IBM Cognos Analytics
Version 11.1

Metadata Modeling Guidelines

.||I




©

Product Information

This document applies to IBM Cognos Analytics version 11.1.0 and may also apply to subsequent releases.
Copyright

Licensed Materials - Property of IBM

© Copyright IBM Corp. 2015, 2021.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

IBM, the IBM logo and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at " Copyright and trademark information " at
www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies:

« Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

= Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

« Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep,
Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

« Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

« UNIX s aregistered trademark of The Open Group in the United States and other countries.

» Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.
Microsoft product screen shot(s) used with permission from Microsoft.

© Copyright International Business Machines Corporation 2015, 2021.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.


http://www.ibm.com/legal/copytrade.shtml

Contents

Chapter 1. Metadata modeling .......cccceuiiuiiniiniieiieiieiieiieiiiiiiininieiieiieniececssssnssenns 1
e F Lo a1 a Y=o U gl oY o) =Yt SRR 1
Metadata MOdeliNng WOIKFLOW.......iiiciieciee ettt et e et e e e e e s e e e s abae e e areeesnbeeeenneas 3

Chapter 2. Import and verify metadata......c.cccceiiuiiniiniiniieiiiiiieiiiiniicciiicinienien. 5

Chapter 3. Remove ambiguity.....cccccciiiiiiiiiiiieiieiieiieiiiiiiiiinieiieiiesiesieceecssssasses 7
Cardinality and how Cognos ANALYtiCS USES itu.iccuieiiiiieeiiieeiiie et et ree e eree e e e e e e e s e e e s e e e e rae s e veeeenes 7

Cardinality in the CONTEXt OF @ QUEIY .c..uuii it et s e e te e e e tae e s taeeensaeens 8
Y {1 el AT o[V [T 9
VTR AV =Tt LA [o aT=] a1 o1 SRR 10
Resolve ambiguous relationNShiPS... ... it e e be e e aa e e e be e e aaeas 12
ROLE-PLlAYING AIMENSIONS......uiiiiciieciee ettt ettt e eete e eette e e ebee e s tee e seaeeesbeaesbaeeesesesseaesnseeesnseeesnsees 12
(o o] o 11 o] g 1T USRSt 13
Reflexive and recursive relationShipS.. ...ttt re e s aae e e sba e e e saaeeeaes 14

Chapter 4. Model design and presentation.........cccceceeiiniiniieiieiieiienieiiecnciceeciannens 17

Chapter 5. Multi-fact, multi-grain queries.......cccciieiiiiieiiiiiiiiiiiiiiiiicccecnenee 21
Prevent doUBLE COUNTING.......ii it e e et e e te e et e e e bee e e abeeesabaeeenbeeeenseeaenseeennses 22

Chapter 6. Enhance the model with additional features.......cccccoeeiieieniencencincinnnanns 23
Relative date analysis and data NaVigatioNn........ccccceeiecii i e e 23
Minimized SQL versus preventing join €limination........cccoccieeiciee e svee e 24
Aggregation and the order Of OPEIratiONS.....cccuiiiciiiicieccee e et e e e e e bee e e beeeeaaeean 27

Chapter 7. Optimizing query performance........ccccccceieuiiniiniieiieiieiieiieciescececsncsenses 29
DN = o= Tl =TT OO TR OR RS PRRTRSRRP 29
D L= W] K J O PSPPSR PPPPTN 30
Comparing materialized views in data servers to data caching in Cognos Analytics........cccceecrveeereenee. 30
Minimizing SOL QUETIY FESPONSE TIMES ..viiicuieeiciiieccieeeciieeccteeeeeeeeceeeeereeesereeessaeesseeesnsaeesseeessnessnseeesnsees 31
Join performance for heterogeneous data SOUICES......cuuiicvieeciieecee ettt et ere e e eae e e ae e e aes 32

Chapter 8. Data server changes and switching database vendors...............ccccc....... 33






Chapter 1. Metadata modeling

The purpose of metadata modeling is to present a user-friendly representation of the data that is
available to your query audience while adding business value where required.

The metadata modeler’s job is to ensure consistent and expected results for users who create or
consume content in IBM® Cognos® Analytics.

This document discusses how to effectively leverage the modeling concepts supported by IBM Cognos
Analytics, and ensure accurate and performant query results.

This document doesn’t cover step-by-step instructions. Where appropriate, links to the related
component documentation are provided.

Terminology clarification

This document spans multiple IBM Cognos Analytics metadata modeling tools that might each use
slightly different terminology for objects.

For example, in Framework Manager query objects are called data source query subjects, and model
query subjects. In data modules, parallel objects are called tables, table views, table copies, table unions,
and so on. In general, all of these objects represent a table or view from a data source, and the columns
within. For the purposes of this document, the terms tables and columns are used.

Planning your project

Gathering requirements, carefully choosing your data sources, and considering the best design approach
produce better performing metadata.

Gather requirements

Gather the business requirements first. It’s not recommended to simply see what data is available, and
then work around it. Ideally, the source data should be structured and enriched for analytical applications.
A common approach is to combine star schemas to represent a conformed dimensional warehouse that
spans one or more subject areas in a business.

Ensure that your IBM Cognos Analytics applications are built on properly structured data sources that
meet the users’ query requirements and performance expectations. This will allow you to avoid queries
that continually “restructure” and “enrich” data at run time. It’s best to have processes that feed the
source data, such as the extract, transform, and load (ETL) process, to procure and store the required
data. Performance starts with the data source and any optimizations that can be implemented within it,
such as aggregate tables, materialized views, precomputed calculations, indexing, and so on.

Consider the following, additional questions:

« What are the performance expectations?
« How current the data needs to be?
« What level of detail is required?

The answers to these types of questions dictate what data sources to use, what data the sources should
contain, what level of detail is stored (for example, hour versus day, versus week, versus month), how
often the data is refreshed, and so on.

Choose data sources

Cognos Analytics performs best with star or snowflake schemas. These schemas consist of dimension
tables that contain attributes, such as name, date, color, or city, which are used to categorize data. They
also use fact tables that contain key performance indicators (KPI), otherwise known as measures or facts.

© Copyright IBM Corp. 2015, 2021 1



In the following example, Products, Time, Order method and Sales oxrder are dimension tables,
and Sales factis the fact table.

Products 1 Order method

Sales fact

Time 1 Sales order

Dimension tables that are referenced by multiple fact tables are known as shared or reference dimension
tables. In the following example, Products and Time are shared dimensions to the Returned items
factand Sales fact tables.

Products

n
Returned items fact > Sales fact
n ///n

1 Time -

With this type of structure for your enterprise data, the metadata modeling process is greatly simplified,
which ensures best performance. Of course, performance can be impacted by several factors that include
data volume, system resources, database vendor, or database optimizations, such as indexes. All of these
elements must be considered when undertaking a Cognos Analytics project. Testing against the database
structure directly, outside of Cognos Analytics, ensures that it performs as expected.

Cognos Analytics can query against many types of data sources, not just databases. Microsoft Excel or
CSV files can be used. Or your requirements might see an OLAP source as the best option. For example,
you might have users who are knowledgeable about dimensional functions and require an OLAP data
source to accomplish their queries. You must consider what works best and satisfies the needs of users.

Data sources can also be mixed and matched. For example, you can use a CSV file and a database table
in the same project and create a relationship join between them. However, caution should be used as
performance might be an issue if these two sources aren’t combined properly. Using certain optimization
techniques that are discussed later in this document can help to improve performance when combining
disparate data sources in a project.

Think about design

As mentioned before, Cognos Analytics works best with the star or snowflake schema data warehouse
structure. The Cognos Analytics query service is optimized to recognize dimension and fact tables based

2 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



on the nature of the join between tables. The more clearly a metadata modeler can identify and configure
fact and dimension tables, the higher is the success rate of expected and performant results.

