
IBM Cognos Analytics
Version 11.1

Data Modeling Guide

IBM

©

Product Information
This document applies to IBM Cognos Analytics version 11.1.0 and may also apply to subsequent releases.

Copyright
Licensed Materials - Property of IBM
© Copyright IBM Corp. 2015, 2021.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

IBM, the IBM logo and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at " Copyright and trademark information " at
www.ibm.com/legal/copytrade.shtml.
© Copyright International Business Machines Corporation 2015, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

http://www.ibm.com/legal/copytrade.shtml

Contents

Chapter 1. Data modeling in Cognos Analytics.. 1
Modeling user interface .. 2

Customizing the user interface.. 4

Chapter 2. Data modules and their sources...5
Data module sources... 5

Data servers..5
Packages...5
Uploaded files...5
Data sets... 6
Data modules..6

Creating a data module..6
Discovering related tables... 8
Adding sources or tables to a data module...9
Updating columns in a data module..10
Reloading the schema metadata...11
Relinking sources...11
Enriching packages.. 13
Setting up data caching... 14
Securing data... 16

Chapter 3. Modeling metadata .. 19
Relationships... 19

Creating a relationship... 19
Join operators...20
Join optimization.. 21

Custom tables.. 22
Creating custom tables.. 23

Creating tables using SQL ...25
Column dependencies... 26

Defining column dependencies..29
Configuring column dependencies.. 31

Calculations..33
Creating basic calculations.. 34
Creating custom calculations...35

Filters... 36
Creating embedded filters... 36
Creating selectable filters.. 37

Hiding items .. 38
Creating data groups..39
Cleaning data... 40
Creating navigation paths.. 42
Formatting data..43
SQL in Cognos Analytics.. 44

Supported SQL types ...44
Showing the query information..45
Generating the query SQL ... 45

Validating data modules.. 46
Object properties... 46

 iii

Chapter 4. Members in the data tree...51
Searching for members... 53
Setting the members display limits...53
Displaying relational members..54

Chapter 5. Relative date analysis... 57
Sample calendars ... 57

Creating a custom retail calendar ... 59
Creating a data module for relative date analysis...61
Creating relative date filters ... 63

Creating filter expressions... 64
Expression variables ..66
Example filter: Last 12 months.. 67
Example filter: Next 4 months... 69
Other examples of relative date filters ... 70

Customizing the reference date ... 72
Setting the _as_of_date global parameter.. 73

Appendix A. Supported SQL data types.. 75

Appendix B. Data modules and Framework Manager...77
Framework Manager features not supported by data modules... 77
Governors and data modules.. 79

Index.. 81

iv

Chapter 1. Data modeling in Cognos Analytics
IBM® Cognos® Analytics provides web-based, self-service data modeling capabilities.

You can use data modeling in Cognos Analytics to fuse together many sources of data, including relational
databases, Hadoop-based technologies, Microsoft Excel spreadsheets, text files, and so on. Using these

sources, a data module is created that can then be used in reports, dashboards, or explorations.

Star schemas are the ideal database structure for data modules, but transactional schemas are equally
supported.

You can enhance a data module by creating calculations, defining filters and navigation paths, and more.

After you save a data module, other users can access it. Save the data module in a folder that users,
groups, and roles have appropriate permissions to access. This process is the same as saving a report or
dashboard.

Tip: Data modeling in Cognos Analytics does not replace IBM Cognos Framework Manager, IBM Cognos
Cube Designer, or IBM Cognos Transformer, which remain available for maintaining upgraded projects.

Intent modeling
You can use intent modeling to create a data module. Intent modeling proposes tables to include in the
module, based on matches between the terms that you supply and metadata in the underlying sources.

Intent modeling recognizes the difference between fact tables and dimension tables by the number of
rows, data types, and distribution of values within columns. When possible, the intent modeling proposal
is a star or snowflake of tables. If an appropriate star or snowflake cannot be determined, a single table or
a collection of tables is proposed.

For more information, see “Discovering related tables” on page 8.

Automatic joins
Cognos Analytics automatically creates joins between tables in a data module. The autojoin (automatic
join) algorithm adopts a diagnostic scoring approach when deciding which columns to use to join two
tables. The algorithm uses a set of rules that are applied when choosing the column combinations
between the two tables. Each rule produces a score. The score could be negative. The total score of all
rules decides if a column combination qualifies to be a join column.

The autojoin algorithm uses the following rules:

• The similarity of two column names must exceed a minimum threshold.

For example, the names SalesCountryCode and CountryCode are highly similar, and can be
considered a match.

• Both columns belong to the same semantic category.

For example, the Employee or Product category.
• Both columns have the same semantic attribute.

For example, both are IDs.
• None of the columns is a common row identifier.

The row ID column could be in every table.
• The data in two numeric columns overlaps.
• The relationship between two columns can't be many-to-many.

A join relationship is created if any column combinations between two tables satisfy a minimum
qualification score. The collected statistics is used to ensure that cardinality is properly set when building

© Copyright IBM Corp. 2015, 2020 1

the relationship. The joins created by the autojoin algorithm are saved as the inferred relationships in the
data module.

For more information, see “Relationships” on page 19.

Modeling user interface
Use the web modeling user interface to view, create, enhance, and edit data modules.

Access to this interface is controlled by the Web-based modeling capability that is managed by
administrators. For more information, see the Managing IBM Cognos Analytics guide.

If some of the user interface elements that are discussed in this topic are not available to you, the user
interface could be customized for your role. For more information, see “Customizing the user interface” on
page 4.

You can enter the web modeling user interface from the IBM Cognos Analytics portal in one of the
following ways:

• In Team content, My content, or Recent, locate an existing data module, which is an object with this

icon , and click it to open.

• Click New , and select Data module. Then, create a new data module.
• Use the Quick launch facility in the Cognos Analytics welcome page to upload a file. Drop the file in the

Data module box, and start creating your data module.

When working with data modules, you can use the undo and redo actions in the application bar
to revert or restore changes to the data module in the current editing session. You can undo or redo up to
20 times.

Sources panel

The Sources panel shows the sources of data that the data module contains. The sources can be data
servers, uploaded files, data sets, packages, and other data modules.

Except for packages, you can expand the specific source to view its tables and columns. Drag tables onto
the data module panel or onto the diagram to add them to the data module.

From the source context menu , you can initiate actions such as relinking sources or enabling data
caching.

Data module panel
The data module tree shows the tables and columns of data that are included in the data module. This is
the main space for editing the data module.

Click the context menu icon for the module, table, or column to view its modeling and editing context
menu options. Here you can start joining tables, creating filters and calculations, or renaming and deleting
items.

Click the Add sources and tables icon in the panel toolbar to add sources and tables to your data

module. Clicking the Identify navigation path members icon underlines columns that are members
of navigation paths. If none of the columns are underlined, the data module does not contain navigation
paths.

2 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Relationships tab

This tab shows the data module relationships diagram . The diagram is a graphical representation of
table relationships in a data module. You can use the diagram view to examine the relationships, edit the
data module, and view the cardinality information for the relationships.

Right-click a table in the diagram to view the table context menu that can be your starting point for
creating joins or filters, renaming the table, viewing the table properties, or removing it from the module.

Click any table join to see the join summary information that includes the matching keys. When you
right-click the join line, the context menu appears with options for editing or deleting the join.

Right-click one or more tables in the diagram, and click Auto-arrange. The diagram is redrawn around the
first selected table allowing you to focus on the selected tables and their relationships.

In the Diagram settings box, select the Cardinality check box to show the cardinality of relationships
between different tables in your data module. Move the Degrees of separation slider. Depending on the
slider position, the diagram shows different degrees of relationships between tables. Select one or more
tables in the diagram, and use the Focus mode to work with the selected tables.

Grid tab
You can use the grid view to examine the actual data in table columns and rows.

Select a table or column in the data module tree or in the diagram, and click the grid icon to open the
data view.

Custom tables tab

The Custom tables tab is the main space for creating, viewing, and managing custom tables in a data
module. This tab is displayed by default, even if the module doesn't contain any custom tables. To start
creating a new table, click Create custom table. If the data module already contains custom tables, the
table names are listed when you click the tab.

For more information, see “Custom tables” on page 22.

Validation panel

To validate the data module, click the validation icon in the application bar or in the Data module
panel, or click Validate from the data module context menu.

If errors are discovered, the number of errors is displayed on the validation icon in the application bar

, and the failed validation icon is displayed for tables, columns, expressions, or joins. Click the

error icons to view the validation messages. Click the copy icon in the error messages to copy the
messages to the clipboard for easier analysis or printing.

Expression editor
The expression editor is an SQL editing tool that you can use to create or edit SQL-based tables,
calculations, filters, or data groups.

You can create expressions by typing the code or dragging items from the data module tree. The
validation and data preview capabilities help to quickly verify and troubleshoot the expressions. The
code editing capabilities include: inserting comments, function auto-complete, pretty-print, high-contrast
mode, and different font sizes. The information panel shows details and provides examples of supported
functions that are used in the expressions.

Chapter 1. Data modeling in Cognos Analytics 3

Customizing the user interface
Users with administrative privileges can customize the modeling user interface by disabling some parts of
the interface for some user roles.

Users who are members of those roles can't perform certain tasks when they view or edit data modules.
For example, users might not be able to apply data security for data server sources or edit joins when the
related user interface features are disabled for them.

About this task
This functionality is available for Cognos roles only. For more information, "Customizing roles" in the IBM
Cognos Analytics Managing Guide.

Procedure
1. In the Manage administration interface, click People > Accounts.
2. Click the Cognos namespace, and locate the role for which you want to customize the user interface.

The role Modelers is associated with data modules, but you can also apply the customizations to other
roles in the Cognos namespace.

3. From the role context menu , click Properties.

4. On the Customization tab, click the Features chevron button .
5. Select the Data Module category.

Most of the data module features that you might want to customize are grouped under Application
Bar, Navigation Bar, and Context Menus.

For example, go to Data Modules > Context Menus > Shaping options to customize the following
features:

• Set data security - ability to apply data security for data servers
• Create relationship - ability to create relationships between tables
• Edit relationship - ability to edit relationship joins
• Create basic calculation and Edit basic calculation - ability to create and edit calculations without

using the expression editor.
• Create custom calculation and Edit custom calculation - ability to create and edit calculations by

using the expression editor.
• Navigation path - ability to create navigation paths

6. To disable a feature, clear its checkbox.
7. Click Apply to save the changes.

Results
All access points to the disabled feature are not available for the affected roles. For example, when you
disable the Edit relationship feature, the join editing options are not available in the table and column
context menus, the diagram and custom table views, and the properties panel.

4 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Chapter 2. Data modules and their sources
Data modules are containers that describe data and rules for combining and shaping data to prepare it for
analysis and visualization in IBM Cognos Analytics.

Data module sources
Data modules can be based on data servers, packages, uploaded files, data sets, and other data modules.
You can combine multiple, different types of sources into one data module.

When you create a new data module in IBM Cognos Analytics, or update an existing module, you choose
the input source type from the Select sources dialog box.

Data servers
Data servers represent databases for which connections exist in Cognos Analytics.

The data server connections must already be created in Manage > Data server connections or
Manage > Administration console, and the metadata for one or more schemas in the data server must be
loaded. Only schemas where metadata was loaded can be used in data modules.

 When a data server schema is updated, you can reload the schema metadata from the data
module. On the Sources tab, from the schema context menu, select Reload metadata.

For the legacy JDBC data source connections, ensure that the Allow web-based modeling check box
is selected. These connections are created in the Administration console. If the Allow web-based
modeling check box is not selected for this type of connections, the connections are not available
in Manage > Data server connections, and cannot be used as data module sources. Go to Manage
> Administration console . On the Configuration tab, select Data source connections, and find the
connection. From the connection properties, click the Connection tab where the Allow web-based
modeling check box is located.

If your data server is Planning Analytics, you create the TM1 cube-based data modules in the
administration interface, as soon as the data server connection is created. For more information, see
Creating data modules from Planning Analytics cubes in the Managing IBM Cognos Analytics guide.

For more information, see the Managing IBM Cognos Analytics.

Packages
You can use relational, dynamic query mode packages as sources for data modules.

Packages are created in IBM Cognos Framework Manager and contain dimensions, query subjects,
query items, and other data. Packages are located in Team content or My content.

Tip: Query subjects and query items in packages are equivalents of tables and columns in data modules.

For more information about packages, see the IBM Cognos Analytics Getting started guide.

Uploaded files
Uploaded files are Microsoft Excel (.xlsx and .xls) spreadsheets and text (.csv) files that contain comma-
separated, tab-separated, semi colon-separated, or pipe-separated values.

Files that are already uploaded to Cognos Analytics are stored in Team content or My content. You
can also upload files after you start creating your data module by using the upload file facility in the
Select sources dialog box.

For more information about uploaded files, see the IBM Cognos Analytics Getting started guide.

© Copyright IBM Corp. 2015, 2020 5

Data sets
Data sets contain data that is extracted from packages or data modules.

Data sets are stored in Team content or My content. If the data in the source package or data module
changes, the change is reflected in the data set.

For more information about data sets, see the IBM Cognos Analytics Getting started guide.

Data modules
Existing data modules can be used as sources for other data modules.

Data modules are saved in Team content or My content.

The tables remain linked to the source data module, which is indicated by the linked table icon , and
they are read-only. As long as the tables remain linked, any changes in the source module are reflected in
the new data module. If you break the link, you can edit the tables. However, the source module changes
are no longer reflected in the new module.

Creating a data module
A user can quickly create a data module that includes data from one or more sources of different types.

The data module can be shared with other users, and used as a source to create reports, dashboards,
stories, and explorations.

Before you begin
Prepare the sources that you plan to use to create the data module.

• Save the sources to Team content or My content.

The only exception are your data files that can be uploaded while the data module is created.
• For data server sources, create connections in Manage > Data server connections.

For more information, see “Data servers” on page 5.

About this task
To access the data modeling user interface, users need execute and traverse permissions for the Web-
based modeling capability. For more information about capabilities, see the Managing IBM Cognos
Analytics guide.

Procedure
1. In the Cognos Analytics welcome page, click New > Data module.

Tip: An alternative way to start creating a data module is to upload data files first by using the Quick
launch facility. When you drop the files onto the Cognos Analytics welcome page, in the Data module
box, you can immediately start creating your data module. Other sources can be added to the data
module later.

2. In the Select sources dialog box, select one or more sources of any type.

• To select a saved data module, data set, uploaded file, or package, click the Team content , My

content , or Recently viewed content folder, and locate the source that you want to add. If
needed, use search and filtering options to find the sources.

6 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

• To select a data server, click the Data servers and schemas folder. Select the data server
connection that you want. The available schemas in the data server are listed. Choose the schema
that you want to use. Only schemas for which metadata is preloaded are displayed.

• To upload a data file from your hard drive or LAN location, click the Upload icon , and browse for
the file. By default, the file is saved to My content.

3. If all selected sources contain one table each, the basic data module is created, and you can proceed
to step 5.

4. If any of the selected sources, such as a multi-tab spreadsheet or a data server, contain multiple
tables, you have two options to add the tables to your data module:

• Select tables

You select the tables manually, and click OK to create the data module.
• Discover related tables

A word cloud visualization is displayed that contains keywords from sources that the data module
is based on. Select one or more keywords, and click Next. A data module proposal is generated
for you. You can accept the proposal, or click Previous to try different keywords. To accept the
suggested proposal, click OK. The data module is created for you.

For more information, see “Discovering related tables” on page 8.

The data module is created based on the chosen tables.
5. Examine the data module.

• In the Data module panel, view the sources that are included in your data module.

You can expand the sources to view their tables, columns, and members.

The link icon on tables indicates that the tables are linked to the source data module. For more
information, see “Relinking sources” on page 11.

For data server connections and uploaded files, the table and column labels are cleaned up in
English and some other languages in the following way:

– For uploaded files, the file extension, such as .xls or .csv, is removed from the table label. For
example, Customer.csv is changed to Customer.

– If all label characters in the source are in uppercase, and the label contains special characters,
such as underscore (_), dash (-), or slash (\), in the data module, each word in the label is
capitalized, and the special characters are replaced with the space characters. For example,
VEHICLE_CLASS in the source is changed to Vehicle Class in the data module.

• To view data, select a table or a column in a table, and click the data grid view .

• To view relationships between tables, click the Relationships tab . Typically, the relationships
are detected by the system and joins between tables are created automatically. If the tables are not
joined, you need to join them manually. For more information, see “Creating a relationship” on page
19.

• The data module is validated automatically. If there are any broken references, the failed validation

icon is displayed in the data module tree and in the diagram. For more information, see
“Validating data modules” on page 46.

6. To create a test report from your data module, click Try it in the application toolbar.
A new tab opens in your browser with IBM Cognos Analytics - Reporting open within it. Your data
module is shown in the Insertable objects pane.

7. To save the data module, click Save or Save as.

Chapter 2. Data modules and their sources 7

Results

The data module is created in the location that you saved it to, in Team content or My content

.

What to do next
You can enhance the data module by adding calculations, filters, groups, custom tables, and more. For
more information, see Chapter 3, “Modeling metadata ,” on page 19.

Discovering related tables
You can engage the system to suggest the most appropriate tables for your data module. Using natural
language processing and AI-based functionality, the system generates a data module that best represents
your use case.

This functionality is used when creating a data module or adding new sources or tables to a data module.

The choice of tables for the data module is based on keywords that you select. An interactive word cloud
visualization shows the keywords that exist in the available sources.

The following example shows a word cloud for a data module proposal that is based on four sources:

The font colors represent the different sources. The font size indicates the keyword weight, which is the
measure of the keyword importance in the source. Selecting keywords with higher weight increases the
probability of creating the most relevant data module for your use case.

To increase or decrease the number of keywords in the word cloud, expand the Keywords section in the
right pane, and enter a number for the Keywords limit option.

You can select the keywords from the word cloud, or type them in the search bar. The selected keywords
are automatically added to the search bar. To deselect the keywords, delete them from the search bar.

After you click Next, a data module proposal is generated, as shown in the following example:

8 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

The Proposed data module pane shows the tables that the system suggests to use for the data module.
By default, one proposal is generated for each source. A percentage confidence score is assigned to
each proposal. The confidence score reflects the predicted ability of the proposal to fulfill your modeling
objective.

