. Each line
can be up to 51 characters long.

EXIT Specifies a substitution exit to be used to resolve the variable.

LENGTH Use this field together with COMP to validate the length of the
value substituted by the job preparer. This is optional, unless
you specify a length comparison.

For example, LT 11 means that the replaced value must be less
than 11 characters.

NUMERIC Specifies if the data must be numeric:

Y Data must be numeric.

N Data can have any values.

Specify this filed only if TYPE is set to LIST or RANGE.

PICT Specifies the character pattern used together with the
verification TYPE PICT. Optional, unless TYPE is PICT.

For example, CC99 means that the first two characters can have
any value and characters 3 and 4 must be in the range 0-9.

Use the characters C (any value), A (alphabetic), N or 9 (0-9), X
(0-9, A-F, a-f).

POS Specifies the starting position, in a range from 1 to 80, for a
value assigned to an in-stream positional variable, or 0 if the
variable is not positional. The default is 0.

REQD Specifies whether the variable can be assigned a blank value or
not:

N Not required. The variable can be assigned a blank
value (this is the default).

Y Required. The variable cannot be assigned a blank
value.

SETUP Specifies how variable substitution is managed:

N No interaction. The variable is replaced at submit
time.

P Promptable. An interaction with the preparer takes
place at job setup.

Y No interaction. The variable is replaced at setup time
if a preparation step if present, otherwise at submit
time.

SUBPOS Position in string to start substring selection for dependent
variables.

SUBLEN Length of substring selection for dependent variables.

208 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 132. Keywords for JCLVVAR (continued)

Keyword Description

TYPE Specifies the type of verification to be carried out on the data
specified by the preparer. This follows the same format rules as
the ISPF VER statement. Optional. Valid types are:

v ALPHA

v BIT

v DSNAME

v ENUM

v HEX

v LIST

v NAME

v NUM

v PICT

v RANGE

UCASE Specify Y to get characters a-z translated to upper case. Specify
N to keep mixed case (the default is N).

VALID1 Line 1 of LIST/RANGE values for use in validating the variable
(up to 51 characters).

For type LIST, specify one or more values separated by
commas.

For type RANGE, specify pairs of values separated by commas.

For example, 1,3,5,7 allows values in the ranges 1 to 3 and 5
to 7.

Specify this keyword only if the TYPE is LIST or RANGE.

VALID2 Line 2 of LIST/RANGE values for use in validating the variable
(up to 51 characters).

For type LIST, specify one or more values separated by
commas. For type RANGE, specify pairs of values separated by
commas.

For example, 1,3,5,7 allows values in the ranges 1 to 3 and 5
to 7.

Specify this keyword only if the TYPE is LIST or RANGE.

JCLVDEP – Dependent value pair
Use the JCLVDEP statement to define a variable dependency.

Table 133. Keywords for JCLVDEP

Keyword Description

INDEPENDENT Specifies a value, 1-44 characters. If the independent
variable has this value, the dependent variable is
assigned the paired value as specified in DEPENDENT.

This argument is case sensitive, unless the independent
variable has uppercase translation.

Chapter 10. Batch loader commands 209

Table 133. Keywords for JCLVDEP (continued)

Keyword Description

DEPENDENT Specifies a value that is assigned if the independent
variable matches the value specified in INDEPENDENT.

It can be 1-44 characters or left blank.

JS – Current Plan JCL record
The JS record is a multi segment record, with the following structure.
JSCOM -+- Common segment (1 per JS)

|
+= JST = JCL text line (many per JS)

Note:

1. Some segments have batch loader statements with slightly different names.
JSCOM has a batch loader statement of JSSTART.

2. The Workload Automation Programming Language interpretation of the JS
record is slightly different from the PIF specification in which interval dates are
store in the field JST within the Common Segment. Within Workload
Automation Programming Language, the Common Segment includes JST as an
unresolved field, if requested in an OUTPUT statement, but will also decode the
JST into separate JST segments for each line of JCL. This makes for more
flexible processing in batch loader.

JSSTART behaviour
Current plan JCL records (JS) are related to Current plan operation records (CPOP)
in using the same information as the key: Application Name, Input Arrival, and
Operation number.

Even if an Operation exists, this does not mean that an equivalent JS record exists.
A JS record is created by IBM Workload Scheduler for z/OS when job setup runs
for an operation, or if no setup occurs at Job Submission. A JS record can also be
created by a user editing JCL through the Current Plan ahead of submission and
saving the results. Equally after submission someone could delete a JS record.

Because of this behaviour, JSSTART searches for the Operation, rather than just the
JCL, to obtain all of the operation details, then it determines if a JS record exists so
if DBMODE(ADD) is used the appropriate actions can be taken. If a matching
operation does not exist, the JSSTART command fails.

Because the information in the common segment is inherited from the CPOP
record and the JCL is specified as a whole, you cannot use OPTIONS DBMODE(UPDATE)
and OPTIONS DBMODE(COPY) together with JSSTART.

Note: If you do not specify ADID, IA, and OPNO, the JSSTART statement uses the
other keywords to find matching jobs and update all the operations matching your
criteria.

210 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

JSSTART – Current Plan JCL entry (JSCOM segment)
Use the JSSTART statement to define the common part of a JCL entry.

Table 134. Keywords for JSSTART

Keyword Description

ADID The Application name of the operation to contain the JCL.

IA The Input Arrival Time of the operation to contain the JCL.

OPNO The Operation number of the operation to contain the JCL.

JOBNAME The Job name of the operation to contain the JCL.

WSNAME The Workstation name of the operation to contain the JCL.

STATUS The status of the operation to contain the JCL.
Note: This is not the status of the JCL (JSST), because this
argument might contain some different values from standard
Operation Statuses.

DLM JCL delimiter. Any character string used to terminate in-stream
JCL that follows the JSSTART statement. The presence of a DLM
keyword indicates the immediate following line will be a line
of JCL, and any subsequent lines until the character string
specified in DLM is encountered on a line by itself.

MEMBER Names a member in the EQQJSPDS DD statement that contains
the JCL. The JCL is copied from there into EQQTEMP for
addition into the JS record.

You can specify a DD statement different from EQQJSPDS, for
example MYJCL, by setting OPTIONS JSFILE(MYJCL). You can
specify a DD statement different from EQQTEMP by setting
OPTIONS TEMPFILE.
Note: The MEMBER keyword cannot be used with the
EQQWAPL load module.

JST – Line of JCL (JST field of JSCOM)
If DLM or MEMBER was not used, a JST statement can be used to define each line of
JCL. The JCL must be coded on the line following the JST keyword.

OI – Operator Instruction record
The OI record is a multi segment record, with the following structure.
OICOM -+- Common segment (1 per OI)

|
+= OIT = Line of text (many per OI)

Note:

1. Some segments have Batch Loader statements with slightly different names.
OICOM has a Batch Loader statement of OISTART.

2. The Workload Automation Programming Language interpretation of the OI
record is slightly different from the PIF specification in which interval dates are
store in the field OIT within the Common Segment. Within Workload
Automation Programming Language, the Common Segment includes OIT as an
unresolved field, if requested in an OUTPUT statement, but will also decode the
OIT into separate OIT segments for each line of text. This makes for more
flexible processing in Batch Loader.

3. DBMODE(UPDATE) cannot be used to update individual lines of text.

Chapter 10. Batch loader commands 211

|
|

OISTART – Period common details (PRCOM segment)
Use the OISTART statement to define the common part of a Calendar.

Table 135. Keywords for OISTART

Keyword Description

ADID The identifier of the application. If you use DBCS characters,
they must be entered as a quoted string started by a shift-out
and ended by a shift-in.

You must specify ADID.

JOBN The job name of the operation that this OI is for.

DLM Text delimiter. Any character string used to terminate instream
text that follows the OISTART statement. The presence of a DLM
keyword indicates the immediate following line will be a line
of operator instruction text, and any subsequent lines until the
character string specified in DLM is encountered on a line by
itself.

If DLM is used no OIT statements are needed.

MEMBER You can set the MEMBER keyword only if the OI text is located in
a partitioned data set defined by the EQQOIPDS DD
statement. It must be free format in columns 1 to 72.

If MEMBER is used, no OIT statements are needed.
Note: The MEMBER keyword cannot be used with the
EQQWAPL load module.

OPNO The operation number of the operation that this OI is for.

You must specify OPNO.

VALFROMD The start date of validity of this OI. You must specify this in
the format yymmdd. See the notes about VAL* keywords.

The default is the current date if other VAL* keywords are set.

VALFROMT The start time of validity of this OI. You must specify this in
the format hhmm. See the notes about VAL* keywords.

The default is the current time if other VAL* keywords are set.

VALTOD The end date of validity of this OI. You must specify this in
the format

yymmdd. See the notes about VAL* keywords.

The default is 711231 if other VAL* keywords are set.

VALTOT The end time of validity of this OI. You must specify this in
the format

hhmm. See the notes about VAL* keywords.

The default is 2359 if other VAL* keywords are set.

Note:

1. If you do not specify any of these VAL* keywords, IBM Workload Scheduler for
z/OS assumes that the operator instruction is permanent.

2. NEW_VALTOD and NEW_VALTOT are not valid for temporary Operator Instructions.
They cannot have their validity range changed by NEW keywords. To alter the
validity of temporary Operator Instructions they must be deleted and recreated.

212 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|

The following example shows how to use DLM to specify operator instructions:
OISTART ADID(’TESTGROUP02 ’) OPNO(001) DLM(-TEXT-END-)
If the job fails you need to wake Doug up
Don’t worry what the time is, he lives for this kind of thing
Just to be on the safe side, wake him up if the job works as well
-TEXT-END-

OIT – Line of Text (OIT field of OICOM)
If DLM or MEMBER was not used, a OIT statement can be used to define each line of
text. The text must be coded on the same line following the OIT keyword.

The following example shows how to use OIT to specify operator instructions:
OISTART ADID(’TESTGROUP02 ’) OPNO(001)
OIT ’If the job fails you need to wake Doug up’
OIT ’Don’t worry what the time is, he lives for this kind of thing’
OIT ’Just to be on the safe side, wake him up if the job works as well’

PR – Period record
The PR record is a multi segment record, with the following structure.
PRCOM -+- Common segment (1 per PR)

|
+= PRDATE = A date interval (many per PR)

Note:

1. Some segments have Batch Loader statements with slightly different names.
PRCOM has a Batch Loader statement of PRSTART.

2. The Workload Automation Programming Language interpretation of the PR
record is slightly different from the PIF specification in which interval dates are
store in the field PRTAB within the Common Segment. Within Workload
Automation Programming Language, the Common Segment includes PRTAB as
an unresolved field, if requested in an OUTPUT statement, but will also decode
the PRTAB into separate PRDATE segments for start and end date pairs. This
makes for more flexible processing in Batch Loader.

PRSTART – Period common details (PRCOM segment)
Use the PRSTART statement to defines the common part of a Period.

Table 136. Keywords for PRSTART

Keyword Description

DROP Specifies a date in the format YYMMDD, or + or – a number
of days, that ensures that any Period interval preceding that
date will be dropped from the Period.
Note: For intervals with start and end dates, the end date
will be compared with the DROP value, otherwise the start
date will be used.

For example, to drop any dates over a year old:

OPTIONS DBMODE(UPDATE)
PRSTART PERIOD(YEAREND) DROP(-365)

PERIOD Specifies the period name.

Chapter 10. Batch loader commands 213

Table 136. Keywords for PRSTART (continued)

Keyword Description

PRTYPE Specifies the type of period:

A All-days cyclic period. A period that includes both
work days and free days (requires INTERVAL to be
set).

W Work-days-only cyclic period. A cyclic period that
includes only work days (requires INTERVAL to be
set).

N Non-cyclic period (requires PRDATE statements, ADID
or DATELIST to be specified).

DESCR Specified the description of the period, up to 30 characters.

INTERVAL Specify a value from 1 to 999 for cyclic periods.

TABLE Specifies the name of a JCL variable table to be associated
with the occurrence for Period based run cycles.

PRDATE – Interval (PRTAB field of PRCOM)
Use the PRDATE statement to define an interval for a non-cyclic period.

Table 137. Keywords for PRDATE

Keyword Description

START Specifies the start date of an interval in the YYMMDD format.

END Specifies the end date of an interval in the YYMMDD format. If
an interval end date is omitted, the end date will be the day
preceding the start of the next period.

Automatic Interval generation
Use the PRSTART statement to generate a non-cyclic period that has interval dates
matching the run dates of a named Application or Group.

The following additional keywords can be specified on the PRSTART statement.

Table 138. Keywords for PRSTART

Keyword Description

ADID Specifies the application name to base the interval dates on.

ADSTAT Specifies the status of the application to use:

A Active (default)

P Pending

ADTYPE Specifies the type of application to use:

A Application (default)

P Group

IAT For applications with run cycles with multiple Input Arrival
times, this identifies which set of run cycles to generate dates
for. If omitted all run cycles will be used (format HHMM).

FROMDATE The date from which to generate dates (for details, see “LIST
GENDAYS – Generate dates from a rule” on page 93).

214 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 138. Keywords for PRSTART (continued)

Keyword Description

TODATE The date to generate dates until (for details, see “LIST
GENDAYS – Generate dates from a rule” on page 93).

VALID The date on which the application to use must be valid, in the
format YYMMDD (the default is today).

DATELIST If used without ADID, this specifies a SAVELIST output from a
previous command that generated a GNDAY SAVELIST to use
as input to generate interval dates for the period.

If used in conjunction with ADID, GETDATES is used internally to
generate run dates for that application, which are stored in the
SAVELIST specified in DATELIST, and then used to generate
interval dates for the period.

Note:

1. The ability to base periods on applications is available only starting from IBM
Workload Scheduler for z/OS V8.6 SPE, or later.

2. Any period generated using an application will have only dates within the
FROMDATE/TODATE range. The period will need to be regenerated when that
range expires, or the Application or and prerequisites, such as referenced
calendars or periods, are changed.

3. Periods based on Applications must be non-cyclic.
4. Do not use an application that references the period you are updating with

PRSTART. The command works, but the dates will be based on the values of the
period prior to the command executing, which might result in different
intervals being placed in the period.

5. You can use OPTIONS PREMPTY to control what happens when no dates are
generated.

RG – Run cycle group record
The RG record is a multi segment record, with the following structure.
RGCOM -+- Common segment (1 per appl)

|
+= RGRUN =+= Run Cycle(s)

|
+- ADRULE – Rule (1 per run cycle)

Note:

1. Some segments have Batch Loader statements with slightly different names.
RGCOM has a Batch Loader statement of RGSTART.

2. The rule text within the RGRUN segment is an ADRULE statement, not RGRULE.

RGSTART – Run cycle group common details (RGCOM
segment)

Use the RGSTART control statement to signal the start of a run cycle group
definition.

After an RGSTART control statement there are one or more RGRUN control statements,
one for every run cycle of the run cycle group.

Chapter 10. Batch loader commands 215

The ADRULE control statement must immediately follow the RGRUN statement. See
ADRULE for details.

Note: The RGSTART statement is available only starting from IBM Workload
Scheduler for z/OS V9.1, or later.

Table 139. Keywords for RGSTART

Keyword Description

CALENDAR The name of a calendar used by the entire group (of up to
16 characters). This field is optional. The run cycle group
calendar is superseded by the calendar name specified for
each run cycle, if any. If none is specified, the DEFAULT
calendar is used.

DESCR A description of up to 50 characters. This field is optional.

DLDAY The number of days (from 1 to 99) from the input arrival
day that the application should be completed in: 0 means
that the deadline is on the same day as the input arrival day.
This must be an integer.

This value becomes the default deadline day for the entire
group. It is overruled at run cycle level by a value in the
DLDAY keyword of RGRUN.

DLTIME The deadline time that the application should be completed
by, in the format hhmm.

This value becomes the default deadline time for the entire
group. It is overruled at run cycle level by a value in the
DLTIME keyword of RGRUN.

IATIME The default input arrival time that will be generated by this
run cycle group in the hhmm format. This field is optional,
but if you do not specify here a value for the whole group,
you must specify input arrival times for each run cycle of
the group in the RGRUN control statement.

JVTAB The name of the JCL variable table associated with the run
cycle group (up to 16 characters). This field is optional. The
run cycle group variable table is superseded by the variable
table specified for each run cycle, if any.

OWNER The run cycle group owner's name (from 1 to 16 characters).
This field is optional.

RGID The name of the run cycle group. The name must be from 1
to 8 alphanumeric characters long and must start with a
letter or national character. This field is required.

RGRUN – Run cycle group individual run cycle
Use the RGRUN control statement to add a run cycle specification within a run cycle
group.

RGRUN statements follow the RGSTART statement that defines a run cycle group, and
are followed each by the ADRULE statement that defines the run cycle rule.

Note: The RGRUN statement is available only starting from IBM Workload Scheduler
for z/OS V9.1, or later.

216 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 140. Keywords for RGRUN

Keyword Description

CALENDAR The name of the calendar used by this run cycle. The name can
be of up to 16 characters. If it is not specified, the run cycle uses
the calendar specified for the run cycle group.

JVTAB The name of the JCL variable table to be used for the
occurrences generated. The name can be of up to 16 characters.
If it is not specified, the run cycle uses the variable table
specified for the run cycle group.

DESCR A free-format description of the run cycle, up to 50 characters
and enclosed in single quotation marks.

DLDAY The number of days (from 1 to 99) from the input arrival day
that the application should be completed in: 0 means that the
deadline is on the same day as the input arrival day. This must
be an integer.

A value specified here overrules for this run cycle any value
defined with RGDLDAY for the entire group.

DLTIME The deadline time that the application should be completed by,
in the format hhmm.

A value specified here overrules for this run cycle any value
defined with RGDLTIME for the entire group.

IATIME The time, in the format hhmm, that the application is to arrive at
the first workstation. If it is not specified here, the run cycle
uses the input arrival time specified for the run cycle group.

NAME The run cycle name. It can be of up to 8 characters.

RPTEND The repeat end time for the EVERY options, in the format hhmm.
It must be a time between the IA time of the run cycle and the
calendar work day end time of the application.

RPTEVRY The repeating frequency for the EVERY options, in the format
hhmm. It specifies that the application has an occurrence in the
long-term plan every hhmm, starting from the IA time to the
repeat end time (RPTENDT keyword). If this keyword is not set,
only the occurrence related to the IA time is added to the
long-term plan.

Chapter 10. Batch loader commands 217

Table 140. Keywords for RGRUN (continued)

Keyword Description

RULE Defines which free-day rule is in effect:

E Count only work days when using the rule or offset.
That is, free days are excluded. This option ensures
that the scheduled day will always be a work day. This
is the default for offset-based run cycles.

1 Count work days and free days when using the rule or
offset. If this gives a free day, schedule the application
on the closest work day before the free day.

2 Count work days and free days when using the rule or
offset. If this gives a free day, schedule the application
on the closest work day after the free day.

3 Count work days and free days when using the rule or
offset. If this gives a free day, schedule the application
on the free day. This is the default for rule-based run
cycles.

4 Count work days and free days when using the rule or
offset. If this gives a free day, do not schedule the
application at all.

SUBSETID The run cycle subset identifier. If the run cycle is part of a
subset in the run cycle group (this is useful to match more run
cycles against negative rules or to use the logical AND condition),
enter the name of the subset. It must be from 1 to 8
alphanumeric characters long and must start with a letter or
national character.

TYPE Specify the type of rule-based run cycle:

R (regular)
The ADRULE statement specifies days when the
application should be scheduled.

E (exclusion)
The ADRULE statement specifies days when the
application should not be scheduled.

A (regular for all A rules subsets)
The ADRULE statement specifies days when the
application should be scheduled only if they match all A
types of the set of run cycles belonging to SUBSETID.

D (exclusion for all D rules subsets)
The ADRULE statement specifies days when the
application should not be scheduled ONLY if they
match all D types of the set of run cycles belonging to
SUBSETID.

VALFROM The start date of the validity of this run cycle, in the format
yymmdd.

VALTO The end date of the validity of this run cycle, in the format
yymmdd.

SR – Special Resource record
The SR record is a multi segment record, with the following structure.

218 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

SRCOM -+- Common segment (1 per SR)
|
+= SRDWS = Default workstation (many per SR)
|
+= SRIVL =+= Interval (many per SR)

|
+= SRIWS = Interval workstation

(many per interval)

Note: Some segments have Batch Loader statements with slightly different names.
SRCOM has a Batch Loader statement of SRSTART.

SRSTART – Special Resource common details (SRCOM
segment)

Use the SRSTART statement to define the common part of a Special Resource.

Table 141. Keywords for SRSTART

Keyword Description

DROP Specifies a date in the format YYMMDD, or + or – a number of
days, which ensures that any Interval Date preceding that date is
dropped from the Interval.

For example, to drop any dates over a year old, issue the
following command:

OPTIONS DBMODE(UPDATE)

SRSTART RESNAME(BATCHSR) DROP(-365)

RESNAME The name of the resource, up to 44 characters. The name of the
special resource is translated to uppercase. You can include
national characters in the name, but you are recommended not
to include % and *, because IBM Workload Scheduler for z/OS
uses these for filtering and searching in the panels. It is also
good practice not to use the comparison operators: greater-than
symbol (>), less-than symbol (<), caret (^), equals sign (=), or
blank spaces. These might by used in search arguments passed
by programming interface programs.

GROUP The resource group, up to 8 characters. The group ID is for
selecting subsets of resources in the panel (a list filter).

HIPER Whether the resource represents a Data Lookaside Facility (DLF)
object:

N The resource does not represent a DLF object (default).

Y The resource represents a DLF object.

For more details about hiperbatch and the Data Lookaside
Facility, see IBM Workload Scheduler for z/OS: Managing the
Workload.

USEDFOR Whether the resource is used for:

P Planning, when the current plan is extended

C Control, when an operation starts

B Both planning and control

N Neither planning nor control

Chapter 10. Batch loader commands 219

Table 141. Keywords for SRSTART (continued)

Keyword Description

ONERROR What happens if an operation that allocates this resource ends in
error (and does not have an overriding keep-on-error
specification in the operation definition):

F Free the full allocation of this resource, both those
allocated exclusive and those allocated shared

FS Free the full shared allocation of this resource

FX Free the full exclusive allocation of this resource

K Keep the full allocation of this resource

Blank Use the value specified in the ONERROR keyword of the
RESOPTS statement. For details about this statement, see
IBM Workload Scheduler for z/OS: Customization and
Tuning.

DESCR A description of the resource, up to 46 characters.

ONCOMPLETE The value to which the global availability is reset after the
operation that uses the resource completes:

Y Sets the global availability to Yes.

N Sets the global availability to No.

R Sets the global availability to blank.

Blank Uses the system default, according to the following
order:

1. The On Complete value set at operation definition
level, if not blank.

2. The On Complete value set at special resource
definition level, if not blank.

3. The ONCOMPLETE or DYNONCOMPLETE
keyword value, respectively set for the not
dynamically added resources or the dynamically
added resources, in all the other cases.

MAXTYPE The value to which the global availability of the resource is reset,
when its maximum usage limit is reached:

Y Sets the global availability to Yes.

N Sets the global availability to No.

R Sets the global availability to blank.

MAXLIMIT The number of allocations of this resource after which the
resource global availability is changed to the value specified by
Max Usage Type.

QUANTITY A value from 0 to 999 999.

AVAIL Whether the resource is available, Y or N.

220 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 141. Keywords for SRSTART (continued)

Keyword Description

MATCHTYP This argument is required when spaces, asterisks (*) or percent
signs (%) form part of the name of the object, to indicate how to
treat the special characters.

EXA Use the name exactly as typed, treating asterisks (*) and
percent signs (%) as characters to include in the name.

PFX Treat as a prefix match, to find an item beginning with
what was typed but treating asterisks (*) and percent
signs (%) as characters included in the name.

SFX Treat as a suffix match, to find an item ending with
what was typed but treating asterisks (*) and percent
signs (%) as characters included in the name.

SRDWS – Default workstation
Use the SRDWS statement to define a default workstation.

Table 142. Keywords for SRDWS

Keyword Description

WSID Name of the workstation.

SRIVL - Interval
Use the SRIVL statement to define an interval within the Special Resource.

Note: To delete an interval, you must specify at least DAY or DATE, and the FROM
time.

Table 143. Keywords for SRIVL

Keyword Description

DAY
DATE

For DAY, the day of the week:

v STANDARD (default for days not defined)

v MONDAY

v TUESDAY

v WEDNESDAY

v THURSDAY

v FRIDAY

v SATURDAY

v SUNDAY

For DATE, the date in the format YYMMDD.

FROM The start time of the interval in the format HHMM.

TO The end time of the interval in the format HHMM.

QUANTITY The maximum quantity for the interval, from 0 to 999 999.

AVAIL The default availability for the interval: Y or N.

Chapter 10. Batch loader commands 221

SRIWS – Connected workstations
Use the SRIWS statement to define a connected workstation.

Table 144. Keywords for SRIWS

Keyword Description

WSID Name of the workstation.

WS – Workstation record
The WS record is a multi segment record with the following structure.
WSCOM -+- Common segment (1 per WS)

|
+- WSAM – Access Method (up to 1 per WS)
|
+= WSSD =+= Specific Date (many per WS)
| |
| += WSIVL = Workstation Interval
| (many per WSSD)
|
+= WSWD =+= Weekday (up to 8 per WS)
| |
| += WSIVL = Workstation Interval
| (many per WSWD)
|
+= WSDEST = Virtual Workstation Destination

(many per WS)

Note:

1. Some segments have Batch Loader statements with slightly different names.
WSCOM has a batch loader statement of WSSTART.

2. The WSDEST statements do not define the full details of the Virtual Workstation
Destination, instead the make a reference to a WSV record which contains the
complete details. WSV records must be defined with WSVSTART and subordinate
statements. A default WSV record is automatically created when a WSDEST
statement is processed.

WSSTART – Workstation common details (WSCOM segment)
Use the WSSTART statement to define the common part of a workstation.

Table 145. Keywords for WSSTART

Keyword Description

DROP Specifies a date in the format YYMMDD, or + or – a number of
days, which ensures that any Interval Date preceding that date is
dropped from the workstation.

Fro example, to drop any dates over a year old, issue the
following command:

OPTIONS DBMODE(UPDATE)
WSSTART WSNAME(CPU1) DROP(-365)

WSNAME Name of the workstation (up to 4 characters).

TYPE Type of workstation:

G General (default)

C Computer

P Print

222 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 145. Keywords for WSSTART (continued)

Keyword Description

REPATTR The workstation reporting attribute:

A Automatic (default)

C Completion only

N Non reporting

S Start and Completion

JOBSETUP Specifies whether the workstation is a JCL setup workstation:

N No (default)

Y Yes

TRANSPORT Default Workstation transport time that is used for planning if
no transport time is specified on a dependency.

DURATION The default duration for an operation on this workstation.

PRINTOUT The DD Name to send the report for this workstation in the
planning jobs.

DESCR The description of this workstation

USAGE Parallel server usage:

P Planning

C Control

B Both

N None

SPLITABLE Whether operations on this workstation are splittable (Y or N).

R1NAME Name of workstation resource 1.

R1PLAN Whether workstation resource 1 is used for planning (Y or N).

R1CONT Whether workstation resource 1 is used for control (Y or N).

R2NAME Name of workstation resource 2.

R2PLAN Whether workstation resource 2 is used for planning (Y or N).

R2CONT Whether workstation resource 2 is used for control (Y or N).

DEST Destination to use, which must have a matching destination in
the IBM Workload Scheduler for z/OS ROUTOPTS statement.

STC Whether this is a Started Task workstation (Y or N).

WTO Whether this is a WTO workstation (Y or N).

AUTO Whether this is an Automation workstation (Y or N).

FTWS Whether this is a Fault Tolerant Workstation (Y or N).

WAIT Whether this is a Wait workstation (Y or N).

VIRTUAL Whether this is a Virtual workstation (Y or N).

ZCENTRIC Whether this is a z/OS Centric distributed workstation (Y or N).

WSAM – Access Method
Use the WSAM statement defines the Access Method for Extended Agents hosted by
tracker agents.

Chapter 10. Batch loader commands 223

Table 146. Keywords for WSAM

Keyword Description

METHOD The name of the method.

NODE Node name or IP address if needed by the method.

PORT Port number if needed by the method.

WSSD – Specific date
Use the WSSD statement to define a specific date.

Table 147. Keywords for WSSD

Keyword Description

DATE Date in the format YYMMDD

DESCR Description of the specific date

WSWD – Week day
Use the WSWD statement to define a day of the week.

Table 148. Keywords for WSWD

Keyword Description

DAY Day of the week:

v MONDAY

v TUESDAY

v WEDNESDAY

v THURSDAY

v FRIDAY

v SATURDAY

v SUNDAY

v STANDARD

DESCR Description of the day.

WSIVL – Interval details
Use the WSIVL statement to define details of an interval.

Table 149. Keywords for WSIVL

Keyword Description

START Start time of the interval (HHMM).

END End time of the interval (HHMM).

PS Number of parallel servers available for the interval.

R1 Number of workstation resource 1 available for the interval.

R2 Number of workstation resource 2 available for the interval.

ALTWS Alternate workstation.

WSDEST – Virtual Workstation Destination
Use the WSDEST statement defines a reference to a Virtual Workstation Destination.

224 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Note: The WSDEST statement is available only starting from IBM Workload
Scheduler for z/OS V8.5, or later.

Table 150. Keywords for WSDEST

Keyword Description

DEST Name of the destination. For using the controller as a
destination, enter a value of ********.
Note: After you have referenced a destination with the
WSDEST statement, IBM Workload Scheduler for z/OS
automatically creates a Virtual Workstation destination object
by using default values.

WSV – Virtual Workstation destination record
The WSV record is a multi segment record, with the following structure.
WSVCOM -+- Common segment (1 per WSV)

|
+= WSVSD =+= Specific Date (many per WSV)
| |
| += WSVIVL = Workstation Interval
| (many per WSVSD)
|
+= WSVWD =+= Weekday (up to 8 per WSV)

|
+= WSVIVL = Workstation Interval

(many per WSVWD)

Note:

1. Some segments have Batch Loader statements with slightly different names.
WSVCOM has a segment name of WSVSTART.

2. A default WSV record is automatically created when a WSDEST statement is
processed. This means a WSVSTART statement can never be created by Batch
Loader statements, only replaced or updated. Since a full unload of a virtual
workstation will include the Batch Loader for both the WS and WSV portions,
DBMODE(ADD) makes an exception with WSV records and will REPLACE the record
automatically created when the WS record is created by INSERT with any values
contained within the WSVSTART construct.

3. Virtual workstations are available only starting from IBM Workload Scheduler
for z/OS V8.5, or later.

WSVSTART – Virtual Workstation (WSVCOM segment)
Use the WSVSTART statement to define a Virtual Workstation destination in detail.

Note: The WSVSTART statement is available only starting from IBM Workload
Scheduler for z/OS V8.5, or later.

Table 151. Keywords for WSVSTART

Keyword Description

WSDEST Virtual Workstation Destination name. For using the controller
as a destination, enter a value of ********.

USAGE Parallel Server usage of the destination:

C Control

N None

Chapter 10. Batch loader commands 225

Table 151. Keywords for WSVSTART (continued)

Keyword Description

R1NAME Name of workstation resource 1.

R1PLAN Whether workstation resource 1 is used for planning (Y or N).

R1CONT Whether workstation resource 1 is used for control (Y or N).

R2NAME Name of workstation resource 2.

R2PLAN Whether workstation resource 2 is used for planning (Y or N).

R2CONT Whether workstation resource 2 is used for control.

WSNAME Name of the workstation (up to 4 characters).

WSVSD – Specific date
Use the WSVSD statement to define a specific date for a destination.

Note: The WSVSD statement is available only starting from IBM Workload Scheduler
for z/OS V8.5, or later.

Table 152. Keywords for WSVSD

Keyword Description

DATE Date in the format YYMMDD.

DESCR Description of the date.

WSVWD – Week day
USe the WSVWD statement to define a day of the week for a destination.

Note: The WSVWD statement is available only starting from IBM Workload Scheduler
for z/OS V8.5, or later.

Table 153. Keywords for WSVWD

Keyword Description

DAY Day of the week:

v MONDAY

v TUESDAY

v WEDNESDAY

v THURSDAY

v FRIDAY

v SATURDAY

v SUNDAY

v STANDARD

DESCR Description of the day.

WSVIVL – Interval details
Use the WSVIVL statement defines details of an interval for a destination.

Note: The WSVIVL statement is available only starting from IBM Workload
Scheduler for z/OS V8.5, or later.

226 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 154. Keywords for WSVIVL

Keyword Description

START Start time of the interval (HHMM).

END End time of the interval (HHMM).

PS Number of parallel servers available for the interval.

R1 Number of workstation resource 1 available for the interval.

R2 Number of workstation resource 2 available for the interval.

Chapter 10. Batch loader commands 227

228 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 11. Variable substitution

Workload Automation Programming Language supports variable substitution
within its control statements. This allows elements that vary at run time to be
incorporated into the commands, such as the running Occurrence Name, Input
Arrival, and Operation number.

Variable substitution is activated by the command VARSUB SCAN, which, by default,
uses the exclamation mark (!) as the prefix to identify variables within the
command text, and optionally a period (.) to terminate the variable name.

For example, Workload Automation Programming Language can update the
Operation Text of the running job to indicate something about the processing that
day, without having to code the SYSIN as instream data in the JCL to use IBM
Workload Scheduler for z/OS variables:
VARSUB SCAN
MODIFY CPOC ADID(!OADID.) IA(!OYMD1.!OHHMM.)
MODIFY CPOP OPNO(!OOPNO) DESC(’NO DATA TODAY’)

This also means that IBM Workload Scheduler for z/OS information becomes
available to jobs tracked by IBM Workload Scheduler for z/OS that were not
necessarily submitted by IBM Workload Scheduler for z/OS. Variables from the
JCL Variable tables can also be referenced along with Workload Automation
Programming Language variables defined directly in the Workload Automation
Programming Language SYSIN.

For more detailed information about variables, see “Variable naming convention.”

Variable naming convention
Variables are tokens within the command statements that are to be replaced with
actual values immediately before the statement is run.

A variable name begins with a prefix character, which is usually an exclamation
mark (!) to avoid conflicts with IBM Workload Scheduler for z/OS variable
substitution (but this can be changed), and an optional termination character of a
period (.). The variable name must start with an alphabetic character, then it can
consist of characters A-Z, 0-9, @, #, _ and the special characters £ and $. The special
characters can be modified by using the OPTIONS VARNAMES statement. The name
can be any length. However, if the variables you create in Workload Automation
Programming Language are also to be stored in the IBM Workload Scheduler for
z/OS JCL Variable Tables, their names must also conform to the JCL Variable
naming convention.

Variable value look up process
When Workload Automation Programming Language runs a VARSUB SCAN or an ADD
statement, it checks if the job is running within IBM Workload Scheduler for z/OS
and set the supplied variables at this point.

The VARSUB SCAN also opens the GLOBAL and APPLICATION tables (if set) at this
point, if no tables are already open, to allow searching for variables when needed.
At any point, except within a Batch Loader object construct, you can issue VARSET

© Copyright IBM Corp. 2016 229

statements to set variable values within Workload Automation Programming
Language. You can do it even before the first VARSUB SCAN statement. You can
override the Workload Automation Programming Language supplied variables by
setting the VARSET statements, provided that the VARSET statements follow the first
VARSUB SCAN statement.

When a variable is found in a statement, Workload Automation Programming
Language first checks if the variable was already set or referenced with the current
running of Workload Automation Programming Language. If it was, that value is
used, without looking up a new value from the table. Even if a variable was
changed by a VARSET or VARDATE command, the latest value is always used.

If the variable was not set or referenced, Workload Automation Programming
Language looks through the table search sequence. By default, the first table
searched is the APPLICATION table belonging to the occurrence running the
Workload Automation Programming Language job, then is the GLOBAL table. You
can add extra tables to the beginning of the table search sequence by using the
VARSUB TABLE statement; you can remove the tables by using VARSUB CLOSE. The
whole search sequence can be explicitly specified with the VARSUB SEARCH
statement.

If a variable is not found anywhere, the default behaviour is that the resolution
fails and the statement is not run. You can change this default by setting VARSUB
VARFAIL.

Variable parsing rules
When activated, variable parsing searches for the variable prefix character and then
treat every character that follows as a variable, until it finds either a character that
cannot be part of a variable name or the termination character.

For example, the following command:
000001 VARSUB SCAN
000002 VARSET CODE VALUE(YY)
000003 VARSET SUFFIX VALUE(1234)
000004 MODIFY CPOC ADID(!OADID) IA(!OYMD1!OHMM)
000005 MODIFY CPOP OPNO(!OOPNO.)
000006 MODIFY CPUSRF UFNAME(CODE) UFVALUE(XX!CODE.ZZ)
000007 MODIFY CPUSRF UFNAME(COMPOUND) UFVALUE(!CODE..!SUFFIX)
000008 VARSUB NOSCAN
000009 MODIFY CPUSRF UFNAME(OK) UFVALUE(It worked!!!)

Is resolved as follows:
000001 VARSUB SCAN
000002 VARSET CODE VALUE(YY)
000003 VARSET SUFFIX VALUE(1234)
000004 MODIFY CPOC ADID(MYAPPL) IA(1101241002)
000005 MODIFY CPOP OPNO(005)
000006 MODIFY CPUSRF UFNAME(CODE) UFVALUE(XXYYZZ)
000007 MODIFY CPUSRF UFNAME(COMPOUND) UFVALUE(YY.1234)
000008 VARSUB NOSCAN
000009 MODIFY CPUSRF UFNAME(!OK) UFVALUE(It worked!!!)

Note:

1. The VARSUB SCAN statement activates variable substitution.
2. A user variable called CODE is set to YY.
3. A user variable called SUFFIX is set to 1234.

230 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

4. !OADID is resolved to the occurrence name, terminated by the closing
parenthesis. !OYMD1 is resolved to the occurrence IA date, terminated by the
prefix of the next variable. !OHHMM is resolved to the occurrence IA time,
terminated by the closing parenthesis.

5. !OOPNO is resolved to the number of the running operation, terminated by the
period (.), which will not appear in the resolved command because it is the
optional termination character. In this case, the period was not needed because
the closing parenthesis terminates the variable name anyway.

6. !CODE is resolved to YY, terminated by the period (.). In this case, the
termination character is required to distinguish the variable name CODE from
the subsequent ZZ characters. The termination character does not appear in the
resolved statements (just like in JCL).

7. !CODE is resolved to YY and !SUFFIX is resolved to 1234. In this case, the code
and the suffix are to be intentionally separated by a period in the resolved
statement, therefore a second period needs to be coded after the termination
character (just like in JCL).

8. The VARSUB NOSCAN statement deactivates variable substitution.
9. Even though the last line contains !OK and other exclamation marks, because

the variable substitution is turned off the statement is run as is. Hence, the
result is a user field called !OK with the value “It worked!!!”

Dependent variables work slightly differently from how they work with IBM
Workload Scheduler for z/OS JCL Tailoring. The target variable, on which the
dependency is related to, does not need to have been previously referenced in prior
Workload Automation Programming Language statements. Instead, Workload
Automation Programming Language automatically searches for and loads the
target variable, and if the target variable has a dependency it repeats the process,
until a static variable is found. If dependent variables were coded so that the
references are circular, the parsing fails and a message highlighting the variables in
the loop is issued.

Variable resolution and REXX interpretation
Variable resolution occurs immediately before the command is run. With the
exception of VARDATE, VARSAVE, VARSET, and VARSUB, the Workload Automation
Programming Language command being running has no concept of the Workload
Automation Programming Language variables, or that any were coded within it.
This is because when the command is being run, the variable is replaced with the
corresponding value in the command text. Therefore, the command is interpreted
without any variable within.

It is important to understand this concept for situations where REXX functions are
used, because the presence of spaces within the value of a variable might modify
the way a command is run. Every time a variable is referenced, if it could contain
spaces, the variable name must be surrounded by quotation marks.

The following commands use REXX interpretation:
v CONSOLE

v DISPLAY

v DO WHILE

v DO UNTIL

v IF-THEN
v LOG

Chapter 11. Variable substitution 231

v WRITE

v When VARSET = is used, REXX interpretation is performed. The keyword based
variant of VARSET does not use REXX interpretation.

For example:
IF (“!TAG” = “-JOBNAME”) THEN
DO WHILE RIGHT(“!LINE”,1) <> “1”

An alternative way is to use the @V function, which returns a variable value into a
REXX expression and automatically returns quoted values into the expression. It
also works without variable substitution being active, which allows variables to be
used in expressions that might include the variable prefix for other purposes.

For example:
IF (@V(TAG) = “-JOBNAME”) THEN
DO WHILE RIGHT(@V(LINE),1) <> “1”

This function can also used in conjunction with variable substitution, to subscript a
variable, such as an object variable, without the need for a separate VARSET
VARIABLE statement.

For example, to issue a set of commands 10 seconds apart:
VARSUB SCAN
VARSET CMD1 = "F WSIC,STATUS"
VARSET CMD2 = "F WSJC,STATUS"
VARSET CMD3 = "F WSKC,STATUS"
VARSET CMD4 = "F WSLC,STATUS"
DO X = 1 TO 4

CONSOLE @V(CMD!X)
WAIT 10

END

Object variables
Some commands that read data from the databases or plans have an OBJECT
keyword to create a set of object variables that allows programmatic access to all of
the fields within the object that was accessed.

Object variables are all prefixed with the at sign (@) followed by the object name.
The number sign (#) is used as a prefix to indicate a count of subordinate elements.
The hyphen character is then used to separate the rest of the elements of each
object.

There are two kinds of object variables:

LIST Object variables that create a count of each database or plan record
converted into an object, and then a numerically suffixed object for each
record found.

For example, the keyword OBJECT(MYOBJ) creates @MYOBJ, which will
contain the number of records identified. Then, each record will have
object variables beginning with the object name with a numeric suffix, such
as @MYOBJ1-ADID, @MYOBJ2-ADID, and so on.

SELECT Object variables that represent a single record in the database or plan.

For example, the keyword OBJEXT(MYOBJ) creates object variables
beginning with the object name, such as @MYOBJ-ADID.

232 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Understanding the structure of the database and plan objects being represented is
crucial to understanding the syntax of the object variables as they directly
represent the structure of the records.

IBM Workload Scheduler for z/OS records can have up to 3 levels of information
(segments). The common segment is always level one, but then most records have
at least a second level, and some of those might also have a third level.

For example, in an application ADCOM is the level 1, then there can be multiple
ADRUN (run cycles) and ADOP (operations) at level 2, and ADOP has many level
3 sub segments such as ADDEP (dependencies) and ADSR (special resources)
amongst others. The record structures can be seen in the relationship diagrams in
the Batch Loader section.

Data at level one can be accessed in the following syntax:
@<object>-<field>

where:

<object>
The object name that was specified in the OBJECT keyword.

<field>
The field name.

For example, to obtain the application name of an AD record @MYOBJ-ADID, the
number of objects for each 2nd level segment can be accessed in the following
syntax:
@<object>-#<segment2>

where:

<object>
The object name that was specified in the OBJECT keyword.

<segment2>
The name of the 2nd level segment.

To obtain the number of operations @MYOBJ-#ADOP, data at level two can be
accessed in the following syntax:
@<object>-<segment2>-<n2>-<field>

where:

<object>
The object name that was specified in the OBJECT keyword.

<segment2>
The name of the 2nd level segment.

<n2> The sequence number of the 2nd level segment.

<field>
The field name.

To obtain the operation number of the 2nd operation @MYOBJ-ADOP-2-ADOPNO , the
number of objects for each 3rd level segment can be accessed in the following
syntax:
@<object>-<segment2>-<n2>-#<segment3>

Chapter 11. Variable substitution 233

where:

<object>
The object name that was specified in the OBJECT keyword.

<segment2>
The name of the 2nd level segment.

<n2> The sequence number of the 2nd level segment.

<segment3>
The name of the 3rd level segment.

To obtain the number of special resources for the 2nd operation
@MYOBJ-ADOP-2-#ADSR, data at level three can be accessed in the following syntax:

@<object>-<segment2>-<n2>-<segment3>-<n3>-<field>

where:

<object>
The object name that was specified in the OBJECT keyword.

<segment2>
The name of the 2nd level segment.

<n2> The sequence number of the 2nd level segment.

<segment3>
The name of the 3rd level segment.

<n3> The sequence number of the 3rd level segment.

<field>
The field name.

To obtain the special resource name of the 3rd resource of the 2nd operation
@OBJ-ADOP-2-ADSR-3-ADSRN, you can display the complete object structure of any
record type by using the SHOW OBJECT command.