Metadata modeling workflow

Metadata modeling is an iterative process, as you prepare the metadata for the purposes of reporting,
dashboarding, and exploring data. There is a general starting point and a workflow to follow. The sections
in this topic illustrate the workflow steps at a high level, along with links to more detailed content.

Import and verify metadata

Once your requirements are gathered and the supporting data sources are available, in the metadata
modeling tool, you can import the required metadata to support the user requirements. You might be
tempted to import everything, and then decide what to use. From a model maintenance, readability, and
usability standpoint this is not recommended. Import only what you need, and then add more later as the
requirements change.

For more information, see Chapter 2, “Import and verify metadata,” on page 5.

Remove ambiguity

Ambiguity in model design refers to potential misinterpretations of relationships and their cardinality by
the Cognos Analytics query service. You can remove ambiguity in the model by ensuring that the correct
join paths are used in your queries, and that the intended fact tables and dimension tables are always
treated as such. This design practice produces the expected aggregation for your measures.

For more information and background on resolving ambiguity, see Chapter 3, “Remove ambiguity,” on

page 7.

Consider model design

In this phase, you need to consider how to present objects to the users in a clear, logical, and concise
manner. You can consolidate multiple tables into one view, consolidate logically grouped tables into one
area of the model, add filters and calculations as required, and so on.

For more information, see Chapter 4, “Model design and presentation,” on page 17.

Identify and configure for multi-fact, multi-grain queries

There might be scenarios where facts from different fact tables are stored at different levels of
granularity, which refers to the scale or level of detail that is present in the set of data. For example,

the Inventory Fact table stores values at the month level while the Sales Fact table stores values
at the day level. Different levels of granularity might introduce scenarios where one fact is inadvertently
double-counted (aggregated more times than it should based on the nature of the data). As a metadata
modeler, you should identify these potential scenarios and configure the model accordingly to prevent
double-counting.

For more information, see Chapter 5, “Multi-fact, multi-grain queries,” on page 21.

Enhance the model with additional features

Based on the needs and requirements of users, metadata modelers might use various techniques and
features to enhance the model. For example, some users might want to do relative date comparisons of
the data. Each metadata modeling tool has a way to accomplish this type of request.

Framework Manager uses dimensionally modeled relational (DMR) models for this purpose. A modeler
creates dimensional objects that allow users to drill up or down through the data based on defined
hierarchies. Dimensional functions can also be used to extract and compare data from different time
periods or segments of the business. In data modules, modelers can implement navigation paths and
relative date calendars to accomplish similar user requirements.

Chapter 1. Metadata modeling 3



Other features to enhance the model or its performance include, but are not limited to, ensuring
minimized SQL and controlling the way data is aggregated.

For more information, see Chapter 6, “Enhance the model with additional features,” on page 23.

Consider performance

As you develop your model, you need to constantly test for performance. Performance starts with the data
source that you report on. However, there are also some key optimizations that can be accomplished
within Cognos Analytics, such as leveraging data caches, data sets, and join optimizations across
heterogeneous data sources.

For more information, see Chapter 7, “Optimizing query performance,” on page 29.

Iterate

Again, as with any project, the metadata modeler develops the model based on requirements, tests often,
and then iteratively changes the model until the desired results are achieved.

4 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Chapter 2. Import and verify metadata

After identifying the metadata that can be used in your model, import only the required items to keep your
model manageable. Also, verify the Usage and Aggregate properties on columns.

The following Usage settings are supported:

Identifier
Represents a key, code, or date.

Attribute
Represents context, such as name, color, geographic information.

Measure
Represents key performance indicators that are typically aggregated in the context of identifiers or
attributes.

By default, the Aggregate property for an identifier or attribute is set to Count, and for a measure to
Sum or Total. Even though a fact table might hold a numeric attribute or identifier (for example, an order
number), it doesn’t mean that the item in the fact table is a measure, and its aggregation should be set
accordingly, such as Count or no aggregation. The same logic applies to a dimension where an attribute,
such as population or square footage, might not necessarily warrant an aggregation setting of Sum or
Total, but rather the setting of no aggregation.

You typically want to ensure that integer values that represent keys, codes, or non-rollup integer
attributes in your data have the Usage property set to Attribute or Identifier, and the Aggregate property
set to Count. It's not logical for these values to behave as measures, and be totaled or averaged.

For information on setting column properties in data modules, see ."Object properties" in the IBM Cognos
Analytics Data Modeling Guide.

For information on setting query item properties in Framework Manager, see "Query items" in the IBM
Cognos Framework Manager User Guide.

Data modules can denote that columns are from the domain of geographic (city, state, country, and so on)
or temporal types (day, month, quarter, year, and so on). This extended metadata can be automatically
leveraged in queries. For example, data values that represent geographic data automatically have their
Represents property set to Geographic location. With time-based data, this property is automatically
set to Time. Cognos Analytics also analyzes the data and allows for other functionality, such as data
visualization recommendations. Verify the Represents property on columns to ensure that it's set as
expected.

For Framework Manager models, you can enrich a published package to achieve the same artificial
intelligence (AI) functionality as in data modules.

For more information, see "Enriching packages" in the IBM Cognos Analytics Data Modeling Guide.

© Copyright IBM Corp. 2015, 2021 5



6 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Chapter 3. Remove ambiguity

Ambiguity in model design refers to potential misinterpretations of relationships and their cardinality by
the Cognos Analytics query service.

The topics in this section provide important knowledge on how the query service interprets relationships,
and how to model the metadata for expected and accurate results.

Cardinality and how Cognos Analytics uses it

Tables are related using relationships that denote the numerical number of related rows in each table.
Common relationships are 1 to many, and 1 to 1.

Relationships between two tables reference one or more columns from both tables. Typically, the
relationship reflects the referential integrity defined in a database (primary, unique, and foreign keys).
When metadata is imported, IBM Cognos Analytics attempts to locate any available referential integrity to
create default relationships.

The Cognos Analytics query service uses the cardinality of a relationship in the following ways:

- To identify tables that behave as facts (n side of the relationship) or dimensions (1 side of the
relationship).

 To avoid double-counting of measures.
» To support loop joins that are common in star schema models.

A relationship can specify the minimum-maximum cardinality and optional cardinality.
In 1:n, 1 is the minimum cardinality, n is the maximum cardinality.
In 0:1, O is the minimum cardinality, 1 is the maximum cardinality.

A relationship with cardinality specified as 1:1 to 1:n is commonly referred to as 1 to many when focusing
on the maximum cardinalities.

A minimum cardinality of 0 indicates that the relationship is optional. As an example, a relationship
between Customer and Sales might be defined as 1:1 to 1:n by default. In this case, customers without
sales aren’t returned because cardinality on both sides isn’t optional. To include customers without sales,
use the 1:1 to 0:n cardinality. This cardinality indicates that queries will show the requested customer
information even though there might not be any sales data present.

Relationships can be defined to describe the following scenarios:
« 1:1 to 1:n (inner join)

 0:1to 1:n (right outer join)

« 0:1to 0:n (full outer join)

« 1:1 to 0:n (left outer join)

Ensure that the cardinality is correctly defined in your metadata to avoid ambiguity. Tables with only

1 cardinality are always considered dimensions in the context of a query, while tables with only n
cardinalities are always considered facts. Tables with a mix of 1 and n cardinalities are defined either
as dimensions or facts, depending on the context of the query. For more information about context as it
relates to queries, see “Cardinality in the context of a query” on page 8.

When generating queries, the Cognos Analytics query service follows these basic rules to apply
cardinality:

« Cardinality rules are applied in the context of a query.
« 1 to n cardinality implies dimension data on the 1 side and fact data on the n side.

- Atable might behave as a fact table or as a dimensional table, depending on the relationships that are
required to answer a particular query.