Select one or more of the suggested proposals. The selected proposals are merged into one proposal, and
table relationships are generated.

Note: To increase the number of proposals per source, expand the Advanced section in the Proposed
data module pane, and increase the number.

Click OK to accept the proposal, or click Previous and try to generate different proposals.

Adding sources or tables to a data module
After a data module is created, you can add new sources or different tables from the sources that are
already in the data module.

About this task
You can add a combination of source types in a data module.

Procedure
1. Open an existing data module.

2. In the Data module panel, click the Add sources and tables icon .
3. Select one of the following options:

• Add new sources

Select and add new sources to the data module.
• Add more tables

Add tables from sources that are already in the data module. Only tables that aren’t already
included in the data module can be selected.

• Discover related tables

Add tables from sources that are already in the data module. This option is available only for
sources that contain multiple tables, such as data servers and multi-sheet uploaded files. Based on

Chapter 2. Data modules and their sources 9

keywords that you select, related tables are suggested to be added to the data module. For more
information, see “Discovering related tables” on page 8.

4. Save the data module.

Updating columns in a data module
After a table in a data module source is updated, you can add or remove individual columns in the data
module without updating the whole table.

This functionality can be used for the following scenarios:

• A source column was deleted from a data module table, the data module was modified and saved, and
the modeler wants to re-add the deleted column to the data module.

• A new column was added to an existing table in a database, and the modeler wants to use this column
in the data module.

• A column was removed or renamed in a database, and the modeler must update the data module to
avoid validation errors.

About this task
For data modules that are based on data servers, use the Reload metadata function to reload the latest
schema metadata from the database. For more information, see “Reloading the schema metadata” on
page 11.

Procedure
1. Open the data module that you want to update.
2. Click the Source view icon to open the Sources panel, and expand the source tree.
3. If the source is a database server schema, from the schema context menu, click Reload metadata.

Tip: You don't need to perform this step if the database server schema was already reloaded in
the Data server connections administration user interface after a database change that needs to
be reflected in Cognos Analytics. For more information, see "Loading metadata" in the IBM Cognos
Analytics Managing guide.

The tables and columns are reloaded based on the latest state of the data server.
4. In the Sources panel toolbar, click the Source tree settings icon , and select the Show unused items

check box.

• The columns (and their tables) that are not in the data module are highlighted in the Sources panel.
• If the source contains renamed columns, or columns were removed from the source, validation error

icons appear next to the affected columns in the Data module panel.
5. In the Sources panel, identify the column that you need to add to the data module, and drag the

column to the related table in the Data module panel. Expand the table if you want to drop the column
into a specific place in the table.

You can drag multiple columns from the same table at once.
6. If the data module contains validation errors, the columns in the module might be missing or renamed

in the source. Use the following steps to resolve the errors:
a) Drag the renamed columns to the Data module panel.
b) Remove the columns that no longer exist in the source from the data module.
c) Validate the data module.

Potential validation errors might be related to the broken references in expressions, such as
filters or calculations, that might still refer to the removed columns. Using information in the error
messages, manually update these expressions.

7. Save the data module.

10 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Reloading the schema metadata
When a database schema is updated, the schema must be reloaded for the data module to remain
synchronized with the database.

To create a data module that is based on a data server source, the database schema metadata must be
loaded and saved to the content store. This task is performed by administrators in the administration
component after the data server connection is created. For more information, see "Loading metadata" in
the IBM Cognos Analytics Managing guide.

For existing data modules, the modeler can reload the schema metadata after the schema is updated.
This step might be needed when you encounter validation errors in the data module.

Before you begin
To access the Reload metadata action in a data module, you need the following permissions:

• Data server - Write permission
• Administration capability - Traverse permission
• Data Source Connections capability (child of the Administration capability) - Access permission

Procedure
1. Open the data module that is based on a relational data server.
2. Click the Source view icon to open the Sources panel.
3. From the schema context menu, click Reload metadata.

If this action is not available for a data server schema, ensure that you have the required permissions
for the data server and the Administration and Data Source Connections capabilities, as documented
earlier in this topic.

Results
The tables and columns are reloaded based on the latest state of the data server. If the source contains

renamed items, or items were removed from the source, validation error icons appear next to the
affected columns in the Data module panel.

What to do next
To compare the data in the schema and the data module, in the Sources panel toolbar, click the Source
tree settings icon, and select the Show unused items check box. The tables and columns that are not in
the data module are highlighted in the Sources panel. You can proceed to update the columns in the data
module.

Relinking sources
You can relink a data module source to a different source. After a successful relink, global calculations
and relationships in the data module remain valid.

Here are some scenarios in which relinking a source can be useful:

• You build and test a data module against a test source. When the data module is ready, you relink the
source to the intended production source.

• The current source in your data module is invalid, and you must use a new, valid source.
• You want to relink your data module from one data server to another data server, or from one schema to

another schema.

Chapter 2. Data modules and their sources 11

Relink between different types of data servers is supported, as well as between schemas and catalogs
within data servers.

Tip: Data server sources can be organized into schemas, catalogs, both, or none.

About this task
The relinked (target) source must be of the same type as the original source. A data server can be relinked
only to a data server, an uploaded file to an uploaded file, and so on.

In addition to the matching source types, the following conditions must be met:

• All columns from the original source must exist in the target source, and the columns Identifier
properties (case-sensitive) and data types must match.

For example, file A with columns ColA and ColB can be relinked to file B with columns ColA and ColB.
Relinking to file B with columns colA and colB would not work.

The data types of the matching columns must be compatible for the data module calculations and
relationships to remain valid. For example, if the column data type in the original source is date, the
column data type in the target source must also be date, and not string or timestamp.

• For data servers, packages, and data modules, all tables from the original source must exist in the target
source, and the tables Identifier properties (case-insensitive) must match. If a matching table can't
be found based on these criteria, the system also considers the table labels and matching columns
identifiers (case-sensitive) when trying to find the right match.

If a duplicate match is found in the target source, the last table in the list is used for the match.
• Extra columns and tables can exist in the target source.

When relinking to a source that contains a table with extra columns, you can add the extra columns to
the table in the data module by dragging the table from the Sources pane to the Data module pane.

• The source names, such as file and package names or data server connection names, do not need to
match.

Tip: Columns and tables matching is done by comparing their Identifier property. The column or table
Identifier value can be, but not always is, the same as the column or table name (Label). You can view
the Identifier value in the column or table Properties pane, Advanced section.

Procedure
1. From Team content or My content, open your data module.
2. In the Sources pane, find the source that you want to relink.
3. From the source context menu, select Relink.
4. Select the source type that matches the original source type. If the original source is data server,

select a data server. If it's an uploaded file, select a file, and so on.
5. Click Done.

If the relink was successful, a confirmation message is displayed.

If the relink finished with errors, a message is displayed that suggests opening the validation view
where the relink issues are listed. Resolve the issues, and save the data module. You can also save the
data module with unresolved issues.

Important: The validation process does not detect incompatible data types on columns. If there are
columns with incompatible data types in your sources, and all other relink conditions are met, the
successful relink message is displayed. This type of data issues must be reconciled in the sources.

Results
After you successfully relink a source in a data module, reports and dashboards that are based on this
data module can start using the new source without any involvement from report authors.

12 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Enriching packages
To optimize the user experience in IBM Cognos Analytics components, such as dashboards and
explorations, Framework Manager packages must be enriched.

The enrichment process associates the Cognos Analytics data characteristics, such as Time and
Geographic location, to query items in the packages. The information from the enrichment process
complements the information, such as the data type, column name, or Usage property value, that is
derived from the package metadata.

An enriched package includes the data characteristics that are required for the artificial intelligence (AI)
based functionality in the product, such as visualization recommendations or intelligently set default
values on column properties. For example, to display the relationships diagram in Explore, an enriched
package must be used. Otherwise, the relationships diagram isn’t displayed.

Tip: You can't enrich a package that includes dimensionally modeled (DMR) relational objects. Query
subjects that include prompts can be enriched, but data isn’t retrieved.

The enrichment process can be time and memory-intensive so it should be performed only when the
original package has changed. Consider reenriching the package after the following changes to the
package:

• Names of query subjects, query items, and namespaces are changed.
• Data types on query items are changed. For example, number changed to string.
• New query items are added.
• Filters or expressions are changed that significantly alter the values that the query subject would return.
• A deployment archive is imported into a new environment that uses different data from the source used

for a previous enrichment.

When a package is republished, existing enriched metadata isn’t removed or refreshed.

Before you begin
To minimize the impact of the enrichment process on the system, consider creating smaller packages that
include only a subset of purpose-specific query subjects, and enriching only the smaller packages. For
example, a package used by advanced report authors might expose many query subjects where many of
the query subjects aren’t relevant when creating dashboards or explorations. You can create a smaller
package off the original package, and include only those query subjects that you need in your dashboards
and explorations. Enriching this smaller package requires less time and memory.

About this task
You can enrich a package metadata by using the automatic or manual process. The automatic process
evaluates all query items of all selected query subjects in the package, and automatically applies the
data characteristics to them. To minimize the impact on the system, you can deselect namespaces or
individual query subjects to exclude them from the enrichment process. In the manual process, you
explicitly apply the data characteristics to individual query items.

When enriching a package, you typically start with the automatic process. Use the manual process to
enrich only a small subset of query items or to override values that were set incorrectly by the automatic
option.

The automatic enrichment includes the option to retrieve sample data. When this option is selected, the
Cognos Analytics query engine connects to the data source and reads a sample of its data. The enrich
dialog box allows the sample size to be changed. Setting the sample size to a low value, or not sampling at
all, reduces the amount of information that the enrichment can gather. The amount of sampled data also
depends on the signons that are used to access the package underlying data sources. An ideal signon can
access the tables, views, and columns that the query subjects are based on, and a representative number
of rows and values in the queried tables and views.

To access the Enrich package functionality, you need write permissions for the package.

Chapter 2. Data modules and their sources 13

Procedure
1. Locate the package or its shortcut in Team content or My content.

2. From the package or shortcut context menu , select Enrich package.

Tip: If a package was used as a data module source, you can enrich the package in the modeling user
interface, from the Sources pane.

3. Select one of the following options.

• Enrich automatically

Most of the time, start with this option. The status information shows you the dates when the
package was last published and enriched (if it was enriched before).

– In the Select tables panel, you can deselect the query subjects that you don't want to be
evaluated by the enrichment process. By default, all visible query subjects in the package are
evaluated.

This option gives you the opportunity to exclude the query subjects that aren’t used in your
dashboards or explorations, and therefore reduce the time and memory usage by the system
during the enrichment process.

– To enable data sampling, select the Retrieve sample data checkbox, and specify the number of
rows of data to be retrieved.

The data sample includes some deeper data characteristics that support the product functions
that are behind the optimized user experience in dashboards, explorations, and other
components. Extracting too many rows might impact the system performance. No data sampling,
or too few rows might not provide enough information. Clearing this checkbox reduces the time
and memory usage during the enrichment process, but the expected information might not be
gathered.

For more information, see Data sampling in the Managing IBM Cognos Analytics guide.
– Click Run.

Depending on the number of query subjects involved, the enrichment process can take some
time, potentially even hours. After the process is finished, an information message shows you the
results of the process. Even if only a certain percentage of the query subjects were enriched, you
might have enough data to support the AI-functions in your dashboards and explorations.

– Click Close.
• Enrich manually

Use this option to enrich individual query items.

– Expand the package. Then, expand a query subject, and select one or more query items.
– From the Define data representation drop-down menu, select the option that you want the data

in the query to represent, either Time or Geographic Location, and their specific values. The
Default value allows to propagate settings from the source.

– Click OK.

Setting up data caching
You can enable data caching in a data module, and specify the cache expiry options.

The cache is populated by the result sets from SQL queries to data servers. These SQL queries originate
from widgets (visualizations in dashboards, reports, stories, and explorations).

The cached result sets are reused when a subsequent request that generates exactly the same or
compatible SQL statement is made. An example of a compatible SQL statement is one that's identical to
another statement, except that it has one more filter.

14 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

To see how caching is used, open a dashboard, report, story, or exploration, and then open another
dashboard, report, and so on, where at least one of the widgets has exactly the same or compatible SQL
statement.

Results that are cached from one user’s request can be used for a different user’s request only if both
users have the same data security profiles, which means that the following information is the same for
both users:

• Sign-on information (user name and password) to the data server.
• Expanded values of data source connection command blocks.
• Data security defined in the data module.
• Expanded values of macros within the queries used to populate the cache.

About this task
Data caching can be enabled at a source level, or at a table level. Tables don't automatically inherit the
cache options from their sources.

The following data cache options can be specified for sources and tables:

• No cache

Data caching is disabled.
• Automatic

Reflects the data cache option that was specified for a source. This option is available for tables only.
• Custom

Enables data caching, and allows to specify the length of time to keep the cached data.
• Macro

Enables data caching that is based on a macro.

Data caching is not applicable to OLAP cube data, data sets, and uploaded files even if the Data cache
setting is available in the user interface.

Procedure
1. From Team content or My content, open a data module.
2. To specify data caching for a source, do the following steps:

a) Click the Source view pane to expand it, and locate the source.
b) From the source context menu, select Data cache.
c) Specify one of the cache options, and click OK.

3. To specify data caching for a table, do the following steps:
a) In the Data module pane, select one or more tables, and from the context menu, click Properties.
b) Under Advanced properties, locate the Data cache property.
c) Specify one of the cache options, and click OK.

The Automatic cache option reflects the cache option that was specified in the source. For
example, if the source data cache was set to Custom, with the time limit of 1 day, the automatic
cache option for the table is shown as Automatic (1 day). If multiple tables are selected, the cache
option of the table that was selected first is shown as the automatic option for the selected group of
tables.

4. Save the data module.

Chapter 2. Data modules and their sources 15

Results
Cached results are retained for the length of time that is specified in the Data cache setting. The
timestamp of the cache entry is the time at the beginning of the request, the moment before the query
execution starts.

When fields from different tables that have different cache settings are used together, the cache is
retained as long as the cache for the table with the smallest setting. For example, if the data cache for one
table is set to 5 min, and for another table to No cache, there's no caching for a visualization that uses
fields from both tables.

What to do next
The Data cache setting in data modules can be overwritten in dashboards and stories. In these
components, you can also enable browser data caching that allows the client applications to store the
query results in the browser. Browser data caching is not available in Cognos Analytics reports.

Securing data
You can secure data at the value level by creating security filters.

A security filter defines which users, groups, or roles have access to specific data values in a table. When
the users work with dashboards, reports, or explorations that use the table, only the data that is included
in the security filter is visible to them.

There are business reasons for restricting access to data at such low level of granularity. For example, you
have confidential data that only specific users are allowed to see. Or, a table contains many records, and
your users need only a subset of those records.

Note: When you define data security filters, the filters are applied to the data server schema and are
reflected in new and existing data modules that use the schema as a source.

Before you begin
The schema metadata for the associated data server connections must be loaded, and you must have
write permissions for the connections and their signons.

Tables that are based on typed-in SQL bypass security filters. To avoid potential security risks, specify
the ibmcognos.typeinsqldisabled property on the data server connection that your data module is
based on. If an attempt is made to create an SQL-based table after this property is specified, the table
is not created. If this property is specified after an SQL-based table was created, the query execution
is stopped. For more information about Cognos-specific connection parameters, see the IBM Cognos
Analytics Managing Guide.

About this task
This type of data security can be implemented only for data server sources.

Users who perform this task must belong to a role that has the Set data security feature enabled in
the administration interface. Otherwise, the table context menus in the data module won't show the Set
data security option that is needed to perform this task. For more information, see “Customizing the user
interface” on page 4.

Procedure
1. From Team content or My content, open a data module.

The data module source must be a data server, or another source that includes data server tables.
2. Click the Sources pane to expand it.
3. Expand the data server schema to view its tables.
4. From a table context menu, select Set data security, and click Add security definition.

16 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

5. In the Set data security dialog box, create the filters by associating specific users, groups, or roles
with columns in the table.

a) In the Users, groups and roles pane, click the add icon . In your authentication namespace,
locate the users, groups, or roles for which you want to define access to the table data, and select
their associated check boxes. The selected names appear in the Selected users, groups and roles
pane.

b) In the Filters pane, from the Select a column drop-down list, select one column, and click Create
a filter. Specify the required filter conditions, and click OK. You can add filters for other columns
in the same way. To add filters for multiple columns at once, from the Select a column drop-down
menu, select the via expression editor option. Your security definition can include one or multiple
filters.

c) Specify a name for the security definition, and click OK.
The security definition is added to the Security filters tab in the table properties. In the Sources
panel, the padlock icon appears beside the table name.

Chapter 2. Data modules and their sources 17

18 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Chapter 3. Modeling metadata
The initial data module that you create manually or using intent modeling can be modified, edited, and
enhanced.

You can enhance your data module by adding new tables or sources, applying filters, creating calculations
and navigation paths, changing column formatting, and more.

Relationships
A relationship joins logically related tables that the users want to combine in a single query.

Cognos Analytics automatically detects relationships between tables in a data module by using the
autojoin algorithm. For more information, see “Automatic joins” on page 1.

You can modify or delete relationships, or create new ones so that the data module properly represents
the logical structure of your business. Verify that the relationships that you require exist in the data
module, the cardinality is set correctly, and referential integrity is enforced.

The diagram provides a graphical view of table relationships in a data module. You can use the diagram to
create, examine, and edit the relationships.

Creating a relationship
You need to create relationships when they are not detected by IBM Cognos Analytics.

About this task

Relationships can be created between tables from the same source and from different sources.

The diagram is the most convenient place to view all data module relationships, and quickly discover the
disconnected tables.

Important: The list of possible keys in the relationship editor excludes measures. This means that if a row
in a column was misidentified as a measure, but you want to use it as an identifier, you will not see the
row in the key drop-down list. You need to examine the data module to confirm that the usage property is
correct on each column in the table.

Procedure
1. In the data module tree or in the diagram, click the table for which you want to create a relationship,

and from the table context menu , click New > Relationship.

