IBMi
7.3

Database
Performance and Query Optimization

.||I!

Note

Before using this information and the product it supports, read the information in “Notices” on page
1059.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright International Business Machines Corporation 1998, 2015.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Performance and query optimization.......ccccceieiieiiiiiiiiiiiinininiiienceccecennneenen l

What's NEW FOIr IBM i 7.3 ..ottt ettt et e e e te e e e ta e e s te e e eataeesataeesateeeenteeesssaeasnseeeansaeesnsaseanseeans 1
PN PDF..ciieitieteeteeeete sttt st e sttt s e st este et e sraeste st e s be e st e eseessesseasseenseaseeseesseassesssesseessesseensesseensesseessesssessanns 11
QUETY BNEINE OVEIVIEBW. . utiiictieeietieeeeteeeiteeeetteeeeteeessteesasteesastesassesssssessssseessssesesssesssssesssssessssseessssesssseessnses 11
SQE AN COE BNGINES..cceiiiiiieecetee et ettt e e rtte e eette e s ette e s tee e sbee e sbeeesbeeesbaeesasesassseeessaeesnseassnseesnnses 12
(O TUT=T YA 1] o T= 1 {of g =T SR 13
Y LA A (o a g B T P =Y PR 13
GLODAl StatiStiICS CaC....iiiiiiiiriieeectete ettt e st s be e sab e sbeesaaesateesbaesaseensaenns 14
PLAN CACNE. .ttt sttt e s e st e st s bt e s be e st e be e st e e be e st e e beesab e e beesaaeebeenaaesares 14
Data aCCESS METNOUS. c..iiiiiiiiieieete ettt ettt st e be e st e e beesatesbeesabessbeessaesaseenbaesnseensaesseeens 16
Permanent objects & acCeSS MEthOUS.......ccciiiiiiiiee ettt st e e e reeeeans 17
L1 o1 T OO TR UP PRSPPI 17
T SCAN...c ittt sttt st st e e st s be e s be e s be e baesate e baesare s 17

L1 01 (=3 0] 0] o =TSRt 18

RAIX INAEX.ciuteiruriiiieniieeieese ettt e st e srteeste e ste e s e e st e sbeesstesteesseessseessaesssesnsessasessseesssesseesseesseensaenns 19
RAIX INAEX SCAN...tiitiiiieiieeiteeieeste et st e ste st estessbeeste s beestaesabeesbaesabeesbaesaseenseesssesnseesssesnsennes 20

R Lo D [aTe [0t o o] o 1TSS 21
ENCOEA VECTON INAEX.uuiiiitieiieiieeriieiiteste st este st e eestessteestessbeesasesbeesasessbeessaesaseenseesssesnseessaesnsenn 23
Encoded vector indeX RRN PrODE.....ccc.uiiicieeeciie ettt ettt e st e e te e e ba e e ba e e anaeens 24

AV I o o] o =TSSR 25

EVI iNAEX-0NLY BCCESS..cccutiiiiciieiiiieecciteeccte e ecte e sete e eetee e e etee e sbeeeebee e sbaeesbaeessaesssaeesnseessnseeennses 26

EVI SYMDOL table SCAN...cciciiiccieeccee ettt et et te e e st e e e e ate e e eatee e ntaeeensaeanns 27

EVI SymboLl table Probe.... .. ettt et e rae e s raeeeans 30
Temporary objects & aCCESS METNOUS......cccuiiieiiecie e e aee e e e e e naeeenes 32
TemMPOrary Nash table.. ..o et e e e e aa e e e e e e e be e e e eaeeeanaeean 32
HASH 1aDLE SCAN.c..tiiiieiieiteceete ettt sttt ste et e e st e e be e sase s beesasessbeenasesaseensaenns 33

[Fo T a1 =1 0 (=T 0T o] o =TSSR 34

BT 0] oo =T R =To T =T o I L=y TSRSt 35

Y] =T I LTSy A=Y or=T o OO PO PRRPRRR 36

Yo Tat=Te l LS a0 (o] o 1TSS 37
Temporary diStinCt SOME LiSt......cicuiiieieeee et e rre e e ae e s e e e rae e e aeeas 38

Y] =T I LTSy A=Y or=T o OO PR PO RPN 38

BT 0] oo =T VN L SRR 39
Sy =Y or= o OO PR OO SRP PRSPPI 39
TEMPOIArY VALUES LIST..uviiieiieiciieeciee ettt e e te e eette e s tte e e etteesebteesesteessteesseassssassnseeennns 40
VAlUES LIST SCAN..cctiieiiiiiieieriteete ettt ettt ettt e e e st e e be e st e ssbeesaaesabeesbaesateensaesnsasnseesssenns 41
Temporary FOW NUMDET LiSt.......iiciiiieiee ettt e etee e te e e e te e e et e e e e steeeenbeeeenseeesnsaeanns 41
ROW NUMDBDET LISt SCAN.cccutiiiciiec ettt ettt e eee e te e e te e e ae e s e ate e e e ate e seateeeenseeeentaeenenas 41

o T TNl] o LT L A T] o1 TSR 43

BT 00] o o] =TV o 11 { g F- T J PSR ST a4
BItMAD SCAN e tie ettt e e et e e et e e e et e e e e ate e e e ta e e beeearbaeeanteeeerteeeantaeeantaeeantaeanns 45

T aaE ol o] o] o1 TR TSRSt 46

T 0] oo =T VR Ta T L= OSSR 48
TEMPOIAry INAEX SCAN...cciciieieieeeeieeecieeeeteeeeteeeeteeesteeesteeeesteesssteeasssaeesssesesssessassessnssasessasanns 48
TeMPOrary iINAEX ProDE.......ii ettt e e te e eeate e sert e e sebteesebaeesstaesareaeanns 50

BT 0] oo =TV o TU =Y OSSR 51
BUTEI SCAN..c ittt sttt s e et e st e e ba e st e e be e sabessbaesbeesabeenbaesabeebaesareen 51
QUBUE . ettt e e e e eaatee e e e s eab bt e eeessasaaa s eesssasaasseesssssassseesssssanssesrsssnnnssessssssnnsesessssnnnssenns 52

BN QUBUE. ettt et e e e e e s s s s e e et e e e e e e eesess s ss s bbbt aaaaeeeeeeeeesasrareraaaaeeeeeeeeans 53

BL=Te LU= U T PP PPPPPTTRRN 54

Array unnest temMPOrary table... ... e e e e 55

TempPorary INAEXEA LiST..... vttt e e cte e e s e are e e s e e abe e e e senbaeeeseenbeaeesesansaneseennsenns 56
Temporary Indexed List scan and INAeX MErge.....cccuviviiiiriiiiiiieinteerte st 57
WWINAOW..ettiiie ittt sttt et e sttt e st e e e s bt e e s ate e s steesasteesantaesastaesasseesnsaessseesanseesssaesansaenan 59
WINAOW SCAN....tiiiiieiiiiee ittt ste et eseite e seate e seate e sebeeesbteesseeesaseaesaseaesaseessaseeesansessaseessnseeesans 60

(0] o] [=To3 E-R o] goTot=T1=1=Te T g T o =Y = || (= FO R 60
Spreading data autoMATICAllY......eiiciiiiiiee e 61
PrOCESSING QUETIES: OVEIVIEW..eeiiuiiiiiiieiiiiieriieesiteessteessteesssreesasteesasseesssseesssseesssseesssseessseessseesssseessssees 61
(@101 VoY o] 1 T4 =] RS 62
(@101 VoY o A LaaTv4= A Te] g 1N {1 o 13RI 62
ACCESS PLaN VAlIAAtiON.cc..eiiieie e e e e et e e e e et ee e e s e asteeeeesastaeeeeenbeeeeeennseneeeennnnes 63
SINGLe table OPTIMIZATION. ..ottt et et e s be e st e e s be e s sabeeesabeessabeesnans 63
SYo] 1o IS £= (=N DL Y= TSP 64
MEMOrY PrefereNCE CONTIOLS. .iii ittt e e e e e e cree e e e e ette e e e e ebeeeesenbeeeeeenseeeesennsseneaaans 65
N Lo T a o] o1 4] g1 12=\ o o 1SRRI 66
[N =ES (=Y I CoToT o 1o 11 PSS 66

N Lo I o] o) 410 a1 2= (o PSS 68

N [o Tl o] e [=T o o) 4] a1 F<=\ o o 1SR 69
LU (o1 U (=] o 1o R 70
JOIN COST & INAEX SELECTION...cuiiiiiiiee ettt ste e st e s s be e s sbaeesbaeesabaeessaeenns 71
TranSitive ClOSUIE PrediCates. ... ciiie ettt e e e e ttee e e e e tree e e e e saree e e s eensraeeesensanesasnnnes 72
TSRS 72
(610 SN o T[T o 1=T o (o] g a g T La ot <IN] o1 USRS 73
LU o] Co N o T 1 44 o 1= P 73
JOiN PerformManCe ProBLEMIS.... ..o e e e e e e e e e e e abe e e e s eesaaeeeeeennaeeee s 74
Lol o 1=T (o1 8 F= Y aTod = T o =TSR 75
BTy AT aTotio] o) d1n] V4= LA o] o VORI 76
(€T CoT0 oYl aT=3o] o) 4]0 a1 74- L1 T] o FHUU PR 77
[TS a1 = U 10T o T o =SOSR 77
INAEX GIrOUPING.cctieiiiieeeite ettt sttt e e sttt ssbee e st e e s beeesbeessabeessabeesssbaessabaesssseessssaessssaesnsseesnsees 78
ELIMINate grouping COLUMNS......uiiiiieeetteete ettt saee e s ee e s saae e s bee e ssaee e sseeesneaesnneeas 80
Add SroUPING COLUMINS...coitiiiiiieeeiiee ettt ettt e st e e sbee e sbteesbeeesbteesbeeessaessasaesssaeessaessseessssaeenns 81
INdEX SKiP KEY PrOCESSING.uiiiciieiiiieiriiee ettt sttt essite e srte s st e e sbee e sbee e sbeeesbeessssaessnseessnseesnasens 81
Read trigger CONSIAEIATIONS. ...ciiiiiiiiieirite ettt ettt e st e s st e s st e s s bee e sabeesssbeeessbaesssseessases 82
Grouping St OPLIMIZATION.....iiiiiie ittt see e s te e s sbe e s s be e ssabeessateessseeesnaeaas 83

(0] e [=TuTaT=eo] o) 4]0 a1 74- 1A (0] o SO ST PPURTTR 83
VAT A T aY o1 =Y o =T a1 €= Lo o TSR 85
AV A oo T '] 0T 1] | =S RRNS 85
ViIEW MAterialiZatiON.....ciciiiiiiieiiie ettt ettt e s s te e s s te e s s staesssbeessateesssteesnnsaesnnes 86
1TO B oY o A p Y= {] o TS 87
N[O =TT o] oY) {=Te IR (U] a o 4o o PR 87
USINE MOT S uutieieiieeeiitieiteesit e e ettt e sttt e sttt s s bte e sbae e s baeesaseeesseeessseesaseeesnseeessseesssaesnssaesnsseesnsseesnnens 89
N[O ==Y 0] o (=SSR 89
NLO I 0o F= o] 1T o =S PSRP 91
DetermMiniNg MOT USAEE.....uuiiriiereiieieiteisteesitteesiteeesrteessaeesseeessaeesbaeesssaeesssaeessseesssaeessseeessseeenn 95
MOT rECOMMENAATIONS...iiiiiiiiiieeccctirteeeeee e e et e et e e eeeeeessssarsraeeeeeeeeesesessssssrssseeeeeaeessennnnnes 95
ReCUISIiVE QUETY OPTIMIZATION. .. .iiiiiciiiee ettt et e e e e etre e e s e e ere e e e e enaeeeesenseaeeeeenssaneesennes 96
=11 1] o] (= TSR 96
Multiple initialization & iterative fUllSELECTS........uiii i e 98
PrediCate PUSHING. ... ittt et e st e s s be e s s be e s sabe e e ssbeessasaessssaeenns 100
SEARCH CONSIAEIATIONS. ... tiiieiieieiieisiteeeit ettt eite st e s bee e s site e s bee e ssbeeessbeeesseaesnssaesnssaesnenas 100
CYCLE CONSIAEIAtIONS. . utiiieiieiiieeiiieessiee sttt eseteessieeessaeeessieeesssteessseessseeesneessseessseessaseessnseesssens 101
SMP & FECUISIVE QUEBIIES.ceeiiictiieeeeeiiteeeeeeitieeeeeeitreeesestesessesssseeesessseeessaassesessesssesessssssenessssssesenn 102
System-period teMPOral tablES........uui i e e et e e e e 105
AdapiVe QUETY PrOCESSING...c.uviiiiiiieiiiteeiiteeiteessteessteessrtessbeessbeessbeesssbaessseesssseesssaesssseesssseessnsees 106
HOW AQP WOIKS...ciiiiiiiciiiititeeeeee e eeececcrttre e et et e e eeeeesssbsraeeeseeeeeesesessassssseasaeseeeesseesassssssrsraneeseens 107