© Copyright IBM Corp. 2015, 2021 7



In Framework Manager, the default annotation in the relationship diagram uses 1..1 or 0..1 and 1..n

or 0..n to represent the minimum and maximum cardinalities. In data modules, 1 and n are displayed
to show the maximum cardinalities in the relationship diagram, and optional cardinality is indicated by
a white background versus a blue background in the cardinality annotation, as shown in the following
screen capture.

\ l)mmnV
=

Note: If you try to create a join between two tables where the data types of the keys don’t match,

you might be tempted to cast one of the keys to match the data type of the other key. This isn’t
recommended as performance can be negatively impacted. The data type mismatch should be resolved in
the database so that the database optimization for primary and foreign keys can be leveraged. When you
use a calculation in the modeling tools to cast a data type, a new data column is created at run time that
doesn’t exist in the database and won’t be optimized.

Cardinality in the context of a query

Depending on the context, cardinality can be interpreted differently by the IBM Cognos Analytics query
service.

The following examples show possible interpretations.

Example 1: Tables behaving as a dimension and a fact

In this example, Sales Branch behaves as a dimension relative to Order header, and Order header
behaves as a fact relative to Sales branch.

Sales branch ! Order header

Example 2: Four tables in a query

In this example, all four query tables are included in a query. Sales staffand Order detailsare
treated as facts. Order header and Sales branch are treated as dimensions. In this scenario, Order
header is present on the many side and the 1 side of the relationship. In this context, the Cognos
Analytics query service treats Oxrder header as a dimension table, and avoids double counting of any
measures in this table.

8 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



)

n 1 1 .
Sales staff l--u-r/l Sales branch Order header S Order details

Example 3: Three tables in a query

In this example, only three tables are included in a query from the previous example. Order details
isn’t used. Order header is now treated as a fact. Sales staff continues to be treated as a fact.

O Order header
Im

n
Sales staff ‘-u/l 1 Sales branch

Stitch queries

When queries that request facts from multiple tables are performed in IBM Cognos Analytics, the query
service performs what IBM Cognos calls a stitch query. Stitch queries consist of subqueries, one for each
fact table, that are then merged together on their common attributes from a shared dimension table.

In the following example of a model, Products and Time are clearly shared dimensions, based on the
cardinality defined between Returned items factand Sales fact.

1 1
x Products ‘m\
yd .
e \\
n_~ . N
Returned items fact \\:, Sales fact
n / n
yd
1 Time /1

In the following results of the query that is based on this example, you see in the last row that in 2013
there were no returns for Hibernator Pad.

Year Product Quantity | Return quantity
2010 | Hibernator Pad 98,303 1,320
201 | Hibernator Pad | 137367 1,980
2012 | Hibernator Pad | 153179 1.682

2M3 | Hibernator Pad 117,060

The following pseudo SQL shows that as the query was run, Cognos Analytics created two subqueries, one
for Sales and one for Returns. Data from the subqueries is combined using a full outer join operation

on the Year and Product columns. In 2013, there were sales but no returns for the Hibernator Pad,
hence a null value is returned for the Return quantity.

Select
coalesce(D2.Yearl,D3.Yearl) as Yearl,
coalesce(D2.Product_Name,D3.Product_name) as Product_name,
D2.Quantity as Quantity,
D3.Return_quantity as Return_quantity

from

(Sub query 1) D2
full outer join
(Sub query 2) D3

Chapter 3. Remove ambiguity 9



on
((D2.Year = D3.Year) and (D2.Product_name = D3.Product_name))

Examine the results of each subquery. First, look at the subquery results that retrieve data for the
Quantity fact. The query returned the following four records.

Year Product Quantity
2010 | Hibernator Pad 98,303
2011 | Hibernator Pad 137367
2012 | Hibernator Pad 153,179

2013 | Hibernator Pad 17,060

Now, examine the subquery results for the Return quantity fact. Notice that there are only three
records. There were no returns for 2013.

Year Product Return quantity
2010 | Hibernator Pad 1,320
201 | Hibernator Pad 1,980
2012 | Hibernator Pad 1,682

However, in a stitch query, when there are more records in one subquery than in the other subquery,
nulls are returned for the rows where there is no match, as seen in the following query result (which was
presented earlier in this section):

Year Product Quantity | Return quantity
2010 | Hibernator Pad 98,303 1,320
201 | Hibernator Pad 137367 1,980
2012 | Hibernator Pad 153,179 1,682
2013 | Hibernator Pad 17,060

In the pseudo SQL example earlier, the coalesce function is used to return the first non-null record set
from the subqueries. If both are null, no record is returned. If one is null and the other is not, a record is
returned, but the subquery that had no match displays a null value.

For more information about dealing with nulls in calculations in reporting, see this article (www.ibm.com/
support/pages/node/6252027).

If dimensions and facts are incorrectly identified, stitch queries can be created unnecessarily, which can
be costly to performance. Or the queries can be incorrectly formed, which can give incorrect results.

In some instances, fact detection and stitch queries are not desired. In these cases, you must know the
data well and be sure that the relationships are 1 to 1, and the summary row aggregations would be
incorrect. This typically occurs with combination analysis scenarios.

For more information on combination analysis, see this article (www.ibm.com/support/pages/node/
6252021).

Verify relationships

The metadata modeling tools can detect and create relationships between tables during import. However,
after import, it's always a good practice to ensure that the relationships are as you intend them to be to
meet the query requirements.

Are the fact tables truly fact tables in that they have only n cardinality attached to them? Are the
dimension tables truly dimension tables with only 1 cardinality attached?

There might be some exceptions with dimension tables in that they might be snowflake dimensions. A
snowflake dimension consists of multiple tables that all represent the overall dimension. The tables are
normalized.

The following Product tables are an example of a snowflake dimension:

10 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines


https://www.ibm.com/support/pages/node/6252027
https://www.ibm.com/support/pages/node/6252021

1
Product line Product type Product

n Sales fact

Product line, Product type, and Product all make up the Product hierarchy for the Product
dimension. You might ask, since Product type and Product both have n cardinality attached, couldn’t
they be seen as fact tables in the context of a query. In this case, no. There is a 1 to many linear path to
the Sales fact table. The Cognos Analytics query service doesn’t see any of these product tables as
fact tables in the context of a query.

Consider the following scenario:

Product name
lookup

n

1

Product line Product type Product

" Sales fact

In this scenario, if Product, Product name lookup,and Sales fact were all included in the

query, both Product name lookupand Sales fact would be treated as fact tables and create an
unnecessary stitch query. Is the relationship between Product and Product name lookuptrulyalto
many? Upon investigating the data, Product name lookup is a multilingual table that has multiple rows
for each product in the Product table. So this is truly a 1 to many relationship. But based on the business
requirement, we need to see only one language at a time, and the language chosen is based on the user’s
locale setting in Cognos Analytics. Therefore, we can add a filter to the Product name lookup table.
The filter would return only one row per product, which changes the nature of the relationshipto 1 to 1, as
shown in the following scenario:

Product name
lookup YT
1

1

Product line Product type -1 Product

0 sales fact

As you investigate your relationships, always ensure that dimensions are treated as dimensions, and facts
as facts. A simple star schema database design makes this job easy. However, in many cases, there might

Chapter 3. Remove ambiguity 11



be some scenarios in the database design that need to be addressed in the model. Later in this document,
we look at options to consolidate snowflake dimensions.

Resolve ambiguous relationships

Ambiguous relationships occur when the data represented by a table or dimension can be viewed in more
than one context or role, or can be joined in more than one way.

The most common ambiguous relationships are role-playing dimensions, loop joins, and reflexive and
recursive relationships. For details about these types of relationships, see the subsections in this topic.

Role-playing dimensions
A table with multiple relationships between itself and another table is known as a role-playing dimension.

For example, the Sales fact in the following example has multiple relationships to Time on the keys
Order Day,Ship Day, and Close Day.