In the following example, the SHOW OBJECT(CL) command shows all the available
object variables for a calendar with nshowing where sequence numbers fit into the
syntax:
08/22 10.47.39 EQQI200I SHOW OBJECT(CL)
08/22 10.47.39 EQQI601A Object: @OBJ-CLNAME
08/22 10.47.39 EQQI601A Object: @OBJ-CLDAYS
08/22 10.47.39 EQQI601A Object: @OBJ-CLSHIFT
08/22 10.47.39 EQQI601A Object: @OBJ-CLDESC
08/22 10.47.39 EQQI601A Object: @OBJ-CLVERS
08/22 10.47.39 EQQI601A Object: @OBJ-CLLDATE
08/22 10.47.39 EQQI601A Object: @OBJ-CLLTIME
08/22 10.47.39 EQQI601A Object: @OBJ-CLLUSER
08/22 10.47.39 EQQI601A Object: @OBJ-CLLUTS
08/22 10.47.39 EQQI601A Object: @OBJ-#CLSD
08/22 10.47.39 EQQI601A Object: @OBJ-CLSD-n-CLSDDATE
08/22 10.47.39 EQQI601A Object: @OBJ-CLSD-n-CLSDSTAT
08/22 10.47.39 EQQI601A Object: @OBJ-CLSD-n-CLSDDESC
08/22 10.47.39 EQQI601A Object: @OBJ-#CLWD
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDDAY
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDNUM
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDSTAT
08/22 10.47.39 EQQI601A Object: @OBJ-CLWD-n-CLWDDESC
08/22 10.47.39 EQQI299I Statement completed - RC=0 (00000014)

234 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

The VARSET VARIABLE keyword allows loop variables to be used as subscripts to
cycle through values within an object.

The following example shows a simple loop cycling through each job name in a
application object:
DO X = 1 TO @MYOBJ-#ADOP

VARSET JOB VARIABLE(@MYOBJ-ADOP-!X-ADOPJN)
DISPLAY !JOB

END

Note:

1. If the object variable does not exist, the resolution fails in accordance with the
VARFAIL setting or the VARSUB statement. As well as basic syntax, this applies
also to the sequence numbers. For example, @MYOBJ-ADCOM-2-ADOPNO is not
resolved if at least 2 operations do not exist in the object. The #<segment>
elements can be used to determine how many of each object exists.

2. Field names and segment names for each object can be obtained from the
EQQFLALL member of the Workload Automation Programming Language
member.

3. Object variables depend on the IBM Workload Scheduler for z/OS version. The
SHOW OBJECT command lists the variables that are valid for the IBM Workload
Scheduler for z/OS version in use.

4. Because object variables can contain a hyphen (-), you must use a period (.) to
delimit the variable name if the following character is a hyphen, as in the
following example:
VARSET APDATE VALUE(!@MYOBJ-ADID.-!@MYOBJ-ADFROM)

5. When an object variable is created from a Current Plan Operation command,
there will be an entry found by the identification arguments. To process only
the rows that were selected by the filter arguments, the object has an @FILTER
attribute, which contains a list of the item numbers returned by the filter
arguments.
For example:
VARSUB SCAN
DO X = 1 TO WORDS(@V(@CPO-@FILTER))

VARSET Y = WORD(@V(@CPO-@FILTER),@V(X))
DISPLAY "IA="||@V(@CPO!Y.-CPOPIA)

END

SAVELIST as object variables
A SAVELIST can also be accessed as an OBJECT variable, provided that an object
variable with the same name does not exist.
VARSUB SCAN
LIST SR SAVELIST(RESLIST)
DO X = 1 TO @V(@RESLIST)

DISPLAY @V(@RESLIST-!X.-RESNAME)
END

At the highest level, the number of entries in the SAVELIST can be accessed using
the following convention:
@<savelist-name>

Each individual record can be accessed by the following convention:
@<savelist-name>-<record-num>

Chapter 11. Variable substitution 235

Values of individual keywords on an individual record can be accessed by the
following convention:
@<savelist-name>-<record-num>-<keyword-name>

Note: To make a SAVELIST accessible as an OBJECT variable, ensure that you use
different names. If an OBJECT variable and SAVELIST use the same name, the
SAVELIST can be completely accessed only by USELIST keywords and SHOW
SAVELIST.

VARDATE – Generate date and time values from rule
Use the VARDATE command to generate a variable date from a rule.
VARDATE variable|= [BASE(yymmdd|EASTER)]

[CALENDAR(<calendar-name>)]
[DAY(ALL|MON|TUE|WED|THU|FRI|SAT|SUN)]
[FORMAT(<format-definition>)]
[MONTH(ALL|JAN|FEB|MAR|APR|MAY|JUN|

JUL|AUG|SEP|OCT|NOV|DEC|)]
[OFFSET(+n|-n)] [ONLY(n)|LAST(n)]
[RULE(BEFORE|AFTER|ON|NEAREST)] [FORMAT(<dateformat>)]
[SAVE(YES|NO)]
[SETUP(YES|NO|PROMPT)]
[TABLE(table)] [TIME(hhmmss)] [TIME(hhmmss|hhmm)]
[UNIT(DAY|WEEK|MONTH|YEAR|WORKDAY|<day-of-week>)]
[YEAR(nnnn|+n|-n)] [OFFSET(+n|-n)]

The VARDATE command can either generate a variable, or can be used to set defaults
for other VARDATE commands by using the equal sign (=) in place of the variable
name.

For example, VARDATE = YEAR(+1) does not create a variable, but makes all
subsequent VARDATE commands calculate dates for the following year.

Note:

1. Even if VARDATE command looks similar to a run cycle rule, it is designed to
define only a single date within the specified year.

2. Because VARDATE is designed to help determine the Free days within the
calendar, it does not refer to calendars. For the purposes of calculation, it
considers only the differences between weekdays and weekends.

BASE(yymmdd|EASTER)
Provides a base date for setting an OFFSET against. The base date can either
be provided in the yymmdd format, either hard coded or from a Workload
Automation Programming Language variable, or it can be calculated using
a special base name.

Special base names currently include EASTER. This returns the date of
Easter Sunday. Defined as the Sunday following the first full moon after
the Vernal Equinox, it cannot be easily calculated by VARDATE rules, so a
special BASE name is used to access the complex calculation needed.

Note: When you have two consecutive holidays that could be moved by
weekends, it is best to use BASE in the second, to reference the variable
generated by the first. In this way if the first date moves, the second date
does not clash with it. For example:
VARDATE PH_CHRISTMAS ONLY(25) MONTH(DEC) RULE(AFTER)
VARDATE PH_BOXING_DAY BASE(!PH_CHRISTMAS) OFFSET(1) RULE(AFTER)

236 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

CALENDAR(<calendar-name>)
Sets the calendar to use if UNIT(WORKDAY) is used.

DAY(ALL|MON|TUE|WED|THU|FRI|SAT|SUN)
Defines which day to count within the calculation period. The default
value is ALL, which counts every day in the period.

For example, VARDATE PH-CHRISTMAST ONLY(25) MONTH(DEC) RULE(AFTER)
returns 25 December as the primary result, but if that day falls on a
weekend it moves it to the following Monday.

If a specific DAY is chosen, the ONLY|LAST count refers only to that type of
day. For example, VARDATE PH_THANKSGIVING ONLY(4) DAY(THU) MONTH(NOV)
returns the fourth Thursday in November, not the fourth day in November.

FORMAT(<date-format>)
By default, VARDATE returns a date in the native IBM Workload Scheduler
for z/OS format YYMMDD.

You can use the FORMAT keyword to change the format to an alternative
layout by using a combination of the following case sensitive values:

Table 155. Values for the FORMAT keywords

Value Description Example

aa Part of the day in lower case.

v midnight for exactly 00.00.00

v am for 00.00.01 – 11.59.59

v noon for exactly 12.00.00

v pm for 12.00.01 – 23.59.59

Note: The text is set in the LANGxx file
using TERM entries DP00, DPAM, DP12
and DPPM respectively. If you want to
provide alternative values, a user
language member can be concatenated
after the system member to override the
supplied value.

pm for 1.05 pm

AA Part of the day in upper case.

v MIDNIGHT for exactly 00.00.00

v AM for 00.00.01 – 11.59.59

v NOON for exactly 12.00.00

v PM for 12.00.01 – 23.59.59

Note: The text is set in the LANGxx file
using TERM entries DP00, DPAM, DP12
and DPPM respectively. If you want to
provide alternative values, a user
language member can be concatenated
after the system member to override the
supplied value.

PM for 1.05 pm

CC The century part of the year. 20 for 9 July 2014

D Day of the month with no leading zeros. 9 for 9 July 2014

DD Day of the month with leading zeros. 09 for 9 July 2014

DDD Day of the year (julian day). 190 for 9 July 2014

h Hours in 12 hour format with no leading
zeroes.

1 for 1.05 pm.

Chapter 11. Variable substitution 237

Table 155. Values for the FORMAT keywords (continued)

Value Description Example

H Hours in 24 hour format with no leading
zeroes.

2 for 2.28 am.

hh Hours in 12 hour format with leading
zeroes.

01 for 1.05 pm.

HH Hours in 24 hour format with leading
zeroes.

13 for 1.05 pm.

M Month of the year with no leading zeroes. 7 for 9 July 2014

MM Month of the year with leading zeroes. 07 for 9 July 2014

mmm Three character name of the month in
mixed case.

Jul for 9 July 2014

MMM Three character name of the month in
upper case.

JUL for 9 July 2014

mmmm Full name of the month in mixed case. July for 9 July 2014

MMMM Full name of the month in upper case. JULY for 9 July 2014

N Minutes with no leading zeroes.
Note: Minutes is NN to avoid conflict
with MM for month.

5 for 1.05 pm.

NN Minutes with leading zeroes
Note: Minutes is NN to avoid conflict
with MM for month.

05 for 1.05 pm.

OO Ordinal day suffix in upper case. TH for 9 July 2014

oo Ordinal day suffix in lower case. th for 9 July 2013

S Seconds with no leading zeroes. 8 for 1:05:08 pm

SS Seconds with leading zeroes. 08 for 1:05:08 pm

W Day number of the week 1=Monday,
7=Sunday

3 for 9 July 2014

ww Two character name of the day in mixed
case.

We for 9 July 2014

WW Two character name of the day in upper
case.

WE for 9 July 2014

WWW Three character name of the day in upper
case.

WED for 9 July 2014

www Three character name of the day in mixed
case.

Wed for 9 July 2014

wwww Full name of the day in mixed case. Wednesday for 9 July 2014

WWWW Full name of the day in upper case. WEDNESDAY for 9 July 2014

YY Two digit year. 14 for 9 July 2014

YYYY Four digit year. 2014 for 9 July 2014

MONTH(ALL|JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC|)
Defines the scope of the period to start counting the days from. By default,
ALL covers the whole year, therefore ONLY counts from the start of the year
and LAST counts from the end of the year. Specifying a month targets the
scope to an individual month.

For example:

238 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

VARDATE PH_NEW_YEARS_DAY ONLY(1) /* First day of the year */
VARDATE PH_NEW_YEARS_EVE LAST(1) /* Last day of the year */
VARDATE PH_LABOR_DAY ONLY(1) DAY(MON) MONTH(MAY) /* First Monday in May */
VARDATE PH_CHRISTMAS ONLY(25) MONTH(DEC) /* 25th of December */

Specifying MONTH with no value corresponds to the current month, unless
you set OPTIONS DATE, in which case it uses the month specified.

For example, VARDATE Q2_W9 ONLY(9) DAY(MON) MONTH(APR) /* 9TH Monday
of 2ND Quarter */VARDATE FIRST_MON ONLY(1) DAY(MON) MONTH /*
1ST Monday current month */

Note: Even if the MONTH keyword sets the frame of reference to a particular
month, it does not restrict the results to that month. For example, VARDATE
Q2_W9 ONLY(9) DAY(MON) MONTH(APR) /* 9TH Monday of 2ND Quarter */

OFFSET(+n|-n)
After the date has been set by either BASE or ONLY|LAST, the OFFSET
keyword can be used to move the date backwards or forwards a number
of days. For example:
VARDATE MYFRI ONLY(5) DAY(WED) MON(AUG) OFFSET(2) /* FRI after 5th WED */
VARDATE GDFRI BASE(EASTER) OFFSET(-2) /* Good Friday */

ONLY|LAST(n)
Used to calculate dates entirely by rules, rather than use a BASE date as the
starting point. ONLY refers to a number of days from the start of the
calculation period, LAST refers to a number of days from the end of the
calculation period.

RULE(BEFORE|AFTER|ON|NEAREST)
After calculation and OFFSET, the date could point to a weekend date. This
might not be appropriate if VARDATE is being used to calculate public
holidays. The RULE keyword determines what to do with a weekend date:

BEFORE If the date points to a Saturday or Sunday move the date to the
Friday.

AFTER If the date points to a Saturday or Sunday move the date to the
Monday.

ON Do not adjust the date (default).

NEAREST
If the date points to a Saturday move the date to Friday, if it points
to a Sunday move the date to Monday.

SAVE(YES|NO)
The SAVE keyword determines whether and when the variable is written to
an IBM Workload Scheduler for z/OS JCL variable table:

YES The variable is written directly in the associated table at this point.

NO The variable is not written in the associated table, but might be
written later if a VARSAVE command is run referencing the table
associated to this variable.

If you specify the SAVE keyword with no argument, SAVE(YES) is assumed.

For example, VARSET MYVAR VALUE(Hello World) TABLE(MYTABLE) SAVE

Note: If you want to set several variables to be written to the same table, it
is more efficient to use a subsequent VARSAVE command than SAVE on every
VARSET.

Chapter 11. Variable substitution 239

For example,
VARSET MYVAR1 VALUE(Hello) TABLE(MYTABLE)
VARSET MYVAR2 VALUE(Ciao) TABLE(MYTABLE)
VARSET MYVAR3 VALUE(Bonjour) TABLE(MYTABLE)
VARSAVE MYTABLE

Note:

1. Variables do not need to already exist within a table. They are added to
the table if needed.

2. Tables to not need to exist to have variables saved to them. If a table
does not exist, it is created automatically, using OPTIONS OWNER to set
the Owner ID and the description is set to the creating Job name, Jes
Number and current date.

SETUP(YES|NO|PROMPT)
Sets the SETUP value for any new variables when saved into a JCL Variable
Table:

YES Resolve variable at SETUP phase.

NO Resolve variable at SUBMIT phase (default).

PROMPT Promptable variable.

The default value can be changed by OPTIONS SETUP.

TABLE(table)
Assigns an IBM Workload Scheduler for z/OS JCL Variable Table to a
Workload Automation Programming Language variable, so that it can be
saved in a JCL Variable Table. If the variable has already been referenced
from a JCL Variable Table, the TABLE keyword is not needed. If a Workload
Automation Programming Language variable does not have an assigned
table name, it cannot be saved.

In the following example, RUNCOUNT might not exist in MYTABLE, but
VARFAIL(NULL) will cause the first table in the search sequence at the point
to be assigned as the source table name:
VARSUB SCAN TABLE(MYTABLE) VARFAIL(NULL)
VARSET RUNCOUNT VALUE(!RUNCOUNT) DELTA(1) SAVE(YES)

You can however use the TABLE keyword to override the name of the table
from which the variable originally came, so the value can be saved to a
new table.

TIME(hhmmss) or TIME(hhmm)
Provides the time portion of a variable. The time can be specified in either
the format hhmmss or hhmm. If hhmm is used, zero seconds is assumed. If the
TIME keyword is not specified, the current time is assumed.

UNIT (DAY|WEEK|MONTH|YEAR|WORKDAY|<day-of-week>|HOURS|MINUTES|SECONDS)
Sets the unit by which the OFFSET is counted:

DAY Adds or subtracts a number of days (default).

WEEK Adds or subtracts 7 days per value of OFFSET.

MONTH Uses the same day of the month using the OFFSET value to move
backwards or forwards that number of months. If the resulting
month is too short for the origin date, the last day of the month is
used.

YEAR Uses the same day of the month in the resulting year, adjusting 29
February to 28 if necessary.

240 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

WORKDAY
Adds or subtracts a number of work days.

Any day of the week
You can also use any day of the week as a UNIT, for
exampleMONDAY, such that OFFSET(-1) UNIT(MONDAY) would find the
Monday preceding the origin date, and OFFSET(+1) UNIT(MONDAY)
would find the Monday following the origin date. If the origin
date and the unit are the same day of the week, the offset is seven
days.

HOURS Adds hours to the time portion of the date.

MINUTES
Adds minutes to the time portion of the date.

SECONDS
Adds seconds to the time portion of the date.

YEAR(yyyy|+n|-n)
Sets the year for which the date is calculated. By default, it uses the current
Workload Automation Programming Language Date, but can be set it to an
individual year, or a relative year. The YEAR keyword is most effectively
used by setting the default relative to the running job; in this way the same
job can run annually to calculate sets of dates for each year. For example,
VARDATE = YEAR(+1) /* Calculate dates for next year */

Note: BASE is mutually exclusive from the ONLY|LAST DAY|MONTH approach.
The YEAR keyword is relevant to both approaches, because the year affects
Special Base Name resolution as well as DAY|MONTH calculations.

Workload Automation Programming Language is provided with some members
containing rule definitions for public holidays for some countries. Look for
members in the SEQQWAPL library for members beginning with DATE and a two
character country code. These members can be used in conjunction with INCLUDE to
define a job to update elements in the database annually with public holidays.

OPTIONS DBMODE(UPDATE)

The following example shows an annual job to maintain calendars with public
holidays. The member DATEIT generates variables, which can be referenced in
Batch Loader as required:

Chapter 11. Variable substitution 241

Note:

1. In some countries, rules relating to public holidays falling on weekends may
vary regionally. In this case, the RULE keyword is not coded in the DATE
member so that a regionally appropriate statement can be coded before
referencing the DATE member. See the comments within the DATE member
before using it. For example:
VARDATE = RULE(NEAREST)
INCLUDE EQQFILE(DATEUS)

2. The DATExx members are provided to help ease the generation of calendars; if
the rules do not meet your requirements, you can create your own versions.

3. When VARDATE is run, message 033 is issued to show the value that is set. This
also adds the day of the week at the end of the message to confirm that the
date was set as you expected, as shown in the following example:
EQQI033A Variable TO set to 1503082100 (Sunday)

You can modify the contents of this confirmation aid by specifying an
alternative format with OPTIONS VARDATE.

VARSAVE – Save variables in a JCL Variable Table
Use the VARSAVE command to save all the variables that are assigned to the tables
specified.

VARSAVE [table-1,table-2,...,table-n]

You can specify as many tables as you want. For each table, the command saves
any variables flagged as SAVE(NO) and update the JCL Variable Table in IBM
Workload Scheduler for z/OS.

To update multiple variables in the same table, this is the most effective way
because the command updates all the variables in the same table
contemporaneously. Instead, VARSET and SAVE(YES) perform individual table
updates for each specified variable.

VARDATE = YEAR(+1) /* Generate dates for next year */
INCLUDE EQQFILE(DATEIT) /* Generates Italian holiday variables */
CLSTART CALENDAR(FESTIVI) DESCR(GIORNI FESTIVI PER L’ITALIA)

DROP(-365) /* Drop days over a year old */
CLDAY DAY(MONDAY) STATUS(W) DESCR(GIORNATA DI LAVORO)
CLDAY DAY(TUESDAY) STATUS(W) DESCR(GIORNATA DI LAVORO)
CLDAY DAY(WEDNESDAY) STATUS(W) DESCR(GIORNATA DI LAVORO)
CLDAY DAY(THURSDAY) STATUS(W) DESCR(GIORNATA DI LAVORO)
CLDAY DAY(FRIDAY) STATUS(W) DESCR(GIORNATA DI LAVORO)
CLDAY DAY(SATURDAY) STATUS(F) DESCR(GIORNO LIBERO)
CLDAY DAY(SUNDAY) STATUS(F) DESCR(GIORNO LIBERO)
CLDATE DATE(!GF_CAPODANNO) STATUS(F) DESCR(CAPODANNO)
CLDATE DATE(!GF_EPIFANIA) STATUS(F) DESCR(EPIFANIA)
CLDATE DATE(!GF_PASQUA) STATUS(F) DESCR(PASQUA)
CLDATE DATE(!GF_PASQUETTA) STATUS(F) DESCR(PASQUETTA)
CLDATE DATE(!GF_LIBERAZIONE) STATUS(F) DESCR(LIBERAZIONE)
CLDATE DATE(!GF_LAVORO) STATUS(F) DESCR(FESTA DEI LAVORO)
CLDATE DATE(!GF_REPUBBLICA) STATUS(F) DESCR(FESTA DEI REPUBBLICA)
CLDATE DATE(!GF_FERRAGOSTO) STATUS(F) DESCR(FERRAGOSTO)
CLDATE DATE(!GF_TUTTI_I_SANTI) STATUS(F) DESCR(TUTTI I SANTI)
CLDATE DATE(!GF_IMMACOLATA) STATUS(F) DESCR(IMMACOLATA CONCEZIONE)
CLDATE DATE(!GF_NATALE) STATUS(F) DESCR(NATALE)
CLDATE DATE(!GF_SANTA_STEFANO) STATUS(F) DESCR(SANTA STEFANO)

242 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Note:

1. Variables do not need to exist within a table. They are added to the table, if
needed.

2. Tables do not need to exist to have variables saved to them. If a table does not
exist, it is created automatically using OPTIONS OWNER to set the Owner ID; the
description is set to the creating Job Name, Jes Number and current date.

VARSET – Set a Workload Automation Programming Language
variable

Use the VARSET command to set a Workload Automation Programming Language
variable, work with it, and save it in a JCL Variable Table in IBM Workload
Scheduler for z/OS.
VARSET variable = <expression>

or
VARSET variable [VALUE(value)] [USRF(user-field-name)]

[@V(input-variable-name)] [SYMBOL(system-symbol-name)]
[MISSING(ERROR|FAIL|NULL|ASIS)] [ENVATTR(major,minor,item)]
[LEFT(n)] [RIGHT(n)] [SUBSTR(start[,length])]
[WORD(n,[ALL|BASIC|COMMA|NONE|PERIOD|SPACE],[<other>])]
[UPPER(YES|NO)] [DELTA(n)]
[TABLE(table)] [SAVE(YES|NO)] [SETUP(YES|NO|PROMPT)]

The VARSET command can be either a simple REXX style assignment or a keyword
driven process. You can also use the alternative command name SETVAR.

The REXX style is identified by an equal sign (=) after the variable name. The
characters following the equal sign (=) must be a standard REXX expression and
can use REXX functions. For more details about the REXX expressions and
available functions, see the TSO/E REXX Reference manual.

The first keyword of each VARSET command must be the variable to which the
command refers. All other keywords are optional. A VARSET command without
optional keywords, sets the variable to a null value. But if the variable was already
set or referenced in the Workload Automation Programming Language statements,
that value is kept.

The following keywords are optional:

VALUE(value)
Sets the value of the variable within Workload Automation Programming
Language. The VALUE keyword alone does not update any JCL variable
table.

For example, VARSET MYVAR VALUE(Hello World) causes any subsequent
references to !MYVAR to be replaced with Hello World.

The VALUE keyword can contain a reference to another or the same variable,
so that loads that variable at that specific point in your Workload
Automation Programming Language statements.

For example, VARSET MYADID VALUE(!OADID) causes MYADID to contain the
name of the currently running application.

USRF(user-field-name)

Sets the variable to the value of an operation user field with the same
name, if attached to the operation running the Workload Automation

Chapter 11. Variable substitution 243

Programming Language job. Workload Automation Programming
Language first searches for a match using the same case specified in USRF,
then looks for a match regardless of the case. The USRF keyword is not
available for the versions of IBM Workload Scheduler for z/OS without the
user field functionality.

@V(input-variable-name)

The @V keyword allows you to specify another Workload Automation
Programming Language variable and provide it with a value. Because the
content of this keyword is the name of the variable, you do not need to
specify the variable prefix (such as the exclamation mark !), instead you
can use variable names to provide all or part of the name, allowing
subscripting to be performed.

For example, in the command VARSET JOB VARIABLE(@MYOBJ-ADOP-!X-
ADOPJN) the variable !X is used to provide the segment sequence number
in an object variable, allowing all operations to be looped through.

SYMBOL(system-symbol-name)
Sets the variable to the value of a system symbol. If a symbol with that
name is not found, an empty value is returned.

MISSING(ERROR|FAIL|NULL|ASIS)
Determines what to do if a field specified in the USRF keyword is not
attached to the current operation. The MISSING keyword must be specified
after a USRF keyword. If you specify it before, the VARSET command fails.

The possible values are:

ERROR Workload Automation Programming Language issues an error
(RC=8) if the user field is not found.

FAIL Workload Automation Programming Language fails (RC=12) if the
user field is not found.

NULL The variable is set to a null value if the user field is not found.

ASIS The value is left unchanged if the user field is not found. The
VALUE keyword sets a default value, and the USRF keyword requires
only that you set the user field on the operation if you want to
override the default behaviour (this is the default behaviour for
Workload Automation Programming Language).

Note: ERROR issues RC=8, which by default allows the following
commands to be run; FAIL issues RC=12, which by default stops
processing further commands.

For example, in the command VARSET USERNAME VALUE(RANA)
USRF(OVR_USERNAME), the variable USERNAME is set to RANA, unless
the user has added a User Field to the running job named
OVR_USERNAME. In this case, the value in the User Field is kept.

In the command VARSET USERNAME USRF(User Name) MISSING(FAIL),
the variable USERNAME is set to the contents of a User Field named
User Name. If not found, the command fails.

ENVATTR(major,minor,item)
Returns information about the running job environment. You can specify
up to 3 levels of argument to identify the information that you require:

major The part of the environment from which the data is extracted.
Possible values are:

244 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

v CMD, for information about Workload Automation Programming
Language commands.

v DD, for information about DD statements in the running step.
v JCL, for information about steps in the JCL.
v OPTIONS, for values of a Workload Automation Programming

Language OPTIONS keyword.

minor The type of information you want, which varies depending on
major.

item Key information to identify the item from which you require
information.

For CMD, the item can be one of the following:
v The label of the command.
v The absolute command number, for example 1 is the command

in the current step.
v The relative command number, for example -1 is the command

before the current command.
v Special command labels:

LAST_RC
The previous command.

LAST_XRC
The last command that was actually run.

MAX_RC The command that issued the highest return code.

MAX_RESP
The command that issued the highest response code.

For DD the item can be one of the following:
v A DD name. If the DD name has multiple data sets coded, a

fourth argument can be coded to identify the number of the DD
statement. For example, ENVATTR(DD,DSNAME,MYDD,3) refers to the
3rd data set on the MYDD concatenation. If omitted, the first DD
statement for the DD name is returned.

v Absolute DD number. For example, 1 is the first DD statement in
the current step.

v Relative DD number. For example, -1 is the last DD statement in
the current step.

For JCL, the item can be one of the following:
v PROCSTEP or STEPNAME.PROCSTEP values tTo specify the step. If

duplicates occur, the latest name is used.
v Absolute step number. For example, 1 is the first step in the JCL.
v Relative step number. For example, -1 is the step before the

current step, 0 is the current step.
v Special step labels:

LAST_RC
The previous step.

LAST_XRC
The last step that was actually run.

Chapter 11. Variable substitution 245

MAX_RC The step that issued the highest return code, or most
recent ABEND.

For OPTIONS, there is no item value except when you set minor to
SPE; in this case, item can be the name of the SPE.

The possible combinations are listed in the following table:

Table 156. Valid combinations for ENVATTR

Major Minor Item Description

CMD # no Number of commands run so far,
including currently running
command.

CMD ARGS yes Argument of the identified
command.

CMD LABEL yes Label of the identified command.

CMD LEVEL yes Message level of the identified
command.

CMD NAME yes Name of the identified command.

CMD RC yes Return code or response code of
identified command (whichever is
highest).

DD # no Number of named DD statements
in the step.

DD # yes Number of DD statements for the
identified DD name.

DD DDNAME yes DD name of the identified DD
statement or concatenation.

DD DSNAME yes Data set name of the identified DD
statement. If the DD statement
refers to a member in a library, this
includes both the data set name
and library name.

DD LIBRARY yes If the identified DD statement
refers to a member in a library, this
is the data set portion of the name,
without the member name. If this
is an ordinary data set reference,
this value is the same as DSNAME.

DD MEMBER yes If the identified DD statement
refers to a member in a library, this
is the member name. If this is an
ordinary data set reference, this
value is blank.

JCL # no Number of steps in the job,
including the currently running
step.

246 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 156. Valid combinations for ENVATTR (continued)

Major Minor Item Description

JCL STEP yes Fully qualified step name of the
identified step. If this is a step in a
proc, the step name is composed
by the step calling the procedure
and the step within the procedure
that is running, separated by a
period. For example,
STEPNAME.PROCSTEP. If this is a
step running directly within the job
JCL, this value is only the single
step name without period.

JCL STEPNAME yes The name of the step calling the
procedure, if this step is within a
procedure. Otherwise, this value is
blank.

JCL PROCSTEP yes The name of the step actually
running the program.

JCL RC yes The return code of the step.

JCL PGM yes The name of the program for the
current step.

JCL PARM yes The PARM value for the current
step.

OPTIONS <keyword> no The value of the specified OPTIONS
keyword.

OPTIONS SPE yes Whether the SPE has been
activated (Y or N).

LEFT(n)
Sets the n left most characters of the current variable value as the new
value of the variable.

For example, VARSET MYPFX VALUE(!OADID) LEFT(4) causes MYPFX to contain
the first 4 characters of the application name.

You can use LEFT and RIGHT together in the same statement to extract
characters relative to the end of value of unknown length. For example,
VARSET MYPFX VALUE(!OADID) RIGHT(4) LEFT(1) causes MYPFX to contain
the 4th from last non-blank character of the application name.

RIGHT(n)
Sets the n right most non-blank characters of the current variable value as
the new value of the variable.

For example, VARSET MYPFX VALUE(!OADID) RIGHT(4) causes MYPFX to
contain the last 4 characters of the application name, regardless of how
long the application name actually is.

You can use RIGHT and LEFT together in the same statement to extract
characters relative to the end of value of unknown length. For example,
VARSET MYPFX VALUE(!OADID) RIGHT(4) LEFT(1) causes MYPFX to contain
the 4th from last non-blank character of the application name.

SUBSTR(start[,length])
Allows you to extract a specific portion of the current value of a variable,

Chapter 11. Variable substitution 247

by specifying the start position and optionally the length. For example,
VARSET MYBIT VALUE(!OADID) SUBSTR(2,1).

If the length is omitted, the value is set to the remaining part of the current
value from the start position onwards.

For example, VARSET MYBIT VALUE(!OADID) SUBSTR(3) sets MYBIT to be the
application name, minus the first 2 characters.

WORD(n,[ALL|BASIC|COMMA|NONE|PERIOD|SPACE],[<other>])]
Extracts individual words from a variable value. The number identifies
which word to extract.

For example, VARSET MYVAR VALUE(The quick brown fox) WORD(2) returns
quick.

Negative numbers extracts words from the end of the phrase. -1 identifies
the last word, -2 the 2nd to last, and so on.

For example, VARSET MYVAR VALUE(The quick brown fox) WORD(-2) returns
brown.

By default, words are considered to be space delimited, the optional
second and third parameters can be used to specify alternative delimiters.

The second parameter can be one of the following:

ALL Uses a space, comma, and period as delimiters.

BASIC Uses a space and comma as delimiters.

COMMA Uses a comma as delimiter.

NONE No predefined delimiters are used (the third parameter is used).

PERIOD Uses a period as delimiter.

SPACE Uses a space as delimiter.

The third keyword can be used to specify any additional characters. For
example, WORD(2,COMMA,;:) looks for the second word delimited by
comma, semi-colon and colon.

WORD(3,,/) looks for the third word delimited by a slash (/).

Consecutive delimiters without intervening characters return null words
for their positions. For examples:

VARSET MYFIRST VALUE(A,,C,,E,F) WORD(1,COMMA) returns A

VARSET MY5TH VALUE(A,,C,,E,F) WORD(5,COMMA) returns E

VARSET MYLAST VALUE(A,,C,,E,F) WORD(-1,COMMA) returns F

UPPER(YES|NO)
Forces the value into upper case. This is useful if the value will eventually
be used in something that requires upper case (for example, JCL), but the
source of the value cannot be depended upon to have forced upper case.
For example, a Variable table or User field.

UPPER(YES) forces upper case; UPPER(NO) leaves the value a sis. The UPPER
keyword without arguments defaults to UPPER(YES).

For example, SETVAR USERNAME VALUE(RANA) USRF(OVR_USERNAME) UPPER

DELTA(n)
Takes the current value and adds n to it. The current value must be
numeric and n must be numeric, otherwise the command fails. The only

248 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

exception is when the variable is set to a null value, which is considered
zero. This allows for new counter variables to be self initialising.

You can use this keyword to increment variables within JCL variable
tables. In the following example, the table MYTABLE is opened. Before the
VARSET command is run, the value of RUNCOUNT is substituted into the VALUE
keyword. Then, the VARSET command adds 1 to the current value and saves
it into MYTABLE. If RUNCOUNT does not already exist in MYTABLE, the
VARFAIL(NULL) results in the VALUE keyword containing a null value, which
the DELTA process considers as zero. The end result being RUNCOUNT contains
1 and is added to MYTABLE.
VARSUB SCAN TABLE(MYTABLE) VARFAIL(NULL)
VARSET RUNCOUNT VALUE(!RUNCOUNT) DELTA(1) SAVE(YES)

TABLE(table)
Assigns a JCL Variable Table to a Workload Automation Programming
Language variable, so that it can be saved in a JCL Variable Table. If the
variable has already been referenced from a JCL Variable Table, the TABLE
keyword is not needed. If a Workload Automation Programming Language
variable is not assigned to a table name, it cannot be saved.

In the following example, RUNCOUNT could not exist in MYTABLE, but
VARFAIL(NULL) causes the first table in the search sequence to be assigned
as the source table name. You can, however, use the TABLE keyword to
override the name of the table from which the variable originally came,
and save the value in a new table.
VARSUB SCAN TABLE(MYTABLE) VARFAIL(NULL)
VARSET RUNCOUNT VALUE(!RUNCOUNT) DELTA(1) SAVE(YES)

SAVE(YES|NO)
Determines if and when the variable is written to a JCL variable table:

YES The variable is written directly into the associated table at this
point.

NO The variable is not written into the associated table, but could be
written later if a VARSAVE command is run by referencing the table
associated to this variable.

If you specify SAVE without argument, SAVE(YES) is assumed.

Note:

1. To set several variables in the same table, it is more effective to use a
subsequent VARSAVE command than using SAVE on every VARSET.

2. Variables do not need to already exist within a table. They are added to
the table, if needed.

3. Tables to not need to exist to have variables saved to them. If a table
does not exist, it is created automatically, using OPTIONS OWNER to set
the Owner ID. The description is set to the creating Job name, Jes
Number, and current date.

SETUP(YES|NO|PROMPT)
Sets the SETUP value for any new variables when saved into a JCL Variable
Table:

YES Resolve variable at SETUP phase.

NO Resolve variable at SUBMIT phase (default).

PROMPT Promptable variable.

Chapter 11. Variable substitution 249

You can change the default with OPTIONS SETUP.

Note: The sequence of keywords on the VARSET statement does affect the result of
the command. Each keyword will act upon the value as it would stand at that
point in the sequence of actions performed by the keyword. For example,

VARSET MYVAR VALUE(12345678) LEFT(3) RIGHT(2) returns 23

VARSET MYVAR VALUE(12345678) RIGHT(2) LEFT(3) returns 78

VARSUB – Control variable substitution
Use the VARSUB command to control how variable substitution is performed within
Workload Automation Programming Language. You can specify VARSUB commands
at any point in the Workload Automation Programming Language command
stream, except within a Batch Loader construct for an object.
VARSUB [SCAN[(prefix,suffix)]|NOSCAN] [CLOSE[(table)]] [SEARCH(list)]

[TABLE(table)] [VARFAIL(ASIS|FAIL|NULL)]

SCAN[(prefix,suffix)]
Activates Workload Automation Programming Language variable
substitution. Without any arguments, the variable prefix is set to an
exclamation mark (!) and the suffix to a period (.). For example, VARSUB
SCAN results in a variable convention like !MYVAR.

By setting prefix and suffix, you can modify the way variables are
specified. For example, VARSUB SCAN(<,>) results in a variable convention
like <MYVAR>.

Note: If you use the same character for prefix and suffix, you must specify
both the prefix and suffix each time a variable immediately follows another
variable, such as in %MYVAR1%%MYVAR2%

When a VARSUB SCAN statement is found, it automatically opens the
Application and Global tables.If you want to open only specific tables, use
the SEARCH keyword before the SCAN keyword, as in the following example:
VARSUB SEARCH(MYTABLE,NOAPPL,NOGLOBAL) SCAN

NOSCAN deactivates Workload Automation Programming Language variable
substitution. The table search sequence is left as it is; if variable
substitution is activated again in the statements, the same search sequence
is used.

If substitution is being deactivated and you don not plan to activate it
again in the Workload Automation Programming Language statements,
close all open tables by using the CLOSE keyword in conjunction with
NOSCAN, as in the following example:
VARSUB NOSCAN CLOSE

CLOSE[(table)]
Closes a table and remove it from the search sequence. The variable
definitions and any dependencies are dropped from storage, so it is good
practice for systems with large tables or many dependent variable values.
It does not drop the value of any variable that has already been referenced
from the closed table, those values remain accessible for the remainder of
the Workload Automation Programming Language process.

250 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

You can close a single table, for example VARSUB CLOSE(MYTABLE), or close
all open tables, including the Application and Global tables, by not
specifying a table name.

If you need to close multiple tables, the CLOSE keyword can be repeated,
for example VARSUB CLOSE(MYTABLE1) CLOSE(MYTABLE2)

SEARCH(table,table,table,APPL|NOAPPL,GLOBAL|NOGLOBAL)
Sets the order in which tables are searched for variables. By default,
Workload Automation Programming Language first searches tables opened
with TABLE keywords, starting with the most recently opened. Then it
searches the Application table (if one is specified for the occurrence
running the Workload Automation Programming Language job) and the
Global table.

If not specified in the SEARCH keyword, the Application and Global tables
are automatically added as the last 2 tables in the sequence. Specifying
NOAPPL means that the Application table is not searched, and specifying
NOGLOBAL means that the Global table is not searched.

For example:
v VARSUB SEARCH(MYTABLE1,MYTABLE2) sets the search sequence to

MYTABLE1, then MYTABLE2, then the Application table, followed by
the Global table.

v VARSUB SEARCH(MTABLE1,APPL,MYTABLE2) sets the search sequence to
MYTABLE1, then the Application table, then MYTABLE2, followed by
the Global table.

v VARSUB SEARCH(MTABLE1,APPL,MYTABLE2,NOGLOBAL) sets the search
sequence to MYTABLE1, then the Application table, then MYTABLE2.
The Global table is not searched.

Tables already open but not specified in the SEARCH keyword, are
automatically closed. Tables that were not open and are specified in the
SEARCH keyword, are automatically opened.

VARFAIL(ASIS|FAIL|NULL)
Defines what to do if a variable referenced in a Workload Automation
Programming Language statement is not found:

ASIS The variable is left unresolved in the Workload Automation
Programming Language statement.

FAIL The parsing for the statement fails and it is not performed
(default).

NULL The variable is considered to have a null value and is assumed to
belong to the first table in the table search sequence, at the point
where it is referenced.

TABLE(table)
Opens a table and add it to the front of table search sequence. Opening a
table loads the definition, including the dependencies, of each variable
within the table, but it does not set any values of Workload Automation
Programming Language variables. This occurs only when a variable is
referenced within a Workload Automation Programming Language
statement.

With the TABLE keyword you can open only one table at a time. To add
multiple tables to the search sequence, you can repeat the TABLE keyword
as in the following example:
VARSUB TABLE(MYTABLE1) TABLE(MYTABLE2)

Chapter 11. Variable substitution 251

Note: Because Workload Automation Programming Language first
searches the latest opened table, the above command results in MYTABLE2
being searched before MYTABLE1.

Note:

v The sequence of keywords on the VARSUB statement does affect the result of the
command.

v VARSUB SCAN turns on variable substitution for subsequent statements. Variables
cannot be used within the same VARSUB statement that uses the SCAN keyword.
Hence, VARSUB SCAN TABLE(MYTABLE) is valid, while VARSUB SCAN TABLE(!OADID)
is not valid, because it uses a the variable !OADID. These should be coded on
separate statements, as in the following example:
VARSUB SCAN
VARSUB TABLE(!OADID)

252 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Chapter 12. Record processing

Record processing within Workload Automation Programming Language and
WAPLEXECs can account for a significant part of the processing time. When
processing thousands of records, there are some considerations you can make
within Workload Automation Programming Language to reduce the amount of
record processing and save run time.

LIST-SELECT Common Segment vs Record
For a record type that can have more than one segment, you can retrieve either the
whole record, or just the common segment. For large or complex records, the
difference between retrieving the common segment over the entire record could be
noticeable when retrieving thousands of records. Hence, if all the information you
need is in the common segment, ensure that you use the common segment as the
resource when running a SELECT command.

If the SELECT statements are being generated as a result of a LIST statement using
OPTIONS SELECT(Y) and only the common segment is needed, a LIST statement is
sufficient to extract the data you need. Setting OPTIONS SELECT(N) (default) results
in smaller records being retrieved and prevents extra requests to IBM Workload
Scheduler for z/OS for each identified object.

Note: If you need to produce Batch Loader output, you can use only a SELECT
command and the complete record must be retrieved.

OUTPUT and LOADDEF
Use the OUTPUT statement to determine which segments and fields are to be
extracted.

When a record is retrieved from IBM Workload Scheduler for z/OS using the
SELECT statement, the entire record is retrieved and the header is processed to
identify each segment. The segment is then processed only if there is a reference to
it. If you code only OUTPUT statements for the segments you need, the processing is
reduced.

Record processing involves extracting every field in the segment, creating a data
output record for the segment, running a Segment Processing Exit (if requested,)
and generating Batch Loader. Some of this processing is avoided if you code only
OUTPUT statements for the fields from which you require data.

Use the LOADDEF command to load in-built OUTPUT statements. The following
example shows how to load definitions of every field for every segment. Use this
command only when you need to extract entire objects, for example for Batch
Loader generation.
LOADDEF *

To load OUTPUT definitions for particular records, use LOADDEF in a more selective
way. For example, to load the in-built OUTPUT statements for the Application
Definition records specify:
LOADDEF AD*

© Copyright IBM Corp. 2016 253

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|

Restricting OUTPUT statements to just the Segments and Fields you need reduces the
amount of processing that Workload Automation Programming Language
performs, both in the amount of OUTPUT statements that must be parsed at startup,
and in the amount of segments that are processed when records are retrieved.

254 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|

Appendix A. Resource reference

Alternative resource names
The following alternative resource names can be used as alternatives to increase
the clarity of the command syntax.