Tip: You can also start creating a relationship using the following methods:

• In the data module tree or in the diagram, control-click the two tables that you want to join in a
relationship, and click Relationship.

• On the Relationships tab in the table properties, click Add a relationship.

If the data module does not include the table that you need, you can drag the table from Selected
sources directly onto the diagram.

2. In the Create relationship dialog box, select the second table to include in the relationship.

Depending on the method that you used to start the relationship, the second table might already be
added, and you only need to match the columns.

3. Find the matching columns in both tables, and select Match selected columns. For example, you can
match on Product id columns.

© Copyright IBM Corp. 2015, 2020 19

The matching columns are highlighted in the data grid. You might need to click Refresh to retrieve the
data.

4. Click Matched columns to specify the join operator for the match.

In the Defined matches dialog box, select a join operator. By default, columns are matched based on
similar values, by using the equal (=) operator. However, you can also match columns based on a range
of values by choosing a different join operator. For more information, see “Join operators” on page
20.

5. Click the relationship settings icon . By default, the relationship settings are detected from the
source.

Review, and if needed, modify the following settings:
Realtionship Type

The following types can be specified: inner join, left outer join, right outer join, and full outer join.
Cardinality

The following types can be specified: 1-to-1, 1-to-many, and many-to-1.
Optimization

Use the optimization filters to reduce the number of rows of data that are retrieved when the join is
executed. For more information, see “Join optimization” on page 21.

6. Click OK.

Results
The new relationship appears on the Relationships tab in the properties page of the tables that you
joined, and in the diagram view.

What to do next
To view or edit all relationships defined for a table, go to the Relationships tab in the table properties.
Click the relationship link, and make the modifications. To view a relationship from the diagram, click the
join line to open a graphical view of the relationship. To edit a relationship from the diagram, right-click
the join line, and click Edit relationship.

To delete a relationship for a table, go to the Relationships tab in the table properties, and click the

remove icon for the required relationship. To delete the relationship from the diagram, right-click the
line joining the two tables, and click Remove.

Join operators
Join operators are used to specify the type of match between columns that are joined in a relationship.

By default, values are compared by using the equal (=) operator. When you use an operator other than
equal (=), you create joins that are based on a range of values.

The following join operators are supported:

Equal (=)
Values in the left and right columns are identical or similar. The values are considered similar when
they have a different data type, accent, or case. For example, the following values are considered
similar:

• Renee, RENEE, and Renée
• String "123" and integer 123

Less than (<)
Values in the left column are less than values in the right column.

Greater than (>)
Values in the left column are greater than values in the right column.

20 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Less than or equal (<=)
Values in the left column are less than or equal to values in the right column.

Greater than or equal (>=)
Values in the left column are greater than or equal to values in the right column.

Less than and greater than (< >)
Values in the left and right columns are different.

=N
Values in the left and right columns are equal, even if both values are null.

The join operators are used when creating or editing relationships. For more information, see “Creating a
relationship” on page 19.

Join optimization
You can optimize joins by applying filters to them.

A report might need a query that requires a relational join across multiple data sources. For example, a
transaction database might be used to locate a set of customer details that are then joined to a corporate
sales warehouse. Joins across different relational data sources can be performed through local query
execution.

In IBM Cognos Analytics, you can optimize how these joins are executed by using filters. The query that
is driving the join is executed, and a set of key values is gathered and then added to the query that is
executed against the other data source. By extending the predicates (filter criteria) to the data source,
the amount of local data processing that the join must perform is reduced. As a result, performance is
improved significantly.

The following join filters are available:

No filtering
The optimization is turned off.

Unique values
Values from the table with 1 cardinality are used to filter values from the table with many cardinality.
The filter uses a single IN expression. For a 1-to-1 relationship, the filtering is applied to the second
table.

Range of values
Values from the table with 1 cardinality are used to filter values from the table with many cardinality.
The filter uses a single BETWEEN expression, using the minimum and maximum values. For a 1-to-1
relationship, the filtering is applied to the second table.

Unique values in a subquery
Values from the table with 1 cardinality are used to filter values from the table with many cardinality.
The filter is generated in a subquery. For a 1-to-1 relationship, the filtering is applied to the second
table.

Unique or range of values
The cardinality is ignored, and values from the table on the left are used to filter values from the table
on the right. This filter uses either IN or BETWEEN predicate. An error massage is displayed if the
optimization can't be applied.

If the data server types are different, ensure that the data types of the matched columns are compatible.
Otherwise, you might need to edit the join expression to explicitly cast the data types.

In Cognos Analytics versions 11.1.6 and 11.1.7, a filter optimization error might occur. For more
information, see "XQE-PLN-0355 filter join optimization error" in the Troubleshooting Guide.

Chapter 3. Modeling metadata 21

Custom tables
Custom tables are created from other tables in the data module.

By adding custom tables, you create a more abstract, business-oriented view of data in your data module.
For more information, see “Creating custom tables” on page 23.

Custom tables function in the same way as other tables in the data module. You can use them to create
relationships, calculations, filters, and other custom tables.

The Custom tables tab is used for creating, viewing, and managing custom tables in a data module. The
tab is displayed even if the module doesn't contain any custom tables. To start creating a new table, click
Create custom table.

If the data module already contains custom tables, the table names are listed when you open the tab.
In the following example, the data module contains two custom tables: Product Sales and Product
Returns.

The different types of custom tables are identified by different icons. The following table specifies the
icons associated with custom tables:

Icon Table type

View

Join

Union

Except

Intersect

From the table context menu , you can access the standard table options for creating a relationship,
calculation, filters, and so on. Clicking the View definition option or the table name opens the table query
flow diagram where you can view the tables that the custom table is built from. For example, the following
diagram of a custom table named Product Sales shows that the table is created as a view of three
tables: Sales Targets, Customer, and Product.

22 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

The diagram is synchronized with the data tree. You can perform the same actions from the table context
menu in the diagram and in the data tree.

Creating custom tables
You create a custom table by merging or copying selected tables and columns in the data module. Custom
tables can be used to create new custom tables.

About this task
If the custom table is based on multiple tables, the properties of the table that was selected first are
applied to the custom table. For example, the Usage or Data cache properties on the custom table are
inherited from the first table. The columns in the custom table also inherit their properties, such as Label
or Aggregate, from the columns in the first table.

Procedure

1. In the data tree, from the data module, table (or multiple tables), or package context menu , click
New > Table.

You can also start creating a custom table from the Custom tables tab by clicking Create custom
table.

2. Select the tables and columns to add to your custom table.

You can click the add icon to add new tables, or the remove icon to remove tables from the list.
These options are not available for a package.

• If you initiated the process for an individual table or multiple tables, the table names appear in the
Create new table dialog box, in the Selected tables pane. The table that was selected first is at the
top of the list.

• If you initiated the process from the data module context menu, no table names appear in the
Selected tables pane initially. Click Select tables to add tables that are already in the data module.

• If you initiated the process from a package context menu, the Create a joined view dialog box is
displayed. Only this option is available for packages because tables that are sourced from packages

Chapter 3. Modeling metadata 23

can be used to create views only. Only relational objects in the package are visible. OLAP objects
aren’t visible.

Finish creating the view.
3. Depending on your selection of tables in the previous step, one or more of the following options are

available to create the new table. Select one option.
Create a copy of a table

This option is available when one table is selected. You can copy all columns from the table, or
only the columns that you select. The new table is disassociated from the base table so changes
in one table aren’t reflected in the other table. When you copy a non-custom table, the result is a
non-custom table. When you copy a custom table, the result is a custom table.

Create a view of a table
This option is available when one or more tables are selected. The columns in the base tables are
referenced in the view. The column properties in the view are independent from the base table.
You can select or deselect columns to include in your new table.

Create a joined view
This option is available when two tables are selected. You can select or deselect columns to
include in your new table. Proceed to create a join between the two tables. For more information,
see “Creating a relationship” on page 19.

Create a union of tables
This option is available when two or more tables are selected. All selected tables have the same
number of columns. The columns are in the same order, and their data types are compatible. The
new table includes all rows from all selected tables.

Tip: The help icon in the product provides information about incompatible data types when
columns with such data types are discovered.

Create an intersect of tables
This option is available when two tables are selected. Both tables have the same number of
columns. The columns are in the same order, and their data types match. The new table includes
only rows that are shared between the two tables.

Create an except of tables
This option is available when two tables are selected. Both tables have the same number of
columns. The columns are in the same order, and their data types match. The new table includes
only rows that exist in the first table.

4. Proceed with the option-specific steps, and then click Finish.

The custom table diagram appears on the Custom tables tab.

Also, the table name is added to the list view on the Custom tables tab, and at the top of the data tree.

Note: Copies of non-custom tables are not considered custom tables and don't have query flow
diagrams.

5. Save the data module.

What to do next
To view the custom table diagram later, from the table context menu in the data tree, select View
definition. The same option is available for the table from the list view on the Custom tables tab.

To edit the custom table, select the related edit option from the table context menu in the data tree. For
example, it the custom table is a joined view, the edit option is Edit joined table. The same option is
available from the custom table diagram on the Custom tables tab.

To change the custom table name, open the table Properties, and on the General tab, modify the Label
property.

In custom tables that were created by using the union, intersect, and except operations, duplicate
columns are removed by default. To include the duplicates, from the table context menu, click Properties,
and under Advanced, set the Duplicates property to Preserve.

24 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Creating tables using SQL
You can create new tables in a data module that are based on a custom SQL syntax. The SQL is executed
against a source that is already in the data module.

If the SQL validation is successful, the table is populated with a set of projected column names and rows
of data.

The supported types of SQL include Cognos SQL, native SQL, and pass-through SQL. For more
information, see “Supported SQL types ” on page 44.

Procedure

1. From the data module context menu , select Create table using SQL.
2. In the table editor, type the table name.
3. From the SQL type drop-down menu, select the type of SQL to use.
4. From the Source drop-down menu, select the source to associate the table with. For data server

connections, select the connection name. For other types of sources, select the source location, which
is either Team content or My content.

5. In the Expression box, type or paste the SQL syntax for your table. The syntax is executed only against
the source that you selected in the previous step.

The expression editor provides the following syntax validation and editing options:

• - Validate the syntax. You can validate the whole statement, or only selected segments of code.

• - Preview columns and rows in your projected table. If the syntax is not correct, the columns are
not displayed.

• - View descriptions of functions, and examples of their usage.

• - Insert the cursor anywhere in a line of code and select this button to comment out the entire
line. To comment out multiple lines of code, select the lines and select this button. The comment
string (--) is added at the beginning of each selected line.

Tip: To comment out sections of code, manually enclose the text between the following strings: /*
and */

• - Apply formatting to the code.

• - Use high-contrast mode.
• Change the font size.

6. Click OK to save the table.

You can save the table even if it contains syntax errors, and edit the syntax later. However, you cannot
modify any aspect of the SQL table, or view its data in the grid, until the table is successfully validated.

Results
The table name appears at the top of the data module tree. To edit the table SQL, from the table context
menu, click Edit SQL table. You can also edit a column expression in an SQL-based table. However,
subsequent updates to the original SQL statement might overwrite the updated expression.

What to do next
You can use and model SQL-based tables in the same way as other data module tables. For example, you
can create relationships between this type of tables and other tables. You can also create calculations
and navigation paths that include columns from these tables.

Chapter 3. Modeling metadata 25

Column dependencies
Use the column dependency feature to clarify data granularity in a table or view to avoid double-counting
of repeated values when data is aggregated.

Column dependencies are created automatically when the source tables are added to the data module.
When a calculated column, which is based on columns that exist in the automatically generated column
dependency, is created, the column is added to the generated column dependency. However, if a new
column is pulled into the data module from the source data tree, the column is not added to the
automatically generated column dependencies, and causes a validation error. In this case, the column
dependency for the data module must be updated manually.

Note: Column dependencies are not inherited for custom tables. Any table object is considered
independent, and if necessary, requires its own explicitly defined column dependencies to prevent double
counting.

Column dependency is an equivalent of determinants in Framework Manager. However, column
dependency provides more flexibility because you can specify more than one hierarchy per table, view,
query subject, or data set. For more information, see "Determinants" in the IBM Cognos Framework
Manager guide.

There are three common scenarios, described in the following sections, where double-counting can occur.
In each scenario, you need to specify column dependencies to avoid double-counting. Remember to
always check or review your column dependencies when you test for expected results.

Note: The terms table, view, query subject, and data set in this document all represent the same concept:
a collection of data. Going forward, the term table is used in discussions about the implementation of
column dependencies.

Scenario 1
In this scenario, a table contains replicated data (denormalized table).

For example, in the following table that contains Revenue at the day level and Sales target at the
month level, the values for Sales target are repeated for each day of a month.

Figure 1. Denormalized table that includes facts at different levels of granularity

Before column dependencies are applied, the Sales target total value is shown as 288,140,500,
which is incorrect.

Figure 2. Total value before column dependencies are applied

26 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

After column dependencies are applied, the Sales target total value is shown as 57,628,100, which is
correct.

Figure 3. Total value after column dependencies are applied

Scenario 2
This scenario involves joining on a key at a higher level of granularity in dimension tables. A dimension
table on the 1..1 or 0..1 side of a relationship, containing attributes, is joined to a fact table on the 1..n or
0..n side of a relationship. The columns in the dimension table have repeating values.

In the following example, a Time dimension table that contains data for each calendar date is joined, by
using the Month Key, to a fact table that contains the Sales Target data at the month level.

Figure 4. Time table and Sales target table joined on the Month Key

When a query is created that displays the calendar date values together with the Sales Target data,
the values for each month are returned for every date value. The result is an aggregated Sales Target
summary value of 288,140,500, which is inflated by a factor equal to the number of days in the month.

Figure 5. Summary value before column dependencies are applied

After column dependencies are applied, the Sales Target summary value is shown as 57,628,100,
which is the expected value.

Chapter 3. Modeling metadata 27

Figure 6. Summary value after column dependencies are applied

Scenario 3
In this scenario, measures in a dimension table are involved.

In the following example, the table Employee Training dim (on the left) contains the measures
Course Cost and Course Days. The same measures exist in the Employee Training Fact
table. The Employee Training dim table is joined to the Employee Training Fact table on the
Training Key field. The Employee Dim table (on the right), which introduces more granularity, is
joined to the Employee Training Fact table on the Employee Key field. When queries are created
that are based on these three tables, there is a danger of double-counting the measures in the Employee
Training dim table.

Figure 7. Relationships between the dimension and fact tables

When querying across all three tables, you might want to see the Course Cost and Course Days
measures aggregated for both the course granularity and the employee granularity. The following report
output shows how you can achieve this effect by using the column dependencies feature.

28 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Figure 8. Report output with measures that are aggregated at different granularity levels

With the column dependencies defined, the first Course Cost and Course Days measures are
not double-counted in the Course Name En summary row. However, the second instances of these
measures, from the Employee Training Fact table, are aggregated for each employee within the
Course Name En grouping. In the Overall - Summary row, the Course Cost for the two courses is
shown as 750, and the revenue that was generated by all the students who took the course as 2,250.

Defining column dependencies
Define column dependencies to ensure that the fact data is aggregated correctly based on the keys or
attributes of those keys that are used in the query.

The column dependency groups are related to each other in a hierarchy group in an order from coarse to
fine granularity.

Tip: An attribute is a column that has the Usage property set to Attribute or Identifier. A fact is a column
that has the Usage property set to Measure.

About this task
You do not need to specify column dependencies for all tables. Do it only when double-counting would
take place. Your decision to specify column dependencies affects other Cognos Analytics components,
such as reports or dashboards.

Procedure
1. Open an existing data module or create a new module that is based on a source that contains tables

with repeated data at different levels of granularity.
2. Identify the attribute and fact columns that might cause double-counting. For example, the table can

contain data at the month, quarter, and year level.

Verify whether column properties and data formats are properly specified. For example, change the
Usage property to Attribute, or assign the data format of Currency to fact (measure) columns. Save
the data module.

3. To see how the data is aggregated before column dependency is specified, you can create a report
that is based on your saved data module. Later, you can use this report to verify the effect of applying
column dependency on data aggregation.

4. From the table context (right-click) menu , select Specify column dependencies.

The Column dependencies view is opened.

Chapter 3. Modeling metadata 29

5. Drag the attribute columns that you identified in step 2, such as Year, Quarter, Month, and Day from
the Data module panel to the Column dependencies view.

6. Click the group icon , and draw a line from the highest level attribute to the left of the next level
attribute. Group the columns in a logical order to create a hierarchy group.

Repeat this action for each level until the hierarchy is complete from coarse to fine granularity.
7. Drag any related attributes or measures, such as Quarter (caption), Month (caption), Sales
target, and Date and Revenue, inside the related attribute area.

Note: Each column from the table must be in one group. Otherwise, validation warnings are shown.

You can view the groups in the Horizontal view or Vertical view.
8. Verify, and if needed, modify the column dependency settings. For more information, see “Configuring

column dependencies” on page 31.
9. Save the data module.

Results
The following scenario 1 example shows how to group hierarchy columns and add their attributes in a
denormalized table that includes facts at different levels of granularity.

Figure 9. Example of column dependencies for scenario 1

The following scenario 2 example shows column dependencies in a Time dimension table that can relate
to multiple fact tables at different levels of granularity. You can see how columns in the Time dimension
can be grouped, and their attributes added. In this case, the Time dimension is joined to the Sales
Target fact table on the Month Key, and to the Sales fact table on the Day Key. The hierarchy for
the Time dimension table is specified and configured to prevent double counting when a query includes
the Day Key level and the Sales Target fact, which would repeat for every day in the month.

Figure 10. Example of column dependencies for scenario 2

30 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

The following scenario 3 example shows how column dependencies can be defined when a dimension
table contains measures. The column dependency is built around the unique Training Key column. All
other columns are nested underneath as attributes of the Training Key column. In this case, there is
no hierarchy in the dimension data so only one dependency group is defined.

Figure 11. Example of column dependencies for scenario 3

Configuring column dependencies
After you define a column dependency group and a hierarchy group, you can configure the column
dependency settings for individual columns.