1 OrderDay np

) Ship D
Time 1 ShipDay  n| Sales fact
1 Close Day n

Create a table for each role that you want the Time table to play. If your role-playing dimension requires
only a subset of columns from the original table, you can remove unneeded columns for a cleaner
presentation, and provide appropriate names, such as Date in Time, Ship Date in Ship Day, and Close
Date in Close Day. You can name the keys appropriately as well. For example, rename Day Key to Ship
Day Key in Ship Day and to Close Day Key in Close Day. Ensure that a single, appropriate relationship
exists between each role-playing table and the fact table on the appropriate key. In the following
example, the Time table is used to represent the Ordexr Day for a sale. The other two role-playing
dimensions, Ship Day and Close Day, are self-explanatory.

Time }% ~
H“"“‘“-uxhr_]%
. n
Ship day ol Sales fact
p _
Close day -

The role-playing dimensions that you create might or might not be applicable to other fact tables.
For example, Product forecast fact might be applicable only to the Time dimension and would,
therefore, be joined only to this dimension.

L Time 1
.-"(-’
.--"'-’ -
vd . -0
ey
Product forecast fact [ Ship day " Sales fact

n

1 -

Close day

Now, Time can be used to compare Product forecastsand Sales.

12 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Loop joins

Loop joins are caused when table relationships are ambiguously defined based on cardinality. This
can produce unpredictable results. However, this issue doesn’t apply to star schema loop joins when
cardinality clearly identifies facts and dimensions.

IBM Cognos Analytics can automatically resolve loop joins that are caused by star schema data when you
have multiple fact tables joined to a common set of dimension tables.

In the following example of a loop join multiple fact tables are joined to a common set of dimension
tables.

Products Ny

. N
Returned items fact ?, Sales fact
n __,_/// n

1 Time

When tables are ambiguously defined based on cardinality, which means that it's not clear if a table is a
fact or a dimension, and are part of a loop join, the joins that are used in a query are decided based on a
number of factors, including the following ones:

« Location of the relationships
« Number of segments in join paths
« First join path in the alphabetical order (if all other factors are equal)

In the following scenario, the Sales staff table is ambiguously defined based on cardinality. The table
has the 1 and n cardinality attached, and it's a part of a loop join. If columns from all three tables are
selected in a query, it's unclear which join paths would be selected. Would it be Branch to Sales staff
and Order, and the join between Sales staff and Order would be ignored? Would it be Branch to
Order and Sales stafftoOrder, and the join from Branch to Sales staff would be ignored?

n Sales staff
1 1
Branch 1
n
n Order

To remove this uncertainty, you could have Branch act as a role-playing dimension (in this case the
Sales staff branch) toresolve the loop join, as shown in the following example:

Chapter 3. Remove ambiguity 13



Sales staff branch

1

Sales staff

Branch

n

n Order

You could even combine Sales staff branch and Sales staff into one table that contains the
Staff and Branch columns to simplify the presentation.

Sales staff branch
1

n
/ Sales staff

Sales staff dim

1

Branch

n Order

Reflexive and recursive relationships

Reflexive and recursive relationships imply two or more levels of granularity within a table with a fixed
depth.

For example, the Sales staff table has a recursive relationship between Sales_Staff_Code and
Manager_Code.

Sales staff

The following example shows how the data might look like in a table:

14 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Table 1. Recursive relationship between Sales_Staff_Code and Manager_Code

Sales_Staff Code

Sales_Staff_Name

Manager_Code

1 Jane Smith NULL
2 Martin Doe 1
3 Stephanie Sharaki 1

Jane Smith has a Sales_Staff_Code of 1, but no Managexr_Code because she is the manager. Martin
Doe and Stephanie Sharaki are both managed by Jane Smith.

To create a functioning reflexive relationship in your model, you can either create an alias shortcut (in
Framework Manager only) or a copy of the table. The second option is preferred because you can name
the columns accordingly, and create a relationship between the original table and the new one.

For example, create a table named Manager containing Sales_Staff_Code and Sales_Staff_Name
that is based on the Sales staff table. Rename Sales_Staff_Name to Manager nameinthe
Manager table in the model. Create a relationship with 1 to n cardinality between Manager and Sales
staff thatisjoined on Sales_Staff_Code and Manager Code.

For a simple two-level structure, using a model table for Manager that is based on Sales staff, the
model looks as follows:

Sales staff Manager

For a reflexive, balanced hierarchy, repeat this structure for each additional level in the hierarchy. For
example, Table 1 might also include the Director_Code, VP_Code, and so on.

You can go one step further and combine each level of the related hierarchy tables into a final Sales
staff table that presents columns for all the levels in the hierarchy. This new, final table would be joined
to your fact tables.

For large data volumes with many reflexive levels, performance can be impacted. Thoroughly test your
work for performance to ensure that your needs and expectations are met. For performance reasons, it's
recommended to flatten the hierarchy in the database into a single table that includes all the required
levels in their own columns. An example is shown in the following table:

Table 2. Hierarchy flattened into a single table with all required levels in their own columns

Sales_Staff Code

Sales_Staff_Name

Manager_Code

Manager_Name

1 Jane Smith 100 Jane Smith
2 Martin Doe 100 Jane Smith
3 Stephanie Sharaki 100 Jane Smith

The same technique could be used for an unbalanced hierarchy with branches that terminate at different
levels. The hierarchy would need to be flattened and balanced by padding the data for branches that
terminate at higher levels, as shown in Table 2.

Chapter 3. Remove ambiguity 15



16 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Chapter 4. Model desigh and presentation

You should always strive to present the metadata to users in a clear and concise manner, logically
grouped and easy to read and understand.

Sometimes you might need to consolidate multiple tables into one view for a logical grouping. For
example, if you have three tables that represent product data, you can present the data as one logical
business table that simplifies query authoring. This new table transparently pulls the data from the
underlying tables.

You might also want to implement calculations, filters, or prompts to meet the business query
requirements. However, when doing this, consider precomputing columns in the source data versus
continually reevaluating the logic in the model.

However, precomputing columns in the source data might not always be possible. For example, in some
cases the source system stewards might not allow changes to the system. As a result, the Cognos
Analytics application must continually compute expressions that you define in the model. Similarly, an
application team might want to be able to rapidly adapt to changes in business requirements, and cannot
wait for the warehouse to change. This can be a balancing act, however, in each situation performance
should be considered first.

Framework Manager and data modules have a slightly different approach to the model design.
In Framework Manager, it's recommended to model multiple layers that include:
- The database layer for the imported tables.

This layer is considered the metadata cache.
« The business layer for model enhancements and presentation.

This layer also acts as an insulation layer for reports to protect them from changes to the underlying
database layer.

- The presentation layer that groups facts and related dimensions together by using star schema
grouping.

The Star Schema Grouping feature shows users which dimensions are shared across facts because
they see the same dimension name in multiple star schema groupings. This helps the users to
understand the scope of each dimension and its related fact tables. By understanding this one, simple
rule, users who want to cross multiple fact tables in a query know that they must include a column

from at least one shared dimension. For more information, see "Creating star schema groups" in the IBM
Cognos Framework Manager User Guide.

The following screen capture shows the different modeling layers in Framework Manager:

Business View
Database View
(g3 Data Sources
F#1-[gg) Parameter Maps
F#-[gl Packages

And the following screen capture shows a presentation view with star schema groupings. Shared
dimensions between them can be identified based on the same name. For example, Time and Products
appear in both Sales Target and Sales star schema groupings.

© Copyright IBM Corp. 2015, 2021 17



|_:_|--- Presentation View
|_=_| Relational

EE‘ Sales Tanget
E{E Sales Target
- Time

Eﬁ Products
HE‘ Sales

E{E Sales

ﬁ Gross Margin
Eﬁ Order Method
- Time

Eﬁ Products

You might need to create and present more than one presentation layer. For example, one layer can be
focused on business users who want to create their own dashboards, and another layer on professional
report authors who need to address more complex requirements.