Table 157. Alternative resource names

Action Resource Alternative name

DELETE AD ADCOM APPLICATION APPL
SCHEDULE SCHED JOBSTREAM

DELETE CL CLCOM CAL CALENDAR

DELETE CPOC OCCURENCE OCC

DELETE CPOP CPOPCOM OPERATION OP

DELETE CPPRE PRED PREDECESSOR

DELETE ETT TRIGGER

DELETE JCLV JCLVCOM TABLE

DELETE JS JSCOM JCL

DELETE OI OICOM INSTRUCTION TEXT

DELETE PR PRCOM PERIOD

DELETE SR SRCOM RESOURCE

DELETE WS WSCOM WORKSTATION

INSERT CPOC OCCURENCE OCC

INSERT CPOP CPOPCOM OPERATION OP

INSERT CPPRE PRED PREDECESSOR

LIST ADCOM AD APPLICATION APPL
SCHEDULE SCHED JOBSTREAM

LIST CLCOM CL CAL CALENDAR

LIST CPOC OCCURENCE OCC

LIST CPOPCOM CPOP OPERATION OP

LIST CPWSCOM CPWS

LIST ETT TRIGGER

LIST JCLVCOM JCLV TABLE

LIST JSCOM JS JCL

LIST OICOM OI INSTRUCTION TEXT

LIST PRCOM PR PERIOD

LIST SRCOM SR RESOURCE

LIST WSCOM WS WORKSTATION

MODIFY CPOC OCCURENCE OCC

MODIFY CPOP OPERATION OP

MODIFY IVL INTERVAL

SELECT AD APPLICATION APPL SCHEDULE
SCHED JOBSTREAM

© Copyright IBM Corp. 2016 255

Table 157. Alternative resource names (continued)

Action Resource Alternative name

SELECT CL CALENDAR CAL

SELECT CPOC OCCURENCE OCC

SELECT CPOP OPERATION OP

SELECT ETT TRIGGER

SELECT JCLV TABLE

SELECT JS JCL

SELECT OI INSTRUCTION TEXT

SELECT PR PERIOD

SELECT SR RESOURCE

SELECT WS WORKSTATION

OUTPUT field definition reference
The following text is the field content of the EQQFLALL member from the Workload
Automation Programming Language that serves as a reference for all available
fields.
/*--+
| |
| Licensed Materials - Property of IBM |
| 5698-A17 |
| (C) Copyright IBM Corp. 2010 All Rights Reserved. |
| US Government Users Restricted Rights - Use, duplication |
| or disclosure restricted by GSA ADP Schedule Contract |
| with IBM Corp. |
| |
+--+
| MODULE : EQQFLALL |
| PURPOSE : Output definition with all PIF data (no TRL data) |
| |
| HISTORY--|
| |
+--*/
/*--+
| GROUP=DB - All Database objects |
+--*/
/*--+
| RECORD=AD - Application description |
+--*/
/*--+
| SEGMENT=ADCOM - Common |
+--*/
OUTPUT ADCOM DATA(OUTDATA) LOADER(OUTBL)

KEYS(ADID , /* Application ID */
ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADTYPE , /* Application type */

/* A=Application, G=Group Def */
ADFROM) /* Valid-From date */

FIELDS(ADMONITOR , /* Monitor AD */
ADTO , /* Valid-To date */
ADDESC , /* Descriptive text */
ADGROUP , /* Authority group name */
ADOWNER , /* Owner ID */
ADODESC , /* Owner description */
ADPRIOR , /* Priority */

256 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

ADCAL , /* Calendar */
ADLDATE , /* Date last updated */
ADLTIME , /* Time last updated */
ADLUSER , /* Userid of last updater */
ADCOMVERS , /* Record version number */
ADGROUPID , /* Group definition ID */

/* ADLUTS , /* TOD clock at last update */
ADDSM , /* Deadline smoothing factor */
ADDLIM) /* Deadline feedback limit */

/*--+
| SEGMENT=ADKEY - Key |
+--*/
OUTPUT ADKEY DATA(OUTDATA) LOADER(OUTBL)

KEYS(ADID , /* Application ID */
ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADTO) /* Valid-To date */

/*--+
| SEGMENT=ADRUN - Run cycle |
+--*/
OUTPUT ADRUN DATA(=) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type */

/* A=Application, G=Group Def */
ADCOM.ADFROM , /* Valid-From date */
ADRSEQ) /* Sequence number */

FIELDS(ADRPER , /* Period name */
ADRVALF , /* Run cycle valid-from */
ADRVALT , /* Run cycle valid-to */
ADRUNDESC , /* Run cycle description */
ADRUNRULE , /* Run rule for work/free days */
ADRTYPE , /* Period based (N/X) | */

/* Rule based (R/E) */
/* ADRIAD , /* Offsets (start days within period) */

ADRIAT , /* Input arrival time */
ADRDD , /* Deadline day relative to start */
ADRDT , /* Deadline time */
ADRUNVERS , /* Record version number=1 */
ADRJVTAB , /* JCL variable table */
ADRSHTYPE , /* Shift type (W/D or blank) */
ADRINPOS , /* Number of positive */

/* run cycle offsets */
ADRINNEG , /* number of negative */

/* run cycle offsets */
/* ADRIADALL , /* Array of run cycle offset */

ADRIADPOS , /* Positive run cycle offsets */
/* ADRIADPOSX , /* Positive run cycle offsets (Hex) */

ADRIADNEG , /* Positive run cycle offsets */
/* ADRIADNEGX , /* Positive run cycle offsets (Hex) */

ADRREPEATEVRY , /* Repeat every */
ADRREPEATENDT , /* Repeat end time */
ADRSHIFT , /* Shift value (-999 to 999) */
ADRSHSIGN , /* Shift sign (F/B) */

/* ADRULEL , /* Rule length */
ADRULET) /* Rule text */

/*--+
! SEGMENT=ADAPD - Application Dependencies !
+--*/
OUTPUT ADAPD DATA(=) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */

Appendix A. Resource reference 257

|
|
|
|
|
|
|

ADCOM.ADTYPE , /* Application type */
/* A=Application, G=Group Def */

ADCOM.ADFROM , /* Valid-From date */
ADAPDADID) /* Predecessor applid */

FIELDS(ADAPDWSID /* predecessor wsid or blank */
ADAPDOPNO /* predecessor opid or 0 */
ADAPDDESC /* description */
ADAPDLTP /* LTP report print option A!C */
ADAPDVERS /* record version number (r) */
ADAPDFLAG /* flags */
ADAPDCSEL /* matching criteria: */

/* C/S/R/A */
/* (only for ext pred) */

ADAPDXMAND /* mandatory dep: */
/* P/C/A */

ADAPDIVTYPE /* interval type */
/* - A = absolute */
/* - R = relative */
/* --------------------- */
/* FROM: */
/* --------------------- */

ADAPDIVFWHE /* from when: */
/* - B = before IA */
/* - B = after IA */

ADAPDIVFHHH /* from hours HHH (only rel) */
ADAPDIVFHH /* from hours HH (only abs) */
ADAPDIVFMM /* from minutes MM */
ADAPDIVFD /* from days (only abs) */

/* --------------------- */
/* TO: */

/* --------------------- */
ADAPDIVTWHE /* to when: */

/* - B = before IA */
/* - A = after IA */

ADAPDIVTHHH /* to hours HHH (only rel) */
ADAPDIVTHH /* to hours HH (only abs) */
ADAPDIVTMM /* to minutes MM */
ADAPDIVTD) /* to days (only abs) */

/*--+
| SEGMENT=ADOP - Operation |
+--*/
OUTPUT ADOP DATA(OUTDATA) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type */
ADCOM.ADFROM , /* Valid-From date */
ADOPNO) /* Operation number */

FIELDS(ADOPWSID , /* Workstation */
ADOPJN , /* Jobname */
ADOPDESC , /* Operation description */
ADOPDUR , /* Duration in minutes */
ADOPSM , /* Smoothing factor (or -1) */
ADOPLIM , /* Limit for feedback (or -1) */
ADOPHRC , /* Highest OK RC (or -1) */
ADOPSTD , /* Relative day input arrival */
ADOPSTT , /* Input arrival time */
ADOPDD , /* Relative day deadline */
ADOPDT , /* Deadline time */
ADOP#R1 , /* Number of R1 resources required */
ADOP#R2 , /* Number of R2 resources required */
ADOP#PS , /* Number of servers used */
ADOPJCL , /* Job class */
ADOPPCL , /* Print class */
ADOPFOR , /* Form number */

258 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ADOPSUB , /* Automatic submit (Y/N) */
ADOPAJR , /* Automatic CPU release (Y/N) */
ADOPCAN , /* Cancel if late time (Y/N) */
ADOPTIM , /* Submit job on time (Y/N) */
ADOPAEC , /* Automatic error compl (Y/N) */
ADOPVERS , /* Record version number */
ADOPWTO , /* Deadline WTO (Y/N) */
ADOPRES , /* Restartable (Y/N/blank) */
ADOPRER , /* Rerouteable (Y/N/blank) */
ADOPCM , /* Restart and Cleanup */

/* A=Automatic */
/* I=Immediate */
/* M=Manual */
/* N=None */

/* ADOPWSINFO , /* Workstation info */
ADOPWSISET , /* Info available (Y/N) */
ADOPWSTYPE , /* Type G|C|P */
ADOPWSREP , /* Reporting attr (A/S/C/N) */
ADOPWSSUBT , /* Subtype JCL, STC, WTO */

/* none J/S/W/blank */
ADOPJCRT , /* (WLM) Critical job */
ADOPJPOL , /* (WLM) Late job policy */
ADOPUSRSYS , /* User sysout needed */
ADOPEXPJCL , /* Expanded jcl needed */
ADOPDURI , /* Duration in 100th of sec */
ADOPMON , /* Operation monitored */
ADOPCENSCR , /* Centralized script */
ADOPUSEEXT , /* Use ADEXTNAME field */
ADOPUSESE , /* Use ADEXTSE field */
ADOPUSESA , /* Use System Automation (Y/N) */
ADOPWLMCLASS , /* WLM Service Class */
ADOPCONDRJOB) /* Conditional recovery job */

/*--+
| SEGMENT=ADEXT - Extended name |
+--*/
OUTPUT ADEXT DATA(=) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type (for EQQILSON) */
ADCOM.ADFROM , /* Valid-From date */
ADOP.ADOPNO) /* Operation number (for EQQILSON) */

FIELDS(ADEXTOWNOP , /* Owning op number */
ADEXTNAME , /* Extended name */
ADEXTVERS , /* Record version number */
ADEXTSENAME) /* Scheduling environment name */

/*--+
| SEGMENT=ADRE - Remote job information |
+--*/
OUTPUT ADRE DATA(OUTDATA) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type */
ADCOM.ADFROM , /* Valid-From date */
ADOP.ADOPNO) /* Operation number */

FIELDS(ADRE_OWNOP , /* Owning operation number */
ADRE_JSNAME , /* ADID or Jobstream name */
ADRE_VERS , /* Record version number=1 */
ADRE_COMPL , /* Complete on failed bind */
ADRE_OPNO , /* Operation number */
ADRE_JSWS , /* Jobstream workstation */
ADRE_JOBNAME) /* Job name */

Appendix A. Resource reference 259

/*--+
| SEGMENT=ADSAI - Operation system automation information |
+--*/
OUTPUT ADSAI DATA(OUTDATA) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type (for EQQILSON) */
ADCOM.ADFROM , /* Valid-From date */
ADOP.ADOPNO) /* Operation number (for EQQILSON) */

FIELDS(ADSAIOWNOP , /* Owning operation number */
ADSAICOMMTEXT , /* System Automation operation */

/* command text */
ADSAICOMMTXT1 , /* Segment 1 of SA Operation Info */
ADSAICOMMTXT2 , /* Segment 2 of SA Operation Info */
ADSAICOMMTXT3 , /* Segment 3 of SA Operation Info */
ADSAICOMMTXT4 , /* Segment 4 of SA Operation Info */
ADSAIAUTOOPER , /* System Automation automated */

/* function (for operation) */
ADSAISECELEM , /* System Automation security */

/* element */
ADSAICOMPINFO) /* System Automation completion */

/*--+
| SEGMENT=ADSR - Special resource |
+--*/
OUTPUT ADSR DATA(OUTDATA) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type (for EQQILSON) */
ADCOM.ADFROM , /* Valid-From date */
ADOP.ADOPNO , /* Operation number (for EQQILSON) */
ADSRN) /* Special resource name */

FIELDS(ADSROWNOP , /* Owning operation number */
ADSRT , /* S = Shared, X = Exclusive */
ADSRVERS , /* Record version number=1 */
ADSRONER , /* Keep on error (Y/N/blank) */
ADSRAMNT , /* Quantity required. The value 0 */

/* means the total quantity of */
/* special resource. */

ADSRAVACO) /* On complete (Y/N/R/blank) */

/*--+
| SEGMENT=ADDEP - Dependency |
+--*/
OUTPUT ADDEP DATA(=) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type (for EQQILSON) */
ADCOM.ADFROM , /* Valid-From date */
ADOP.ADOPNO , /* Operation number (for EQQILSON) */
ADDEPADID , /* External predecessor/blank */
ADDEPOPNO) /* Operation number */

FIELDS(ADDEPOWNOP , /* Owning Op (the successor) */
ADDEPWSID , /* Workstation name */
ADDEPTPT , /* Transport time in minutes */
ADDEPDESC , /* Description */
ADDEPLTP , /* LTP REPORT PRINT OPTION (A/C) */
ADDEPVERS , /* Record version number=1 */
ADDEPJOBN , /* Jobname (not always set) */
ADDEPFLAG , /* Flags */

260 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

ADDEPCSEL , /* Resolution criteria (C/S/R/A) */
ADDEPXMAND , /* Is mandatory (N/P/C) */
ADDEPTYPE) /* Dependency type (I/E) */

/*--+
| SEGMENT=ADXIV - External Dependency Interval Definition |
+--*/
OUTPUT ADXIV DATA(=) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type (for EQQILSON) */
ADCOM.ADFROM , /* Valid-From date */
ADOP.ADOPNO , /* Operation number (for EQQILSON) */
ADXIVADID , /* Predecessor application name */
ADXIVWSID , /* Predecessor workstation ID */
ADXIVOPNO) /* Predecessor operation number */

FIELDS(ADXIVOWNOP , /* Owning Op (the successor) */
ADXIVTYPE , /* Interval type R/A (relative/ */

/* absolute) */
ADXIVFWHE , /* From When B/A (Before/After) */
ADXIVFHHH , /* From Hours HHH (Only relative) */
ADXIVFHH , /* From Hours HH (Only absolute) */
ADXIVFMM , /* From Minutes MM */
ADXIVFD , /* From Days (Only absolute) */
ADXIVTWHE , /* To When B/A (Before/After) */
ADXIVTHHH , /* To Hours HHH (Only relative) */
ADXIVTHH , /* To Hours HH (Only absolute) */
ADXIVTMM , /* To Minutes MM */
ADXIVTD) /* To Days (Only absolute) */

/*--+
| SEGMENT=ADCNC - Condition |
+--*/
OUTPUT ADCNC DATA(=) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type */
ADCOM.ADFROM , /* Valid-From date */
ADOP.ADOPNO , /* Operation number */
ADCNCID) /* Condition ID */

FIELDS(ADCNCOWNID , /* Owning AD operation */
ADCNCSIMPNO , /* Nuber of condition dependencies */
ADCNCCOUNT , /* Rule type: */

/* 0 = All */
/* N>0 = At least N of */

ADCNCVERS , /* Record version */
ADCNCDESC) /* Condition description */

/*--+
| SEGMENT=ADCNS - Condition dependency |
+--*/
OUTPUT ADCNS DATA(=) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type (for EQQILSON) */
ADCOM.ADFROM , /* Valid-From date */
ADOP.ADOPNO , /* Operation number (for EQQILSON) */
ADCNSID , /* Condition ID */
ADCNSSEQ) /* Sequence number */

FIELDS(ADCNSOWNID , /* Owning AD operation */
ADCNSPREAD , /* Predecessor Application ID */

Appendix A. Resource reference 261

ADCNSPREOPNO , /* Predecessor Operation Number */
ADCNSPRETYP , /* Check type: */

/* RC: Return code */
/* ST: Status */

ADCNSPRELOG , /* Logical operator type: */
/* GE: >= (Greater than or equal) */
/* GT: > (Greater than) */
/* LE: <= (Less than or equal) */
/* LT: < (Less than) */
/* EQ: = (Equal to) */
/* NE: <> (Not equal to) */
/* RG: RC - RC2 (Range) */

ADCNSVALRC , /* Return code value */
ADCNSVALST , /* Status value: */

/* S: Started */
/* C: Completed */
/* X: Suppressed by condition */
/* E: Error */

ADCNSPROC , /* Step name */
ADCNSSTEP , /* Procedure invocation step name */
ADCNSPREWSID , /* Predecessor Workstation ID */
ADCNSDEPTYP , /* Dependency type: */

/* I: Internal */
/* E: External */

ADCNSVALRC2 , /* Upper limit of return code range */
ADCNSVERS , /* Version */
ADCNSCCSEL) /* Resolution criteria (C/S/R/A) */

/*--+
| SEGMENT=ADCIV - Conditional Dependency Interval Definition |
+--*/
OUTPUT ADCIV DATA(=) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type */
ADCOM.ADFROM , /* Valid-From date */
ADOP.ADOPNO , /* Operation number */
ADCIVADID , /* Predecessor application name */
ADCIVCID , /* Predecessor condition ID */
ADCIVOPNO) /* Predecessor operation number */

FIELDS(ADCIVOWNOP , /* Owning Op (the successor) */
ADCIVTYPE , /* Interval type R/A (relative/ */

/* absolute) */
ADCIVFWHE , /* From When B/A (Before/After) */
ADCIVFHHH , /* From Hours HHH (Only relative) */
ADCIVFHH , /* From Hours HH (Only absolute) */
ADCIVFMM , /* From Minutes MM */
ADCIVFD , /* From Days (Only absolute) */
ADCIVTWHE , /* To When B/A (Before/After) */
ADCIVTHHH , /* To Hours HHH (Only relative) */
ADCIVTHH , /* To Hours HH (Only absolute) */
ADCIVTMM , /* To Minutes MM */
ADCIVTD) /* To Days (Only absolute) */

/*--+
| SEGMENT=ADUSF - User field |
+--*/
OUTPUT ADUSF DATA(OUTDATA) LOADER(=)

KEYS(ADCOM.ADID , /* Application ID */
ADCOM.ADSTAT , /* Application status */

/* A=Active, P=Pending */
ADCOM.ADTYPE , /* Application type (for EQQILSON) */
ADCOM.ADFROM , /* Valid-From date */
ADOP.ADOPNO , /* Operation number (for EQQILSON) */
ADUSFNAME) /* Field name */

262 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

FIELDS(ADUSFOWNID , /* Owning operation number */
ADUSFVALUE , /* Field value */
ADUSFVERS) /* Version=1 */

/*--+
| RECORD=AWSCL - All workstations closed |
+--*/
/*--+
| SEGMENT=AWSCL - All workstations closed interval |
+--*/
OUTPUT AWSCL DATA(OUTDATA) LOADER(OUTBL)

KEYS(AWCDATE) /* Date */

FIELDS(AWCFROM, /* From time */
AWCTO, /* To time */
AWCDESC, /* Description closed interval */
AWCVERS, /* Version of record */
AWCLDATE, /* Date last updated */
AWCLTIME, /* Time last updated */
AWCLUSER, /* Userid of last updater */
AWCLLUTS) /* Tod clock at last */

/*--+
| RECORD=CL - Calendar |
+--*/
/*--+
| SEGMENT=CLCOM - Calendar common segment |
+--*/
OUTPUT CLCOM DATA(OUTDATA) LOADER(OUTBL)

KEYS(CLNAME) /* Calender name */

FIELDS(CLDAYS, /* No. specific and week days */
CLSHIFT, /* End time of shift */
CLDESC, /* Description */
CLVERS, /* Version of record */
CLLDATE, /* Date last updated */
CLLTIME, /* Time last updated */
CLLUSER, /* Userid of last updater */
CLLUTS) /* Tod clock at last update */

/*--+
| SEGMENT=CLSD - Specific date |
+--*/
OUTPUT CLSD DATA(=) LOADER(=)

KEYS(CLCOM.CLNAME, /* Calender name */
CLSDDATE) /* Specific date */

FIELDS(CLSDSTAT, /* Status, work or free */
CLSDDESC) /* Description of the date */

/*--+
| SEGMENT=CLWD - Weekday |
+--*/
OUTPUT CLWD DATA(=) LOADER(=)

KEYS(CLCOM.CLNAME, /* Calender name */
CLWDDAY) /* Weekday */

FIELDS(CLWDSTAT, /* Status, work or free */
CLWDDESC) /* Description of the date */

/*--+
| RECORD=ETT - Event triggered tracking criteria |
+--*/

Appendix A. Resource reference 263

/*--+
| SEGMENT=ETT - Event triggered tracking criteria |
+--*/
OUTPUT ETT DATA(OUTDATA) LOADER(OUTBL)

KEYS(ETTTYPE, /* Type of trigger */
ETTNAME) /* Trigger name */

FIELDS(ETTVERS, /* Record version */
ETTAPPL, /* Application to trigger */
ETTJREP, /* Job replace */
ETTLUSER, /* Last update user */
ETTLDATE, /* Last update date */
ETTLTIME, /* Last update time */
ETTDEPR, /* Dependency resolution */
ETTASSW, /* Availability switched */
ETTLUTS) /* Tod clock at last update */

/*--+
| RECORD=GENDAYS - Output from the GENDAYS command |
+--*/
/*--+
| SEGMENT=GNDAY - GENDAYS date |
+--*/
OUTPUT GNDAY DATA(OUTDATA)

KEYS(GNDAYDATE /* Generated run day */
GNDAYIAT) /* IA Time (IAT keyword) */

FIELDS(GNDAYFLAGS, /* Flags */
GNDAYFMOB, /* Moved before - Free day rule */
GNDAYFMOA, /* Moved after - Free day rule */
GNDAYFKEP, /* Kept */
GNDAYFCAN, /* Cancelled - Free day rule */
GNDAYFEIA, /* Run on free day - Early IA */
GNDAYFOUT, /* Moved outside interval */
GNDAYFREM, /* Work date outside interval */
GNDAYFROM, /* From date (FROMDATE keyword) */
GNDAYTO, /* To date (TODATE keyword) */
GNDAYCAL, /* Calendar (CALENDAR keyword) */
GNDAYFDRULE, /* Free day rule (FDAYRULE keyword) */
GNDAYRULEDEF, /* Rule definition (RULEDEF keyword) */
TAG) /* GENDAYS: ADID,NUM,ADRPER,ADRTYPE */

/*--+
| RECORD=JCLV - JCL variable table |
+--*/
/*--+
| SEGMENT=JCLVCOM - Common |
+--*/
OUTPUT JCLVCOM DATA(OUTDATA) LOADER(OUTBL)

KEYS(JCLVCTAB) /* Jcl variable table id */

FIELDS(JCLVCLU, /* Last updating user */
JCLVCLT, /* Last update time hh:mm */
JCLVCLD, /* Last update date yymmdd */
JCLVC#V, /* No. of variables in table */
JCLVCOWN, /* Owner id */
JCLVCDSC, /* Description */
JCLVCLUTS) /* Tod clock at last update */

/*--+
| SEGMENT=JCLVVAR - Variable definition |
+--*/
OUTPUT JCLVVAR DATA(=) LOADER(=)

KEYS(JCLVCOM.JCLVCTAB, /* Jcl variable table id */
JCLVVVAR) /* Jcl variable name */

264 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

FIELDS(JCLVVDFL, /* Jcl variable def value */
JCLVVSTP, /* Prompt / setup / submit */
JCLVVUC, /* Upper case (Y/N) */
JCLVVLG, /* Value length */
JCLVVTYP, /* Verification type */
JCLVVEX, /* Substitution exit name */
JCLVVINP, /* Input required */
JCLVVPOS, /* Replace position jcl data */
JCLVVNUM, /* Numeric */
JCLVVCMP, /* Comparitive operator */
JCLVVPAT, /* Validation pattern */
JCLVVVLD1, /* Valid values - line 1 */
JCLVVVLD2, /* Valid values - line 2 */
JCLVVTXT1, /* Dialog text - line 1 */
JCLVVTXT2, /* Dialog text - line 2 */
JCLVVTXT3, /* Dialog text - line 3 */
JCLVVTXT4, /* Dialog text - line 4 */
JCLVVDES, /* Description */
JCLVVNRP, /* Number of dependent values */
JCLVVIND, /* Independent variable name */
JCLVVVER, /* Version number = 0 */
JCLVVSUS, /* Substring start position */
JCLVVSUL) /* Substring length */

/*--+
| SEGMENT=JCLVDEP - Variable dependency |
+--*/
OUTPUT JCLVDEP DATA(=) LOADER(=)

KEYS(JCLVCOM.JCLVCTAB, /* Jcl variable table id */
JCLVVAR.JCLVVVAR, /* Jcl variable name */
JCLVDIV) /* Value of setting variable */

FIELDS(JCLVDDV) /* Override value for depend */

/*--+
| RECORD=OI - Operator instruction |
+--*/
/*--+
| SEGMENT=OICOM - Operator instruction |
+--*/
OUTPUT OICOM DATA(OUTDATA) LOADER(OUTBL)

KEYS(OIADID, /* Application name */
OIOPNO, /* Operation number */
OITOD, /* Valid to date */
OITOT, /* Valid to time */
OIFROMD, /* Valid from date */
OIFROMT, /* Valid from time */
OIWSN) /* Workstation name */

FIELDS(OIJOBN, /* Job name */
OILDATE, /* Last update date */
OILTIME, /* Last update time */
OILUSER, /* Last update user */
OIVERS, /* Record version */
OILINES, /* Number of text lines */
OILUTS) /* Tod clock at last update */

/*--+
| SEGMENT=OIT - Operator instruction text |
+--*/
OUTPUT OIT DATA(=) LOADER(=)

KEYS(OICOM.OIADID, /* Application name */
OICOM.OIOPNO, /* Operation number */
OICOM.OITOD, /* Valid to date */
OICOM.OITOT, /* Valid to time */
OICOM.OIFROMD, /* Valid from date */

Appendix A. Resource reference 265

OICOM.OIFROMT, /* Valid from time */
OICOM.OIWSN, /* Workstation name */
OITSEQ) /* Line number */

FIELDS(OICOM.OIJOBN, /* Job name */
OITMAX, /* Number of lines */
OITTEXT) /* Text line */

/*--+
| RECORD=PR - Period |
+--*/
/*--+
| SEGMENT=PRCOM - Period Common Segment |
+--*/
OUTPUT PRCOM DATA(OUTDATA) LOADER(OUTBL)

KEYS(PRNAME) /* Period name */

FIELDS(PRVERS, /* Record version=1 */
PRTYPE, /* Cyclic/noncyclic type (A/W/N) */
PRDESC, /* Description of period */
PRINTVL, /* Interval of cyclic origins */
PRORIG#, /* Number of origin dates */
PRLDATE, /* Date last updated */
PRLTIME, /* Time last updated */
PRLUSER, /* Userid of last updater */
PRJVT, /* Jcl variable table */

/* PRTAB, /* Date table */
PRLUTS, /* Tod clock at last update */
PRWXRNG, /* ANALYSE: Period range in days */
PRWXDAY, /* ANALYSE: Period first day */
PRWXLST, /* ANALYSE: Period last day */
PRWXINT, /* ANALYSE: Intervale type */
PRWXALL, /* ALTERNATE: All dates */
PRWXBEG, /* ALTERNATE: Begin dates */
PRWXEND) /* ALTERNATE: End dates */

/*--+
| SEGMENT=PRDATE - Period date |
| (derived from PRTAB in PRCOM) |
+--*/
OUTPUT PRDATE DATA(=) LOADER(=)

KEYS(PRCOM.PRNAME /* Period name */
PRDSTART) /* Period start date */

FIELDS(PRDEND) /* Period end date */

/*--+
| RECORD=RG - Run cycle group |
+--*/
/*--+
| SEGMENT=RGCOM - Common |
+--*/
OUTPUT RGCOM DATA(OUTDATA) LOADER(OUTBL)

KEYS(RGID) /* Run cycle group ID */

FIELDS(RGIAT , /* Default input arrival time */
RGJVTAB , /* Default JCL variable table */
RGCAL , /* Default calendar */
RGDESC , /* Run cycle group description */
RGLUSER , /* Userid of last updater */
RGLDATE , /* Date last updated */
RGLTIME , /* Time last updated */

/* RGLUTS , /* TOD clock at last update */
RGCOMVERS , /* Record version number */
RGOWNER , /* Owner ID */

266 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

RGDD , /* Default deadline day (relative) */
RGDT) /* Default deadline time */

/*--+
| SEGMENT=RGRUN - Run cycle |
+--*/
OUTPUT RGRUN DATA(=) LOADER(=)

KEYS(RGCOM.RGID , /* Run cycle group ID */
RGRSEQ) /* Sequence number */

FIELDS(RGRNAME , /* Rule name */
RGRVALF , /* Run cycle valid-from */
RGRVALT , /* Run cycle valid-to */
RGRDESC , /* Run cycle description */
RGRRULE , /* Rule for work/free days */
RGRTYPE , /* Type (R/E/A/D) */
RGRIAT , /* Input arrival time */
RGRUNVERS , /* Record version number=1 */
RGRJVTAB , /* JCL variable table */
RGRIRDLEN , /* Rule definition length */
RGRREPEATEVERY , /* Repeat every */
RGRREPEATENDT , /* Repeat end time */
RGRSETID , /* Run cycle correlator */
RGRCALENDAR /* Run cycle calendar */
RGDD , /* Deadline day relative to start */
RGDT , /* Deadline time */

/* RGRIRDALL , /* Rule text (with length) */
RGRULEL , /* Rule length (RGRULEL + RGRULET) */
RGRULET) /* Rule text */

/*--+
| RECORD=SR - Special resource |
+--*/
/*--+
| SEGMENT=SRCOM - Common |
+--*/
OUTPUT SRCOM DATA(OUTDATA) LOADER(OUTBL)

KEYS(SRCNAME) /* Special resource name */

FIELDS(SRCGROUP, /* Group id */
SRCHIPER, /* Dlf resource (Y/N) */
SRCUSEDFOR, /* Used for (N/P/C/B) */
SRCONERROR, /* On error option */
SRCIVLNUM, /* Number of intervals */
SRCDESC, /* Description */
SRCONCOMPL, /* On complete (Y/N/R/blank) */
SRCMAXTYPE, /* Max limit type (Y/N/R) */
SRCMAXLIMIT, /* Max limit value */
SRCDEFQUANT, /* Default quantity */
SRCDEFAVAIL, /* Default availability */
SRCLUSER, /* Last updating user */
SRCLDATE, /* Date of last update */
SRCLTIME, /* Time of last update */
SRCLUTS, /* Tod clock at last update */
SRCVER , /* Record version */
SRCWXDBZ , /* WAXD Analyse: In TWSz database */
SRCWXREF , /* WAXD Analyse: Referenced */
SRCWXMAX , /* WAXD Analyse: Maximum usage */
SRCWXUSE , /* WAXD Analyse: Usage type */
SRCWXDEF , /* WAXD Analyse: Default workstation */
SRCWXCTL) /* WAXD Analyse: Control usage */

/*--+
| SEGMENT=SRIVL - Interval |
+--*/
OUTPUT SRIVL DATA(=) LOADER(=)

KEYS(SRCOM.SRCNAME, /* Special resource name */

Appendix A. Resource reference 267

SRIVLDAY, /* Day number */
SRIVLDATE, /* Specific date */
SRIVLFTIME) /* From time */

FIELDS(SRIVLTTIME, /* To time */
SRIVLQUANT, /* Max number of SRs to allocate */
SRIVLWSCNUM, /* Number of connected WSs */
SRIVLAVAIL) /* Workstation name */

/*--+
| SEGMENT=SRIWS - Interval workstation |
+--*/
OUTPUT SRIWS DATA(=) LOADER(=)

KEYS(SRCOM.SRCNAME, /* Special resource name */
SRIVL.SRIVLDAY, /* Day number */
SRIVL.SRIVLDATE, /* Specific date */
SRIVL.SRIVLFTIME, /* From time */
SRIWSNAME) /* Workstation name */

/*--+
| SEGMENT=SRDWS - Default workstation |
+--*/
OUTPUT SRDWS DATA(=) LOADER(=)

KEYS(SRCOM.SRCNAME, /* Special resource name */
SRDWSNAME) /* Workstation name */

/*--+
| RECORD=WS - Workstation description |
+--*/
/*--+
| SEGMENT=WSCOM - Common |
+--*/
OUTPUT WSCOM DATA(OUTDATA) LOADER(OUTBL)

KEYS(WSNAME) /* Workstation name */

FIELDS(WSVERS , /* Version of record */
WSTYPE , /* Workstation type (G/C/P/R) */
WSREP , /* Reporting attribute (A/S/C/N) */
WSPREP , /* Jobsetup ability */
WSTRSPT , /* Transport time from predecessor WS */
WSOPDUR , /* Default operation duration */
WSDAY# , /* Total number of days */
WSTOTIVL# , /* Number of open intervals */
WSROUT , /* Printout routing for dp */
WSDESC , /* Workstation description */
WSPSJT , /* Control on servers */
WSSPLIT , /* Splittable attribute */
WSR1NAM , /* R1 resource name */
WSR1PLAN , /* Resource used at planning */
WSR1CONT , /* Resource used for control */
WSR2NAM , /* R2 resource name */
WSR2PLAN , /* Resource used at planning */
WSR2CONT , /* Resource used for control */
WSSUDS , /* Destination */
WSLDATE , /* Date last updated */
WSLTIME , /* Time last updated */
WSLUSER , /* Userid of last updater */
WSSTC , /* Started task ability (Y/N) */
WSWTO , /* WTO ability (Y/N) */
WSPSPL , /* Planning on servers (Y/N) */
WSAUTO , /* System Automation workstation (Y/N) */
WSLUTS , /* TOD clock at last update */
WSOPDURI , /* Default op dur in 100th sec */
WSTWS , /* FTA WS status (Y/N) */
WSWAIT , /* Wait workstation (Y/N) */
WSVIRT , /* Virtual workstation (Y/N) */

268 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

WSDES# , /* Number of destinations */
WSUSAGE , /* Server usage (B/P/C/N) */
WSZCENTR , /* Z-Centric Workstation (Y/N) */
WSRENG) /* Remote engine type (Z/D/blank) */

/*--+
| SEGMENT=WSCPUREC - Workstation CPU record |
+--*/
OUTPUT WSCPUREC DATA(OUTDATA) LOADER(OUTBL)

KEYS(WSNAME) /* Workstation name */

FIELDS(CPUOS , /* Operating system */
CPUNODE , /* Node name */
CPUTCPIP , /* Port number */
CPUDOMAIN , /* Domain name */
CPUHOST , /* Cpu name */
CPUACCESS , /* Access method */
CPUTYPE , /* Agent type */
CPUAUTLNK , /* Auto link (ON/OFF) */
CPUFULLSTAT , /* Full status (ON/OFF) */
CPURESDEP , /* Resolve dependencies (ON/OFF) */
CPUSERVER , /* Server ID */
CPULIMIT , /* Job limit */
CPUTZ , /* Time zone */
CPUUSER , /* Default user */
SSLLEVEL , /* SSL level (OFF/ON/ENABLED/FORCE) */
SSLPORT , /* SSL port number */
FIREWALL) /* Behind firewall (NO/YES) */

/*--+
| SEGMENT=WSIVL - Open interval |
+--*/
OUTPUT WSIVL DATA(=) LOADER(=)

KEYS(WSCOM.WSNAME , /* Workstation name */
WSIVLTYPE, /* Type of interval (WSSD/WSWD) */
WSIVLDAY , /* Interval day or date */
WSIVLS) /* Start time of interval */

FIELDS(WSIVLE , /* End time of interval */
WSIVLPS# , /* Number of parallel servers */
WSIVLR1# , /* R1 capacity */
WSIVLR2# , /* R2 capacity */
WSIVLAWS) /* Alternate workstation name */

/*--+
| SEGMENT=WSSD - Specific date |
+--*/
OUTPUT WSSD DATA(=) LOADER(=)

KEYS(WSCOM.WSNAME , /* Workstation name */
WSSDDATE) /* Specific date */

FIELDS(WSSDDESC , /* Description of the date */
WSSDIVL#) /* Number of open intervale */

/*--+
| SEGMENT=WSWD - Weekday |
+--*/
OUTPUT WSWD DATA(=) LOADER(=)

KEYS(WSCOM.WSNAME , /* Workstation name */
WSWDDAY) /* Week day */

FIELDS(WSWDDESC , /* Description of the date */
WSWDDIVL#) /* Number of open intervale */

/*--+
| SEGMENT=WSAM - Workstation access method |
+--*/
OUTPUT WSAM DATA(=) LOADER(=)

Appendix A. Resource reference 269

KEYS(WSCOM.WSNAME) /* Workstation name */

FIELDS(WSAMACC , /* Access method name */
WSAMADDR , /* Node address */
WSAMPORT) /* Port */

/*--+
| SEGMENT=WSDEST - Workstation destination |
+--*/
OUTPUT WSDEST DATA(=) LOADER(=)

KEYS(WSCOM.WSNAME , /* Workstation name */
WSDVDEST) /* Destination */

/*--+
| SEGMENT=WSVCOM - Common |
+--*/
OUTPUT WSVCOM DATA(OUTDATA) LOADER(OUTBL)

KEYS(WSVNAME, /* Workstation name */
WSVDESTN) /* Workstation destination */

FIELDS(WSVVERS , /* Version of record */
WSVTYPE , /* Workstation type (G/C/P) */
WSVREP , /* Reporting attribute (A/S/C/N) */
WSVDDAY# , /* Total number of days */
WSVDTOTIVL# , /* Number of open intervals */
WSVPSJT , /* Control on servers */
WSVSPLIT , /* Splittable attribute */
WSVR1NAM , /* R1 resource name */
WSVR1PLAN , /* Resource used at planning */
WSVR1CONT , /* Resource used for control */
WSVR2NAM , /* R2 resource name */
WSVR2PLAN , /* Resource used at planning */
WSVR2CONT , /* Resource used for control */
WSVLDATE , /* Date last updated */
WSVLTIME , /* Time last updated */
WSVLUSER , /* Userid of last updater */
WSVSTC , /* Started task ability (Y/N) */
WSVLUTS) /* TOD clock at last update */

/*--+
| SEGMENT=WSVIVLD - Open interval |
+--*/
OUTPUT WSVIVLD DATA(=) LOADER(=)

KEYS(WSVCOM.WSVNAME , /* Workstation name */
WSVCOM.WSVDESTN , /* Workstation destination */
WSVIVLDTYPE , /* Type of interval (WSSD/WSWD) */
WSVIVLDDAY , /* Interval day or date */
WSVIVLDS) /* Start time of interval */

FIELDS(WSVIVLDE , /* End time of interval */
WSVIVLDPS# , /* Number of parallel servers */
WSVIVLDR1# , /* R1 capacity */
WSVIVLDR2#) /* R2 capacity */

/*--+
| SEGMENT=WSVSDD - Specific date |
+--*/
OUTPUT WSVSDD DATA(=) LOADER(=)

KEYS(WSVCOM.WSVNAME , /* Workstation name */
WSVCOM.WSVDESTN , /* Workstation destination */
WSVSDDDATE) /* Specific date */

FIELDS(WSVSDDDESC , /* Description of the date */
WSVSDDIVL#) /* Number of open intervale */

/*--+
| SEGMENT=WSVWDD - Weekday |

270 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

+--*/
OUTPUT WSVWDD DATA(=) LOADER(=)

KEYS(WSVCOM.WSVNAME , /* Workstation name */
WSVCOM.WSVDESTN , /* Workstation destination */
WSVWDDDAY) /* Week day */

FIELDS(WSVWDDDESC , /* Description of the date */
WSVWDDDIVL#) /* Number of open intervals */

/*--+
| GROUP=CP - All Current Plan objects |
+--*/
/*--+
| RECORD=CPOC - Current plan occurrence |
+--*/
/*--+
| SEGMENT=CPOC - Current plan occurrence |
+--*/
OUTPUT CPOC DATA(OUTDATA)

KEYS(CPOCADI , /* Application ID */
/* CPOCIA , /* Input arrival */

CPOCIAD , /* Modified if IA is modified */
CPOCIAT) /* else original from plan */

FIELDS(CPOCGRP , /* Authority group */
/* CPOCIAO , /* Input arrival from LTP */

CPOCIAOD , /* Date */
CPOCIAOT , /* Time */
CPOCDESC , /* Descriptive text */
CPOCOID , /* Owner ID */
CPOCODES , /* Owner description */

/* CPOCDL , /* Deadline */
CPOCDLD , /* Date */
CPOCDLT , /* Time */

/* CPOCAA , /* Actual arrival */
CPOCAAD , /* if arrived */
CPOCAAT , /* else blanks */

/* CPOCAC , /* Actual completion */
CPOCACD , /* if completed */
CPOCACT , /* else blanks */
CPOCERR , /* Occurrence error code */
CPOCST , /* Occurrence status */
CPOCRER , /* Rerun requested (Y/N) */
CPOCADDED , /* Added to current plan (Y/N) */
CPOCLATE , /* Latest out passed (Y/N) */
CPOCADDF , /* Adding function (E/D/P/A/) */
CPOCMON , /* Monitoring flag */
CPOCPRI , /* Priority */
CPOC#OP , /* No. ops in occurrence */
CPOCOPC , /* No. ops completed */
CPOC#ER , /* No. ops ended in error */
CPOC#UN , /* No. ops undecided */
CPOC#ST , /* No. ops started */
CPOCRDU , /* Remaining dur critical path */
CPOCROP , /* Remaining ops critical path */
CPOCCWS , /* Wsname of 1st critical op */
CPOCCOP , /* Op no. of 1st critical op */
CPOCVERS , /* Version number=1 */
CPOCJVT , /* JCL variable table */
CPGROUPID , /* Group definition ID */
CPOCCAL , /* Calendar name */
CPOCRDUI , /* Remain. dur crit. path sec */
CPOCOCTO , /* Occurrence token */

/* CPOCCLO , /* First critical op latest out */
CPOCCLOD , /* Date */

Appendix A. Resource reference 271

CPOCCLOT , /* Time in 100th of sec. */
CPOCETTCRIT , /* ETT criteria */
CPOCETTTYP , /* ETT type: J or R */
CPOCETTJOB , /* ETT job name */
CPOCETTJID , /* ETT job ID */
CPOCETTGROOT , /* ETT GDG root */
CPOCETTEVNAM , /* Complete ETT event name */
CPOCETTGGEN) /* ETT GDG generation */

/*--+
! SEGMENT=CPOCPRE - Predecessor !
+--*/
OUTPUT CPOCPRE DATA(=)

KEYS(CPOCCOM.CPOCADI , /* Owning application ID */
CPOCCOM.CPOCIAD , /* Owning application IA date */
CPOCCOM.CPOCIAT , /* Owning application IA time */
CPOCPREADI , /* Application ID */
CPOCPRENO , /* Operation number */

/* CPOCPREIA , /* Input Arrival */
CPOCPREIAD , /* Modified if IA is modified */
CPOCPREIAT) /* else original from plan */

FIELDS(CPOCPRECO , /* Predecessor completed (Y/N) */
CPOCPRENR , /* PRED. WS was nonreporting */
CPOCPRETT , /* Transport time */
CPOCPREND , /* Pending pred occurrence */
CPOCPREVERS , /* Version number=1 */
CPOCPREJN , /* Predecessor job name */
CPOCPREST , /* Predecessor status */
CPOCPMATC , /* Predecessor resolution criteria */

/* Blank (Manually chosen) */
/* C (Closest preceding) */
/* S (Same day) */
/* A (Absolute interval) */
/* R (Relative interval) */

CPOCPRECRITPATH , /* Predecessor of an operation */
/* belonging to a critical path */

CPOCPMANDP) /* Y: Mandatory Pending -Cannot be set */

/*--+
! SEGMENT=CPOCSUC - Successor !
+--*/
OUTPUT CPOCSUC DATA(=)

KEYS(CPOCCOM.CPOCSUCADI , /* Owning application ID */
CPOCCOM.CPOCSUCIAD , /* Owning application IA date */
CPOCCOM.CPOCSUCIAT , /* Owning application IA time */
CPOCSUCADI , /* Application ID */
CPOCSUCNO , /* Operation number */

/* CPOCSUCIA , Input Arrival */
CPOCSUCIAD , /* Modified if IA is modified */
CPOCSUCIAT) /* else original from plan */

FIELDS(CPOCSUCCR , /* On critical path (Y/N) */
CPOCSUCVERS , /* Version number=1 */
CPOCSUCJN , /* Successor job name */
CPOCSUCST) /* Successor status */

/*--+
| RECORD=CPOP - Current plan operation |
+--*/
/*--+
| SEGMENT=CPOPCOM - Common |
+--*/
OUTPUT CPOPCOM DATA(OUTDATA)

KEYS(CPOPADI , /* Application ID */
CPOPNO , /* Operation number */

/* CPOPIA , /* Application input arrival */
CPOPIAD , /* modified if ia is modified */

272 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CPOPIAT) /* else original from plan */

FIELDS(CPOPGRP , /* Authority group */
CPOPDESC , /* Descriptive text */
CPOPJBN , /* Op OS jobname / blank */
CPOPJES , /* Job id */
CPOPWSN , /* Workstation name */
CPOPFRM , /* Form number / blank */

/* CPOPPS , /* Planned start */
CPOPPSD , /* Date / blank */
CPOPPST , /* Time / blank */

/* CPOPPE , /* Planned end */
CPOPPED , /* Date / blank */
CPOPPET , /* Time / blank */

/* CPOPOI , /* Operation input arrival */
CPOPOID , /* Date / blank */
CPOPOIT , /* Time / blank */

/* CPOPOD , /* Operation deadline */
CPOPODD , /* Date / blank */
CPOPODT , /* Time / blank */

/* CPOPLO , /* Latest out */
CPOPLOD , /* Date */
CPOPLOT , /* Time */

/* CPOPAS , /* Actual start */
CPOPASD , /* Date / blank */
CPOPAST , /* Time / blank */

/* CPOPAA , /* Actual arrival */
CPOPAAD , /* Date / blank */
CPOPAAT , /* Iime / blank */

/* CPOPIS , /* Intermed.start,if intrupted */
CPOPISD , /* Date / blank */
CPOPIST , /* Time / blank */

/* CPOPAE , /* Actual end */
CPOPAED , /* Date / blank */
CPOPAET , /* Time / blank */

/* CPOPED , /* Estimated duration */
CPOPEDH , /* Estimated duration hours HH */
CPOPEDM , /* Estimated duration mins MM */

/* CPOPAD , /* Actual duration */
CPOPADH , /* Act. duration hrs HHHH / blank */
CPOPADM , /* Act. duration mins MM / blank */
CPOPST , /* Current status */
CPOPERR , /* Error code */
CPOPXST , /* Extended status */
CPOP#PS , /* No. parallel servers required */
CPOP#R1 , /* No. r1 resources required */
CPOP#R2 , /* No. r2 resources required */
CPOPPRI , /* Priority */
CPOP#SU , /* Number of successors */
CPOP#PR , /* Number of predecessors */
CPOP#PC , /* No. completed predecessors */
CPOP#SR , /* No. of special resources */
CPOPPTT , /* Transport time if pred, min */
CPOPRDD , /* SMF reader date */