The following configuration settings are available:

• Unique or Repeating

This setting specifies whether each row value is unique or repeating. Typically, all levels except for the
lowest level in a hierarchy have repeating keys. Unique means that the key doesn’t repeat for any row in
the data.

• Dependent or Independent

This setting specifies whether the parent level value is required to identify the key of the current level.
For example, a month key that is defined as a number in the range 1 - 12, requires the parent level
keys to identify which year and quarter the key belongs to. Conversely, a month key that is defined as
20190101 doesn’t require the parent keys to identify it because the month (01), quarter (01), and year
(2019) values are included in the key.

• Minimum , Maximum , and Group by or Average

This setting specifies if the SQL must be generated with the Min, Max, Avg, or Group by clause when
aggregating the data. Minimum is the default setting. Use Minimum, Maximum, or Average for data
attributes where there is more than one value for a particular key. For example, the key value of YOW
might have the airport name values of Macdonald Cartier Airport, Ottawa International
Airport, Ottawa/Macdonald–Cartier International Airport, or Macdonald–Cartier

Chapter 3. Modeling metadata 31

International Airport. In this case, select the Minimum or Maximum setting to prevent double-
counting.

When the data attributes don't repeat, which means that they are consistent throughout the data for
each key, the Group by setting can be used. This setting doesn’t apply to measures.

For measures, you might want to use the Average setting when the numeric values are similar. For
example, when the values are 1000001, 1000002, and 1000003.

If the column dependency is set to Minimum or Maximum, changing the column Usage property from
identifier or attribute to measure, or the opposite, doesn't affect the column dependency. However, if
the column dependency is set to Group by (identifiers or attributes) or Average (measures) changing
this property sets the column dependency to Minimum.

Procedure
1. Open the table Column dependencies view.
2. Inside the columns, click the icons that represent the different column dependency settings, and

adjust the settings as required. For example, click the Unique or Repeating setting icon.
3. Save the data module.
4. Optional: To see how the data is aggregated after column dependency is specified, you can create a

report that is based on your saved data module. Compare the aggregated results with the report from
step 3 in the topic “Defining column dependencies” on page 29.

Results
The following scenario 1 example shows how to configure columns in a denormalized table. In this case,

all keys have repeating values except for Day Key, which has a unique value for every row

of data. Each key is independent , and doesn’t require the parent level key to identify it. Finally, all

attributes for each column dependency group are set to Group by because the values are consistent.

Figure 12. Example of column dependencies configuration for scenario 1

The following scenario 2 example shows how columns in a Time dimension can be configured. In this

case, all keys have repeating values except the Day Key which is unique for every row in the
data. The Quarter Key and Month Key values can't be identified without the Year key level. Quarters
and months are represented by numbers in the range 1 - 4 and 1 - 12. Therefore, these columns must be

set to Dependent . Year and Day Key are set to Independent because their values can identify

them. All the attribute values are consistent except Month En so they are set to Group by . However,

Month En has values such as August, Aug., Aug, and August 08 so it must be set to Minimum .

32 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Figure 13. Example of column dependencies configuration for scenario 2

The following scenario 3 example shows how to configure columns in a dimension table that contains

measures. The Training Key is unique and independent . The Course Code and Course

Name values are all consistent, and can be set to Group by .

Figure 14. Example of column dependencies configuration for scenario 3

Calculations
Calculations allow you to answer questions that cannot be answered by the source columns.

Data module calculations are available to all Cognos Analytics components, explorations, dashboards,
stories, or reports, that use the data module as a source.

Data modules support the following types of calculations:

Chapter 3. Modeling metadata 33

• Stand-alone calculations

These types of calculations, also referred to as global calculations, reside outside of a table in a data
module. Stand-alone calculations can refer to columns in any table in the module. You can move a
stand-alone calculation into a folder to better organize items in the data module.

• Embedded calculations

These types of calculations, also referred to as table calculations, reside within a table in a data module.
Embedded calculations can refer only to columns in the same table.

You can create basic arithmetic calculations, and more complex, custom calculations.

Creating basic calculations
You can create basic arithmetic calculations for columns with numeric data types.

About this task
The expression for these calculations is predefined, and you need only to select the proper mathematical
operator, and in some cases, a constant value. For example, you can create a column Revenue by
multiplying values for Quantity and Unit price.

Procedure
1. In the data module tree, right-click one or two columns that you want to use in the calculation.

For calculations that are based on two columns, use control-click to select the columns. The columns
can be in two different tables. The column that was selected first is used as the first operand in the
calculation.

You can also create the calculations at the folder level.
2. Click Create calculation.
3. Specify the calculation name by overwriting the automatically generated name.
4. For Expression, if your calculation is based on one column, choose the required operator and specify

the constant value.

If your calculation is based on two columns, ensure that the order of columns is correct, and choose
the required operator. If the order of columns is incorrect, click Cancel, and start the calculation again
by selecting the columns in the proper order.

5. Leave clear or select the Calculate after aggregation checkbox.

When you leave this checkbox clear, the calculation is performed on the column values before they are
aggregated. If you select this checkbox, the calculation is performed after the values are aggregated.
The calculation results might be different in each case.

6. Click OK to finish the calculation, or click Use calculation editor to view the calculation expression, or
to modify it.

Results
A calculation based on one column is created as an embedded calculation. The calculation is added at the
top of the list of columns in the table. You can move it to a folder inside the same table.

A calculation based on two columns can be created as an embedded or stand-alone calculation. If the
columns are from the same table, an embedded calculation is created. It is added at the top of the list
of columns in the table. If the columns are from different tables, a stand-alone calculation is created.
It is added at the top of the data module tree, outside of any table. You can move this calculation to a
module-level folder.

34 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

What to do next
The calculated column can be used in the same way as other columns in the table. From its context menu,
you can access the different actions to edit the calculation, format its data, or remove it.

The calculation can be used in reports, dashboards, explorations, and other Cognos Analytics content.

Creating custom calculations
To create a custom calculation, you must define your own expression using the expression editor.

The expression editor provides functions and operators to create your expressions. It also includes
function examples and documentation, and validates the expressions. For more information about using
the expression editor, see this blog in the product community.

About this task
Custom calculations can be based on one column or multiple columns from different tables.

Procedure
1. In the data module tree, right-click the data module name, a table name, or a folder name, and click

Calculation.

Note: You can also create calculations from the Relationships or Custom tables view.
2. In the expression editor that is displayed, specify the calculation name by overwriting the

automatically generated name.
3. In the Expression box, define the expression for your calculation by using the expression editor

capabilities.

• To enter a function for your expression, type the first character of the function name, and select the
function from the drop-down list of suggested functions. For example, the following expression can
be used to concatenate a person's first and last name and create a calculated column called Name:

concat ([Sales target (query)].[Sales staff].[First name],
[Sales target (query)].[Sales staff].[Last name])

• To add table columns to your expression, drag-and-drop one or more columns from the data module
tree to the Expression box. The column name is added where you place the cursor in the expression
editor.

Tip: You can also double-click the column in the data module tree, and the column name appears in
the expression editor.

4. Click Validate to check if the expression is valid. The calculation will be created even if the expression
is not valid, but it won't be usable.

5. Leave clear or select the Calculate after aggregation checkbox.

When you leave this checkbox clear, the calculation is performed on the column values before they are
aggregated. If you select this checkbox, the calculation is performed after the values are aggregated.
The calculation results might be different in each case.

6. Click OK.

Results
A calculation based on one column is created as an embedded calculation. The calculation is added at the
top of the list of columns in the table. You can move it to a folder inside the same table.

A calculation based on two or more columns can be created as an embedded or stand-alone calculation.
If the columns are from the same table, an embedded calculation is created. It is added at the top of the
list of columns in the table. If the columns are from different tables, a stand-alone calculation is created.

Chapter 3. Modeling metadata 35

https://community.ibm.com/community/user/businessanalytics/blogs/ian-henderson1/2019/10/17/cognos-analytics-modelling-expression-editor

It is added at the top of the data module tree, outside of any table. You can move this calculation to a
module-level folder.

What to do next
The calculated column can be used in the same way as other columns in the table. From its context menu,
you can access the different actions to edit the calculation, format its data, or remove it.

The calculation can be used in reports, dashboards, explorations, and other Cognos Analytics content.

Filters
A filter specifies the conditions that rows must meet to be retrieved from tables when the data module is
used with reports, dashboards, explorations, and other Cognos Analytics content.

Data modules support the following types of filters:

• Embedded filters.

These filters are always applied to a table when the data module is used in dashboards, reports,
explorations, and so on.

• Selectable filters.

These filters are created as selectable items in the data module tree, inside a table or at the root of the
data module. The users can decide whether to apply these filters to dashboards, reports, explorations,
and so on.

Security filters are a different type of filters that are specified at the source level. For more information,
see “Securing data” on page 16.

Creating embedded filters
Create embedded filters to customize the view of data in the data module for specific use cases.

For example, you can filter out data that is irrelevant for certain geographies, time periods, product lines,
and so on.

About this task
Embedded filters can be crated for a single column, or for multiple columns in a table.

Procedure
1. In the data module tree, locate the table that you want to add filters to, and choose one of the

following options:

• To create a filter for a single column in the table, from the column context menu, click Filter.
• To create filters for multiple columns in a table, from the table context menu, click Manage filters.

On the Filters tab, select the column for which you want to create the filter, and click Add a filter.

The option via expression editor allows you to create a filter by using the expression editor. Specify
the filter name, type its expression, and click OK. Next, you can either continue adding filters by
using this option, or proceed to step 2.

2. Specify the filter values. The options to select values depend on the column data type.

• For columns with integer and decimal data types, you have two options to specify the values:
Range and Individual items. When you choose Range, you can use the slider to specify the range
values, or type the range start and end values. When you choose Individual items, select the check
boxes that are associated with the values.

Tip: You can enter decimal values only for columns with the decimal data type. When you try to
enter a decimal value for a column with the integer data type, the decimal separator is cleared.

36 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

• For columns with date and time (timestamp) data types, specify a range of values before, after, or
between the selected date and time, or select individual values.

• For columns with text data types, select the check boxes that are associated with the values.

To select values that are outside the range that you specified, click Invert.
3. Click OK to save the filter.

Please note that the effect of the filter is not automatically shown for the members in the data tree. To
see that effect, click the Refresh members action on the related column in the data tree.

4. If you used the Manage filters option, you can continue creating filters for other columns in the table.
The filters that you created are listed on the Filters tab.

Results

After an embedded filter is created, the filter icon appears next to the column and table names in the
data module panel, diagram, and expression editor.

The filter icon on a table indicates that the table contains at least one embedded filter. All embedded
filters that a table contains are listed in the table properties, on the Filters tab.

What to do next
To edit a filter on a single column, from the column context menu click Filter, and modify the filter
conditions. To remove the filter, click Clear all.

To edit or remove embedded filters for a table, from the table context menu click Manage filters. On the
Filters tab, view or edit the filters, or remove them.

Creating selectable filters
Create selectable filters when you want to give users the choice of applying the filters in dashboards,
reports, explorations, and so on.

The filters suggest possible options to filter data in the data module, but the users can also view unfiltered
data.

About this task
Selectable filters can be created inside a table or outside a table, at the root of the data module.

Procedure
1. Open a data module and decide what type of a selectable filter you want to create.

• To create a filter inside a table, from the table context menu, click Filter.

The Filter option is also available for a folder inside the table, and for the table in the diagram.
• To create a filter outside a table, from the data module context menu, click Filter.

The Filter option is also available for a folder at the root of the data module.

The expression editor is displayed.
2. Type the filter name.
3. In the Expression panel, provide the filter expression by using the expression editor capabilities.
4. Click OK

Chapter 3. Modeling metadata 37

Results

The filter is added as a stand-alone entry in the data module tree with the filter icon before the filter
name. Filters created at the folder-level are added to the applicable folder.

What to do next
To edit the filter, from the filter context menu, click Edit filter. To remove the filter, from the filter context
menu, click Remove.

Hiding items
You can hide items in a data module, such as tables, columns, uploaded files, and folders.

The hidden items are not visible in the metadata tree in reports, dashboards, stories, and explorations,
but are fully functional in the product.

About this task
Use this feature to provide an uncluttered view of metadata for the reports, dashboards, stories, and
explorations users. For example, when you hide columns that are referenced in a calculation, the
metadata tree in the reporting or dashboarding interface shows only the calculation column, but not
the referenced columns. When you hide the identifier columns that are used as keys for joins, the keys are
not exposed in reports, dashboards, stories, or explorations, but the joins are functional in all interfaces.

The following read-only items can't be hidden by default:

• Packages.

To work around this issue, create a folder in the data module tree, and move your package with all its
content into that folder. Then, hide the folder.

• Tables that are linked to the source data module, which is indicated by the linked table icon .

To work around this issue, in the data module tree, from the table context menu , select Break link.
The link is broken, and you can now hide the table.

Procedure

1. In the data module tree, click the context menu icon for an item such as a table or column, and
click Hide from users.

You can also select multiple items to hide at once.

Tip: To show the hidden items, click the context menu icon for the hidden item, and click Show.
2. Save the data module.

Results
The labels on the hidden items are grayed out in the data module tree and in the diagram. Also, on the
General tab of the item properties, the Hide from users property is selected.

The hidden items are not visible in the metadata tree in reports, dashboards, stories, and explorations. In
addition, hidden items can't be selected for use in new visualizations, but are fully functional in existing
visualizations that utilize them.

38 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Creating data groups
You can organize the column data into custom groups so that the data is easier to read and analyze.

For example, in the Employee code column, you can group employees into ranges, such as 0-100,
101-200, 200+. In the Manager column, you can group managers according to their rank, such as First
line manager, Senior manager, and so on.

About this task
Depending on the column data type, you can create data groups by using the following styles:

• Numeric style.

Each data group includes a range of values. By default, this style is available for columns with numeric
data types. However, while you create the data group, you can switch to the text style, and continue
switching between the two styles until you save the group.

• Text style.

Each data group includes individual values. By default, this style is available for columns with text data
types. For columns with numeric data types, you can switch to this style when you create a data group.

Note: When working with columns that contain large numbers of items, it might be more efficient to
define conditional groups manually by using the expression editor.

Procedure
1. In the data module tree, right-click the column where you want to group data, and click Create data

group.
2. If you selected a numeric column, set the groups in the following way:

a) In the Name field, specify a name for the grouped column.
b) From the Groups menu, select the number of groups that you want to create. Each group is

automatically assigned an equal number of values. When you change the number of groups, the
values are dynamically redistributed and the range values are set.

c) In the Group names column, replace the automatically generated labels with meaningful names.
However, if you change the number of groups, the custom labels are cleared, and the automatically-
generated labels are restored for each group.

d) If needed, manually lock the Range border values for each group. The Higher and Lower range
border values can be changed to numeric inputs. To return to the equal distribution of values, click

the Reset distribution icon.
e) To create a group for NULL values, select the Group NULL values as check box, and type a name for

the group.
f) If you want to switch to the text style, click Create a data group (text style) and proceed to step

3. You can continue switching between the Create a data group (numeric style) and Create a data
group (text style) dialog boxes until you click Create.

g) Click Create.
The grouped column appears at the top of the list of columns in the table. However, if you selected the
Replace the existing column check box, the grouped column replaces the original column in the table.

3. If you selected a text column, set the groups in the following way:
a) In the Name field, specify a name for the grouped column.
b) In the Groups box, click New group, and type a group name.
c) In the Remaining items in column box, control-select the values to include in the group, and click

the Add to group icon . The values are moved to the Group items box.

Chapter 3. Modeling metadata 39

Note: The maximum number of items that can be preloaded in the Remaining items in column box
is 32000. You can select from these items to add them to the groups that you define.

d) Repeat steps b to c to create more groups.
e) Optional: To create a group that contains all of the values that aren't already included in any group,

select the Group remaining and future values in check box, and type a name for the group.
f) Optional: To replace the original column in the table with the grouped column, select the Replace

the existing column check box.
g) Click OK.

The grouped column appears at the top of the list of columns in the table. However, if you selected the
Replace the existing column check box, the grouped column replaces the original column in the table.

What to do next
To edit the grouped column, right-click the column, and select Edit data group.

You can't change the data group style for columns with numeric data types by editing the data group.

Cleaning data
Data is often messy and inconsistent. You might want to clean your data so that it's clearer and easier to
read.

About this task
The Clean options that are available for a column depend on the column data type. Some options can be
specified for multiple columns with the same data type, and some for singular columns only.

The following options are available to clean your data:

Whitespace
Trim leading and trailing whitespace

Select this check box to remove leading and trailing whitespace from strings.

Convert case to
UPPERCASE, lowercase, Do not change

Use this option to change the case of all characters in the string to either uppercase or lowercase, or
to ensure that the case of each individual character is unchanged.

Return a substring of characters
Return a string that includes only part of the original string in each value. For example, an employee
code can be stored as CA096670, but you need only the number 096670 so you use this option to
remove the CA part. You can specify this option for singular columns only.

For the Start value, type a number that represents the position of a character in the string that will
start the substring. Number 1 represents the first character in the string. For the Length value, specify
the number of characters that will be included in the substring.

NULL values
Specify NULL-handling options for columns with text, numeric, date, and time data types that allow
NULL values. When Cognos Analytics detects that a column does not allow NULL values, these options
are not available for that column.

The default value for each option depends on the column data type. For text data, the default is an
empty string. For numbers, the default is 0. For dates, the default is 2000-01-01. For time, the default
is 12:00:00. For date and time (timestamp), the default is 2000-01-01T12:00:00.

The entry field for each option also depends on the column data type. For text, the entry field accepts
alphanumeric characters, for numbers, the entry field accepts only numeric input. For dates, a date
picker is provided to select the date, and for time, a time picker is provided to select the time.

40 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

The following NULL-handling options are available:

Replace this value with NULL

Replaces the text, numbers, date, and time values, as you specify in the entry field, with Null.

If you replace all column values with Null, the column data type remains unchanged. You need to
change the data type manually to avoid errors when the values are used in expressions. For more
information, see step 4.

Replace NULL values with

Replaces NULL values with text, numbers, date, and time values, as you specify in the entry field.