In data modules, the metadata cache is managed for you, bypassing the need for the database layer.
You can focus on items to consolidate and the business value that you want to add for users. Although
Star Schema Grouping is not a feature in data modules, users can be given read-only permissions for
the data module to view its scope and examine the relationships between dimensions and facts. Unlike
a Framework Manager model, a data module is available in the Cognos Analytics portal for all users with
access to see.

The following screen capture shows an example of a data module in the modeling user interface:

Data module + @ & f Grid S Relationships & Customtables
Q, Search
3 New data module £ . 2
> @ Productforecast —
Product
> @ Orderheader
> @ Ordermethod .

~ H Product

> # Productnumber

> (© Introductiondate

> abe Productpame

> ## Producttypecode
fL, Productioncost
fl, Margin

> asc Picture

In both modeling tools, you can create reusable objects and layers of abstraction. For example, you can
create calculations or filters that can be reused in multiple locations, or copies of tables to be used in
different business contexts, such as with role playing dimensions. You can develop objects in one model,
and link to them from other models for reuse. This way of working enables a multi-modeler paradigm or
simply reduces maintenance. For example, you might create and maintain all of your common dimensions
in one model, and reference them in other models where they are joined to applicable fact tables.
Changes that are made to the dimensions in the source model are propagated to the models that
reference them.

18 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Cognos Analytics supports multiple data sources in its query tools, such as Reporting or Dashboarding. In
Framework Manager, you can create smaller, more manageable models rather than one large model that
contains everything. Then, you can publish multiple, smaller packages that represent different aspects of
the business, and visualize them in the reports or dashboards.

You can use multiple data modules as data sources in Dasboarding. However, in Reporting only one data
module can be used as a source. If you need to use multiple data modules in Reporting, add these
modules to a "parent" data module, and then use this module as a source.

The smaller your models are, the more manageable they are. Unless you need to query across multiple
fact tables, you don't need to include all of those tables in one model. You can separate different aspects
of the business into different models and reuse common dimension tables in each of them. And while
you can layer model upon model, keep in mind that the more layers there are, the more difficult it is to
manage, maintain, and troubleshoot the metadata.

Chapter 4. Model design and presentation 19



20 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Chapter 5. Multi-fact, multi-grain queries

Multiple-fact, multiple-grain queries occur when a table containing dimensional data is joined to multiple
fact tables on different key columns.

For example, the Time dimension is joined to the Sales Fact onthe Day Key (day grain), and to Sales
Target FactontheMonth Key (month grain). The following tables, using some simple data, illustrate
the concepts and query outputs.

Table 3. Time dimension table

Year Quarter Month Day

2020 202001 20200101 Jan 12020
2020 202001 20200101 Jan 2 2020
2020 202001 20200101 Jan 32020

Table 4. Sales Fact table

Day Key Revenue
Jan 12020 10

Jan 2 2020 10

Jan 3 2020 10

Table 5. Sales Target Fact table

Month Key Sales Target
20200101 25

A dimensional table typically contains distinct groups, or levels, of attribute data with keys that repeat. In
the previous example, the Time dimension illustrates this rule with repeating Year, Quarter, and Month
values. Cognos Analytics automatically aggregates values to the lowest common level of granularity that
is present in the query. The potential for double-counting arises when creating totals on columns that
contain repeated data. For example, Sales Target Fact values, which are at the Month Key level,
would repeat for every Day Key for Sales Fact values, which are at the Day Key level.

If you visualize data at a level of granularity below the lowest common level, in this case the Day level, the
data of higher granularity, the Month level, is repeated, as shown in the Sales Taxrget in the following

table.

Table 6. Query results with Sales Target data incorrectly aggregated

Year Month Day Revenue Sales Target
2020 20200101 Jan1 2020 10 25

2020 20200101 Jan 22020 10 25

2020 20200101 Jan 32020 10 25

Total 30 75

Please note that the Total value for Sales Target is 75, which is not correct since the Sales Target

value for the month of January is only 25.

© Copyright IBM Corp. 2015, 2021

21



When the level of granularity of the data is modeled correctly, double-counting of the Sales Target
Fact values is avoided, as shown in the query result in the following table.

Table 7. Query results with Sales Target data correctly aggregated

Year Month Day Revenue Sales Target
2020 20200101 Jan 12020 10 25

2020 20200101 Jan 2 2020 10 25

2020 20200101 Jan 32020 10 25

Total 30 25

For information, see “Prevent double counting” on page 22.

Non-shared dimension scenario

In the following query example, the Ordexr Method table is introduced into the query. Order Method
applies only to Revenue from the Sales Fact table, and not to Sales Target fromthe Sales
Target Fact table. In this scenario, Sales Tazrget is repeated for every row introduced by the Ordexr
Method, but the Sales Tazrget values are not double-counted.

Table 8. Sales Target values are not double-counted

Year Month Day Order Method |Revenue Sales Target
2020 20200101 Jan 12020 Mail 4 25

2020 20200101 Jan 12020 Web 4 25

2020 20200101 Jan 12020 Visit 2 25

2020 20200101 Jan 2 2020 Mail 5 25

2020 20200101 Jan 2 2020 Visit 5 25

2020 20200101 Jan 32020 Mail 5 25

2020 20200101 Jan 32020 Web 5 25

Total 30 25

Prevent double counting

The modeling tools allow you to configure your models to account for scenarios where double counting
might occur.

Some examples of such scenarios are documented in the topic Chapter 5, “Multi-fact, multi-grain
queries,” on page 21.

To understand more about configuring your data modules to avoid double counting, see "Column
dependencies" in the IBM Cognos Analytics Data Modeling guide.

To understand more about configuring your Framework Manager models to avoid double counting, see
"Determinants" in the IBM Cognos Framework Manager User Guide.

22 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Chapter 6. Enhance the model with additional
features

As a modeler, you can use various techniques and features to enhance the model.

For example, you can add relative date analysis or data navigation, ensure that minimized SQL is used,
and control how the data is aggregated.

The topics in this section discuss the techniques and features that you can use to enhance your model.

Relative date analysis and data navigation

The modeling tools allow for relative time analysis and data navigation, although each tool accomplishes
these functions in a different way.

Note: This section assumes knowledge of dimensional data sources, such as OLAP and ROLAP, and the
concept of cubes as a data structure, including dimensions, hierarchies, levels, members, measures, and
so on.

Framework Manager supports dimensionally modeled relational (DMR) modeling, which is similar to
ROLAP. This type of modeling allows Cognos Analytics to build a cube cache of the data to perform
traditional, OLAP-style queries by using the multidimensial expression (MDX) query language, which is
used to query dimensional sources. With DMR models, authors can use powerful dimensional functions
for data analysis, comparison, and manipulation.

By using DMR, you can easily perform relative time analysis by dragging the members that you want to
compare into the query, or use dimensional functions to retrieve the members for comparison. DMR also
allows you to navigate up and down through the hierarchies of the dimensions, which is called drilling up
and down. This makes for quick and powerful analysis of the data with the ability to drill down into the
details.

For more information, see "Defining the Dimensional Representation of the Model" in the IBM Cognos
Framework Manager User Guide.

In data modules, relative date analysis is accomplished in a purely relational fashion by constructing
relative date filters and relative date measures. The following screen capture shows the relative date
filters for the Open Date column in a sample data module:
~ [ Boston_311_requests.xlsx

2 abc Service Request ID

> [, Service Requests

~ (U Open Date

% Prior Month

Prior Quarter
Prior Year
Current Month
Current Quarter
Current Year

Prior MTD

90« QA

Prior QTD

© Copyright IBM Corp. 2015, 2021 23



And the following screen capture shows the relative date measures for the Service Requests measure
in the same sample data module:

~ [ Boston_311_requests.xlsx

2 abe Service Request ID

~ [, Service Requests
fL, Prior Month [Service Requests]
fL, Prior Quarter [Service Requests]
fL, Prior Year [Service Requests]
fL, Current Month [Service Requests]
fL, Current Quarter [Service Requests]
fL, Current Year [Service Requests]
fL, Prior MTD [Service Requests]

fL, Prior QTD [Service Requests]

For more information, see "Relative date analysis" in the IBM Cognos Analytics Data Modeling Guide.

