
IBM Cognos Analytics
Version 11.1.0

Custom Visualizations Developer Guide

IBM

Contents

Chapter 1. Introduction... 1
Developing custom visualizations... 1

Chapter 2. Step by step guide.. 3
Step-by-step guide for custom visualizations...3

Setting up the development environment... 3
Uninstalling the custom visualizations CLI tools...4
Creating a custom visualization... 4
Using a D3 sample in your custom visualization... 5
Validating the visualization in a dashboard... 6
Validating the visualization in a report...6
Package and deploy the custom visualization...7
How local custom visualizations work... 8

Chapter 3. Custom visualizations tools and commands... 9
Custom visualizations tools and commands... 9

Chapter 4. Customvis library..13
Custom visualizations library (customvis-lib)... 13

Rendering... 13
Data model... 16
Interactivity.. 18
Legends...20
Properties... 21
Palettes...23
Customizing your visualization...25
RenderBase.. 26

Chapter 5. Customvis API reference...29
Customvis api reference.. 29

Chapter 6. Customvis frequently asked question.. 31
FAQ custom visualizations...31

Chapter 7. Visualization definition... 33
Visualization definition.. 33

Chapter 8. Tutorial...37
Custom visualizations - tutorial...37

Part 1: Creating a custom visualization... 38
Part 2: Adding properties to the visualization... 43
Part 3: Customize legend and properties.. 45
Part 4: Advanced features..47

Chapter 9. Manage custom visuals... 51
Managing custom visuals from the admin UI..51

Chapter 10. Improving the performance of custom visualizations..........................53
Improving the performance of custom visualizations.. 53

 iii

Chapter 11. Authoring schematics - Tutorial... 55
SVG definition.. 55
SVG basic mapping.. 55

Rules and restrictions for SVG... 57
Adding views to schematics.. 59
Highlighting regions in a schematic...60
Editing a schematic package... 62
Distributing a schematic.. 64

iv

Chapter 1. Introduction

Developing custom visualizations
You can create custom visualizations to meet your specific business needs. IBM® Cognos Analytics allows
developers to create and test custom visualizations locally before they make them available to other
users.

The Manage Visualizations capability allows users to control access rights to extensible visualizations for
individual users, groups, and roles.

The Develop Visualizations capability allows users to develop extensible visualizations.

CAUTION: Be judicious when you assign Develop Visualizations access and ensure that you
review files that are being uploaded. People who are permitted to upload files may be able to
deliver malicious code.

Custom visualization code samples are available in the Samples Guide.

© Copyright IBM Corp. 2019, 2021 1

2 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Chapter 2. Step by step guide

Step-by-step guide for custom visualizations
This step-by-step guide explains how to set up the development environment, create a custom
visualization from an existing D3 example and how to deploy and authorize the custom visualization
in IBM Cognos Analytics.

Setting up the development environment
The IBM Cognos Analytics custom visualizations CLI tools require you to install the NodeJS runtime
environment with a NodeJS package manager (NPM).

Before you begin
Make sure that the following software is installed:

• Microsoft Windows PowerShell or CMD on Windows or Terminal on Apple OSX.
• NodeJS version 10. For more information, see https://nodejs.org/en/.

Check the setup of your npm registry:

Note: Your npm registry can be public or private.

• If you are using a public npm registry, you must have access to the internet. This is the recommended
option.

• If you are using a private npm registry, refer to the npm documentation for instructions on pointing your
Node.js project at a private registry.

To use Appsody Node.js stacks in an air gap environment, your private npm registry must contain all the
dependent npm modules that are used in the stack. You can discover the list of first-level dependencies
in the package.json file in the stack definition. Alternatively, you can run npm ls or inspect the
package-lock.json file in an initialized project to see the full list of npm dependencies. Follow your
organization's standard procedures for copying npm modules into your private registry.

Procedure
Installing Node.JS and NPM

1. Download NodeJS version 10 installer from https://nodejs.org/en/download/.
2. Run the installer and use the default settings.
3. After the installation, restart your computer.
4. Validate the node and npm installation.

a) Open a command-line interface (CLI). Powershell or CMD on Windows or Terminal on OSX.
b) Run the following command:

node --version

The CLI displays the current version of the node. Make sure it meets the prerequisites.
Installing the Cognos Analytics custom visualizations CLI tools

5. Download the Cognos Analytics custom visualizations command-line tools from the following
location:

• For Cognos Analytics 11.1.4, use [CAserverroot]/bi/js/dashboard-analytics/lib/
@waca/vida/sdk/customvis.tgz.

• For Cognos Analytics 11.1.5, use [CAserverroot]/bi/js/vida/customvis.tgz.

© Copyright IBM Corp. 2019, 2021 3

https://nodejs.org/en/
https://docs.npmjs.com/docker-and-private-modules#create-and-check-in-a-project-specific-npmrc-file
https://nodejs.org/en/download/

In some browsers, the file extension .tgz is recognized as text. Download the file by right-clicking the
link and choose Save as and set type to All Files. Do not use the Mozilla Firefox browser to download
the file.

6. In your file browser, navigate to the directory where the downloaded file is saved to.
7. Open a command-line tool.

• On Microsoft Windows systems Windows PowerShell or CMD.
• On Apple OSX systems Terminal.

8. Run the following command:

npm install -g customvis.tgz

On UNIX and Apple OSX systems, you might get a permission denied error. To solve this error, run the
following command as an administrator:

sudo npm install -g customvis.tgz

The custom visualizations CLI tools are installed on your system.
9. After the process is completed, run the following command to validate the custom visualizations CLI

tools.

customvis --help

The CLI displays the available commands.
10. In your file browser, delete the file customvis.tgz.

Uninstalling the custom visualizations CLI tools
If you do not need the IBM Cognos Analytics custom visualizations CLI tools any longer, you can uninstall
them.

Procedure
To uninstall the custom visualizations CLI tools and its dependencies, run the following command.

npm uninstall -g @businessanalytics/customvis

Creating a custom visualization
Before you can implement a custom visualization, you must create a custom visualization.

About this task
The customvis create command generates a new custom visualization from a default template. However,
you can specify a specific template on which the new custom visualization is based on. For more
information, see the “Create” on page 9 command.

Procedure
1. Open a command-line interface (CLI) in one of your chosen directories and run the following

command:

customvis create CustomVisualization

• A directory with the name CustomVisualization is created.
• You can choose another name instead of CustomVisualization. For example, Marimekko, which

creates a new directory called Marimekko.
2. In the CLI change the directory, by running:

4 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

cd CustomVisualization

3. When you develop a custom visualization, the custom visualizations CLI tools build the sources. The
sources for the bundle are located in the /renderer directory.

4. You can now start implementing the visualization.

Using a D3 sample in your custom visualization
You use a D3 sample in this step-by-step guide. For more information, see Collision Detection at https://
bl.ocks.org/mbostock/3231298/.

About this task
The example does not support data binding, extra interactivity, and so on. Further information
on implementing extra custom visualization capabilities can be found in the API development
documentation. Further implementation must be done by a developer with JavaScript & D3 skills.

Procedure
1. Open the renderer/Main.ts file in a code editor.
2. The Main.ts file is the entry point of the visualization and runs always first. The content of the
Main.ts file is:

import { RenderBase } from "@businessanalytics/customvis-lib";

export default class extends RenderBase
{
 protected create(_node: HTMLElement): HTMLElement
 {
 _node.textContent = "Basic VizBundle";
 return _node;
 }
};

Note: This code is written in TypeScript, which is a super-set of JavaScript. However, for some code
areas you can also use JavaScript. This usage is demonstrated in this step-by-step guide.

3. Open a command-line interface (CLI) in the directory that was made in “Creating a custom
visualization” on page 4 and run the following command:

customvis start

This command builds the sources and starts a local server that hosts the custom visualization.
Additionally, the custom visualizations CLI tools start monitoring the source files and rebuild the
custom visualization when its source code changes. It is recommended to have this command running
during development of the visualization.

To stop the local server that hosts the custom visualization, press Ctrl C.
4. Edit the Main.ts file in such a way that the D3 example can be used in IBM Cognos Analytics.

a) Determine what version of D3 is used in the online example. The version can be found by searching
d3 in the script tag of the example. The online example uses d3.v3. Import this dependency in
the Main.ts file by adding the following to the top of the file:

import * as d3 from "https://d3js.org/d3.v3.min.js";

b) Replace

_node.textContent = "Basic VizBundle";

with the content in the script tag of the example:

{content of the script tag of the example}

Chapter 2. Step by step guide 5

https://bl.ocks.org/mbostock/3231298/

c) Ensure that the rendering happens in the container of the widget. Replace

d3.select("body").append("svg")

with

d3.select(_node).append("svg")

5. Save the file. If everything works correctly, the CLI displays that the sources finished building.

Results
You can now validate the custom visualization in Cognos Analytics.

Validating the visualization in a dashboard
You should use the Google Chrome browser when you develop a custom visualization locally. However,
Mozilla Firefox, Microsoft Internet Explorer 11, and Edge are also supported.

Before you begin
Note: The Apple Safari browser is not supported for local custom visualization development.

When you validate the visualization, your browser connects to your custom visualization that runs locally.
Some browsers can treat this connection as a security threat. Microsoft Internet Explorer 11 might
display a pop-up message that only secure content is displayed. For the visualization to load you must
allow that all content is shown.

To disable the message in Internet Explorer, add http://127.0.0.1 to the trusted sites in the internet
security options. Make sure the trusted sites display mixed content.

About this task
After the visualization is uploaded to IBM Cognos Analytics, any supported browser can be used to run the
uploaded custom visualization.

Procedure
1. Create a dashboard in Cognos Analytics.
2. Click the Visualization tab and then click the Custom tab.
3. Under Developers widgets double-click Test visualization.
4. To see these changes in the Page preview view, click Refresh visualization .

Results
Cognos Analytics displays the D3 visualization.

Validating the visualization in a report
It is recommended to use the Google Chrome browser when you develop a custom visualization locally.
However, Mozilla Firefox, Microsoft Internet Explorer 11, and Edge are also supported.

Before you begin
Note: The Apple Safari browser is not supported for local custom visualization development.

When you validate the visualization, your browser connects to your custom visualization that runs locally.
Some browsers might treat the connection as a security threat. Microsoft Internet Explorer 11 may
display a pop-up message that Only secure content is displayed. For the visualization to load, allow that
all content is shown.

6 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

To disable the message in Internet Explorer, add http://127.0.0.1 to the trusted sites in the internet
security options. Make sure the trusted sites display mixed content.

About this task
After the visualization was uploaded to IBM Cognos Analytics, any supported browser can be used to run
the uploaded custom visualization.

Procedure
1. Create a report in Cognos Analytics. Make sure that you are in Page preview mode.
2. Under Insertable objects, click the Toolbox icon .
3. Expand the Advanced menu and double-click Custom visual preview.

The custom visualization is loaded.
4. The custom visualizations CLI tools monitors the source files and rebuilds the custom visualization

when its source code changes. To see these changes in the Page preview view, click Refresh
visualization .

5. Run your report as HTML by clicking Play and then Run HTML.

Results
Cognos Analytics displays the D3 visualization.

Package and deploy the custom visualization
When the custom visualization is ready to be published, you can use the custom visualization command-
line interface (CLI) tools to build and pack the visualization. You can upload the packed visualization to
IBM Cognos Analytics.

Packaging the custom visualization
Before you can deploy the custom visualization, you must package it.

Procedure
1. Open a command-line interface (CLI) where the custom visualization is located, created in “Creating

a custom visualization” on page 4. Make sure that in the CLI you browse to the directory where the
custom visualization is located.

2. Run the following command in the command-line interface:

customvis pack

The custom visualization is built and packed into a .zip file.

Results
A .zip file is generated in the current directory: {directoryName}.packed.zip. For example:
CustomVisualization.packed.zip.

If you have the Manage Visualizations capability, you can upload the packaged.zip file to IBM Cognos
Analytics.

If you do not the Manage Visualizations capability, you can send the file to someone who has the
Manage Visualizations capability. If you want to run the custom visualization locally, then extract the
packaged.zip file and run the customvis start command from a CLI in the extracted folder.

Chapter 2. Step by step guide 7

Uploading custom visualizations from the admin UI
Before you can use the custom visualization in a dashboard or report, you must upload it.

Procedure
1. On the home page, click Manage > Customization > Custom visuals > Upload custom visual

.
2. Select the CustomVisualization.packed.zip file and click Open.

Results
The custom visualization is added to the list of visualizations. Optionally you can set the permissions on
the visualizations.

Using the uploaded visualization in a dashboard
You can use a custom visualization in an IBM Cognos Analytics dashboard.

Procedure
1. Create a dashboard in Cognos Analytics.
2. Click the Visualization tab > Custom.

Results
The uploaded custom visualization is selectable from the list of Custom visuals.

Using the uploaded visualization in a report
You can use a custom visualization in a IBM Cognos Analytics report.

Procedure
1. Create a report in Cognos Analytics.
2. Create a visualization.

Results
The uploaded custom visualization is selectable from the Custom section.

How local custom visualizations work
Using the provided custom visualization command-line (CLI) tools, a local server is started on the
customvis start command.