/* (00YYDDDF or 01YYDDDF) */
CPOPRDT , /* SMF reader time */
CPOPJCL , /* Jobclass, sysout class / blank */
CPOPAEC , /* Auto error completion (Y/N) */
CPOPASUB , /* Auto job submission (Y/N) */
CPOPAJR , /* Auto hold/release (Y/N) */
CPOPTIME , /* Time job (Y/N) */
CPOPCLATE , /* Cancel if late (Y/N/blank) */
CPOPMCPUP , /* Time of last mcp update */
CPOPCPTH , /* On critical path (F/Y/N) */
CPOPLATE , /* Latest out passed (Y/) */
CPOPURG , /* Urgent (Y/) */
CPOPJST , /* Job status (H/Q/ /N) */

Appendix A. Resource reference 273

CPOPPREP , /* JCL preparation op. (Y/N) */
CPOPOIST , /* Op instr exist (Y/N/+) */
CPOPHRC , /* Highest OK return code */
CPOPVERS , /* Version number=1 */
CPOPWTO , /* Deadline WTO (Y/N) */
CPOPRES , /* Restartable (Y/N/blank) */
CPOPRER , /* Reroutable (Y/N/blank) */
CPOPHRCS , /* Highest RC set (Y/N/blank) */
CPOPMHLD , /* Manually held op (Y/N/blank) */
CPOPNOP , /* NOPed operation (Y/N/blank) */
CPOPCATM , /* Restart and cleanup A=Autom., */

/* I=Immed., M=Manual, N=None */
CPOPUDA , /* User field */

/* CPOPCMDS , /* Operation commands */
CPOPCMD , /* Operation command */
CPOPCSTA , /* Cleanup status */

/* CPOPWSINFO , /* Workstation information */
CPOPWSISET , /* Info available (Y/N) */
CPOPWSTYPE , /* WS type G/C/P */
CPOPWSREP , /* Reporting attr A/S/C/N */
CPOPWSSUBT , /* Subtype JCL, STC, WTO, NONE */

/* J/S/W blank */
CPOPWSSTAT , /* Status A/F/O/U/blank */
CPOPWSRRM , /* Reroute mode (Y/N) */
CPOPJCRT , /* Workload monitor critical job */
CPOPJPOL , /* Workload monitor late job policy */
CPOPEDUI , /* Estimated dur. in 100th of sec */
CPOPADUI , /* Actual dur. in 100th of sec */
CPOPPSTI , /* Plan. start time 100th of sec */
CPOPPETI , /* Plan. end time in 100th of sec */
CPOPLOTI , /* Latest out time 100th of sec */
CPOPASTI , /* Actual start time 100th of sec */
CPOPAATI , /* Actual arr. time 100th of sec */
CPOPISTI , /* Int. start time 100th of sec */
CPOPAETI , /* Actual end time 100th of sec */
CPOPEXPJCL , /* Expanded JCL needed */
CPOPUSRSYS , /* User sysout needed */
CPOPOCTO , /* Occurrence token */
CPOPMON , /* Monitoring flag */
CPOPCENSCR , /* Centralised script */
CPOPNLVL , /* Max nesting level */
CPOPRECIS , /* Y if CPREC segment exists */
CPOPTWSJN , /* Rule used for jobname in Symphony */
CPOPINSYM , /* Job in Symphony (N/S/Y) */
CPOPDELAY , /* Started on wait workstation (Y/N) */
CPOPCRITPATH , /* Belonging to critical path */
CPOPWLMCLASS , /* WLM service class */
CPOPWAITSE , /* Waiting for scheduling */

/* environment (N/S/Y) */
CPOPVIRTDEST , /* Submission destination */
CPOPEXECDEST , /* Execution destination */
CPOPDREM , /* Removable by DP */
CPOPCONDRJOB , /* Conditional recovery job */
CPOPUNEXPRC , /* Unexpected RC (Y/N) */
CPOPSHADOW , /* Shadow job (Y/N) */
CPOPFTRC , /* FTA WS numeric RC */
CPOP#CPROP , /* Number of conditional predecessors */
CPOP#CSUOP , /* Number of conditional successors */
CPOP#CONDTOT , /* Number of conditions */
CPOP#COND_T , /* Number of True conditions */
CPOP#COND_F , /* Number of False conditions */
CPOP#PX , /* Number of predecessors in X status */
CPOPORIGRC , /* Original return code */
CPOPBNDST , /* Bind status for shadow jobs */

/* Possible values for CPOPBNDST are: */
/* P - Bind sent */
/* J - Sending bind */

274 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

/* B - Bind error */
/* I - Bind OK */

CPOPWPEND , /* Waiting for at least 1 P-Pred */
CPOPWMPEND , /* Waiting for at least 1 Mand Pred */
CPOPWMPPEND) /* Waiting for at least 1 Mand/P-Pred */

/*--+
| SEGMENT=CPEXT - Operation extended name |
+--*/
OUTPUT CPEXT DATA(=)

KEYS(CPOPCOM.CPOPADI , /* Application ID */
CPOPCOM.CPOPIA , /* Application input arrival */
CPEXTOWNOP) /* Owning op number */

FIELDS(CPEXTNAME , /* Extended name */
CPEXTVERS) /* Record version number */

/*--+
| SEGMENT=CPSAI - Operation system automation information |
+--*/

/*--+
| SEGMENT=CPREND - Distributed remote job info |
+--*/
OUTPUT CPREND DATA(=)

KEYS(CPOPCOM.CPOPADI , /* Owning application ID */
CPOPCOM.CPOPIA , /* Owning application input arrival */
CPRDOWOP) /* Owning operation number */

FIELDS(CPRDVERS , /* Version */
CPRDCOMP , /* Complete on failed bind (Y/N) */
CPRDJSN , /* Job stream name */
CPRDJSWS , /* Job stream workstation */

/* CPRDIAD , /* Input arrival date (YYMMDD) | blank */
/* CPRDIAT , /* Input arrival time (HHMM) | blank */

CPRDIA) /* Input arrival (YYMMDDHHMM) | blank */

/*--+
| SEGMENT=CPRENZ - z/OS remote job info |
+--*/
OUTPUT CPRENZ DATA(=)

KEYS(CPOPCOM.CPOPADI , /* Owning application ID */
CPOPCOM.CPOPIA , /* Owning application input arrival */
CPRZOWOP) /* Owning operation number */

FIELDS(CPRZVERS , /* Version */
CPRZCOMP , /* Complete on failed bind (Y/N) */
CPRZOPNO , /* Operation number */
CPRZOCCN , /* Application ID */
CPRZWS , /* Job workstation */
CPRZJOBN , /* Job name */

/* CPRZIAD , /* Input arrival date (YYMMDD) | blank */
/* CPRZIAT , /* Input arrival time (HHMM) | blank */

CPRZIA) /* Input arrival (YYMMDDHHMM) | blank */

/*--+
| SEGMENT=CPSR - Special resource |
+--*/
OUTPUT CPSR DATA(=)

KEYS(CPOPCOM.CPOPADI , /* Owning application ID */
CPOPCOM.CPOPIA , /* Owning application input arrival */
CPOPCOM.CPOPNO , /* Owning operation number */
CPSRN) /* Name */

FIELDS(CPSRU , /* Usage (S=Shared, X=Exclusive) */
CPSRVERS , /* Version */
CPSRONER , /* On error flag */

Appendix A. Resource reference 275

CPSRAMNT) /* Quantity */

/*--+
| SEGMENT=CPOPSRU - Special resource usage |
+--*/
OUTPUT CPOPSRU DATA(OUTDATA)

KEYS(CPOPUADI, /* Application id */
CPOPUIA, /* Application input arrival */
CPOPUNO) /* Operation number */

FIELDS(CPOPUIAD, /* Modified if ia is modified */
CPOPUIAT, /* Else original from plan */
CPOPUJBN, /* Op os jobname */
CPOPUWSN, /* Ws name */
CPOPULO, /* Latest out */
CPOPULOD, /* Date, blank if in-use list */
CPOPULOT, /* Time, blank if in-use list */
CPOPUAS, /* Actual start */
CPOPUASD, /* Date, blank if wait queue */
CPOPUAST, /* Time, blank if wait queue */
CPOPUEDU, /* Estimated duration */
CPOPUEDH, /* Est dur hh */
CPOPUEDM, /* Est dur mm */
CPOPUST, /* Current state */
CPOPUVERS, /* Version */
CPOPUPRI, /* Priority */
CPOPUSRQ, /* Sr quantity used/needed */
CPOPUWRS, /* Reason for wait for sr */
CPOPUSRU, /* Sr allocation type */
CPOPUEDUI) /* Est dur in 100th sec */

/*--+
| SEGMENT=CPREC - Operation recovery |
+--*/
OUTPUT CPREC DATA(=)

KEYS(CPRECAID , /* Application ID */
CPRECNO , /* Operation number */
CPRECJREID , /* ID of recovery job */
CPRECIA) /* Input arrival */

FIELDS(CPRECIAD , /* Modified if IA is modified */
CPRECIAT , /* else original from plan */
CPRECWSN , /* workstation name of rec job */
CPRECS , /* Recovery job start */
CPRECSD , /* Date / blank */
CPRECST , /* Time SEC*100 / 0 */
CPRECE , /* Recovery job end */
CPRECED , /* Date / blank */
CPRECET , /* Time SEC*100 / 0 */
CPRECRJST , /* Recovery job status */
CPRECTYPE , /* Recovery type */

/* S - Stop */
/* C - Continue */
/* R - Rerun */

CPRECDUR , /* Recovery job duration */
CPRECPROMPTID , /* Recovery prompt ID */
CPRECPRTMSG , /* Recovery message */
CPRECPRTSTAT , /* Recovery prompt status */

/* ’ ’ --> No reply */
/* ’N’ --> Reply with N */
/* ’Y’ --> Reply with Y */

CPRECJID , /* ID of job to recover */
CPRECERC , /* Recovery job error code */
CPRECVERS) /* Version number */

/*--+
| SEGMENT=CPPRE - Predecessor |

276 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

+--*/
OUTPUT CPPRE DATA(=)

KEYS(CPOPCOM.CPOPADI , /* Owning application ID */
CPOPCOM.CPOPIAD , /* Owning application IA date */
CPOPCOM.CPOPIAT , /* Owning application IA time */
CPOPCOM.CPOPNO , /* Owning operation number */
CPPREADI , /* Application ID */
CPPRENO , /* Operation number */

/* CPPREIA , /* Input Arrival */
CPPREIAD , /* Modified if IA is modified */
CPPREIAT) /* else original from plan */

FIELDS(CPPRECO , /* Predecessor completed (Y/N) */
CPPRENR , /* PRED. WS was nonreporting */
CPPRETT , /* Transport time */
CPPREND , /* Pending pred occurrence */
CPPREVERS , /* Version number=1 */
CPPREJN , /* Predecessor job name */
CPPREST , /* Predecessor status */
CPPMATC , /* Predecessor resolution criteria */

/* Blank (Manually chosen) */
/* C (Closest preceding) */
/* S (Same day) */
/* A (Absolute interval) */
/* R (Relative interval) */

CPPRECRITPATH , /* Predecessor of an operation */
/* belonging to a critical path */

CPPMANDP) /* Y: Mandatory Pending -Cannot be set */

/*--+
| SEGMENT=CPCPR - Current plan conditional predecessor |
+--*/
OUTPUT CPCPR DATA(=)

KEYS(CPOPCOM.CPOPADI , /* Application ID */
CPOPCOM.CPOPIA , /* Application input arrival */
CPOPCOM.CPOPNO , /* Owning op number */
CPCPREADI , /* Predecessor application ID */
CPCPREIA , /* Predecessor input arrival */

/* CPCPREIAD , /* Predecessor input arrival date */
/* CPCPREIAT , /* Predecessor input arrival */

CPCPRENO , /* Predecessor operation number */
CPCPRE_CID) /* Condition ID */

FIELDS(CPCPRECO , /* Predecessor completed (Y/N) */
CPCPRENR , /* Predecessor WS was non reporting */
CPCPRETT , /* Transport time */
CPCPREND , /* Pending predecessor */
CPCPREVERS , /* Version */
CPCPREJN , /* Job name */
CPCPREST , /* Predecessor status */
CPCPMATC , /* Predecessor resolution criteria */

/* Blank (Manually chosen) */
/* C (Closest preceding) */
/* S (Same day) */
/* A (Absolute interval) */
/* R (Relative interval) */

CPCPRECPATH) /* Critical predecessor */

/*--+
| SEGMENT=CPSUC - Successor |
+--*/
OUTPUT CPSUC DATA(=)

KEYS(CPOPCOM.CPOPADI , /* Owning application ID */
CPOPCOM.CPOPIAD , /* Owning application IA date */
CPOPCOM.CPOPIAT , /* Owning application IA time */
CPOPCOM.CPOPNO , /* Owning operation number */
CPSUCADI , /* Application ID */

Appendix A. Resource reference 277

CPSUCNO , /* Operation number */
/* CPSUCIA , Input Arrival */

CPSUCIAD , /* Modified if IA is modified */
CPSUCIAT) /* else original from plan */

FIELDS(CPSUCCR , /* On critical path (Y/N) */
CPSUCVERS , /* Version number=1 */
CPSUCJN , /* Successor job name */
CPSUCST) /* Successor status */

/*--+
| SEGMENT=CPCSU - Current plan conditional succcessor |
+--*/
OUTPUT CPCSU DATA(=)

KEYS(CPOPCOM.CPOPADI , /* Application ID */
CPOPCOM.CPOPIA , /* Application input arrival */
CPOPCOM.CPOPNO , /* Owning op number */
CPCSUCADI , /* Successor application ID */
CPCSUCIA , /* Successor input arrival */

/* CPCSUCIAD , /* Successor input arrival date */
/* CPCSUCIAT , /* Successor input arrival */

CPCSUCNO , /* Successor operation number */
CPCSUC_CID) /* Condition ID */

FIELDS(CPCSUCCR , /* On critical path */
CPCSUCVERS , /* Version */
CPCSUCJN , /* Job name */
CPCSUCST) /* Successor status */

/*--+
| SEGMENT=CPUSRF - Operation User field |
+--*/
OUTPUT CPUSRF DATA(OUTDATA)

KEYS(CPUFADID, /* Application ID */
CPUFOPNO , /* ID of recovery job */
CPUFIA , /* Input arrival */
CPUFNAME) /* User field name */

FIELDS(CPUFVALUE) /* User field value */

/*--+
| RECORD=CPCOND - Current plan condition |
+--*/
/*--+
| SEGMENT=CPCONDCO - Current Plan Condition |
+--*/
OUTPUT CPCONDCO DATA(OUTBL)

KEYS(CPCOADI , /* Application ID */
CPCOIA , /* Input arrival */

/* CPCOIAD , /* Input arrival date */
/* CPCOIAT , /* Input arrival time */

CPCOOPNO , /* Operation number */
CPCOCID) /* Condition ID */

FIELDS(CPCODESC , /* Condition description */
CPCO#SIMP , /* Number of condition dependencies */
CPCOCOUNT , /* Rule type: */

/* 0 = All */
/* N>0 = At least N of */

CPCOVALUE , /* Final condition status: */
/* U: Undecided T: True F: False */

CPCOVERS , /* Version */
CPCOXST) /* Condition extended status */

/*--+
| SEGMENT=CPSIMP - Current Plan Condition dependency |

278 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

+--*/
OUTPUT CPSIMP DATA(=)

KEYS(CPCONDCO.CPCOADI , /* Application ID */
CPCONDCO.CPCOIA , /* Input arrival */

/* CPCONDCO.CPCOIAD , /* Input arrival date */
/* CPCONDCO.CPCOIAT , /* Input arrival time */

CPCONDCO.CPCOOPNO , /* Operation number */
CPCONDCO.CPCOCID , /* Condition ID */
CPSIPREADI , /* Predecessor application ID */
CPSIPREIA , /* Predecessor input arrival */

/* CPSIPREIAD , /* Predecessor input arrival date */
/* CPSIPREIAT , /* Predecessor input arrival time */

CPSIPREOPNO) /* Predecessor operation number */

FIELDS(CPSITYP , /* Check type: RC or ST */
CPSILOG , /* Operator: GE GT LE LT EQ NE RG */
CPSIVALRC , /* Return code value */
CPSIVALRC2 , /* Upper limit of return code range */
CPSIVALST , /* Status value */
CPSILVAL , /* Condition dependency status: U T F */
CPSIVERS , /* Version */
CPSIREMOVED , /* Condition dependency removed: (Y/N) */
CPSISTEPMISS , /* Missing step end information: (Y/N) */
CPSISTEP , /* Procedure invocation step name */
CPSIPSTEP , /* Step name */
CPSIJOBNAME , /* Job name */
CPSIWSNAME , /* Workstation name */
CPSINEWSTAT) /* New status: T F */

/*--+
| RECORD=CPST - Current plan status |
+--*/
/*--+
| SEGMENT=CPST - Common |
+--*/
OUTPUT CPST DATA(OUTDATA)

FIELDS(CPSTVERS, /* Version number=1 */
CPSTCRD, /* Current plan create date */
CPSTCRT, /* Current plan create time */
CPSTENDD, /* Current plan end date */
CPSTENDT, /* Current plan end time */
CPSTBUD, /* Last backup date */
CPSTBUT, /* Last backup time */
CPST1ED, /* 1st event after backup date */
CPST1ET, /* 1st event after backup time */
CPST1EDTS, /* 1st evevt timestamp date */
CPST1ETTS, /* 1st evevt timestamp time */
CPSTTURN, /* Turnover produces ncp */
CPSTCP, /* Current plan exists (Y/N) */
CPSTCPDDN, /* Current plan ddname */
CPSTJTDDN, /* Job tracking ddname */
CPSTJSDDN) /* Jcl repository ddname */

/*--+
| RECORD=CPWS - Current plan workstation |
+--*/
/*--+
| SEGMENT=CPWSCOM - Common |
+--*/
OUTPUT CPWSCOM DATA(OUTDATA)

KEYS(CPWSN) /* Workstation name */

FIELDS(CPWSDESC, /* Workstation description */
CPWSSC#, /* No of completed ops */
CPWSSCE, /* Estimated duration - C */

Appendix A. Resource reference 279

CPWSSCR, /* Actual duration - C */
CPWSSI#, /* No of interrupted ops */
CPWSSIE, /* Estimated duration - I */
CPWSSIR, /* Actual duration - I */
CPWSSS#, /* No of started ops */
CPWSSSE, /* Estimated duration - S */
CPWSSR#, /* No of ready ops */
CPWSSRE, /* Estimated duration - R */
CPWSSW#, /* No of waiting ops */
CPWSSWE, /* Estimated duration - W */
CPWSR1IU#, /* No of r1 resources in use */
CPWSR2IU#, /* No of r2 resources in use */
CPWSIVL#, /* No of open intervals */
CPWSTYPE, /* Workstation type (G/C/P/R) */
CPWSREP, /* Reporting attr (A/S/C/N) */
CPWSPSC, /* Control on parallel servers */
CPWSR1N, /* R1 resource name */
CPWSR1C, /* R1 used for control */
CPWSR2N, /* R2 resource name */
CPWSR2C, /* R2 used for control */
CPWSPREP, /* Job setup ability */
CPWSVERS, /* Version number=1 */
CPWSSTC, /* Started task ability (Y/N) */
CPWSWTO, /* Wto ability (Y/N) */
CPWSSTAT, /* Workstation status (A/O/F) */
CPWSRERUT, /* Reroute mode (Y/N) */
CPWSALTWS, /* Alternat ws name */
CPWSTWS, /* Fta ws status (Y/N) */
CPWSLNK, /* Link ws status */
CPWSDEST , /* Destination */
CPWSZCEN , /* Z-Centric workstation (Y/N) */
CPWSRETY , /* Remote engine type (D/Z/blank) */
CPWSSX) /* Sum of suppressed cond op */

/*--+
| SEGMENT=CPIVL - Current plan workstation open interval |
+--*/
OUTPUT CPIVL DATA(=)

KEYS(CPWSCOM.CPWSN, /* Workstation name */
CPIVLFR) /* From yymmddhhmm */

FIELDS(CPIVLFD, /* From date yymmdd */
CPIVLFT, /* From time hhmm */
CPIVLTO, /* To yymmddhhmm */
CPIVLTD, /* To date */
CPIVLTT, /* To time */
CPIVL#PS, /* Max parallel servers */
CPIVL#DPPS, /* Ps set by daily planning */
CPIVL#R1, /* Current r1 capacity */
CPIVL#DPR1, /* R1 set by daily planning */
CPIVL#R2, /* Current r2 capacity */
CPIVL#DPR2, /* R2 set by daily planning */
CPIVLVERS, /* Version number */
CPIVLDPAWS, /* Dp alternate workstation */
CPIVLAWS, /* Current alternate ws */
CPIVLMOD, /* Y - mcp modified/added */
CPIVLDP) /* Y - originates from wsd */

/*--+
| SEGMENT=CPWSVCOM - Workstation instance |
+--*/
OUTPUT CPWSVCOM DATA(OUTDATA)

KEYS(CPWSVNAM , /* Workstation name */
CPWSVDST) /* Workstation Destination */

FIELDS(/* */
/* CPWSVDESC , /* Description (not used) */

280 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

/* CPWSVSC# , /* Number of complete ops (not used) */
/* CPWSVSCE , /* Estimated duration (not used) */
/* CPWSVSCR , /* Real duration (not used) */
/* CPWSVSI# , /* Number of interupted ops (not used) */
/* CPWSVSIE , /* Estimated duration (not used) */
/* CPWSVSIR , /* Real duration (not used) */
/* CPWSVSS# , /* Number of started ops (not used) */
/* CPWSVSSE , /* Estimated duration (not used) */

CPWSVSR# , /* Number of started ops */
CPWSVSRE , /* Estimated duration */

/* CPWSVSW , /* Number of waiting ops (not used) */
/* CPWSVSWE , /* Estimated duration (not used) */

CPWSVR1IU# , /* No of Resource 1 in use */
CPWSVR2IU# , /* No of Resource 2 in use */
CPWSVIVL# , /* No of open intervals */
CPWSVTYPE , /* Work station type: C only */
CPWSVREP , /* Reporting attribute A only */
CPWSVPSC , /* Control on parallel servers */
CPWSVR1N , /* Resource 1 name */

/* CPWSVR1C , /* Res. used at control (not used) */
CPWSVR2N , /* Resource 2 name */

/* CPWSVR2C , /* Res. used at control (not used) */
CPWSVVERS , /* Version number=1 */
CPWSVSTC , /* Started task (Y/N) */
CPWSVSTAT) /* Workstation status (A/O/F) */

/*--+
| SEGMENT=CPVIVL - Workstation instance interval |
+--*/
OUTPUT CPVIVL DATA(OUTDATA)

KEYS(CPWSVCOM.CPWSVNAM , /* Workstation name */
CPWSVCOM.CPWSVDST , /* Destination */

/* CPVIVLFR , /* Interval start */
CPVIVLFD , /* Date YYMMDD */
CPVIVLFT) /* Time HHMM */

/*FIELDS(CPVIVLTO , /* Interval end */
FIELDS(CPVIVLTD , /* Date YYMMDD */

CPVIVLTT , /* Time HHMM */
CPVIVL#PS , /* Max number of parallel servers */
CPVIVL#DPPS , /* PS set by DP batch */
CPVIVL#R1 , /* R1 capacity */
CPVIVL#DPR1 , /* R1 set by DP batch */
CPVIVL#R2 , /* R2 capacity */
CPVIVL#DPR2 , /* R2 set by DP batch */
CPVIVLVERS , /* Version number */
CPVIVLMOD , /* Y UMCP modified or added (Y/N) */
CPVIVLDP) /* Y originated by WSD */

/*--+
| RECORD=CRITPATH - Critical path |
+--*/
/*--+
| SEGMENT=CRPTHCOM - Critical path common (undocumented segment) |
+--*/
OUTPUT CRPTHCOM DATA(OUTDATA)

KEYS(CRPTADIDHED, /* Critical job application ID */
CRPTOPNOHED) /* Critical job operation number */

FIELDS(CRPTCTR, /* Number of jobs in critical path */
CRPTWSNHED, /* Workstation of critical job */
CRPTWLMCLASSHED, /* WLM class of critical job */
CRPTWLMPOL) /* WLM policy for critical job */

/*--+
| SEGMENT=CRPTHJOB - Job in the critical path (undocumented segment) |

Appendix A. Resource reference 281

+--*/
OUTPUT CRPTHJOB DATA(OUTDATA)

KEYS(CRPTADID, /* Application ID */
CRPTOPNO, /* Operation number */
CRPTOI) /* Operation input arrival */

FIELDS(CRPTWSN, /* Workstation */
CRPTDESC, /* Description */
CRPTJOBN, /* Jobname */
CRPTXDH, /* Duration HH */
CRPTXDM, /* Duration MM */
CRPTXDS, /* Duration SS */
CRPTLS, /* Latest start */
CRPTPS, /* Planned start */
CRPTAS, /* Actual start */
CRPTOD, /* Operation Deadline */
CRPTAE, /* Actual end */
CRPTAETI, /* */
CRPTOPST, /* Operation status */
CRPTXST, /* Extended status */
CRPTMHLD, /* Manual hold */
CRPTNOP, /* NOP */
CRPTOPPRI) /* Priority */

/*--+
| RECORD=CSR - Current plan special resource |
+--*/
/*--+
| SEGMENT=CSRCOM - Current plan resource common |
+--*/
OUTPUT CSRCOM DATA(OUTDATA)

KEYS(CSRNAME) /* Special resource name */

FIELDS(CSRGROUP, /* Group id */
CSRHIPER, /* Dlf resource (Y/N) */
CSRUSEDFOR, /* Used for (n/p/c/b) */
CSRONERROR, /* On error (f /fx/fs/k /) */
CSROVAV, /* Overrid availability (Y/N/) */
CSROVQ, /* Overrid quant, 0 if none */
CSRDEVI, /* Deviation */
CSRIVLNUM, /* Number of intervals */
CSRCIVLN, /* Current interval number */
CSRDESC, /* Description */
CSRLIFTIEDAT, /* Lifespan expiration date and time */
CSRDEFNWSC, /* No of connected workstations */
CSRDEFQUANT, /* Default quantity */
CSRDEFAVAIL, /* Default availability */
CSRLIFTIEACT, /* Lifespan action (Y/N/R) */
CSRONCOMPL, /* On complete (Y/N/R/blank) */
CSRMAXTYPE, /* Max usage type (Y/N/R) */
CSRLUSER, /* Last updating user */
CSRLDATE, /* Date of last update */
CSRLTIME, /* Time of last update */
CSRLUTS, /* Tod clock last update */
CSRVER, /* Record version */
CSRACTAVAIL, /* Actual availability */
CSRACTQUANT, /* Actual quantity */
CSRXUSE, /* Amount currently used excl */
CSRSUSE, /* Amount currently used shrd */
CSRXALL, /* Any all excl user now (Y/N) */
CSRSALL, /* Any all shrd user now (Y/N) */
CSRWAITQ, /* Any on waitq (Y/N) */
CSRCIDATE, /* Current interval date */
CSRCIFTIME, /* Current interval from time */
CSRCITTIME, /* Current interval to time */
CSRCIQUANT, /* Current interval quantity */

282 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

CSRCIADJQ, /* Current interval adjust qty */
CSRCIAVAIL) /* Current interval avail (Y/N) */

/*--+
| SEGMENT=CSRIVL - Current plan special resource interval |
+--*/
OUTPUT CSRIVL DATA(=)

KEYS(CSRCOM.CSRNAME, /* Special resource name */
CSRIDATE, /* Specific date */
CSRIFTIME) /* From time */

FIELDS(CSRITTIME, /* To time */
CSRIQUANT, /* Allocatable amount */
CSRIWSCNUM, /* Number of connected ws’s */
CSRIAVAIL) /* Available (Y/N) */

/*--+
| SEGMENT=CSRIWS - CP resource interval connected workstation |
+--*/
OUTPUT CSRIWS DATA(=)

KEYS(CSRCOM.CSRNAME, /* Special resource name */
CSRIVL.CSRIDATE, /* Specific date */
CSRIVL.CSRIFTIME, /* From time */
CSRIWSNAME) /* Workstation name */

/*--+
| SEGMENT=CSRDWS - CP resource default connected workstation |
+--*/
OUTPUT CSRDWS DATA(=)

KEYS(CSRCOM.CSRNAME, /* Special resource name */
CSRDWSNAME) /* Workstation name */

/*--+
| RECORD=JCLPREP - JCL setup variables |
+--*/
/*--+
| SEGMENT=JSVCOM - JCLPREP common |
+--*/
OUTPUT JSVCOM DATA(OUTDATA)

KEYS(JSVCADID, /* Application id */
JSVCIAD, /* Input arrival date YYMMDD */
JSVCIAT, /* Input arrival time HHMM */
JSVCOPNO) /* Operation number */

FIELDS(JSVCIAD, /* Input arrival date yymmdd */
JSVCIAT, /* Input arrival time hhmm */
JSVC#VARS, /* Number of variables */
JSVCFROM) /* Jcl from js repository (Y/N) */

/*--+
| SEGMENT=JSVVAR - JCLPREP Variable definition |
+--*/
OUTPUT JSVVAR DATA(=)

KEYS(JSVCOM.JSVCADID, /* Application id */
JSVCOM.JSVCIAD, /* Input arrival date yymmdd */
JSVCOM.JSVCIAT, /* Input arrival time hhmm */
JSVCOM.JSVCOPNO, /* Operation number */
JSVVNAME) /* Variable name */

FIELDS(JSVVVALUE, /* Value set of default value */
JSVVTYPE) /* Usage type (%/&/?) */

/*--+
| RECORD=JS - Job control language |
+--*/

Appendix A. Resource reference 283

/*--+
| SEGMENT=JSCOM - Job control language segment |
+--*/
OUTPUT JSCOM DATA(OUTDATA) LOADER(OUTBL)

KEYS(JSADID, /* Application id */
JSIA, /* Occurrence input arrival */
JSOPNO) /* Operation number */

FIELDS(JSIAD, /* Date */
JSIAT, /* Time */
JSJOBN, /* Jobname */
JSWSN, /* Workstation name */
JSST, /* Status */
JSUPDT, /* Last updating function */
JSLDATE, /* Last updated date */
JSLTIME, /* Last updated time */
JSLUSER, /* Userid of last updater */
JSVERS, /* Record version number = 1 */
JSLINES, /* Number of text rows */

/* JST, /* JCL text rows */
JSJFROM) /* Jcl from js repository (Y/N) */

/*--+
| SEGMENT=JST - Job control language text |
| (derived from the JST field in JSCOM) |
+--*/
OUTPUT JST DATA(=) LOADER(=)

KEYS(JSCOM.JSADID, /* Application id */
JSCOM.JSIA, /* Input arrival yymmddhhmm */
JSCOM.JSOPNO, /* Operation number */
JSTSEQ) /* JCL row number */

FIELDS(JSTMAX, /* Maximum number of rows */
JSTJCL) /* JCL row text */

/*--+
| RECORD=JLCOM - Job log |
+--*/
/*--+
| SEGMENT=JLCOM - Common |
+--*/
OUTPUT JLCOM DATA(OUTDATA)

KEYS(JLADID, /* Application id */
JLIA, /* Input arrival yymmddhhmm */
JLOPNO) /* Operation number */

FIELDS(JLIAD, /* Input arrival date yymmdd */
JLIAT, /* Input arrival time hhmm */
JLJOBN, /* Mvs job name */
JLWSN, /* Workstation name */
JLJOBID) /* Jes job number */

/*--+
| SEGMENT=JLT - Job Log Text (derived from segment JLTXT) |
+--*/
OUTPUT JLT DATA(OUTDATA)

KEYS(JLCOM.JLADID, /* Application id */
JLCOM.JLIA, /* Input arrival yymmddhhmm */
JLCOM.JLOPNO, /* Operation number */
JLTSEQ) /* Line number of SYSOUT */

FIELDS(JLTMAX, /* Total number of SYSOUT lines */
JLTTEXT) /* Single line of SYSOUT text */

284 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

/*--+
| GROUP=LTP - All Long Term Plan Objects |
+--*/
/*--+
| RECORD=LTOC - Long term plan occurrence |
+--*/
/*--+
| SEGMENT=LTOCCOM - Common |
+--*/
OUTPUT LTOCCOM DATA(OUTDATA)

KEYS(LTOCIAD, /* Input arrival date */
LTOCADI, /* Application id */
LTOCIAT) /* Input arrival time */

FIELDS(LTOCIAO, /* Original input arrival */
LTOCIAOD, /* Original input arrival date */
LTOCIAOT, /* Original input arrival time */
LTOCDL, /* Deadline */
LTOCDLD, /* Deadline date */
LTOCDLT, /* Deadline time */
LTOCGRP, /* Authority group */
LTOCOID, /* Owner id */
LTOCERR, /* Occurence error code */
LTOCRDST, /* Run day status (W/F) */
LTOCVERS, /* Version number=1 */
LTOCPRI, /* Priority */
LTOC#PRE, /* No. of external preds */
LTOC#SUC, /* No. of external succs */
LTOC#OP, /* No. of changed operations */
LTOCDEL, /* Deleted online */
LTOCADD, /* Added to ltp */
LTOCMOD, /* Modified on ltp */
LTOCMOV, /* Run date or time modified */
LTOCDEPM, /* External dep modified */
LTOCCOMP, /* Completed by job tracking */
LTOCMOVO, /* Moved because of optnl rule */
LTOCJVT, /* Jcl variable table */
LTGROUPID, /* Groupid */
LTOCCAL , /* Calendar name */
LTOC#CPRE , /* Number of conditional predecessors */
LTOC#CSUC , /* Number of conditional successors */
LTOC#MAND) /* Number of mandatory pending preds */

/*--+
| SEGMENT=LTOP - Operation |
+--*/
OUTPUT LTOP DATA(=)

KEYS(LTOCCOM.LTOCIAD, /* Input arrival date */
LTOCCOM.LTOCADI, /* Application id */
LTOCCOM.LTOCIAT, /* Input arrival time */
LTOPNO) /* Operation number */

FIELDS(LTOPWSN, /* Workstation name */
LTOPOI, /* Input arrival yymmddhhmm */
LTOPOID, /* Input arrival date yymmdd */
LTOPOIT, /* Input arrival time hhmm */
LTOPOD, /* Deadline yymmddhhmm */
LTOPODD, /* Deadline date yymmdd */
LTOPODT, /* Deadline time hhmm */
LTOPDESC, /* Operation text */
LTOPVERS) /* Version number=1 */

/*--+
| SEGMENT=LTPRE - Predecessor |
+--*/
OUTPUT LTPRE DATA(=)

KEYS(LTOCCOM.LTOCIAD, /* Input arrival date */

Appendix A. Resource reference 285

LTOCCOM.LTOCADI, /* Application id */
LTOCCOM.LTOCIAT, /* Input arrival time */
LTPREIAD, /* Run date yymmdd */
LTPREADI, /* Application id */
LTPREIAT) /* Input arrival time hhmm */

FIELDS(LTPREDEL, /* Dependency deleted */
LTPREADD, /* Manually added */
LTPREDONE, /* Predecessor completed */
LTPREVERS , /* Version number=1 */
LTPREMPEND , /* Y: Is mandatory pending */
LTPREMAND) /* C/P/N is a required value */

/*--+
| SEGMENT=LTCPRE - Conditional predecessor |
+--*/
OUTPUT LTCPRE DATA(=)

KEYS(LTOCCOM.LTOCIAD, /* Input arrival date */
LTOCCOM.LTOCADI, /* Application id */
LTOCCOM.LTOCIAT, /* Input arrival time */
LTCPREIAD, /* Run date yymmdd */
LTCPREADI, /* Application id */
LTCPREIAT) /* Input arrival time hhmm */

FIELDS(LTCPREDEL, /* Dependency deleted */
LTCPREPDONE, /* Predecessor completed */
LTCPREVERS) /* Version number=1 */

/*--+
| SEGMENT=LTSUC - Successor |
+--*/
OUTPUT LTSUC DATA(=)

KEYS(LTOCCOM.LTOCIAD, /* Input arrival date */
LTOCCOM.LTOCADI, /* Application id */
LTOCCOM.LTOCIAT, /* Input arrival time */
LTSUCIAD, /* Run date yymmdd */
LTSUCADI, /* Application id */
LTSUCIAT) /* Input arrival time hhmm */

FIELDS(LTSUCDEL, /* Dependency deleted */
LTSUCADD, /* Manually added */
LTSUCVERS) /* Version number=1 */

/*--+
| SEGMENT=LTCSUC - Conditional successor |
+--*/
OUTPUT LTCSUC DATA(=)

KEYS(LTOCCOM.LTOCIAD, /* Input arrival date */
LTOCCOM.LTOCADI, /* Application id */
LTOCCOM.LTOCIAT, /* Input arrival time */
LTCSUCIAD, /* Run date yymmdd */
LTCSUCADI, /* Application id */
LTCSUCIAT) /* Input arrival time hhmm */

FIELDS(LTCSUCDEL, /* Dependency deleted */
LTCSUCVERS) /* Version number */

/*--+
| GROUP=SYS - All System Objects |
+--*/
/*--+
| RECORD=XENV - Execution Environment |
+--*/
/*--+
| SEGMENT=XENV - Common |

286 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

+--*/
OUTPUT XENV DATA(OUTDATA)

FIELDS(XENVFMID /* PIF Base FMID */
XENVCONLVL /* PIF connector level */
XENVFUNCLVL /* PIF functional level */
XENVDEFCAL /* Default calendar */
XENVCWBASE /* Base year for PIF dates */
XENVHIGHDATE /* Highest AD valid to date */
XENVADDBCS /* Application id in DBCS (Y/N/) */
XENVOWDBCS) /* Owner id in DBCS (Y/N/) */

Setting additional fields
Additional fields are available for each OUTPUT segment.

KEY The fully qualified key of the segment.

TYPE The type of segment, for example ADOP.

PARENT_KEY
The fully qualified key of the parent segment.

PARENT_TYPE
The type of parent segment, for example ADCOM.

TAG The data passed into the LIST or SELECT statement in the TAG keyword.
This allows output from multiple LIST or SELECT commands to be
correlated back to the originating command by tagging each output record.

One single level of a key is formed from the segment type followed by a hex 00
and then each key field separated by hex 00. Therefore, a single level of a key for
an application called MYAPPL with a status of Active that is valid until 31
December 2071 would have a single level key of ADCOM 00x MYAPPL 00x A 00x
711231.

A fully qualified key is a sequence of single keys separated by hex 01, to uniquely
identify a segment within an object within the database. Therefore, operation 010
within the previously described MYAPPL would be ADCOM 00x MYAPPL 00x A 00x
711231 01x ADOP 00x 010.

Reserved fields
Any areas of records marked as reserved in the PIF are also available to Workload
Automation Programming Language.

The field names for these fields are composed of RSVD and a 3 digit offset, for
example RSVD023 for ADCOM.

These fields do not appear in the EQQFLALL member.

For more details about the program interface record formats, see IBM Workload
Scheduler Automation: Driving IBM Workload Scheduler for z/OS.

Composite fields
Some fields are composed from smaller fields. For example, ADOPWSINFO is
composed from ADOPWSISET, ADOPWSTYPE, ADOPWSREP, and ADOPWSSUBT.

Composite fields are listed in the EQQFLALL member, but are commented out.

Appendix A. Resource reference 287

Raw and untranslated fields
Some fields are not translated into their absolute form by Workload Automation
Programming Language, and output in Hexadecimal format, such as Last User
Timestamps for example ADLUTS.

These fields are listed in the EQQFLALL member, but are commented out.

288 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Appendix B. OPTIONS keywords

Use the following keywords with the OPTIONS statement.

ACTION – See DBMODE
This keyword has been deprecated, use OPTIONS DBMODE instead.

ADOICHK – Consistency check
Determines whether AD/OI consistency checks are to be made every time an
application is deleted or modified.

Consistency checks involve looking in the application description data base for
matches for all the operator instructions in the application. Any operator
instruction without a match is deleted. The checks are made immediately after the
application description PIF action has completed with a zero return code.

Y Consistency checks are performed when an application description record
is deleted or replaced by using the PIF.

N Consistency checks are not performed (default).

ADPFX – Prefix for dynamically created applications
Specifies the application name prefix to be used in commands that generate
dynamic applications (ADDJOB). The default is ADHOC#.

ADSFX – Suffix for dynamically created applications
Specifies the application name suffix to be used in commands that generate
dynamic applications (ADDJOB). The default is blank.

ADVALFROM – Valid From generation
How to set the Valid From date in generated Batch Loader.

A As is, list the date as it is defined in TWS database (default)

N New, list the date with today’s date.

yymmdd A specific date to use as the Valid From date for any generated batch
loader.

Note: From Workload Automation Programming Language version 2.4, OPTIONS
VALFROM is accepted as an alternative syntax.

ADVERS – Application versioning
Application version support

Y When applications are deleted, the VALTO and VALFROM field of any other
existing versions of the same application are adjusted to provide
continuous validity periods (default).

© Copyright IBM Corp. 2016 289

N When applications are deleted, the VALTO and VALFROM field of any other
existing versions of the same application are not modified.

ADWS – Workstation for dynamically submitted jobs

The default workstation to use when ADDJOB is creating a dynamic occurrence for a
job that is not defined in the database.

BLSTYLE – Style of Batch Loader output
The output style to be sent to the Batch Loader output file.

TWS Generates IBM Workload Scheduler for z/OS Batch Loader capable of
being used to recreate the object.

XML Generates Extended Markup Language.

CALENDAR – Set default calendar name
Used for the commands that need to know a calendar name, when none is
supplied in the keywords for that command.

CHARAT – Set the at sign (@) for object variables
Within Workload Automation Programming Language, the at sign (@) is used to
designate an object variable.

However, with some code pages the at sign (@) character might be displayed
differently. The CHARAT keyword enables you to determine what character is
actually in use for your code page by issuing a SHOW OPTIONS command.

You can also set the character to be used, so that it matches the documented
character for the code page, for example OPTIONS CHARAT(@)

The characters you can use for these options cannot be standard upper or lower
case alphabetic characters, numbers, minus signs (-) or periods (.). They must not
be in conflict with any other CHARxxxx keywords or VARNAMES keyword.

Note: These OPTIONS keywords change only these character for the uses specified.
When the same characters are used as part of data in your system, or part of field
names in OUTPUT statements or object variables, the characters are displayed
according to your code page.

CHARBANG – Set the exclamation mark (!) for default variable prefix
Within Workload Automation Programming Language, the exclamation mark (!) is
used as the default variable prefix.

However, with some code pages the exclamation mark (!) character might be
displayed differently. The CHARBANG keyword enables you to determine what
character is actually in use for your code page by issuing a SHOW OPTIONS
command.

You can also set the character to be used, so that it matches the documented
character for the code page, for example OPTIONS CHARAT(!)

290 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

The characters you can use for these options cannot be standard upper or lower
case alphabetic characters, numbers, minus signs (-) or periods (.). They must not
be in conflict with any other CHARxxxx keywords or VARNAMES keyword.

Note: These OPTIONS keywords change only these character for the uses specified.
When the same characters are used as part of data in your system, or part of field
names in OUTPUT statements or object variables, the characters are displayed
according to your code page.

CHARHASH – Set the number sign (#) for count object field and
ENVATTR

Within Workload Automation Programming Language, the number sign (#) is used
to designate the count of the number of a specified segment in object variables and
a count within VARSET ENVATTR.

However, with some code pages the number sign (#) character might be displayed
differently. The CHARBANG keyword enables you to determine what character is
actually in use for your code page by issuing a SHOW OPTIONS command.

You can also set the character to be used, so that it matches the documented
character for the code page, for example OPTIONS CHARAT(#)

The characters you can use for these options cannot be standard upper or lower
case alphabetic characters, numbers, minus signs (-) or periods (.). They must not
be in conflict with any other CHARxxxx keywords or VARNAMES keyword.

Note: These OPTIONS keywords change only these character for the uses specified.
When the same characters are used as part of data in your system, or part of field
names in OUTPUT statements or object variables, the characters are displayed
according to your code page.

CHARMAIL – Set the at sign (@) for email addresses
Within Workload Automation Programming Language, the at sign (@) is used to
build an email address from any unqualified addresses in the SENDMAIL command
by using the character in combination with the OPTIONS MAILSERV setting.

However, with some code pages the at sign (@) character might be displayed
differently. The CHARAT keyword enables you to determine what character is
actually in use for your code page by issuing a SHOW OPTIONS command.

You can also set the character to be used, so that it matches the documented
character for the code page, for example OPTIONS CHARAT(@)

The characters you can use for these options cannot be standard upper or lower
case alphabetic characters, numbers, minus signs (-) or periods (.). They must not
be in conflict with any other CHARxxxx keywords or VARNAMES keyword.

Note:

1. These OPTIONS keywords change only these character for the uses specified.
When the same characters are used as part of data in your system, or part of
field names in OUTPUT statements or object variables, the characters are
displayed according to your code page.