For example, for the Middle Name column, you can specify the following values to be used for cells
where middle name does not exist: n/a, none, or the default empty string. For the Discount Amount
column, you can specify 0.00 for cells where the amount is unknown.

Procedure

1. In the data module tree, click the context menu icon for a column, and click Clean.

To clean data in multiple columns at once, control-select the columns that you want to clean. The
Clean option is available only if the data type of each selected column is the same.

2. Specify the options that are applicable for the selected column or columns.
3. Click Clean.

The "cleaned" values are displayed in the data module. This is the final step for most Clean options.

The expression editor automatically creates an expression for the modified columns. To view the
expression, open the column properties panel, and for the Expression property, click View or edit.

4. If you used the Replace this value with NULL option to replace all column values, perform the
following steps to change the column data type:
a) Open the column properties panel, and for the Expression property, click View or edit.
b) View the expression for the cleaned column. The expression is similar to this one:

nullif (
 i2000_YR2000
 ;
 ''
)

The column Data type property in this example is Text.
c) Use the cast function on the expression to convert the values in the column to the required data

type, as shown in the following example:

cast(nullif (
 i2000_YR2000
 ;
 ''
), integer)

Tip: To view the documentation about the cast function, click the function name in the expression,

and then click the information icon in the toolbar. The function description is displayed in the
Information panel.

d) Click OK to save the expression.

The column Data type property is now changed to the required type. In the example provided in
this step, it's the Integer data type.

The values in each column now show Null.

Chapter 3. Modeling metadata 41

Example

If you want to use an empty string instead of NULL in a given column, but your uploaded file sometimes
uses the string n/a to indicate that the value is unknown, you can replace n/a with NULL, and then
replace NULL with the empty string.

Creating navigation paths
A navigation path is a collection of non-measure columns that business users might associate for data
exploration.

When a data module contains navigation paths, the dashboard users can drill down and back to change
the focus of their analysis by moving between levels of information. The users can drill down from column
to column in the navigation path by either following the order of columns in the navigation path, or by
choosing the column to which they want to proceed.

Note: Navigation paths in a data module are not available when creating a union, except, intersect, join, or
custom SQL query in Reporting. For the navigation paths to be available, these types of queries must be
created directly in the data module. For more information, see “Custom tables” on page 22 and “Creating
tables using SQL ” on page 25.

About this task
You can create a navigation path with columns that are logically related, such as year, month, quarter,
week. You can also create a navigation path with columns that are not logically related, such as product,
customer, state, city.

Columns from different tables can be added to a navigation path. The same column can be added to
multiple navigation paths.

A data module can have multiple navigation paths.

Procedure
1. In the data module panel, start creating a navigation path by using one of the following methods:

• From the data module context menu , click Properties, and then click the Navigation paths tab.
Click Add a navigation path. In the Create navigation path dialog box, drag columns from the data
module panel to the navigation path panel. Change the order of columns as needed. Click OK.

• In the data module tree, select one or more columns, and from the context menu of any of
the selected columns, click Create navigation path. The selected columns are listed in the Create
navigation path dialog box. Click OK.

Tip: The default name of the navigation path includes names of the first and last column in the path.
You can change this name.

2. Save the data module to preserve the navigation path.

3. To modify a navigation path, from the data module context menu , click Properties, and then
click the Navigation paths tab. Click the Edit link for the path that you want to modify. In the Edit
navigation path dialog box, you can make the following modifications:

• To add different columns, drag the columns from the data module to the navigation path. You can
multi-select columns and drag them all at once.

• To remove columns, click the remove icon for the column.
• To change the order of columns, drag them up or down.
• To change the navigation path name, overwrite the existing name.

The default name reacts to the changed order of columns. If you overwrite the default name, it does
no longer change when you modify the group definition. The name cannot be blank.

42 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Results
The navigation path is added to the data module and is available to users in dashboards and stories. If you

select the option Identify navigation path members in the data module toolbar, the columns that are
members of the navigation path are underlined.

What to do next
The modeler can modify the navigation path at any time, and re-save the data module.

To view the navigation path that a column belongs to, from the column context menu , click Properties
> Navigation paths. Click the navigation path name to view or modify its definition.

To view all navigation paths in a data module, from the data module context menu , click Properties >
Navigation paths. Click the navigation path name to view or modify its definition. To delete a navigation

path, click the remove icon for the path.

Formatting data
The column data format specifies how column values are displayed in dashboards, stories, explorations,
or reports. You can choose a format type such as text, percent, or currency.

Uploaded Microsoft Excel spreadsheets retain the column data formats that were defined in Excel.
These formats are set as default data formats in the base data modules that are created from these
spreadsheets.

Each format type contains properties that further specify how the data is displayed. Initially, the
properties are set based on the format options that are returned from the source. If no option is returned
from the source, the property is set to the data module default.

About this task
Some characters are language-sensitive and display properly only when your locale supports the
applicable font. For example, for Japanese currency symbols to display correctly, your locale must be
set to Japanese.

You can define the format type for several columns at the same time if the columns contain the same type
of data.

Procedure

1. In the data module tree, from a column context menu , click Format data.
2. In the Data format dialog box, select the appropriate Format type.

For example, you can select Date, Time, Date/Time, or other type.

If the data was not formatted in the source, the Unformatted type is assigned in the data module. If
the source supplies a format, the format is reflected in the module.

The Custom format is an advanced option where you can supply your own format string and use it to
format the data.

3. Specify properties for the selected format type.

For example, for the Date type, you can specify the Date separator, the Date style, and Date ordering
properties. For the Currency type, you can specify the Number of decimal places property.

The Default setting is specific to the property that it refers to. You can view the default for each
property by clicking the information icon next to the property. For example, for the thousands
separator the default value is inherited from the user's content language. For the decimal places

Chapter 3. Modeling metadata 43

default, if the property is not set, the number of decimal places vary depending on the number
rendered.

Click Advanced options to view and specify more data format properties. Click Reset properties if you
want to reset the properties to default values.

4. Click OK to apply the formatting.

SQL in Cognos Analytics
SQL is the industry-standard language for creating, updating, and querying relational database
management systems.

Supported SQL types
IBM Cognos Analytics supports three types of SQL: Cognos SQL, native SQL, and pass-through SQL.

Cognos SQL
Cognos SQL is an implementation of the standard SQL. It works with all relational and tabular data
sources. This is the optimal type of SQL for use with Cognos Analytics applications. Using Cognos SQL is
preferable because you can have fewer database restrictions. Cognos SQL improves table performance
by, for example, removing unused elements at query time.

Cognos SQL does not support non-standard SQL.

Native SQL
Native SQL uses vendor-specific SQL constructs. Use native SQL to pass the SQL statement that you enter
to the database. Cognos Analytics might add statements to what you enter. A native SQL statement can
reference only one data source.

This type of SQL must be completely self-contained. It can't reference anything outside that SQL, such
as database prompts, variables, or native formatting that would normally be supplied by the calling
application.

If you are comfortable working with a native SQL version, you can use keywords that are not available in
Cognos SQL, and copy and paste SQL statements from other applications to Cognos Analytics.

This type of SQL might not work with a different data source.

Pass-Through SQL
Use pass-through SQL when the SQL statement that you enter is not valid inside a derived table, such as
in a With or OrderBy clause. Generally, you should use pass-through SQL only if you must create a table
that contains source-specific constructs.

Pass-through SQL lets you use native SQL without any of the restrictions that the data source imposes on
subqueries (pass-through SQL tables are not processed as subqueries). Instead, the SQL for each table is
sent directly to the data source where the query results are generated.

Performance is slower because each table is sent to the source as a separate statement rather than being
optimized by Cognos Analytics. Therefore, when choosing between native SQL and pass-through SQL, you
must decide which is more important: performance or using SQL that is not permitted in a subquery.

Pass-through SQL must be completely self-contained. It must not reference anything outside of that SQL,
such as database prompts, variables, or native formatting that would normally be supplied by the calling
application.

A pass-through SQL statement might not work with a different data source.

44 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Showing the query information
Modelers can view and copy the query information (SQL) that was used to generate tables and
relationships for SQL-based data sources.

The source types that this feature applies to include data servers, packages, and data modules that are
based on data servers and packages.

The following types of query information are supported:

• Cognos SQL

An SQL statement that uses the IBM Cognos implementation of standard SQL.
• Native SQL

An SQL statement that uses vendor-specific SQL constructs.
• Query response

The complete response that contains all messages that were generated when the query was processed.

For more information, see “Supported SQL types ” on page 44.

Procedure

1. To view the table SQL, in the data tree, from the table context menu select Show query
information. To view the relationship SQL, on the Relationships tab, right-click the relationship join in
the diagram, and select Show query information.

2. By default, the query information is generated as Cognos SQL. From the Query information type
menu, you can change the viewing options to Native SQL or Query response.

3. To copy the SQL to the clipboard, click the copy icon.

Generating the query SQL
You can specify how Cognos Analytics generates the SQL that retrieves data from tables when queries
run.

Use the Item list property on tables to specify the SQL generation type. Depending on the setting that you
specify for this property, the generated query SQL includes all or only selected columns.

Procedure
1. In the table Properties, on the General tab, the Advanced section, locate the Item list property.
2. Select one of the following settings:

All
The generated SQL contains all columns in the table.

Used
The generated SQL contains only the columns that are used by the query directly, and the columns
that are needed by the join.

Automatic
This is the default setting. It works identically as the All setting.

3. Save the data module.

Results
The query generation settings that you specify apply to queries in dashboards, reports, stories, and
explorations.

Chapter 3. Modeling metadata 45

Validating data modules
Use the validation feature to check for invalid object references within a data module.

Validation identifies the following issues:

• A table or column that a data module is based on no longer exists in the source.
• A calculation expression is invalid.
• A filter references a column that no longer exists in the data module.
• A table or column that is referenced in a join no longer exists in the data module.

About this task
Automatic and manual data module validation is available. Automatic validation is turned on by default.
You can disable automatic validation, and manually start the validation when required.

With automatic validation, the results are refreshed after each update of the data module.

Procedure

1. In the application bar, or in the Data module panel, click the validation icon . You can also click
Validate from the data module context menu.

The validation pane opens.
2. To enable or disable automatic validation, click the Automatic toggle switch. To validate the data

module manually, click Validate.
3. Check for validation errors.

The following indicators specify that the data module contains errors:

• The number of errors is displayed on top of the validation icon in the application bar

• The failed validation icon is displayed in the data module tree and in the diagram, next to the
column where the error is discovered.

4. Click the error icons to view the number of errors and the details about the errors.

The errors are listed in the Validation issues panel.
5. View the error messages by clicking the Show details link for each issue. To view the log of all errors,

click the validate icon in the application bar , and then click View details.

To copy the error messages to the clipboard, click the copy icon.
6. Using the validation messages, try to resolve the errors.

You can save the data module with validation errors, and resolve the errors later.

Object properties
You can view and modify the data module, table, column, and folder properties in the modeling interface.

The properties can be accessed from the module, table, column, or folder context menu , or by using

the Properties icon in the application bar.

Some properties, such as Label and Identifier, are available for all objects in the data module, while
other properties are available only for certain types of objects. For example, Member display list is
available only for data modules, Item list only for tables, and Aggregate only for columns.

You can view and modify the following properties on the General tab of the Properties pane.

46 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Label

Specifies the item's name that is displayed in the user interface. This property applies to all items. You
can't change the label for members. To change the label for a data module, save the module by using
the Save as option.

Hide from users

Use this property to hide items, such as tables, columns, packages, or folders, in a data module. The
hidden items are grayed out in the modeling interface, and not visible in other interfaces, such as
reporting or dashboarding. For more information, see “Hiding items ” on page 38.

Expression

Shows the underlying expression for a column. Click View or edit to open the expression editor where
you can modify the expression.

Usage

This property applies to columns, and specifies the intended use for the column data.

The initial property value is based on the type of data that the column represents in the source. You
need to verify that the property is set correctly. For example, if you import a numeric column that
participates in a relationship, the Usage property is set to Identifier. You can change this property.

The following Usage types are supported:

Identifier
Represents a column that is used to group or summarize data in a Measure column with which
it has a relationship. It can also represent an index, date, or time column type. For example,
Invoice number, or Invoice date.

Measure
Represents a column that contains numeric data that can be grouped or summarized, such as
Product Cost.

Attribute
Represents a column that is not an Identifier or a Measure, such as Description.

Aggregate

This property applies to columns, and defines the type of aggregation that is applied to a summary
column in a report or dashboard. For example, if the Aggregate property value of the Quantity
column is Total, and the column is grouped by Product Name in a report, the Quantity column
in the report shows the total quantity of each product. Aggregated data improves query performance
and helps to retrieve data faster.

The default type of aggregation is inherited from the source. When modifying this property, you
can select values that the source does not provide, such as average or maximum. To know which
aggregate value is required, you must understand what your data represents. For example, if you
aggregate Part number, the aggregate values that apply are count, count distinct, maximum, and
minimum.

The following aggregation types are supported:

• None (no aggregation is set up for a column)
• Average
• Count
• Count distinct
• Maximum
• Minimum
• Total

Chapter 3. Modeling metadata 47

Data type

The column data type is inherited from the source and can't be modified in the data module.

Represents

Use this property to specify whether a column includes the date or time, or geographic location type
of data. This information is used in the reporting and dashboarding environments to suggest the most
appropriate default visualizations, among other possibilities.

Geographic location
The values include Continent, Sub Continent, Country, Region, State Province, County, City,
Postal code, Street Address, Position, Latitude, and Longitude.

Time
The values include Date, Year, Quarter, Season, Month, Week, Day, Hour, Minute, and Second.

Lookup reference

This column property is used to create a data module for relative date analysis. For more information,
see “Creating a data module for relative date analysis” on page 61.

Members

Use this column property to enable or disable displaying relational members in the data tree. The
following settings are available:
Automatic

Members can be expanded in the data tree. Sorting is enabled, and members are sorted by the
current column. Sort order is Ascending. This is the default setting.

Enabled
Members can be expanded in the data tree. You can select the column to sort by, and set the
sort order to Ascending or Descending. The members that are shown in the data tree don't
dynamically adjust to the changed sort order. Use the Refresh members action from the column

context menu for the sort order to be reflected in the data tree.
Disabled

Members can't be expanded in the data tree. Previously shown members are removed, and new
members can't be loaded for the column.

For more information, see “Displaying relational members” on page 54.

Members display limit

This data module property is used to specify the maximum number of members to load in the data
tree nodes for each fetch request. For more information, see “Setting the members display limits” on
page 53.

Comments

Use this property to specify optional information about the data module, table, column, or folder.
Applies to all items in the data module. The comment is not available outside of the modeling
environment.

Screen tip

Use this property to specify an optional short description of the table or column. Applies to all items in
the data module. The screen tip appears when you pause your pointer over the table or column name
in the modeling, reporting, or dashboarding environment.

Advanced properties
The following properties are specified on the General tab, Advanced section, of the Properties pane:

48 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Identifier

This property uniquely identifies objects. It is used, either by itself or in conjunction with parent
object identifiers, to generate SQL queries in expressions, reports, dashboards, and other objects. The
property is created automatically for a data module and all its objects. For tables and columns, the
property value is inherited from the data source. The property can be modified for all objects except
for folders and the data module itself. To change the data module identifier, save the data module
under a different name.

When changing this property, ensure that:

• The first character is a letter or an underscore (_).
• The subsequent characters are letters, digits, or underscores (_), without spaces.

On the source tables, you cannot change the column identifier because at least one instance of that
identifier is needed as a reference to the data source. While tables capture this reference in the
background, columns do not. If you want to change the identifier for a column, for example if you
are trying to create a more cryptic identifier, the recommended approach is to make copies of the
columns, hide the original columns, and rename the identifiers of the copies.

Technical data type

This property reflects how the column is defined in the database. For example, for a column with the
Data type of Text, the Technical data type might be char(5), nvarchar(200), or varchar(10).

Usage

This property applies to tables. It controls how the query engine should understand and process the
table, and its child objects, in a query. The Usage property has the following settings:
Automatic

This setting informs the query engine that the table is an ordinary table, and requires no special
processing. This is the default setting.

Bridge
The bridge table is used to remove the many-to-many relationships between tables by setting the
many side of the relationship to the bridge table. By default, the Cognos Analytics query engine
understands tables that are at the many end of relationships to be fact tables. The bridge table is
not a fact table. So for the query engine to understand the role of the table and properly generate
the query, the bridge table Usage property must be set to Bridge.
The bridge table can be defined either in the database or in the data module (or Framework
Manager model). However, it is preferable to create bridge tables in the database.

Summary
This setting summarizes the values in the table. When the table is used in a report or dashboard,
the data retrieved from the table is already summarized, columns with the Usage property set to
Measure are aggregated, and all other columns are used as grouping columns.

Summary tables, such as unions, joined views, excepts, intersects, and SQL-based tables can
be modeled in reports and data modules. It is more efficient to model these tables in the data
module because they can be available for all reports and dashboards. The tables are modeled
once, there is only one possible point of failure, and the generated numbers are consistent.

Item list

Use this property to specify the SQL generation type for a table. Depending on the setting for this
property, the generated query SQL includes all or only selected columns. This property applies to
tables only. For more information, see “Generating the query SQL ” on page 45.

Data cache

Use this property to enable data caching and specify the cache expiry options for tables in the data
module. For more information, see “Setting up data caching” on page 14.

Chapter 3. Modeling metadata 49

Source

This property applies to all objects in the data module. For a table or column, it shows the source
name and path.

Supports NULL values

Specifies whether a column supports null values. By default, this property value is inherited from the
source. You can change this value.

50 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Chapter 4. Members in the data tree
The data module tree shows the content of relational and dimensional sources. In both relational and
dimensional sources, members are shown in the data tree.

To view the content of a dimensional source, expand the package that contains the source items.
Dimensional members are the nodes of the Members folder.

Relational members are the nodes of columns in relational sources.

You can initiate the search for members from the data tree, from the context menu of hierarchies,
levels, members, or columns. For more information, see “Searching for members” on page 53.

Relational sources
For relational sources, each unique value in a column is shown as a member in the data tree. These types
of members are referred to as relational members.

In the following sample data module, the Region column contains the following members: Midwest,
Northeast, South, and West.