LAY] == T2 0] o] (TR 107

FAN @ o To T g I o] e 1= USSR 108

Database MoONItOr AQditiONS....ccocoi i e e e e e e e e e e e e e e e e e b e e e e eeas 109

({o1VAF- TaTe Rofo] U] gL g JF-ToX ot =TI oo | A (o1 FOS NS 111
Indexing strategy and RCAC.....cccuiiiiciieiiiiee ettt esite e eite st e e s ste e e sbae e sbee e sbaeesbaeesseessnsaesssaeenns 111
Materialized query tables aNd RCAC ...ttt erte e e et e e s e eveae e e e e nrae e e s enneeeee s 114

0T £ SR 118

L LT L L A 6=) =Y RN 118
NAVIBATOT VIBW.eeuttiiiiiiieiiiieseiee st e sttt e st e ssite e st teesateesaateesasteesasteesasteesasseesasseesassaesansaesssseessnseenas 118
Y@] I o] o Tt =T U] YRR 118

Health_Database OVEIVIEW......cocccurriiiiieiee ettt e e e eeearrre e e e e e e e e ee s sssasaraeereeeeeseenas 118
[LT L AN £ V7 R 123
Health _DeSiZN _LIMITS..cciiiiiiieiiiieiiiee ettt ettt s e e s sree e seate e ssaee e sneeeseseeesseaesnneaesnnes 128
HEAIEN _SiZE8 LIMITS.uuuiiiiiiiiiiiiecciiteeee et e e e e e e e eeeabbbaeeeeeeeeeeeesessssssseseeeeeeeeseessnnnes 131
Health_ENVironmMental_LimitS.. ... ce e e e e e e eeeenassrareeeeseeeeseeesnnnnnes 135
Reset _Environmental _LimitS. ..ot e e e e e e e e s ennsrnereereeeee s 139

B =T o =TT 1 o] oVl o) S PUTR 140
1S =Y o SRR 141
] 3T S OO UPRST 144
T (o1 F= Y o= 0 1TSS 146
=Y 0] 0] (=T 146

Application With table SCANS........uiiii i e e e e ree e e e nraees 146
QUETIES WIth taDLE SCANS...eiiiiii i e e e e e e e ee s e sassrreareeeeeeees 147
o] (SR o=V a e [=Y | ST 148
PV [o [Ao] aF= Aot T o] o1 LY 149

N A== (o] gl a a oY oVl (o1 RSP URRPPR 151
1) =Y o P SUURPR 151
FAN =14 N o = - VSRR 153
(670 0 a] 7= Vg =X e =1 - VSR 154
V=TS €= L =T A=) £ PR 155
|01 0T] T PP PP PP P TP PTPPPPRRRRPRR 155

J o [0t qr=Te V7Y o] SR 155
Index advice and OR PrediCates. iiee e cecieee et e e e e e e eere e e s sentee e e seeaseaeeseennsaeaeean 156
Index advice for Encoded Vector Index RRN Probe Plans.........cccocccieeiecciieee e 158
[DJ1S] o1 E= 1A T2 (o] 0 4 F= £] o TSRS 160

YA (=T R = Lo (TSR 161
(070 18] o1 g e [Tl] 0] A o] 2 TSR 163
Database MONITOI VIEW.....uuiieiieciiiee ettt e ettt e s ctee e e e e tte e e e e e sateee e e e baeeeeesnssaeeeesnseaesesenssenessennnes 164
(070] gl [g T IF= T LV o= TSR 165

RV AT U E= L =54 o] £= 1o TSR 165
1) =Y o SRR 165
INfOrmMation @VAIlable......coe e e e e e e e e raaee s 166
Adaptive QUEry ProCeSSING iN VE.......cccuiiiiiieiiiieiiiieesiieessitessieesseseesssseesssseesssseesssseessnseessseesssses 168

O] I o ¥ T I 0 Tl [T USSP 169
] AT] €= 1 =Y 0 1 T=T) £ SRR 170
(0701 18] g1 g e [Tl T 0] A o] 2 <SR 173
0] o= o (=TS 174
Creating SNAPSNOTS...ii ittt ee e st e e s s aee e s bee e s sabe e s aeaesnabae e aaaesaaraesnaes 181
Y=Y o) 2T) (o] SR 183
YO] I3 (o] (=T Il o] foTol=To LU T =Y SR 183

V=T) AV 01T (o] 2T LTS USSR 183

VIEW DU MESSAZES. .uiieuiiieiiiirititeeitteerteessite e sttt e s steeessaeeessateessateessseeesssaesasseessseessasaesnsseesnssaesnnses 184

Print SOL INTOrMAtioN.ccuieiiiii ettt e e e e e eeeeeabbbbeeeeeeeeeeeeeesassssssseseeeseessesssssnsssranes 185

B oo Wedo] 0 o] o= U F=Yo o PSSR 185

Change QUETY AttriDULES. .. .iiiiiee et e e st e e s e s s be e e sbee e sabee s saseeesaneas 186
(0721010)1) S PSR SPRRTSTRRRSRI 186

(00 [C10] 4 7 VO SR OTSPRPPRTT 188

Creating the QAQQINI query OpPtioNS file. ..t 188

(O7AX0 101\ B o)/ g g Te IoR - U] o o o] FA SR 189

T E=I (0] o T) S 189

FAN T oY YA L =Te (U T =T 0 g =T o £ S 189
SYSTEM=SUPPLIEA TrIGEEIS. . viiiiiiieeiieeeteeerte ettt ree e s see e s sbae e s saee e ssaeeessateessseeesnsseesnans 190

L@ T01=Y VAo o] 4 o] 2 1SR 190
SQL_XML_DATA_CCSID OPLiON..ciictttiiciieeiiieeiiieesiteessiteessieeessreesseseesssseessseessssessssseesssseessnees 204

(O T8 1Y o S 01T V1Yo SRR 205
Using Query Supervisor to MONItOr qUErY reSOUICE USAZE....ciucuuerrrrrerrrrreernrreesireeesseesssaessseessns 206
Query Supervisor configuration and OPEratioN........ccvveciieirvieiiriee e esseeesane 206
Managing QUEry SUPEIVISOT ACTIVITY...uiiiiiiiriieeriiieiiieeseiee st e st e sssteesseeessseeesssteessaseessnseessnseesas 207
Using DETECTION_FREQUENCY to protect system reSOUICES.......cocvveerrvueeiriieernieeenieesnveeenneeas 208
Writing a Query SUPErvisSor EXit PrOSIam.......cuieiciierriieiiiteesieessieessieessveessveessseesssseessssnessanens 209
Query Supervisor eXample eXit PrOSIaMIS. .. .ot iiteriiteriiteeritesseeesreeesreessreessseesssaessseessanes 210
Exit program to send message t0 QSYSOPR......ci ittt 210

EXit Program 10 €N QUETY..ccuuiiiiiieiiiieiiee st st seit st e s ste e s be e ssbeessbe e s aseessabaesssseessnseeens 214

Exit program to dump plan cache information for QUEry.....ccccvvvcieiniieenciecreecee e 217

Exit program to log information using a data QUEUE.......cuevvciiiriiieriieceeceee e 220
e 1o (Y = O 1N =T YA CTo)Y7=T 5 o SRR 236
HOW B0 Uittt ettt ettt e ettt e e e sttt e e sttt e e s s bt e e s e e s bt e e e seanseeeeseaaneteeeesnneeeeesnneeas 237
(0= [of =TI o L1 =T Y 2SR 238
(07 ok o1 4 A 1= (=T o] 125U URRN 238
BT 0 0= (o 4= (o =T USRS 239
TIME LM @XAMPLES. . iiei ittt e e e e tee e e et ae e e e e atee e e e nsteeeessnseneeesnnsaneassnnsnes 239
TeSt tEMPOrary STOrAZE USE..cii i eiieeieeitee e ettt e ettt e e ettt e e s ettt e e s e e neeeeseenreeessenseeeesessneeeeennnes 240
STOrage LML EXAMPLES. ..ii ittt sttt e s s be e e s bt e e s be e e sabeeesbeessabeeenaseas 240
PaArallel PrOCESSING .. iiieiiiieiitiete ettt ettt ste e st e s ste e s s ate e s sate e ssabeesssbaesssbeessseeessstaesnseaesnnsaesnes 241
)Y £ C= 10 0L o [T USRS 241
o] o T L= PR PPPRRTPPRRRPPPRRt 242

Y = LT[R o g g = T Fo T ==Y S O PSPPSR 243
FAYU) (o]0 F= Y Aol olo 11 1=Tok £ o] o U TP RPN 244
AUTOMALIC FETTESN. .ttt e e st e s st e s s e e e s be e e s bee s sbeeesareas 245
RV =T U T3 RS 245
Indexes and COLUMN STATISTICS. . cuiiiiiiiiiiieiciee ettt e s e s be e s sabeesabeessaseesas 245
[2F=Tol €= 7010 g o ool 1 =To1 £ To] o FOU USRS 247
Replicate COLUMN STATISTICS...uuiiiiiiciiiee et e ecceee e ecrre e e e erree e e e eeaee e e e senreeeesenseeeesennsseeeaaan 247
ViIEW COLUMN STATISTICS. ciiiuiiiiiiieiiiieiriee ettt sttt e s st e s st eesabe e s s ba e e s beeesabeeesaseeesssaeesnseeenn 248
Manual collection and FefrESh ... st ee e 248
T OO OSSR OTPOPR 249
BTy o] NV 7 @ oo T U Ta 1o =SSR 249
ChecCk PENAING CONSTIAINTS...ciiciiiiiieiiciee ettt see e s see e s eaee e ssaee e sbee e sbeeesbeaesseeesaseessnsens 251
Creating an INAEX STrATEEY....ccuiiiiiiiiriierriee ettt s sttt e s ste e s s te e s s sbeessabeessssee s sbeesassaesnnsaesnnseens 252
= Fe Y YA = Lo [T L= U 252
DT Y= Te =LY T LY G 253

Y oL T T T (== USSR 253

(0] o) 410 0121 (o VOSSR 254
MatChing alBOrtRM. . o it s e e s sbe e s sabe e s sareas 254
SPArSE INAEX EXAMPLES. . .uiiieieeccitiee e e et e e e e e eerr e e e eerate e e e s esbeeeeesssteeeeeeansteeeesnnssaeeesansssnes 256
SPECITY PAGESIZE....... ettt e e ettt e s ettt e e s e st ee e e s e nsaeaeeenstaeeeeenseseesensssnesanan 259
INAEX MAINTENANCE. ...ttt e s te e s ate e s bte e sbeeesebeeessteesseaesanteessseeesaseessane 259

[l aofe e [=Ta RV =To1 do] gl T aTe L= eSS SP TSP 260
HOW The EVI WOTKS...ceiiiiiiiieeiciee sttt seite s site e stee s saee e st e e sbte s sbee e sabeessbeeesaseessaseessnseesnnnes 261