This local server hosts files that are generated by the CLI tools in the build directory. You can access
these files over the local network by the browser. IBM Cognos Analytics Reporting & Dashboard includes
sandbox widgets that connect to this local server (127.0.0.1) and access the generated files. If these files
exist, then these files run in the corresponding widget as a visualization.

8 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Chapter 3. Custom visualizations tools and
commands

Custom visualizations tools and commands
With IBM Cognos Analytics custom visualizations tools you can create, compile, run, clean, and pack
visualizations from a command-line interface (CLI).

In addition to compiling a visualization, you can use the custom visualizations to host a custom
visualization locally to test the visualization in Cognos Analytics before you deploy it.

You use the Cognos Analytics custom visualization tools from commands in a command-line interface
(CLI). You run these commands from Microsoft Windows PowerShell or CMD on Windows or from Terminal
on Apple OSX.

For installation of the Cognos Analytics custom visualization tools, see “Setting up the development
environment” on page 3.

Help
Prints a help dialogue of all available commands and any additional options that can be used.

customvis --help

or

customvis

Create
Creates a visualization within a folder called name.

customvis create [options] <name>

or

customvis c [options] <name>

Options:

• -t, --template <template> Creates a project from template (default: Basic). This flag
determines the initial template that the visualization is generated from. To list all available templates,
see the List command.

customvis c -t BarChart <name>

• -f, --force Forces folder creation with name. Note: If you specify an existing name for the folder, the
existing folder is deleted .

customvis c -f <name>

• -h, --help Output usage information

© Copyright IBM Corp. 2019, 2021 9

List
Lists all the available templates that can be used for a new custom visualization during the Create
command.

customvis list

or

customvis l

Start
Builds and starts a local server that hosts the current visualization.

• The CLI tool builds the sources.
• A local server starts to host the custom visualization.

customvis start [options]

or

customvis s [options]

Options:

• -p, --port

Starts a server on a specific port (default 8585).

customvis start -p 8585

• -h, --help

Output usage information

customvis start -h

Pack
Creates a package of the visualization in the current root directory, <folder-name>.packed.zip. You
can upload this .zip file to Cognos Analytics.

customvis pack

or

customvis p

Build
Builds and compiles the visualization in the current directory. Use this to test the deployment version
locally.

customvis build

or

customvis b

10 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Clean
Cleans the current visualization and removes all the files that are generated by the command-line tool.
Use this when you need to share a development version of the visualization.

customvis clean

or

customvis cl

Upgrade
Upgrades the customvis-lib in the current visualization. Replaces the customvis-lib dependency with the
latest one in the current CLI tool. Also triggers the Clean command.

customvis upgrade

or

customvis up

Info
Get information about the CLI tool and the current visualization. Shows the Cognos Analytics extensible
information about the CLI tool and the current visualization.

customvis info

or

customvis i

Version
Shows the current Cognos Analytics custom visualization CLI tool version.

customvis --version

or

customvis -V

Chapter 3. Custom visualizations tools and commands 11

12 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Chapter 4. Customvis library

Custom visualizations library (customvis-lib)
The customvis-lib library is designed to help developers build visualizations quickly by providing
documented utility classes and interfaces. This document is intended for developers.

Features that are offered by customvis-lib include:

• A managed “Rendering” on page 13 cycle
• A unified “Data model” on page 16
• Automatic or custom “Hit testing” on page 18
• Automatic “Legends” on page 20
• “Properties” on page 21 support
• “Palettes” on page 23 support
• “Customizing your visualization” on page 25

At the core of customvis-lib, is the “RenderBase” on page 26 class. The RenderBase class is the base
class that you can use for every custom visualization. This base class gives you access to all of the
features in customvis-lib.

Installation
The library is available as a file called customvis-lib-x.y.z.tgz where x.y.z is the version of the
library. When you create a new visualization that uses the SDK command customvis create, the customvis
library is copied to the root directory of your new visualization.

Step-by-step visualization
Learn how to build a custom visualization that uses customvis-lib and d3 by following the “Custom
visualizations - tutorial” on page 37.

API Reference
Check out the API reference for detailed information about all the classes and methods that are found in
customvis-lib.

Rendering
Rendering makes sure that your data is transformed to pixels that eventually display on your screen.

The result of rendering can be a Document Object Model (DOM) structure, a scalable vector graphic (svg),
or pixels on a canvas, depending on which output technology you choose. All code samples use svg
rendering in d3. However, in your custom visualization you can choose any other way of rendering.

Within customvis-lib, you must implement a create phase and an update phase:

• The create phase is run exactly once, when the visualization gets initialized.
• The update phase is run each time an aspect of the visualization changes, like the size, data or

properties of the visualization.

Implementing these phases is optional. The RenderBase base class provides a default implementation
for you.

© Copyright IBM Corp. 2019, 2021 13

https://ibm.github.io/ca_customvis/docs/11.1.x/

Create
The create phase is run when the visualization gets initialized. You can implement this phase by overriding
the “create()” on page 26 method of RenderBase. In this method, you receive the DOM node of the
container element for your visualization. You don’t must override create if your visualization does not
have initialization code. However, if you do, you can add more DOM or svg nodes to your container and
optionally return an Element as the new root node of your visualization. An example:

protected create(_node: HTMLElement): void
{
 // Append an svg node that scales to the size of its container.
 d3.select(_node).append("svg")
 .attr("width", "100%")
 .attr("height", "100%");
 // No return value means _node will be the root of our visualization.
}

protected update(_info: UpdateInfo): void
{
 // _info.node will be the same '_node' that was passed to 'create'.
}

If your initialization requires asynchronous calls, you can return a Promise object that resolves with
either an Element or void.

protected create(_node: HTMLElement): void
{
 return new Promise(resolve =>
 {
 // doInit performs async initialization.
 doInit(function cb()
 {
 // Init is done, resolve the Promise. Optionally you can
 // resolve with an `Element` that will become the root
 // node of your visualization.
 resolve();
 });
 });
}

Update
The update phase gets called each time something changes in the size, properties, or data of the
visualization. You can implement the update phase by overriding the “update()” on page 27 method
of RenderBase.

Render completion
The implementation of update in its most basic form is the following code:

protected update(_info: UpdateInfo): void
{
 _info.node.textContent = "Hello World: " + Date.now().toString();
}

There is no return value, which means that the rendering completed at the end of the update function.

Each visualization has the responsibility to notify its host when it completed rendering in the update
phase. Notification is done through the return type: returning void implies that rendering is done when
the update function ends and returning a Promise means that the host should wait for that promise to
be fulfilled.

If you want your visualization to show animations or transitions, this is often an asynchronous process.
Therefore, the update function can return a Promise object that resolves as soon as the transition of the
visualization completed. An example illustrates this:

protected update(info: UpdateInfo): Promise<void>
{

14 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

 const t = d3.transition().duration(300);

 d3.select(_info.node)
 .selectAll("rect")
 .data(_info.data.rows)
 .join("rect")
 .attr("x", d => scale(d.tuple(0).key))
 .attr("width", d => scale.bandwidth())
 .transition(t) // bind to our transition
 .attr("height", d => d.values(0));

 return new Promise(resolve => t.on("end", () => resolve()));
}

In the RenderBase base class, you can see that the update method has the return signature void
| Promise<void>. However, in your override you can be more explicit and define either void or
Promise<void> as the return type.

If for some reason, you want the host application to know that rendering failed, you can either return a
rejected promise or produces a new Error("msg").

UpdateInfo
The one parameter that is passed to update is an object of type UpdateInfo. You can see this object as
the state that you are about to render. The UpdateInfo class holds the following information:

• reason: The reason why rendering should take place. Check the flags in this object to see which
aspects of the visualization need rendering. Available flags are:

– data: data is changed since last call to update.
– size: size is changed since last call to update.
– properties: properties are changed since last call to update.
– decorations: decorations (selected, highlighted) are changed since last call to update.

• data: The data that should be rendered, or null if there is no data. If there is no data to render, it is the
responsibility of the visualization to ensure that the visualization is cleared and rendered in an empty
state.

• node: The HTML element on which rendering should take place. This is the element that was returned
previously from the RenderBase.create method.

• properties: The current set of properties. Properties can also be accessed through the
RenderBase.properties attribute.

• locale: The data locale that should be used for rendering. Do not use for translations, only for custom
data formatting where that is necessary.

The following example shows how you can use the fields of UpdateInfo to provide an optimized
implementation of update:

protected update(_info: UpdateInfo): void
{
 const reason = _info.reason;

 if (!_info.data)
 return renderEmpty(_info.node);

 // Call expensive data processing function only if data has changed.
 if (reason.data)
 this.data = processData(_info.data);

 // Perform rendering, based on `this.data` ...
}

Chapter 4. Customvis library 15

Data model
Custom visualizations are based on a tabular data model.

Data is organized in rows and columns, where every row corresponds with a data point and every
column corresponds with a slot in your visualization definition. For more information, see “Visualization
definition” on page 33. Data is passed to the visualization in the update method, in which it can be used
to bind to the elements that make up the visualization. Objects in the data model are also used in hit
testing functions to inform a hosting application which data point or tuple was hit at a specific coordinate.

Slots
A slot is the entry point for data that goes into a visualization. For instance, a column visualization might
have two slots: one slot that represents the categorical elements that go on the x-axis and one slot that
represents the data values that determine the height of a column.

A slot can be defined in the vizdef.xml file, as either categorical or continuous:

• The data elements that are found in categorical slots are tuples. For instance, in the column chart above
the categories slot might hold the tuples [‘summer’, ‘winter’, ‘spring’, ‘autumn’]. You might see this list
of tuples as the categorical domain of the slot. In a code example further on, you can see that you use
the tuples as a domain in a d3 scale object.

• A continuous slot holds data elements that represent values. Instead of a list of tuples, you can retrieve
a value domain for this type of slot. A value domain is a minimum value and a maximum value. The
domain in the values slot of the column chart example might be something like: [25.4, 136.4].

<slotname="categories"type="cat"optional="true"/><slotname="values"type="cont"optional="false"/>

Slots can be either mapped or not mapped. If a slot is mapped, then some data was assigned to that
slot. If a slot is not mapped, then the slot is not associated with data and its tuples attribute are [] and
domain are [0, 0].

If a slot is optional, it means that you can, but do not need to associate data with that slot. The
visualization is responsible for handling this situation correctly. For example, in a column chart the series
slot might be optional. If it is not completed, the visualization can render a simple bar chart with only
categories and values. If it is completed, a clustered bar chart can be rendered.

Tuples and domains
Every column in your data corresponds with a slot in your visualization. Slots can be either categorical
or continuous. This means that a data column can hold either tuples (for categorical slots) or values (for
continuous slots).

The following example shows how you can retrieve the tuples and the value domain for a data set and use
them in a d3 scale:

protected update(_info: UpdateInfo): void
{
 const data = _info.data;
 const width = _info.node.clientWidth;
 const height = _info.node.clientHeight;

 // Create a list of tuple keys for categorical column 0 and use it
 // to create a band scale that maps the keys to an axis length.
 const keys = data.cols[0].tuples.map(_t => _t.key);
 const scaleX = d3.scaleBand().range([0, width]).domain(keys);

 // Column 1 has values, so take the domain and use it to create a
 // linear scale that maps the domain to an axis length.
 const domain = data.cols[1].domain.asArray();
 const scaleY = d3.scaleLinear().range([0, height]).domain(domain);

 // ...styling is omitted from this sample...
 d3.select("svg").selectAll("rect")
 .data(_info.data.rows)
 .join("rect")

16 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

 .attr("x", d => scaleX(d.tuple(0).key))
 .attr("width", scaleX.bandwidth())
 .attr("height", d => scaleY(d.value(1)));
}

The example uses the key of every tuple as the unique domain value. In the data accessor function, d
=> scaleX(d.tuple(0).key) this key is used to determine the location of the data point on the
x-scale.

The ISlot interface makes no difference between a categorical and a continuous slot. If the slot is
continuous, the list of tuples is []. If the slot is categorical, the domain is empty (0, 0).

Data points
Each row in the data set is represented by a data point object. A data point references tuples (one
for every categorical slot) and values (one for every continuous slot). If like in the previous example,
bind data points to your d3 elements, you can use an accessor function to retrieve the tuple and value
information for each data point.