Appendix B. OPTIONS keywords 291

2. The email addresses from SENDMAIL are used by the SMTP task on your system,
therefore the CHARMAIL character must match the user and domain delimiter as
understood by your SMTP server setting, for example dino@rana.com.

CHECK – Application integrity
Whether to check the existence for workstations with applications, when
processing batch loader.

Y Yes, cause load to fail if workstations do not exist (default).

N No, create applications regardless.

COMMIT – File output caching
Number of output records to hold in storage before committing to disk (default is
1000).

The value specified by commit is the maximum total across all output files.
Workload Automation Programming Language divides the commit total you enter
by the number of files opened and commit each file when that total is reached. For
example, if you specify COMMIT(1000) and have two output files, each file is
committed after 500 records.

The external data queue does not count as an output file and is not affected by
COMMIT, neither it influences the calculation.

COMPSUCC – Set the default values for the ADDJOB and JBSTART
commands

The COMPSUCC keyword of the ADDJOB and JBSTART commands determines what
action to take when a successor is identified as already complete.

The equivalent OPTIONS keyword sets the default.

IGNORE Do not add the dependency and issue an advisory message (RC=0).

WARNING
Do not add the dependency and issue an advisory message (RC=4). This is
the default.

ERROR Do not add the dependency and issue an advisory message (RC=8).

CONINFO – Information level IEExxxI message numbers
Specifies a list of message numbers for IEExxxI messages to be considered as true
informational messages and not cause a return code of 8.

Use SHOW OPTIONS to see the default values for this option.

CONNAME – MCS console name
Ssets the MCS console name to be activated to run a CONSOLE command.

The default is the name of the job currently running the command.

292 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

CONWAIT – Wait timing for response messages
Sets how long the CONSOLE command waits for a response message.

The option has 2 arguments. The first is how many seconds to wait for the first
message, the second is how many seconds to wait after the last message received,
before considering the command complete.

The default is OPTIONS CONWAIT(2,1)

CONWARN – Warning level IEExxxI message numbers
Specifies a list of message numbers for IEExxxI messages to be considered as
warning messages to cause a return code of 4.

Use SHOW OPTIONS to see the default values for this option.

CONTENTION – Retry limits
What to do in event of contention within IBM Workload Scheduler for z/OS.

The parameter has the following arguments:

Delay The number of seconds to delay before retry (default is 30).

Retries
The number of reattempts to make (default is 10).

For example, CONTENTION(10,5) waits 10 seconds before retrying, up to 5 times.

CONTENTION(0,0) disables the contention retry feature.

You can specify a third optional positional parameter if you are using an alternate
program to perform the delay. The third parameter can be used to specify the
delay period directly in the format supported by the alternate delay program.

For example, if the alternate delay program had a format of HHMMSSTT, a delay
of 1 minute, with 2 retries would be specified CONTENTION(60,2,00010000).

The first two arguments are still required for diagnostic messages.

CPDEPR – Current Plan dependency resolution
Automatic resolution of external dependencies when inserting new current plan
occurrences.

Y Add successor and predecessor dependencies

N Do not add any dependencies (default).

P Add predecessor dependencies.

S Add successor dependencies.

Appendix B. OPTIONS keywords 293

CPFAIL – How to handle Current Plan modification failure
PIF commands that update elements in the current plan, such as MODIFY and
INSERT, by default will end with RC=8 if they fail. This does not prevent Workload
Automation Programming Language from continuing processing, and might result
in incomplete updates being committed by a subsequent EXECUTE statement. The
CPFAIL option prevents this from happening.

Possible values are:

ABORT Message EQQI148F is issued, causing RC=12 which stops any further
Workload Automation Programming Language processing (default).

ERROR Leaves the command ending with RC=8.

DATE – Workload Automation Programming Language internal date
When using the equal sign (=) to represent a DATE or TIME within Workload
Automation Programming Language, by default the date and time when Workload
Automation Programming Language started is used.

Workload Automation Programming Language maintains a static internal date to
enable you to generate multiple statements with a current date that is consistent
across the statements, regardless of whether the date changes during running.

OPTIONS DATE enables you to set a specific current DATE to use instead of the equal
sign (=) or any other function that requires the current date within Workload
Automation Programming Language.

The format of the date can either be ccyymmdd or yymmdd. If yymmdd is used, the
century is calculated by using IBM Workload Scheduler for z/OS HIGHDATE and
CWBASE settings.

The following example shows a result of all 6 occurrences having an IA of
0701241600:
OPTIONS DATE(070124) TIME(1600)
INSERT CPOC ADID(MYAPPL1) IA(=)
INSERT CPOC ADID(MYAPPL2) IA(=)
INSERT CPOC ADID(MYAPPL3) IA(=)
INSERT CPOC ADID(MYAPPL4) IA(=)
INSERT CPOC ADID(MYAPPL5) IA(=)
INSERT CPOC ADID(MYAPPL6) IA(=)

You can also use OPTIONS DATE to set the internal Workload Automation
Programming Language date to be relative to the current date.

For example:

OPTIONS DATE(+1) sets the date that Workload Automation Programming Language
will use as current to tomorrow’s date.

OPTIONS DATE(-1) sets the date Workload Automation Programming Language will
use as current to yesterday’s date.

You can reset the internal Workload Automation Programming Language date and
time to the current date and time by using OPTIONS DATE(RESET).

294 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

DATA – ILSON data destination
File Destination (such as DD Name) to override value specified on the OUTPUT DATA
keyword.

Using the minus sign (-) suppresses data output.

OPTIONS DATA(-)

Note: OPTIONS DATA sets a DATA output destination for all segments referenced by
OUTPUT statements, regardless of whether they originally had a DATA keyword.

DBMODE – Mode of operation for database updates
Determines the operating mode for Batch Loader.

This keyword replaces OPTIONS ACTION to reduce confusion with the ACTION
keyword on Batch Loader statements. OPTIONS ACTION is still supported for
backwards compatibility with EQQYLTOP.

For more details, see Chapter 10, “Batch loader commands,” on page 165.

DECODE – Determine which fields to decode
When a segment is retrieved from IBM Workload Scheduler for z/OS, it can be
automatically decoded into its separate fields. The DECODE keyword decides how
much of each segment to decode.

ALL Decodes every field in the segment definition. It takes more processing
cycles but simplifies the coding of any FILTER statements that might
require fields that are not in the OUTPUT statement for that segment.

ONLY Decodes only key fields, and fields specified in the OUTPUT statement for
that segment, involving much less processing. This is the default.

DELAY – Post update delay specification
Specifies a number of seconds to pause after issuing any update command to the
IBM Workload Scheduler for z/OS PIF (default 0).

This is specifically to reduce the impact mass updates may have locking out other
users by providing gaps in processing. The command and return code are not
reported in the output until the delay has completed.

If you are using your own module to provide the WAIT functionality, you can
specify the delay as a second argument in the parameter format for your WAIT
module, such as DELAY(5,00000500). The first argument is still required for
messages.

DELAYCMD – Commands to wait after
PIF commands to consider as update commands to perform a delay after (default
DELETE EXECUTE INSERT REPLACE).

MODIFY is not considered an update command for the purposes of DELAY,
because it does not commit to IBM Workload Scheduler for z/OS until the EXECUTE
command.

Appendix B. OPTIONS keywords 295

DELETE – Automatic delete processing
Sets the default value for the DELETE keyword of the LIST statement.

Y Yes, DELETE the LISTed records.

N No, do not DELETE the LISTed records (default).

D Defer, generate DELETE statements for each LISTed record and output them
to the DELFILE output destination for later processing.

Note: When OPTIONS DELETE(Y) is used together with OPTIONS SELECT(Y), the
automatically generated SELECT statements are processed before the DELETE
statements, allowing Batch Loader to be generated and saved for back out
processes.

DELFILE – File to write deferred DELETE to
File Destination where to write deferred DELETE statements.

DLM – End of instream data delimiter
Defines the default delimiter for ending instream data within Batch Loader output.
The default is -END-OF-INPUT-TEXT-.

DROP – Circumvent occurrence split for ALTER DROPSUCC/PRED
The OPTIONS DROP keyword provides mechanisms that circumvent occurrence
inconsistencies.

Two mechanisms are provided:

Method 1
Makes both sides of the broken dependencies a successor to a specified
operation number, providing that the operation number is in a status of
Complete.

Method 2
Adds an operation using a named workstation and job name, or reuse a
matching pre-existing one that has no successors, and makes this a success
to both sides of the broken dependency.

The syntax of the OPTIONS DROP keyword is the following:
DROP(<predop>,<succws>,<succjob>,<succtext>)

where:

<predop>
An operation number, such as 001, to be used as a predecessor to both
sides of a dropped dependency, but only if <predop> is in a Complete
status. It does not add <predop>, if it does not already exist.

<succws>
Name of the workstation used to become a successor to both sides of the
dropped dependency. It must be a non-reporting general workstation.

<succjob>
Name of the job used to become a successor to both sides of the dropped
dependency. The default is ZRELINK

296 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

<succtext>
The operation description used if a successor operation is inserted. The
default is Relink dropped deps.

DUPAUTO – Allow automatic SELECT statements to output duplicates
Controls if any duplicates automatically listed by OPTIONS SELECT or OPTIONS
EXPAND are selected for processing.

YES Any duplicates can be selected (default).

NO Automatically listed duplicates cannot be selected.

Note: When OPTIONS EXPAND(YES|FULL) is set, DUPAUTO(NO) is also automatically
set.

DURUNIT – Duration unit for Batch Loader
States the unit to specify durations.

You can use either of the following values:
v MINUTES

v SECONDS (default)

Setting this option determines how the duration against operations and the default
duration for workstations is managed.

Setting it to MINUTES means that the DURATION keyword on the ADOP and WSSTART
Batch Loader statements is output in minutes and is considered to be Minutes
when used as input. Setting it to SECONDS means that the DURATION keyword is
output and input in seconds (this is the default).

Setting the DURUNIT keyword will also set the PIF option DURSEC accordingly, to be
in line with the DURUNIT setting. There is no need to specify the PIF DURSEC option,
but if you do the Workload Automation Programming Language DURUNIT setting is
changed to the appropriate setting to match it.

Note: SECONDS is not the default for legacy tools BCIT (EQQYCAIN) and Batch
Loader (EQQYLTOP). If you are using Workload Automation Programming
Language together with these tools, you must consider the setting of DURUNIT based
on your usage of the legacy tools.

DYNATTR – Set attributes for dynamic log
The OPTIONS DYNLOG keyword causes a dynamic log file to be created to save a
copy of the Workload Automation Programming Language log.

The DYNATTR keyword defines the TSO ALLOCATE attributes for the creation of the
file.

The default is SPACE(75,15) TRACKS LRECL(80) RECFM(F B)

See the TSO Command Reference for details about the ALLOCATE command and
the attributes you can set. The FILE, DATASET, NEW, and REUSE keywords are already
set automatically and are not to be included in this keyword.

Appendix B. OPTIONS keywords 297

DYNLOG – Create a dynamic copy of the Workload Automation
Programming Language log

During parallel testing, if the OPTIONS FAIL(N) or SPOOF keywords are used, you
cannot identify the problems with the IBM Workload Scheduler for z/OS part of
the processing. This keyword prompts Workload Automation Programming
Language to create a copy of the log in a uniquely named data set, so that the logs
can be collated and scanned for errors at points in the testing cycle.

DYNLOG defines the prefix to use for creating the logs. It can be up to 18 characters.

For example, OPTIONS DYNLOG(MY.WAPLLOG) creates log files with the convention
MY.WAPLLOG.Dyymmdd.Thhmmssx.jjjjjjj

where:

yymmdd The current date.

hhmmss The time.

x Unique suffix, starting with A. If two jobs with the same name run within
the same second, the suffix is incremented.

jjjjjjjj
Name of the job.

Note:

1. DYNLOG cannot be used with the load module EQQWAPL.
2. All the messages related to the dynamic log are by default set to Advisory

severity. Failing to create or write to a dynamic log does not issue a non-zero
return code, because the processing performed by the job is not at risk. To
change this behavior, use the SETSEV command to modify the severity of
messages 306 and 308, which are related to failures in the dynamic log process.

EXECUTE – Automatic Current Plan EXECUTE
Automatically performs an EXECUTE before termination.

MANUAL All EXECUTE statements must be explicitly coded.

AUTO If Current Plan DELETE, INSERT, or MODIFY statements have taken place,
without an intervening EXECUTE or RESET, an EXECUTE is performed
automatically before the TERM statement is processed.

EXPAND – LIST related objects
Whether to generate LIST statements for any database elements that might be
required by a SELECTed database element.

NO No, this is the default.

YES It LISTs all items that are required by the object to work correctly. For
example, an Application that is part of a Group needs the Group
Definition; if it is an event triggered application it needs the ETT rule, any
workstations, calendars or periods are also needed.

The following items are expanded by EXPAND(YES):
v When an Application is SELECTed, it will LIST any ETT rule that

references it, any Group Definition it is part of, any Calendar it

298 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

references, any Period or Variable table referenced in a Run Cycle or
Rule, and any Operator Instruction, Workstation or Special Resource
referenced by an Operation.

v When an Event Trigger is SELECTed, it will LIST the Application it will
trigger, and the Special Resource if this is a Resource trigger.

v When a Period is SELECTed, it will LIST any Variable Table it may
reference.

v When a Workstation is SELECTed, it will LIST any Virtual Workstation
Destinations it may have.

FULL LISTs the items covered by YES but will also LIST extra items not required
to make the individual object work, but are referenced by it. The extra
items include:
v Applications referenced as external predecessors.
v Members of application groups.

When you use OPTIONS EXPAND, any SELECT statements generated by a LIST
statement with SELECT(Y) contains also a SELECT(Y) keyword. This means that any
items identified by the LIST statement for the EXPAND generate a SELECT request.
Using automatic EXPAND and SELECT together can result in Batch Loader being
generated for all related objects.

Note:

1. Applications LISTed by the EXPAND option use the keyword VALID(=) only to
LIST the versions valid on the running day. The DATE option can be used to
influence this.

2. When OPTIONS EXPAND(YES|FULL) is set, DUPAUTO(NO) is also automatically set.

FAIL – Action to take with return codes
In normal use, Workload Automation Programming Language is expected to fail
with non-zero return codes in the event of errors being found. However, during
parallel testing when migrating from an alternative workload automation product
to IBM Workload Scheduler for z/OS, it is normal to send commands to IBM
Workload Scheduler for z/OS first, then to the alternative product that is
controlling the workload. This enables IBM Workload Scheduler for z/OS to be in
the correct state to track events from the alternative product.

The following values are valid for FAIL:

YES Default. Workload Automation Programming Language flushes commands
after the OPTIONS STOPRC return code is issued, and returns the highest
return code back to the running job.

NO Workload Automation Programming Language continues processing
commands even if the OPTIONS STOPRC return code has been reached, and
in most circumstances ends with return code zero. Severe syntax issues
causes the Workload Automation Programming Language step to fail, but
these should be eliminating in testing before parallel running. All error
messages will be echoed to the SYSLOG to be collected as part of the
parallel testing process.

QUIET Workload Automation Programming Language continues processing
commands, even if the OPTIONS STOPRC return code has been reached, and
in most circumstances ends with return code zero. Severe syntax issues
causes the Workload Automation Programming Language step to fail, but

Appendix B. OPTIONS keywords 299

these should be eliminating in testing before parallel running. No error
messages will be echoed to the SYSLOG.

Note: OPTIONS FAIL overrides any return codes from commands, including SETMAX,
but is overridden if OPTIONS SPOOF is coded.

FASTPATH – Current Plan search option
When you want to retrieve only computer and printer operations, FASTPATH makes
the search for operations faster.

N All operations matching the search argument criteria that you specified are
retrieved (default).

Y IBM Workload Scheduler for z/OS searches the current plan for computer
or printer operations matching the job name search argument. It then
selects all operations in the occurrences that contain the computer or
printer operations (that is, even operations at general workstations), and
retrieves the operations based on the remaining search arguments
specified.

FIELDSEP – ILSON field separator
The Field Separator character is used to separate fields in the DATA output. You can
specify either a single character reference, for example a comma, as in FIELDSEP(,),
or a hex value as a two byte notation or two bytes suffixed with x, for example
FIELDSEP(00) or FIELDSEP(00x).

For safe parsing of your data, ensure that you use a value that is not contained in
any data extracted (default is 00x).

Field Separators can be turned off by setting FIELDSEP(NONE).

Note: If you want to use EXIT or the EQQYXFLD function, ensure you do not use the
same value for FIELDSEP (default 00x) and LABELSEP (default =). NONE must not be
used. If this occurs, when an EXIT is called it is not used and EXIT is reset to
blank.

FILESPEC – File Specification DD statement
DD name from which to read File Specification.

FIRST – Logical First operation
Sets the default logical first operation within an application for any process that
needs a logical start point.

FIRST(<operation>[,LINK][,ALL])

where:

<operation>
The number of the operation to be considered the logical start point of the
application.

LINK Instructs Workload Automation Programming Language to create an
automatic ADDEP statement to link to the first operation for any operation
without a predecessor.

300 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

ALL Together with LINK, instructs Workload Automation Programming
Language to create automatic ADDEP statements to link to the first operation
for all operations, including those with predecessors.

Note:

1. ALL takes effect only if LINK is also specified.
2. LINK cannot be used in together with DBMODE(COPY) or DBMODE(UPDATE).

FREEMAX – Maximum number of consecutive free days to skip
To calculate dates using workdays as the offset, a calendar might have been
defined with no workdays, causing calculations to loop infinitely. Use the FREEMAX
keyword to set a limit of consecutive free days to process before the command
fails.

The default is 14.

GTABLE – Default Global Table
Used for any commands that need to know a global table name, when none is
specified in the keywords for the command.

HIGHRC – Highest accessible return code
Highest acceptable return code.

Anything up to this return code does not affect the highest return code of the job.
Available values are 0, 4 or 8 (default is 0).

Note: Any return codes you set before the HIGHRC option is processed, affects the
job highest return code.

IFCMD – Default step to consider for command return code checking
The @CMD function is used to check the return code of a previous command. If the
command label is not specified, the default command to check is determined by
this OPTIONS keyword.

LAST_RC
Refers to the immediately preceding command.

LAST_XRC
Refers to the last command that was run and was not flushed. This is the
default.

MAX_RC Refers to the command that issued the maximum return code.

MAX_RESP
Refers to the command that issued the maximum response code.

IFJCL – Default step to consider for JCL step return code checking
The @JCL tag is used to check the return code of a previous JCL step in the current
job. If the command label is not specified, the default command to check is
determined by this OPTIONS keyword.

LAST_RC
Refers to the immediately preceding step.

Appendix B. OPTIONS keywords 301

LAST_XRC
Refers to the last step that was run and was not flushed. This is the
default.

MAX_RC Refers to the step that issued the maximum return code.

IGNORE – Default value for ADDJOB IGNORE keyword
Sets the default specification of internal dependencies to ignore.

The default is =FIRST =LAST

For the valid values, see “ADDJOB – Add job to the current plan” on page 146.

INCLEVEL – Message level for INCLUDE statements
By default, any statements run as a result of INCLUDE statements is listed only
when either the MSGLEVEL is 3 or higher, or the statement fails. Use INCLEVEL to
specify an alternative message level for listing the contents of the included
members.

OPTIONS INCLEVEL(1)
All included statement are listed at the same level as normal SYSIN
commands.

OPTION INCLEVEL(2)
All included statements are listed at the same level as any statements
generated by automatic SELECT, DELETE, or EXPAND options.

OPTIONS INCLEVEL(3)
All included statements are listed at the same level as statements within
the member referenced by the FILESPEC symbolic in the JCL.

Levels 4 and 5 are not available for INCLUDE statements, because these levels are
reserved for internal Workload Automation Programming Language commands.

INPUT – Command input DD statement

You can name a specific DD statement for Workload Automation Programming
Language to read for the main command stream, specify an address for a control
block containing the main command stream, or specify INPUT(-OFF-) to prevent
Workload Automation Programming Language from attempting to read an INPUT
stream from a file, so it reads only from the External Data Queue.

To specify a DD statement, include the name as the keyword value, as in the
following example:
OPTIONS INPUT(MYCMDS)

To specify a control block, set an 8-character hexadecimal address with a prefix of
0x, as in the following example:
OPTIONS INPUT(0x0000CAA0)

Note: This keyword is effective only if you specify it within EQQOPTS, the ARGS
symbolic parameter, or the argument when calling EQQYXTOP/EQQWAPL
directly.

302 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|
|

JSFILE – DD name of input JCL for JSSTART
Used to set the input library for the JSSTART batch loader command. The default
value is EQQJSPDS.

LABELSEP – ILSON label separator
The Label Separator character used to separate field Labels from Values in the DATA
output.

You can set either a direct character reference, as in LABELSEP(=), or a hex value
either as a two byte notation, or two bytes suffixed with x, for example
FIELDSEP(01) or FIELDSEP(01x).

You can turn off label separators with LABELSEP(NONE).

LAST – Last logical operation
Sets the default logical last operation within an application for any process that
needs a logical end point.

LAST(<operation>[,LINK][,ALL])

where:

<operation>
The number of the operation to be considered the logical end point of the
application.

LINK Instructs Workload Automation Programming Language to create an
automatic ADDEP statement to link to the last operation for any operation
without a successor.

ALL Together with LINK, instructs Workload Automation Programming
Language to create automatic ADDEP statements to link to the last operation
for all operations, including ones with successors.

Note:

1. ALL is effective only if LINK is also specified.
2. LINK cannot be used together with DBMODE(COPY) or DBMODE(UPDATE).

LIMIT – Unconstrained loop limit
DO WHILE, DO UNTIL, and DO FOREVER loops might run infinitely. This option restricts
the types of loops to a maximum number of iterations, before the process fails.

The default is 100.

LOADER – Batch Loader output destination
File Destination (such as DD name) to override value specified on the OUTPUT
LOADER keyword. Setting a minus sign (-) suppresses LOADER output.

OPTIONS LOADER(-)

Appendix B. OPTIONS keywords 303

Note: OPTIONS LOADER sets a LOADER output destination for all the segments
referenced by the OUTPUT statements, regardless of whether they originally had a
LOADER keyword.

LTDEPR – Long Term Plan dependency resolution
Automatic resolution of external dependencies when inserting new LTP
occurrences.

Y Yes.

N No (default).

MAILDD – DD name of input text for SENDMAIL
Used to set the input library for the SENDMAIL command.

The default value is EQQEMAIL.

MAILFROM – Email address of mail sender
Used to set the default FROM value for the SENDMAIL command.

If no sending domain name is used, the value set in OPTIONS MAILSERVER is
automatically appended.

MAILSERVER – Domain name of the mail server
Used to set the default SERVER value for the SENDMAIL command.

If no domain name is used in any email addresses, the value set in OPTIONS
MAILSERVER is automatically appended.

MAILSMTP – DD name of SMTP output
Used to set the output DD name for the SENDMAIL command.

The default value is EQQSMTP.

MEMORY – Memory usage
This OPTIONS keyword is no longer effective. Original values are accepted for
backwards compatibility.

MSGLEVEL – Output message level
Determines the level of messages to be issued.
1. Only show commands from user input on data queue or SYSIN, or commands

that have not completed successfully (default)
2. Also show commands generated from user input, such as SELECTs from LISTs.
3. Also show commands from FILESPEC source and INCLUDE statements.
4. Also show commands from OPTIONS, SUBSYS and arg source
5. Show system generated commands INIT, TERM and OPTIONS RETMSG along

with commands generated as part of composite commands.

304 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

The special message levels are as follows:

-1 Lists only Fatal and Critical errors. When invoked with the SILENT
immediate option, it suppresses Workload Automation Programming
Language startup messages.

0 Lists only commands that did not complete successfully. Any command
that issues a return code higher than HIGHRC is considered to be
unsuccessful for this purpose. Startup and termination messages are
issued.

OIFILE – DD name of input text for OISTART

Used to set the input library for the OISTART batch loader command. The default
value is EQQOIPDS.

OPID – Identify controlling operation

Ordinarily, Workload Automation Programming Language finds automatically the
occurrence that controls the job where it is running by looking up the job name
and JES number in the current plan, or by the contents of the EQQCPOP file,
usually populated by supplied variables.

In some scenarios, you could run a Workload Automation Programming Language
job on behalf of an operation in the current plan, which could not be the actual job
submitted by the controller or tracker. For example, you can submit a Workload
Automation Programming Language process from the status-change-exit. To allow
these processes to be connected to the operation, use the OPID keyword in the
ARGS symbolic parameter.

The OPID keyword must contain the application ID, occurrence input arrival, and
number of the operation with which you want to associate it, in the following
format:
APPL_ID YYMMDDHHMM NNN

For example:
S EQQYXJPX,ARGS='OPID(MYAPPL 1701241000 010)'

OPMSG – Send messages to console
Whether to issue messages with severity O to Operator Console.

Y Yes.

N No (default).

OUTMASK – Output mask
Tells Workload Automation Programming Language to treat the percent sign (%)
and asterisk (*) as masking characters for updating fields within Batch Loader
statements.

N Do not use masking for updates (default).

Y Use masking for updates.

Regardless of this setting, you can still use masks in key fields to identify records.

Appendix B. OPTIONS keywords 305

OVERWRITE – Whether to overwrite an object during rename
When using NEW_ prefixes for fields when using Batch Loader in UPDATE or COPY
mode, they will result in a new name for the object. This new name might point to
another pre-existing object. By default, the update fails. The OVERWRITE option
enables you to modify this behaviour to allow the replacement of the existing
object.

N The UPDATE or COPY fail if the newly named object already exists.

Y The pre-existing object is replaced by the copied or renamed object. The
warning message EQQI144W is issued.

Note: This works only when the Batch Loader statements refer to an individual
object. If wildcards are used in the batch loader key fields, or USELIST is used, the
command fails if the newly named object already exists. In these instances
additional Workload Automation Programming Language commands must first
delete the destination objects.

OWNER – Owner ID for tables created by VAR* commands
When a VARDATE, VARSAVE, or VARSET command tries to save a variable to a table
that does not exist, an Owner ID must be provided. This keyword provides the
value to use for these eventualities.

The default value is TWA.

PGMPIF – Program to use for IBM Workload Scheduler for z/OS
communication

Program to call IBM Workload Scheduler for z/OS PIF (default is EQQYCOM).

Use this option to manage calls to different versions of IBM Workload Scheduler
for z/OS from the same LPAR by providing specific versions of EQQYCOM for
each version.

PGMSTOR – Program to use to manage storage
Program to allocate storage (default is EQQSTOR).

PGMWAIT – Program to use to wait
Program to use to wait for contention retry (default is EQQRETWM).

POSTPROC – Post process external data queue
After processing all initial command statements on the external data queue and in
the INPUT source (usually SYSIN), Workload Automation Programming Language
terminates. If you dynamically generate more command statements into the
External Data Queue during execution, for example Batch Loader, use this option
to have Workload Automation Programming Language processed these extra
statements.

Y Process external data queue until it is empty.

N Ignore any new entries on the external data queue (default).

306 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Note: If during the processing of the additional commands in the external data
queue, other commands are generated, they are also processed unless you reset the
POSTPROC option. This could lead to a looping condition.

PREMPTY – Action to take when creating period with DATELIST and
ADID

Determines the action to take when a period automatically created is about to be
created with no intervals.

When using PRSTART with either DATELIST or ADID, the list of calculated dates might
be empty within the range FROMDATE – TODATE. If the Period does not already have
interval dates, or is being replaced, an error condition is generated, because the
Period must have at least one interval.

PREMPTY can have the following values:

FAIL If empty, the request fails (default).

HIGHDATE
Uses the IBM Workload Scheduler for z/OS High date as the only interval.

LOWDATE
Uses the IBM Workload Scheduler for z/OS LOW date as the only interval.

yymmdd Uses the specified date as the only interval.

REPORT – Report output width
Sets the report width for output messages in SYSTSPRT (default is 80).

RETMSG <unavailable option>
Restricted option. Managed internally by Workload Automation Programming
Language, not permitted with Workload Automation Programming Language
command stream.

RETMSGID <unavailable option>
Restricted option. Handled internally by Workload Automation Programming
Language, not permitted with Workload Automation Programming Language
command stream.

RUNIF – Set defaults for conditional execution

Use the RUNIF command to conditionally prevent jobs running under certain
circumstances. The command moves identified workload to non reporting
workstations and optionally removes Special Resources and Time Dependencies.

OPTIONS RUNIF(<wsname>,<dropsr>,<droptime>)

where:

<wsname>
The default name of the workstation where to switch the workload. It must
be a general non-reporting workstation. If the workstation is not specified,
the RUNIF command fails.

Appendix B. OPTIONS keywords 307

<dropsr>
Whether to drop special resources from identified operations. The value
can either be YES (default) or NO.

<droptime>
Whether to drop time dependencies from identified operations. The value
can either be YES (default) or NO.

RUNSTAT – Alter run cycle status
Modifies the unloaded values of the Valid From (ADRVALF) and Valid To (ADRVALT)
dates of each run cycle. This affects the value in any generated Data or Batch
Loader output. It does not affect the database, unless you process the generated
Batch Loader output.

RUNSTAT is designed to enable you to turn off the planning capability of an
application while still allowing it to be submitted, so that the planning capability
can be later reinstated. Typically, this option is used for copying production
schedules to a test environment, or disaster recovery testing.

For run cycle status within generated batch loader you can set the following
values:

ACTIVATE
Puts any run cycles that are Valid To LOWDATE back into effect with VALFROM
being the current Workload Automation Programming Language date and
VALTO being HIGHDATE (for example, 711231).

RETAIN Do nothing with run cycle VALFROM and VALTO values (default).

SUSPEND
Sets the VALFROM and VALTO values to LOWDATE (for example, 720101) for any
run cycles for which the Valid To date is set to the current Workload
Automation Programming Language date, or later.

Note:

1. If you SUSPEND a run cycle with a Valid To date set to a future date other than
HIGHDATE, this information is lost. When the application is later reinstated with
ACTIVATE, it uses HIGHDATE as the new Valid To date.

2. In the ISPF panels, the VALTO date is translated to an “Out of Effect” date. This
means that the date listed in the “Out Of Effect” column is actually one day
after the actual VALTO date (with the exception of HIGHDATE, which is listed the
same as VALTO as opposed to the day after). It is important to understand this
as a run cycle showing an “Out Of Effect” date in the panels of “today” will
actually have a VALTO date of “yesterday” and therefore not be affected by
RUNSTAT(SUSPEND).

SENDDATA – Output ILSON data
Whether to send IBM Workload Scheduler for z/OS data information to files
specified in the OUTPUT DATA keyword.

Y Writes data output (default).

N Does not write data output.

Note: No output is written if no output destinations are specified.

308 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

SENDLOADER – Output Batch Loader
Whether to send Batch Loader information to files specified on the OUTPUT LOADER
keyword.

Y Writes data output (default).

N Does not write data output.

Note: No output is written if no output destinations are specified.

SELECT – Automatic selection
Sets the default value for the SELECT keyword of the LIST statement.

Y Automatically generate SELECT statements.

N Does not generate SELECT statements (default).

SETMAX – Influence default SETMAX behaviour
Sets the default behaviour of the SETMAX command.

MAX_RC Compares the POLICY against the current maximum return code, and
modifies the maximum return code if a match is made within the POLICY.
It also sets the return code of the SETMAX command to the same value. This
is the default.

MAX_RESP
Compares the POLICY against the current maximum response code, and
modifies the maximum response code if a match is made within the
POLICY. It does not set the return code of the SETMAX command.

BOTH Compares against the highest of the current maximum return code and
maximum response code. It modifies both values if is a match is found
within the POLICY. It also sets the return code of the SETMAX command to
the same value.

SETUP – Default SETUP attribute for Workload Automation
Programming Language variables when saved

Sets the default SETUP value for any new VARSET and VARDATE variables when saved
into a JCL Variable Table.

YES Resolves variable at SETUP phase.

NO Resolves variable at SUBMIT phase.

PROMPT Promptable variable.

SEVERITY – Message severity levels
Defines the message severities to display.

Within Workload Automation Programming Language, some message severities
can be suppressed so that they are not listed in the output. The severities are:

A Advisory

O Operator

W Warning

Appendix B. OPTIONS keywords 309

E Error

This keyword instructs Workload Automation Programming Language about the
severities to display (default is AOWE).

Note: If you suppress W or E, the return codes set by these types of messages are
also ignored.

SILENT – Silent running
Sets the special message level -1 from the start of Workload Automation
Programming Language that prevents all messages except Fatal and Critical from
being issued.

This option allows Workload Automation Programming Language to be called
from within REXX programs that form part of ISPF dialogs without disrupting the
panel flow unnecessarily.

Note: This is an immediate option and is valid only when specified as an
argument to Workload Automation Programming Language.

SHOWDFLT – Show values that are set to defaults
Whether to create batch loader keywords for fields with default values.

Y Output fields with default values (default).

N Does not output fields with default values.

Note: In some cases this can result in Batch Loader statements with no keywords
(for example, WSIVL). This is normal behaviour.

SHOWKEYS – Display key information
Whether to display the key information for each record identified by a LIST
statement.

Y Displays message EQQI640A for every record identified by a LIST
statement.

N Does not display message EQQI640A (default).

Note:

1. All the listed records match the LIST value, regardless of whether a FILTER is
being used.

2. OPTIONS SHOWKEYS causes every common segment to be processed as far as
extracting key fields, regardless of whether an OUTPUT statement is present for
that segment. In large volume jobs, this might affect run time therefore it is not
recommended to set OPTIONS SHOWKEYS in your site default member.

SPE – Small Product Enhancements
Indicates whether support for certain Small Product Enhancements (SPEs) is to be
considered. Each SPE is listed in the format spename=Y or spename=N, for example
SPE(WLM=Y,SA=N).

310 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Specifying only the SPE name corresponds to specifying =Y, for example
SPE(WLM,SA=N).

For a list of valid SPEs, see “Small product enhancements” on page 5.

STOPRC – Return code to terminate processing
The return code that causes processing to stop.

By default, Workload Automation Programming Language flushes processing
when a return code 12 is found. You can cause subsequent command statements to
be prevented from processing by specifying STOPRC(4) or STOPRC(8). You can reset
this code to 12 by STOPRC(12) (this is the default).

Note: This is not impacted by any response codes set with the LISTSTAT
command.

STRIP – Remove trailing blanks and leading zeroes
Whether to strip blanks and leading zeroes from DATA and LOADER output.

Y Strip blanks and leading zeroes.

N Return data as extracted from IBM Workload Scheduler for z/OS (default).

For example:

OPTIONS STRIP(N) produces ADID(MYAPPL)

OPTIONS STRIP(Y) produces ADID(MYAPPL)

Note: Leading zeros are stripped only from fields that are defined as Signed or
Unsigned in the PIF record layouts. This is to stop leading zeros being removed
from character based numeric strings such as dates and times. Operation numbers
are also always left with leading zeros in place.

SUBSYS – Input file for controller options
Workload Automation Programming Language can read subsystem specific
OPTIONS statements after it has read the default options from the OPTIONS input
source. Use the SUBSYS keyword to specify the DD statement from which to read
the subsystem specific options (the default is <blank>).

This keyword is effective only on OPTIONS statements contained within the OPTIONS
input stream.

From version 3.4 and later, instead of using OPTIONS SUBSYS you can code
subsystem specific statements at any point in the command stream, including
EQQOPTS.

For example:
<global settings>
IF @V(ZSUBSYS) = “TWSA” THEN DO
<controller settings>
END

Appendix B. OPTIONS keywords 311

SUFFIX – Object name suffixing
How to manage the SUFFIX Batch Loader keyword.

DISABLE
The SUFFIX keyword has no effect.

FAIL If adding the SUFFIX to the name of the object the maximum length is
exceeded, the process fails (default).

IGNORE If adding the SUFFIX to the name of the object the maximum length is
exceeded, the SUFFIX is ignored.

OVERLAY
If adding the SUFFIX to the name of the object the maximum length is
exceeded, the SUFFIX is overlayed over the rightmost portion of the field.

TRUNCATE
If adding the SUFFIX to the name of the object the maximum length is
exceeded, the suffix is added to the end of the field and truncated to fit the
field width.

SUPMSG – Message suppression
SUPMSG allows you to prevent a message from being written to the message log.

You can prevent more than one message from being written to message log by
issuing multiple OPTIONS requests with the SUPMSG argument specified. The
argument to SUPMSG is formed by MSG followed by the message identifier. To
obtain the message identifier, remove the IBM Workload Scheduler for z/OS prefix
(EQQ) from the beginning of the message and the severity indicator from the end
of the message.

For example, to prevent message EQQW002E from being written to the message
log specify the argument value MSGW002.

Note: If SUPMSG is used to avoid Workload Automation Programming Language
messages prefixed with EQQI, this also prevents the resulting return code for the
message being set.

For example, if you specify an output file in an OUTPUT statement that is not
allocated and then try to write to it, setting OPTIONS SUPMSG(MSGI103) prevents
Workload Automation Programming Language from issuing RC=4

SYNTAX – Legacy syntax compatibility
Restricts Batch Loader output and input syntax to legacy Batch Loader
(EQQYLTOP) compatibility.

EXTENDED
Use extended syntax (default).

LEGACY Use only EQQYLTOP compatible syntax.

This is to allow output generated by Workload Automation Programming
Language to be processed by EQQYLTOP and Batch Loader written to EQQYLTOP
rules to be processed the same way.

312 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

When set to LEGACY, Workload Automation Programming Language applies the
following restrictions:
v Any input beyond column 72 is ignored, regardless of record length.
v Batch Loader keywords not supported by EQQYLTOP for the relevant release

are not generated.
v Alternative names for Batch Loader keywords are not output, but are accepted

as input.

SYSID – Tracker lookup method
SYSID allows you to set the field with which to look up LPAR specific values in
lookup tables such as OPTIONS TRACKERS.

Valid values are:

SYSNAME
The name of the system as specified in the SYSNAME statement in
SYS1.PARMLIB (default).

SMFID The System Management Facility Identifier.

JESNODE
The JES Node name.

TAGMODE – Set automatic tagging
TAGMODE turns on automatic tagging of descriptions for All Workstations Closed,
Calendar Specific Dates, and Workstation Intervals.

By setting TAGMODE and the related TAGMASK OPTIONS, you can add a tag to the
description with information containing both the Day of the Week and the Day of
the Year. This allows a better understanding and verification of these dates when
viewing the related items.

Tagging occurs every time the DESCR keyword is set for one of these objects using
Batch Loader.

Valid values for TAGMODE are:

OFF No tagging occurs (default).

PREFIX The tag is added to the front of the description.

SUFFIX The tag is added to the end of the description.

RIGHT The tag is added to the end of the description and is right justified to the
maximum length of the description.

Note: If the length of the DESCR and the tag exceed the length of the field, the
tagged description is truncated when using PREFIX and SUFFIX and text can be
overwritten when using RIGHT.

TAGMASK – Set tagging mask
Use TAGMASK to describe the layout of the tag to be added to a description of a date
related option. Its use is activated by OPTIONS TAGMODE.

Appendix B. OPTIONS keywords 313

The mask can be any text string containing various characters, but the following
character combinations are replaced by values relating to the date:

DDDD The complete name of the day of the week in upper case.

Dddd The complete name of the day of the week in mixed case.

DDD The first 3 characters of the day of the week in upper case.

Ddd The first 3 characters of the day of the week in mixed case.

DD The first 2 characters of the day of the week in upper case.

Dd The first 2 characters of the day of the week in mixed case.

number sign (#)
The day number with in the year (3 characters).

For example, TAGMASK(’ (Ddd #)’) resolves to an output like the following:
’ (Mon 334)’

Note: Only one instance of Day of the Week and Day of the Year is replaced in
each mask.

TEMPFILE – DD name of temporary library allocation
Used to set the DD name for allocating individual members of a library for
processes that allow member name input from a PDS or PDSE.

The default value is EQQTEMP.

TIME – Workload Automation Programming Language internal time
When using the equal sign (=) to represent a DATE or TIME within Workload
Automation Programming Language, by default the date and time when Workload
Automation Programming Language started is used. Workload Automation
Programming Language maintains a static internal time to allow you to generate
multiple statements with a “current time” that is consistent across all statements,
regardless of whether the time changes during run time.

OPTIONS TIME allows you to set an explicit current TIME to be used instead of the
equal sign (=) or any other function that requires the current time within Workload
Automation Programming Language.

The format of the time must be hhmm.

For example, the following command results in all 6 occurrences having an IA of
0701241600:
OPTIONS DATE(070124) TIME(1600)
INSERT CPOC ADID(MYAPPL1) IA(=)
INSERT CPOC ADID(MYAPPL2) IA(=)
INSERT CPOC ADID(MYAPPL3) IA(=)
INSERT CPOC ADID(MYAPPL4) IA(=)
INSERT CPOC ADID(MYAPPL5) IA(=)
INSERT CPOC ADID(MYAPPL6) IA(=)

You can also use OPTIONS TIME to set the internal Workload Automation
Programming Language date to be relative to the current date.

314 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

For example, OPTIONS DATE(+60) sets the time that Workload Automation
Programming Language will use as 60 minutes ahead of its current setting.

OPTIONS DATE(-5) sets the date that Workload Automation Programming Language
will use as 5 minutes behind its current setting.

Note: If the addition or subtraction crosses a day boundary, the internal date is
also changed.

You can reset the internal Workload Automation Programming Languagedate and
time to the current date and time by using OPTIONS TIME(RESET).

TRACE – Perform interface tracing
The TRACE keyword causes Workload Automation Programming Language to list
detailed IBM Workload Scheduler for z/OS Program Interface information to help
you debug any difficulties you might be having.

The available levels are:

0 No tracing (default).

1 Lists PIF commands as they are issued and low level diagnostic
information.

2 Lists segments as they are found.

3 Lists control structures and full DATA_AREA listing for SELECT
statements.

All TRACE messages are easily identifiable by >> at the beginning of the message
text.

TRACKERS – Tracker lookup
The TRACKERS keyword allows you define a lookup table to allow the IBM
Workload Scheduler for z/OS TSO commands to know the tracker subsystem to
which to send events for a combination of Controller and JES Node.

+------<----------<-----+
V |

TRACKERS(>-+-subsys.sysid.tracker,-+-<<)

where:

subsys Name of the controller

sysid Identifier for the LPAR as designated by OPTIONS SYSID.

tracker
Name of the tracker.

If you set sysid to an asterisk (*), the default tracker name for the controller is
used.

The following example defines the scenario that all trackers for IBM Workload
Scheduler for z/OS subsystem TWSA are called TRKA, unless they are running on
SYS1 or SYSQ in which case they are TRK1 and TRK2, respectively.
OPTIONS TRACKERS(TWSA.*.TRKA,TWSA.SYS1.TRK1,TWSA.SYSQ.TRK2)

Appendix B. OPTIONS keywords 315

UPDATE – Default value for UPDATE keyword
Sets the default value for any commands that use the UPDATE keyword to
determine whether to actually perform updates, or just simulate the process.

Y Perform updates as specified (default).

N Simulate command without performing updates.

VARNAMES – Special characters to allow in variable names
Workload Automation Programming Language allows variable names to consist of
letters, numbers, and the characters: at sign (@), number sign (#) and underscore
(_).

Extra characters can be added to this using the VARNAMES keyword. The default
additional characters are pound sign (£) and dollar sign ($).

VERADGRD – Verify groups exist
Application descriptions that are members of an application group have the name
of the group definition in field ADGROUPID of segment ADCOM. VERADGRD controls
the verification of this field when a new application description is created or an
existing application is replaced.

The verification is done for active application descriptions.

N No check is made to verify that the application group exists (default).

F The group definition is verified to check that it exists, is active, and valid
for at least a part of the validity period of the application description being
created or updated.

Y Same as for F, except that the application group ID is accepted if the
application description already has this application group ID. It could be
an update without any change to the application group ID or an insert of a
new version when there already are active versions with the same
application group ID.

VERSION – IBM Workload Scheduler for z/OS version
Specifies the version of IBM Workload Scheduler for z/OS with which to
communicate. This prevents inappropriate commands from being issued and
generates only Batch Loader compatible with the specified version.

The default is the latest version supported by Workload Automation Programming
Language.

VERSRWSN – Verify workstations
The special resource description, SR, has fields representing workstations, the
complete workstation names, or generic names; field SRDWSNAME of segment SRDWS
for default connected workstations, field SRIWSNAME of segment SRIWS for
workstations connected to an interval. VERSRWSN controls the verification of these
fields when a new special resource is created or an existing resource is replaced.

N No check is made to verify that the workstation description exists (default).

316 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

F The workstation fields are verified against the workstation description file.
Each workstation field in the resource description must match at least one
of the workstation descriptions.

Y Same as for F, except that the workstation value is accepted if the resource
description already has this workstation name. It could be an update
without any change to the workstation names.

XMBLK – Whether to return a message control block
Use this option to specify that when commands are passed to Workload
Automation Programming Language through a control block, the log messages are
returned in a second control block.

Valid values are:

YES Returns Workload Automation Programming Language messages in a
control block (default).

NO Does not return Workload Automation Programming Language messages
in a control block.