Data modules also allow you to navigate defined levels in your data using the navigation path feature. You
can define logically related levels, such as Year, Month, Date, or non-related levels, such as Product, State,
Customer, and so on. When navigation paths are enabled, users can drill up and down through the data in
dashboards or explorations.

For more information, see "Creating navigation paths" in the IBM Cognos Analytics Data Modeling Guide.

Minimized SQL versus preventing join elimination

When a table is designed in the modeling tools, it can comprise multiple columns from multiple tables.
When you query one column from this modeled table, you might expect to see SQL that omits the tables
from which columns are not referenced. This concept is referred to as join elimination or minimized SQL.

Depending on the model design, minimized SQL might not occur, and the query acts like a view. In this
case, all the joins of the underlying tables are enforced in a subquery before the parent query selects the
single column in the final projection list. In some cases, this behavior might be desired because you want
to enforce a join structure that controls the amount and type of data returned. This view behavior is also
known as preventing join elimination.

For example, take the case of a Product dimension which includes four underlying tables, Product dim
and three lookup tables that have a relationship to Product dim: Product line lookup, Product
type lookup, and Product lookup.Whenyou query Product line from Product line lookup,
you might want only product lines returned, where there are also product types and products. In this
case, you must ensure that the underlying join between these tables is enforced, provided inner joins are
defined in the model. However, in some cases when you query Product 1line, you want to see all of the
tables, regardless if they have product types and products associated. In this case, there are two ways to
accomplish this requirement. The first is to configure a left outer join to Product type lookup from
Product line lookup, with all the underlying joins still enforced in a subquery. The second option is to
ensure that minimized SQL is generated by configuring the model to do so.

Let’s look at the difference in the SQL for the Product 1line query. The following example shows
non-minimized SQL (no join elimination).

WITH
"PRODUCT_LOOKUPO" AS
(

SELECT

"PRODUCT_LOOKUPO1" . "PRODUCT_NUMBER" AS "PRODUCT_NUMBER",
"PRODUCT_LOOKUPO1" . "PRODUCT_LANGUAGE" AS "PRODUCT_LANGUAGE",

24 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



"PRODUCT_LOOKUPO1" . "PRODUCT_NAME" AS "PRODUCT_NAME",
"PRODUCT_LOOKUPO1" . "PRODUCT_DESCRIPTION" AS "PRODUCT_DESCRIPTION"

FROM
"PRODUCT_LOOKUP" "PRODUCT_LOOKUPO1"
WHERE
"PRODUCT_LOOKUP®O1" . "PRODUCT_LANGUAGE" IN (
|EN| )
) o
"Product_Line_Lookup_View_1" AS
(
SELECT
"PRODUCT_LINE_LOOKUP®O"."PRODUCT_LINE_EN" AS "PRODUCT_LINE_EN"
FROM

"PRODUCT_LINE_LOOKUP" "PRODUCT_LINE_LOOKUPO"
INNER JOIN "PRODUCT_DIM" "PRODUCT_DIMO"

ON "PRODUCT_LINE_LOOKUP®"."PRODUCT_LINE_CODE" = "PRODUCT_DIM®O"."PRODUCT_LINE_CODE"
INNER JOIN "PRODUCT_LOOKUPO"
ON "PRODUCT_LOOKUPO"."PRODUCT_NUMBER" = "PRODUCT_DIMO"."PRODUCT_NUMBER"

INNER JOIN "PRODUCT_TYPE_LOOKUP" "PRODUCT_TYPE_LOOKUPO"
ON "PRODUCT_TYPE_LOOKUPO"."PRODUCT_TYPE_CODE" =
"PRODUCT_DIM@"."PRODUCT_TYPE_CODE"

)
SELECT

"Product_Line_Lookup_View_1"."PRODUCT_LINE_EN" AS "Product_Line"
FROM

"Product_Line_Lookup_View_1"
GROUP BY

"Product_Line_Lookup_View_1"."PRODUCT_LINE_EN"

Notice all the inner joins in the sub query for Product_Line_Lookup_View_1. The joins for all four
tables are enforced.

Compare this SQL with the following example of minimized SQL (joins are eliminated) for the Product
line query:

SELECT

"Product_Line_Lookup_View_1"."PRODUCT_LINE_EN" AS "Product_Line"
FROM

"PRODUCT_LINE_LOOKUP" "Product_Line_Lookup_View_1"
GROUP BY

"Product_Line_Lookup_View_1"."PRODUCT_LINE_EN"

In this case, it's a simple column selection from a table.

If you then added an item from Sales fact to the query, the appropriate underlying joins from Product
line lookuptoProduct dimto Sales fact would be used to aggregate the values from the Sales
fact table.

Minimized SQL in Framework Manager

In Framework Manager, you can configure a query subject to use minimized SQL, which is the default
setting. For more information, see "Changing how the SQL is generated" in the IBM Cognos Framework
Manager User Guide.

However, even if minimized SQL is configured in Framework Manager, if you create a model query subject,
and then attach a relationship join to it, the model query subject always acts as a view. The joins are
enforced as shown in the following model design scenario, which results in non-minimized SQL:

Chapter 6. Enhance the model with additional features 25



_,__,-'-"___ ———

Product name
Product line lookup |1 lookup Y
-\.\‘ 1

f ,

\ 1
\ | — Products
| ™, 1 1 |

/
Q“ct type 1 v Product dim '
lookup 1

g
-..\_\_\___H--\- n
—

Sales fact

To generate minimized SQL, as shown in the following scenario, you wouldn’t join from Products to
Sales fact. Instead, you would join Product dim from the underlying product tables to the Sales
fact table. When querying a single column, such as Product line, from Products, the SQL would be
minimized as expected.

ff__ T
Product name
Product line lookup \1 lookup T
™, 1
| ™, |
M, |
N 1 | Products
\ 1 |
Product t 1 ™, ,
rocust type ——] Product dim .3_
lookup .

H-\-\-\-\"“-\-\_\__\_

Sales fact

If you then added an item from Sales fact to the query, the appropriate underlying joins from Product
line lookuptoProduct dimto Sales fact would be used to aggregate the values from the Sales
fact table.

Minimized SQL in data modules

In data modules, if you want the minimized SQL or view behavior, use the table property Item list. A
consolidated table with a relationship join attached to it uses this property to generate minimized SQL, or
enforce the underlying joins.

For more information, see "Generating the query SQL" in the IBM Cognos Analytics Data modeling guide.

26 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Aggregation and the order of operations

In the modeling tools and query tools, you can perform a calculation and then aggregate the results, or
aggregate the values in the calculation first and then perform the calculation.

To control this functionality, you must set the aggregation properties accordingly. To calculate first and
then aggregate, set the column property to Sum or Total (depending on the user interface). To aggregate
first and then calculate, set the property to Calculated. The Calculated setting applies only to stand-
alone (selectable) calculations, which are created outside of a table in the modeling tools, and in the
query tools, such as Dashboarding or Reporting.

The following table shows the different outcomes when calculating values before or after aggregation.

Table 9. Calculating values before and after aggregation

Row number A B A * B (set to Sum) | A*B (set to
Calculated)

1 5 10 50 50

2 10 5 50 50

Total 15 15 100 225

In the A*B (set to Sum) column, the calculation is performed first and then the values are summed
(50+50=100). In the A*B (set to Calculated) column, the detail rows are aggregated first (15 for each
total) and then the results are multiplied (15*15 = 225).

For more information, see the related documentation for the following components:

« Reporting: "Summary functions" in the IBM Cognos Analytics - Reporting User Guide.
- Data Modules: "Calculations" in the IBM Cognos Analytics Data Modeling Guide.