The following example binds each row to a text element and uses an accessor function to retrieve the
caption of column 0 as text content. If column 0 is a categorical column, the tuple caption is used. If
column 0 is a continuous column, the formatted value is used.

d3.select("svg").selectAll("text")
 .data(_info.data.rows)
 .join("text")
 .text(d => d.caption(0))

Decorations
Each data point and tuple can to get decorated. A decoration is an attribute that holds some meta
information about the data point or tuple. Currently, two decoration types are supported: selected and
highlighted (both booleans). If a data point is marked as selected, the visualization might want to
render the data point slightly different, for instance by using a brighter color.

d3.select("svg").selectAll("rect")
 .data(_info.data.rows)
 .join("rect")
 .attr("x", d => scaleX(d.tuple(0).key))
 .attr("width", scaleX.bandwidth())
 .attr("height", d => scaleY(d.value(1)))
 // Selected data points are rendered in the color red.
 .attr("color", d => d.selected ? "red" : "steelblue");

Alternatively, if the visualization has a palette property, you can use the getFillColor function of the
palette determine the correct color for an element. For example:

<!-- vizdef.xml -->
<properties>
 <!-- Categorical palette property -->
 <palette name="color" type="cat" />
</properties>

protected update(_info: UpdateInfo): void
{
 // ...
 const palette = _info.props.get("color");
 d3.select("svg").selectAll("rect")
 .data(_info.data.rows)
 .join("rect")
 .attr("x", d => scaleX(d.tuple(0).key))
 .attr("width", scaleX.bandwidth())
 .attr("height", d => scaleY(d.value(1)))
 .attr("color", d => palette.getFillColor(d));
}

Chapter 4. Customvis library 17

If the palette is bound to a slot, then the color is based on the color of the tuple for that slot. If the palette
is not bound to a slot, then the default palette color is used. The getFillColor method adjusts the color
based on the selection of this and other data points.

There is also a getOutlineColor method on a palette that allows you to retrieve a color that can be
used for drawing the outline of an element based on the highlight decoration.

The getFillColor and getOutlineColor are available on all palette types and on the ContStops
object that is retrieved from a ContPalette. For more information, see “Palettes” on page 23.

Handling null data
The update function in your visualization gets a data object passed as part of the UpdateInfo object.
However, this data object can be null. This indicates that the visualization is responsible for clearing all
data and show the visualization in an initial state.

protected update(_info: UpdateInfo): void
{
 if (_info.data === null)
 return this.clearVisualization(_info);

 // Perform rendering here...
}

Interactivity
Custom visualizations can use the interactivity capabilities of the hosting application.

Interactivity in this context means:

• Tooltip: Provide additional information when you hover over a data element.
• Selections: Apply an alternative style to data elements that are tagged as selected.
• Highlights: Highlight data elements that are under your mouse cursor.

Many of the interactivity functions can be implemented with little or no coding. If your visualization is
based on d3, then RenderBase already has a default hitTest implementation that can be configured to
return the correct data.

For selections and highlights, palettes have a getFillColor and getOutlineColor method that help
you bind the right color to your visual elements.

Hit testing
Hit testing is the process of returning a data element based on a screen coordinate. The hosting
application is responsible for calling the hitTest method when needed, and the visualization is
responsible for returning the correct data element based on the specified coordinate.

The hitTest function can be called often (for example on every mouse move), so it is important to make
sure that your function runs well.

The following example defines a class MyData that stores a reference to the visualization data and is
bound to svg elements on the screen through the mydata field.

class MyData
{
 public DataPoint dp;
 // Other MyData members...
}

protected hitTest(_elem: Element | null, _client: Point, _viewport: Point): DataPoint | null
{
 if (!_elem || !_elem.hasOwnProperty("mydata"))
 return null; // no element or element has no data
 return _elem.mydata.dp;
}

18 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

If your visualization is based on d3 and you bound your visualization data to the d3 model, then the
default RenderBase hitTest function will already run everything for you:

protected update(_info: UpdateInfo)
{
 // Render a square for every data point.
 d3.select("svg").selectAll("rect")
 .data(_info.data.rows) // bind data
 .join("rect") // create / update 'rect' elements
 .attr("x", d => scaleX(d.value(X)))
 .attr("y", d => scaleY(d.value(Y)))
 .attr("width", d => scaleSize(d.value(SIZE)))
 .attr("height", d => scaleSize(d.value(SIZE)));
}

// No hitTest override needed because RenderBase is able to figure out how
// d3 has bound the data to 'rect' elements.

Some d3 visualizations encapsulate your DataPoint or Tuple in another object. In that case, you need to
override hitTest to return the data object:

protected hitTest(_elem: Element | null): DataPoint | null
{
 const elem = d3.select<Element, any>(_elem);
 const data = elem.empty() ? null : elem.datum();
 return data && data.dp;
}

Tooltips
Tooltips are provided for you by the hosting application. To show a tooltip, the host first needs to find out
which data element is rendered on a certain screen location. It uses the hitTest function to get this
information. After that, it is up to the host to show the tooltip with the correct data and styling.

Once you implemented the hitTest function in RenderBase, or rely on the default implementation, you
basically get tooltips for free. There is no need to write your own mouse handlers and pop ups to show
tooltips. This means that your visualization has tooltips that are consistent with the host application.

Selection & highlighting
A user of the custom visualization can often click a data element to select it, or hover with the mouse
cursor over it to highlight it. This selection and highlighting mechanism is implemented by the host and
also relies on the hitTest method. After the host application determined the data elements that need to
be selected or highlighted, the data elements are decorated with selected and / or highlighted flags and
the update function of the visualization will be called. It is the responsibility of the update function to do
apply the selected and highlighted flags to the rendered output.

To make visualizations that behave consistently with other visualizations in the hosting application, a
palette property has a method with which you can retrieve the selection or highlight style of an element
based on its selected and highlighted flags. In code, this might look as follows:

{
 d3.select("svg").selectAll("rect")
 .data(_info.data.rows)
 .join("rect")
 .attr("x", d => scaleX(d.value(X)))
 .attr("y", d => scaleY(d.value(Y)))
 .attr("width", d => scaleSize(d.value(SIZE)))
 .attr("height", d => scaleSize(d.value(SIZE)))
 // Apply selection and highlight styling to the rect.
 .attr("fill", d => palette.getFillColor(d))
 .attr("stroke", d => palette.getOutlineColor(d));
}

Chapter 4. Customvis library 19

Legends
The legend of a visualization can be used to show the user how various channels like color and size are
used to represent data.

For example, a grouped bar visualization might want to show the group labels on the x-axis while it shows
the colors and data labels of the individual group elements in a legend. Another example is a bubble
visualization, where a legend can be used to show the size-range or color-range of the bubbles.

Legends are rendered outside your custom visualization. For a legend to render the correct information,
the visualization needs to provide a data structure that tells the legend what it shows. This data structure
is generated automatically depending on the channel information that is found in the slots of the
“Visualization definition” on page 33.

Categorical legends
A categorical legend shows a list of swatches that each represent a tuple from your data set. Each swatch
can have a colored shape and has a caption. The list of swatches is based on the list of tuples on the slot
that is represented by the legend.

The legend can also have a title, as shown in the season example. The title if often derived from the data
item that the legend represents.

Continuous legends
A continuous legend shows the range of a value. The range can be expressed as a size range or a color
range. The channel property of a slot is used to distinguish between the two.

The images above shows a color legend and a size legend. The title of these legends is, like the
categorical legend, which is derived from the data item that the legend represents.

Enabling legends
In general the only thing, you need to do as a bundle developer is provide the “Visualization definition”
on page 33 of your visualization. The Vizdef.xml file needs a few entries that allow RenderBase to
determine if and how a legend should be created. If your “Visualization definition” on page 33 has
the required entries, then RenderBase creates the right data structures and passes them to the host
application.

Legends are tied to the slot entries in your “Visualization definition” on page 33. Each slot in the vizdef
has an optional attribute called channel. The channel determines the encoding type of a legend and can
have the values color and size. The color type can be used for both categorical (colored swatches) and
continuous legends (color range). The size type is used for continuous legends only (size range). If a slot
has one of the known channel types, a legend for that slot is rendered.

<slot name="series" type="cat" channel="color" />
<slot name="values" type="cont" channel="size,color" />

For slots with the color channel, you define a palette property. This allows the host application to assign a
custom color scheme to the visualization and legend items. If no palette is available for the slot, then no
legend is rendered for that slot.

20 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Note: In the following example, the palette does not have an explicit type attribute. If the palette is
linked to a slot, the palette type is determined by the type of linked slot.

<slots>
 <slot name="categories" type="cat" />
 <!-- Series tuples will appear as color swatches in legend -->
 <slot name="series" type="cat" channel="color" />

 <!-- Values will appear both as size and color range in legend -->
 <slot name="values" type="cont" channel="size,color" />
</slots>

<properties>
 <!-- Categorical palette linked to 'series' slot -->
 <palette name="series_colors" slot="series" />
 <!-- Continuous palette linked to 'values' slot -->
 <palette name="values_colors" slot="values" />
</properties>

Modifying legends
In some specific situations, you want to change the information that is rendered in a legend. For example,
you might decide that based on a certain condition a legend might be visible or invisible. RenderBase has
a method that is called updateLegend that can be overridden to provide such behavior. You can either
modify the automatically created legend, or provide a new one.

protected updateLegend(_data: DataSet) : Encoding[]
{
 // Only show legend for 'heat' or 'categories', not both.
 const filterSlot = _data.cols[HEAT].mapped ? "heat" : "categories";

 // Only show a legend that matches `filterSlot`.
 return super.updateLegend(_data).filter(_e => _e.slot === filterSlot);
}

The following example shows how to have the items in a categorical legend in reverse order and the
legend title in uppercase:

public updateLegend(_data: DataSet) : Encoding[]
{
 // Create default legend information.
 const legend = super.updateLegend(_data);

 // If legend is categorical, make caption upper case and reverse items.
 legend.forEach(_e =>
 {
 if (_e instanceof CatEncoding)
 {
 _e.caption = _e.caption.toUpperCase();
 _e.entries.reverse();
 }
 });
 return legend;
}

The API for creating and modifying legend needs the following import:

import { Encoding, CatEncoding, ContEncoding } from "@businessanalytics/customvis-lib";

Properties
A visualization can display one or more properties to allow the user of the visualization to control certain
aspect of the visualization.

The “Visualization definition” on page 33 holds the property definitions for a visualization. Reading
property values and active state can be done through the properties attribute of Renderbase.

Chapter 4. Customvis library 21

Property locking
During rendering, all properties can be considered in a locked state. This means that the host application
can still modify property values, but these new values will not be available to the visualization until the
next render operation. This ensures that in your visualization you can rely on a property value during for
instance a long running animation.

If the visualization needs to have synchronous access to properties, use properties.peek. This returns
the value of the property that was set by a hosting application without caring about locking.

Another way to get synchronous access to a property value is to override the “updateProperty” on page
27 method. This method is called directly when the property value changes and no locking is applied.
A visualization typically uses the updateProperty method only if it wants to update the active state of
properties based on the value of other properties.

Property values
Each property has a value that is based on one of the predefined property types:

• number
• string
• boolean
• font
• color
• palette
• length

A RenderBase subclass can access the properties either through this.properties or through the
UpdateInfo object that is passed in the “updateProperty” on page 27 method.

If you want to retrieve the value of a property, you can call the get method on the properties object.
The get function returns the property value as either a native type (for number, string and boolean) or an
object (for color, font, length, and palette).

javascript
var ticks = this.properties.get("numTicks");
assert(typeof ticks === "number");

var title = this.properties.get("title");
assert(typeof title === "string");

var color = this.properties.get("backgroundColor");
assert(typeof color = "string");

Dirty properties
When a hosting application changes the value of a property, then that property becomes dirty. The
property will remain dirty until after the next render operation. This gives a visualization the opportunity
to process dirty properties during update. The dirty state of a property can be retrieved by calling
properties.getDirty(). In some cases, rendering performance can be optimized by only processing
properties that changed since the last update operation.

Active & inactive properties
A property can be marked as active or inactive. The active state of a property is an indication for a host
whether it should show the property in the UI as enabled or disabled.

The visualization can control the active state of a property through the properties.setActive()
method, or retrieve the active state of a property using properties.isActive(). Typically, properties
should be made active or disabled in the updateProperty method of Renderbase. This method is called

22 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

at initialization time of the visualization and each time a property changes its value. For more information
and a code sample, see “updateProperty” on page 27.

Property Groups
Properties can be organized in groups and subgroups. This allows the hosting application to show this
group organization in the UI. Any number of groups and subgroups is possible, but it is recommended to
stick with a limited grouping depth.

There are two built-in property groups that are called visualization and text. These groups have a
special meaning to the hosting application. If both these groups are available, then a set of automatically
generated legend properties, are added to these two groups. If either of these groups is not available,
then a new group that is called legend is generated and used for the automatically generated legend
properties.

The only party that is interested in property groups is the hosting application. Therefore, the RenderBase
implementation does not have access to property groups. The only thing the visualization developer does
is define the property groups in the “Visualization definition” on page 33.

Palettes
A palette is a special type of property that you can use to determine a color based on a tuple or a value.

Palettes come in two different types: categorical palettes and continuous palettes. A categorical palette is
used when you want to assign a distinct color to each tuple in a slot. A continuous palette is used if you
want to use a color to represent a numerical value.