A A= T T o o =T 1 £ = TP 262
MAINEENANCE. ..ttt tiee ittt sttt ete e sre e st e e seate e sbee e s beeesseeesastaesnteessteessteesseeesaneeesaseessnne 263
RECOMMENAATIONS. .. ittt s et e e s be e s sbe e e sabeeesabaeesasaeessaeessseeessaesns 264
CoMPAre FAQIX & EVIS.....uiiiiiiciiiiee et ettt e e ctee e e s e ettee e s e sttt e e e s e abteeessenstaaeeeeassteeessenssenessannseneesnns 267
INAEXES & the OPLIMIZET ...uiiieeceeee e e e e et e e s e e abe e e e s e nbae e e s e nssaaeeeenseneenan 267
| pTe L=y Qo) AU =T=Tc KOO TP PP 267
Display iNdeXes fOr @ 1able.....uuii i ree e e rree e e e e aae e e s e nnaeeeeenns 268
Determing UNNECESSArY INUEXES.uuiiiieccieeeeieiiieeeeeeittreeeeectreeeeesarteeessesteessessssaeessesssseesssesssenenns 272

vi

RESET USAZE COUNTS .ttt ettt et e sttt e e sttt e e s e ene e e e s e neeeeeseareeeesennreeeas 272

ViIEW INAEX DUILAS .o eiieiiieectee ettt et e e s be e e s bt e e sbe e e saseeesnaeessaeesseeesane 273
ManNage INAEX FEDUILAS. ..ccuviiieiieecee ettt e s st e s st e e s s e e s s baessabaeesasaeas 273
INAEXING STrATEBY.ceiitiiiiciiiiiitieeectee ettt ettt st e e st e e st e e s bae e sbeeesbaeesbaeesbaeesnsaesssaeesseesssaessnseeenns 278
= T AV ST=T o o] {0 Ul o FON S 279
e LoF (ot (V1= Vo] o] {0 - Tod 1 SR 279
Coding fOr EffECTIVE INAEXES.c...iiiiiieitiectere et s st e e s e e s s be e e s beeessbaeesaneas 280
AVOId NUMETIC CONVEISIONS.c.uuttiiiuiieriteeriteesateessteesssteessteesssseesssseesssseessseesssseesssseesssseessseessssees 280
AVOId arthMETIC EXPIrESSIONS. . uiiiiicieeeeccctee e eectee e e eecree e e e ecber e e e s ateeeseesstteeeeesasteeeessaseeeesennssneens 280
Avoid character STring PAAING......cocciiirciiiiriieire et se e e s e e s s sba e e s sbaeesbeeessaeeas 281
LIKE CONSIAEIATIONS. ..viiiciieiiiieeiciieeieiee sttt e seiteesetteeseiteesebeeeseseeesseeesbeeesseeesseasssseesaseeesaseeesaseessane 281
(DL AT W g T o= TSP 282
Yo L= T T T (== RS 282
INAEXES With SO SEQUENCE....cii ittt e e e ree e e e et ee e e e et e e e e senbeeeesenbaeeeesnnseneeas 283
Selection, JOINS, OF BrOUPING...c.utiiciieriiterriee sttt st e ssieessreesseeessteesssraessseesssseesssseessseessseesssees 283
(0] (e L= T = SRR RPTR 284
J o Lo =) =Y a 0] o] (=T SRR 284
Equal selection, NO SOM SEQUENCE.......ciiie et eeeciieee e ectree e eeertee e e e erre e e e eeareeeesesnbeeeeseesseesessnsenes 284
Equal selection, unique-weight SOrt SEQUENCE.......ciirciiiiriieiete ettt 284
Equal selection, shared-weight SOrt SEQUENCE.......covciiiiciiiiiieiriee et 284
Greater than selection, unique-weight SOrt SEQUENCE.......uiiviiiiriiierieerecee e 285
Join selection, unique-weight SOrt SEQUENCE.......cciviiiriiieiiteeiee sttt s sre e s saeessaeeeas 285
Join selection, shared-weight SOt SEQUENCE......cciciiiiiiieiieceiee ettt ssee e ssaeeesane 285
(0o [T o g Vo TE=To] o =T [V =T oLt RS 286
Order, UniqUE-WEIZht SO SEQUENCE......iiiriieirieeietteeetteeeiee st e e ste e s be e s seeessbeesssteessssaessnsaesnnee 286
Order, shared-weight SO SEQUENCE......iiiiiiiritecteete ettt e e s s bee s s e e s sbeeesans 286
Order, ALWCPYDTA(*OPTIMIZE), unique-weight sort SEQUENCE......cceereerceeerieeieecee e eee e 286
(€] o]0 o a T JE=To Y= To [U [=1 o Lol = 2SRRI 287
Group, UNiquUEe-WeIght SOI SEQUENCE......iiiiiiriiteeiiteerite et e st e sse e s sbe e e sbeessbeessbeesssseessaseessanes 287
Group, shared-Weight SOM SEQUENCE.......cuiiiiieiiieeiteerte st ee s e e s be e e sbee e sbeeessnees 287
Order & group on same columns, unique-weight SOrt SEQUENCE.......ceevvvveerrciieiriieerieeeeee e 288
Order & group on same columns, ALWCPYDTA(*OPTIMIZE), unique-weight sort sequence....288
Order & group on same columns, shared-weight sort seqUENCEe........cceevvverrviiirriiereieeeeeeneens 288
Order & group on same columns, ALWCPYDTA(*OPTIMIZE), shared-weight sort sequence....289
Order & group on different columns, unique-weight sort seqUENCE.......cceceeveveerrcieerniieennieenn. 289

Order & group on different columns, ALWCPYDTA(*OPTIMIZE), unique-weight sort
Y=o [U 1=1 o Lod =TSRRI 289

Order & group on different columns, ALWCPYDTA(*OPTIMIZE), shared-weight sort
Y=o [U 1=1 o Lod =TSSR 290
SPArSE INAEX EXAMPLES....uiiiiiieciiiee ettt eece e e e e e e e e e e eree e e e e ebeeeeeeeaseeeeeenbeseeeesnsesaeesssstneessnnsenns 290
FaY oY o] HTor=\dTo] a I (=11 7= (a1] o LT 293
Y= -\ - D TSP 293
B =Te [N of N oY o T=Ya o] o =T = o o [T USSR 294
RETAIN CUMSOI POSITIONS. .. utiieiieiiieeeeeiiee e e eitee e e eeiteeeeeeeteeeeeeessteeeeessseeessesseseesesssesesssasssessssnssenaesannes 297
NON-ILE Program CallS.....iiocuiiiiriiiiiieeiiieeceiee st e st e st sae e sste s s see s sssee e ssaee e ssaeeesneesssseessnneessnnens 297
TLE PrOgram CallS...cueiicieiicieeiiiee ettt ettt e st site s s e e st e e s bt e s sbee e sbeeesabeeesabeeesaseessaseessnsens 297
GENETAL FULES ettt ette e st e e st e e s bte e s bt e e sbee e s beeesabeeesabeeesasaessaseessnseessnsens 298
ProgrammMing tECHNIGUES...cco ittt re e s e e s s bt e s sabe e s abe e s s abeessssaessabaeesasens 299
USE the OPTIMIZE CLAUSE...cciicuiiieiiieeitieeiite ettt s sttt e s ite e s sate e saae e saae e ssaeeesbeaesssseesseaesnssaesnssnesnnsaesnnees 299
USE FETCH FOR N ROWS......ceiicieeteeete et ete et e s te et sste s veesseeste e saeessseesseesaseesseesasesnseesnsesnseesnsesnsenns 300
Improve SQL blocKing PerformManCe......ouciiiiiiiiiiiiincieeeite sttt e s sae e s saee e s sare e s e 301
USE INSERT N ROWS ...ttt e stte st et e s te st esraeebeesat e s teessae e teesseeensaeseesnseenseeensessaeansennsees 301
Control database manager BLOCKING.......ciiciiiiciiiiiiee ettt see e s aee e s ree e s bee s sans 301
Optimize COUMNS SELECTEM.uiieieeee e e e e rbee e e e e be e e e s e beaeeeeenseeeesennns 303
PREPARE CONSIAEIAtIONS. . .iiiiiiiiiiiiieeiiiesiitessiteestte st e st e st e s sabeessabaesssbaesssbeesssbeessssaesssseessnseessnnes 303
REFRESH(*FORWARD) CONSIAEIAtIONS. ..cuiiiciiertieeieestieeiteesteesteesseesteesseesseesseesseesseessessnsesssessnsesssnes 303
i paY ol ge)V/=N oo] aTolU | =1 o 20U 304
Use SELECTIVITY to supply misSing infOrmMation.........coecieiriieiniieieiieeniecsee e esee e ssee s see e 305

vii

PerformManCe CONSIAEIATIONS.cci it et e e e e et e e e e e e et e e eeebaa s b sesseeseeasasseeenrenns 306

(o] aT=o] o] 1=t g a¥- 11 4 1= J OO SO SO 306
LYoo a T o T L= oT] o] o 1SRN 307
FN L e I TS 308
VARCHAR and VARGRAPHIC......coi ettt eesttte e s e stte e e e e bte e e s sesaaee s seenntaeesssnntenessensaneesnnns 309
=T o N o] oYL= LU T YRSt 310
=Y 0] 0] (=R 312

(D] o 22 (o] gl IR Y = (ot SRS 313
JAY o] o] LTot= N o] o Y=Y Y] ol= - F SR 313
DELIMIT_NAME SCalar fUNCIION...ccoe ittt ettt eeeeearrrre e e e e e e e e s eeasnssaaeeeeeeeeeees 313
OVERRIDE_QAQQINI PrOCEAUIE.....uieiieettieeeeectiee e e eeteee e e cttre s s e etaaeeesesreeeeesnbeeeesssnsaseessessenesanns 314
OVERRIDE _TABLE PrOCEAUIE...ccccttieeeeectitee e ettt e e eecteee e s evtee e s e sttee e e s snseeeessnssaaeesensseeessessenesnans 315
PARSE_STATEMENT table fUNCHION...uutiiiiiieeiice ettt e e e e e e e e e e e e senanes 315
WLM_SET_CLIENT_INFO PrOCEAUIE....ctiieieetieeeeecttte e e eectteeeeectteeeeeenteeeeesesseneesesnnsesessesnsensesennses 320

P EITOIMANCE SEIVICES. . ettt itieeeecctiiee e ecctee e e et e e e ee e e e e e e bt e e e e e baeeeseesseeeeessseeaeesanssasesaanssanesssnnssnns 321
ACT_ON_INDEX_ADVICE PrOCEAUIE....cttiiectiieeeeettteeeeecttteeeeectteeeeesveeeesesssaeeseesssesessessssesessnnssens 321
ACTIVE_QUERY_INFO table fUNCHION.....cioiicttteeeeeee ettt eeeerarreee e e e e e e e eesennnsnanees 322
ADD_QUERY_THRESHOLD PrOCEAUIE...ccciiceiieeeeecitteeeeectttee e e ectteee e eettaeeeeeesreeeesesnsseeessennsaneesennnnes 324
DATABASE_MONITOR_INFO VIBW...uttiiieciieeeeeiiiieeeecitieeeesestteeesesssseessessesessennsssesssssssssssssssessenns 327
HARVEST_INDEX_ADVICE PrOCEAUIE...cccutiiiee ettt e eectteeeeeeitte e e e etee e e e eaveeeesebaeeeseensaasesssnnaneas 331
MTI_INFO table fUNCIION...coii ettt e e e e e e e ee e s asbabreeeeeeeeeeeseesnnnnnes 332
QUERY_SUPERVISOR VIBW...eeiiiietiieieeciieeeeeccitte s eecttee e s s stteeeessstaeesssssseesessnsesssssnnsssassssssssnessennnes 334
REMOVE_INDEXES PrOCEAUIE.....utiiieeitieeeeectteeeeeettee e eecteeeeseetteeeseeataeeseensaeesssnseasessnnssnnsssannnes 335
REMOVE_QUERY_THRESHOLD ProCEAUIE...cccccuiieeeeectiteeeeeitte e e eeteee s e e cveeeeseevtaeesesnsaeeessennneeae s 336
RESET_TABLE_INDEX_STATISTICS PrOCEAUIE.....uitiieecetieeeeeciieeeeeeieee e eereee e e eveee e e e e nseeeeeenneeas 336
PLan CAChE SEIVICES. uiiiieieciiee ettt et e e e ete e e e e et e e e sesbteee e eeesbteeeaesasteeeeeenseeeesannsseeeessasseneensnes 338
CHANGE_PLAN_CACHE _SIZE PrOCEAUIE.....utiiieeiteeeeeectrteeeeecvtee e e eeiteeeeeeensaeessesassaeessesnsaneesennnnes 338
CLEAR_PLAN_CACHE PrOCEAUIE ..utiiieecctieeeeectieeeeeeiteeeeeeeteeeessssaeesesssstssesennseaeessensssaesssnsssnesaann 338
DUMP_PLAN_CACHE PrOCEAUI......etiiieecetiteee ettt e eeettee e e esttee e e s ecbeeessssnsaaeesssssasesssnnssnessssnsseneens 340
DUMP_PLAN_CACHE_PROPERTIES ProCEAUIE.....cieieeitiieeeecitieeeeetteeeeeecreeeeesenteee s s snsanesseenneneas 341
DUMP_PLAN_CACHE_TOPN PrOCEAUIE.....eeeiectiieeeeeiiteeeeeettteeeeeitaeeeeeeesseeeesssnseeeessssssssessssssssessans 341
DUMP_SNAP_SHOT_PROPERTIES PrOCEAUIE....cciiictiieeeeetieeeeeccteeeeeectteeesesrreeessssnseeeseesnseesessnns 342
END_ALL_PLAN_CACHE_EVENT_MONITORS ProCedUre......ccceeeecrrreeeeerieeeeeeieeeeeeeveeeeeeevseeeas 343
END_PLAN_CACHE_EVENT_MONITOR ProCeaUIe.....cccieccuieeeeeeiiieeeeeciteeeeecvteeeeeecvveeeeesneeeeeeenes 343
IMPORT_PC_EVENT_MONITOR PrOCEAUIE...cccicctiieeeeeiitieeeeetteeeeeeireeeeeenveeeesesseeeessesnnaeeessensenns 344
IMPORT_PC_SNAPSHOT PrOCEAUIE...ciiiitiieeeeectieeeeecitee e eeciree e seeteee e s e esbeeeeeenbeeeesenasaaeeesenseneas 344
REMOVE_PC_EVENT_MONITOR ProCEAUIE.......uviiieeceieeeececitieeeeecrte e e e eeate e e s s nteeesseesaaeesesnnneeas 344
REMOVE_PC_SNAPSHOT PrOCEAUIE..ccceeiiieeeeciitieeeecitteeeeetteeeeeeaveeeesesseeeeseenssasessessssnesssenssnnees 345
REMOVE_PERFORMANCE_MONITOR ProCedUIE.......uuiiieeeciieeeeecieeeeeeiteeeeeecreeeeseevseeesssnseeeeeas 345
START_PLAN_CACHE_EVENT_MONITOR ProCEAUIE......uitiieeriieeeeetieeeeectteeeeeevree e e e snveeeeeenveeas 345