XMSEV – Severity of messages to return in a message control block
Use this option to set the severity of the Workload Automation Programming
Language messages that are returned through a control block.

If you set XMBLK to YES, the Workload Automation Programming Language
messages are returned in a control block. Set the level of message severity in the
XMSEV option by specifying a string of valid suffixes. The default is WEF, meaning
that Warning, Error, and Fatal messages are returned.

A Advisory

C Critical (RC=16)

E Error (RC=8)

F Fatal (RC=12)

I Informational

O Operational Console

W Warning

X Excluded (by SETSEV command)

Note: Messages are not returned if Workload Automation Programming Language
is stopped immediately for a critical error. In this case, messages are stored only in
the Workload Automation Programming Language log, regardless of this setting.

Appendix B. OPTIONS keywords 317

|

|
|
|

|

||
|

||
|

|

|
|

|
|
|
|

||

||

||

||

||

||

||

||

|
|
|

318 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Appendix C. Workload Automation Programming Language
variables

In addition to the IBM Workload Scheduler for z/OS variables and user variables,
Workload Automation Programming Language has access to some additional
information relating to the job running Workload Automation Programming
Language and when scheduled the operation and occurrence within which it is
running.

Some variables are available as Workload Automation Programming Language
variables and IBM Workload Scheduler for z/OS JCL variables, other variables are
specific only to Workload Automation Programming Language. In the following
sections, the variables unique to Workload Automation Programming Language are
highlighted in bold.

Note: Not all the variables provided by IBM Workload Scheduler for z/OS are
available within Workload Automation Programming Language.

Job level variables
The job level variables provide information about the running job, whether it is
scheduled by Workload Automation Programming Language or not.

Note: The variables unique to Workload Automation Programming Language are
highlighted in bold.

Table 158. Job level variables

Name Description

OJJESNO The JES number of the job.

OJJSTEP The name of the current JOBSTEP.

OJOBNAME Name of the job running Workload Automation
Programming Language.

OJPSTEP The name of the current PROCSTEP.

OJSWA Memory type of the initiator running the job:

ABOVE
JOBCLASS defined with WSA=ABOVE.

BELOW
JOBCLASS defined with WSA=BELOW.

Occurrence level variables
The occurrence level variables provide information about the occurrence in which
the running job is scheduled. If the job is not being controlled by IBM Workload
Scheduler for z/OS, these variables are not available.

Note:

1. A job submitted outside of IBM Workload Scheduler for z/OS, but tracked by
it, is considered to be controlled by IBM Workload Scheduler for z/OS.

© Copyright IBM Corp. 2016 319

2. The variables unique to Workload Automation Programming Language are
highlighted in bold.

Table 159. Occurrence level variables

Name Description

OADDED Added to current plan (Y|N).

OADDESC Application description.

OADDFUNC Adding function (E|D|P|A|<blank>).

OADGROUP Application Group name.

OADID Application ID.

OADODESC Owner description.

OADOWNER Occurrence owner.

OAUGROUP Authority Group.

OCALID Calendar name,

ODD Occurrence input arrival day of month, in DD format.

ODD Occurrence input arrival day of month, in DD format.

ODL Deadline (YYMMDDHHMM).

ODMY1 Occurrence input arrival date in DDMMYY format.

ODMY2 Occurrence input arrival date in DD/MM/YY format.

OETCRIT Event triggering policy name from the ETT table.
Note: This variable can be used only by the ETT added
occurrence.

OETEVNM Complete ETT event name:

Event type J
Contains the same value of OETJOBN.

Event type R
Contains the complete resource name that
triggered the event.

Note: This variable can be used only by the ETT added
occurrence.

OETGGEN GDG data set generation number (GnnnnVnn). For the
ETT event type R, generated by a data set triggering for
GDG.
Note: This variable can be used only by the ETT added
occurrence.

OETGROOT GDG data set root. For the ETT event type R, generated
by a data set triggering for GDG.
Note: This variable can be used only by the ETT added
occurrence.

OETJNUM Job number associated with the OETJOBN. It is set only
for the event type J.
Note: This variable can be used only by the ETT added
occurrence.

320 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Table 159. Occurrence level variables (continued)

Name Description

OETJOBN The complete job name that triggered the ETT event:

Event type J
Contains the job name of the triggering job.

Event type R
Contains the job name or TSO user ID that
closed the ETT data set trigger.

Note: This variable can be used only by the ETT added
occurrence.

OETTYPE Event type of the ETT table entry (J=Job, R=Resource).
Note: This variable can be used only by the ETT added
occurrence.

OGRPDEF Application group ID.

OHH Occurrence input arrival hour in HH format.

OHHMM Occurrence input arrival hour and minute in HHMM

format.

OIA Input arrival (YYMMDDHHMM).

OIAA Actual Input Arrival (YYMMDDHHMM).

OIAO Original Input Arrival from LTP (YYMMDDHHMM).

OJCLVTAB JCL Variable table attached to occurrence.

OLATE Latest Out passed (Y|N).

OMM Occurrence input arrival month in MM format.

OMMYY Occurrence input arrival month and year in MMYY
format.

OMONITOR Occurrence monitor flag.

OPRI Occurrence priority.

OYMD1 Occurrence input arrival date in YYMMDD format.

OYMD2 Occurrence input arrival date in YY/MM/DD format.

OYY Occurrence input arrival year in YY format.

OYYMM Occurrence input arrival month within year in YYMM
format.

Operation level variables
The operation level variables provide information about the operation within the
occurrence in which the running job is scheduled.

Note: The variables unique to Workload Automation Programming Language, if
any, are highlighted in bold.

Appendix C. Workload Automation Programming Language variables 321

Table 160. Operation level variables

Name Description

OCPOPJBN Job name, as specified in the current plan.

In most cases, this is equivalent to the OJOBNAME. When
you set OPTIONS OPID, OJOBNAME specifies the name of the
running job and OCPOPJBN specifies the job name of the
connected operation in the current plan.

OCPOPJES JES number, as specified in the current plan.

In most cases, this is equivalent to the OJJESNO. When you
set OPTIONS OPID, OJJESNO specifies the number of the
running job and OCPOPJES specifies the JES number of the
connected operation in the current plan.

OJOBNAME Operation job name.

OOPNO Operation number within the occurrence, right-justified
and padded with zeros.

OWSID Workstation ID for current operation.

Current variables
The current variables represent the current date and time.

Table 161. Current variables

Name Description

CDAY Current day of the week; 1 corresponds to Monday, 7 corresponds
to Sunday.

CDD Current day of month in DD format.

CDDD Day number in the current year.

CDDMMYY Current date in DDMMYY format.

CHH Current time in HH format.

CHHMM Current hour and minute in HHMM format.

CHHMMSS Current hour, minute, and second in HHMMSS format.

CHHMMSSX Current hour, minute, second, and hundredths ofseconds in
HHMMSSXX format.

CMM Current month in MM format.

CMMYY Current month in MM format.

CYMD Current date in YYYYMMDD format.

CYY Current year in YY format.

CYYDDD Current Julian date in YYDDD format.

CYYMM Current month within year in YYMM format.

CYYMMDD Current date in YYMMDD format.

CYYYY Current year in YYYY format, for example, 1997.

CYYYYMM Current month within year in YYYYMM format.

322 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

||

|
|
|
|

||

|
|
|
|

Subsystem variables
The subsystem variables provide information about the connected subsystem.

Table 162. Subsystem variables

Name Description

ZFMID Software FMID for the connected subsystem.

ZHIDATE IBM Workload Scheduler for z/OS high date in the format
YYMMDD.

ZLODATE IBM Workload Scheduler for z/OS low date in the format
YYMMDD.

ZSUBSYS Subsystem name.

ZVER Version in the format VVRM (Version, Release, Modification
level).

ZVERSION Version V.R.M or V.R if no Mod (Version, Release,
Modification level).

Appendix C. Workload Automation Programming Language variables 323

324 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Appendix D. WAPLEXEC programs

The Workload Automation Programming Language for z/OS is a REXX based tool
provided to give you easy access to the features of the IBM Workload Scheduler
for z/OS Program Interface (PIF). Workload Automation Programming Language
can be extended by WAPLEXEC programs, which are REXX programs using
Workload Automation Programming Language functions to tackle specific tasks or
functions.

Workload Automation Programming Language provides you with a set of
programs in the SEQQMISC library. The following WAPLEXEC routines are
provided with Workload Automation Programming Language, but are no longer
supported nor documented:

Table 163. Old and new routines

Old routine Now replaced by...

EQQWXADD Workload Automation Programming Language ADD
command.

EQQWXJBF Workload Automation Programming Language LISTJOB
command. Alhough the output format is different, the
core function is the same, to find jobs in the database.

EQQWXMOD Workload Automation Programming Language Current
Plan Operation commands. For detailed information,
see Chapter 6, “Current Plan Operation commands,” on
page 117.

EQQWXLNK Workload Automation Programming Language ADD
command with LINK(YES).

Running WAPLEXEC programs
WAPLEXEC programs can be run by EQQYXJPX, naming the WAPLEXEC
program with the CMD symbolic parameter.
//RUNWAPL EXEC EQQYXJPX,
// SUBSYS=TWSA,
// CMD=EQQWXCSR
//OUTBL DD SYSOUT=*
//INPUTDEF DD *
MAP(JOB,RC,PRED,FORM,.,WS) ADID(FRED) FORM(DD0001) WS(CPU1)
POLICY(60<26,5<51,3) UPDATE(Y) FIRSTWS(DUMM) LASTWS(DUMM)
DESCR(Excel Application) ODESCR(Scheduling) OWNER(TWS)
//CSVFILE DD *
JOBA
JOBB,4,JOBA,DD0002,HELLO,WAIT
JOBC,,JOBA JOBQ,,GOODBYE
JOBD,,’JOBB JOBC’
JOBQ

For the specific programs, additional DD statements might be required.

Note:

1. WAPLEXEC programs are designed to provide their own OUTPUT statements
within the code, therefore the EQQFILE DD statement must always point to
member FILENONE for WAPLEXECs.

© Copyright IBM Corp. 2016 325

|
|
|
|
|
|
|
|
|
|
|
|
|
|

2. Input files to WAPLEXEC programs can be catalogued data sets or instream
data within the JCL. The command strings can be extremely long, and in the
case of Comma Separated Value files much longer than 80 bytes. Care should
be taken with WAPLEXEC jobs using instream data to disable “line numbers”
(UNNUM or NUMBER OFF in PDF Edit). Because numeric data could form
part of the input, the WAPLEXEC code cannot reliably determine whether
numbers in columns 73 to 80 were intended as data, or line numbers, so the
whole of the input file, regardless of record length, is always treated as input to
the process.

EQQWXBLX – Extract items from a large Batch Loader backup

Function

You can use both Workload Automation Programming Language and BCIT to
unload large portions of the database into Batch Loader form. This is often done
for backup purposes when you want to easily be able to restore individual items
from the backup. However, for very large backups it can be difficult to extract
individual items from the text file, especially when the file becomes larger than
your TSO region allows for editing or viewing.

The EQQWXBLX command allows you to extract individual items from the large
text file into a separate text file for processing.

Process control
Process control statements for EQQWXBLX are coded within the SYSIN file.

Individual keywords are used to identify each item you want to extract. You can
extract multiple items of differing types within the same run. Wildcards are not
supported.

The following keywords are available:

ADID(application-name)
Specifies the Application definition you want to extract from the backup.

DATE(date)
Specifies the All Workstation Closed entry you want to extract from the
backup.

CALENDAR(calendar-name)
Specifies the Calendar definition you want to extract from the backup.

ETTNAME(trigger)
Specifies the Event Trigger rule you want to extract from the backup.

JCLVTAB(table-name)
Specifies the JCL Variable Table definition you want to extract from the
backup.

PERIOD(period-name)
Specifies the Period definition you want to extract from the backup.

RESNAME(special-resource)
Specifies the Special Resource definition you want to extract from the
backup.

326 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

WSNAME(workstation-ID)
Specifies the workstation definition you want to extract from the backup.

Running the command
In addition to normal Workload Automation Programming Language JCL
requirements, EQQWXBLX needs the following DD statements allocated.

Table 164. DD statements for EQQWXBLX

DD Name Purpose Attributes

INBL Contains the Batch Loader
backup from which to
extract items.

If from BCIT, it is Fixed Block 80. If
from Workload Automation
Programming Language, it can be
any record length.

OUTBL Contains the extracted items. Must be the same as INBL.

The JCL for running the command must specify EQQWXBLX as the command and
pass the arguments in the ARGS symbolic parameter.

In the following example, EQQWXBLX extracts any application definitions for
applications named DAILYPLANNING and ETT1. It also extracts any table
definitions for tables named MYTABLE.

Note: When using EQQWXBLX, if multiple versions of a selected entry exist they
are all extracted.

EQQWXCSR – Update resources in the Current Plan

Function
The EQQWXCSR program allows Special Resources to be updated in the current
plan.

You can specify a single resource or use wildcards to specify multiple resources.
The program searches for all matching resources that are not in the desired status
and issue SRSTAT commands to set them. This means that resources already in
the required status do not generate additional events.

If the desired availability and the default availability for a resource are the same,
by default the SRSTAT will RESET the availability to the default. If you specify
RESET(NO), the SRSTAT sest the override availability to the desired state.

Process control

The program is controlled by keywords in the ARGS symbolic for the EQQYXJPX
procedures. Alternatively, you can provide the keywords as SYSIN.

//RUNPIF EXEC EQQYXJPX,
// SUBSYS=TWSA,
// CMD=EQQWXBLX
//SYSIN DD *
ADID(DAILYPLANNING)
ADID(ETT1)
JCLVTAB(MYTABLE)

Appendix D. WAPLEXEC programs 327

|
|
|
|
|
|
|

|
|

Each keyword has the value specified within parenthesis and separated from the
next keyword by a space.

The following keywords are available:

SR The name of the Special Resource to set (required). You can use wildcards.

AVAIL(YES|NO)
The availability you want to set (required).

MATCHTYP
If your resource name includes spaces, the percent sign (%), or an asterisk
(*), use MATCHTYP to select the correct resource.

If you do not specify MATCHTYP, all the characters up the first space are
considered to be the resource name, and the characters after the space are
ignore; any percent sign (%) or asterisk (*) is treated as a wildcard. If you
specify MATCHTYP, the spaces, percent signs (%) and asterisks (*) are
treated as normal characters and the following matches can be performed:

MATCHTYP(EXA)
An exact match is performed looking for the whole name, exactly
as typed.

MATCHTYP(PFX)
Searches for resources that begin with the name specified.

MATCHTYP(SFX)
Searches for resources that end with the name specified.

RESET(YES|NO)
Whether to RESET the resource if AVAIL matches the default availability
(default is YES).

SUBSYS
Targets the SRSTAT command to a specific tracker. If omitted, Workload
Automation Programming Language uses the SUBSYS as determined by
OPTIONS TRACKERS settings.

UPDATE(YES|NO)
Specify UPDATE(NO) to run the command only to see what it would have
done, without actually performing any changes. The default is YES.

Running the command

The EQQWXCSR program uses the EQQYXJPX procedure with no additional DD
statements.

The JCL for running the command must specify EQQWXCSR as the command.

//RUNPIF EXEC EQQYXJPX,
// SUBSYS=TWSA,
// CMD=EQQWXCSR,
// ARGS='SR(MY.SRTYPE.*) AVAIL(N)'

328 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|

|
|

EQQWXCSV – Generate applications from a CSV file

Function
The EQQWXCSV program generates a primitive application, or suite of
applications, from a comma separated value (CSV) file.

The primitive application has simply the jobs and dependencies defined, with
some operations attributes set. They do not include run cycles, special resources, or
other features not directly contained in an operation record. You can use
EQQWXCSV to create the primitive applications, to which you can later add more
detailed features by using dialogs or other means.

The CSV file can contain jobs, dependencies, workstations, highest return code,
form definition, and duration. The code can easily be extended to include other
operation attributes, as required. The minimum content for the CSV file is a
column for the names of the jobs to run, and a column for dependencies.

The columns in the CSV file can be mapped to the relevant operation attributes
with the MAP keyword. This removes any requirement to format the CSV file to
meet the requirements of the program.

The program takes the entire content of the CSV file and creates a workflow for all
the operations, then breaks this into multiple applications if necessary, based on
your operation numbering POLICY. If only one application is created, the
application name is the same as the name specified in the control statements. If the
number of operations causes an application split, the application names are
suffixed with numbers. If the specified application name is already 16 characters
long, the suffix is overlayed over the last few characters.

Each generated Application has a START and END operation to tie unattached
dependencies to.

Dependencies made to jobs defined later in the list will still be made, so it is not
necessary to sort the CSV file into estimated execution order. The program
highlights dependencies to jobs not in the list as external predecessors, which will
be defined as being to an application called EXTERNAL_PRED, with the operation
number and workstation being the same as used for the END tie up operation.
These place holder dependencies will require manual amendment in the resulting
primitive application.

Multiple instances of the same job name can be used, any dependencies made to
multiple jobs will always be to the most recently specified in the list before the job
making the dependency.

If the dependencies would define a loop, all operations in the loop are reported
without generating an application.

It is possible to produce Batch Loader output, for review or later implementation
on a later system, or the program will call Workload Automation Programming
Language directly to update the database with the new applications.

Process control
The INPUTDEF file is used to control the translation of the CSV file into
Application Definitions.

Appendix D. WAPLEXEC programs 329

The INPUTDEF file contains keywords with the format KEYWORD(VALUE)
KEYWORD(VALUE) KEYWORD(VALUE)

Each keyword has the value specified within parenthesis and separated from the
next keyword by a space.

MAP(field,field,field)
Defines which columns of the CSV file relate to details within an
operation.

JOBN The job name you want to search.

PRED The predecessors, multiple predecessors must be contained within the
same “cell” separated by spaces.

FORM
The form number.

HIGHRC
The Highest Return Code.

WSID The Workstation.

DURATION
The estimated duration in seconds.

<period>
A period is used as a placeholder for columns that do not contain
information pertinent to the creation of the Application.

The following example shows the Job name being in column 2, highest
return code in 3, workstation in 4, form number in 5 and duration in 7:
MAP(.,JOBN,HIGHRC,WSID,FORM,.,DURATION)

POLICY(op<total,op<total,op)
Defines the Operation Interval policy. Each level of the POLICY defines the
operation number to use when the total number of operations in the
CSVFILE is less than a specified threshold, with a “catch all” interval at the
end.

The following example uses an interval of 10 for less than 26 operations,
and interval of 5 for less than 51 operations and an interval of 3 for
anything higher:
POLICY(10<26,5<51,3)

POLICY(5) simply sets the catch all at 5, meaning that the interval is 5
regardless of the number of operations in the CSVFILE.

SKIP(n)
Specifies the number of rows to skip at the beginning of the file before
starting processing, to account for header rows in spreadsheets that are
used to generate the CSV files. For example, SKIP(3) skips 3 rows and
start processing with row 4.

UPDATE(Y|N)
Specifies whether the generated Batch Loader is to update the IBM
Workload Scheduler for z/OS database (Y) or simply output the Batch
Loader to OUTBL (N).

ADID(application-name)
Defines the Application name to create. If the number of operations results
in more than one Application being generated, the names are suffixed with

330 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

a numeric count. If the Application name and the numeric suffix would
exceed 16 characters, the numeric suffix will overlay the end of the
application name.

For example, ADID(ABCDAILY) will create ABCDAILY if only one
application is needed, or ABCDAILY1, ABCDAILY2 etc if a split occurs.

<Batch-Loader-Token>(value)
Any Batch Loader tokens for ADOP (for details, see IBM Workload Scheduler
for z/OS: Managing the Workload) can be used to set defaults for the mapped
columns that have no values. For example, FORM(DD0001) creates a
default value of DD0001 for any operation that does not have a value in
the mapped column for form number.

They can also be used to create lookup tables to translate input values by
suffixing the keyword name with a hyphen and a lookup value, with the
replacement value being specified within parenthesis. In the following
example, you use DD0001 as the form number for any column that
contains MY.FIRST.JCLLIB and DD0002 for any column that contains
MY.SECOND.JCLLIB:
FORM-MY.FIRST.JCLLIB(DD0001)
FORM-MY.SECOND.JCLLIB(DD0002)

This technique can be used for any of the mapped columns.

The following keywords perform the same function as their Batch Loader
equivalents in the resulting application:
v DESCR(text)

v OWNER(owner_ID)

v ODESCR(text)

v PRIORITY(n)

v ADVALFROM(yymmdd)

v STATUS(A|P)

v GROUP(authority_group)

v CALENDAR(calendar_ID)

v ADGROUPID(application_group)

v DLIMFDBCK(deadline_limit_for_feedback)

v DSMOOTHING(deadline_smoothing)

The following keywords define the operation number, workstation and job name of
the first and last operations generated in the application to tie up dependencies:
v FIRST(op_num)

v FIRSTWS(ws_id)

v FIRSTJOB(jobname)

v LAST(op_num)

v LASTWS(ws_id)

v LASTJOB(jobname)

The defaults are as follows:
FIRST(1) FIRSTWS(NONR) FIRSTJOB(START)
LAST(255) LASTWS(NONR) LASTJOB(END)

Appendix D. WAPLEXEC programs 331

Running the command
In addition to normal Workload Automation Programming Language JCL
requirements, EQQWXCSV needs the following DD statements allocated.

Table 165. DD statements for EQQWXCSV

DD Name Purpose Attributes

OUTBL Capture Batch Loader output
when running with
UPDATE(N).

Can be an output data set or
SYSOUT. Typically FB 80.

INPUTDEF Contains the control statements
that define the behavior of the
job.

Input data set or instream
SYSIN. Typically FB 80. Line
numbers not tolerated.

CSVFILE The comma separated value file
containing the jobs and
dependencies.

Input data set or instream
SYSIN. For multiple
predecessors allow for a long
record length. Line numbers not
tolerated.

The JCL for running the command must specify EQQWXCSV as the command.

EQQWXHTM – Build an HTML version of a calendar

Function
The EQQWXHTM program produces an HTML representation of a calendar. The
calendar can be a simple calendar for the year with no scheduling information, or
it can contain highlighted dates extracted from IBM Workload Scheduler for z/OS,
such as calendar free days and run dates.

All dates will have the Julian date available as a Tooltip when the mouse is
hovered over the date. If the day is normally a free day, the julian day is appended
with -F. Any date based free days must be set by the PROCESS keyword and will
contain their description in the Tooltip, but no -F. Any other specific dates can also
contain Tooltip text to explain why they have been highlighted.

If multiple events coincide on the same date, for example Free days and named
dates, the date is shown in a box and the tooltip will contain text for all events on
that date.

//RUNPIF EXEC EQQYXJPX,
// SUBSYS=TWSA,
// CMD=EQQWXCSV
//OUTBL DD SYSOUT=*
//INPUTDEF DD *
MAP(JOB,HIGHRC,PRED,FORM,.,WSID)
ADID(FRED) FORM(DD0001) WSID(CPU1)
POLICY(60<26,5<51,3) UPDATE(Y) FIRSTWS(DUMM) LASTWS(DUMM)
DESCR(Excel Application) ODESCR(Scheduling) OWNER(TWS)
//CSVFILE DD *
JOBA
JOBB,4,JOBA,DD0002,HELLO,WAIT
JOBC,,JOBA JOBQ,,GOODBYE
JOBD,,’JOBB JOBC’
JOBQ

332 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

||

|||

||
|
|

|
|

||
|
|

|
|
|

||
|
|

|
|
|
|
|
|

|
|

Titles, colors, free days, month, and day names can all be manipulated by
keywords.

Multiple lists of dates can be loaded into the calendar, each with their own color
coding and individual descriptions. Individual dates within the lists can also have
specific color coding.

The html file produced by this job can then either by transferred to a non-z/OS
platform for sending via email, sharing by Windows, Samba, or a web server, or it
could be sent directly from a mainframe SMTP server as an email attachment or
served by a mainframe based web server.

Process control
You are provided with many keywords to modify the presentation of the calendar,
by setting them either within the ARGS symbolic parameter or SYSIN.

The EQQWXHTM program operates in one of the following modes:

SINGLE
A single calendar is created with dates set by the PROCESS keyword.

MULTI
An IEBUPDATE stream is created to create multiple calendars, one for each
application found in the INAD file.

All keywords have default values, therefore none of them is required.

CALENDAR(<calendar-name>,[DEFAULT|FORCE])
The CALENDAR keyword enables you to specify the calendar to be used
to set specific free days.

The second keyword determines how the specified calendar is used when
MODE(MULTI) is set:

DEFAULT
The calendar is used only if a calendar is not specified in the
application.

FORCE
The calendar is used even if a calendar is specified against the
application.

If CALENDAR is not specified, calendars are not used in the output; only
regular FREEDAYS are shown.

DAYS(<column-headers>)
The column headers for each day of the week. If you enter less than seven
words, the remaining column headers are blank. If you enter more than
seven words, the extra words are ignored. The default is DAYS(MON TUE
WED THU FRI SAT SUN).

OUTHTNL(<DD-Name>)
The DD name of the output file to be specified. The default is
OUTHTML(OUTHTML).

FREEDAYS(<day-list>)
The days of the week that are always free days. The days are specified by
number, starting from 1=Monday to 7=Sunday. Any non numeric value is
ignored. It is also possible to set a separate color code for Free days by
appending html color codes to the list following ==.

Appendix D. WAPLEXEC programs 333

For example, FREEDAYS(6 7==gray-yellow) sets Saturday and Sunday as
Free days, and sets the background color to gray with the text color yellow.

The default is FREEDAYS(6 7).

Note: In MODE(MULTI) day of the week free days are set by this
keyword and not extracted from the calendar; only specific date free days
are extracted from the calendar.

HEAD(<BG-html-colour>[-<TEXT-html-colour>])
Sets the background color, and optionally the text color, for the header that
contains the names of the days. If only one color is specified, it is
considered the background color. If two colors are specified, separated by a
minus sign (-), the first is the background color and the second is the text
color.

The default is HEAD(blue-white).

HILITE(<BG-html-colour>[-<TEXT-html-colour>])
Sets the background color, and optionally the text color, for any
highlighted cells whose color is not specified by other means. If only one
color is specified, it is considered the background color. If two colors are
specified, separated by a minus sign (-), the first is the background color
and the second is the text color.

The default is HILITE(gray-yellow).

INAD(<DD-Name>)<only with MODE(MULTI)>
The DD name of the input file that instructs EQQWXHTM about the
applications for which to generate calendars. The default value is INAD.

The format of the file is for each application to process: application
name,calendar or blank,description,

Any data after the final comma is ignored.

INCL(<DD-Name>)
The DD name of the input file that holds specific free dates from calendars.
The default value is INCL.

The format of the file is for each specified date in each calendar: calendar
name,date in format YYMMDD,date description,

Any data after the final comma is ignored. The INCL file is read only if
CALENDAR is specified.

INLTP(<DD-Name>)<only with MODE(MULTI)>
The DD name of the input file that holds run information for applications.
The default value is INTLP.

The format of the file is for each specified date in each calendar: IA date
in format YYMMDD,AD name,

Any data after the final comma is ignored.

MODE(SINGLE|MULTI)
Determines whether to create a single HTML calendar or produce one
calendar for each application listed in the INAD file.

MONTHS(<month-list>)
The block headers for each month. If you enter less than 12 words, the
remaining block headers are blank. If you enter more than 12 words, the
extra words are ignored.

334 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

The default is MONTHS(JAN FEB MAR APR MAY JUN JUL AUG SEP
OCT NOV DEC).

OUTFTP(<DD-Name>) <only with MODE(MULTI)>
The DD name of the FTP output file. This file contains FTP get statements
to allow the PDS members to be translated into html files named after the
application. If OUTFTP is not specified, no FTP statements are generated.

The default value is OUTFTP(OUTFTP).

OUTHTML(<DD-Name>)
The DD name of the HTML output file. This file contains the HTML
calendar definitions.

The default value is OUTHTML(OUTHTML).

PROCESS(<file-list>)
Specifies a list of files to be processed to add specific list of dates to the
calendar. The files must be fixed block text files with the first word being a
date in the format YYMMDD, optionally followed by a comma and the
text for the tooltip of this date. You can also specify the color properties for
the dates, by appending a html color codes to the list following ==.

For example, the keyword PROCESS(HOLS,RUNDATES==green-yellow)
first processes a file named HOLS setting the colors to be the values
specified by HILITE, then it processes a file named RUNDATES setting the
foreground color to green and the background color to yellow for the dates
in the list. If the same date is referred to in multiple lists, the tooltip
contains the text from each list in the order they were processed, the color
coding is set to the last reference to that date.

Individual dates within a file can be given their own color coding by
appending html color codes to the record in the file following ==.

The following example shows how to code the 25th and 26th of December
with specific colors:
//HOLS DD *
120406,Goede Vrijdag
120409,2E Passdag
120430,Koninginnedag
120517,Hemelvaart
120728,2E Pinksterdag
121225,1E Kerstdag==green-red
121226,2E Kerstdag==green-red

The default is blank, meaning that no files are processed.

ROW1(<BG-html-colour>) ROW2(<BG-html-colour>)
The ROW1 and ROW2 keywords set the background for each alternate
row of each month, to make the calendar easier to read.

The default is ROW1(#FFFFCC) ROW2(#99CCCC).

RUN(<BG-html-colour>[-<TEXT-html-colour>]) <only with MODE(MULTI)>
Sets the background and optionally the text color for the run dates of
applications in MODE(MULTI). If only one color is specified, it is
considered the background color. If two colors are specified, separated by a
minus sign (-), the first is the background color and the second is the text
color.

The default is RUN(green-white).

TEXT(<TEXT-html-colour>)
Sets the default text color for dates within the calendar. This value can be

Appendix D. WAPLEXEC programs 335

overridden for highlighted dates with the HILITE keyword, and for
individual processed files and dates using the == tagging method.

The default is TEXT(black).

TITLE(<calendar-title>) <only with MODE(SINGLE) >
The title of the calendar. It is displayed at the head of the page, and in the
browser title bar. The default is the value set by the YEAR keyword.

When in LTP mode, the TITLE is the name of the application.

TRANSFER(get|put)
Determines the direction to which the FTP statements transfer the
members:

get Pulls the members from the mainframe to a remote server. The FTP
job is run on the remote server.

put Pushes the members from the mainframe to a remote server. The
FTP job is run on the mainframe.

YEAR(<year>)
The year for which to produce the report. The value must be specified in
the form YYYY.

The default is the current year.

Note:

1. Many of these keywords enable you to specify html colors. You can use both
color names (such as gray, blue, red) and RGB color codes (such as #99CCCC).
Because the different browsers support a vast range of colors, the contents of
the color keywords are not validated. Ensure the you set colors supported by
the browser that you will be using to view the calendar. Any colors not
supported by the browser are ignored when the calendar is browsed. Many
browsers are case sensitive, therefore the SYSIN for EQQWXHTM must be in
mixed case.

2. In most keywords, you can separate lists with a space or comma.

Running the command
In addition to normal Workload Automation Programming Language JCL
requirements, EQQWXHTM needs the following DD statements allocated.

Table 166. DD statements for EQQWXHTM

DD Name Purpose Attributes

<output> The information output from
the command is written to the
file specified in the FILE
keyword. The default is
OUTHTML.

Can be an output data set or
SYSOUT. Typically FB 80.
Note: The maximum record
length is the length of the
longest individual piece of text
in an input file, plus 7 bytes to
account for the appending of
.

336 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|

|
|

||

|||

||
|
|
|
|

|
|
|
|
|
|
|
|

Table 166. DD statements for EQQWXHTM (continued)

DD Name Purpose Attributes

<input> Input files are specified in the
PROCESS keyword. HTML can
process more than one input
file in a single run. Each record
must begin with a date and can
optionally contain explanatory
text for that date in the
following format:

YYMMDD,explanatory
text

Individual dates can be tagged
with specific colors, for example
121225,Christmas
Day==green-red

Can be an input data set or
SYSIN. Typically FB 80.
Note:

1. The length of explanatory
text has a bearing on the
record length for the output
file (see above).

2. You cannot use quotes in
the explanatory text.

The JCL for running the command must specify EQQWXHTM as the command in
the CMD symbolic parameter.

The following example shows how to produce a calendar with regular free days,
date based free days, and run dates. Though shown as SYSIN in this example, they
would more likely be output files from other Workload Automation Programming
Language jobs (HTMLXMPL).

Combining EQQWXHTM with other processes
EQQWXHTM provides you with a presentation layer to review date based
information in a simple and meaningful way. When combined with other
Workload Automation Programming Language elements, you can automate parts
of your date data management.

//RUNWAPL EXEC EQQYXJPX,
// CMD=EQQWXHTM,
// SUBSYS=WSJC
//OUTHTML DD DISP=SHR,DSN=MYUSER.CAL.HTML
//SYSIN DD *
TITLE(Calendar for 2012) DAYS(M D W D V Z Z)
MONTHS(JANUARI FEBRUARI MAART APRIL MEI JUNI

JULI AUGUSTUS SEPTEMBER OKTOBER NOVEMBER DECEMBER)
PROCESS(HOLS,RUNDATES==green-white)
HILITE(gray-yellow)
//HOLS DD *
120406,Goede Vrijdag
120409,Tweede Passdag
120430,Koninginnedag
120517,Hemelvaart
120728,Tweede Pinksterdag
121225,Eerste Kerstdag==green-red
121226,Tweede Kerstdag==green-red
//RUNDATES DD *
120124,Run 1
120226,Run 2
120331,Run 3
120501,Run 4
120728,Run 5
121006,Run 6

Appendix D. WAPLEXEC programs 337

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|||

||
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|

Annual calendar creation and review
The SEQQWAPL library has DATE members containing public holidays for some
countries; you can use them to create variables containing dates for public
holidays. For countries without DATE members, use VARDATE to create your own
rules for public holidays.

The following example shows a sample job for creating public holidays in the
calendar for the forthcoming year (CALNL).

You can then export the calendar dates into a flat file by running a job similar to
the following:

The flat file will contain all the dates contained within the calendar, for as many
years as the calendar covers. You can use it with the EQQWXHTM WAPLEXEC to
extract specific years and produce the HTML versions. Because the input file
contains dates for 2 years, you can run 2 steps which can each concentrate on an
individual year by use of the YEAR keyword.

The following example shows a sample job for exporting calendar dates into a flat
file (CALUNLD).

//RUNWAPL EXEC EQQYXJPX,
// VER=V860,
// SUBSYS=WSJC
//SYSIN DD *
OPTIONS DBMODE(UPDATE)
VARDATE = YEAR(+1)
INCLUDE EQQFILE(DATENL)
CLSTART CALENDAR(CALNL) DESCR(NEDERLANDSE KALENDER)
CLDAY DAY(MONDAY) STATUS(W) DESCR(MAANDAG)
CLDAY DAY(TUESDAY) STATUS(W) DESCR(DINSDAG)
CLDAY DAY(WEDNESDAY) STATUS(W) DESCR(WOENSDAG)
CLDAY DAY(THURSDAY) STATUS(W) DESCR(DONDERDAG)
CLDAY DAY(FRIDAY) STATUS(W) DESCR(VRIJDAG)
CLDAY DAY(SATURDAY) STATUS(F) DESCR(ZATERDAG)
CLDAY DAY(SUNDAY) STATUS(F) DESCR(ZONDAG)
CLDATE DATE(!FD_GOEDE_VRIJDAG) STATUS(F) DESCR(GOEDE VRIJDAG)
CLDATE DATE(!FD_TWEEDE_PAASDAG) STATUS(F) DESCR(TWEEDE PAASDAG)
CLDATE DATE(!FD_KONINGINNEDAG) STATUS(F) DESCR(KONINGINNEDAG)
CLDATE DATE(!FD_HEMELVAARTSDAG) STATUS(F) DESCR(HEMELVAARTSDAG)
CLDATE DATE(!FD_TWEEDE_PINKSTERDAG) STATUS(F) DESCR(TWEEDE PINKSTERDAG)
CLDATE DATE(!FD_EERSTE_KERSTDAG) STATUS(F) DESCR(EERSTE KERSTDAG)
CLDATE DATE(!FD_TWEEDE_KERSTDAG) STATUS(F) DESCR(TWEEDE KERSTDAG)

//RUNWAPL EXEC EQQYXJPX,
// VER=V860,
// SUBSYS=WSJC
//OUTDATA DD DISP=SHR,DSN=ADCDMST.CZ.JCL(CALDATES)
//SYSIN DD *
OPTIONS FIELDSEP(,)
OUTPUT CLSD DATA(OUTDATA) FIELDS(CLSDDATE,CLSDDESC) LABEL(NONE)
SELECT CL CALENDAR(CALNL) SELECT(Y)

338 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

You can then send the output file to review the dates for the forthcoming year, or
simply use it as a reference to view the free days.

//EXP2012 EXEC EQQYXJPX,
// VER=V860,
// ARGS=’YEAR(2012)’,
// CMD=EQQWXHTM,
// SUBSYS=WSJC
//OUTHTML DD DISP=SHR,DSN=ADCDMST.CZ.JCL(CAL2012)
//CLSDDATE DD DISP=SHR,DSN=ADCDMST.CZ.JCL(CALDATES)
//SYSIN DD *
DAYS(M D W D V Z Z)
MONTHS(JANUARI FEBRUARI MAART APRIL MEI JUNI

JULI AUGUSTUS SEPTEMBER OKTOBER NOVEMBER DECEMBER)
PROCESS(CLSDDATE) HILITE(gray-yellow)
/*
//EXP2013 EXEC EQQYXJPX,
// VER=V860,
// ARGS=’YEAR(2013)’,
// CMD=EQQWXHTM,
// SUBSYS=WSJC
//OUTHTML DD DISP=SHR,DSN=ADCDMST.CZ.JCL(CAL2013)
//CLSDDATE DD DISP=SHR,DSN=ADCDMST.CZ.JCL(CALDATES)
//SYSIN DD *
DAYS(M D W D V Z Z)
MONTHS(JANUARI FEBRUARI MAART APRIL MEI JUNI

JULI AUGUSTUS SEPTEMBER OKTOBER NOVEMBER DECEMBER)
PROCESS(CLSDDATE) HILITE(gray-yellow)

Figure 2. US calendar for 2015

Appendix D. WAPLEXEC programs 339

Run date review
Starting from IBM Workload Scheduler for z/OS Version 8.6 SPE, you can use the
LIST GENDAYS PIF request to generate run dates from rules. You can the use the
GETDATES command to find the run dates of any individual application.

The following example shows a sample job for exporting run dates into flat files
(RUNDATES):

The RUNDATES job finds the run dates for three separate applications across the
year. You can the use these files as input in the EQQWXHTM command to
combine the run dates with calendar information.

The following example shows a sample job for presenting run dates in a calendar
(RUNCAL):

Because each application was exported into a separate file, you can assign a
different color to each application, making it easier to spot each application that
runs on specific dates in a single calendar.

//RUNWAPL EXEC EQQYXJPX,
//VER=V860,
//SUBSYS=WSJC
//OPREVAL DD DISP=SHR,DSN=ADCDMST.CZ.JCL(OPREVAL)
//OPREVAL DD DISP=SHR,DSN=ADCDMST.CZ.JCL(OPREVAL)
//OMONTH DD DISP=SHR,DSN=ADCDMST.CZ.JCL(OMONTH)
//OAPPLY DD DISP=SHR,DSN=ADCDMST.CZ.JCL(OAPPLY)
//SYSIN DD *
OPTIONS FIELDSEP(,)
OUTPUT GNDAY DATA(OPREVAL) FIELDS(GNDAYDATE,TAG) LABEL(NONE)
GETDATES ADID(FD2PREVAL) FROMDATE(120101) TODATE(121231) OUTPUT(C)
OUTPUT GNDAY DATA(OMONTH)
GETDATES ADID(FD2MONTH) FROMDATE(120101) TODATE(121231) OUTPUT(C)
OUTPUT GNDAY DATA(OAPPLY)
GETDATES ADID(FD2APPLY) FROMDATE(120101) TODATE(121231) OUTPUT(C)

//RUN2012 EXEC EQQYXJPX,
// VER=V860,
// ARGS=’YEAR(2012)’,
// CMD=EQQWXHTM,
// SUBSYS=WSJC
//OUTHTML DD DISP=SHR,DSN=ADCDMST.CZ.JCL(RUN2012)
//CLSDDATE DD DISP=SHR,DSN=ADCDMST.CZ.JCL(CALDATES)
//OPREVAL DD DISP=SHR,DSN=ADCDMST.CZ.JCL(OPREVAL)
//OMONTH DD DISP=SHR,DSN=ADCDMST.CZ.JCL(OMONTH)
//OAPPLY DD DISP=SHR,DSN=ADCDMST.CZ.JCL(OAPPLY)
//SYSIN DD *
DAYS(M D W D V Z Z) TITLE(FD2 data voor 2012)
MONTHS(JANUARI FEBRUARI MAART APRIL MEI JUNI

JULI AUGUSTUS SEPTEMBER OKTOBER NOVEMBER DECEMBER)
PROCESS(CLSDDATE,OPREVAL==green,OMONTH==blue,OAPPLY==red)
HILITE(gray-yellow)

340 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

EQQWXIAX – Input Arrival Cross Reference

Function
The EQQWXIAX program builds a list of external dependencies and shows the
input arrival times that are most likely to be used to resolve the dependency.

It is not definitive, because in some instances there could be multiple run cycles
involved, therefore time could vary depending on day. In these cases, the first run
cycle is used to source the input arrival time.

The output looks like the following example:

Figure 3. Run dates for year 2015

Appendix D. WAPLEXEC programs 341

Details about predecessor details are on the left, details about the successors are on
the right. Each side has the following columns:

ADID Application ID

WSID Workstation name

OP# Operation number

JOBNAME
Job name

DY Input Arrival Day

TIME Input Arrival Time

SRC Where the Input Arrival time came from.

SRC can have one of the following values:

OPR The input arrival was specified on the operation.

APL The input arrival was specified on run cycles in the Application Definition.

GRP The input arrival was specified on run cycles in the Group Definition.

UKN No input arrival was specified at any level.

NTF The predecessor was not found in the database.

Process control
The EQQWXIAX program is controlled by keywords in the SCOPE DD statement.

The keywords are filter keywords to select the Applications to be used to form the
cross reference. The program is intended only for a small scope of cross referencing
and not intended for large full database cross referencing.

Each keyword has the value specified within parenthesis and is separated from the
next keyword by a space.

The following keywords are available:

ADID The name of the Application.

GROUP
Authority Group Name

------------ P R E D E C E S S O R ----------- ------------- S U C C E S S O R --------------
ADID WSID OP# JOBNAME DY TIME SRC ADID WSID OP# JOBNAME DY TIME SRC
================ ==== === ======== == ==== === ================ ==== === ======== == ==== ===
BANTEST001 CPU1 005 BANTEST6 00 ---- UKN -> BANTEST002 NONR 003 BANTEST6 00 ---- UKN
DEANO2 ---- 255 -------- -- ---- NTF -> DEANOTEST NONR 001 FINDMEJU 00 ---- UKN
WHEREAREYOU ---- 001 -------- -- ---- NTF -> DEANOTEST NONR 001 FINDMEJU 00 ---- UKN
DEANO1 MAN1 001 FIRST 00 ---- UKN -> DEANO2 MAN1 001 FIRST 00 ---- UKN
HIPPODAILY NONR 010 HIPAA 00 1800 APL -> HIPPOMTHLY NONR 001 00 1800 APL
HIPPODAILY NONR 010 HIPAA 00 1800 APL -> HIPPOWKLY NONR 010 HIPAQ 00 1800 APL
BANK#DAILY#001 NONR 255 END 00 1800 APL -> BANK#DAILY#001 NONR 001 START 00 1800 APL
GNU#DAILY#001 CPU1 020 GNUD104 00 1800 APL -> BANK#DAILY#001 CPU1 025 TESTJOB5 00 1800 APL
TEST#EXTDEP1 NONR 001 FIRST 00 ---- UKN -> TEST#EXTDEP2 NONR 001 FIRST 00 ---- UKN
TEST#EXTDEP2 NONR 001 FIRST 00 ---- UKN -> TEST#EXTDEP3 NONR 001 FIRST 00 ---- UKN
TEST#GRPMEM1 NONR 001 00 ---- UKN -> TEST#GRPMEM2 NONR 001 00 ---- UKN
TEST#GRPMEM2 NONR 001 00 ---- UKN -> TEST#GRPMEM3 NONR 001 00 ---- UKN
TEST#LOOKAHEAD1 CPU1 010 JOBLOOK1 00 0200 APL -> TEST#LOOKAHEAD1 NONR 001 START 00 0200 APL

342 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

GROUPDEF
Application Group name

MONITOR(Y|N)
Application has monitored operations

OWNER
Owner ID

STATUS(A|P)
Status:

A Active (this is the default).

P Pending

VALID(yymmdd)
Date on which the application must be valid.

VALFROM(yymmdd)
Valid from date

VALTO(yymmdd)
Valid to date

Note: These keywords are the standard keywords for LIST ADCOM. You can use
wildcards and comparators. However, TYPE must not be used, because the
program needs to separately extract applications and groups.