« Framework Manager: "Setting the Order of Operations for Model Calculations" in the IBM Cognos
Framework Manager User Guide.

Chapter 6. Enhance the model with additional features 27



28 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Chapter 7. Optimizing query performance

Cognos Analytics is designed to take full advantage of your data infrastructure. The primary data access
strategy is to delegate data processing, as much as possible, to a data server.

Therefore, in typical scenarios the volume of data is bounded by your data server capacity to respond
to analytical queries within the threshold of your users’ wait time tolerance. Typically, users don't like
waiting more than a few seconds for a request when interacting with data.

Cognos Analytics generates Structured Query Language (SQL) queries to retrieve data from relational data
servers. Users must wait while the data server responds to such queries. For example, when connecting
to the SQL interface of a data server, Cognos Analytics generates SQL that is tailored for the type and
version of the data server technology, and optimized to minimize the user wait time.

Usually, the number of rows that need to be transferred from the data server to Cognos Analytics is equal
to the number of values to be displayed within Cognos Analytics. Even if your data server stores billions of
records, if a bar chart in a Cognos Analytics dashboard displays five bars, only five rows of data should be
retrieved. The data server computes all joins, aggregations, calculations, filters, and so on, that result in
the five values that get displayed in the Cognos Analytics visualization.

It's possible to make requests that cannot be processed by an underlying data server. These types of
requests might require processing by the Cognos Analytics query service instead. While this is not always
possible, Cognos Analytics is designed to avoid generating SQL statements that return a large number of
rows where only a small percentage of the row data is presented to users. Although such SQL statements
might not be complex or expensive for the data server to process, they can result in large amounts of
data that is transferred to the Cognos Analytics server for local processing, which might increase the wait
times.

There might be times when retrieving data live from a data server is not desirable. You can avoid waiting
for data server processing by enabling data caching or using data sets.

Query times can be greatly impacted by aggregations, calculations, joins and other such operations
that require data processing either by Cognos Analytics or a data server. Keep in mind that dashboards
are typically presenting summary perspectives of data, which could be more detailed (fine grained) at
the source. A good first step in dashboard performance troubleshooting is identifying widgets that are
accessing millions of rows of stored data, which then undergoes processing to reduce the number of
rows to a small number of values to be displayed in a visualization. Most of that processing time could
be avoided if the final result of data to be presented to the user were preprocessed. To address this
issue, many data server technologies offer a concept known as a materialized view, which denotes a
precomputed result of one query that is accessible to other queries. The same concept might be known
under different names.

Materialized views can reduce user wait times in Cognos Analytics by offering data that is preaggregated
at the key, frequently requested intersections of logical aggregation. For more information, see
“Comparing materialized views in data servers to data caching in Cognos Analytics” on page 30.

Data cache

Modelers can configure the default cache behavior per query (table).

If the requirement is to have the current data per query for volatile data, setting the default to no cache
makes sense. If the data changes infrequently, once a day for example, it makes sense to set the default
to use the cache.

In Framework Manager, the default data cache behavior can be specified by using a model governor.
This behavior is inherited by all queries that are constructed based on this model. The model data cache
setting can be overridden in other Cognos Analytics components, for example, in Reporting by the query
property Use local cache.

© Copyright IBM Corp. 2015, 2021 29



For more information about setting data caching in Framework Manager, see "In-memory caching" in the
IBM Cognos Framework Manager User Guide.

For information about setting data caching in data modules, see ."Setting up data caching" in the IBM
Cognos Analytics Data Modeling Guide.

Data sets

Data sets are created by extracting data from packages or data modules. Data sets can be used to
gather a customized collection of items that you use frequently. As you make updates to your data set,
dashboards and stories that use the data set are also kept up to date the next time you open them.

You define a data set by choosing one or more items (columns) from a package or data module, and apply
filters to reduce the data. You're essentially specifying the rectangle of columns and rows of data that you
need. The data is extracted and stored within the Cognos Analytics system.

Data sets can improve query performance and reduce the workload on your databases. The following are
some reasons for using data sets:

« Improve query performance if your database is slow.
« Reduce the load on an overworked database (especially during peak periods).
« Retain a version of the data at a specific time.

For data sets created from relational packages or data modules, you have the option Summarize detailed
values, suppressing duplicates. When you use this option, measure values are aggregated to the lowest
grain that is explicitly included in the data set. For example, your data warehouse stores millions of
records pertaining to each transaction where units were sold, but you’re only interested in analyzing the
total sales per region. If your data set contains only the Region and Units Sold columns, and you use
this option, the data set will contain only as many rows as there are regions.

For more information, see "Data sets" in the IBM Cognos Analytics Getting Started Guide, and "Best
practices for improving query performance on uploaded files" in the IBM Cognos Analytics Managing
Guide.

Comparing materialized views in data servers to data caching in
Cognos Analytics

Each instance of an IBM Cognos Analytics query service manages its own private cache of reusable result
sets from SQL queries. Hence, a cluster of several application tier servers manages its own caches and
doesn’t share them. Meanwhile, queries that are sent from any of those instances can benefit from the
materialized views a data server might use.

The query service holds result sets in a data cache that reflect the columns a Cognos Analytics user

is requesting, with the level of aggregation and filtering applied. The order in which queries are run
influences if any cached data can be reused or not. For example, a query projects COUNTRY and
SUM(SALES) from T(table) where COUNTRY=UK. The result set of the query holds only the total sales
for UK. If a new query is processed where COUNTRY=FR, the first result set cannot be used because

the data cache doesn’t cover (include) COUNTRY=FR. Hence, as users change context in a dashboard, or
different queries request similar groupings but different measures, the data caches might not be able to
avoid requerying the data server.

Contrast this with a materialized view in a data server. The materialized view would be defined to hold
the grouped rows for all known countries. Hence, when COUNTRY=UK, it would quickly locate that row,
likewise when COUNTRY=FR. It could also be used to compute SELECT SUM(SALES) from T. In effect,
the materialized view could span a broader set of dimension categories and measures that service many
different needs of the Cognos Analytics users.

The creation of a materialized view requires a database administrator (DBA) to define and deploy the
materialized view. Using the data cache in Cognos Analytics doesn’t require a DBA. If a DBA is not
available to implement materialized views, relying on Cognos Analytics data caching or data sets, which
have prejoined, filtered, and aggregated data, might be your only solution to consider.

30 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines



Minimizing SQL query response times

Remember that less is faster. If all other factors are the same, a simpler SQL statement is satisfied in less
time than a more complex SQL statement. Likewise, requests for more data take longer than requests for
less data, if all other factors are equal.

As reports are executed or dashboards opened, the Cognos Analytics query service plans SQL statements
that it requires to obtain data from one or more sources. The physical SQL statements that are generated
are dependent upon the SQL semantics and data types supported by the underlying database. The
complexity of the generated SQL statements can introduce performance costs both for the underlying
data server and for the Cognos Analytics server when it needs to perform additional processing locally.

Cognos Analytics applications that are layered on operational databases frequently require complex

joins and expressions to navigate through the data and present values in business terms. In contrast,
applications that are layered on cleansed reporting structures, such as star schemas, can benefit from the
data transformations applied by the publishing extract, transform, and load (ETL) processes. Reducing the
complexity of the joins and expressions in queries can help the underlying data server plan queries more
efficiently, and in turn, reduce processor and memory consumption.

Here are some preferred practices that many data server technology vendors suggest to improve run-time
performance.

Avoid complex join and filter expressions

The complexity of expressions in the WHERE and JOIN ON clauses of an SQL statement can impede
planning for the data server, query rewrites to materialized views, or other forms of query acceleration.

Reduce explicit or implicit data type conversions

Converting data types requires processing that can significantly increase query response times.
Converting data types happens explicitly when you use a function like CAST () in a calculation or filter, or
implicitly when certain operations occur on columns with different data types.