The modeler can disable showing relational members for a particular column. For more information, see
“Displaying relational members” on page 54.

Dimensional sources
Dimensional data is available through packages. Expand the package to view its content. The content can
include dimensions, hierarchies, levels, members, and folders.

The following graphic shows an example of a dimensional data tree in a data module:

© Copyright IBM Corp. 2015, 2020 51

The data tree includes the following items:

1. Package

Packages are subsets of Framework Manager models containing items that can be used to create
data modules, data sets, reports, dashboards, and explorations. Packages can also be containers for
dimensional sources, such as Planning Analytics cubes and PowerCubes.

2. Measure dimension

Measure dimensions are collections of facts. They are composed of only quantitative items.
3. Dimension

Dimensions are broad groupings of descriptive data about a major aspect of a business, such as
products, dates, or markets.

4. Hierarchy

Hierarchies are groupings of specific data within a dimension.
5. Members folder

The Members folders contain the available members for a hierarchy or level.
6. Member

Members are unique items within a hierarchy. A member can be a container for other members.
7. Level

Levels are positions within the dimensional hierarchy that contain information at the same order of
detail and have attributes in common. Multiple levels can exist within a level hierarchy, beginning with
a root level.

The modeler can restrict the number of members that are loaded in the data tree when first expanding
a node that contains members, and when clicking the Load more link. Setting the limit of members
returned in one fetch is done at the data module level, for all member fetches. For more information, see
“Setting the members display limits” on page 53.

Modelers can’t create joins between dimensional data items, and can’t view content in the grid.

52 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Searching for members
Search for members returns members only. This type of search is separate from the metadata search,
which doesn’t return members.

Search for members works identically in data modules, dashboards, stories, and explorations.

Each member in the search results includes the member unique name (MUN), which is a unique identifier
for a member in Cognos Analytics. For more information about MUNs, search the IBM Cognos Analytics
Framework Manager User Guide or IBM Cognos Analytics Transformer User Guide.

About this task
Search for members can be invoked from the context menu of a hierarchy, level, member or column. The
search looks for all children of the item from which it was invoked. For levels, the search includes only the
immediate child-members. A relational member has no children so the search menu is not available for it.

The search results are limited to members that the users have permissions to view.

The system limit for search results is 50. If there are more than 50 matches, you can click Load more to
load the next 50 matches found by the search.

If a member is not found, you might need to refine the search text, or navigate to a lower level in the data
tree and start the search from there.

You can't invoke the search for members from a Members folder.

Procedure
1. Expand the data tree to view its nodes.

2. From the context menu of a hierarchy, level, member, or column, select Search for members.
3. In the search bar, type the search text.

The matching members are listed in the search results.

If the number of returned members is higher than 50, the Load more link is added below the set of
retrieved results. When this link is clicked, another set of matching members is loaded.

Each member in the search results includes the member unique name (MUN). Hover the cursor over
the displayed MUN to see its entire value. Here is an example of a MUN:

M1.[automation_Great_Outdoors_Company.mdc].[Products].[Products].
[Product line]->:[PC].[@MEMBER].[1]

If the search doesn’t return any members, type a different text. The search is reset every time you type
a new text.

4. To exit the search for members, click Cancel in the search bar.

You are back in the data tree.

What to do next
In dashboards, stories, and explorations, you can perform operations on members that are found by the
search.

Setting the members display limits
The members display limit specifies the maximum number of members to load in the data tree nodes for
each fetch request.

A fetch request occurs when first expanding a node with members, or clicking Load more.

Chapter 4. Members in the data tree 53

For dimensional sources, members are found in the Members folder, or as child items of a Member node.
For relational sources, members are child items of a column.

About this task
The members display limits are specified at the data module level and apply to members of all sources
that the data module is comprised of.

Procedure

1. Open the module properties by clicking the properties icon in the application bar.
2. On the General tab, specify the Members display limit property by using one of the following options:

• Set the limit

Set the maximum number of members to display in data tree nodes (hierarchies, levels, members,
and columns) for each fetch request.

Enter an integer number between 1 and 3000 in the Members limit field. The default number is 15.

For More members, specify how to display members over the specified limit. Choose one of the
following options:

– Load more

The Load more link is added to the data tree node below the members that are already loaded.
When the link is clicked, the next set of members is loaded. The number of members in the set is
equal to the number that is specified as the members limit.

– Search

The Search link is added to the data tree node below the members that are already loaded.
Users can use this link to search for members.

• System limit

The system limit is to load up to 3000 members per one fetch request.
• Search link only

No members are displayed in the data tree. Instead, the Search link is added to the data tree that
the users can use to search for members.

3. Save the data module.

Results
The members display limit affects members in the data module, as well as dashboards, explorations, and
stories that use the data module as their source.

Displaying relational members
For relational data sources, you can enable or disable displaying members in the data module tree for a
column.

Also, you can set the sort order for members when they are displayed in the data module tree, or in
visualizations in dashboards, stories, explorations, or reports that use the data module as a source. By
default, IBM Cognos Analytics loads items in the order that was defined in the data source.

About this task
Members display properties are specified at the column level, for non-measure columns.

54 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Procedure
1. Select one or multiple non-measure columns in the same or different tables.

2. In the application bar, click the properties icon to open the properties panel.
3. On the General tab, locate the Members property, and select one of the following settings:

• Automatic

Members can be expanded in the data tree. Sorting is enabled, and members are sorted by the
current column. Sort order is Ascending. This is the default setting.

• Enabled

Members can be expanded in the data tree. You can select the column to sort by, and set the sort
order to Ascending or Descending. The members that are shown in the data tree don't dynamically
adjust to the changed sort order. Use the Refresh members action from the column context menu
for the sort order to be reflected in the data tree.

The column to sort by should be related one-for-one to the current column. If you map the sort-by
column to a column that is less unique than the current column, the output will be sorted randomly
and grouping of the data results will be misaligned.

• Disabled

Members can't be expanded in the data tree. Previously shown members are removed, and new
members can't be loaded for the column.

4. Save the data module.

Results
The members display that is specified in the data module is used as the default display in the
metadata tree of dashboards, stories, and explorations. The members sort order can be overwritten in
visualizations.

Chapter 4. Members in the data tree 55

56 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Chapter 5. Relative date analysis
With the relative dates feature, you can analyze measures filtered by date periods that are relative to a
particular date. Examples of relative date filters include current quarter, last quarter, quarter-to-date, or
month-to-date.

When using relative dates, you can create reports and dashboards that show date-filtered results in
different visualizations, crosstabs, and so on. By default, the date-filtered measures in the data use
today's date as the reference date in the analysis.

The implementation of this feature uses a subset of Cognos Analytics 11.1.0 base samples that include
the sample calendar data modules, Gregorian Calendar and Fiscal Calendar. Ensure that the samples
are available in your Cognos Analytics installation before you start other, related tasks. For more
information, see “Sample calendars ” on page 57.

Tip: The base samples are installed with the Cognos Analytics server, and an administrator imports
the sample deployment Samples for Install_11_1_0 to the content store. For more information, see
"Importing the base samples" in the IBM Cognos Analytics Samples Guide.

To enable relative date analysis in Cognos Analytics, you must create a data module that maps your data
to a calendar. This data module can then be used as a source for relative date analysis in reports and
dashboards. For more information, see “Creating a data module for relative date analysis” on page 61.

If you want to customize the reference date for relative date analysis based on user roles, use the
_as_of_date global parameter. For more information, see “Customizing the reference date ” on page 72.

After the Cognos Analytics environment is set up for relative date analysis, users can use the relative date
filters and measures to perform analysis of data in reports and dashboards. For more information, see
"Relative date analysis" in the IBM Cognos Analytics Reporting Guide.

Video
Here's a video that captures the process of creating a data module for relative date analysis: video
(https://www.youtube.com/watch?v=sIaU4xXJo-c).

Sample calendars
The IBM Cognos Analytics base samples include a set of sample calendars that you need to set up relative
date analysis.

The sample calendar data modules and their sources can be found in the Team content > Calendars
folder.

The following samples are available in this folder:

• Gregorian calendar data module.

Contains dates from January 1, 1950 to December 31, 2050.
• Fiscal calendar data module.

Contains dates from March 1, 1950 to February 28, 2050.
• Fiscal calendars folder.

This folder contains 12 sample calendar data modules. Each of these calendars covers 100 years (1950
to 2050), but the dates in each calendar start in a different month. The month in the calendar name
indicates the start of a fiscal year. For example, the 02. February 1 data module is the sample calendar
for the fiscal year starting on February 1.

© Copyright IBM Corp. 2015, 2020 57

https://www.youtube.com/watch?v=sIaU4xXJo-c

The 03. March 1 calendar is the same as the Fiscal calendar, and the 01. January 1 calendar is the
same as the Gregorian calendar.

• Retail calendar_454_2016_2022 data module.

Contains dates from January 31, 2016 to January 30, 2023. The retail calendar is based on the National
Retail Federation (NRF) 4-5-4 Calendar. You can also generate a custom retail calendar. For more
information, see “Creating a custom retail calendar ” on page 59.

• Source files folder.

This folder contains the source .csv files for the calendars data modules. The files contain dates for the
associated calendars.

Columns and dates in the sample calendar data modules
The dates are listed in the following columns:

TheDate
The main reference date for each row.

PD_TheDate
Previous day from TheDate. The dates in this column are one day prior to TheDate.

ND_TheDate
Next day from TheDate. The dates in this column are one day after TheDate.

dYear
The date that is the beginning of the year to which TheDate belongs.

Tip: The fiscal calendars are denoted by the year in which the calendar ends.

PY_TheDate
Previous year for TheDate. The dates in this column are one year prior to TheDate.

NY_TheDate
Next year for TheDate. The dates in this column are one year after TheDate.

dQuarter
The date that is the beginning of the quarter to which TheDate belongs.

PQ_TheDate
Previous quarter for TheDate. The dates in this column are one quarter prior to TheDate.

NQ_TheDate
Next quarter for TheDate. The dates in this column are one quarter after TheDate.

dMonth
The date that is the beginning of the month to which TheDate belongs.

PM_TheDate
Previous month for TheDate. The dates in this column are one month prior to TheDate.

NM_TheDate
Next month for TheDate. The dates in this column are one month after TheDate.

Important: Do not modify the column names in the sample data modules and .csv files because that
would break the relative date filters in the sample calendars.

Predefined filters in the sample calendar data modules
The sample calendars data modules contain a set of predefined date filters. These filters can be used to
perform relative date analysis in different types of visualizations.

The following filters are predefined in the sample calendars:

• Prior week
• Prior month (not available in the retail calendar)
• Prior quarter

58 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

https://nrf.com/resources/4-5-4-calendar

• Prior year
• Current week
• Current month
• Current quarter
• Current year
• WTD (week to date)
• MTD (month to date)
• QTD (quarter to date)
• YTD (year to date)
• Prior WTD
• Prior MTD
• Prior QTD
• Prior YTD
• Same week last year
• Same month last quarter
• Same month last year
• Same quarter last year
• Same MTD last quarter
• Same MTD last year
• Same QTD last year

You can view the expression associated with each filter by clicking Edit filter from its context menu.

You can also create your own custom filters. For more information, see “Creating relative date filters ” on
page 63.

Creating a custom retail calendar
If the out-of-the box Retail calendar_454_2016_2022 sample is not sufficient for your reporting or
dashboarding needs, you can create your own retail calendar.

About this task
Use the Retail 454 Calendar 2016-2022 generator data module that is included with the Cognos
Analytics samples to generate the custom retail calendar. You can modify the start and end years of
the calendar, or restate which years have only 52 weeks.

Use the National Retail Federation (NRF) 4-5-4 Calendar as a reference.

Procedure
1. In the Team content > Calendars > Tools folder, locate the Retail 454 Calendar 2016-2022

generator data module.
2. Using the Save as option, save the calendar generator data module under a different name to the

location where the other calendar data modules are located, which is Team content > Calendars >
Tools.

Use this copy of the calendar generator to continue with your edits.

3. In the Data module panel, from the table context menu , select Edit SQL table.

The table SQL is shown in the expression editor.
4. In the Name field, change the table name so that it reflects the new date range. For example, type

Retail 454 Calendar 2016-2023.

Chapter 5. Relative date analysis 59

https://nrf.com/resources/4-5-4-calendar

5. In the Expression box, modify the table SQL as required.

Follow the steps in the comments to modify the code. For example, to add years to the retail calendar,
follow steps 1 to 5.

• Step 1: Set the number of years with 364 days and number of years with 371 days.

In the 2016-2022 calendar, years 2016, 2018, 2019, 2020, 2021, 2022 have 364 days, and year
2017 has 371 days, which is reflected in the following select statement:

select R + 1 from gen_rows where (6 * 364 + 1 * 371) >= R

If changing start or end years, you must specify a proper number of years with 364 days and years
with 371 days, as defined in the NRF calendar. For example, to extend the calendar to include NRF
year 2023 that has 371 days, use the following select statement:

select R + 1 from gen_rows where (6 * 364 + 2 * 371) >= R

The new statement reflects that years 2016, 2018, 2019, 2020, 2021, 2022 have 364 days, and
years 2017 and 2023 have 371 days.

• Step 2: Specify the beginning date for the calendar.

In the 2016-2022 calendar, the January 31, 2016 is the first day of retail year 2016, which is
reflected in the following select statement:

select _add_days (date '2016-01-31' , R) from gen_rows

If you want to use a different start date, use the date as defined in the NRF calendar. To extend the
calendar to include NRF year 2023, the start date remains unchanged.

• Step 3: Specify dYear (the beginning date of the current retail calendar year).

In the following case statement, each when clause represents the start date of one retail calendar
year. To extend the calendar to include NRF year 2023, a new when clause is added, as highlighted in
bold font in the code below:

case when D >= '2023-01-29' then cast ('2023-01-29' as date)
 when D >= '2022-01-30' then cast ('2022-01-30' as date)
 when D >= '2021-01-31' then cast ('2021-01-31' as date)
 when D >= '2020-02-02' then cast ('2020-02-02' as date)
 when D >= '2019-02-03' then cast ('2019-02-03' as date)
 when D >= '2018-02-04' then cast ('2018-02-04' as date)
 when D >= '2017-01-29' then cast ('2017-01-29' as date)
 when D >= '2016-01-31' then cast ('2016-01-31' as date)
 else null end as dYear,

• Step 4: Specify dyear_PY (the beginning date of the previous retail calendar year).

In the following case statement, each when clause represents the beginning date of the previous
calendar year, and add_days represents the negative number of days in the previous retail calendar
year. The boldedwhen clause defines the start date for the previous year (NRF 2022) for all days in
NRF year 2023.

case when D >= '2023-01-29' then _add_days (cast('2023-01-29' as date), -364)
 when D >= '2022-01-30' then _add_days (cast('2022-01-30' as date), -364)
 when D >= '2021-01-31' then _add_days (cast('2021-01-31' as date), -364)
 when D >= '2020-02-02' then _add_days (cast('2020-02-02' as date), -364)
 when D >= '2019-02-03' then _add_days (cast('2019-02-03' as date), -364)
 when D >= '2018-02-04' then _add_days (cast('2018-02-04' as date), -371)
 when D >= '2017-01-29' then _add_days (cast('2017-01-29' as date), -364)
 when D >= '2016-01-31' then _add_days (cast('2016-01-31' as date), -364)
 else null end as dYear_PY,

• Step 5: Specify dyear_NY (the beginning date of the next retail calendar year).

In the following case statement, each when clause represents the beginning date of the next retail
calendar year, and add_days represents the number of days in the current retail calendar year. The

60 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

bolded when clause defines the start date for the next year (NRF 2024). That date is 371 days after
2023-01-29` since NRF year 2023 has 371 days.

case when D >= '2023-01-29' then _add_days (cast('2023-01-29' as date), 371)
 when D >= '2022-01-30' then _add_days (cast('2022-01-30' as date), 364)
 when D >= '2021-01-31' then _add_days (cast('2021-01-31' as date), 364)
 when D >= '2020-02-02' then _add_days (cast('2020-02-02' as date),
364)
 when D >= '2019-02-03' then _add_days (cast('2019-02-03' as date),
364)
 when D >= '2018-02-04' then _add_days (cast('2018-02-04' as date),
364)
 when D >= '2017-01-29' then _add_days (cast('2017-01-29' as date),
371)
 when D >= '2016-01-31' then _add_days (cast('2016-01-31' as date),
364)
 else null end as dYear_NY

6. Click OK to save the expression. Then click Save to save the data module.

You created a new retail calendar generator data module.
7. Create a CSV file from your retail calendar generator data module in the following way:

a) Using the new retail calendar generator data module as a source, create a list report in Cognos
Analytics Reporting.

b) Drag all columns from the custom calendar table into the list.
c) Optional: Sort the TheDate column as Ascending.
d) Run the report using the Run CSV option to generate the CSV output.
e) Save the report .csv file to the location where the other calendar .csv files are saved. Current

calendar source files are located in the Team content > Calendars > Source files folder.
8. Replace the data in the Retail calendar_454_2016_2022 data module with the data from the new

retail calendar in the following way:
a) From Team content > Calendars, open the Retail calendar_454_2016_2022 data module.

b) Expand the Source view .
c) In the Sources panel, right-click the module .csv file, and select Relink.
d) Select the .csv file for the custom retail calendar to use as the new source.

9. Save the updated retail calendar under a different name either in Team content > Calendars, or in a
different location.

Creating a data module for relative date analysis
To enable relative date analysis, you need to create a data module where business data is associated to a
calendar.

In this data module, at least one date column must be associated to a calendar, and at least one measure
column must be associated to the date column. This association is done by using the column property
Lookup reference.

Before you begin
The sample calendars must be available.

About this task
You can create a new data module from scratch, or add relative date capabilities to an existing data
module.

Tip: The Team content > Samples > Relative dates folder contains the Boston 311 report and Boston
311 dashboard samples that illustrate the implementation of this feature in a report and dashboard.

Chapter 5. Relative date analysis 61

The Data folder that is included with these samples contains the associated data modules and their
source .csv files. You can use these samples as a reference when you create your data module.