Categorical palettes
A categorical palette lets you retrieve a color based on a tuple. You define a categorical palette for the
visualization in the “Visualization definition” on page 33:

<properties>
 <palette name="colors" type="cat" slot="series" />
</properties>

When you define a palette property in your vizdef.xml file, you can access the palette like any other
property:

protected update(_info: UpdateInfo): void
{
 // Retrieve the palette and cast to CatPalette.
 const palette = _info.props.get("colors") as CatPalette;

 // Get the series tuples from column 2 in the data set.
 const seriesTuples = _info.cols[2].tuples;

 // Retrieve a color for each tuple in the list.
 const colors = seriesTuples.map(_tuple => palette.getColor(_tuple));
}

A common example of using categorical palettes is when you want to set the color of an element that is
bound to data. For example, the following code shows all tuples of the series slot in a list and assigns a
different color to each element:

protected update(_info: UpdateInfo): void
{
 // Retrieve the tuples from slot 0. If the data was cleared, then
 // use an empty list to indicate there are no tuples.
 const tuples = _info.data ? _info.data.cols[0].tuples : [];

 // Create a scale based on visualization height and tuple keys.
 const scale = d3.scaleBand()
 .range([0, _info.node.clientHeight])
 .domain(tuples.map(_t => _t.key));

 const palette = _info.props.get("color") as CatPalette;

Chapter 4. Customvis library 23

 const svg = d3.select(_info.node);

 // For each tuple, create an svg text element and assign a color
 // from the palette.
 svg.selectAll("text").data(tuples, (t: any) => t.key)
 .join("text")
 .attr("y", t => scale(t.key))
 .attr("fill", t => palette.getFillColor(t))
 .text(t => t.caption);
}

Notice the use of getFillColor in the code above. The difference between getColor and
getFillColor is that the latter will look at the selected state of the tuple and adjust the color to make it
lighter if the tuple should appear as deselected. Since you are binding actual tuples to our text elements,
you get hit testing for free. This means that the user can click a tuple to select it and see the color of the
other tuples change automatically.

Continuous palettes
A continuous palette can return a color based on a numerical value. You define a palette for a visualization
in the “Visualization definition” on page 33:

<properties>
 <palette name="colors" type="cont" slot="values" />
</properties>

Retrieving colors from a continuous palette is a two-step process:

1. Get the ColorStops of the palette by providing a slot instance. The slot instance should match the
slot name that was specified in the vizdef.

2. On the ColorStops instance, call getColor passing a numerical value.

Both the ContPalette and the ColorStops class have a getFillColor and getOutlineColor
method that lets you retrieve a color based on a data point. This can be useful if your visualization needs
to render elements that should reflect the selection or highlight state of the data. An example of a scatter
chart visualization:

 protected create(_node: HTMLElement): void
 {
 // Create an svg node that resizes to the visualization.
 d3.select(_node).append("svg").attr("width", "100%").attr("height", "100%");
 }

 protected update(_info: UpdateInfo): void
 {
 const data = _info.data;

 // Determine the size of the visualization
 const width = _info.node.clientWidth;
 const height = _info.node.clientHeight;

 // Determine the value domain for x and y.
 const domainX = data ? data.cols[1].domain.asArray() : [0, 0];
 const domainY = data ? data.cols[2].domain.asArray() : [0, 0];

 // Create linear scales for positioning the data points.
 const scaleX = d3.scaleLinear().range([0, width]).domain(domainX);
 const scaleY = d3.scaleLinear().range([height, 0]).domain(domainY);

 const palette = _info.props.get("color") as ContPalette;

 // Render a circle with fixed radius for each data point.
 const svg = d3.select(_info.node).select("svg");
 svg.selectAll("circle").data(data ? data.rows : [])
 .join("circle")
 .attr("cx", d => scaleX(Number(d.value(1))))
 .attr("cy", d => scaleY(Number(d.value(2))))
 .attr("r", 12)
 .attr("stroke-width", 2)
 // Stroke and fill color are based on selected and highlighted state.
 .attr("stroke", d => palette.getOutlineColor(d))

24 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

 .attr("fill", d => palette.getFillColor(d));
 }

For completeness of the example, this is the vizdef.xml file that was used:

<?xml version="1.0" encoding="UTF-8"?>
<visualizationDefinition version="3.1" xmlns="http://www.ibm.com/xmlns/prod/ba/vipr/vizBundle/
vizdef.3">
 <slots>
 <slot name="categories" type="cat" optional="false" />
 <slot name="x" type="cont" optional="false" />
 <slot name="y" type="cont" optional="false" />
 <slot name="color" type="cont" optional="true" channel="color" />
 </slots>

 <dataSets>
 <dataSet name="data">
 <ref slot="categories" />
 <ref slot="x" />
 <ref slot="y" />
 <ref slot="color" />
 </dataSet>
 </dataSets>

 <properties>
 <group name="general">
 <palette name="color" type="cont" slot="color" />
 </group>
 </properties>

 <capabilities>
 <decorations>
 <decoration name="selected" type="boolean" target="datapoint, tuple" />
 <decoration name="hasSelection" type="boolean" target="dataset" />
 <decoration name="highlighted" type="boolean" target="datapoint, tuple" />
 </decorations>
 </capabilities>
</visualizationDefinition>

Palettes and slots
In the above examples, the palette definition in the vizdef.xml file was always linked to a slot. This
allows the palette to determine the color of a data point and it allows RenderBase to generate a legend for
that slot based on the palette.

In some situations, you don’t know in advance to which slot a palette are linked. For instance, if you have
two categorical slots and the palette might be linked to one of the two slots. In that case, you can omit the
slot attribute in the palette definition and override the RenderBase.getSlotForPalette method.
This method takes a palette name and returns its corresponding slot name that you want the palette to
be linked to. The method is called only for palettes that have no slot that is associated with them. An
example:

protected getSlotForPalette(_data: DataSet, _palette: string): string
{
 // Link the 'catColors' palette to the series slot if that slot is
 // mapped. Otherwise link it to the categories slot.
 if (palette === "catColors")
 return _data.cols[SERIES].mapped ? "series" : "categories";
 return null;
}

Customizing your visualization
RenderBase offers a number of customizable aspects of a visualization.

For example, if your visualization has a certain limit on the number of data points it supports, you can
set the RenderBase.meta.dataLimit variable to that limit. The meta attribute is an instance of the
MetaInfo class. This class holds all aspects that you can customize.

Chapter 4. Customvis library 25

MetaInfo
The MetaInfo class holds the aspects of a visualization that you can customize. Typically, you set these
aspects during the initialization of the visualization (the createfunction):

protected create(_node: HTMLElement): void
{
 // Categorical legends should use a circle symbol.
 this.meta.legendShape = "circle";

 // Limit the categories slot to 250 elements.
 this.meta.slotLimits.set("categories", 250);

 // Limit the number of data points to 1000.
 this.meta.dataLimit = 1000;
}

Here is an overview of the supported aspects:

• legendShape - Defines the shape of elements in a categorical (swatch) legend. Possible values are
circle, rectangle, square, triangle, cross, donut, line, diamond, star, triangle-down,
triangle-up, triangle-left or triangle-right. It can also be null to indicate that the host
should use a default shape or the string none to indicate that no shape should be displayed.

• slotLimits - Slot limits define the number of supported tuples in a slot. It is implemented as a map
from slot name to limit value. If you don’t want to limit the slot, remove the slot name from the map or
set its value to -1.

• dataLimit - Defines the maximum number of data points the visualizations supports. Set to -1 to
indicate that there is no limit.

RenderBase
RenderBase is the base class for all custom visualization implementations.

It provides the visualization developer with some basic functionality like

• “Rendering” on page 26
• “Properties” on page 27
• “Hit testing” on page 28
• “nls” on page 28 resources
• “meta” on page 28 information

Each of these functions is described in more detail in the following sections.

Rendering
Rendering your visualization is done through the create and update methods of RenderBase. These
methods implement the initialization and update phase of a render cycle. For more information, see
“Rendering” on page 13. You can override these methods to provide your own render initialization and
updates. Overriding these methods is optional, if you do not override them, a default implementation is
provided in RenderBase.

create()
syntax:

create(_node: HTMLElement): Element | void | Promise<Element | void>

The create method is called exactly once, when the visualization is created. You basically put all your
initialization code here. Or you set up your drawing context (maybe an svg node with some fixed child
elements or groups). The return value becomes the root element of your visualization and is passed to you
in the update method. If you do not return a value from this function, or choose not to implement it at all,
then the passed _node becomes the root element for your visualization.

26 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

update()
syntax:

update(_info: UpdateInfo): void | Promise<void>

The update method is called each time that the visualization needs to be redrawn. Reasons for redrawing
the visualization are new data, modified properties, or a modified visualization size. A parameter holding
UpdateInfo is passed to the update method, allowing you to access the latest data, properties and a
set of flags that tell you the reason for the update call.

Properties
Your visualization will probably expose one or more properties that allow the user to control specific
behaviors of the visualization. RenderBase gives you access to these properties using the properties
attribute. In addition to retrieving property values, RenderBase also lets you monitor changes to
properties. This is useful if you need to activate or deactivate properties based on the values of other
properties. For instance, a bar chart might have a stacked and a stackPercent property. If stacked is
not set, then stackPercent might be disabled.

syntax:

properties: Properties

This attribute holds the properties that are available in the visualization. You can access the value
of a property by calling properties.get("propname"). Getting and setting the active state of a
property can be done by calling isActive and setActive on the properties attribute respectively. The
properties are also passed to you in the UpdateInfo object. For more information, see “update()” on
page 27.

updateProperty
syntax:

updateProperty(_name: string, _value: any): void

Called immediately if the host assigns a new value to a property. You can override this method to process
property changes. For instance, they can set the active state of properties based on the value of another
property.

protected updateProperty(_name: string, _value: any): void
{
 if (_name === "stacked")
 this.properties.setActive("stackedPercent", _value);
}

The updateProperty method is also called at initialization time for each property in the visualization.
You can set the correct initial active state for all properties.

If you want to access the value of a property in this method, use properties.peek instead of
properties.value. The former gives synchronous access to the property value meaning it is not
influenced by locking. For more information, see “Property locking” on page 22.

Localization
If your visualization needs to expose translated text or messages, then you can set up an nls directory
structure and add your text to the resources.js file in the root of the nls directories. You can create
sub directories and add translated resources.js files for each language you want to support. When
your visualization is loaded, your text resources are loaded and made available in your RenderBase
subclass through the nls attribute.

The RequireJS nls plugin is used internally to load and process nls files.

Chapter 4. Customvis library 27

nls
syntax:

nls(_name: string): string

Returns a translated string given a unique name.

protected update(_info: UpdateInfo): void
{
 if (_info.data === null)
 {
 _info.node.textContent = this.nls("no_data");
 return;
 }
}

Hit testing
Your visualization can provide custom hit testing functions, that allow the hosting application to show
tooltips, selections and highlights. A default hit testing function is already provided for you in RenderBase.
This function checks for the existence of d3 data binding and use that if available.

hitTest
syntax:

hitTest(_elem: Element | null, _client: Point, _viewport: Point): DataPoint | Tuple | null

Returns a data element based on an element and coordinate. The coordinate is passed both as client
point (relative to browser window) and viewport point (relative to visualization). You are supposed to
return a data object that was passed to you in the “update()” on page 27 method. For more information,
see “Interactivity” on page 18.

meta
syntax:

meta: MetaInfo

Currently, the following fields are available:

• legendShape - Defines the shape of elements in a categorical legend. The default value is null,
indicating that the host can determine a default shape.

• slotLimits - This is a map from slot name to a number of supported tuples in that slot. The
information in this map is passed to the host as an indication of how much data can be handled by
the visualization. Slots that are not in this map, or have a limit of -1, are not limited to a maximum
number of tuples.

• dataLimit - The maximum number of data points that the visualization supports, or -1 if there is no
limit.

28 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Chapter 5. Customvis API reference

Customvis api reference
An API reference for Customvis-lib classes and methods is available.

Check out the API reference for detailed information about all the classes and methods that are found in
customvis-lib.

© Copyright IBM Corp. 2019, 2021 29

https://ibm.github.io/ca_customvis/docs/11.1.x/

30 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Chapter 6. Customvis frequently asked question

FAQ custom visualizations
An FAQ for custom visualizations is available.

Check out the FAQ for frequently asked questions on custom visualizations.

© Copyright IBM Corp. 2019, 2021 31

https://github.com/IBM/ca_customvis/wiki/Customvis-FAQ

32 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Chapter 7. Visualization definition

Visualization definition
The VizDef is an XML file that contains the definition of the visualization that you are building.

The VizDef file tells a hosting application something about the visualization such as the way data is
organized and the properties of the visualization.

Every custom visualization that you create must have a vizdef.xml file in the root directory. If you
create a new visualization with customvis start, then an initial vizdef.xml is created for you.

Slots
Slots define the aspects in the visualization that can hold your data. For example, in a bar visualization
you might have two slots, one for the categorical tuples and one for values. A slot must at least have a
name (for internal reference) and a type (categorical or continuous). A typical slots definition might look
as follows:

<slots>
 <slot name="categories" caption="Categories" type="cat" optional="false" />
 <slot name="values" caption="Values" type="cont" optional="false" />
 <slot name="series" caption="Color" type="cat" optional="true" channel="color" />
</slots>

The name and type attributes are mandatory and hold the internal name and type of the slot.

The caption attribute contains the name that can be used in an application’s UI. You can either specify
a literal string here, or a reference to a localized string such as $nls.categories. For more information,
see “Localization” on page 35.

The optional attribute indicates whether the visualization is able to render anything meaningful without
any data mapped to that slot. For instance, in the previous example the series slot is marked optional.
This means that if the user does not map data into this slot, the visualization renders only one default
series.