Ideally, a calculation expression that serves as a key in a relationship between tables resolves to the
same data type as the corresponding key on the opposite side of the join relationship. This prevents
constraining the data server from considering certain join strategies, such as a hash join, because of
incompatible data types.

Avoid using SQL expressions to transpose values

Users who are familiar with SQL can construct expressions that attempt to massage database values for
display. In several cases, such expressions can be replaced by using the available data type formatting,
layout, and other presentation options.

The following example demonstrates how you can initiate multiple data type conversions, substrings, and
concatenations to display a date value in a particular way rather than using the data format rendering
option available in various authoring interfaces.

Substring(Cast ( dateField, char(10)),6,2) || ‘-* || Substring(Cast ( dateField,
char(10)),9,2) || Substring(Cast ( dateField, char(10)),1,4)

Avoid unnecessary outer joins

Outer joins enable applications to return result sets when one or more tables in a statement lack
associated data. Queries that use outer joins restrict various join optimization strategies and join ordering
that a data server sometimes uses with inner joins. A model might be constructed to always use outer
joins that may not, in fact, be required by the business questions posed by a report or dashboard.

Chapter 7. Optimizing query performance 31



Make use of constraints on tables in data servers

Tables in a data server can have constraints that can be considered by the data server query engine for
strategies such as join eliminations, query rewrites, and expression optimizations.

Primary key, unique key, and foreign key constraints (but not null and table constraints) can be declared
for this purpose. Depending on the data server technology, these constraints can be declared as either
non-enforced or enforced. In a normalized table design that includes snowflake schemas, non-primary
key columns are functionally dependent on the primary key.

To plan SQL statements for the data server to process, the Cognos Analytics query service uses

enforced constraints defined in a metadata model, such as determinants in Framework Manger or column
dependencies in data modules, and relationships between tables. These objects are often created during
one of the initial steps of creating a model, but more common is that they are manually defined by the
metadata modeler. For more information, see "Determinants" in the IBM Cognos Framework Manager User
Guide and "Column dependencies" in the IBM Cognos Analytics Data Modeling Guide.

Use indexes and table organization features

A common challenge for a database administrator is to anticipate the ways that applications attempt to
navigate the database. This includes which tables the queries will combine and which tables predicates
will be applied against.

Using a representative workload, the database administrator can review which tables are most frequently
accessed, and in particular, which local set of columns is used to filter and group columns in tables. Using
that knowledge, the database administrator can usually identify indexes or table organization strategies
that enable the database to more efficiently select the required rows.

The candidate workloads must reflect any ad hoc analysis and exploration of data that can occur within
an application. This is important when the database administrator is constrained in terms of what
covering indexes or table organizations they can define, which might bias the solution toward the most
frequent cases. For example, an application might predominantly categorize measures based on time,
customer geography, and product perspectives for which the database administrator can optimize the
table designs.

A metadata model can also be constructed on top of databases that expose application objects through
SQL views. Such views must be reviewed by the database administrator with respect to the expressions
within the view.

Join performance for heterogeneous data sources

To improve performance when querying heterogeneous data sources in IBM Cognos Analytics, you can
specify join filters in data modules, Framework Manager, or Reporting.

By using this feature, you can push predicates (the filter values) from the table on the 1 side of the query
into the filter expression of the SQL of the table on the n side of the query. For information about setting
the join filters, see the related component documentation.

For information about setting the join filters in the different Cognos Analytics components, see the
following documentation:

« Data modules: "Join optimization" in the IBM Cognos Analytics Data Modeling Guide

- Framework Manager: Optimizing joins by applying filters"Optimizing joins by applying filters" in the IBM
Cognos Framework Manager User Guide

« Reporting: "Create a Join Relationship" in the IBM Cognos Analytics - Reporting User Guide

There are some additional considerations when working with multiple data sources. For more in-depth
information on this subject, and to learn how to improve performance, see this article (www.ibm.com/
support/pages/node/6258353).

32 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines


https://www.ibm.com/support/pages/node/6258353

Chapter 8. Data server changes and switching
database vendors

When designing and maintaining metadata models, the modeler must consider changes to the underlying
databases or the requirements to change the database vendors altogether.

Each modeling tool provides a way of updating changed metadata. For example, some column names
in the database might change, or columns might be added or removed. You want to ensure that such
changes are reflected in the model so that errors don't occur.

In more extreme cases, you might need to connect to or switch between multiple database vendors
for one model. In these cases, ensure that the database structure is identical, including the following
elements:

- Case sensitivity
- Matching names of schemas, tables, or columns
« Compatibles data types

For example, DB2 has the DATE data type which is not compatible with the TIMESTAMP data type in
Oracle. The cleaner the match in structure and data type is, the smoother the vendor switch will be.
Switching vendors is not an exercise to be taken lightly. Appropriate planning should be in place before
implementing.

Framework Manager and data modules require slightly different methods for database updates and
vendor switching.

Data modules

After you reload the schema metadata for the data server source, you can re-add tables to the data
module to include changes from the database. If a new column is added, it appears in the data module.
If a column is missing, the validation process flags an issue, and you can delete the column from

the module. For more information, see "Updating columns in a data module" and "Reloading schema
metadata" in the IBM Cognos Analytics Data Modeling Guide.

Use the Show unused items feature on the data module source to see newly introduced columns in a
table. This feature is also useful when you remove columns from a table in the data module, and then
want to add them back. In this case, the columns are highlighted in the Sources panel

If a table name changes, import the new table and delete the old one. However, any table view that was
based on the old table needs to be recreated.

When you need to replace the data sources altogether, you can do so by relinking the source. For more
information, see "Relinking sources" in the IBM Cognos Analytics Data Modeling Guide.

As with Framework Manager, the database structure, naming conventions, and data types must match
between the old and relinked source.

Framework Manager

When a table column is changed, or a column is removed or added, you can update the data source query
subject to reflect the change. For more information, see "Updating query subjects" in the IBM Cognos
Framework Manager User Guide.

Once this happens, any model query subjects that are dependent on the data source query subject must
also be updated to reflect changes. New columns can be added manually.

When a table name changes, you need to import the table as a new object, delete the old one, and
then remap any dependent model query subjects to the newly imported table. For more information, see
"Remapping objects to new sources" in the IBM Cognos Framework Manager User Guide.

© Copyright IBM Corp. 2015, 2021 33



If you plan to change database vendors or allow dynamic access to different vendors by using macros

at run time, ensure that correct values are specified for the data source properties in the model. For
example, the Content Manager data source name must match a data source that is configured in Cognos
Analytics, the data source name must point to the intended database vendor, and the catalog and
schema properties must be set up correctly. For more information, see "Data sources" in the IBM Cognos
Framework Manager User Guide.

When the model was built using a business layer approach to insulate reports from changes to the
database, and when there are data type or naming convention conflicts, you can import the new tables
and remap the dependent model query subjects to them. Then, delete the old data source query subjects.

34 IBM Cognos Analytics Version 11.1 : Metadata Modeling Guidelines









	Contents
	Chapter 1.  Metadata modeling
	Planning your project
	Metadata modeling workflow

	Chapter 2.  Import and verify metadata
	Chapter 3.  Remove ambiguity
	Cardinality and how Cognos Analytics uses it
	Cardinality in the context of a query

	Stitch queries
	Verify relationships
	Resolve ambiguous relationships
	Role-playing dimensions
	Loop joins
	Reflexive and recursive relationships


	Chapter 4.  Model design and presentation
	Chapter 5.  Multi-fact, multi-grain queries
	Prevent double counting

	Chapter 6.  Enhance the model with additional features
	Relative date analysis and data navigation
	Minimized SQL versus preventing join elimination
	Aggregation and the order of operations

	Chapter 7.  Optimizing query performance
	Data cache
	Data sets
	Comparing materialized views in data servers to data caching in Cognos Analytics
	Minimizing SQL query response times
	Join performance for heterogeneous data sources

	Chapter 8.  Data server changes and switching database vendors