Procedure
1. Create a data module, or open an existing data module.
2. Verify that your business data sources contain at least one date column and one measure column.

a) From the date column menu, select Properties > General. Ensure that the Data type property of
the column is set to Date.

If the Data type property is set to Timestamp, you can change the type to Date by using the cast
function in the expression editor.

If the data source is an Excel file or a CSV file, dates in the date column must be formatted with the
ISO 8601 notation yyyy-mm-dd.

b) From the measure column menu, select Properties > General. Ensure that the Usage property of
the column is set to Measure.

If the Usage property is set to Identifier, you can change the property to Measure.

Tip: If your data module source is linked to its source, which is indicated by the link icon , you
need to break the link. Otherwise, the data module is read-only, and you can't modify its properties. To
break the link, select the Break link option from the data module menu. However, do not break links in
any of the sample calendar data modules.

3. In the Data module panel, click the Add sources and tables icon to add a calendar source, which
can be one of the following sources:

• The sample Gregorian calendar data module in the Team content > Calendars folder.
• The sample Fiscal calendar data module in the Team content > Calendars folder.
• One of the sample data modules in the Team content > Calendars > Fiscal calendars folder.
• The sample Retail calendar_454_2016_2022 data module in the Team content > Calendars

folder.
4. In your business data source that you specified in steps 1 and 2, associate at least one date column to

the calendar, and at least one measure column to the date column.
a) For the date column that you want to associate to the calendar, open Properties, and locate the

Lookup reference property. From the Lookup reference drop-down menu, select the name of the
calendar source that you added to the data module. If needed, repeat this step for other date
columns.

The relative date filters, such as Prior year, Prior month, MTD, and so on, appear under the date
column. To view the full list of filters, see “Sample calendars ” on page 57.

b) For the measure column that you want to associate to the date, open Properties, and locate the
Lookup reference property. From the Lookup reference drop-down menu, select the date column
to reference. If you defined Lookup reference for multiple date columns, choose the date column
that is appropriate for this measure. If needed, repeat this step for other measure columns.

Tip: To specify the same Lookup reference property for multiple measure columns, multi-select
the columns, and set the property.

A set of date-filtered measures, with the measure name in square brackets, appears under the
measure column. For example, Prior year [Revenue], Prior month [Revenue], or MTD
[Revenue].

To use one or more of the date-filtered measures in calculations, you can create the calculations only
against the data-module, and not against the tables that contain these measures. The calculations
appear at the top of the data module tree.

5. Save the data module to a folder in Team content.

62 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Tip: If you add or remove a filter from a calendar data module, the data modules that reference this
calendar through the Lookup reference property don't reflect the change until you close and reopen
them.

Results
The data module can now be used to create dashboards and reports.

Creating relative date filters
A relative date filter specifies a range of dates that are relative to the _as_of_date global parameter.

The sample Gregorian and Fiscal calendars already contain a number of predefined relative date filters. If
you need custom filters, you can add them to these calendars.

Before you begin
1. Know the columns in the sample calendar.

New filters are added to the sample Gregorian or Fiscal calendar data modules. To understand how
these calendars are structured, look at the columns, and view dates in different columns in the same
row. For example, in the Gregorian calendar data module, for the column TheDate with the value of
September 30, 2018, the related values for columns dYear, PY_TheDate, and dMonth are shown in
the following table:

TheDate dYear PY_TheDate dMonth

2018-09-30 2018-01-01 2017-09-30 2018-09-01

For more information, see “Sample calendars ” on page 57.
2. Conceptualize the filter lower bound and upper bound in relation to the _as_of_date global parameter.

A relative date filter defines a range of dates between the filter lower bound (range start) and upper
bound (range end) dates. The lower and upper bounds are set against a reference date that is the
_as_of_date parameter value.

For example, for a year-to-date (YTD) filter, the lower bound date is the first day of the first month in
the year that contains the _as_of_date date. The upper bound date is the date that is the _as_of_date
parameter value. If the _as_of_date parameter is December 19, 2018 (TheDate), the lower bound
date is January 1, 2018, and the upper bound date is December 19, 2018.

By default, the _as_of_date parameter has a value of today. However, it can be set to a different date.
For more information, see “Customizing the reference date ” on page 72

3. Build the filter expression.

The critical element of creating a relative date filter is the filter expression. Familiarize yourself with
the expression syntax and variables before you start entering the code in the expression editor. For
more information, see “Creating filter expressions” on page 64.

Procedure
1. From the Team content > Calendars folder, open the sample calendar data module where you plan to

add the new filter.

The data module contains one table with a number of existing filters. Add your new filter to this table.
2. From the table context menu, click Filter.
3. In the filter editor that is displayed, type the new filter name.
4. In the Expression pane, type or paste the filter expression.

Chapter 5. Relative date analysis 63

For example, to create the Last 12 months filter, enter the following expression:

// validate: 1 = 1
#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_theDate' ,
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#
AND
#$_this.parent.idForExpression# <
 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#

Another filter example that you can use is Next 4 months.

For more information, see “Creating filter expressions” on page 64.
5. Validate the expression.

Validation of date filter expressions must be done manually because the validate button in the
expression editor doesn't validate macro expressions. So you can only visually confirm that the
following elements are correct:

• The expression is preceded with the // validate: 1 = 1 comment.
• The outer block of the queryValue macro function is enclosed within hash marks (#).
• Each queryValue has matching round brackets () for its two arguments.

Tip: You can debug filter expressions in Reporting. To do so, open a report that contains the relative
date filters, and set the validation option in the report to Information.

6. Click OK.
The new filter is added to the calendar table at the top of the list of filters. You can drag the filter to
change its position in the list. The filter is created even if the expression contains errors. To modify the
filter, from its context menu, click Edit filter.

Results
The new filter is now available to the data modules that reference this calendar through the Lookup
reference property, and can be used for relative date analysis.

Tip: The new filter, as other filters in the calendar, should remain hidden.

Creating filter expressions
A relative date filter is based on an expression. The expression defines the filter lower and upper bounds,
and the timeline between the bounds. The timeline is mapped to the queryValue macro.

When you create a new filter, you enter the expression in the expression editor.

Use the following syntax to create the filter expression:

// validate: 1 = 1
#$_this.parent.idForExpression# >= lower_bound_date expression#
AND
#$_this.parent.idForExpression# <= upper_bound_date expression#

For example, the year-to-date (YTD) filter that is available in the sample calendars data modules uses the
following expression:

64 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

In this filter, expression 1 is the filter lower_bound_date expression. Expression 2 is the filter
upper_bound_date expression.

The lower bound and upper bound code blocks are combined by using the AND operator.

Tip: The comment // validate: 1 = 1 must always be included at the beginning of the expression.

The lower_bound_date expression and upper_bound_date expression are the elements that you must
define for your filter. The remaining part of the expression remains unchanged for all filters.

For a description of variables that are used in relative date filter expressions, see “Expression variables ”
on page 66.

To define the lower bound and upper bound expressions, you need to complete the following tasks:

• Identify the move intervals for the filter timeline
• Map each move interval to one queryValue macro

Identify the move intervals for the filter timeline
A timeline starts from the _as_of_date date, and then uses one or more move intervals (units of time) to
reach the lower bound or upper bound date.

The sample calendars support the following move intervals: day, month, quarter, and year.

A move interval is expressed by using the following calendar columns:

• PD_TheDate - move to the previous day
• ND_TheDate - move to the next day
• dYear - move back to the first day of the year
• PY_TheDate- move back to the same or equivalent date in the previous year
• NY_TheDate - move forward to the same or equivalent date in the next year
• dQuarter - move back to the first day of the quarter
• PQ_TheDate - move back to the same or equivalent date in the previous quarter
• NQ_TheDate - move forward to the same or equivalent date in the next quarter
• dMonth - move back to the first day of the month
• PM_TheDate - move back to the same or equivalent date in the previous month
• NM_TheDate - move forward to the same or equivalent date in the next month

The type of filter implies which columns are used to express the timeline. For example, in the year-to-date
(YTD) filter, the dYear column is the lower bound move interval, as shown in the following graphic. There
is no upper bound move interval for this filter.

Chapter 5. Relative date analysis 65

Map the move intervals to queryValue macros
After you identify the move intervals for the filter lower and upper bounds, you need to map each move
interval to one queryValue macro.

The queryValue uses the following syntax.

#queryValue($_this.parent.split.ref + move_interval ,
$_this.parent.split.ref + ‘.TheDate =‘ + date)#

For example, here is how the move interval dYear is mapped to the queryValue macro (parts of the code
in bold font) in the year-to-date (YTD) filter expression:

// validate: 1 = 1
#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dYear',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#
AND
#$_this.parent.idForExpression# <= #$_as_of_date#

Depending on the type of date filter, your expression might include multiple, nested queryValue macros,
such as in the following Prior YTD filter:

// validate: 1 = 1
#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dYear',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)
)#

AND
#$_this.parent.idForExpression# <=
 #queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#

You can find another example of nested queryValue macros in the Next 4 months filter.

Expression variables
The relative date filter expression uses a set of variables to define the filter conditions. The variables
evaluate to specific values when the filter is applied in visualizations.

Use the information in this topic when creating relative date filter expressions.

The following Prior Year filter expression from the sample Gregorian calendar can be used as an
illustration when reading descriptions of the variables:

// validate: 1 = 1
#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dYear',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)
)#
AND
#$_this.parent.idForExpression# <
 #queryValue($_this.parent.split.ref + '.dYear',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#

$_this.parent
This variable refers to a table column of type Date whose Lookup reference property is set to the
calendar that you are referencing. The table with the Date column is in the data module that is used for
relative date analysis. For more information, see “Creating a data module for relative date analysis” on
page 61.

For example, in the following data module, $_this.parent refers to the Open Date column.

66 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

The following two variables function within the context of the Date column:

• $_this.parent.idForExpression

This variable evaluates to the idForExpression for the Date column. The idForExpression is the
full identifier that uniquely identifies the Date column within the data module. This identifier is not
viewable from the user interface.

• $_this.parent.split.ref

This variable evaluates to the calendar that is referenced by the Lookup reference property of the Date
column.

All date filters in the calendar, including the new ones that you add, are accessible as child filters of the
Date column in the data module that references this calendar through the Lookup reference property.
The filters are used for relative date analysis in reports and dashboards.

queryValue
queryValue is one of the macro functions that Cognos Analytics provides.

Tip: To view the description of the queryValue macro, click the functions tab in the expression editor
and search for the macro. The description is shown in the Information pane.

Within the context of relative date filters, queryValue returns the date value from the specified Date
column, at the specified date. The specified Date column is the first parameter to the queryValue
function. The second parameter is the specified date.

In the following example from the year-to-date (YTD) filter, the queryValue returns, from the calendar
column dYear, the date where the calendar TheDate date equals to the _as_of_date date.

#queryValue($_this.parent.split.ref + ‘.dYear’,
 $_this.parent.split.ref + ‘.TheDate = ‘ + $_as_of_date)#

Example filter: Last 12 months
This topic provides an expression for a date filter that includes the last 12 months relative to the
_as_of_date parameter.

Paste this expression in the filter editor to create the Last 12 months date filter.

// validate: 1 = 1
#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate' ,
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)
)#
AND
#$_this.parent.idForExpression# <

Chapter 5. Relative date analysis 67

 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#

Here are the steps that were used to build this expression:

1. Identify the calendar columns to use.

The filter uses the calendar columns TheDate, dMonth, and PY_TheDate from the sample Gregorian
calendar data module.

For more information, see “Sample calendars ” on page 57.
2. Define the filter lower and upper bounds.

The filter lower bound is the first day of the month that is 12 months prior to the month containing the
date that is represented by the _as_of_date parameter. The filter upper bound is the last day of the last
complete month, relative to the date that is represented by the _as_of_date parameter.

The following table shows the move intervals for the lower bound date when the _as_of_date date
(TheDate) is January 19, 2019.

TheDate PY_TheDate dMonth

2019-01-19 2018-01-19

2018-01-19 2018-01-01

The filter lower bound date is 2018-01-01. The filter upper bound date is 2018-12-31.
3. Define the move intervals for the lower bound and upper bound timelines.

The timeline consists of move intervals that are based on the columns PY_TheDate and dMonth .

The following move intervals exist for the lower bound timeline:

• Move interval 1: PY_TheDate
• Move interval 2: dMonth

The move interval for the upper bound timeline is dMonth.

Here is a graphical representation of the move intervals for the lower bound timeline when January 19,
2019 is the _as_of_date date.

4. Map each move interval to one queryValue macro.

The expression of the lower bound consists of two queryValue macros. Each queryValue maps to
one move interval within the lower bound expression. The initial move interval (PY_TheDate) is nested
within the second move interval (dMonth), as shown below:

#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_theDate' ,
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)
)#

The expression of the upper bound consists of one queryValue macro, as shown below:

#$_this.parent.idForExpression# <
 #queryValue($_this.parent.split.ref + '.dMonth',

68 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#

This expression uses the less than (<) sign because the filter includes only dates prior to the upper
bound, and not equal to the upper bound itself.

Example filter: Next 4 months
This topic provides an expression for a date filter that includes the next 4 months relative to the
_as_of_date parameter.

You can paste this expression in the filter editor to create the Next 4 months date filter.

// validate: 1 = 1
#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#
AND
#$_this.parent.idForExpression# <
 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' +
 #queryValue($_this.parent.split.ref + 'NM_The_Date',
 $_this.parent.split.ref + '.TheDate = ' +
 #queryValue($_this.parent.split.ref + 'NM_The_Date',
 $_this.parent.split.ref + '.TheDate = ' +
 #queryValue($_this.parent.split.ref + 'NM_The_Date',
 $_this.parent.split.ref + '.TheDate = ' +
 #queryValue($_this.parent.split.ref + 'NM_The_Date',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)
)
)
)
)#

Here are the steps that were used to build this expression:

1. Identify the calendar columns to use.

The expression uses the TheDate, dMonth, and NM_TheDate columns from the sample Gregorian
calendar.

For more information, see “Sample calendars ” on page 57.
2. Define the filter lower and upper bounds.

The filter lower bound is the first day of the month containing the date that is represented by the
_as_of_date parameter. The upper bound is the last day of the month that is 3 months after the month
containing the _as_of_date date.

The following table shows the move intervals for the upper bound dates when the _as_of_date date
(TheDate) is December 19, 2018.

TheDate NM_TheDate dMonth

2018-12-19 2019-01-19 2018-12-01

2019-01-19 2019-02-19

2019-02-19 2019-03-19

2019-03-19 2019-04-19

2019-04-19 2019-04-01

3. Define the move intervals for the lower bound and upper bound.

The filter timeline consists of move intervals that are based on the columns NM_TheDate and
dMonth .

The move interval for the lower bound timeline is dMonth.

Chapter 5. Relative date analysis 69

The upper bound timeline includes the following move intervals:

• Move interval 1: NM_TheDate
• Move interval 2: NM_TheDate
• Move interval 3: NM_TheDate
• Move interval 4: NM_TheDate
• Move interval 5: dMonth

Here is a graphical representation of the timeline when the _as_of_date date is December 19, 2018.

4. Map each move interval to one queryValue macro.

The lower bound expression consists of one queryValue macro, as shown below:

#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#

The upper bound expression consists of 5 queryValue macros, nested within each other. Each
queryValue maps to one move interval. The earlier move intervals are nested within the later move
intervals, as shown below:

#$_this.parent.idForExpression# <
 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' +
 #queryValue($_this.parent.split.ref + 'NM_The_Date',
 $_this.parent.split.ref + '.TheDate = ' +
 #queryValue($_this.parent.split.ref + 'NM_The_Date',
 $_this.parent.split.ref + '.TheDate = ' +
 #queryValue($_this.parent.split.ref + 'NM_The_Date',
 $_this.parent.split.ref + '.TheDate = ' +
 #queryValue($_this.parent.split.ref + 'NM_The_Date',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)
)
)
)
)#

This expression uses the less than (<) sign because the filter includes only dates prior to the upper
bound, and not equal to the upper bound itself.

Other examples of relative date filters
This topic provides examples of relative date filter expressions.

Copy and paste the selected expression in the filter editor when creating the filter.

Note: To pass validation, the line // validate: 1 = 1 must remain in the expression as a comment.

The following examples are available:

• “Last 12 complete months” on page 71
• “Prior month last year” on page 71
• “Prior YTD 2 years ago” on page 71
• “Prior year yesterday” on page 71
• “Prior year 2 years ago” on page 72

70 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

• “Yesterday” on page 72
• “Last 7 days” on page 72

Last 12 complete months

// validate: 1 = 1
#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)
)#
AND
#$_this.parent.idForExpression# <
 #queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#

Prior month last year
// validate: 1 = 1
#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.PM_TheDate',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)
))#
AND
#$_this.parent.idForExpression# <
 #
 queryValue($_this.parent.split.ref + '.dMonth',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' +
$_as_of_date)
)#

Prior YTD 2 years ago
// validate: 1 = 1
#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dYear',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' +
$_as_of_date)
)
)#

AND
#$_this.parent.idForExpression# <=
 #queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)
)#

Prior year yesterday
// validate: 1 = 1
#$_this.parent.idForExpression# =
 _add_days (#queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)#, -1)

Chapter 5. Relative date analysis 71

Prior year 2 years ago
// validate: 1 = 1
#$_this.parent.idForExpression# >=
 #queryValue($_this.parent.split.ref + '.dYear',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' +
$_as_of_date)
)
)#

AND
#$_this.parent.idForExpression# <
 #queryValue($_this.parent.split.ref + '.PY_TheDate',
 $_this.parent.split.ref + '.TheDate = ' +
 queryValue($_this.parent.split.ref + '.dYear',
 $_this.parent.split.ref + '.TheDate = ' + $_as_of_date)
)#

Yesterday
// validate: 1 = 1
#$_this.parent.idForExpression# = _add_days (#$_as_of_date#, -1)

Last 7 days
// validate: 1 = 1
#$_this.parent.idForExpression# > #_add_days ($_as_of_date, -7)#
AND
#$_this.parent.idForExpression# <= #$_as_of_date#

Customizing the reference date
The global parameter _as_of_date is used for relative date analysis. The parameter allows you to change
the date that your relative date periods are based on.