L0) 011 4 ST VAo -SSR 346
ANALYZE_CATALOG table fUNCHION.....utiiiiiiiiiici ettt e e e e e e eeenaarae e e e e e e e e e eenn 346
(0711 0] = I Y @] o] Yot Yo U1 TSRS 348
CHECK _SYSCST PrOCEAUIE. . uiiiiectieeeeeetitee e eectteeeeeeittreeeeecsreeeeeenbeseessastasessasssesesssasssneesssnssenensanns 349
CHECK_SYSROUTINE PrOCEAUIE......uutiieeiciiieeeeettie e e eecttee e e eevte e e e s ntee e s sentaeeesesnsaeesseensseeessennsens 350
DUMP_SQL_CURSORS PrOCEAUIE...cciiectiieeeieittteeeecttteeeeetteeeeeenteeesesebeaeesesssesesssssssnsesssnssnsessnnns 351
END_IDLE_SQE_THREADS PrOCEAUIEuviieeeectiiieeeeciieeeeeeteeeeseeteeeeseesseeessenraeeesensaneessennseneas 352
EXTRACT_STATEMENTS PrOCEAUIE.....utiiieieeieeeeeeciteeeeeettreeeeectrteeeeseaseeeeesenseaeesssssesesssssssnessennnes 353
FIND_AND_CANCEL_QSQSRVR_SOL ProCEAUIE...cccicctrieeeeeirieeeectteeeeeeeree e e e ereee e e eeraaeeeeennaneas 354
FIND_QSQSRVR_JOBS PrOCEAUIE.....utiiieeeciiieeeeecttteeeeettre e e e ettre e s eesnbeeeesssnsaseeseeassaeeasesseesessnnsenes 355
GENERATE _SOL PrOCEAUIE...ciiittieeeecctieeeeeettee e e eectte e e seetteeeseesaaeesessseeeeesanseeeessassesessassssseesannnes 356
GENERATE_SQL_OBJECTS PrOCEAUIE....uttieictiieeeeectiteeeeetireeeeeiteeeeeeibeeessesseeeesessssesssssnnseesessnnns 365
RELATED_OBJECTS table fUNCIION...ccoi ittt e e e e e e e e eeasarseaeee e e 376
RESTART_IDENTITY PrOCEAUIE.....utiiiiecctieeeeeetieee e ettt e e eetteeeseebteeeeeesseeeesenseneeesensseaessssssneenans 378
SWAP_DYNUSRPRF PrOCEAUIE......uieiieeitiieeeectttee e ectte e e eecttte e e s e stte e e e e tteee e senabeeessenseaeesssnssnnsessnnes 379
SYSFILES VIEBW.eeiiietiiee ettt ettt e ettt e e et ee e e ettt e e s e e b bt e e e eessee e e e e nbteeee s nsteaeesanstasesaeassaneesennssnns 380
VALIDATE_DATA, VALIDATE_DATA_FILE, and VALIDATE_DATA_LIBRARY table functions......390
ST TS oV o S USR 391

viii

JAN o] o] LTot= N o] o Y=Y Y [ol= - F S 391

ACTIVATION_GROUP_INFO table fUNCHION....ciiii ittt 391
BINDING_DIRECTORY_INFO VIBW...uetiiieiiiieeieciiieeeeecirteeeeectteeeeseasaeessesnsasessessssasesesnnsenssssnssenes 393
BOUND_MODULE _INFO VIBW...uttiiiiiitiieeieiiiieeeeeciteeeeseevteeseseseseessesssesessssssssssssssssssssssssesssssnssseees 394
BOUND_SRVPGM_INFO VIBW....utitiieiitiiieeeeciieeeeeeiieeeesectesessesseeeesessssessssenssssssssssssssessssssssssssnnssens 403
CLEAR_DATA _QUEUE PrOCEAUIE..c...uutiieeeeciteee e eecittee e e ecttee e e e vtteesseesteeessennseeessennsasesssensseessssnnsenes 404
DATA_AREA _INFO table fUNCHION.....iii ittt e e e e e e e asraaeaeee s 406
DATA _AREA _INFO VIBW...ttiiieiieeeeeecitee s eeciteeeeestteeeeesinteeeesssstaeesssssesesssanssessssessessssssssssessssssenes 407
DATA_QUEUE_ENTRIES table fUNCLION....uviiiiiiiic ettt ee e e 408
DATA_QUEUE_INFO VIBW .. .uitiieeccciieeeeeciiee e e eeitte e e se ettt e e s eetteeesssssasesssnseesessenssasesssanssnessssnssneennnn 411
DB_TRANSACTION_INFO VIBW...eetiieitiiieeeeiiieeeeeciieeeseeiteeesessteeessesnseeessesnsesessessssssssssssensssennsenes 414
ENVIRONMENT_VARIABLE_INFO VIEW..ciiecttieeeeeiiieeeeeciieeeeeitee e eevtee e s eevteee s s esnsaeeesesnnseeessennenns 431
EXIT_POINT_INFO VIBW.cccctiiieieeciiieecccitie e s e ecite e e e ecvte e e s sentaee e s ntasessesnstaesessnnsassssensenassennssenesnnns 432
EXIT_PROGRAM_INFO VIBW...eetiieciiieeeeeiieeeeeecitteeesecvteeessettaeessessseseessssssssessessssesssssssssssssnsseseenan 434
[o NV I S o] oYt =Y LU T TSRS 436
PROGRAM_EXPORT_IMPORT_INFO VIBW....uttiiieiiiieeieciiieeeeeiieeeeeecireeeeesnveeeeeesnseeessesnssneessennsnns 437
PROGRAM_INFO VIEW..eiiiictiiieeeeiiieeeeeciteeeeectteeeeesitteeessesssasesessssseesssessessssssssenessssssnsssssassessesannes 438
(0108171 = (O o] Tl =Y LU T YT 452
(0101)710] = (OR Yox=1 F-Y i {11 s [1o o FER RSP 452
RECEIVE_DATA_QUEUE table fUNCIION ..ottt e e e e e e e e e e 453
SEND_DATA_QUEUE, SEND_DATA_QUEUE_BINARY, and SEND_DATA_QUEUE_UTF8
[T 0T ot =T LU =SSR 455
SERVICES_INFO table....uuuiiiiiciiiee ettt ettt e e tte e e s tee e e s eatae e s e e nrae e s s eenstnasseennsaneesennnnes 456
SET_PASE_SHELL_INFO PrOCEAUIE....utiiiiccttieeeecctieee e ecttee e eeettee e e eeatee e s e enraeesseenbeaeesesnnseeeesennsenes 459
Y o I I I €= o1 (=T 0T Vot £ T o TSRS 460
STACK_INFO table fUNCHION. ..ottt e e e e e e e e e e eassabaeeeeeeeeeeeseesnnnnnnes 461
USER_INDEX_ENTRIES table fUNCHION..c...uiiiiiiiiieeec ettt eeeeerrveeeee e e e e e e e aseneeeees 465
USER_INDEX_INFO VIEW..eeeiiictiiiieeciiieeeeectiee e e ecittee s seteeeesesnsaaesesesseesessnsesessssnsssssssessssnsessnnnsnns 466
USER_SPACE table fUNCHION...uuttiiiieiei ettt e e e e aarae e e e e e e e e e sesenssssaaeeeeeeas 467
USER_SPACE _INFO VIBW...ettiiietiiieeeeiiteeeeectteeeeeeitteeeseseaseesesesnseesssesnseasssssssssssssssssessssssssesessnnsens 468
WATCH _DETAIL table fUNCEION...uiiiiiieeei ettt e e e e eeeearrraeee e e e e e e e eeeesasnssnnens 469
WATCH_INFO VIEBW....eitieeeecciieee e eccttee e eectte e e s e ettt e e s e e catee e e sesabaeeeseessesessssseeaessanseanessessenesssnsssneenann 474
Backup, Recovery, and Media Services (BRMS) SEIVICES......covieiireeiieeecieeeee ettt etee et 476
COMMUNICATION SEIVICES. ... tiiiiiecciieeeeectiee e eeccrte e e e ectee e e e esbte e e e sesteeeeseesseseeaesnsseeessessenessannsesesssnnssnnes 476
ACTIVE_DB_CONNECTIONS table fUNCHION......ccoiiiieeciieeeeeeeee ettt e 477
DNS_LOOKUP table fUNCIION.....coc ittt e e e e e e e s e e eanasaaaeeeeeeesesesennnns 479
ENV_SYS_INFO VIBW....uutiiiiieiiiieeeeetiee e e ecttee e e eitte e e s esateee s sessaeeessnsteeessennsesessennsesesssnsseesssssssensennn 480
HTTP_SERVER_INFO VIEW....uuttiiiieeiiiee ettt ectte e eetee e s e e ette e e s s snate e e s sennseaessenbaaeesennssenssssnsensennn 481
NETSTAT_INFO VIBW..eeteiiictiieeiieiiieeeeecitte e e e ectte e s e eettteee s sesteeeesssnsaseeseessasassssnseasssesasssnesssssssesessnnns 482
NETSTAT_INTERFACE _INFO VIEW...eiiieiitieeeeeiiieeeeectieee s eeiteee e eetteeeseensaeeessenseeessensaneessnnsssnesanns 489
NETSTAT_JOB_INFO VIEW.eeiiieetiieeeeciiiieeeeiete e eecieeeeseetteeessesteeesessteeessesseeeesensaesessnnssnsesssssenes 498
NETSTAT_ROUTE_INFO VIEW..ceiictiieeeeciiieeeeecitteeeectteeesestteeeeessaseeessenseaessennssasssssnsssnssssnnssesessanns 499
SERVER_SBS_CONFIGURATION VIBW....uttiiieiuiiieeeeciiieeeeeiteeeeeenteeeseeiveeessesnsssssssssssessssssssenssssnnns 506
SERVER_SBS_ROUTING VIBW...utiiiiiiiiieeieeiiieeeeeciieeeeeetteeeesesnsssessssssseessssssesessesssssssssssssnssssnnsenes 507
SET_SERVER_SBS_ROUTING PrOCEAUIE.....uuiiiiieeciieeeeeeiiteeeeecteeeeeeeraeeeeessseesesssnssessesensssnessesnnes 510
TCPIP_INFO VIBW . tiiieeeeciieee ettt e s eecttee e s e ettte e s e e saete e e e sensteeeesesssaseeeesnsseeseeessesessannssnesssnnsssneesannes 515
LR Y=T Y ol= TSR 516
IFS_JOB_INFO table fUNCHION....cuiiiiiii ettt e e e e e e s e narraaeeeeeeas 516
IFS_OBJECT_LOCK_INFO table fUNCHION....cccouiriiiiieeee ettt eeeecrvreeee e e e e e e e s e e e eansennees 519
IFS_OBJECT_PRIVILEGES table fUNCHION.....cciii ittt e e e 522
IFS_OBJECT_REFERENCES_INFO table fUNCLION.......coiiiciiie et 525
IFS_OBJECT_STATISTICS table fUNCHION......cooiietteeeeeee ettt e e e e 528
IFS_READ, IFS_READ_BINARY, and IFS_READ_UTF8 table functions........ccccceeeeveeeeeecireeeeennns 540
IFS_WRITE, IFS_WRITE_BINARY, and IFS_WRITE_UTF8 procedures.......ccccccecuveeeecvrvreeeeennnnn. 542
SERVER_SHARE_INFO VIBW...uuttiiiiiiiiieeieciiieeeeecttteeseeevteeeesesaeeessesnsasessssnsssessssnssessssennssesessnsssnes 544
S 1Y Y=Y VTt SRR 547
JVM_INFO VIBW . .eetiiee ettt eette e e e et e e e s et e e e s e btaeesssnteeeeesanseeeeeasseeeeesnsaeeesennssanessennsenes 547
Y =l BN AV 7 I o o Tod =Te [] =TSR 548