Finally, the channel attribute indicates that the hosting application can use a specific encoding to
represent a legend for that slot. Possible values for channel are colorand size. For more information,
see “Legends” on page 20.

DataSets
A DataSet defines the collection of slots that form the edges of your data. Currently, only one data set is
supported by RenderBase, so your typical DataSets entry in VizDef.xml looks as follows:

<dataSets>
 <dataSet name="data">
 <ref slot="categories" />
 <ref slot="series" />
 <ref slot="values" />
 </dataSet>
</dataSets>

Each slot that you defined in the slots section must be listed in a data set.

Properties
A visualization can expose properties that allow the user of the visualization to control various aspects of
the behavior of the visualization. Each property is defined at least by a name and a type. Depending on the

© Copyright IBM Corp. 2019, 2021 33

property type, other attributes can be applied. A visualization can organize properties into logical groups.
It is up to the host application if it wants to show the property grouping in the UI. An example:

<properties>
 <group name="general">
 <!-- Boolean property with default value = true -->
 <boolean name="labels.visible" defaultValue="true" />
 <!-- Positive numeric value; allow null to indicate 'automatic' tick count -->
 <number name="ticks.count" minValue="0" allowNull="true" />
 <!-- String property; allow null to indicate 'automatic' title -->
 <string name="title.text" allowNull="true" />
 <!-- Font property; host receives a Font structure to change individual font aspects -->

 </group>
</properties>

Note: Using allowNull requires the visualization code to correctly handle the nullcase. Setting this flag
means that null becomes a valid value of the property. If allowNull is false, then the visualization
can assume that the value of the property will never be null and there is no need for valid checks in the
code.

The following attributes can be applied to a property:

• name: The name of the property. Used to refer to the property in the rendering service code.
• caption: The label that appears in the UI for the property. Can be a literal string, or a localization ID: a

string prefixed with $nls..
• defaultValue: The default value that a property gets when it is initialized. If the defaultValue is not
specified and allowNull is true, then the default value will be null.

• allowNull: Flag that indicates whether a host application is allowed to set a null value. Often used to
indicate automatic values. For example, for a scale.

• minValue: Only for number properties, defines the minimum allowed value.
• maxValue: Only for number properties, defines the maximum allowed value.
• slot: Only for palette properties, links a palette to a slot. The palette type and slot type must match.

If you omit the palette type, the slot type is taken.
• type: Only for palette properties, defines the type of the palette: cat or cont.

The following property types are available:

• string: Holds a textual value.
• number: Holds a numerical value. Minimum and maximum value can optionally be specified through the
minValue and maxValue attributes.

• boolean: Holds a Boolean value.
• enum: Holds a static list of values from which a user of the visualization can choose one. The list of

possible values can be specified in <possibleValue> elements. See the example code further down.
• color: Holds a color value. The defaultValue of a color can be a cascading stylesheet (css)

representation of a color, including named colors (‘red’, ‘green’).
• font: Holds a css font definition.
• palette: holds a palette reference. A palette is defined by a name and possibly a defaultValue. If no

defaultValue is specified, a built-in palette is assigned. Default values for a palette are defined by a
semi-color separated list of colors.

<!-- font property example -->

<!-- enum property example -->
<enum name="shape" caption="Shape">
 <possibleValue caption="Circle">circle</possibleValue>
 <possibleValue caption="Square">square</possibleValue>
</enum>

<!-- palette property example -->

34 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

<palette name="color" type="cat" defaultValue="red;green;blue" />
<palette name="range" type="cont" defaultValue="red 0%;green 50%;blue 100%" />

Capabilities
If your visualization must be able to respond to highlights and selections, then specify the following
section in your vizdef.xml file:

<capabilities>
 <decorations>
 <decoration name="selected" type="boolean" target="datapoint" />
 <decoration name="hasSelection" type="boolean" target="dataset" />
 <decoration name="highlighted" type="boolean" target="datapoint" />
 </decorations>
</capabilities>

This section tells the host application that data points can be selected and highlighted. If you do not want
your visualization to use the built-in support for highlighting and selection, then you can choose not to
include this section in your vizdef.xml file.

Localization
The vizdef.xml file holds information that a host application can use to render a user interface. For
example, the vizdef.xml file holds all properties that a visualization exposes and a host application can
read these properties and show them to the end in a properties panel.

To allow localization of property names and descriptions, a special notation was introduced that maps the
value of an attribute to an index of a resource table. For example, look at the following property definition:

<boolean name="labels.visible" caption="$nls.labels.visible" defaultValue="true" />

The caption is user-facing and can be localized. Instead of hardcoding a value in this attribute, use an ID:
$nls.labels.visible. A resource table is then used to look up this ID and find the actual caption in
the correct language.

The resource table that contains these localized strings is formatted according to the requirejs i18n.js
plug-in. For customvis to correctly find and process your localizations, you must have a file and folder
structure similar to the following example:

./nls/de/Resources.js

./nls/nl/Resources.js

./nls/Resources.js

This example contains a base, or root, language in ./nls and German and Dutch translations
in ./nls/de and ./nls/nl. The root Resources.js file looks as follows:

define(
{
 "root":
 {
 "labels.visible" : "Show Labels",
 "labels.font" : "Label Font"
 },
 "nl": true,
 "de": true
});

Each of the language-specific files has the following content:

define(
{
 "labels.visible" : "Toon Labels",
 "labels.font" : "Label Lettertype"
});

Chapter 7. Visualization definition 35

The resource entries found here are not limited to strings used in the VizDef. You can also include entries
that are used in your rendering code. For more information, see “Localization” on page 27.

For more information on REQUIREJS API, see the requirejs documentation.

36 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

https://requirejs.org/docs/api.html#i18n

Chapter 8. Tutorial

Custom visualizations - tutorial
In this tutorial you learn how to create a custom visualization, from scratch, using the customvis
command line interface (CLI) tool.

Before you start
1. Make sure that you have setup your development environment and installed the custom visualizations

CLI tools as explained in “Setting up the development environment” on page 3.
2. This tutorial assumes a basic knowledge about d3. It makes following the steps in this document much

easier and allows you to make your own modifications after you have completed the tutorial.
3. Basic knowledge about TypeScript is recommended since the samples in this tutorial are TypeScript

based.
4. There is API reference documentation available on all classes and functions in customvis-lib.

At the end of this tutorial you have created a visualization that looks as follows:

The visualization has three data slots and a customizable palette. In addition, the visualization supports
tooltips, selection, highlighting, and shows a product-based legend when used in IBM Cognos Analytics
dashboard or reporting.

© Copyright IBM Corp. 2019, 2021 37

https://ibm.github.io/ca_customvis/docs/11.1.x/

Part 1 will setup the data model and implement initialization and rendering code. At the end of this
part you will have a working, data bound, scatter visualization with support for highlights, selections and
tooltips.

Part 2 will be adding more properties to the visualization, like a point shape, title, and maximum values
for the x- and y axis. You will use different property types and see how to use the 'defaultValue' and
'allowNull' attributes of a property.

Part 3 will further improve the visualization by adapting the legend to the scatter symbols, setting the
active state of the title property based on the value of the showTitle property, and providing property
captions.

Part 4 is the last part of this tutorial. It shows how to define optional slots, change the legend order,
and provide localization. Localization allows you to provide translations in various languages for the user
interface elements, for example slot- and property captions, of your visualization.

At the end of each part there is a link to the source code used in that part. Every part builds upon the
previous one, so if you want to skip a part you can download the source code of the preceding part and
continue with that.

• Download the complete source code for the tutorial.

Part 1: Creating a custom visualization
In this first part, you will create a new visualization using one of the built-in templates and add a data
definition. You will also provide an initial implementation that renders an x-axis, y-axis and, scatter points
for each row in the provided data. At the end of this part you have a working sample of a (very basic)
scatter visualization.

Before you start
Make sure that you have setup your development environment and installed the custom visualizations CLI
tools as explained in “Setting up the development environment” on page 3.

Step 1: Creating the visualization
Open a command terminal, navigate to the directory where you create your visualizations, and create a
new visualization by running the following commands:

Line Code

1
2
3

customvis create MyScatter
cd MyScatter
customvis start

customvis create MyScatter
cd MyScatter
customvis start

The first command creates a template visualization in a new directory named MyScatter. The second
command takes you to that directory where the following files are created:

• package.json

This is where you can change the name and icon of the bundle as it appears in IBM Cognos Analytics.

 "meta": {
 "name": "Fred",
 "icon": "bundle.svg"

A name and icon are already filled in for you, but you can choose a different name or different icon file
format (.png, .jpg).

• vizdef.xml

38 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

https://ibm.github.io/ca_customvis/docs/tutorial/MyScatter-4.zip

“Visualization definition” on page 33 file describing aspects of your visualization like slots, data
organization, and external properties. In step 2 you will edit this file and add slots and properties
for the new visualization.

• externals.d.ts

If your visualization needs to reference external libraries, you can add them here. In this example
however you do not need to make changes to this file.

• customvis-lib.tgz

This file contains the APIs that you will use to develop your visualization, including a base class called
“RenderBase” on page 26 from which you will derive your visualization class.

• renderer/Main.ts

The main implementation file. The .ts extension tells you that this is a typescript file. In step 3 you will
start adding some code in this file.

The third and last command starts the visualization and makes it available for use in IBM Cognos
Analytics. The visualization does not have much functionality yet, so in the next steps you will start
making changes to vizdef.xml file and Main.ts file and add some features. All changes you make will
be picked up continuously by the CLI tool and compiled into a working visualization. More on that in step
4.

Note: After running customvis start you will see that a few extra files and folders are created.
This is build output, needed to run the visualization. If you want to start with a clean folder again, run
customvis clean. This will remove these generated files.

Step 2: Edit vizdef.xml
The two most important files for your visualization are vizdef.xml and Main.ts. In this step we will
focus on “Visualization definition” on page 33. The vizdef is a formal xml definition of the characteristics
of your visualization. This definition can be used by a host application to, for example, create a user
interface for managing properties, implement highlighting and selections, and perform efficient data
queries.

You start by editing the already created vizdef.xml in your text editor. You will see the following
contents:

<?xml version="1.0" encoding="UTF-8"?>
<visualizationDefinition version="3.1" xmlns="http://www.ibm.com/xmlns/prod/ba/vipr/vizBundle/
vizdef.3">
</visualizationDefinition>

For the scatter visualization, you will need to add slots, a data set, and capabilities.

Slots and data sets

The first thing to add is the slots and a dataSet that define the data used within the visualization. The
scatter visualization will have three slots:

• A categorical slot that holds a tuple for every point we are going to plot.
• A continuous slot that holds the value for the x-position of the point.
• A continuous slot that holds the value for the y-position of the point.

For more information about slots and data sets, see “Data model” on page 16.

In this example, all slots are considered mandatory. If there is no data for any of the slots, the
visualization will not render. Given these requirements, edit vizdef.xml so it looks as follows:

Chapter 8. Tutorial 39

Line Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

<?xml version="1.0" encoding="UTF-8"?>
<visualizationDefinition version="3.1" xmlns="http://www.ibm.com/xmlns/prod/ba/vipr/
vizBundle/vizdef.3">
 <slots>
 <slot name="categories" type="cat" optional="false" channel="color" />
 <slot name="xpos" type="cont" optional="false" />
 <slot name="ypos" type="cont" optional="false" />
 </slots>

 <dataSets>
 <dataSet>
 <ref slot="categories" />
 <ref slot="xpos" />
 <ref slot="ypos" />
 </dataSet>
 </dataSets>
</visualizationDefinition>

It is important that you add a single dataSet entry that references each slot.

The channel="color" attribute in the categories slot on line 4 is needed to draw an Cognos Analytics
product-based legend based on the data of that slot. See “Legends” on page 20 for more information.

Properties

Your visualization can expose public properties that allow the authors to modify within Cognos Analytics
how the visualization looks. You can think of font properties, colors, margins etc. For now we you will add
only one property: a color palette.

A palette can be used by a visualization to determine the colors used for the data elements. For the
scatter visualization, we want to show a different color for each rendered circle. Here's the xml that is
needed in vizdef:

 ...
 <properties>
 <palette name="color" slot="categories" />
 </properties>
</visualizationDefinition>

Selection and highlighting capabilities

If you want the visualization data elements to indicate selections and highlights, you need to add a few
capabilities to the vizdef. These capabilities ensure that the host application provides us with information
about the highlight and selection status of elements in the data:

 ...
 <capabilities>
 <decorations>
 <decoration name="selected" type="boolean" target="datapoint" />
 <decoration name="hasSelection" type="boolean" target="dataset" />
 <decoration name="highlighted" type="boolean" target="datapoint" />
 </decorations>
 </capabilities>
</visualizationDefinition>

The target field indicates that we are only interested in data point decorations. In other visualizations
you might also specify tuple in addition to datapoint (comma-separated). But for now we will stick
with the definition shown above. More information about tuples and data points can be found in the “Data
model” on page 16 documentation.