By default, the relative date periods are based on the current date. For example, when the current date is
July 15, 2018, the YTD (year-to-date) filter includes data from January 1 to July 15, 2018, and the prior
month filter includes data from June 1 to June 30, 2018. When you set a specific date as a value for the
_as_of_date parameter, your analysis is done as of that date.

Before you begin
After the _as_of_date parameter is set up by the administrator, log out, and log back in to Cognos
Analytics for this parameter to be displayed for you.

If this parameter is not set up, see “Setting the _as_of_date global parameter” on page 73 for more
information.

Procedure
1. In the Cognos Analytics welcome page, select the icon in the application bar.
2. For the _as_of_date parameter, select a new date by using the calendar picker, and click Apply.

Tip: The parameter can have different names, depending on the label that was specified for it by the
administrator.

3. Re-run the reports and dashboards that use relative dates.

Results
The data in the reports and dashboards is updated based on the new reference date.

72 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Setting the _as_of_date global parameter
You can set up the global parameter _as_of_date, and make it available to all system and tenant roles.
The on-premises administrators can customize this parameter for specific user roles.

Procedure
1. Go to Manage > Customization, and select the Parameters tab.
2. Depending on the version of Cognos Analytics, perform one of the following steps:

• In version 11.1.4 and later, click the New link, and type _as_of_date in the space provided. Press
Enter on the keyboard.

• In version 11.1.3 and earlier, click the Import link, and import the _as_of_date parameter from the
sample "Global parameter date picker" report. This report is located in Team content > Samples >
Relative dates > Tools.

3. From the _as_of_date parameter context menu , click Properties.
4. Specify a custom label for the parameter. To specify a language-specific label, next to Languages, click

Set. You can also add a description of the parameter, or disable it.
5. Select the Applied to all roles checkbox.

When you select this property, all system and tenant user roles can use this parameter.

If you are a Cognos Analytics on-premises user, and want to customize this parameter for specific
roles, don't select the Applied to all roles checkbox. Instead, proceed to step 6.

6. Customize the as_of_date parameter for specific roles in the following way:
a) In Manage > People, select the Accounts tab.
b) Locate the role for which you want to customize this parameter, and in the role Properties panel,

select the Customization tab.
c) Next to Parameters, click Settings.
d) Select the checkbox next to the _as_of_date parameter that you specified in step 2.

Click OK to finish setting this parameter without changing the default date, which is the current
date. To set a specific date, select the Set values link, select the date, and click Apply.

e) If needed, repeat steps b to d for other roles. The date that you select can be different for different
roles.

7. Log out, and log back in.

Results
All users in the system or tenant can now see the My Parameters dialog box, and the _as_of_date
parameter is available to users when they run reports or dashboards that include the relative date
filters and measures. The users can customize this parameter for their needs. For more information, see
“Customizing the reference date ” on page 72.

Chapter 5. Relative date analysis 73

74 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Appendix A. Supported SQL data types
The IBM Cognos Analytics query service supports the standard relational data types that represent
numeric, character, or temporal values.

When data modules and models are built, and queries are planned and executed, the data source is
required to describe the column metadata, such as the data type, precision, scale, and nullability, to
the query service. This includes columns in tables or views that are returned by a query or passed as
parameters to procedures, functions, or query parameters. The query service maps the source column
data types to the types that it supports. If the source data type is not supported by the query service, the
query service treats it as an unknown type.

The following list shows the data types that are supported by the query service:

Precise and imprecise numeric types

The following precise numeric types are supported: smallint, integer, bigint, decimal, and decfloat.

The following imprecise numeric types are supported: float (real treated as float), and double
precision.

When database vendors support numeric data types that are equivalent to the types that the query
service supports, the query service easily maps the source data types to the types that it supports.

When database vendors use a general "number" data type, where the range of values that a column
or parameter can hold is determined by the column precision and scale, the query service must
determine which of its built-in data types to use for the mapping. The query service assigns the data
type based on the precision and scale of the metadata. For example, a column in ORACLE that is
described as NUMBER(3) is mapped to the smallint type. Columns with higher precision are mapped
to larger precise (integer, bigint, or decimal) or imprecise (double precision) data types. For very large
numeric values, the query service can use the decfloat data type.

For more information, see ibmcognos.decfloat.

Character types

The following types are supported: char, varchar, clob, national char, national varchar, and national
clob.

Character large objects (clob) can hold large strings and impose restrictions on how they can be used
in a query. For more information, see the ibmcognos.maxvarcharsize parameter in Managing IBM
Cognos Analytics.

The maximum length of a character string supported by dynamic query is 64 KB.

Datetime types

The following types are supported: date, time, time with time zone, timestamp, and timestamp with
time zone.

Interval types

The following types are supported: interval year to month, and interval year to second.

Logical types

The supported type is Boolean.

The query service does not return the Boolean type to reports or dashboards.

Unknown types

The query service might not support a data type that is an equivalent of the source data type. A
Framework Manager model or a data module that include columns with such data types show the type
as an unknown data type. The query service can't perform any local query processing on values with
the unknown data type, and the values can't be displayed in reports and dashboards.

© Copyright IBM Corp. 2015, 2020 75

A column of an unknown type can be referenced in expressions (calculations or filters) that are
processed by the underlying data source. For example, a table includes a spatial column. A report or
model might include a detail filter that the data source uses to evaluate if a customer is located within
a distance from the specified spatial value. The data source must evaluate the expression in the filter.

If a table includes a bit string column, the report or model that uses the column can include an
expression to convert the bit string to a type, such as integer, that is supported by the query engine.
The expression must be supported by the data source.

Some data sources are supported through a vendor JDBC driver. In such cases, it might be possible to
automatically convert the type and values of a built-in data type into a type that is supported by the
query service. The query service would not be aware of the original data type. For more information
about mapping the vendors built-in data types to JDBC data types, see the applicable SQL reference or
programming guides from the vendors.

76 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Appendix B. Data modules and Framework Manager
Data Modules is the primary metadata modeling environment in IBM Cognos Analytics. However, IBM
Cognos Framework Manager, the metadata modeling tool that is associated with older versions (10.2.2
and earlier) of Cognos Analytics, is also supported.

If your organization still uses Framework Manager, you might be interested how the data module
capabilities compare with Framework Manager capabilities, and how Framework Manager packages are
used with the new versions (11.0.x and later) of Cognos Analytics.

For information about modeling concepts and best practices that are common for both tools, see the IBM
Cognos Analytics Metadata modeling guidelines.

Framework Manager features not supported by data modules
Long-time IBM Cognos Business Intelligence users who are accustomed to modeling in IBM Cognos
Framework Manager might be curious how this modeling environment compares to data modules.

Data modules currently don't support some of the modeling capabilities that Framework Manager
provides. The following features are not, or not fully supported by data modules:

Multiple cubes
In Framework Manager, you can include multiple cubes in a package that is then used as a source
of data in Cognos Analytics. As a result, users can author reports, dashboards, or explorations based
on multiple cubes that are packaged as one source. Data modules currently support one cube per
module.

Dynamic schemas
In Framework Manager, the data source connection, cube, catalog, or schema can be set up to be
dynamically selected, based on a macro. This allows users to create models that are independent of
the source that the data is fetched from. The source can be selected at run time based on the macro,
which can be based on the credentials of the user viewing it.

Stored procedures
In Framework Manager, you can import database-stored procedures as a query object that can accept
parameters, and can either retrieve or update data based on the nature of the stored procedure.

User-defined functions
In Framework Manager, you can import user-defined functions (UDF) from a database. Data modules
do not support UDFs.

Multilingual metadata
A Framework Manager model can contain multiple languages allowing modelers to provide metadata
for the reporting objects in multiple languages. The metadata presented to the users is based on the
Content locale that they select in their Cognos Analytics session.

Prompts and parameters user interface
In Framework Manager, you can set the default prompt properties, such as the prompt type, use and
display values, or filter item reference, on each query item in the user interface.
This type of user interface currently doesn’t exist in data modules. To create new parameters and
prompts in data modules, you need to use the macro functions - prompt() and promptmany(), as
well as the ?parameter? syntax in expressions. The data modules can't generate a preview of data
for unresolved parameters, but the parameters work as expected in reports and dashboards.
When a table definition in a data module includes a column with an expression based on a prompt,
the user is always prompted when any column from that table is included in a report or dashboard,
even if the column with the prompt is not added to that report or dashboard. This behavior provides a
consistent view of the data, and applies to both data modules and Framework Manager models.

© Copyright IBM Corp. 2015, 2020 77

Object security
In Framework Manager you can specify security on the reporting objects, such as query subjects and
query items (tables and columns). The object security determines which objects a user can see in the
metadata tree in reports or dashboards.

Parameter maps
In Framework Manager modelers can dynamically substitute one value for another by using
parameter maps. The parameter maps have two columns, one column for the value that you want
to pass in via a macro expression that is calling the parameter map, and the other column for the value
that you would like to substitute the first value with.

Governors
Governors in a Framework Manager model allow to modify queries at run-time. For example, by
using governors, you can specify the maximum number of report tables or the query execution-time
limit. Data modules don't have the user interface to specify governors. For more information, see
“Governors and data modules” on page 79.

Relationships (joins) with expressions
In Framework Manager, modelers can create complex, custom join conditions directly in the
Relationship Definition dialog box.
The Edit relationship user interface in data modules doesn’t support custom joins.

Publish, change impact, and report dependencies
In Framework Manager, you can find report dependencies on specified objects, as well as a publish
impact based on changes made to the model. As a result, the modeler can notify authors that their
reports might be affected by the change in the model.

SAP HANA input variables
In Framework Manager, when importing an SAP HANA view that incorporates an input parameter, the
parameters are exposed as a tab in the data source query subject. This allows modelers to provide a
hard-coded value or dynamic value by using a macro expression.

Sorting of query objects
In Framework Manager, you can change the order of objects based on their names. Objects can
be ordered in ascending or descending order. The scope of reordering applies to objects and their
children, and includes descendants of child objects.

Model Advisor
Model Advisor in Framework Manager is used to analyze models. It looks for problem areas based on
the Cognos Analytics modeling guidelines.

Namespaces
Framework Manager namespaces are containers that organize and uniquely qualify content in a
model. As a result, the same name can be used for multiple objects, as long as they reside in different
namespaces. For example, you can have a query subject called Time in namespace A, and a query
subject called Time in namespace B. The namespace name is part of the object identifier so that the
objects can be distinguished from one another.

Star schema grouping presentation
Star schema grouping refers to the presentation of fact tables and their related dimension tables.
Framework Manager uses namespaces and shortcuts to allow modelers to present the star
schema groupings to authors. Each namespace contains one fact table and its related dimensions.
Namespaces with the same dimensions in them are considered shared dimensions, which can be
used to query facts from multiple namespaces that contain the shared dimensions.
Data modules don't support namespaces and shortcuts to aid authors to understand the relationship
scope between objects. However, modelers can allow authors read-only access to the data module to
see that scope through the relationship diagram.

Context explorer
Context Explorer in Framework Manager provides a view of the model based on an existing object.
In Context Explorer, modelers can view, test, and modify relationships of an existing object. They
can also hide an object, change the layout, fit all objects in the window (with zoom-in and zoom-out),
print, preview diagrams before printing, and change the page setup. Context Explorer is helpful when
troubleshooting modeling issues.

78 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

The focus mode in data modules offers some similar capabilities, but the functionality is limited.
Model automation

In Framework Manager, model builds can be automated. This functionality is valued by many OEMs
who want to automate model builds for their clients.

Detecting relationships
Framework Manager allows you to use specific criteria to detect and create relationships between
tables during and after import. Data modules can currently detect relationships during import, but not
after the import.

Creating agents, events, and tasks in Event Studio
Framework Manager packages can be used in IBM Cognos Analytics Event Studio to create agents
that monitor your organization's data to detect occurrences of business events. Data modules cannot
be used with Event Studio.

Reporting limitations when using data modules
The following limitations apply when data modules are used as sources in Cognos Analytics Reporting:

• Data modules and Framework Manager packages cannot be combined in the same report.
• In IBM Cognos Analytics 11.1.7 and earlier versions, only one data module can be used as a source

for a report. Starting with Cognos Analytics 11.1.7 FP1, multiple data modules can be used as
sources for one report.

• Data modules that are based on dimensional data sources, such as PowerCubes, dynamic cubes,
TM1 data sources, and dimensionally modeled relational (DMR) data sources, are not supported.

• The Build prompt page tool, and the Select & search prompt and Tree prompt prompt types are
not available in reports.

• Concurrent query execution is not available for reports that are based on data modules in Cognos
Analytics 11.1.6 and earlier versions. This feature is available for data module-based reports
starting with version 11.1.7. For more information, see "Concurrent Query Execution" in the IBM
Cognos Analytics Administration and Security Guide.

Governors and data modules
Users who are familiar with IBM Cognos Framework Manager might be interested how governors are used
with data modules, since data modules don’t have the user interface to define or change governors.

The following sections describe the contexts in which governors are used with data modules, and the
governor values that can be assumed by queries in those contexts.

What governors do queries use while using a data module?
You can use a package directly from a dashboard. Such queries use the governors defined in the package.

Queries that use data modules use the default governor settings assumed by the dynamic query mode.

For more information, see "Dynamic query mode governors" in the IBM Cognos Framework Manager User
Guide.

Note: The compatible query mode (CQM) governors are ignored by the dynamic query so these types of
governors are not applicable to data modules. For more information, see "Governors" in the IBM Cognos
Framework Manager User Guide.

What governors do queries use when a data module references Framework Manager
packages?
A data module can reference one or more packages. Objects that are referenced from packages are
resolved by using queries that use the governors from their package. Objects that are defined in the data
module use the governors of the data module, thus the default governor values for the dynamic query
mode.

Appendix B. Data modules and Framework Manager 79

For example, VIEW_ONE can include references to package A, and VIEW_TWO - references to package
B. These views might be related, and referenced by another view, VIEW_THREE. In this example, the
governors are applied in the following way:

• The query formed for VIEW_ONE uses the governors from package A.
• The query formed for VIEW_TWO uses the governors from package B.
• The query formed for VIEW_THREE uses the governors that were assumed by the data module when the

data returned by VIEW_ONE and VIEW_TWO was joined.

For information about joining objects from different packages in a data module, see “Creating custom
tables” on page 23.

80 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

Index

A
aggregate property 46
as_of_date global parameter

relative dates 72
auto-joins 1

C
calculations

basic calculations 34
creating 33
custom calculations 35

calendars
relative date analysis 57

cleaning
columns in modules 40

columns
adding or removing 10
formatting 43

custom tables
editing 23
viewing 23

Customizing
user interface 4

customizing relative dates 72

D
data cache 14
data modeling 1
data module sources

data modules 6
data servers 5
data sets 6
packages 5
uploaded files 5

data modules
adding sources 9
adding tables 9
comparison with Framework Manager 77
metadata 19
relative date analysis 61
relinking sources 11
reloading metadata 11
table and column properties 46
updating columns 10
user interface 2

data security 16
data servers 5
data sets 6
dimensional data tree 51
discovering related tables

keywords 8

E
editing modules

validation errors 46
embedded filters

editing 36
removing 36

F
filters

embedded 36
join optimization 21
selectable 37

formatting
columns 43

Framework Manager
comparing with data modules 77
comparison with data modules 77

G
governors

packages 79

H
hiding

items 38

I
identifier property 46
intent modeling 1

J
joins

join operators 20
optimization filters 21
range joins 20

M
members

dimensional data tree 51
metadata

data modules 19
reloading 11

modules
cleaning data 40
editing 40
hiding items 38
validating 46

Index 81

N
navigation path

creating 42
deleting 42

P
packages

governors 79
properties

tables and columns 46

Q
query information 45

See also SQL

R
redo

editing data modules 2
relationships

creating from scratch 19
editing 19
overview 19
removing 19
viewing SQL 45

relative dates
_as_of_date global parameter 72
creating a data module 61
customizing the reference date 72
sample calendars 57
setting up 57

relinking
sources in a data module 11

S
securing data 16
selectable filters

editing 37
removing 37

sources
data caching 14
relinking in a data module 11

SQL
creating tables 25
generated in queries 45
See also query information

T
tables

adding to data modules 9
creating tables from SQL 25
discovering related tables 8
viewing SQL 45

U
undo

undo (continued)
editing data modules 2

uploaded files 5
usage property 46
user interface

customizing 4
modeling 2

V
validating

modules 46

W
word cloud visualization 8

82 IBM Cognos Analytics Version 11.1 : Data Modeling Guide

IBM®

	Contents
	Chapter 1. Data modeling in Cognos Analytics
	Modeling user interface
	Customizing the user interface

	Chapter 2. Data modules and their sources
	Data module sources
	Data servers
	Packages
	Uploaded files
	Data sets
	Data modules

	Creating a data module
	Discovering related tables
	Adding sources or tables to a data module
	Updating columns in a data module
	Reloading the schema metadata
	Relinking sources
	Enriching packages
	Setting up data caching
	Securing data

	Chapter 3. Modeling metadata
	Relationships
	Creating a relationship
	Join operators
	Join optimization

	Custom tables
	Creating custom tables

	Creating tables using SQL
	Column dependencies
	Defining column dependencies
	Configuring column dependencies

	Calculations
	Creating basic calculations
	Creating custom calculations

	Filters
	Creating embedded filters
	Creating selectable filters

	Hiding items
	Creating data groups
	Cleaning data
	Creating navigation paths
	Formatting data
	SQL in Cognos Analytics
	Supported SQL types
	Showing the query information
	Generating the query SQL

	Validating data modules
	Object properties

	Chapter 4. Members in the data tree
	Searching for members
	Setting the members display limits
	Displaying relational members

	Chapter 5. Relative date analysis
	Sample calendars
	Creating a custom retail calendar

	Creating a data module for relative date analysis
	Creating relative date filters
	Creating filter expressions
	Expression variables
	Example filter: Last 12 months
	Example filter: Next 4 months
	Other examples of relative date filters

	Customizing the reference date
	Setting the _as_of_date global parameter

	Appendix A. Supported SQL data types
	Appendix B. Data modules and Framework Manager
	Framework Manager features not supported by data modules
	Governors and data modules

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W