Running the command
The EQQWXIAX program uses the EQQYXJPX procedure with one additional DD
statement. The SCOPE DD statement is used to define the scope of the cross
reference.

The JCL for running the command must specify EQQWXIAX as the command.

EQQWXJBU – Update applications for a job

Function
The EQQWXJBU program finds all the applications where the specified job is
defined, and performs the updates requested for the job with the Applications.

The updates can be anything performed by the Batch Loader keywords for the
ADOP statement.

Because the input could be a simple minor update to a single job, or many fields
to many jobs, EQQWXJBU works in one of the following modes:

ARG Mode
The ARGS symbolic is used to pass a single job to update and a few
arguments to perform updates.

//RUNPIF EXEC EQQYXJPX,
// SUBSYS=TWSA,
// CMD=EQQWXIAX
//SCOPE DD *
OWNER(DEANO) VALID(=) STATUS(A)

Appendix D. WAPLEXEC programs 343

MAP Mode
The ARGS symbolic is used to pass a mapping of columns in a CSV file
and the CSV file contains the information to perform the updates for one
or more jobs.

Note: IBM Workload Scheduler for z/OS is not designed with Job Name as a key
field for the database, the EQQWXJBU function may help alleviate that, but the
process may be slow depending on the size of the database being searched.

Process control
@JOBN(jobname)

The job you want to update. You can then use the JOBN keyword to
change it.

This is an ARG mode keyword.

@WSID(workstation)
Specifies the workstation where the job you want to update must be
defined. You can then use the WSID keyword to change it.

This is an ARG mode keyword.

@ADSTAT(A|P)
Restricts the search to the applications with status A or P. Though the
@ADSTAT keyword is specified only in the argument, it also applies to all
jobs included for searching within the CSVFILE.

@VALID(yymmdd)
Restricts the search to the applications that are valid on the specified date.
Though the @VALID keyword is specified only in the argument, it also
applies to all jobs included for searching within the CSVFILE.

@VALFROM(yymmdd)
Restricts the search to the applications by the Valid-From date. Though the
@VALFROM keyword is specified only in the argument, it also applies to
all jobs included for searching within the CSVFILE.

@VALTO(yymmdd)
Restricts the search to the applications by the Valid-To date. Though the
@VALTO keyword is specified only in the argument, it also applies to all
jobs included for searching within the CSVFILE.

MAP(field,field,field)
Defines which columns of the CSV file relate to details within an
operation. The MAP can be either the number of the row in the CSV file
that contains the field name for each column in the relevant column, or a
sequence of comma separated field names.

You can specify the following field names:

@JOBN
The field that specifies the job name to identify the operation to
update. There must be a column mapped to @JOBN. You can use
JOBN without the at sign (@) to map to a new job name to update
the selected row to.

@WSID
The field that specifies the workstation where the job to be
updated must already exist (optional). You can use WSID without
the at sign (@) to map to a new workstation name to update the
selected row to.

344 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

<loader argument>
You can use any valid Batch Loader argument for the ADOP statement as
a mapping field, except PREOPNO, PREJOBN, and PREWSID. For more
details about ADOP, see IBM Workload Scheduler for z/OS: Managing the
Workload.

<period>
A period (.) is used as a placeholder for columns that do not contain
information pertinent to the creation of the Application.

For example, specify MAP(.,@JOBN,HIGHRC,WSID,FORM,.,DURATION)
to have the Job name in column 2, highest return code in column 3,
workstation in column 4, form number in column 5, and duration in
column 7.

Specify MAP(1) to point to row 1 of the CSV file; each cell in this row will
contain the name of the field represented by that column.

This is a MAP mode keyword.

SKIP(n)
Specifies the number of rows to skip at the beginning of the file before
starting processing, to account for header rows in spreadsheets that are
used to generate the CSV files. For example, SKIP(3) skips 3 rows and
starts processing with row 4.

If you are using a MAP row within the CSV file, you must use the SKIP
keyword to avoid that row.

This is a MAP mode keyword.

PRED(job job)
Contains list of job names, separated by a space, to make as a predecessor
to the job. If the job is found inside the same application as the @JOBN
job, only an internal predecessor is made, regardless of whether the job is
found in more applications.

If the predecessor needs to be restricted to a job on a particular
workstation, use the format job/workstation to specify each predecessor.
The Status and Validity of the application are restricted to the same as the
job to which the predecessor is being added.

For example, PRED(ABC123 XYZ789) makes any instance of these jobs
predecessors.

PRED(DEF456/C* GHI321) makes only instances of job DEF456 on a
workstation beginning with C a predecessor, but all instances of job
GHI321.

Note: When specified in the ARGS symbolic, this is an ARG mode
keyword but the same keyword can be mapped as a column to apply to
individual CSV file records.

UPDATE(Y|N|SCAN)
Determines whether EQQWXJBU applies the updates automatically:

YES The updates are applied to the database.

NO The Batch Loader is written to the OUTBL DD statement and not
processed (default).

SCAN The Batch Loader is run against IBM Workload Scheduler for z/OS
in SCAN mode to validate the syntax, but performs no updates.

Appendix D. WAPLEXEC programs 345

This keyword works for both MAP and ARG mode.

<loader argument>
Any valid Batch Loader argument for the ADOP statement can be used as
a updating field, except PREOPNO, PREJOBN, and PREWSID. For more
details about ADOP, see IBM Workload Scheduler for z/OS: Managing the
Workload.

These are ARG mode keywords.

Running the command
In addition to normal Workload Automation Programming Language JCL
requirements, EQQWXJBU needs the following DD statements allocated.

Table 167. DD statements for EQQWXJBU

DD Name Purpose Attributes

CSVFILE The comma separated value file
containing the jobs and
dependencies. The CSVFILE is
read only if MAP has been
specified.

Input data set or instream SYSIN.
For multiple predecessors allow for
a long record length. Line numbers
are not allowed.

OUTBL The Batch Loader generated by
this command to perform the
updates is written to OUTBL if
UPDATE(N) is set.

Can be an output data set or
SYSOUT. Typically FB 80

The JCL for running the command must specify EQQWXJBU as the command and
pass the arguments in the ARGS symbolic parameter.

EQQWXNOE – Protecting against unconnected applications

Function
When the current plan is extended, an application might start immediately if the
external predecessors did not resolve correctly and there are no time dependent or
manual operations within the application. The EQQWXNOE function provides you
with a safety net to help avoid some of these sort of “escapee” applications
running when they were not expected.

The premise of the function is that you run the job immediately before the current
plan extend job, telling it how long an extension is about to be made to the plan;
the EQQWXNOE function will identify any occurrences that could run
immediately when the current plan is extended. In this case, EQQWXNOE fails
with RC=8 causing the current plan extend to be delayed until it can be
investigated and corrected.

//RUNPIF EXEC EQQYXJPX,
// SUBSYS=TWSA,
// CMD=EQQWXJBU,
// ARGS=’JOB(ZAPPED) HEADER(Y) INFILE(MOREJOBS) DATA(*)’
//OUTDATA DD SYSOUT=*
//MOREJOBS DD *
FRED*
TWSC*

346 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

|
|
|
|
|
|
|
|

|

|
|

||

|||

||
|
|
|
|

|
|
|
|

||
|
|
|

|
|

|

|
|
|

Note: Even with this check in place, some operations might start early, that are not
“behind” the external predecessor, time dependency or manual operation, but at
least part of the application will be held by at least one of these elements.
EQQWXNOE will identify only occurrences that have no delaying factors at all.

Process control
The ARGS symbolic is used to control the EQQWXNOE function.

You can use the following keywords:

EXTEND(<hhmm>|<yymmddhhmm>)
Determines until when the new plan is extended. The value can be either
hours and minutes to extend by, or a date and time to extend to.

WS(<wsid>,[<wsid>],[...])
Identifies the workstations to be considered as manual workstations. You
can specify one or more workstations, separated by commas.

Running the command
In addition to normal Workload Automation Programming Language JCL
requirements, EQQWXNOE needs no additional DD statements allocated.

The JCL for running the command must specify EQQWXNOE as the command.

In the following example, the plan is being extended 24 hours and MAN1 is a
manual workstation:

EQQWXPER – Generate week number variables for a period

Function
The EQQWXPER program generates a series of dependent variables to enable JCL
to determine the week number within an interval of an IBM Workload Scheduler
for z/OS non-cyclic period.

The process reads the specified IBM Workload Scheduler for z/OS period and
generates dependent variables for each week within each interval. Whatever day
an interval starts on, it is day 1 of the week and each new week starts in a further
7 days.

Each week variable defaults to N, and then only on specified dates it is set to Y.
The dates can be made dependent on any of the following IBM Workload
Scheduler for z/OS variables:
v ODMY1
v ODMY2
v OYMD1
v OYMD2
v OYYDDD

//RUNPIF EXEC EQQYXJPX,
// SUBSYS=TWSA,
// CMD=EQQWXNOE,
// ARGS='EXTEND(02400) WS(MAN1)'

Appendix D. WAPLEXEC programs 347

v OLYMD
v OLYYDDD
v CDDMMYY
v CYYDDD
v CYYMMDD

Process control
The EQQWXPER program is controlled by keywords either in the ARGS symbolic
for the EQQYXJPX procedure, or within SYSIN. If the same keywords are entered
in both, the ARGS values overrides the SYSIN value.

Each keyword has the value specified within parenthesis and separated from the
next keyword by a space.

You can use the following keywords:

DATEVAR
The name of the IBM Workload Scheduler for z/OS supplied date variable
that provides the input date to set the appropriate week number variable.
You can use one of the following variable names:
v ODMY1
v ODMY2
v OYMD1
v OYMD2
v OYYDDD
v OLYMD
v OLYYDDD
v CDDMMYY
v CYYDDD
v CYYMMDD

MAXWEEK
The highest week variable to guarantee the existence of. The default value
is 6.

MONTH
Whether to create unique tables for each month (YES or NO). The default
value is YES, meaning that the table names are derived from the TABLE
keyword suffixed with the year and month (for example,MONTHVARS0912 for
December 2009).

OWNER
The OWNER to set for the table. This value is needed to create new table
instances, because OWNER is a required value for an IBM Workload
Scheduler for z/OS JCL Variable table.

PERIOD
The name of the period for which to calculate week numbers.

TABLE
The name of the table to be created or updated. If MONTH is set to NO,
the TABLE will contain the absolute table name; if it is set to YES it will be
the prefix of the tables created for each month.

348 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

UPDATE
Whether to perform updates to the database (YES or NO). If set to NO
(this is the default), the process generates the Batch Loader for you to
review, without applying it.

VARPFX
The prefix to use for the variables created by this process. The default is
WKNUM.

For each week being generated, the variable is suffixed by the two
character week number, for example WKNUM01, WKNUM02, and so on.

Running the command
The EQQWXPER program uses the EQQYXJPX procedure with no additional DD
statements.

The JCL for running the command must specify EQQWXPER as the command.

The following example shows how to create tables with the naming convention of
MONTHVARSyymm containing variables WEEK#01, WEEK#02, WEEK#03,
WEEK#04, WEEK#05, and WEEK#06. These week variables are dependent on the
occurrence julian date.
//RUNPIF EXEC EQQYXJPX,
// CMD=EQQWXPER,
// SUBSYS=TWSA
//OUTBL DD SYSOUT=*
//SYSIN DD *
PERIOD(CYCLE) VARPFX(WEEK#) TABLE(MONTHVARS) DATEVAR(OYYDDD)
OWNER(TWS) UPDATE(Y)

You can then process it with JCL similar to the following example:
//*%OPC SCAN
//*%OPC TABLE NAME=MONTHVARS&OYYMM
//* JULIAN DATE = &OYYDDD
//*%OPC BEGIN ACTION=INCLUDE,COMP=(&WEEK#06..EQ.Y)
//* THIS LINE OF JCL ONLY APPEARS ON WEEK 6
//*%OPC END ACTION=INCLUDE

Appendix D. WAPLEXEC programs 349

|

|
|

|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

350 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Appendix E. Messages and Return Codes

Messages and return codes provide information for problems occurred.

Workload Automation Programming Language messages have a variety of
severities, each with corresponding return codes. Messages with severities A, O, W,
and E can be suppressed by using OPTIONS SEVERITY. You can also use OPTIONS
MSGLEVEL to determine the number of messages issued. Use the SETSEV command to
modify the severity of specific messages to allow individual errors to be considered
acceptable for individual running of Workload Automation Programming
Language.

Value Code Explanation

0 I Informational messages that cannot be excluded by the
SEVERITY option. These messages are self-explanatory
and are not documented.

0 A Advisory messages that can be excluded by the
SEVERITY option.

0 O Advisory messages that may also be routed to the
Operator Console by use of the OPMSG option. These
can be excluded by the SEVERITY option.

4 W Warning messages that can be excluded by the
SEVERITY option.

8 E Error messages that can be excluded by the SEVERITY
option.

12 F Fatal messages that cannot be excluded by the
SEVERITY option.

16 C Critical initialization processing error.

With the exception of a few Critical messages, all message text is provided in an
external file, therefore message text and severity can be customized to meet the
specific requirements of your site. However, you will have to repeat this
customization when you upgrade Workload Automation Programming Language.

Message Grouping
Within the Workload Automation Programming Language message log
(SYSTSPRT), messages are grouped by the command to which they belong.

A message group always starts with an EQQI200I message and ends with an
EQQI299I message. The 200I listing the command and the 299I indicating the
return code.

By default. not all commands appear on the Workload Automation Programming
Language message log. Only commands directly entered into Workload
Automation Programming Language, and commands that have failed will appear.
The behaviour can be changed by use of OPTIONS MSGLEVEL.

Many commands generate a series of internal commands to perform the required
process, for example Batch Loader statements may generate LIST, SELECT, INSERT

© Copyright IBM Corp. 2016 351

and REPLACE command. Internal commands are listed ahead of the command that
generated it, as commands are written to the message log only when they
complete, since one of the deciding factors as to whether a message gets written or
not is whether it completed successfully or not.

LIST commands generated as a result of OPTIONS EXPAND(YES) and SELECT
commands generated as a result of OPTIONS SELECT(YES) are shown after the
command that generated them, as the success of the following LIST or SELECT does
not reflect upon the success of the process that generated them.

The format of a message line is mm/dd hh.mm.ss ppppnnns text, where:

mm/dd Date in the format Month/Day

hh.mm.ss
Time in the format Hours:Minutes:Seconds

pppp Message prefix

nnn Message number

s Message severity

text Message text

Messages automatically wrap to the width of the setting for OPTIONS REPORT
(default 80). Continuation lines do not show the date and time, and the message
ID is prefixed with ...

The following message shows sample continued messages:
07/08 14.34.20 EQQI200I OUTPUT ADDEP DATA(*) LABEL(NOFIELD) FIELDS(ADCOM.ADID

...EQQI200I ADOP.ADOPNO ADDEPADID ADDEPOPNO)
07/08 14.34.20 EQQI299I Statement completed - RC=0
07/08 14.34.20 EQQI200I LIST ADCOM TYPE(G) ADID(*) STATUS(A) VALID(=)
07/08 14.34.21 EQQI299I Statement completed - RC=0

Batch Loader requests are listed in a different way. The primary command (for
example, ADSTART, ETTSTART) is listed on EQQI200I message, but any sub segment
commands are listed on EQQI203I messages. For example:
07/08 15.05.41 EQQI200I ADSTART ADID(FRED) OWNER(FREDDY)

...EQQI203I ADOP OPNO(1) WSID(DUMM) JOBN(START) DURATION(1)

...EQQI203I DESCR(’First operation’)

...EQQI203I ADOP OPNO(005) WSID(CPU1) JOBN(JOBA) DURATION(1)

...EQQI203I FORM(DD0001)

...EQQI203I ADDEP PREOPNO(1) PREJOBN(START) PREWSID(DUMM)

...EQQI203I ADOP OPNO(010) WSID(CPU1) JOBN(JOBQ) DURATION(1)

...EQQI203I FORM(DD0001)

...EQQI203I ADDEP PREOPNO(1) PREJOBN(START) PREWSID(DUMM)

...EQQI203I ADOP OPNO(015) WSID(DUMM) JOBN(JOBB) DURATION(1)

...EQQI203I HIGHRC(4) FORM(DD0002)

...EQQI203I ADDEP PREOPNO(005) PREJOBN(JOBA) PREWSID(CPU1)

...EQQI203I ADOP OPNO(020) WSID(CPU1) JOBN(JOBC) DURATION(1)

...EQQI203I FORM(DD0001)

...EQQI203I ADDEP PREOPNO(005) PREJOBN(JOBA) PREWSID(CPU1)

...EQQI203I ADDEP PREOPNO(010) PREJOBN(JOBQ) PREWSID(CPU1)

...EQQI203I ADOP OPNO(025) WSID(CPU1) JOBN(JOBD) DURATION(1)

...EQQI203I FORM(DD0001)

...EQQI203I ADDEP PREOPNO(015) PREJOBN(JOBB) PREWSID(DUMM)

...EQQI203I ADDEP PREOPNO(020) PREJOBN(JOBC) PREWSID(CPU1)

...EQQI203I ADOP OPNO(255) WSID(DUMM) JOBN(END) DURATION(1)

...EQQI203I DESCR(’Last operation’)

...EQQI203I ADDEP PREOPNO(025) PREJOBN(JOBD) PREWSID(CPU1)
07/08 15.05.43 EQQI112I Processing Application ADID(FRED) STATUS(A)

352 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

...EQQI112I VALTO(711231)
07/08 15.05.44 EQQI116I REPLACE for Application ADID(FRED) ADSTAT(A)

...EQQI116I ADVALFROM(080708) ADTYPE(A) completed
07/08 15.05.44 EQQI299I Statement completed - RC=0

Messages

EQQI002 - EQQI099, Workload Automation Programming
Language control messages

EQQI002A Loading data definitions for IBM
Workload Scheduler for z/OS <version>
<spe>

Explanation: Workload Automation Programming
Language has initialized for a particular version of IBM
Workload Scheduler for z/OS. The <version> number
is the version of the IBM Workload Scheduler for z/OS
software, <spe> contains a list of Small Product
Enhancements considered to be in effect. This message
is issued as Workload Automation Programming
Language starts and may also be reissued as a result of
OPTIONS statements that may require the data
mapping to be reloaded.

System action: Reference data is loaded in accordance
with the IBM Workload Scheduler for z/OS version
and applied Small Product Enhancements.

User response: None.

EQQI004E Parent statement <parent> missing for
<segment>

Explanation: An attempt has been made to use a
segment with a required parent statement missing.

System action: The command is not run.

User response: Specify the missing parent statement
and run the command again.

EQQI005A Segment <name> is not handled by
Workload Automation Programming
Language

Explanation: A segment has been encountered in the
PIF header that is currently not defined to Workload
Automation Programming Language.

System action: Workload Automation Programming
Language will skip the segment and continue
processing from the next segment.

User response: Ensure you are running with the latest
release of Workload Automation Programming
Language.

Note: While Workload Automation Programming
Language is in Early Release status, this message is
severity A, as it is likely the current release of
Workload Automation Programming Language will not

handle every segment. Once Workload Automation
Programming Language reaches complete status this
message will be raised to W.

EQQI006A Exit <name> has set return code <rc>

Explanation: A Workload Automation Programming
Language Segment Processing Exit has terminated with
a nonzero return code.

System action: The return code is passed into the
Workload Automation Programming Language
processing and may impact the final exit code of
WAPL.

User response: Determine if this is expected. If
necessary correct the exit and rerun.

EQQI007A Message <message-ID> changed from
<severity> to <severity>

Explanation: The severity of a Workload Automation
Programming Language message has been redefined.

System action: Any actions that may issue that
message will set a return code in accordance with the
new severity.

User response: None.

EQQI008A/W <segment> not supported for OUTPUT
in version <version> of IBM Workload
Scheduler for z/OS

Explanation: An OUTPUT statement has referred to a
segment name that is not valid for the version of IBM
Workload Scheduler for z/OS that Workload
Automation Programming Language is currently set to
use.

System action: The OUTPUT statement is ignored and
processing continues.

User response: If you are using any of the supplied
FILESPEC members (for example, EQQFLALL), this
could simply mean you are using a version of IBM
Workload Scheduler for z/OS earlier than the latest
release, or without all of the available Small Product
Enhancements loaded. If this is the case this message
can be safely ignored.

If this is your own OUTPUT statement causing the

EQQI002A • EQQI008A/W

Appendix E. Messages and Return Codes 353

error then you may have mistyped the segment name,
or are referring to a segment not available in the release
of IBM Workload Scheduler for z/OS you are
communicating with. Correct your input and rerun.

Note: This error message is initially delivered as an
Advisory message as it is quite possible that many
users may not be on the absolute latest release of IBM
Workload Scheduler for z/OS with all the Small
Product Enhancements applied. The FILExxxx
FILESPEC members will raise the severity to W after
they have loaded.
If you would sooner have this as a warning message to
protect against mistyped segment names in your own
FILESPEC members then use SETSEV to raise the
priority of this message at the top of your FILESPEC
member.

For example, SETSEV EQQI008W

EQQI009A/W <field> not in <segment> for
<version> <SPEs>

Explanation: An OUTPUT statement has been
processed that refers to a field that does not exist
within the specified segment for the version of IBM
Workload Scheduler for z/OS being used and the Small
Product Enhancements that have been activated.

System action: Processing continues, the invalid fields
will return no data.

User response: If you are using any of the supplied
FILESPEC members (for example, EQQFLALL), this
could simply mean you are using a version of IBM
Workload Scheduler for z/OS earlier than the latest
release, or without all of the available Small Product
Enhancements loaded. If this is the case this message
can be safely ignored.

If this is your own OUTPUT statement causing the
error then you may have mistyped a field or segment
name, or are referring to a field not available in the
release of IBM Workload Scheduler for z/OS you are
communicating with. Correct your input and rerun.

Note: This error message is initially delivered as an
Advisory message as it is quite possible that many
users may not be on the absolute latest release of IBM
Workload Scheduler for z/OS with all the Small
Product Enhancements applied. The EQQFLALL and
FILENONE members will raise the severity to W after
they have loaded.
If you would sooner have this as a warning message to
protect against mistyped segment names in your own
FILESPEC members then use SETSEV to raise the
priority of this message at the top of your FILESPEC
member.

For example, SETSEV EQQI009W

EQQI011F IBM Workload Scheduler for z/OS
version <IWSver> not supported by
Workload Automation Programming
Language <WAPLver>

Explanation: An attempt has been made to start
Workload Automation Programming Language with a
version of IBM Workload Scheduler for z/OS that it
was not written to support.

System action: Processing terminates.

User response: Contact IBM to see if an alternate
version of Workload Automation Programming
Language is available.

Note: You can specify a supported version of IBM
Workload Scheduler for z/OS to connect to an
unsupported release. Be aware that this may allow you
extract information from IBM Workload Scheduler for
z/OS, but care should be taken if trying to update IBM
Workload Scheduler for z/OS specifying a version
other than the level of the subsystem being
communicated with as failures or data loss may occur.

EQQI012A JOB <jobname>,<JESno,> is external to
IBM Workload Scheduler for z/OS

Explanation: A command has been run that needs to
understand the context of the job executing the
command within IBM Workload Scheduler for z/OS.
This message informs the user of the controlling Job
Name and JES number, and determines that the job is
not being controlled by IBM Workload Scheduler for
z/OS.

System action: None.

User response: None.

EQQI013A JOB <jobname>,<JESno,> in <ADID>
<IA> <WS>_<OPNO>

Explanation: A command has been run that needs to
understand the context of the job executing the
command within IBM Workload Scheduler for z/OS.
This message informs the user of the controlling Job
Name and JES number, and show the controlling
Application ID, Input Arrival, Workstation, and
Operation number.

System action: None.

User response: None.

EQQI017A Scanning activated for prefix of <prefix>

Explanation: A VARSUB SCAN command has been
issued.

System action: Any subsequent statements will be
scanned for the character listed as <prefix> and
perform variable substitution.

User response: None.

EQQI009A/W • EQQI017A

354 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

EQQI018A Scanning deactivated

Explanation: A VARSUB NOSCAN command has been
encountered.

System action: Variable substitution will not take
place for any subsequent statements.

User response: None.

EQQI019F Variable <name> not found

Explanation: Variable substitution encountered a
variable name that it could not find either as a supplied
variable, in a listed variable table or as a user variable.

System action: The command fails and Workload
Automation Programming Language stops processing
further commands.

User response: Either correct the variable name,
define it, or add a new TABLE reference that contains it.

EQQI020F Table <table> not found

Explanation: A reference has been made to a JCL
variable table that does not exist.

System action: The command fails and Workload
Automation Programming Language stops processing
further commands.

User response: Correct the table name or create the
table.

EQQI021A Table <name> loaded

Explanation: A JCL variable table has been opened
and the values from it loaded at this point.

System action: Any variables referenced from within
that table will use the values as they were at the point
it is loaded, unless the values were changed by this
Workload Automation Programming Language job.

User response: None.

EQQI022A Search sequence <list of tables>

Explanation: A command has been issued that either
opens or closes a JCL variable table, or otherwise alters
the search sequence.

System action: This message lists the order that tables
will be searched to find an unloaded variable value.

User response: None.

EQQI023E Dependent variable loop (1)

Explanation: A dependent variable has been
referenced that refers to a chain of dependent variables
that lead back to it.

System action: The command will fail.

User response: Correct the dependencies.

EQQI024E Table <name> was not open

Explanation: An attempt to CLOSE a table was made,
but the table was not open at this point.

System action: The command will fail.

User response: Remove the VARSUB CLOSE for the
offending table.

EQQI025A Table <name> dropped

Explanation: A VARSUB CLOSE command has been
issued for this table.

System action: The values are unloaded and
Workload Automation Programming Language will not
search this table for subsequent variable resolution.

User response: None.

EQQI028F Variable <name> has not been assigned
to a table

Explanation: A VARSET SAVE command was issued for
a variable that is not connected with any JCL variable
table.

System action: The command will fail and Workload
Automation Programming Language stops processing
further commands.

User response: Correct the variable name or assign to
a TABLE.

EQQI032A Date <variable-name> adjusted by
<amount>

Explanation: A VARDATE command has been issued to
create a date variable and the rule landed on a
weekend date with the RULE keyword not set to ON.

System action: Workload Automation Programming
Language will adjust the date in response to the rule
and list the positive or negative number of days that it
was adjusted by.

User response: None.

EQQI033A Date <variable-name> set to <value>

Explanation: A VARDATE or VARSET command has been
issued to a variable.

System action: For VARDATE, Workload Automation
Programming Language will list the variable name, the
date in format yymmdd, or the user specified format if
FORMAT is coded. This will be followed by the day of
the week the date falls upon to ease validation of the
results. For VARSET only the variable name and value
will be shown.

User response: None.

EQQI018A • EQQI033A

Appendix E. Messages and Return Codes 355

EQQI036F <name> not found

Explanation: A command has been issued that
referred to a SAVELIST or OBJECT that has not been
created in this job.

System action: Workload Automation Programming
Language will stop processing.

User response: Correct the name of the item and
rerun.

EQQI049E POOL/DYNAMIC POOL workstations
not permitted with batch loader

Explanation: An attempt has been made to create or
update a POOL or DYNAMIC POOL workstation using
Workload Automation Programming Language. Though
Workload Automation Programming Language will
export batch loader for these types of workstation for
reference use, they cannot be created or updated via
Workload Automation Programming Language as
elements of their definition are stored on the dynamic
domain manager.

System action: The command terminates with an
error. Workload Automation Programming Language
continues with the next command.

User response: Define the workstation manually via
the Dynamic Workload Console.

EQQI051W Cannot <action> operation <opno> on
<wstype> workstation <wsname>

Explanation: A current plan operation command has
been issued that has selected an operation on a
workstation type that is incompatible with the action
being requested.

System action: Workload Automation Programming
Language will continue processing other operations
selected by the command, but the command will end
with warnings. Workload Automation Programming
Language continues with the next command.

User response: If this was not the desired result,
refine the identification or filter keywords to avoid the
selection of this operation.

EQQI053W Dependency target missing –
ADID(<adid>) OPNO(<opno>)

Explanation: An ADDJOB command has identified an
operation which has a dependency that points to an
operation that does not exist.

System action: Workload Automation Programming
Language will continue processing other operations
and dependencies discovered by the command, but the
command will end with warnings. Workload
Automation Programming Language continues with the
next command.

User response: Correct the identified application
definition.

EQQI054W Dependency target has no jobname –
ADID(<adid>) OPNO(<opno>)

Explanation: An ADDJOB command has identified an
operation which has a dependency that points to an
operation that does not have a job name.

System action: Workload Automation Programming
Language will continue processing other operations
and dependencies discovered by the command, but the
command will end with warnings. Workload
Automation Programming Language continues with the
next command.

User response: If this job is intended to be used by
ADDJOB consider revising the target operation to provide
a job name, so job name searches can be used for
dynamic dependencies.

EQQI056F INCLUDE loop detected for <member>

Explanation: An INCLUDE command has attempted to
load a member that has already been loaded higher up
the INCLUDE chain.

System action: Workload Automation Programming
Language terminates.

User response: Correct the member name to remove
the loop and rerun.

EQQI057W Unsupported object level <level> for
<segment>

Explanation: A segment is being processed that has
encountered and unexpected level of nesting for the
record structure.

System action: Workload Automation Programming
Language terminates.

User response: None.

EQQI058F <number> consecutive FREEDAYS
encountered

Explanation: A date was being calculated using
relative FREEDAYS, and the calculation encountered
more consecutive FREE days than is permitted. This
could be indicative of a badly defined calendar that has
no WORK days. The limit of consecutive FREE days
allowed before this error occurs is set by OPTIONS
FREEMAX. The default is 14 days.

System action: Workload Automation Programming
Language terminates.

User response: Determine whether the run of
consecutive FREE days is genuine, or the calendar is
badly defined. Either increase OPTIONS FREEMAX or
correct the calendar.

EQQI036F • EQQI058F

356 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

EQQI095F Nest limit of <number> set by
OPTIONS LIMIT has been reached

Explanation: A DO UNTIL/WHILE/FOREVER construct has
executed more times than the limit set by OPTIONS
LIMIT, the default of which is 100.

System action: Workload Automation Programming
Language terminates.

User response: Determine the cause for the nesting
level, if this is a desired behaviour then set OPTIONS
LIMIT to a higher value.

EQQI096F Loop limit of <number> set by
OPTIONS LIMIT has been reached

Explanation: A DO UNTIL/WHILE/FOREVER construct has
executed more times than the limit set by OPTIONS
LIMIT, the default of which is 100.

System action: Workload Automation Programming
Language terminates.

User response: Determine the cause for the nesting
level, if this is a desired behaviour then set OPTIONS
LIMIT to a higher value.

EQQI097E Job <jobname>,<JESnum> is not
running in the current plan

Explanation: A command is being run that requires
the Workload Automation Programming Language job
to be run from within IBM Workload Scheduler for
z/OS so actions can be made in relation to the
occurrence in which it is operating.

System action: The command terminates with errors
and processing continues from the next command.

User response: Ensure the job is controlled by IBM
Workload Scheduler for z/OS and rerun. If the job
already was submitted by IBM Workload Scheduler for
z/OS and Workload Automation Programming
Language is unable to find itself in the current plan,
this could be due to tracking performance issues. To
avoid this kind of issue ensure the EQQCPOP DD
statement is appropriately coded.

EQQI098W No actions performed

Explanation: Workload Automation Programming
Language has completed without performing any
commands.

System action: Workload Automation Programming
Language terminates with return code 4.

User response: If this is what you intended, then no
action is required.

If you expected more commands to have been executed
check the following:

v That you have specified commands in the JCL or a
referenced member.

v That your input DD statement is correctly spelled as
SYSIN, INPUT or whatever you specified in OPTIONS
INPUT.

v That you do not have any non JCL statements ahead
of instream SYSIN as these may cause JES to
generate an additional SYSIN statement.

v If calling Workload Automation Programming
Language from REXX that you have pushed or
queued commands to the external data queue.

EQQI099A Workload Automation Programming
Language complete - highest return code
<rc> - <elapsed> (<eqqycom>) sec

Explanation: Workload Automation Programming
Language termination message, including the following
key information:
<rc> The maximum return code, after

considerations from SETMAX and LISTSTAT.
<elapsed>

The total elapsed time of the Workload
Automation Programming Language session.

<eqqycom>
The subset total elapsed time taken executing
EQQYCOM.

System action: Workload Automation Programming
Language terminates.

User response: None.

EQQI100 - EQQI199, Data exception messages

EQQI101F Unable to read <DD name> <additional
info>

Explanation: Workload Automation Programming
Language has been unable to read a file, possibly due
to the DD name not being allocated, or the input file
never having been written to, or the record format not
being appropriate to read with EXECIO.

Additional info may contain the following:
-NODD

The DD statement is not allocated.

-NOMEM
The member is not found within the DD
statement.

-ALLOC <rc>
Allocation of the EQQTEMP file failed with
RC=<rc>.

System action: Workload Automation Programming
Language terminates.

User response: Determine the problem with the file,
correct it, and rerun.

EQQI095F • EQQI101F

Appendix E. Messages and Return Codes 357

EQQI103W Output file <DD name> not allocated -
skipping

Explanation: Workload Automation Programming
Language has encountered an optional output file that
has not been allocated.

System action: No output is written to this file,
Workload Automation Programming Language
continues.

User response: If the file should have been present,
correct, and rerun.

EQQI105W Truncation occurred for file <DD name>

Explanation: A file has been written to with at least
one record that is longer than the record length.

System action: The file is written with any oversize
records are truncated at the record length.

User response: Correct the record length and rerun.

EQQI106E Failed writing to <DD name> RC=<RC>
(records=<count>)

Explanation: An attempt has been made to write to an
output file that has failed for reasons other than
truncation. Possibly space or authority. The return code
is from the REXX EXECIO service.

System action: The file is not written successfully, it
may contain partial data.

User response: Determine the cause of the failure
from return codes, additional messages and other
additional information, such as file attributes. Correct
and rerun.

EQQI108E <number> <type> versions already exist
for <object>

Explanation: An attempt has been made to create a
new version of an object that is limited to the number
of versions that can exist at once.

Controlled types are:
Application

Limited to 4 versions per status.

System action: No update takes place.

User response: Delete unwanted old versions before
attempting a rerun.

EQQI109E Item already exists so cannot be added

Explanation: A Batch Loader request using OPTIONS
DBMODE(ADD) for an object that is already in the
database has been attempted.

System action: The object is not added to the
database.

User response: Delete the object from the database or

change the DBMODE to REPLACE and rerun.

EQQI110E No key information specified

Explanation: A Batch Loader request has been
specified that does not include any key fields to
identify the object to update.

System action: The database is not updated.

User response: Amend the Batch Loader statements to
include key fields or use a USELIST and rerun.

EQQI111E <list-name> contains records for
<type1> instead of <type2>

Explanation: A request to use the results of a saved
list has been coded, but the list contains objects of a
different type to the use that is being applied to.

System action: No update takes place.

User response: Correct the control statements to use
an appropriate list and rerun.

EQQI113A Options <keyword> may not have full
effect for this stream

Explanation: The keyword is one that affects the way
control statements are parsed. Workload Automation
Programming Language will pre-parse an entire input
stream of control statements to identify valid
statements, consolidate continuation and remove
comments before executing any of the statements. This
means any subsequent statements in the same stream
might not benefit from the changes made by this
OPTIONS statement and parsing errors, such as unknown
commands or keywords, may be reported.

System action: The new parsing behavior takes effect
from the next input stream.

User response: Verify whether this is acceptable, and
possibly move the OPTIONS statement to an earlier
input stream.

Note: This warning is only issued for the input streams
for standard input (SYSIN) and the REXX stack.

EQQI114E <segment> not found to delete

Explanation: An attempt has been made to remove a
non-existent segment from an existing object using the
ACTION(DELETE) keyword in Batch Loader.

System action: The object is not updated.

User response: Correct the Batch Loader statements
and rerun.

EQQI103W • EQQI114E

358 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

EQQI117W <action> for <type> <key information>
ended with warnings

Explanation: A Batch Loader request has completed
but has produced additional warning messages. This
message clarifies the action being attempted and
identifies the object that has been used.

The action can be INSERT, REPLACE, or SUBMIT.

.

System action: Batch Loader process completes with
warnings.

User response: Review the warning messages, if
necessary correct and rerun.

EQQI118E <action> for <type> <key information>
failed

Explanation: A Batch Loader request has failed to
complete. This message clarifies the action being
attempted and identifies the object that has been used.

The action can be INSERT, REPLACE, or SUBMIT.

System action: Batch Loader process failed.

User response: Review the warning messages, correct
and rerun.

EQQI120W EXECUTE not performed

Explanation: Statements to update the Current Plan
have been processed but not EXECUTE or RESET request
has been performed.

System action: No updates are made to the Current
Plan.

User response: Add an EXECUTE or RESET command to
the control statements or use OPTIONS EXECUTE(AUTO).

EQQI121E <count> matches found for LISTSTAT

Explanation: More than one record was identified as
matching the arguments to the LISTSTAT request. Only
one record must be identified for LISTSTAT to work.

System action: LISTSTAT fails.

User response: None.

EQQI124W OUTPUT statement not found for parent
of <segment> - ignoring
DATA(=)/LOADER(=)

Explanation: An OUTPUT statement has been coded
with a DATA or LOADER keyword using = as the value.
This means that the destination for the parent segment
should be used, but when this message appears it
means that an OUTPUT statement for a parent segment
has not been coded.

System action: This message will be issued and the

output stream for the keyword will be ignored.

User response: Replace the = with a real destination or
code an OUTPUT statement for the parent before this
OUTPUT statement.

EQQI125E COPY cannot replace existing records
<key-information>

Explanation: An attempt has been made to copy an
object over the top of an existing object using
DBMODE(COPY).

System action: No update takes place.

User response: Either delete the existing object or alter
the NEW field specifications to create an object that
does not already exist.

EQQI126E Bad predecessor <pred> for <succ>

Explanation: When both workstation and operation
number are not specified together for a dependency,
Workload Automation Programming Language must
look up the values using the information provided.
This message means not enough information was
specified to uniquely identify a predecessor. Either the
input had more than one possible match, or no match.

System action: No update takes place.

User response: Either provide both workstation and
operation number, or refine the statements to ensure a
unique operation is identified.

EQQI127E Cannot find a matching operation in the
Current Plan

Explanation: A command has been issued that needs
to update an operation in the current plan, but the
information provided does not match any operation in
the plan.

System action: The command terminates without
performing any update.

User response: Check the Current Plan to see if the
operation you wish to update is that, and if so correct
the command to provide the necessary information to
locate the required operation.

EQQI128E Unable to find unique Application
<adid> valid on <date>

Explanation: An attempt has been made to INSERT an
occurrence into the Current Plan using an alias. The
ADID specified does not have a Valid Active version
for the date it is due to run on.

System action: An occurrence is not submitted.

User response: Correct and rerun.

EQQI117W • EQQI128E

Appendix E. Messages and Return Codes 359

EQQI129E Unable to retrieve <type> <key
information> from database

Explanation: An attempt to SELECT a record from the
database has failed.

System action: The record is not retrieved.

User response: Additional messages may indicate
why the failure occurred. It may be that the object does
not exist in the database. If the SELECT was generated
as a result of a LIST statement it is possible that the
object was deleted by another user between the LIST
and SELECT.

EQQI0131F Unexpected data format for <segment>
<field>

Explanation: Workload Automation Programming
Language has encountered a field when reading a
record that does not match the expected format as
defined in the Workload Automation Programming
Language data mapping.

System action: Subsequent EQQI0132A messages will
be issued with diagnostic information. A mini dump of
the segment will be displayed. The command fails and
Workload Automation Programming Language stops
processing further commands.

User response: Check that you are instructing
Workload Automation Programming Language to run
for the correct version of Workload Automation
Programming Language and you have the correct
OPTIONS SPE settings for that subsystem.

EQQI134E User field "<name>" not defined for this
job

Explanation: A VARSET USRF command has been
issued with MISSING(ERROR) and the named user field
was not defiled to the operation.

System action: The command fails.

User response: Correct the user field name or define
the user field to the operation.

EQQI135F User field "<name>" not defined for this
job

Explanation: A VARSET USRF command has been
issued with MISSING(FAIL) and the named user field
was not defiled to the operation.

System action: The command fails and Workload
Automation Programming Language stops processing
further commands.

User response: Correct the user field name or define
the user field to the operation.

EQQI136F File <ddname> not allocated

Explanation: A command has been issued referring to
a dd name that does not exist in the step.

System action: The command fails and Workload
Automation Programming Language stops processing
further command.

User response: Correct the DD name in the command
or add the DD statement to the step.

EQQI137F File <ddname> not available for input
processing

Explanation: A command has been issued referring to
a dd name that is not considered to be an input file, for
example, a SYSOUT file.

System action: The command fails and Workload
Automation Programming Language stops processing
further command.

User response: Correct the DD name in the command
or correct the DD statement in the JCL.

EQQI139F All data sets in <ddname> must be
cataloged for search

Explanation: An INCLUDE command has been issued
referring to a member within a dd name that contains
one or more partitioned data sets that are not
catalogued. To perform a concatenation search
Workload Automation Programming Language requires
all of the data sets to be catalogued.

System action: The command fails and Workload
Automation Programming Language stops processing
further command.

User response: Either ensure all of the data sets are
catalogued, or allocate the specific member explicitly in
the JCL and INCLUDE from that explicit DD statement
without specifying a member name.

EQQI140F Member <name> not found in
<ddname>

Explanation: An INCLUDE command has been issued
referring to a member in a dd name that does not
contain any datasets in which the named member
exists.

System action: The command fails and Workload
Automation Programming Language stops processing
further command.

User response: Correct the DD name in the INCLUDE
statements or correct the DD statement in the step to
include a library containing the specified member.

EQQI129E • EQQI140F

360 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

EQQI141F Unable to allocate <dataset> to
<ddname>

Explanation: A command the requires a dynamic
allocation to the Workload Automation Programming
Language temporary file has been issued. This is done
whenever a member is needed from a library that is
specified in the JCL without the member explicitly
specified.

System action: The command fails and Workload
Automation Programming Language stops processing
further command.

User response: Identify the reason for failure and
rerun. The most likely cause is contention, but if you
have also made a lot of dynamic allocations in the step
then DYNAMNBR may need specifying in the JCL.

EQQI143E Cannot rename an item that does not
exist

Explanation: Batch loader has been specified with
DBMODE UPDATE or COPY that specifies new key names
using NEW_ fields, but the original key refers to an
object that does not exist.

System action: The command will fail.

User response: Correct the batch loader key fields.

EQQI144W <UPDATE|COPY> will overwrite
existing record <key information>

Explanation: Batch loader has been specified with
DBMODE UPDATE or COPY that specifies new key names
using NEW_ fields. The new key points to an existing
record but OPTIONS OVERWRITE(Y) has been specified.

System action: The existing option will be
overwritten.

User response: None.

EQQI145E No user fields match <mask>

Explanation: An INCLUDE statement has been specified
that has a mask which does not match any user fields
attached to the job.

System action: The command will fail.

User response: Correct the mask, or user fields against
the operation.

EQQI146E Table <name> could not be updated

Explanation: A VARSAVE or SETVAR SAVE command was
issued, but Workload Automation Programming
Language was unable to update the table.

System action: The command will fail, no updates
were performed to the named table.

User response: Determine the reason for failure. Most

likely causes are contention, trying to update a table
that doesn't exist, or insufficient access rights.

EQQI148F Updates to the current plan have failed

Explanation: A DELETE, INSERT or MODIFY command for
a resource beginning with CP has failed and OPTIONS
CPFAIL(ABORT) is in effect. This is to protect against an
incomplete sequence of update actions being committed
to the current plan.

System action: Return code 12 will be issued and
processing will stop unless OPTIONS HIGHRC has been
amended.

User response: Determine the reason for failure and
correct. If you wish to allow processing to continue in
such circumstances set OPTIONS CPFAIL(ERROR).

EQQI150W No matching run cycles found within
<application>

Explanation: A PRSTART batch loader statement has
been executed that includes setting dates from an
Application, or a GETDATES command extracting dates
from an application has been run. There were not run
cycles within the application that matched either the
Input Arrival or validity criteria.

System action: Workload Automation Programming
Language will issue RC=4 and continue.

User response: None.

EQQI152E An internal command failed – see
previous messages

Explanation: A command has been executed that
internally calls other Workload Automation
Programming Language commands and one of these
internal commands has failed.

System action: The reason for the failure will be listed
in the message group for the internal command, earlier
in the Workload Automation Programming Language
log.

User response: Respond to the earlier error messages.

EQQI155W Application validity <date-range> is
outside range <date-range>

Explanation: A PRSTART batch loader statement has
been executed that includes setting dates from an
Application, or a GETDATES command extracting dates
from an application has been run. The named
application is not in effect within the range specified by
the FROMDATE and TODATE keywords.

System action: Workload Automation Programming
Language will issue RC=4 and continue.

User response: Determine if this is the correct
behaviour. If not alter the FROMDATE/TODATE range

EQQI141F • EQQI155W

Appendix E. Messages and Return Codes 361

or correct the application and rerun.