40 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Step 3: Start coding in Main.ts
Now that the vizdef.xml file is ready, you can start coding the behavior of the visualization. To start,
open the Main.ts file, located in the renderer directory. The file looks as follows:

import { RenderBase } from "@businessanalytics/customvis-lib";

export default class extends RenderBase
{
 protected create(_node: HTMLElement): HTMLElement
 {
 _node.textContent = "Basic VizBundle";
 return _node;
 }
}

Next, you will learn how to add a d3 reference, perform initial setup of the visualization and handle
updates.

Reference d3

Since the visualization will be based on d3, you need to import the d3 types. You will also be handling
render updates, so UpdateInfo is also required. Finally, you define a few constants that are useful later
on for referencing slots:

import { RenderBase, UpdateInfo } from "@businessanalytics/customvis-lib";
import * as d3 from "d3";

const CAT = 0, XPOS = 1, YPOS = 2; // slot indices
...

Perform initialization

Every visualization has a create method that is called one time, during the creation of the visualization.
You can add code that performs initial setup here, so let's create an svg canvas that we will use to render
on. Change the existing create function as follows:

protected create(_node: HTMLElement): Element
{
 // Create an svg canvas that sizes to its parent.
 const svg = d3.select(_node).append("svg")
 .attr("width", "100%")
 .attr("height", "100%");

 // Create groups for axes and elements.
 const chart = svg.append("g").attr("class", "chart");
 chart.append("g").attr("class", "xaxis data");
 chart.append("g").attr("class", "yaxis data");
 chart.append("g").attr("class", "elem data");

 // Return the svg node as the visualization root node.
 return svg.node();
}

Note: The return value of the create function has changed from HTMLElement to Element!

The create function has one parameter: _node. This is the HTML element that is the container element
for your visualization. You render everything either directly on this node or on children of this node.

The last command return svg.node(); makes the svg node the root node of the visualization. The
root node is passed to the update function that you will implement in the next step.

Handle updates

The majority of the rendering is done in the update function. This function will be called in case:

• New data arrives.
• Property values have changed.
• The size of the visualization has changed.
• Selections or highlights have changed.

Chapter 8. Tutorial 41

Here is the complete code for update. You can paste it directly after the create function that you just
modified. The majority of the code is d3-related. Detailed explanations follows below.

Line Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

protected update(_info: UpdateInfo): void
{
 // Get data, properties and svg node.
 const data = _info.data;
 const props = _info.props;
 const svg = d3.select(_info.node);

 // If there is no data, remove all axes and elements.
 if (!data)
 {
 svg.selectAll(".data>*").remove(); // remove children of '.data' elements
 return;
 }

 const margin = 20; // use a 20-pixel margin
 const xHeight = 20; // assume an x-axis height of 20px.

 // Create the y-axis.
 const yHeight = _info.node.clientHeight - 2 * margin - xHeight;
 const yDomain = data.cols[YPOS].domain.asArray(); // [min, max]
 const yScale = d3.scaleLinear().range([yHeight,
0]).domain(yDomain).nice();
 const yAxis = svg.select<SVGGElement>(".yaxis").call(d3.axisLeft(yScale));
 const yWidth = yAxis.node().getBBox().width;

 // Create the x-axis and position at bottom of y-axis.
 const xWidth = _info.node.clientWidth - yWidth - 2 * margin;
 const xDomain = data.cols[XPOS].domain.asArray(); // [min, max]
 const xScale = d3.scaleLinear().range([0, xWidth]).domain(xDomain).nice();
 const xAxis = svg.select(".xaxis").call(d3.axisBottom(xScale));
 xAxis.attr("transform", `translate(0,${yHeight})`);

 // Position the chart (axes and elements).
 svg.select(".chart").attr("transform", `translate(${yWidth+margin},$
{margin})`);

 // Determine color palette from the properties and create a Circle shape.
 const palette = props.get("color");
 const shape = d3.symbol().size(256).type(d3.symbolCircle);

 // For every row in the data, create and position a circle element.
 svg.select(".elem")
 .selectAll("path")
 .data(data.rows, (row: any) => row.key)
 .join("path")
 .attr("d", shape)
 .attr("transform", row => `translate(${xScale(row.value(XPOS))},$
{yScale(row.value(YPOS))})`)
 .attr("stroke-width", 3)
 .attr("stroke", row => palette.getOutlineColor(row))
 .attr("fill", row => palette.getFillColor(row));
}

Lines 9-13 Handle the situation when there is no data. This means that _info.data is null and the only
thing to do is remove all elements in any of the three g groups from the screen.

Lines 15-16 Define a few constants for margin, axis height, and column indices. These are used for
readability of the code to follow.

Lines 19-30 Create a y-axis and x-axis. For an axis you need to have a scale that is based on the domain
of the data values (min and max) and the range (in pixels). The transform attribute that is added to the
axis ensures the axis is positioned correctly.

Line 36 Determines the palette, that you defined in Step 2. You will need this palette in lines 48 and 49 to
determine the fill and outline color of the circles that are rendered.

Lines 40-48 Perform the creating, updating, and removing of points for the scatter. The d3 data is based
on data.rows. A key function ensures that a unique id is assigned to each symbol. Notice the use of the
palette on line 47 and 48. You can query the palette for a specific color given a data point d. Effectively

42 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

these two lines make the circles in the visualization respond to highlights (mouse over) and selections
(mouse click). The actual positioning of each circle is done on line 43, using a translate transformation.

Note: You may have noticed that there is no code for handling mouse events, tooltips and drawing
legends. Although in very specific cases you can add custom code for this, the visualization that you just
created already supports highlights, selections, filtering, and an interactive legend! All of this is provided
to you by the RenderBase base class and the environment in which the visualization runs. This allows
you to create powerful and consistent visualizations with minimal effort.

Step 4: Run and test the visualization
In step 1 you already started the visualization by running customvis start. This means you can now
start Cognos Analytics and try out your visualization in either a dashboard or a reporting. For details about
this, see “Step-by-step guide for custom visualizations” on page 3.

Links

• Download the source code for part 1.

Part 2: Adding properties to the visualization
In part 1 of this tutorial, we added a palette property for the colors of the scatter points. In part 2 we will
add some more properties to the visualization like a title, point shape, x- and y maximum, and show title
flag. We will see various options for defining a property, like a default value and the allowNull flag, and
property groups.

Before you start
Make sure you have completed “Part 1: Creating a custom visualization” on page 38 or you have
downloaded the source code for part 1.

Step 1: Modify the vizdef.xml file
We already saw that property definitions are part of the vizdef.xml file. In this step we will not only add
properties, but we also organise the properties in property groups.

Property groups are a hierarchical organisation of properties. The host application will often show
property groups as separate tabs or panels in the UI. Placing a property of your custom visualization
in a group will make the property appear in the corresponding place in the UI.

For the scatter visualization, we want to define the following properties structure:

• visualization (group)

– general (group)

- color - palette property that we added in step 1 of part 1.
- pointShape - shape of a scatter point, ("circle" or "square").
- background - url to a background image.
- showBackground - flag that indicates whether the background should be displayed.

– axis (group)

- xmax - maximum value on x-axis, or null for automatic.
- ymax - maximum value on y-axis, or null for automatic.

The vizdef.xml entries for these properties look as follows:

<properties>
 <group name="general">
 <palette name="color" slot="categories" />
 <enum name="pointShape" defaultValue="circle">
 <possibleValue>circle</possibleValue>
 <possibleValue>square</possibleValue>

Chapter 8. Tutorial 43

https://ibm.github.io/ca_customvis/docs/tutorial/MyScatter-1.zip
https://ibm.github.io/ca_customvis/docs/tutorial/MyScatter-1.zip

 </enum>
 <string name="background" defaultValue="" />
 <boolean name="showBackground" defaultValue="true" />
 </group>
 <group name="axis">
 <number name="xmax" allowNull="true" />
 <number name="ymax" allowNull="true" />
 </group>
</properties>

Two attributes to notice here are defaultValue and allowNull. The defaultValueattribute
represents the initial value that the property will get. The allowNull attribute indicate if null values for
the property are allowed. By default, null values are not allowed. For your custom visualization code this
means in the default situation you can always rely on a non-null value when calling Properties.get.

Step 2: Add code in Main.ts

pointShape
Changing the shape of a point is easy enough, since for each possible enum value there is a corresponding
d3 symbol type available. Replace the current code that determines the palette and shape to:

// Determine color palette and shape from the properties.
const palette = props.get("color");
const shape = d3.symbol().size(256);
if (props.get("pointShape") === "square")
 shape.type(d3.symbolSquare);
else
 shape.type(d3.symbolCircle);

If you want to support more that just these two shape types, feel free to extend this code a bit more.
Maybe you want to use a switch statement to select the correct symbol type, or use a lookup map.

Notice that the value of an enum property is always a string. We can safely compare the property value
with the literal string "square", or we can use the value of the property in a switch statement.

Note: It is good practice to choose enum values that are not likely to change over time. In Part 3 of this
tutorial we will learn how to add a localized 'caption' for an enum value, that is used for showing in the UI.

xmax and ymax
In part 1 we already defined the domain for our axes by calling getDomain on the data. If xmax or
ymax are non-null, we can use these property values instead. So the code to create the y-axis should be
changed as follows:

Line Code

1
2
3
4
5
6
7
8
9
10
11

// Create the y-axis.
const yHeight = _info.node.clientHeight - 2 * margin - xHeight;
const yDomain = data.cols[YPOS].domain.asArray(); // [min, max]
const yMax = props.get("ymax");
if (yMax !== null)
 yDomain[1] = yMax;
const yScale = d3.scaleLinear().range([yHeight, 0]).domain(yDomain);
if (yMax === null)
 yScale.nice(); // apply nice scale only if scale is automatic.
const yAxis = svg.select<SVGGElement>(".yaxis").call(d3.axisLeft(yScale));
const yWidth = yAxis.node().getBBox().width;

The call to props.get("ymax") on line 4 will return either null or a valid number. This is because
allowNull = true was set on the property.

The code change for the x-axis is now trivial:

44 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Line Code

1
2
3
4
5
6
7
8
9
10
11

// Create the x-axis and position at bottom of y-axis.
const xWidth = _info.node.clientWidth - yWidth - 2 * margin;
const xDomain = data.cols[XPOS].domain.asArray(); // [min, max]
const xMax = props.get("xmax");
if (xMax !== null)
 xDomain[1] = xMax;
const xScale = d3.scaleLinear().range([0, xWidth]).domain(xDomain);
if (xMax === null)
 xScale.nice(); // apply nice scale only if scale is automatic.
const xAxis = svg.select<SVGGElement>(".xaxis").call(d3.axisBottom(xScale));
xAxis.attr("transform", `translate(0,${yHeight})`);

background and showBackground
To add a background to the scatter visualization, we add the following code to the updatemethods, just
before you create the y-axis:

Line Code

1
2
3
4
5
6
7
8
9
10
11
12

// Set the background image.
let urlImage = null;
if (props.get("showBackground"))
{
 const image = props.get("background");
 if (image !== "")
 urlImage = `url(${image})`;
}
_info.node.parentElement.style.backgroundImage = urlImage;

// Create the y-axis.
...

This code changes the backgroundImage style of the parent element of the svg. The parent of the svg is
actually the _node that was passed to us in create.

Step 3: Run and test the visualization
Create a new dashboard or report in IBM Cognos Analytics and add the 'Preview Visualization'. After
adding some data you should see the scatter visualization in action. Try changing some of the properties
that we have just added. You will see that the properties have been added to the visualization tab and the
text tab respectively.

Links

• Download the source code for part 2.

Part 3: Customize legend and properties
In this part of the tutorial, we will improve the code in main.ts file. We start with adapting the symbols
used in the legend to the symbols used for the scatter points. The title and showTitle properties from
part 2 are related, so we will add code that ensures that title gets disabled when showTitle is switched off
in the user interface. Finally, we will add captions to some of the properties.

Before you start
Make sure you have completed “Part 1: Creating a custom visualization” on page 38 and “Part 2: Adding
properties to the visualization” on page 43 or you have downloaded the source code for part 2.

Step 1: Change the legend
In part 2 you added a property that allows the user to change the shape of the scatter points. In this step
you will see how you can have the legend show the same shape as used in the visualization.

Chapter 8. Tutorial 45

https://ibm.github.io/ca_customvis/docs/tutorial/MyScatter-2.zip
https://ibm.github.io/ca_customvis/docs/tutorial/MyScatter-2.zip

The RenderBase class allows you to configure various aspects of your visualization through the meta
attribute. This attribute allows you to set things like maximum number of data points and legend shape.
For instance if we add the following line of code inside the 'create' method, then categorical legends
always render a 'circle' symbol:

this.meta.legendShape = "circle";

Often the meta attribute is used during initialization of the visualization. However, for your scatter
visualization you want to have the legend update as soon as our pointShape property changes.

Add the following code to the custom visualization class in Main.ts file:

protected updateProperty(_name: string, _value: any)
{
 switch(_name)
 {
 case "pointShape":
 this.meta.legendShape = _value;
 break;
 }
}

The updateProperty method is called immediately when a property changes. This means that next time
when the legend needs to redraw, it retrieves the correct value from meta.legendShape. If we would
have updated this value in the update method, then we would have been too late because the legend
might have rendered its contents before the visualization.