N Lo T g F= Y RS T=T RV [ol=T TR 549

ASSOCIATE_JOURNAL_RECEIVER table fuNCHiON......cccccuiiieieciiee ettt e e 549
AUit JOUINAL BNTIY SEIVICES. ciiiiiiiiiieececiieeeeecttee e e eectre e e e ecbte e e e ssbteeeseesssaeessesssseeessessenesssnssseeessnnes 552
AUDIT JOURNAL table function common information.......ccceeeeeeciieeececiiiee e eecveeee e 552
AUDIT_JOURNAL_AF table fUNCLION...uuiiiieieiie ettt arrrreee e e e e 555
AUDIT_JOURNAL_CA table fUNCHION.....ooi ittt ee e e e e e e e e nnnees 558
AUDIT_JOURNAL_CD table fUNCHION....uiiiiii ittt nrrraee e e e e e e e e 563
AUDIT_JOURNAL_CO table fUNCHION....uuttiriieeieeeecececcrireeeee e eeeearrreee e e e e e e e e seessaarseeeee s 564
AUDIT_JOURNAL_CP table fUNCHION.....uutiiiiiiieieiee ettt e ceeeeccrareere e e e e e e e e e eeensennenees 565
AUDIT_JOURNAL_DO table fUNCHION.....iiiii ittt e e nareere e e e e e e e 576
AUDIT_JOURNAL_EV table fUNCHION ..ottt e e e e e e e ananes 577
AUDIT_JOURNAL_GR table fUNCHION....ccoccitiiieieeee ettt e e e e e e e e eannenes 578
AUDIT_JOURNAL_JS table fUNCLION.....uiiiiiiiieeeiieeeecrttteeee et e nnrrareeee e 582
AUDIT_JOURNAL_OM table fUNCHION..ccccciitieieieeec ettt e e e e e e e e e asannenees 587
AUDIT_JOURNAL_OW table fUNCHION.....uiiiiiiieieeec et eeeceivavaeeeee e e e e e e e e eseannseneees 589
AUDIT_JOURNAL_PW table fUNCION. ...ttt e e enaaaeaeee e 591
AUDIT_JOURNAL_ST table fUNCHION....iii ettt e e e e e 592
AUDIT_JOURNAL_SV table fUNCHION...ieirieeiiieiee ettt e e e e e e e e ee e asannreees 597
DISPLAY_JOURNAL table fUNCHION...ciiiii ettt irrrere e e e e e e e s ee s ansneenees 598
JOURNAL_INFO VIBW..ettiiictiiieeeeciieeeeectieeeseetieeeesestteeessessasessesssasessessesessannssssssssnssssssssansensessnnes 612
JOURNAL_RECEIVER_INFO VIEW...cuuttiiiiieiiiieeeecitte e e e ecitee e s e tteeeesentaeessesnseneesssnssasessennsensessnnnnes 620
JOURNALED_OBJIECTS VIBW..ettiiictiieeeeciieeeeeeiteeeesectteeesesssaeessessesssssasssssessessssesssssssssssssnssesesnnn 628
REMOTE_JOURNAL_INFO VIBW...uuttiieicitiiieeeeciteeeeesiteeeeeeitteeeeessstesssesnseesssssnsssssssssssssssssnnsssssssanns 630

[o] = LT LI T=T Y/ ot =T F U 635
JOURNAL_INHERIT_RULES VIBW...uvttiiieeiieeeeceiiie e eecttteeseeitee e s esivee e e s envtaee s senssaeessensanesssnnssnnenns 635
LIBRARY_INFO 1able fUNCHION....uttiiiiiiieiii ettt e e e e e e s e aarsaaeeeeeeeeeseesnnnsssnnens 639
LIBRARY_LIST_INFO VIEBW..cciiiuttieeeeiiieeececitteeeeectteesseevtseeesenseeessesnseseesssnssessssasssesssssnssesessnnssenns 642
OBJECT_STATISTICS table fUNCION. ...ttt e e e e e e e e e e e eenn 643
MeESSAZE HANALING SEIVICES...iuiiiiiiiiieiie ittt ettt ettt s see e s ste e s saee e s saee e ssreeesseeesseeesneeesnnens 650
HISTORY_LOG_INFO table fUNCHION....ciiii ittt eeeeeisrrraeee e e e e e s e e e e eannnnns 650
JOBLOG_INFO table fUNCHION.....uuuiiiiiiiiecec ettt eeeecerrreree e e e e e e e e e e e enssrraeeeeeseeeeeseesnnnnnns 655
MESSAGE_FILE_DATA VIEW..ciiitiiieeeectieeeeecitteeeeeitteeeeseeteeessesseasessessesasssnnsessssssnssessssnssssnesssnnnes 657
MESSAGE_QUEUE_INFO table fUNCHION......ciii ittt eeenrnrae e e e e e e e 660
MESSAGE_QUEUE_INFO VIBW...uuttieiieeiiieeeeeiiteeeeeiireeesessteeesssassesessesssessssssssesssssssssesssssasssnessannnes 663
REPLY_LIST_INFO VIBW..utttiiiciiiieeeeiiieeeeeeiteeeeeectteeeseeattseessestsaessssassesssesnssessssssnsesssssssssnessssnsenns 664
SEND_MESSAGE PrOCEAUIE .ceceeetieeeeectieee e e tttee e eette e e e estee e e s e sate e e e eenbeeeesesnbeeeesennsseaeesssssensessnnes 665
PEITOIMANCE SEIVICES. . eiiiiitieeecccieee ettt e e ete e e e eerttre e e e e bt e e e e e beeeeaessseeeeeesseeaeesanssaseesassanessensssnns 666
COLLECTION_SERVICES_INFO VIBW....uttiiieeiiieeeeeiiiieeeesitieeeseessteessesstesesssssssessesssssessessssssssennes 666
POWETHA SEIVICES. ..eiiiiitiieeeecctiee e e ettt e e e eee e e e e ttee e e e e ttee e e e e nbeeee e e abeaeeaaassaneesaasstesessassanesasasssneesssnses 669
0T [U ot =Y VoSSRt 669
LICENSE_EXPIRATION_CHECK PrOCEAUIE.....uiiiiectiieeeeeciteeeeectiteeeeeeteeeesesnreeeseeereaeeseeansneseesanes 670
LICENSE_INFO VIEW..eiiiiitiiieeieiiieeeeeeiteeeeecette e s e eetteeesesssteeessenstesessenssasessesnssnssessssessssensessesnnsnnes 670
SOFTWARE_PRODUCT_INFO VIEW..eeiiectiieeeeeciiieeeeeciiee e e eciteee e s saseeessessseeessssnssessssennsesessesnssnsesnnns 673

ol I ST VTSRS 678
ELECTRONIC_SERVICE_AGENT_INFO VIEW.....cutiiieieciiieeeecteee e eeitee e e ecvtee e s eevreeesesnseeeeseennneeae s 678
FIRMWARE_CURRENCY VIBW.....utiiiiieeiiiieeeecitieeeeetteeeeesiteeessessesessessssesssessssssssssssssesssssssssnessesnnes 680
GROUP_PTF_CURRENCY VIEW..eiiiititieeieciiieeeeciteeeseiteeeeseetaeeesesssessssssseesassnnseasesssnssssesssssssnesnans 682
GROUP_PTF_DETAILS VIEW..etiieittieeeeeciieeeeeeiteee e sectteeeeeetteeeseesaeesssssseesssssnsessssssnssssesssssssnsssennnes 683
GROUP_PTFE_INFO VIEBW.eeiiiecttiiieieiiteeeeeecitteeeeecttteesssetteeessssteeessesssesesssssssesssssnssesessessesssssnnssssesanns 686
PTE _INFO VIBW..uututiiiiiiiieeei e ettt e e e e e e eeeeeeaaabsteeeeseeeeeeeeesssssssaaseeeseeeesseseassssssrssseeseeeesssnsnnnns 688

S CUNIEY SBIVICES. .uttiiiieitiieeeee ittt e e e ectte e e e eiittee e e e e ettaeeeeeessteeeseesteeasaeassaseeaaanssassesassaneesannsteseesansssnesasnnses 691
AUTHORITY_COLLECTION VIBW.....uutieieeeeiiieeeeeiiteeeeeitteeeeesisseeessesseesssesnssassssssssesessssssssssssnssenens 691
AUTHORIZATION_LIST_INFO VIEBW....eutiieieeciieeeeecctiieeeeectteeeeeetteeeseenteeeesentaaessesnsanessssnnsesssesnnes 691
AUTHORIZATION_LIST_USER_INFO VIEW....uuttiiiieiiiieeeceiieeeeeeitee e e eecveeeeserteeeseesseeesssennenessennns 693
CERTIFICATE_INFO table fUNCHION......oii ettt e e e e e e e e s e easesnanees 695
CHANGE_USER_PROFILE table fUNCHION. ...ttt e e e e e e s e annnannees 698
DRDA_AUTHENTICATION_ENTRY_INFO VIEW....eiiiiciiiieeeeiiiee e e ccriee e e eeiveee s e reee e sesvseeeseenseeaaean 701

FUNCTION_INFO VIBW...utiiitieiiieieeiieesiteeieeste ettt s ee et esee s beesseesseesmeesaseesmeesaseesneesaneeneesneesanes 702

FUNCTION _USAGE VIEW...eitiiiiieiieiieeieeste sttt siee sttt e st et esaeesbeesseesaseesneesmneesbeesmeesneenns 703