EQQI160W No entries found matching criteria

Explanation: A command has been issued to find
elements in the database or plans, but nothing was
found.

System action: Workload Automation Programming
Language will issue RC=4 and continue.

User response: Review the output and correct if
necessary.

EQQI164E <adid> <opno> has no successors for
CONNECT(SUCC)

Explanation: The QUEUE command has been issued
with the CONNECT(SUCC) keyword specified.

System action: Workload Automation Programming
Language will issue RC=8 and continue.

User response: Review the output and correct if
necessary.

EQQI170E Unable to activate console
<console-name>

Explanation: A CONSOLE command was unable to
activate an extended console.

System action: Workload Automation Programming
Language will issue RC=8 and continue.

User response: Review associated messages and
correct.

EQQI171E External command returned negative RC
(1)

Explanation: A CALL command has executed an
external REXX routine that has resulted in a negative
return code. This is often caused by the REXX routine
not being found in the execution path.

System action: Workload Automation Programming
Language will issue RC=8 and continue.

User response: Review the execution path to ensure
the REXX routine is accessible.

EQQI172W Workstation <wsname> not suitable for
<command>

Explanation: A current plan operations command has
been issued to an operation for which it is not suitable.
This may be because the command has been issued to
all operations in an occurrence, with the intention of
only applying the command to the operations that are
permitted.

System action: Workload Automation Programming
Language will issue RC=4 and continue.

User response: Review the output and correct if
necessary.

EQQI173E Cannot lock <record-type> <key> for
<update-mode>

Explanation: A batch loader command has been
issued for an object that cannot be locked exclusively,
after retrying in accordance with the OPTIONS
CONTENTION setting.

System action: Workload Automation Programming
Language will issue RC=8 and continue.

User response: Identify and resolve the cause of
contentions before rerunning.

EQQI174W An internal command issued warnings -
see previous messages

Explanation: A command has been executed that
called other commands internally that issued Warning
messages effecting the success of the command.

System action: Workload Automation Programming
Language will issue RC=4 and continue.

User response: Review the messages from the
preceding block of messages.

EQQI175W Missing interval for <wsname> - Cannot
reset

Explanation: A WSALTER command has been executed
that requested a reset of either parallel servers or
resource quantities, but the FROM and TO keywords
do not point to an existing interval.

System action: Workload Automation Programming
Language will issue RC=4 and continue.

User response: An interval can only be reset if it
already exists. Either correct the FROM and TO to
point to the existing interval covering the time period
you want to reset to planned values, or provide explicit
values for PSCAP, R1CAP and R2CAP for the time
period concerned.

EQQI176E Cannot find inserted job to edit JCL

Explanation: An ADDJOB or JBSTART command has run
with the JCL keyword, but the update process is unable
to locate the newly inserted job.

System action: Workload Automation Programming
Language will issue RC=8 and continue.

User response: Investigate why the inserted job
cannot be located and rerun.

EQQI160W • EQQI176E

362 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

EQQI180W Completed successor
AD=<applicationID>
IA=<YYMMDDHHMM> OP=<nnn>

Explanation: An ADDJOB or JBSTART command has run
that has identified a defined successor that is already in
a complete state. An external predecessor cannot be
added to a completed operation. Keyword
COMPSUCC(WARNING) has been specified.

System action: Workload Automation Programming
Language will not apply the dependency, issue RC=4,
and continue.

User response: Review the details to determine if
further actions are required.

EQQI181E Completed successor
AD=<applicationID>
IA=<YYMMDDHHMM> OP=<nnn>

Explanation: An ADDJOB or JBSTART command has run
that has identified a defined successor that is already in
a complete state. An external predecessor cannot be
added to a completed operation. Keyword
COMPSUCC(ERROR) has been specified.

System action: Workload Automation Programming
Language will not apply the dependency, issue RC=8,
and continue.

User response: Review the details to determine if
further actions are required.

EQQI195W File <ddname> not open

Explanation: A CLOSE command has been issued for a
file that was not open.

System action: Workload Automation Programming
Language will issue RC=4 and continue.

User response: Review the message to determine
whether the file name needs to be corrected or the
CLOSE command removed.

EQQI197W End of file reached for <ddname> at
<number> records

Explanation: A READ command has been executed that
specified a number of records to read, but the file did
not have that many records within it.

System action: Workload Automation Programming
Language will issue RC=4 and continue.

User response: Investigate the reason for the
discrepancy and correct.

EQQI198E Input file <ddname> not allocated for
input

Explanation: A command has been executed that
requires an input file, but the named DD is either not
allocated, or does not refer to an input file.

System action: Workload Automation Programming
Language will issue RC=8 and continue.

User response: Correct the file allocations and rerun.

EQQI199E Failed reading from file <ddname>
RC=<return-code>

Explanation: A command has been executed that
reads a file, but has failed.

System action: Workload Automation Programming
Language will issue RC=8 and continue.

User response: Consult REXX documentation for the
EXECIO command for an explanation of the return
code.

EQQI180W • EQQI199E

Appendix E. Messages and Return Codes 363

EQQI204 - EQQI299, Syntax related messages

EQQI204F Missing end quote for keyword
<keyword>

Explanation: A parsing error has occurred.

System action: Workload Automation Programming
Language terminates.

User response: Correct quoting and rerun.

EQQI205F Missing right parenthesis for keyword
(1)

Explanation: A parsing error has occurred.

System action: Workload Automation Programming
Language terminates.

User response: Correct parenthesis and rerun.

EQQI206F Invalid value <value> for <keyword>

Explanation: A parsing error has occurred. An
inappropriate value has been found for a keyword or
field.

System action: Workload Automation Programming
Language terminates.

User response: Consult the documentation, correct
and rerun.

Note: The documentation may state that the value is
valid for the keyword. Workload Automation
Programming Language could still reject this if the
value is not valid for the particular version of IBM
Workload Scheduler for z/OS you are communicating
with, or you have not enabled a particular SPE. Check
message EQQI002I to see what version of IBM
Workload Scheduler for z/OS Workload Automation
Programming Language believes it is operating against.

EQQI207F Invalid keyword <keyword>

Explanation: A parsing error has occurred. An
inappropriate keyword has been coded.

System action: Workload Automation Programming
Language terminates.

User response: Consult the documentation, correct
and rerun.

Note: The documentation may state that keyword is
valid. Workload Automation Programming Language
could still reject this if the keyword is not valid for the
particular version of IBM Workload Scheduler for z/OS
you are communicating with, or you have not enabled
a particular SPE. Check message EQQI002I to see what
version of IBM Workload Scheduler for z/OS Workload
Automation Programming Language believes it is
operating against.

EQQI208F Resource <resource> is not valid for
<command>

Explanation: An invalid resource has been specified
for a command.

System action: Workload Automation Programming
Language terminates.

User response: Workload Automation Programming
Language will validate that a valid resource has been
used with respect to the type of request, the version of
IBM Workload Scheduler for z/OS being used and
what SPEs have been activated.

If the resource name is typed correctly, ensure that the
IBM Workload Scheduler for z/OS Version and SPEs
have been declared correctly, and rerun.

If the resource name is not correct, enter the correct
resource name and rerun.

EQQI209E Exit <exit name> not found - OPTIONS
EXIT reset

Explanation: An exit has been specified using OPTIONS
EXIT that is not declared in EQQYXU00.

System action: Workload Automation Programming
Language issues an error message and continues
without the exit.

User response: Correct the OPTIONS statement or
update EQQYXU00 to include the new exit before
rerunning.

EQQI210E <keyword> required for <command>
command

Explanation: An attempt has been made to use a
command that has a required keyword missing. The
keyword may be one that is always required by the
command, or may only be required in conjunction with
other keywords you have specified.

System action: The command is not run.

User response: Provide the missing keyword and
rerun.

EQQI211F Invalid comparator <comparator> for
keyword <keyword>

Explanation: An invalid comparator has been
specified against the named keyword.

System action: The command will fail, Workload
Automation Programming Language will stop
processing further commands.

User response: Correct the comparator. See section
“Using comparators” on page 27.

EQQI204F • EQQI211F

364 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

EQQI212F Unrecognized/unsupported statement
<command> in <input stream>

Explanation: An invalid command has been coded in
one of the Workload Automation Programming
Language input streams. This may either be a
command that is not known to Workload Automation
Programming Language, or one that is not supported
for the version of IBM Workload Scheduler for z/OS
being used.

The input streams can be:
OPTIONS

Site option defaults
SUBSYS

Subsystem option defaults
-ARGS-

The Workload Automation Programming
Language argument

FILESPEC
ILSON file specifications

-STACK-
The REXX stack

INPUT The main input stream (SYSIN)

Anything else will refer to either an INCLUDE stream or
automatically generated commands from LIST or
SELECT statements.

System action: Workload Automation Programming
Language terminates.

User response: Correct and rerun.

EQQI213F Call to <load module> has abended
RC(<rc>)

Explanation: An attempt to call a load module
internal to Workload Automation Programming
Language has failed.

System action: Workload Automation Programming
Language terminates.

User response: Determine the reason for the failure
and rerun. Possible causes could be

v Module not found (S806), ensure the library
containing the module is defined to Workload
Automation Programming Language by STEPLIB or
other means.

v Insufficient region.

v Version mismatch. The IBM Workload Scheduler for
z/OS module EQQYCOM can object to being run
against versions of IBM Workload Scheduler for
z/OS other that the version it is written for, Ensure
you are calling the correct version of EQQYCOM for
the subsystem you are communicating with.

EQQI214E <keyword> must be coded before
<keyword>

Explanation: A Workload Automation Programming
Language command has been coded that requires
certain keywords to be coded in a specific order.

System action: Workload Automation Programming
Language terminates.

User response: Correct the command and rerun.

EQQI215A SPE (<spe name>) is not valid for TWS
version <version> – ignored

Explanation: An OPTIONS SPE statement was
encountered that attempted to activate an SPE for a
version of IBM Workload Scheduler for z/OS earlier
than the version from which the SPE was made
available.

System action: The SPE is not activated.

User response: Ensure you have declared the correct
SPE and or version of IBM Workload Scheduler for
z/OS.

EQQI216F <keyword1> is not allowed with
<keyword2>

Explanation: Two keywords have been encountered
that cannot be specified together.

System action: Workload Automation Programming
Language terminates.

User response: Correct and rerun.

EQQI217F NEW_ not permitted with DBMODE
ADD or REPLACE

Explanation: Batch loader has been specified with
DBMODE ADD or REPLACE that specifies new key names
using NEW_ fields. The ADD and REPLACE modes must
specify an entire object as it is to be saved, it cannot
rename or copy an existing object.

System action: The command will fail, Workload
Automation Programming Language will stop
processing further commands.

User response: Remove the NEW_ keywords or alter the
DBMODE.

EQQI218E ADRULE must follow ADRUN TYPE R
or E

Explanation: An ADRULE statement has been
encountered that does not follow and ADRUN segment
for types R or E.

System action: No update takes place.

User response: Correct and rerun.

EQQI212F • EQQI218E

Appendix E. Messages and Return Codes 365

EQQI219F Keyword <keyword1> not permitted
with <keyword2> for <command>

Explanation: A command has been specified that uses
two keywords that are mutually exclusive.

System action: Workload Automation Programming
Language terminates

User response: Correct and rerun.

EQQI220E <object name> and SUFFIX <suffix>
exceeds field length <length>

Explanation: The SUFFIX keyword has been used to
generate a new name for an object by combining the
original name with a TWS supplied variable. In this
case the combination of the original name and the
contents of the variable exceed the field length for the
object name and OPTIONS SUFFIX(FAIL) has been used.

System action: No update takes place.

User response: Amend the input to use an alternate
combination of name and variable or use a different
value for OPTIONS SUFFIX.

EQQI221F Unexpected THEN or ELSE

Explanation: A THEN keyword or ELSE statement has
been encountered without being adjacent to an IF
clause and its single action or DO block.

System action: Workload Automation Programming
Language terminates

User response: Correct and rerun.

EQQI222F Tracker not defined to Workload
Automation Programming Language for
<controller> on <SYSID> <LPAR>

Explanation: A TSO command has been issued
without a SUBSYS but the value pointed to by OPTIONS
SYSID for this LPAR does not have match in the
OPTIONS TRACKERS lookup table.

System action: The command is not issued

User response: Add a SUBSYS keyword to the
command or correct the OPTIONS TRACKERS table to
include an entry for the LPAR.

EQQI223W Use of MSTR is not recommended

Explanation: A TSO command has been issued using
MSTR as the SUBSYS value. This sends the event to
every IBM Workload Scheduler for z/OS subsystem on
the LPAR, which can lead to error messages on
EQQMLOG for controllers that have no match for the
event, and may lead to inappropriate triggering of
workload.

System action: The command is issued with RC=4.

User response: If possible use the OPTIONS SYSID and
OPTIONS TRACKERS feature to target the event directly to
the appropriate subsystem.

EQQI225E FIELDSEP/LABELSEP incompatible
with EXIT - OPTIONS EXIT reset

Explanation: An attempt to call a segment processing
exit has been made with inappropriate settings for
FIELDSEP or LABELSEP. Either both of these separators
have been set to the same value, or at least one of them
has been turned off. Segment processing exits need
them both set to different values to be able to process
the data.

System action: Processing continues, the exit is turned
off and not attempted for subsequent segments.

User response: Use OPTIONS FIELDSEP and OPTIONS
LABELSEP to set different and valid values, or turn off
the exit, using OPTIONS EXIT.

EQQI226F Open comment before text block on line
<num> of <stream>

Explanation: A comment has been encountered on a
line with DLM coded that has been opened but not
closed.

System action: Processing terminates.

User response: A line containing DLM indicates that the
following lines contain a text block. Text blocks cannot
contain comments. Remove or close the comment on
the line containing the DLM keyword.

EQQI227F Potentially inconsistent line numbers
detected

Explanation: Message 207 or 212 has been issued
indicating an unknown command or keyword. The
invalid keyword has been detected as beginning with
an 8 digit numeric field. This is most likely caused by
line numbers having been turned on at some point in
the past, and then turned off again, resulting in a
situation where some lines in SYSIN have line
numbers, and some do not. When this happens,
Workload Automation Programming Language cannot
determine whether these were genuine line numbers, or
were intended as being part of the SYSIN itself.

System action: Processing terminates.

User response: Remove the lines from columns 73 to
80.

EQQI228F A date must precede description for
tagging

Explanation: Automatic date tagging is in effect (see
OPTIONS TAGMODE) and a description keyword has been
encountered before the corresponding keyword

EQQI219F • EQQI228F

366 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

containing the date has been encountered in the batch
loader statements.

System action: Processing terminates.

User response: Amend the sequence of the batch
loader statements to place the keyword containing the
date before the description keyword.

EQQI230F Incomplete DO/IF <stream> <line>

Explanation: A logical DO or IF structure is not
structured correctly.

System action: Workload Automation Programming
Language terminates.

User response: Correct and rerun.

EQQI231F Unexpected or unmatched END
<stream> <line>

Explanation: An END statement has been encountered
without a matching DO statement.

System action: Workload Automation Programming
Language terminates.

User response: Correct and rerun.

EQQI232F Evaluation Error - <explanation>

Explanation: A REXX based expression has failed to
evaluate correctly.

System action: Workload Automation Programming
Language terminates.

User response: Correct and rerun.

EQQI234F SUBROUTINE name <name> already
used

Explanation: A duplicate subroutine has been defined.

System action: Workload Automation Programming
Language terminates.

User response: Correct and rerun.

EQQI235F <command> not permitted in
environment <environment>

Explanation: You are running Workload Automation
Programming Language in a non-batch or non-TSO
environment such as AF/OPERATOR or NETVIEW.
The requirements of the command you are executing is
not compatible with this environment.

System action: Workload Automation Programming
Language terminates.

User response: Correct and rerun, or execute in an
alternate environment such as triggering a started task
from the environment you are using.

EQQI236E User field <name> not found for
operation <opnum> <jobname>

Explanation: The ALTIF command is being run and
has not found a DO user field to match the IF user field
found against a particular operation.

System action: The command ends RC=8, and
continues with the next command.

User response: Add corresponding DO user field or
remove the IF user field.

EQQI300 - EQQI399, EQQYCOM control messages

EQQI301F PIF command <command> abandoned
due to INIT failure

Explanation: A PIF process was attempted, but the
preceding INIT request failed.

System action: Any commands requiring the PIF will
not run.

User response: Identify the reason for the failure of
the INIT command and rerun. Possible causes could be:

v The controller is not active.

v The server through which PIF is trying to
communicate is not active.

v The communication route to the server is failing.

EQQI302F Unable to GET|FREE <size> bytes of
storage

Explanation: An attempt to obtain storage for a PIF
request has failed.

System action: Workload Automation Programming
Language terminates.

User response: Identify the cause of the storage
problem and rerun.

EQQI303O Contention/Delay, retrying in <seconds>
second(s) <attempt>/<max>

Explanation: A contention condition has occurred and
the OPTIONS CONTENTION feature is active.

System action: Workload Automation Programming
Language will reattempt the command in the specified
number of seconds, and repeat this process until
<attempt> has reached <max>. After which Workload
Automation Programming Language will terminate if
unsuccessful.

User response: Identify and alleviate the contention.

EQQI304A Delaying for <seconds> second(s)

Explanation: The OPTIONS DELAY feature has been

EQQI230F • EQQI304A

Appendix E. Messages and Return Codes 367

enabled to cause a time delay to happen after certain
categories of command, to reduce risk of contention
and allow other processes a share of IBM Workload
Scheduler for z/OS resources.

System action: The program pauses for the stated
number of seconds.

User response: None.

EQQI400 - EQQI499, Validation messages

EQQI401F Invalid value for addition/subtraction
<value>

Explanation: A date based calculation is being
performed with an invalid value specified to add or
subtract.

System action: Processing terminates.

User response: Correct the value and rerun.

EQQI402F Invalid value for inFormat <value>

Explanation: A date based calculation is being
performed with an invalid input format specified.

System action: Processing terminates.

User response: Correct the format and rerun.

EQQI403F Invalid value for outFormat <value>

Explanation: A date based calculation is being
performed with an invalid output format specified.

System action: Processing terminates.

User response: Correct the format and rerun.

EQQI404F Invalid value for inDate <value>

Explanation: A date based calculation is being
performed with an invalid date used as input.

System action: Processing terminates.

User response: Correct the date and rerun.

EQQI500 - EQQI599, Function based messages

EQQI500E Job <jobname>,<JESnum> not
scheduled by
<ADID(ad)|GROUPDEF(<grp>)>

Explanation: The ADD command is being used to
repeat an Application or Group, but the job running the
command is not included in the named application.

System action: Processing terminates.

User response: When running in REPEAT mode the
ADD command does not need the ADID or GROUPDEF
keywords specifying. If this job is supposed to be
repeating the occurrence it is running within, remove
the ADID or GROUPDEF keywords and rerun.

EQQI501A Repeat <ADID(ad)|GROUPDEF(grp)>
from hhmm to hhmm

Explanation: The ADD command is being used to
repeat an Application or Group. This message indicates
the occurrences being repeated and the FROM and UNTIL
limits.

System action: Processing continues.

User response: None.

EQQI502W Current IA <yymmddhhmm> outside of
FROM/UNTIL range

Explanation: The ADD command is being used to
repeat an Application or Group, but the instance
running has an IA outside of the FROM/UNTIL limits.
This will have been added outside the limits by a
process other than the ADD command in REPEAT mode.

System action: Processing continues but no further
occurrences are scheduled.

User response: None.

EQQI503W Next IA <yymmddhhmm> outside of
FROM/UNTIL range

Explanation: The ADD command is being used to
repeat an Application or Group. It has calculated that
the next instance will be outside of the FROM/UNTIL
limits.

System action: Processing continues but no further
occurrences are scheduled.

User response: None.

EQQI504E <yymmddhhmm> overlaps with existing
<yymmddhhmm>

Explanation: The ADD command is being used to
repeat an Application or Group. The IA for the next
calculated occurrence overlaps with the IA of another
occurrence of the same application that has been added
by other means.

System action: Processing continues but no further
occurrences are scheduled.

User response: Investigate the additional occurrence
and act accordingly.

EQQI506E No Application|Group <adid> found
active on <yymmdd>

Explanation: The ADD command is being used to

EQQI401F • EQQI506E

368 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

submit an Application or Group, but no instance of the
requested Application or Group could be found valid
on the date specified.

System action: Processing terminates.

User response: Correct the application name or group
and rerun.

EQQI507A The IA of the next occurrence will be
<yymmddhhmm>

Explanation: The ADD command is being used to add
an Application or Group. This message shows the Input
Arrival that will be used for submission.

System action: Processing continues.

User response: None.

EQQI508A No new occurrence will be added

Explanation: The ADD command is being used to
repeat an Application or Group. It has determined that
no further occurrences will be added. There will be an
accompanying message 502, 503, 504, or 510 to explain
why.

System action: Processing continues but no further
occurrences are scheduled.

User response: None.

EQQI509A This is instance <x> of <y>

Explanation: The ADD command is being used to
repeat an Application or Group. The COUNT keyword is
being used, this message indicates how many instances
have run so far and what the upper limit is.

System action: Processing continues.

User response: None.

EQQI510W Count limit of <y> has been reached

Explanation: The ADD command is being used to
repeat an Application or Group. The COUNT keyword is
being used and the upper limit has been reached.

System action: Processing continues but no further
occurrences are scheduled.

User response: None.

EQQI511E Command executed before IA of
<yymmddhhmm>

Explanation: The ADD command is being used to
repeat an Application or Group. It has detected that the
ORIGIN time is earlier than the Input Arrival of the
controlling occurrence.

System action: Processing terminates.

User response: Investigate the reason for the early
execution. If deliberately released early, the job can be
restarted with the keyword EARLY(CONTINUE) coded to
resume the repeat cycle at the next interval.

If the job ran early because the repeating occurrence
has no time dependency, correct the application
definition in the database before restarting the job.

EQQI512A IA adjusted from <yymmddhhmm> to
<yymmddhhmm>

Explanation: The ADD command is being used to
submit an Application or Group. Input arrival was
specified, but an occurrence already existed, and FINDIA
was specified as Y. This lists the originally specified IA
and what IA was used instead.

System action: Processing continues.

User response: None.

EQQI900 - EQQI999, Trace messages

EQQI901C Unable to read EQQLANG

Explanation: Workload Automation Programming
Language has been unable to read the language file
EQQLANG, possibly due to the DD name not being
allocated, or the input file never having been written
to, or the record format not being appropriate to read
with EXECIO.

System action: Workload Automation Programming
Language terminates before initialization has
completed.

User response: Determine the problem with the file,
correct it and rerun.

EQQI902C Message <msgID> missing

Explanation: Workload Automation Programming
Language has attempted to issue a message that is not

contained within the EQQLANG file.

System action: Workload Automation Programming
Language terminates.

User response: Determine the reason for the failure. It
is possible that the cause is that Language File is not
the correct file for the version of EQQYXTOP that is
executing, or has been customized incorrectly.

EQQI903C Unrecognized severity <severity>

Explanation: The message file EQQLANG contains a
message in which the severity is one not recognized by
EQQYXTOP.

System action: Workload Automation Programming
Language terminates.

User response: Determine the reason for the failure. It
is possible that the cause is that Language File is not

EQQI507A • EQQI903C

Appendix E. Messages and Return Codes 369

the correct file for the version of EQQYXTOP that is
executing, or has been customized incorrectly.

370 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2016 371

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

372 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a Registered Trade Mark of AXELOS Limited.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

ITIL is a Registered Trade Mark of AXELOS Limited.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Notices 373

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

374 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

Index

A
accessibility xiii

C
Cloud & Smarter Infrastructure technical

training xiii

D
Dynamic Workload Console

accessibility xiii

E
education xiii

T
technical training xiii
training

technical xiii

© Copyright IBM Corp. 2016 375

376 IBM Workload Scheduler for z/OS: Workload Automation Programming Language for z/OS User's Guide and Reference

IBM®

Product Number: 5698-T08

Printed in USA

	Contents
	Figures
	Tables
	About this publication
	Accessibility
	Technical training
	Support information
	Conventions used in this publication

	Chapter 1. Overview
	Similarities to the Scheduling Operational Environment
	Version compatibility
	Small product enhancements

	Setting up the Workload Automation Programming Language environment
	Language support
	Command language
	Output files
	Batch loader
	IBM Workload Scheduler for z/OS PIF concepts
	Data sources and structures
	IBM Workload Scheduler for z/OS PIF requests

	Chapter 2. Running Workload Automation Programming Language
	Running Workload Automation Programming Language in batch
	Running Workload Automation Programming Language as a load module
	Running Workload Automation Programming Language within an online TSO session
	Running Workload Automation Programming Language on a started task workstation
	Running Workload Automation Programming Language as a console command
	Specifying the subsystem
	Using OUTPUT statements
	Workload Automation Programming Language commands syntax
	Using comparators
	Setting dates and times
	Termination, line numbers, and continuation
	Inserting comments in a statement
	Special resource and user field names
	Special characters @, !, and #
	Knowing resource names
	Variable substitution
	Using wildcards

	Controlling the processing within Workload Automation Programming Language
	Labeling Workload Automation Programming Language statements
	Defining subroutines

	Protecting against PIF failure
	Overriding Workload Automation Programming Language defaults
	Message log

	Chapter 3. Core programming commands
	CALL – Execute external program, subroutine, or variable
	DISPLAY – Echo information to SYSTPRT
	DO and END – Block and Loop commands
	Block DO
	Repeat DO loop
	Iterative DO loop
	DO While loop
	DO Until loop
	DO Forever loop

	DROP – Drop elements from memory
	EXIT – Terminate processing
	FILTER – Post process selected records to reduce output
	IF-THEN-ELSE – Conditional execution
	INCLUDE – Include code from other data sets or members to be run
	ITERATE – Proceed to the next iteration of current loop
	LEAVE – Exit the current loop
	LOG – Echo information to the log
	MERGE – Merge SAVELIST output
	NOACT – Peform no action
	OPTIONS – Define run time options and PIF requests
	OUTPUT – Define output record
	Specifying output destinations
	Setting additional fields

	READ – Read an external file or the external data queue
	RETURN – Exit the subroutine
	SETMAX – Manipulate the maximum return code
	SETSEV – Set message severity
	SHOW – Show diagnostic information
	SHOW FILES – Display files allocated to Workload Automation Programming Language
	SHOW OBJECT – Display the object structure of an IBM Workload Scheduler for z/OS record
	SHOW OPTIONS – Display Workload Automation Programming Language OPTIONS currently effective
	SHOW RC – Display return codes
	SHOW SAVELIST – Display the contents of a SAVELIST
	SHOW SPE – Display active Small Product Enhancements
	SHOW SYSINFO – Display information about the LPAR
	SHOW SUBSYSTEM – Display controller information
	SHOW USRF – Display Operation User Fields for this job
	SHOW VARIABLES – Display current variable values

	SUBROUTINE – Indicate the start of a subroutine
	TRANSLATE – Define rules for life-cycle translation
	WAIT – Delay before continuing with the next command
	WRITE – Echo information to a file or the external data queue

	Chapter 4. Workload Automation Programming Language functions
	@ - Date logic function
	@CMD and @JCL – Check RC of previous command or JCL step
	@LOG – Return the date and time in EQQYLOG format
	@V – Return the value of a named variable

	Chapter 5. Data Access commands based on PIF
	DELETE – Delete object from database or plan
	DELETE AD – Application Definition
	DELETE AWSCL – All Workstations Closed
	DELETE CL – Calendar
	DELETE CPCOND – Condition
	DELETE CPOC – Current Plan Occurrence
	DELETE CPOCPRE – Current Plan Occurrence Predecessor
	DELETE CPOCSUC – Current Plan Occurrence Successor
	DELETE CPOP – Current Plan Operation
	DELETE CPPRE – Current Plan Predecessor
	DELETE CPSIMP – Conditional predecessor
	DELETE CPSR – Current Plan Operation Special Resource
	DELETE CPSUC – Current Plan Successor
	DELETE CPUSRF – User Field
	DELETE ETT – Event Trigger
	DELETE IVL – Current Plan Workstation Interval
	DELETE JCLV – JCL Variable Table
	DELETE JL – Job Log
	DELETE JS – Current Plan JCL
	DELETE LTOC – Long-Term Plan Occurrence
	DELETE LTCPRE – LTP Conditional Predecessor
	DELETE LTPRE – Long-Term Plan Predecessor
	DELETE OI – Operator Instruction
	DELETE PR – Period
	DELETE SR – Special Resource
	DELETE VIVL – CP Virtual Workstation Interval
	DELETE WS – Workstation
	DELETE WSV – Virtual workstation destination

	EXECUTE – Commit updates to the Current Plan
	INIT – Initialize communication with IBM Workload Scheduler for z/OS
	INIT subsystem

	INSERT – Add objects into the plan
	INSERT CPOC – Current Plan Occurrence
	INSERT CPOCPRE – Current Plan Occurrence Predecessor
	INSERT CPOCSUC – Current Plan Occurrence Successor
	INSERT CPCOND – Current Plan Condition
	INSERT CPOP – Current Plan Operation
	INSERT CPPRE – Current Plan Predecessor
	INSERT CPSAI – Current Plan System Automation Info
	INSERT CPSIMP – Current Plan Conditional Predecessor
	INSERT CPSR – Current Plan Operation Special Resource
	INSERT CPSUC – Current Plan Successor
	INSERT CPUSRF – User Field
	INSERT IVL – Current Plan Workstation Interval
	INSERT JCLPREP – JCL Preparation
	INSERT LTOC – Long Term Plan Occurrence
	INSERT LTPRE – Long Term Plan Predecessor
	INSERT VIVL – CP Virtual Workstation Interval

	LIST – Find objects in the Database and Plans
	OBJECT
	MATCHTYP Argument
	SAVELIST Argument
	TAG Argument
	Automatic SELECT and DELETE
	LIST ADCOM, LIST ADKEY – Application ID, Application Key
	LIST AWSCL – All Workstations Closed
	LIST CLCOM - Calendar
	LIST CPCONDCO – Current Plan Condition (Common)
	LIST CPOC – Current Plan Occurrence
	LIST CPOPCOM – Current Plan Operation
	LIST CPOPSRU – Current Plan Operation SR Usage
	LIST CPWSCOM – Current Plan Workstation
	LIST CPWSVCOM – CP Virtual workstation destination
	LIST CSRCOM – Current Plan Special Resource
	LIST ETT – Event Triggers
	LIST GENDAYS – Generate dates from a rule
	LIST JCLVCOM – JCL Variable tables
	LIST JSCOM – Current Plan JCL
	LIST LTOCCOM – Long Term Plan Occurrence
	LIST OICOM – Operator Instructions
	LIST PRCOM – Period
	LIST SRCOM – Special Resource
	LIST WSCOM – Workstation
	LIST WSVCOM – Virtual workstation destination

	MODIFY – Modify objects in the plans
	MODIFY CPCOND – CP Condition
	MODIFY CPEXT – CP Extended Operation Info
	MODIFY CPOC – Current Plan Occurrence
	MODIFY CPOP – Current Plan Operation
	MODIFY CPREND – Distributed remote job info
	MODIFY CPRENZ – z/OS remote job info
	MODIFY CPSAI – Current Plan System Automation Info
	MODIFY CPUSRF – User Field
	MODIFY CPWS – Current Plan Workstation
	MODIFY CPWSV – CP Virtual Workstation Destination
	MODIFY CSR – Current Plan Special Resource
	MODIFY IVL – Current Plan Workstation Interval
	MODIFY LTOC – Long Term Plan Occurrence
	MODIFY VIVL – CP Virtual workstation interval

	REPLACE
	RESET – Resets pending changes to the plan
	SELECT – Retrieve a record or common segment
	OBJECT Argument
	TAG Argument
	SELECT AD/ADCOM – Application Description
	SELECT AWSCL – All Workstations Closed
	SELECT CL/CLCOM - Calendar
	SELECT CPCOND/CPCONDCO – CP Condition
	SELECT CPOC – Current Plan Occurrence
	SELECT CPOP/CPOPCOM – Current Plan Operation
	SELECT CPST – Current Plan Status
	SELECT CPUSRF – Current Plan Operation User Fields
	SELECT CPWS/CPWSCOM – Current Plan Workstation
	SELECT CPWSV/CPWSVCOM – CP Virtual workstation destination
	SELECT CRITPATH – Critical Path
	SELECT CSR/CSRCOM – Current Plan Special Resource
	SELECT ETT – Event Trigger
	SELECT JCLPREP – JCL Preparation
	SELECT JCLPREPA – JCL Preparation simulation
	SELECT JCLV/JCLVCOM – JCL Variable Table
	SELECT JL/JLCOM – Job Log
	SELECT JS/JSCOM – Current Plan JCL
	SELECT LTOC/LTOCCOM – Long Term Plan Occurrence
	SELECT OI/OICOM – Operator Instructions
	SELECT PR/PRCOM - Period
	SELECT SR/SRCOM – Special Resource
	SELECT WS/WSCOM – Workstation
	SELECT WSV/WSVCOM – Virtual workstation destination

	SETSTAT – Sets a Condition status
	SETSTAT CPSIMP – Condition dependency

	TERM – Terminate IBM Workload Scheduler for z/OS session

	Chapter 6. Current Plan Operation commands
	Common syntax
	Identification keywords
	Filter keywords
	Data keywords
	Performance considerations
	Relative date and variables
	Automatic detection of current state of operation
	SAVELIST and USELIST
	Relationship to the EQQWXMOD WAPLEXEC

	ALTER
	Managing split or inconsistent occurrences

	BIND
	FIND
	FORCE
	HOLD
	KILL
	NOP
	QUEUE_BEHIND
	RELEASE
	REPLY
	UNNOP

	Chapter 7. Current Plan Occurrence commands
	Common keywords
	ALTIF – Alter operations if specific criteria are true
	RUNIF – Run operations only if specific criteria are true

	Chapter 8. Function Based commands
	ADD – Add applications or groups to the current plan
	Usage notes for ONCE mode
	Usage notes for REPEAT mode
	Terminating repeating
	Persistent data

	ADDJOB – Add job to the current plan
	CONSOLE – Issue z/OS console commands
	GETDATES – Generate a list of run dates from a run cycle rule
	LISTJOB – List job attributes from the database
	LISTSTAT – List Status of Current Plan Objects
	OBJECT
	Performing SRSTAT actions with LISTSTAT

	SENDMAIL – Send an email via z/OS SMTP
	SENDMSG – Send a TSO message
	WSALTER – Alter intervals on a workstations in the current plan

	Chapter 9. Using TSO commands within Workload Automation Programming Language
	BACKUP – Initiate JCL or CP backup
	BULKDISC – Initiate Bulk Discovery
	JSUACT – Activate/Inactivate Job Submission
	OPINFO – Update Operation User field
	OPSTAT – Set operation status
	SRSTAT – Set special resource status
	WSSTAT – Set workstation status
	Other TSO commands

	Chapter 10. Batch loader commands
	Modes of operation
	OPTIONS DBMODE
	Batch loader ACTION

	Output masking
	Batch loader syntax enhancements
	SETDEFAULT behaviour in Workload Automation Programming Language
	Keyword abbreviation
	Suffixing
	NEW_ keywords

	AD – Application definition record
	Automatic Operation numbering
	Automatic dependencies
	Submitting batch loader directly to the current plan
	ADAPD - Application Dependency
	ADCIV – External conditional dependency interval
	ADCNC – Condition
	ADCNS – Conditional dependency
	ADDEP - Dependency
	ADEXT – Extended information (ADOPEXT segment)
	ADOP - Operation
	ADRE – Remote job information
	ADRULE - Rule
	ADRUN – Run cycle
	ADSAI – System Automation information (ADOPSAI segment)
	ADSR – Special Resource reference
	ADSTART – Application common details
	ADUSF – User Field (ADUSRF segment)
	ADVDD – Variable durations and deadlines
	ADXIV – External dependency interval

	AWSCL – All Workstations Closed record
	AWCSTART – All workstations closed

	CL – Calendar record
	CLSTART – Calendar common details (CLCOM segment)
	CLDATE – Specific date (CLSD segment)
	CLDAY – Day of the week (CLWD segment)

	ETT – Event Trigger Record
	ETTSTART – Trigger definition

	JB – Ad-hoc in the current plan
	JBSTART – Application details
	JBCIV and JBXIV – External dependency selection criteria
	JBCNC and JBCNS – Conditional dependencies
	JBDEP, JBPRE and JBSUC – Dependencies
	JBRUN and JBRULE - Run cycle and rule

	JCLV – JCL Variable Table record
	JCLVSTART – Variable table common details (JCLVCOM segment)
	JCLVVAR – Variable details
	JCLVDEP – Dependent value pair

	JS – Current Plan JCL record
	JSSTART behaviour
	JSSTART – Current Plan JCL entry (JSCOM segment)
	JST – Line of JCL (JST field of JSCOM)

	OI – Operator Instruction record
	OISTART – Period common details (PRCOM segment)
	OIT – Line of Text (OIT field of OICOM)

	PR – Period record
	PRSTART – Period common details (PRCOM segment)
	PRDATE – Interval (PRTAB field of PRCOM)
	Automatic Interval generation

	RG – Run cycle group record
	RGSTART – Run cycle group common details (RGCOM segment)
	RGRUN – Run cycle group individual run cycle

	SR – Special Resource record
	SRSTART – Special Resource common details (SRCOM segment)
	SRDWS – Default workstation
	SRIVL - Interval
	SRIWS – Connected workstations

	WS – Workstation record
	WSSTART – Workstation common details (WSCOM segment)
	WSAM – Access Method
	WSSD – Specific date
	WSWD – Week day
	WSIVL – Interval details
	WSDEST – Virtual Workstation Destination

	WSV – Virtual Workstation destination record
	WSVSTART – Virtual Workstation (WSVCOM segment)
	WSVSD – Specific date
	WSVWD – Week day
	WSVIVL – Interval details

	Chapter 11. Variable substitution
	Variable naming convention
	Variable value look up process
	Variable parsing rules
	Variable resolution and REXX interpretation
	Object variables
	SAVELIST as object variables
	VARDATE – Generate date and time values from rule
	VARSAVE – Save variables in a JCL Variable Table
	VARSET – Set a Workload Automation Programming Language variable
	VARSUB – Control variable substitution

	Chapter 12. Record processing
	LIST-SELECT Common Segment vs Record
	OUTPUT and LOADDEF

	Appendix A. Resource reference
	Alternative resource names
	OUTPUT field definition reference
	Setting additional fields
	Reserved fields
	Composite fields
	Raw and untranslated fields

	Appendix B. OPTIONS keywords
	ACTION – See DBMODE
	ADOICHK – Consistency check
	ADPFX – Prefix for dynamically created applications
	ADSFX – Suffix for dynamically created applications
	ADVALFROM – Valid From generation
	ADVERS – Application versioning
	ADWS – Workstation for dynamically submitted jobs
	BLSTYLE – Style of Batch Loader output
	CALENDAR – Set default calendar name
	CHARAT – Set the at sign (@) for object variables
	CHARBANG – Set the exclamation mark (!) for default variable prefix
	CHARHASH – Set the number sign (#) for count object field and ENVATTR
	CHARMAIL – Set the at sign (@) for email addresses
	CHECK – Application integrity
	COMMIT – File output caching
	COMPSUCC – Set the default values for the ADDJOB and JBSTART commands
	CONINFO – Information level IEExxxI message numbers
	CONNAME – MCS console name
	CONWAIT – Wait timing for response messages
	CONWARN – Warning level IEExxxI message numbers
	CONTENTION – Retry limits
	CPDEPR – Current Plan dependency resolution
	CPFAIL – How to handle Current Plan modification failure
	DATE – Workload Automation Programming Language internal date
	DATA – ILSON data destination
	DBMODE – Mode of operation for database updates
	DECODE – Determine which fields to decode
	DELAY – Post update delay specification
	DELAYCMD – Commands to wait after
	DELETE – Automatic delete processing
	DELFILE – File to write deferred DELETE to
	DLM – End of instream data delimiter
	DROP – Circumvent occurrence split for ALTER DROPSUCC/PRED
	DUPAUTO – Allow automatic SELECT statements to output duplicates
	DURUNIT – Duration unit for Batch Loader
	DYNATTR – Set attributes for dynamic log
	DYNLOG – Create a dynamic copy of the Workload Automation Programming Language log
	EXECUTE – Automatic Current Plan EXECUTE
	EXPAND – LIST related objects
	FAIL – Action to take with return codes
	FASTPATH – Current Plan search option
	FIELDSEP – ILSON field separator
	FILESPEC – File Specification DD statement
	FIRST – Logical First operation
	FREEMAX – Maximum number of consecutive free days to skip
	GTABLE – Default Global Table
	HIGHRC – Highest accessible return code
	IFCMD – Default step to consider for command return code checking
	IFJCL – Default step to consider for JCL step return code checking
	IGNORE – Default value for ADDJOB IGNORE keyword
	INCLEVEL – Message level for INCLUDE statements
	INPUT – Command input DD statement
	JSFILE – DD name of input JCL for JSSTART
	LABELSEP – ILSON label separator
	LAST – Last logical operation
	LIMIT – Unconstrained loop limit
	LOADER – Batch Loader output destination
	LTDEPR – Long Term Plan dependency resolution
	MAILDD – DD name of input text for SENDMAIL
	MAILFROM – Email address of mail sender
	MAILSERVER – Domain name of the mail server
	MAILSMTP – DD name of SMTP output
	MEMORY – Memory usage
	MSGLEVEL – Output message level
	OIFILE – DD name of input text for OISTART
	OPID – Identify controlling operation
	OPMSG – Send messages to console
	OUTMASK – Output mask
	OVERWRITE – Whether to overwrite an object during rename
	OWNER – Owner ID for tables created by VAR* commands
	PGMPIF – Program to use for IBM Workload Scheduler for z/OS communication
	PGMSTOR – Program to use to manage storage
	PGMWAIT – Program to use to wait
	POSTPROC – Post process external data queue
	PREMPTY – Action to take when creating period with DATELIST and ADID
	REPORT – Report output width
	RETMSG <unavailable option>
	RETMSGID <unavailable option>
	RUNIF – Set defaults for conditional execution
	RUNSTAT – Alter run cycle status
	SENDDATA – Output ILSON data
	SENDLOADER – Output Batch Loader
	SELECT – Automatic selection
	SETMAX – Influence default SETMAX behaviour
	SETUP – Default SETUP attribute for Workload Automation Programming Language variables when saved
	SEVERITY – Message severity levels
	SILENT – Silent running
	SHOWDFLT – Show values that are set to defaults
	SHOWKEYS – Display key information
	SPE – Small Product Enhancements
	STOPRC – Return code to terminate processing
	STRIP – Remove trailing blanks and leading zeroes
	SUBSYS – Input file for controller options
	SUFFIX – Object name suffixing
	SUPMSG – Message suppression
	SYNTAX – Legacy syntax compatibility
	SYSID – Tracker lookup method
	TAGMODE – Set automatic tagging
	TAGMASK – Set tagging mask
	TEMPFILE – DD name of temporary library allocation
	TIME – Workload Automation Programming Language internal time
	TRACE – Perform interface tracing
	TRACKERS – Tracker lookup
	UPDATE – Default value for UPDATE keyword
	VARNAMES – Special characters to allow in variable names
	VERADGRD – Verify groups exist
	VERSION – IBM Workload Scheduler for z/OS version
	VERSRWSN – Verify workstations
	XMBLK – Whether to return a message control block
	XMSEV – Severity of messages to return in a message control block

	Appendix C. Workload Automation Programming Language variables
	Job level variables
	Occurrence level variables
	Operation level variables
	Current variables
	Subsystem variables

	Appendix D. WAPLEXEC programs
	Running WAPLEXEC programs
	EQQWXBLX – Extract items from a large Batch Loader backup
	Function
	Process control
	Running the command

	EQQWXCSR – Update resources in the Current Plan
	Function
	Process control
	Running the command

	EQQWXCSV – Generate applications from a CSV file
	Function
	Process control
	Running the command

	EQQWXHTM – Build an HTML version of a calendar
	Function
	Process control
	Running the command
	Combining EQQWXHTM with other processes
	Annual calendar creation and review
	Run date review

	EQQWXIAX – Input Arrival Cross Reference
	Function
	Process control
	Running the command

	EQQWXJBU – Update applications for a job
	Function
	Process control
	Running the command

	EQQWXNOE – Protecting against unconnected applications
	Function
	Process control
	Running the command

	EQQWXPER – Generate week number variables for a period
	Function
	Process control
	Running the command

	Appendix E. Messages and Return Codes
	Message Grouping
	Messages
	EQQI002 - EQQI099, Workload Automation Programming Language control messages
	EQQI100 - EQQI199, Data exception messages
	EQQI204 - EQQI299, Syntax related messages
	EQQI300 - EQQI399, EQQYCOM control messages
	EQQI400 - EQQI499, Validation messages
	EQQI500 - EQQI599, Function based messages
	EQQI900 - EQQI999, Trace messages

	Notices
	Trademarks
	Terms and conditions for product documentation

	Index
	A
	C
	D
	E
	T