Note: In “Part 2: Adding properties to the visualization” on page 43 you saw that the value of an enum
property is always a string. In the code above you can assign the string value to meta.legendShape
since you are sure the enum value is a valid legend shape.

Step 2: Active & inactive properties
The same updateProperty function that was defined in the previous step can be used to implement
so-called 'active state' for the properties. The active state of a property determines how a property is
rendered in the UI. If a property is inactive, it is often rendered as 'disabled'. In our scatter visualization
we want to disable the 'background' property if 'showBackground' is set to false. If 'showBackground' is
set to true, then the 'background' should be enabled again. To do this, we change updateProperty and
handle the property change for the 'showBackground' property:

protected updateProperty(_name: string, _value: any)
{
 switch(_name)
 {
 case "pointShape":
 this.meta.legendShape = _value;
 break;

 case "showBackground":
 // Active state for 'background' depends on `showBackground`.
 this.properties.setActive("background", _value);
 break;
 }
}

Step 3: Property captions
In the previous parts you have seen that each property in vizdef.xml file has a name to which can refer
in code. These names are normally not suited to be shown to the end user in the UI. For this reason, every
property can have a caption attribute that defines the name that should be shown in the UI. Change the
vizdef.xml file as follows:
<properties>
 <group name="general">
 <palette name="color" caption="Colors" slot="categories" />
 <enum name="pointShape" caption="Shape" defaultValue="circle">
 <possibleValue caption="Circle">circle</possibleValue>
 <possibleValue caption="Square">square</possibleValue>

46 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

 </enum>
 <string name="background" caption="Background" defaultValue="" />
 <boolean name="showBackground" caption="Show Background" defaultValue="true" />
 </group>
 <group name="axis" caption="Axis">
 <number name="xmax" caption="X-axis max" allowNull="true" />
 <number name="ymax" caption="Y-axis max" allowNull="true" />
 </group>
</properties>

Note: The property group general does not have a caption because that group is already provided by the
host application and therefore already has a (localized) caption. If you define your own property groups,
you can give them a caption.

In “Part 4: Advanced features” on page 47 you will see how to make the captions adapt to the user
interface language of IBM Cognos Analytics.

Step 4: Run and test the visualization
Create a new dashboard or report in Cognos Analytics and add the 'Preview Visualization'. After adding
some data you should see the scatter visualization in action. Try changing some of the properties that we
have just added.

This code changes the backgroundImage style of the parent element of the svg. The parent of the svg is
actually the _node that was passed to us in create.

Links

• Download the source code for part 3.

Part 4: Advanced features
In the last part of this tutorial, you will see the use of optional slots and show how the automatically
generated legend can be customized. You will also see how to setup localization for your custom
visualization.

Step 1: Optional slots
In “Part 1: Creating a custom visualization” on page 38 you added entries in the vizdef.xml file
to define the slots of the visualization. All slots were marked as mandatory by setting the optional
attribute to false. This means that the user has to provide data in all of the slots before the visualization
is able to render data.

In this step you will add an optional color slot. The slot type is continuous, which means that the user
can map numerical data to the slot. If the slot is mapped, then the values in the slot determine the point
color. If the slot is not mapped, then the scatter chart works like it does now, using the color palette.

Here is the vizdef.xml file change that is needed. Notice the a change is needed in both the slots
section (line 3) and the dataSet section (line 9).

Line Code

1
2
3
4
5
6
7
8
9
10
11

<slots>
 ...
 <slot name="color" type="cont" optional="true" channel="color" />
</slots>

<dataSets>
 <dataSet>
 ...
 <ref slot="color" />
 </dataSet>
</dataSets>

In addition to adding the slot, you also need to add a continuous palette that will be used in case the new
slot is mapped to data:

Chapter 8. Tutorial 47

https://ibm.github.io/ca_customvis/docs/tutorial/MyScatter-3.zip

Line Code

1
2
3
4
5

<properties>
 <group name="general">
 <palette name="color_cat" slot="categories" />
 <palette name="color_cont" slot="color" />
 ...

See line 3 and 4. Notice that you renamed the existing property "color" to "color_cat" to make a clearer
distinction between the two palette properties.

In the Main.ts file add a constant that identifies the color slot:

const CAT = 0, XPOS = 1, YPOS = 2, COLOR = 3; // slot indices

Finally modify the code in Main.ts file to pick up the colors and data from the new slot:

Line Code

1
2
3
4
5

<// Determine color palette and shape from the properties.
const hasColor = data.cols[COLOR].mapped;
const palette = props.get(hasColor ? "color_cont" : "color_cat");
const shape = d3.symbol().size(256);
...

On line 3 you can see that depending on the mapped state of the column, the continuous or the
categorical palette is retrieved for determining the color.

That's all it takes, the user of the custom visualization can now map data onto the new slot. That data will
determine the color of a scatter point. If there is no data, then the color will be from the categorical slot.

Step 2: Customizing the legend
When you have completed the previous step and tested it, you might have noticed that in case there
was data mapped to the new 'color' slot, the categorical legend still was visible. This is because both
the 'categories' slot and 'color' slot have a 'color' channel and both are mapped. The automatic legend
algorithm cannot determine which of the two palettes is actually in use.

To override the behavior of the automatic legend, you can override the updateLegend function. In this
function, you can add, remove or modify individual legends and legend items.

To start, update the 'imports' section as follows:

import { RenderBase, UpdateInfo } from "@businessanalytics/customvis-lib";
import { Encoding, DataSet } from "@businessanalytics/customvis-lib";
import * as d3 from "d3";

Then add an updateLegend method to the visualization class:

Line Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14

protected updateLegend(_data: DataSet): Encoding[]
{
 // Call base class implementation to setup initial encodings.
 const encodings = super.updateLegend(_data);
 const hasColor = _data.cols[COLOR].mapped;

 // Filter encodings: if color slot is mapped, skip categorical legend.
 return encodings.filter(_encoding =>
 {
 if (hasColor && _encoding.type === "cat")
 return false;
 return true;
 });
}

The RenderBase.updateLegend implementation creates an array holding legend Encodings (line 4).
This array holds all the information needed for the legend to draw. Overriding updateLegend gives you

48 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

the ability to make changes to the encodings created in RenderBase. The filter function that is called
in line 8 will return the encodings that satisfy the condition defined in the function body.

Step 3: Localization
In “Part 3: Customize legend and properties” on page 45 you added captions to the vizdef.xml file, so
the user interface shows proper labels for the properties and slots. In this step you will see how you can
localize these captions, so they adapt to the UI language that you have chosen in IBM Cognos Analytics.

To have the visualization support translated strings, add a new directory called nls in the root directory
where the visualization is located (as a sibling of vizdef.xml file). Then add a file Resources.js in this
nls directory, with the following contents:

define(
{
 "root": {
 "prop_color_cat": "Point Color",
 "prop_color_cont": "Color Range",
 "prop_shape": "Shape",
 "prop_shape_circle": "Circle",
 "prop_shape_square": "Square",
 "prop_background": "Background",
 "prop_show_background": "Show Background",
 "prop_xmax": "X-axis max",
 "prop_ymax": "Y-axis max",
 "prop_axis": "Axis"
 },

 "nl": true
});

The last entry "nl": true indicates that there is a Dutch version of this file in the nl subfolder. So, let's
create a subfolder nl inside the nls folder. Then add another Resources.js file in this nl subfolder
with the following contents:

define(
{
 "prop_color_cat": "Puntkleur",
 "prop_color_cont": "Kleurbereik",
 "prop_shape": "Vorm",
 "prop_shape_circle": "Cirkel",
 "prop_shape_square": "Vierkant",
 "prop_background": "Achtergrond",
 "prop_show_background": "Toon Achtergrond",
 "prop_xmax": "X-as max",
 "prop_ymax": "Y-as max",
 "prop_axis": "As"
});

Your file and directory structure should now look as follows:

Finally, you replace the hard-coded captions in vizdef.xml file with the variables you just defined in the
nls files (prefixed with $nls.):

<properties>
 <group name="general">
 <palette name="color_cat" caption="$nls.prop_color_cat" slot="categories" />

Chapter 8. Tutorial 49

 <palette name="color_cont" caption="$nls.prop_color_cont" slot="color" />
 <enum name="pointShape" caption="$nls.prop_shape" defaultValue="circle">
 <possibleValue caption="$nls.prop_shape_circle">circle</possibleValue>
 <possibleValue caption="$nls.prop_shape_square">square</possibleValue>
 </enum>
 <string name="background" caption="$nls.prop_background" defaultValue="" />
 <boolean name="showBackground" caption="$nls.prop_show_background"
defaultValue="true" />
 </group>
 <group name="axis" caption="$nls.prop_axis">
 <number name="xmax" caption="$nls.prop_xmax" allowNull="true" />
 <number name="ymax" caption="$nls.prop_ymax" allowNull="true" />
 </group>
</properties>

Note: Not only properties can have captions. You can also define captions for the slots and either hard
code it in the vizdef.xml file or provide a localization id like you did for the properties.

Step 4: Run and test the visualization
Create a new dashboard or report in Cognos Analytics and add the 'Preview Visualization'. After adding
some data you should see the scatter visualization in action. After adding some data you should see the
scatter visualization in action. Try adding data to the 'color' slot and removing it again. You will notice the
difference in the legend that appears for your visualization.

Links

• Download the source code for part 4.

50 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

https://ibm.github.io/ca_customvis/docs/tutorial/MyScatter-4.zip

Chapter 9. Manage custom visuals

Managing custom visuals from the admin UI
Use the manage UI to delete, download, update, or set the properties of custom visuals

About this task
You can manage custom visuals from the IBM Cognos Analytics admin UI.

Procedure
1. On the home page, click Manage > Customization > Custom visuals.

2. Next to the custom visual, click the More icon and select on or the following options:
Option Description

Delete If you no longer need the custom visual, delete it.

Download Download the custom visual. Download the custom visual
to, for example, send the custom visual to a support
organization.

Update If you have a new version available, update the custom
visual. You need to select the updated custom visual.

Properties Set the permissions for the custom visual.

For more information, see Access Permissions and
Disabling Packages and Folders.

Results
The custom visualization is added to the list of visualizations. Optionally you can set the permissions on
the visualizations.

© Copyright IBM Corp. 2019, 2021 51

52 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Chapter 10. Improving the performance of custom
visualizations

Improving the performance of custom visualizations
If your custom visualization needs to display many data points, you might experience decreased
performance of the visualization.

You can apply several techniques that limit the amount of time that is spent in rendering your
visualization. The customvis API provides you with information that can be used in optimizing your
custom visualization.

Render performance
Rendering a custom visualization with many data points can take a hit on the performance. If you know
what triggers the render action, then you can decide what needs to be rendered again.

Use the reason field in the UpdateInfo class to determine what triggered the render and then
determine what items you render to minimize the performance decrease. An instance of UpdateInfo
is passed to you every time update is called.

Updating the document object model (DOM) and recalculating are often expensive operations. Whenever
possible, prevent these updates from being performed too often. For instance, if the reason for rendering
is the change of the background color of your custom visualization, then you might want to change the
color of the corresponding UI element and leave the rest of the visualization untouched.

Also, be aware that highlights and selections can cause the update function to be called many times.
If your custom visualization supports highlighting elements, then each mouse move operation over
the visualization might trigger an update. You find that for rendering highlights and selections the
decorations field in the reason is flagged. Depending on how you would like to show highlighted and
selected elements, you can consider an alternative, high performance, render function that is dedicated to
rendering selections and highlights.

For more information, see Class RenderReason and Class UpdateInfo.

Responsiveness of the custom visualization
The displayed size of your custom visualizations can introduce a decrease in performance. It is not
necessary to always show everything. You can tweak the following items of your custom visualization to
both increase the performance and show a meaningful visualization in limited screen space:

• Labels on axis
• Titles
• Text labels

© Copyright IBM Corp. 2019, 2021 53

https://ibm.github.io/ca_customvis/docs/11.1.x/classes/renderreason.html
https://ibm.github.io/ca_customvis/docs/11.1.x/classes/updateinfo.html

54 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Chapter 11. Authoring schematics - Tutorial

SVG definition
You must annotate SVG files to link SVG elements to a dataset.

The mapping is visually represented in the rendered SVG by changing the fill (color and opacity) of the
SVG elements. When you create an SVG document, elements that have no visible fill area do not appear
as visibly changed.

Note: You can also use third-party tools, such as Inkscape, to annotate SVGs.
For more information, see Using Inkscape to annotate schematics for use in
IBM Cognos Analytics at https://community.ibm.com/community/user/businessanalytics/blogs/marco-
maas1/2019/12/20/using-inkscape-to-annotate-schematics.

SVG basic mapping
You map between an element in an SVG and a value in a dataset by adding the value from the dataset as a
new attribute called data-cv-key for the corresponding region in the SVG.

Note: You can also use third-party tools, such as Inkscape, to annotate SVGs.
For more information, see Using Inkscape to annotate schematics for use in
IBM Cognos Analytics at https://community.ibm.com/community/user/businessanalytics/blogs/marco-
maas1/2019/12/20/using-inkscape-to-annotate-schematics.