GROUP_PROFILE_ENTRIES VIBW...utttiiiciiieeeeecitieeeeeciteeeeecvteeesseateeessesnsteesssenssasessennsesesssnnseneesanns 704
OBJECT_OWNERSHIP VIEBW...c.uitiiieeeeiiieeeeectiee e eecttee e s eecttee e e e sevteee s sestaeessssnsssessesnssaessssnnsensessnnnes 704
OBJECT_PRIVILEGES 1able fUNCLION.....uttiiiiiiieeiei ettt e e e e e e e nsrneaeeeseeee s 706
OBJECT_PRIVILEGES VIBW...uttiiiciiiiie ittt e eecttte e e eectte e s e ecvte e e s senteee s sesnsanessesnssesessensesessennssnaesnns 709
SECURITY_INFO VIEW.ceiietiiieeieiieeeeceitee e s eectte e e eeiateeeesessteeessssseeaesensesasssanssssesssssesssssasssnesnennnes 712
SET_COLUMN_ATTRIBUTE PrOCEAUIE....ctiiiciiieeeectteeeeeettteeeeeciteeeeeecreeeesseseeeessennsaeessessssnessennnes 715
SOQL_CHECK_AUTHORITY scalar fUNCHION.....ccvvviriiiieieei et eceeeeenrrneeeeeeeeeeeeeesennnnnnes 716
SQL_CHECK_FUNCTION_USAGE scalar fUNCHION.....cccvviiieeiieee et eeecnrrrneeeee e e 716
SQL_CHECK_SPECIAL_AUTHORITY scalar fUNCHION......cccvvveeeeeeeeiieeeeciirreeeeeeeeee e eeevvvneeeee e 717
USER_INFO VIBW..eetiieitiieei ettt e eecttteeeeeteeeseettee e e seebeeeeseenstaeessenssessessasssssessassesesssnsssnesssnnsseneennn 717
USER_INFO_BASIC VIEW..eeiiiiitiieeeeciiiieesectteeeeeetteeeeestteeeesesnbteessesassaessesssesesssansssnssssassssesssnnssnnes 726
Y00 T R T=Y VLol = PSR 735
DELETE_OLD_SPOOLED_FILES ProCEAUIE...cciiicciiieeeectieeeeeectieeeeeettee e e eenveee e sesveee e e s e nneeeesennens 735
GENERATE_PDF SCalar fUNCIION.....ciiiieittteeeeeee ettt cirrrre e e e e e e e e e s eenassssaaeaeeeeee s 737
OUTPUT_QUEUE_ENTRIES table fUNCHION......ciiiiiiettteeeeeee et ee e 738
OUTPUT_QUEUE_ENTRIES VIBW...ettiiiciiiieeeeiiieeeectteeeeeetteeesessteeeeeensessessnsesesssnnssssesssnsssnessesnnes 742
OUTPUT_QUEUE_ENTRIES_BASIC VIEW....uuttiiieeiiieeeeeciiieeeeecrieeeeseseeeeesentesessesnsesessessssessssssenes 747
OUTPUT_QUEUE _INFO VIBW...eeiiieuiiieeieeiiieeeeeiiteeeseitteeessstteeesessssesesssssstssessenssesesssassssessssssnesennn 749
SPOOLED_FILE_DATA table fUNCHION ..ttt e e e e e e e sarraaeee e e 754
SPOOLED_FILE_INFO table fUNCION.....utiiiiiiieiiic ettt e e e ee e e snarrrae e e e eeeeees 755
SEOTAEE SEIVICES. .uiiiiuiieieiieiiiteietteeste e e et e e e et e e steesssteessteesssteesasseessseeeesssaesassaeessseesassaesasseesssseesnnseesnns 759
ASP _INFO VIBW.eeeiiiiiiiiieeeiiiiitieeeeee e e e e eeeeceirteereeeeeeeeeseeessssbaaseeseeaesssesessssssssasaesaeeesssesaasssssrsesneens 760
ASP_JOB_INFO VIBW...etiiiiiiiieieeciieeeeeeieeeeeeetteeeseestaeeessnbeesesensteeessessanssseasssssessssssssesssnsssessnsnnes 767
ASP_VARY_INFO VIBW...uutiiiiiiiiieeeieciieeeeeeitteeeseiteeeesesssseesesssesessessessssssnssssssssassessssssssssessssnssesens 768
MEDIA_LIBRARY_INFO VIBW...eeiiiiceiiieeeeciiieeeeeiiteeseeetteeeseetteeesesssaeeessnseeeesennssassssssssnessennssnneens 770
SYSDISKSTAT table fUNCHION....ciiiiiiee ettt re e e e e e e e e ee e e e sree e e e ennseeeaaas 772
SV S D IS KSTAT VIEBW.eiiiiiettiieeieitieeeeeetteeeeeeettteesseesaeessessseeesaansesesasansseesasaasseesessastesessnassenesssnnssnnes 775
SYSTMPSTG VIBW..uuttiiiiieiiieeececiieeeeecttteeseectteeeeeeeasteeeseestaeeesessasesaeasstasassassaeessennseneessanssensssennsenes 781
USER _STORAGE VIEBW..ciiieutiieieeiiiieeeeecitte e e eectteeessetteeessesteaesseessasesseessssessesssesesssssenessssssnesssnnsnes 782
SYSTEM HEAIEN SEIVICES. ... e e e e e e et e e e s e b e e e e s e baeeeseennaeeeas 782
)Y =0 0 LT gL A= 1= €SS SRNE 785
R A I 1 = I =1 o TSR 786
SYSLIMITS VIBW . uuuttieiiectiieeeceiiteeeeecttteeseectteeeeeessbteee e e staeeesassasessesnssesassassasessennseneessanssenessennsenes 788
SYSLIMITS_BASIC VIEW..eiiiiitiiieeeeiiieeeeeeiieeeseeitteessesteeessessseessesssesessssnssesesssssesesssssssnssssnnssenees 790
QIBM_SYSTEM_LIMITS global variables. ...ttt 792
WOIK ManagemeENT SEIVICES. ...ciicuieiriiiieiieeeiteeeiie ettt esste e s seteesssreesbeeessbteesseeesssteesasseessenessesesnsseean 793
ACTIVE_JOB_INFO table fUNCHION....cuiiiii ittt e e eeeeeesaareeee e e e e e e e eesnsnnsnnes 793
AUTOSTART_JOB_INFO VIBW...utteiiieciiieeeeeitiieeeeeciieeeeeetteeeessssaeessesssseseseesssessssssnsssessssssssessssnnsenes 810
COMMUNICATIONS_ENTRY_INFO VIEW..eciectiiieeeciieieeeectteeeeesiteeeeeesteeeeessseeessensaeessesnsssssssnnnes 810
GET_JOB_INFO table fUNCHION....uiiiii ittt e e e e e e e s e esasaeaaeeeeeeees 812
JOB_DESCRIPTION_INFO VIBW...utttiiieiiieeeeeiiiiieeeecittieeesecssteeesssseeessesssesessssssssesssssssssessssssesssssnnes 814
JOB_INFO 1able TUNCIION....utttiiiiiieeee ettt e e e e e e eeeeaasbsrreeeeeeeeeeesesnnssssssaeeeseeas 821
JOB_LOCK_INFO table fUNCHION...ciiiiii ettt eeee e e e e e e e e e e s snsasaeeeeeees 833
JOB_QUEUE_INFO VIEW..eiiieitiiieieeiiieeceeiitee e e ectteeessettteesseessesesssssssasessesssasessensssnessssssesssssnsssneennn 836
MEMORY_POOL table fUNCHION....iiiiii ittt e e e e e e e e s e s assssaaeaeeeees 840
MEMORY_POOL_INFO VIEW..eiiecttieeeeeiiieeeeeeiteeeeeectteeesecteeeeseesaseesessseesssssssesassssssssssssssssssssannnes 842
OBJECT_LOCK_INFO VIEW..ccccutiiieieeciieeeeeciteeeeeectteeeesevteeessssssasessesnsssessssssessssesssessssssssssssssennsenes 844
OPEN_FILES table fUNCHION. ..ttt e e e e e e e e s e e aasbeaeeeeeseeeseesnnnnsssnnnes 846
PRESTART_JOB_INFO VIEW..ciiiitiieieeeiiieeeeeciie e e s ectteeeeeevteeessesasaeesseessaneseesnssasessenssenessssnssnsessnnnes 848
PRESTART_JOB_STATISTICS table fUNCLION.....uuiiiiieeeie ettt sennees 851
RECORD_LOCK_INFO VIEBW....uuttiieeeeiiiieeeeciiiee s eecitte e e s eetteeessenaeeessesnsasessssnsseessssnssesssssnssesessnnssenes 854
ROUTING_ENTRY_INFO VIBW...uetiiieciiieeieeiieeeeeeitteeeeecvteeeesesteeeseessesesssenssasessensesessssnsssessssssenes 855
SCHEDULED_JOB_INFO VIBW...uutttiiieciieeeeeciieeeeeeiteeeesesseeessessssesesssssseesssssssssssssssssssssssssssessssenssens 857
SUBSYSTEM_INFO VIBW...utttiiieiiiieeeeeiiieeeeecitteeeseeteeesseesteeessessseeessessssesssssssesssssnnsseseessnsssnesnsnnnes 860
SUBSYSTEM_POOL_INFO VIBW....uutiiiiiiiiieeeeciieeeeeeiieeeeeesteeeeseesteeesesssesssssnsessssssssssssssssssnessans 862
SYSTEM_ACTIVITY_INFO table fUNCHION....ccoc ottt 863
SYSTEM_STATUS table fUNCHION....ueiiiieiii ettt e sarre e e e e e e e e e s e nnsnnes 864

xi

SYSTEM_STATUS_INFO VIW.ervereeeeereeeeeeseeeseesesesseeseessesssesesesesssesesessessseseeesssesesessesssessessseeseens 872

SYSTEM_STATUS_INFO_BASIC VIEW..eevttiiiiiiieeeiiinireeeeeeeeeeeeeeeessssrseeeeeseeseesessssssssssssssessesssesannnns 878
SYSTEM_VALUE _INFO VIBW....ciittiriteieieeeeieieeeeiiittreeeeeeeeeeesessssssssessesseseesssesessssssssssssssessessensnsssnnes 885
WORKLOAD_GROUP_INFO VIBW...cceteeeuutririiiieeeeeeeeeeeeiiirteeeeeeeeeeeeseeesssssssssseseesesssssessssssssssssssesseses 885
WORKSTATION _INFO VIBW...uuutuiriiiiiieieeeeieieiiiitieeeeeeeeeeeeeeeesssssssseeseeseessesessssssssessessesesssessssssssssnes 886
SYSTOOLS. .ttt et e e ee e e e bbb e e e e e e e e et seess s ssba e b e s reaaeeeeesesassssbsaaaasaeseeseesasssssssssraereeeeessesannnss 888
USING SYSTOOLS ... ittt et ett e st e e st e s s te e s sabae s sataesssbeessssaessasaessssaessssaessssaesssaesssseesnne 888
HTTP fUNCTION OVEIVIEW..cciiiiiiiiieecititiieiee e eeeeecctrtttee e e e e e e e s ee e abbaeereeeeeeeeesessssssssssnseeeseeseesesssssnsranes 890
BASEGADECODE SCalar fUNCHION...uuiiiiiii ettt e e e e ee e essrrreeeeeeeeeeeseesnsssnanees 895
BASEGAENCODE SCAlar fFUNCHION. ... uuiiiiiiiieeeecc ettt eeeeearrrer e e e e e e e e eeeaassaaaeeeeeeeeeessenns 896
HTTPBLOB and HTTPCLOB scalar fUNCLIONS......iiiiiiiiecciritiieeee et ee e eeeeensnraeeee e 896
HTTPBLOBVERBOSE and HTTPCLOBVERBOSE table functions......cccceevuvvveeeeeiecieieeecirnveeeee, 897
HTTPDELETEBLOB and HTTPDELETECLOB scalar fuNCtioNS.......evviiiiieieeciiieeieeeeeee s 898
HTTPDELETEBLOBVERBOSE and HTTPDELETECLOBVERBOSE table functions.......cccccccuvuueee. 899
HTTPGETBLOB and HTTPGETCLOB scalar fuUNCLIONS.....uuviiiiiiiecciiiieeeeeee e 899
HTTPGETBLOBVERBOSE and HTTPGETCLOBVERBOSE table functions.........ccccoeeeevvvvvvveeennn.. 900
HTTPHEAD SCalar fUNCHION....ciiii ittt e e e ee e ar e e e e e e e e s eesensssssaeseeeseeeens 901
HTTPPOSTBLOB and HTTPPOSTCLOB scalar fuNCLiONS.......evveiiiiiieeiiiiieeeeeeee e 901
HTTPPOSTBLOBVERBOSE and HTTPPOSTCLOBVERBOSE table functions........cccceeeuvvvveeeennn.. 902
HTTPPUTBLOB and HTTPPUTCLOB scalar fUNCHIONS......uuuviiiiiiiiieeciiiieeeeeeee e 902
HTTPPUTBLOBVERBOSE and HTTPPUTCLOBVERBOSE table functions.........ccceeeeevvvvvveereenennn. 903
URLDECODE SCalar fUNCEION....uuiiiiiii ittt e e e e e e e e eesaassaaeeeeeeeeseeeseanssssseseeeees 904
URLENCODE SCaAlar fUNCHION...ciiiteiiiiieee ettt e e eeeeebaraeee e e e e e e e e se e e asnsssaeseeeeeeeessessnnnns 904
Database MONItOr fOrMATS.....ccc ittt e e e e e e e e e bbb e r e e e eeeeeeeseessssssesreereeeens 904
O] I 71 o] L= RSOOSR 904
SO VIBW eeiiiiii i e ittt e e e e eeeeeeb et e e e eeeeseeese s sba b b e s e e aaeeeeesesaasssbasaaaaaeaeeeeesaasssssaesaaereseeseenenannssrranns 910
1000 - SOL INTOIMAtiON...ttitiiiiiieiiiiiieeeictree e eeeeeerrrrr e e e e e e e e seeesssssrsrereeseeeeeseesassnsssraesseeseens 910
3000 - TADLE SCAN.cutttiiiiiie et e e et e e e e e e s absabeaeeeeeeeeeseeesssssssseaeaeseseessensansnnnes 928

1] 010) R 1y o (<) U Y=Y [OOSR URRRURRRRROOY 932
3002 - INAEX CrEated......uerririiiieieee ettt eeeeeeec e e e e e eeeeeesessssssssaaeereeeesesesaennsssseseeess 938

G 0102 T O 11T VYo RSP 944

T 010 T A =Ty o o T - o] (= TSRS 948
3005 - TADLE LOCKE..cuiiiiiiiiiieitteeeeee ettt e e e e e e e e e e e e e e sesessssssseeeeeseeeeeseesnssssnnes 954
3006 - ACCESS PLan REDUIL.....cccieiieieeeeeeeee e e e e e e s e aaabrareeeeeeeeeeeean 956
GO0 A O] o) 1 aa] V4= gl W Ta aT=Te I 11 S ST 960
3008 - SUDQUETIY PrOCESSING.viiiciieiiiiieeiiieeiciteeseiteessiteesettesssstesssteessseessseessseessaseessseesssseessnsees 965
3010 - Host Variable, ODP Implementation......coccciieeieeciieeeecciieeeeecreee e eeree e e ecvee e e s eente e e e e 966
30711 - Array HOST Variables.ttt ettt e et e e e e eree e e s s enr e e e s s s ae e e e e ennaneas 967
3012 - GLODAL Variables....ccoceeiritiiiiieeee ettt e e e e e e e e e sasbbaereeeeeeeeesesensnnsenes 969
3014 - Generic QO INTOrMATION....cciiii ittt e e e e e e e e e e e se s sssrraseeeeeeas 970
3015 - StatiStiCs INTOIMATION....iiiiii ittt e e eee bbb e e e e e e e e eeseesssssaaeeeeeeas 980
3018 - STRDBMON/ENDDBMON....uutttiiiiiiiiiiiiiiiiiiiieereeeeeeeeeeeeecnrsraeeeeeeeeeeesesssssssssssssssesesssesennnns 982
3009 - ROWS FEIIIEVEU.cuueiiieeiiiiiieeieiirtieeee e e e e e eeeeccrbrre e e e e e e e e e eeeessesssrstaeereeseeeseseasssssssasseeseeseeesennnns 985
3020 - INAeX AdVISEA (SOE)...iiiiieeeiiieeiteeee et e ettt e e eetree e e e etaee e e s erabee e e s sssbeeeessesranessessseeeesennnes 987

1T 0 A =11 g F= o J O - (=T RSN 990
3022 = BItMaP MEIZE...uuiiiiiiiiiiiee ittt e st e s ettt e s ste e sate e s ste e ssbeaesbteesseeesseeessseessseessseessseessnsens 992
3023 - Temp Hash Table Created.......uuiiiiie ettt e e ertre e e e tee e e e abaee e s e earaaee s 995
3025 - DIStINCE PrOCESSING. ...viiiiiiiiiieeiiieeieieeseieeseteessteeeseseeessseeessseeesaseeessseeessseesssseeessssessaseassne 998

G O A Y=Y do] 0 1=T = (o PSS 1000
3027 = SUDQUEIY MEIEE....uviiiiiiiieiiteeiteeeite e estte e estteesteessvee e ssbaessbaesssaeessseeessaesssaeessaessssaesnnes 1002
o102 T €] o 10T o1 o= PSPPI 1006
3030 - Materialized qQUEIY tabLles.........uuii it e e et e e e rae e e e ennes 1009
3031 - Recursive cOmmON table EXPreSSIONS.......uviiiiecciiieeeeccitee e eecree e e eeree e e eeeaee e e s eenreeeeeenns 1012
T T LT Lo (=T =T ol = T OO PP URR 1014
PerformManCe INTOIMATION.....iiii it e e e e e et eeeeeeeeeesssasssseeaeereeeeeesesnnnnns 1014
(0] 01T g 1e F= €= I o 7= o 1SR 1039

PRI SOLINF ..ttt et st s e e s et e s st e s et e s me e e sme e e sneee s saeesaneeesannnens 1045

(101 o = =3RRI | 0 11"
Programming interface iNfOrmMation.... ... et ee s s e e 1060
Lo (=10 0B U ST RSO URTTRURRRRRRRORt 1060
TEIMS AN CONAITIONS . .uiiiiiiiiiiiiiee e e e eeeeese e e e e e eeeeeeeesssssssbaseereeeeeesesessssssssasseeseeeeeseesans 1061

xiii

xiv

Database performance and query optimization

The goal of database performance tuning is to minimize the response time of your queries by making the
best use of your system resources. The best use of these resources involves minimizing network traffic,
disk I/0, and CPU time. This goal can only be achieved by understanding the logical and physical structure
of your data, the applications used on your system, and how the conflicting uses of your database might
affect performance.

The best way to avoid performance problems is to ensure that performance issues are part of your
ongoing development activities. Many of the most significant performance improvements are realized
through careful design at the beginning of the database development cycle. To most effectively optimize
performance, you must identify the areas that yield the largest performance increases over the widest
variety of situations. Focus your analysis on these areas.

Many of the examples within this publication illustrate a query written through either an SQL or an
OPNQRYF query interface. The interface chosen for a particular example does not indicate an operation
exclusive to that query interface, unless explicitly noted. It is only an illustration of one possible query
interface. Most examples can be easily rewritten into whatever query interface that you prefer.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 1058.

What's new for IBMi 7.3

The following information was added or updated in this release of the information:

 Support for System-period temporal tables: “System-period temporal tables” on page 105
 Support for EVI RRN probe: “Encoded vector index RRN probe” on page 24

« Index advice for EVI RRN probe: “Index advice for Encoded Vector Index RRN Probe Plans” on page
158

« Support for Window temporary result objects and window scans: “Window” on page 59

 Support for Temporary indexed lists: “Temporary Indexed List” on page 56

« Support for temporary index list scan and index merge: “Temporary Indexed List scan and Index Merge”
on page 57
« SQL plan cache properties topic: “SQL plan cache properties” on page 174 has been updated.

« Indexes and column statistics topic: “Indexes and column statistics” on page 245 has been updated.

« Start database monitor (STRDBMON) command topic: “Start Database Monitor (STRDBMON)
command” on page 141 has been updated.

« Environmental attributes that you can modify through the QAQQINI file : “Controlling queries
dynamically with the query options file QAQQINI” on page 186 has been updated.

« “QAQQINI query options” on page 190 has been updated.

« Database monitor records that have additions in 7.3:

— “Database monitor view 1000 - SQL Information” on page 910

— “Database monitor view 3001 - Index Used” on page 932

— “Database monitor view 3014 - Generic QQ Information” on page 970

“Database monitor view 3018 - STRDBMON/ENDDBMON” on page 982

« New services
— AUTHORITY_COLLECTION view: “AUTHORITY_COLLECTION view” on page 691
— ENVIRONMENT_VARIABLE_INFO view: “ENVIRONMENT_VARIABLE_INFO view” on page 431
— OUTPUT_QUEUE_INFO view: “OUTPUT_QUEUE_INFO view” on page 749

© Copyright IBM Corp. 1998, 2015 1

SERVICES_INFO table and Db2 PTF Group level dependency information: “SERVICES_INFO table” on

page 456

« Updated services

DISPLAY_JOURNAL table function accepts ending values as input parameters to limit the entries
returned: “DISPLAY_JOURNAL table function” on page 598

NETSTAT_INFO view has been updated to return more information: “NETSTAT_INFO view” on page
482

NETSTAT_INTERFACE_INFO view has been updated to return more information:
“NETSTAT_INTERFACE_INFO view” on page 489

NETSTAT_JOB_INFO view has been updated to return more information: “NETSTAT_JOB_INFO view”
on page 498

NETSTAT_ROUTE_INFO view has been updated to return more information: “NETSTAT_ROUTE_INFO
view” on page 499

OBJECT_STATISTICS table function has been updated to return more information:
“OBJECT_STATISTICS table function” on page 643

PTF_INFO view has been updated to return more information: “PTF_INFO view” on page 688
SERVER_SBS_ROUTING view shows information about more servers: “SERVER_SBS_ROUTING view”
on page 507

SET_SERVER_SBS_ROUTING procedure allows you to configuring more servers:
“SET_SERVER_SBS_ROUTING procedure” on page 510

USER_INFO view has new columns for authority collection details: “USER_INFO view” on page 717

SYSLIMITS view returns more information about each object: “SYSLIMITS view” on page 788

An additional limit is tracked: Maximum extended dynamic package size: “System Health Services”

on page 782

What’s new since the first 7.3 publication

The following revisions or additions have been made to the Performance and query optimization
documentation since the first 7.3 publication:

- May 2022 update

Query Supervisor example exit programs written in CL: “Query Supervisor example exit programs” on
page 210

New services

- ACTIVATION_GROUP_INFO table function: “ACTIVATION_GROUP_INFO table function” on page
391

- ASSOCIATE_JOURNAL_RECEIVER table function: “ASSOCIATE_JOURNAL_RECEIVER table
function” on page 549

- AUDIT_JOURNAL_JS, AUDIT_JOURNAL_OM, and AUDIT_JOURNAL_ST table functions return entry
specific data: “AUDIT_JOURNAL_JS table function” on page 582, “AUDIT_JOURNAL_OM table
function” on page 587, and “AUDIT_JOURNAL_ST table function” on page 592

- BINDING_DIRECTORY_INFO view: “BINDING_DIRECTORY_INFO view” on page 393
- DNS_LOOKUP table function: “DNS_LOOKUP table function” on page 479

- ELECTRONIC_SERVICE_AGENT_INFO view: “ELECTRONIC_SERVICE_AGENT_INFO view” on page
678

- JOURNAL_RECEIVER_INFO view: “JOURNAL_RECEIVER_INFO view” on page 620

- MTI_INFO table function: “MTI_INFO table function” on page 332

- REMOTE_JOURNAL_INFO view: “REMOTE_JOURNAL_INFO view” on page 630

- SPOOLED_FILE_INFO table function: “SPOOLED_FILE_INFO table function” on page 755

2 IBMi: Performance and Query Optimization

- SQL_CHECK_FUNCTION_USAGE scalar function: “SQL_CHECK_FUNCTION_USAGE scalar function”

on page 716

SQL_CHECK_SPECIAL_AUTHORITY scalar function: “SQL_CHECK_SPECIAL_AUTHORITY scalar
function” on page 717

SYSTEM_ACTIVITY_INFO table function: “SYSTEM_ACTIVITY_INFO table function” on page 863

— Updated services

ACTIVE_JOB_INFO table function can return a WORK subset of data: “ACTIVE_JOB_INFO table
function” on page 793

GENERATE_PDF scalar function supports *LAST option: “GENERATE_PDF scalar function” on page
737

GENERATE_SQL and GENERATE_SQL_OBJECTS procedures have a new option for generating
comments for tables: “GENERATE_SQL procedure” on page 356 and “GENERATE_SQL_OBJECTS
procedure” on page 365

JOBLOG_INFO table function returns the qualified job name: “JOBLOG_INFO table function” on
page 655

SYSTEM_STATUS table function, SYSTEM_STATUS_INFO view, and SYSTEM_STATUS_INFO_BASIC
view no longer return information for the AVERAGE_CPU_RATE, AVERAGE_CPU_UTILIZATION,
MINIMUM_CPU_UTILIZATION, and MAXIMUM_CPU_UTILIZATION columns due to performance
concerns. This information is now returned through the SYSTEM_ACTIVITY_INFO table function.