Mapping is supported on the following elements:

• Circle
• Ellipse
• Line
• Path
• Polygon
• Polyline
• Rect
• Text
• SVG
• G

Note: The G element is non-visual and is designed to group visual elements together to create a
composite element.

The behavior for other SVG elements is undefined.

The following SVG file does not have the data-cv-key attribute set for the circles:

<?xml version="1.0" encoding="UTF-8"?>
<svg height="40" width="100" xmlns="http://www.w3.org/2000/svg">
 <g>
 <circle cx="10" cy="10" fill="#cd5c5c" r="10"/>
 <circle cx="30" cy="10" fill="#fa8072" r="10"/>
 <circle cx="50" cy="10" fill="#e9967a" r="10"/>
 <circle cx="70" cy="10" fill="#ffa07a" r="10"/>
 <circle cx="90" cy="10" fill="#dc143c" r="10"/>
 </g>
 <g>
 <circle cx="70" cy="30" fill="#adff2f" r="10"/>
 <circle cx="10" cy="30" fill="#ff0000" r="10"/>
 <circle cx="30" cy="30" fill="#b22222" r="10"/>
 <circle cx="50" cy="30" fill="#8b0000" r="10"/>

© Copyright IBM Corp. 2019, 2021 55

https://community.ibm.com/community/user/businessanalytics/blogs/marco-maas1/2019/12/20/using-inkscape-to-annotate-schematics
https://community.ibm.com/community/user/businessanalytics/blogs/marco-maas1/2019/12/20/using-inkscape-to-annotate-schematics
https://community.ibm.com/community/user/businessanalytics/blogs/marco-maas1/2019/12/20/using-inkscape-to-annotate-schematics
https://community.ibm.com/community/user/businessanalytics/blogs/marco-maas1/2019/12/20/using-inkscape-to-annotate-schematics

 </g>
</svg>

If you would load this visualization, it would display as follows. Mapping to data is not possible.

If you add the data-cv-key attribute to the SVG, then you can map data to the circles in the SVG.

<?xml version="1.0" encoding="UTF-8"?>
<svg height="40" width="100" xmlns="http://www.w3.org/2000/svg">
 <g>
 <circle data-cv-key="A2" cx="10" cy="10" fill="#cd5c5c" r="10"/>
 <circle data-cv-key="A3" cx="30" cy="10" fill="#fa8072" r="10"/>
 <circle data-cv-key="A4" cx="50" cy="10" fill="#e9967a" r="10"/>
 <circle data-cv-key="A5" cx="70" cy="10" fill="#ffa07a" r="10"/>
 <circle data-cv-key="B2" cx="90" cy="10" fill="#dc143c" r="10"/>
 </g>
 <g>
 <circle data-cv-key="B3" cx="70" cy="30" fill="#adff2f" r="10"/>
 <circle data-cv-key="B4" cx="10" cy="30" fill="#ff0000" r="10"/>
 <circle data-cv-key="B5" cx="30" cy="30" fill="#b22222" r="10"/>
 <circle data-cv-key="D1" cx="50" cy="30" fill="#8b0000" r="10"/>
 </g>
</svg>

And the following data:

ref cat color occupied size

A2 A 72 no 157

A3 A 36 no 684

A4 B 12 yes 325

A5 B 22 no 186

B2 A 16 yes 487

B3 A 78 yes 560

B4 C 74 yes 871

B5 C 87 no 980

D1 A 19 yes 574

If you use this SVG and drag ref to the Locations data slot and cat to the Location color data slot, then the
color of the circles is mapped with the cat data.

56 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Rules and restrictions for SVG
There are some considerations that you must be aware of when you author schematics for IBM Cognos
Analytics.

View-mapping rules and restrictions
Supported visual elements:

• Circle
• Ellipse
• Line
• Path
• Polygon
• Polyline
• Rect
• Text

Supported non-visual elements:

• svg
• g

An SVG element with an attribute of data-cv-view can also have an attribute of data-cv-key. For
example,:

<circle x=10 y=10 data-cv-view="circles" data-cv-key="A1"/>

Only a single data-cv-view attribute is supported.

An SVG element can exist in a single view only. Multiple views are not supported.

Hierarchical views are not supported. For example, the following example is not supported:

<g data-cv-view="circles">
 <circle x=10 y=10 data-cv-view="child_circle" data-cv-key="A1"/>
 <circle x=10 y=10 data-cv-view="child_circle" data-cv-key="A2"/>
</g>

Chapter 11. Authoring schematics - Tutorial 57

Composite items are supported. For example, removing the child data-cv-view attributes from the
previous example:

<g data-cv-view="circles">
 <circle x=10 y=10 data-cv-key="A1"/>
 <circle x=10 y=10 data-cv-key="A2"/>
</g>

The same value is supported on multiple elements:

<circle x=10 y=10 data-cv-view="circles" data-cv-key="A1"/>
<circle x=10 y=10 data-cv-view="circles" data-cv-key="A2"/>

There is no limit on the number of data-cv-view attribute occurrences within a document.

Key mapping rules and restrictions
Supported visual elements:

• Circle
• Ellipse
• Line
• Path
• Polygon
• Polyline
• Rect
• Text

Supported non-visual elements:

• svg
• g

Only a single data-cv-key attribute is supported:

<circle x=10 y=10 data-cv-key="A1"/>

Hierarchical or multi-part keys are not supported:

<g data-cv-key="A">
 <circle x=10 y=10 data-cv-key="1"/>
 <circle x=10 y=10 data-cv-key="2"/>
</g>

Composite items are supported:

<g data-cv-key="A1">
 <circle x=10 y=10/>
 <circle x=10 y=10/>
</g>

In a composite item, multiple data-cv-key attributes are not supported:

<g data-cv-key="A1">
 <circle x=10 y=10 data-cv-key="A2"/>
 <circle x=10 y=10 data-cv-key="A3"/
</g>

Elements that do not have a closed path are not supported. For example, the following path is not closed
with z or Z.

<path d="M8 0C3.582 0 0 3.582"/>

58 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Supported SVG features
Use control structures and other features when you author your SVG documents. The following control
structures are supported when you author schematics:

• use
• defs
• href

The following control structures are not supported when you author schematics:

• Embedded JavaScript
• Include tags
• Use of Entity defined in DOCTYPE section
• Animation events
• Document events
• Document element events
• Graphical events
• Any other global events
• References to anything external, including URIs to external fonts, and the use of the HTML anchor <a>

element.

Saving and exporting as SVG options
• Choose *Presentation Attributes* for styling if you require compatibility with Microsoft Internet Explorer

and Microsoft Edge. Choose styling that uses element attribute or style attribute, and avoid CSS style
through internal header or external CSS style.

• Use embedded images if necessary.
• Avoid options like preserving editor-specific capability that might inject unnecessary XML code.

Adding views to schematics
Schematics support Views that are defined in the SVG. Views are conceptually different than layers.

A layer is created when data is mapped to either the Region > Locations or Points > Locations slots. You
can toggle layers on or off, which shows or hides the results of the data mapping.

When you author an SVG, you can create views. Views define groups of SVG elements where these
elements are logically related to each other. For example, if you create a floor plan of a hospital, then you
define Views for each hospital ward in the SVG. These views allow the user of the schematic to show or
hide the views that they are interested in.

Annotating an SVG is done in a similar way to the data mapping that uses the data attribute data-cv-
view, along with an optional title and description for each view. The description is rendered as a tooltip in
the schematic. See the following SVG code sample:

<?xml version="1.0" encoding="UTF-8"?>
<svg height="40" width="100" xmlns="http://www.w3.org/2000/svg">
 <g data-cv-view="view_0" desc="view_0 desc" title="view_0 title">
 <circle data-cv-key="A2" cx="10" cy="10" fill="#cd5c5c" r="10"/>
 <circle data-cv-key="A3" cx="30" cy="10" fill="#fa8072" r="10"/>
 <circle data-cv-key="A4" cx="50" cy="10" fill="#e9967a" r="10"/>
 <circle data-cv-key="A5" cx="70" cy="10" fill="#ffa07a" r="10"/>
 <circle data-cv-key="B2" cx="90" cy="10" fill="#dc143c" r="10"/>
 </g>
 <g data-cv-view="view_1" desc="view_1 desc" title="view_1 title">
 <circle data-cv-key="B3" cx="70" cy="30" fill="#adff2f" r="10"/>
 <circle data-cv-key="B4" cx="10" cy="30" fill="#ff0000" r="10"/>
 <circle data-cv-key="B5" cx="30" cy="30" fill="#b22222" r="10"/>
 <circle data-cv-key="D1" cx="50" cy="30" fill="#8b0000" r="10"/>

Chapter 11. Authoring schematics - Tutorial 59

 </g>
</svg>

If you use this SVG and drag ref to the Locations data slot and cat to the Location color data slot, then the
color of the circles is mapped with the cat data. To select a view, click the Views

icon.

The title is displayed in the list of available views. If you did not define a title, then the data-cv-view
attribute value is used. By default all views are selected.

Highlighting regions in a schematic
To know which parts of the SVG can be mapped, you can highlight those parts in IBM Cognos Analytics.

About this task
Use the Highlight region option to display the parts of an SVG that can be mapped. An element in the SVG
can be mapped when the element has an attribute data-cv-key with a value that contains a key.

60 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

When turned on, all mappable elements receive a fill with a color as defined in the property Missing value
color. All non-mappable elements have an opacity that is applied.

For more information, see Properties for individual 11.1 visualizations in Reporting.

Chapter 11. Authoring schematics - Tutorial 61

Procedure
1. In a report on the Toolbox tab of the content pane, select the Test schematic object and drag it onto

the workspace.
In a dashboard on the Custom tab of the Visualizations pane, select the Test schematic object and
drag it onto the workspace.

2. Toggle the Highlight region switch.

Editing a schematic package
Before you make the schematic, that you authored, available to the users, you can edit the schematic
package.

About this task
You can edit the properties and the content of the schematic package.

62 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

Note:

You can upload the schematic package, that you downloaded, to the Schematic preview widget, for
further editing.

Procedure
1. In a report on the Toolbox tab of the content pane, select the Schematic preview object and drag it

onto the workspace.
2. Click the Edit package

icon.

3. On the Package tab, you can change the following properties:

• Name
• Description
• Icon: The icon can be of the .jpg, .png, or .svg type with a maximum file size of 500 MB.

4. On the Content tab, you can change the content of the schematic package.

• Click the Upload file

icon and select the SVG files that you want to include in the schematic package.
• Click an SVG to change its Name and Caption.

Chapter 11. Authoring schematics - Tutorial 63

• On an SVG, click the More

icon to Replace or Delete the SVG.

Distributing a schematic
If you want to make the authored schematic available to the users in IBM Cognos Analytics, distribute it.
Distribution is done by first downloading the packaged schematic from the Schematic preview and then
uploading the packaged schematic as a Custom visual.

About this task
The Manage Visualizations capability allows users to control access rights to schematics for individual
users, groups, and roles.

The Develop Visualizations capability allows users to develop and distribute schematics.

Procedure
1. In a report on the Toolbox tab of the content pane, select the Schematic preview object and drag it

onto the workspace.
2. Author the schematic.
3. Click the Download

icon.
A .zip file is downloaded on your file system.

4. On the home page, click Manage > Customization > Custom visuals > Upload custom visual

.
5. Select the yourschematic.zip file and click Open.

Results
The schematic is added to the list of visualizations. Optionally you can set the permissions on the
visualizations.

64 IBM Cognos Analytics Version 11.1.0 : Custom Visualizations Developer Guide

IBM®

	Contents
	Chapter 1. Introduction
	Developing custom visualizations

	Chapter 2. Step by step guide
	Step-by-step guide for custom visualizations
	Setting up the development environment
	Uninstalling the custom visualizations CLI tools
	Creating a custom visualization
	Using a D3 sample in your custom visualization
	Validating the visualization in a dashboard
	Validating the visualization in a report
	Package and deploy the custom visualization
	Packaging the custom visualization
	Uploading custom visualizations from the admin UI
	Using the uploaded visualization in a dashboard
	Using the uploaded visualization in a report

	How local custom visualizations work

	Chapter 3. Custom visualizations tools and commands
	Custom visualizations tools and commands

	Chapter 4. Customvis library
	Custom visualizations library (customvis-lib)
	Rendering
	Data model
	Interactivity
	Legends
	Properties
	Palettes
	Customizing your visualization
	RenderBase

	Chapter 5. Customvis API reference
	Customvis api reference

	Chapter 6. Customvis frequently asked question
	FAQ custom visualizations

	Chapter 7. Visualization definition
	Visualization definition

	Chapter 8. Tutorial
	Custom visualizations - tutorial
	Part 1: Creating a custom visualization
	Part 2: Adding properties to the visualization
	Part 3: Customize legend and properties
	Part 4: Advanced features

	Chapter 9. Manage custom visuals
	Managing custom visuals from the admin UI

	Chapter 10. Improving the performance of custom visualizations
	Improving the performance of custom visualizations

	Chapter 11. Authoring schematics - Tutorial
	SVG definition
	SVG basic mapping
	Rules and restrictions for SVG

	Adding views to schematics
	Highlighting regions in a schematic
	Editing a schematic package
	Distributing a schematic