These columns can be can be explicitly requested by using an environment variable switch.
ADDENVVAR ENVVAR(QIBM_DB2_SYSTEM_STATUS_INFO) VALUE(FULL) LEVEL(*JOB)

“SYSTEM_STATUS table function” on page 864, “SYSTEM_STATUS_INFO view” on page 872, and
“SYSTEM_STATUS_INFO_BASIC view” on page 878

- September 2021 update

— New system limits global variables provide the ability to remove rows from the system limits table by
the age of rows, in days: “QIBM_SYSTEM_LIMITS global variables” on page 792

— New services

ACTIVE_QUERY_INFO table function returns information about active SQL Query Engine (SQE)
queries: “ACTIVE_QUERY_INFO table function” on page 322

AUDIT_JOURNAL_CD, AUDIT_JOURNAL_CO, AUDIT_JOURNAL_CP, AUDIT_JOURNAL_DO,
AUDIT_JOURNAL_EV, AUDIT_JOURNAL_GR, AUDIT_JOURNAL_SV table functions return the entry
specific data for audit journal entries: “Audit journal entry services” on page 552

COLLECTION_SERVICES_INFO returns the configuration properties for Collection Services:
“COLLECTION_SERVICES_INFO view” on page 666

SYSFILES view returns database file information: “SYSFILES view” on page 380

WORKLOAD_GROUP_INFO view returns information about workload groups:
“WORKLOAD_GROUP_INFO view” on page 885

— Updated services

ACTIVE_JOB_INFO includes a column for the workload group: “ACTIVE_JOB_INFO table function”
on page 793

DISPLAY_JOURNAL table function adds a column with a new name to return the current user value:
“DISPLAY_JOURNAL table function” on page 598

PARSE_STATEMENT returns the procedure name for a CALL statement: “PARSE_STATEMENT table
function” on page 315

SECURITY_INFO view returns additional security-related system values: “SECURITY_INFO view”

on page 712

« April 2021 update

Database performance and query optimization 3

— The Query Supervisor allows real time monitoring of resources used by queries: “Query Supervisor”
on page 205

— New services
- AUDIT_JOURNAL_AF, AUDIT_JOURNAL_CA, AUDIT_JOURNAL_OW, AUDIT_JOURNAL_PW table

functions return the entry specific data for audit journal entries: “Audit journal entry services”
on page 552

- CHANGE_USER_PROFILE table function allows some user profile attributes to be changed:
“CHANGE_USER_PROFILE table function” on page 698

- END_IDLE_SQE_THREADS procedure ends SQE threads not being used by a job:
“END_IDLE_SQE_THREADS procedure ” on page 352

- GENERATE_PDF scalar function generates a PDF from a spooled file: “GENERATE_PDF scalar
function” on page 737

- MESSAGE_QUEUE_INFO table function allows filtering of the messages in a message queue:
“MESSAGE_QUEUE_INFO table function” on page 660

- QCMDEXC scalar function executes a CL command from within a query: “QCMDEXC scalar function”
on page 452
- SECURITY_INFO view provides system security settings: “SECURITY_INFO view” on page 712

- SEND_MESSAGE procedure sends an informational message to the QSYSOPR message queue:
“SEND_MESSAGE procedure ” on page 665

- USER_INDEX_INFO view returns the attributes of a *USRIDX: “USER_INDEX_INFO view” on page
466

- USER_INDEX_ENTRIES table function returns the contents of a *USRIDX: “USER_INDEX_ENTRIES
table function” on page 465

- USER_INFO_BASIC view is a faster version of USER_INFO, with fewer columns:
“USER_INFO_BASIC view” on page 726

- USER_SPACE_INFO view returns the attributes of a *USRSPC: “USER_SPACE_INFO view” on page
468

- USER_SPACE table function returns the content of a *USRSPC object: “USER_SPACE table function”
on page 467

— Updated services

- ACTIVE_JOB_INFO and JOB_INFO table functions return individual columns for the parts of
a qualified job name: “ACTIVE_JOB_INFO table function” on page 793 and “JOB_INFO table
function” on page 821

- CLEAR_PLAN_CACHE procedure allows a plan for a query to be cleared: “CLEAR_PLAN_CACHE
procedure ” on page 338

- DISPLAY_JOURNAL table function returns more SYSLOG information: “DISPLAY_JOURNAL table
function” on page 598

- DUMP_PLAN_CACHE procedure allows a specific plan to be dumped: “DUMP_PLAN_CACHE
procedure” on page 340

- DUMP_PLAN_CACHE_TOPN procedure supports additional categories of plans to be dumped:
“DUMP_PLAN_CACHE_TOPN procedure” on page 341

- FIRMWARE_CURRENCY view includes information shown by the DSPFMWSTS command:
“FIRMWARE_CURRENCY view” on page 680

- GENERATE_SQL and GENERATE_SQL_OBJECTS procedures write output to a stream file:
“GENERATE_SQL procedure” on page 356 and “GENERATE_SQL_OBJECTS procedure” on page 365

- IFS_OBJECT_STATISTICS table function return the symbolic link for an object:
“IFS_OBJECT_STATISTICS table function” on page 528

- OBJECT_STATISTICS table function supports a generic object name: “OBJECT_STATISTICS table
function” on page 643

4 IBM i: Performance and Query Optimization

- SYSDISKSTAT view and SYSDISKSTAT table function have additional information about SSDs,
including remaining lifetime: “SYSDISKSTAT view” on page 775 and “SYSDISKSTAT table function”

on page 772

- USER_INFO view indicates whether the user profile is disabled for IBM i NetServer use:
“USER_INFO view” on page 717

System limit alerting is instrumented for the maximum number of spooled files limit. In addition,
global variables can be used to set the alerting level percent for each limit: “System limit alerts” on

page 785

« October 2020 update

The SELECTIVITY clause allows predicate selectivity values to be assigned within a query: “Use
SELECTIVITY to supply missing information” on page 305

New services

- COMMUNICATIONS_ENTRY_INFO view: “COMMUNICATIONS_ENTRY_INFO view” on page 810

- DATA_QUEUE_ENTRIES table function: “DATA_QUEUE_ENTRIES table function” on page 408

- EXIT_POINT_INFO view: “EXIT_POINT_INFO view” on page 432

- EXIT_PROGRAM_INFO view: “EXIT_PROGRAM_INFO view” on page 434

- IFS_READ table function: “IFS_READ, IFS_READ_BINARY, and IFS_READ_UTF8 table functions” on

page 540
- IFS_WRITE procedure: “IFS_WRITE, IFS_WRITE_BINARY, and IFS_WRITE_UTF8 procedures” on

page 542
- JOURNAL_INHERIT_RULES view: “JOURNAL_INHERIT_RULES view” on page 635

- JOURNALED_OBJECTS view: “JOURNALED_OBJECTS view” on page 628

- OPEN_FILES table function: “OPEN_FILES table function” on page 846

- RELATED_OBJECTS table function: “RELATED_OBJECTS table function” on page 376
- SERVER_SHARE_INFO view: “SERVER_SHARE_INFO view” on page 544

- SOFTWARE_PRODUCT_INFO view: “SOFTWARE_PRODUCT_INFO view” on page 673
- SYSLIMITS_BASIC view: “SYSLIMITS_BASIC view” on page 790

- WATCH_DETAIL table function: “WATCH_DETAIL table function” on page 469

- WATCH_INFO view: “WATCH_INFO view” on page 474

Updated services

- ACTIVE_JOB_INFO table function returns a column about open files: “ACTIVE_JOB_INFO table
function” on page 793

- ANALYZE_CATALOG table function has an option to return cross reference server status:
“ANALYZE_CATALOG table function” on page 346

- DB_TRANSACTION_INFO view returns additional columns for pending changes:
“DB_TRANSACTION_INFO view” on page 414

- DISPLAY_JOURNAL table function allows multiple object names and a fully qualified job name as
input parameters, and returns more SYSLOG information: “DISPLAY_JOURNAL table function” on
page 598

- GROUP_PTF_DETAILS and GROUP_PTF_CURRENCY views return dates as a date data type column:
“GROUP_PTF_DETAILS view” on page 683 and “GROUP_PTF_CURRENCY view” on page 682

- LIBRARY_INFO table function has a new detailed information parameter and returns additional
journal columns: “LIBRARY_INFO table function” on page 639

- SPLIT table function has an escape character parameter: “SPLIT table function” on page 460

- SYSDISKSTAT view has additional information added, including statistics. The new SYSDISKSTAT
table function allows the statistics to be reset: “SYSDISKSTAT view” on page 775 and
“SYSDISKSTAT table function” on page 772

Database performance and query optimization 5

- SYSTEM_STATUS table function and SYSTEM_STATUS_INFO view return job table information and
system-wide journal information. A new view, SYSTEM_STATUS_INFO_BASIC does not return the
job table columns: “SYSTEM_STATUS table function” on page 864, “SYSTEM_STATUS_INFO view”
on page 872, and “SYSTEM_STATUS_INFQO_BASIC view” on page 878

— SYSTOOLS services are documented
- DELETE_OLD_SPOOLED_FILES procedure: “DELETE_OLD_SPOOLED_FILES procedure” on page 735
- LPRINTF procedure: “LPRINTF procedure” on page 436

- VALIDATE_DATA table functions: “VALIDATE_DATA, VALIDATE_DATA_FILE, and
VALIDATE_DATA_LIBRARY table functions” on page 390

 April 2020 update

— New services

- ANALYZE_CATALOG table function: “ANALYZE_CATALOG table function” on page 346

- AUTOSTART_JOB_INFO view: “AUTOSTART_JOB_INFO view” on page 810

- CERTIFICATE_INFO table function: “CERTIFICATE_INFO table function” on page 695

- DB_TRANSACTION_INFO view: “DB_TRANSACTION_INFO view” on page 414

- HTTP_SERVER_INFO view: “HTTP_SERVER_INFO view” on page 481

- IFS_OBJECT_STATISTICS table function: “IFS_OBJECT_STATISTICS table function” on page 528
- JOB_LOCK_INFO table function: “JOB_LOCK_INFO table function” on page 833

- LIBRARY_INFO table function: “LIBRARY_INFO table function” on page 639

- PRESTART_JOB_INFO view: “PRESTART_JOB_INFO view” on page 848

- PRESTART_JOB_STATISTICS table function: “PRESTART_JOB_STATISTICS table function” on page
851

- ROUTING_ENTRY_INFO view: “ROUTING_ENTRY_INFO view” on page 855
- SUBSYSTEM_INFO view: “SUBSYSTEM_INFO view” on page 860
- SUBSYSTEM_POOL_INFO view: “SUBSYSTEM_POOL_INFO view” on page 862
- WORKSTATION_INFO view: “WORKSTATION_INFO view” on page 886
— Updated services
- ACTIVE_JOB_INFO table function returns enhanced job type: “ACTIVE_JOB_INFO table function”

on page 793

- DISPLAY_JOURNAL table function returns more SYSLOG information: “DISPLAY_JOURNAL table
function” on page 598

- JOBLOG_INFO table function returns message key: “JOBLOG_INFO table function” on page 655

- OBJECT_PRIVILEGES table function has been documented: “OBJECT_PRIVILEGES table function”
on page 706
- OBJECT_PRIVILEGES view has 2 new columns: “OBJECT_PRIVILEGES view” on page 709

- OVERRIDE_QAQOQINI procedure allows optional parameters: “OVERRIDE_QAQQINI procedure” on
page 314

- SYSTEM_STATUS table function and SYSTEM_STATUS_INFO view return additional columns:
“SYSTEM_STATUS table function” on page 864 and “SYSTEM_STATUS_INFO view” on page 872

- USER_INFO view has new columns: “USER_INFO view” on page 717
« October 2019 update

— New option to suppress alter table inquiry message. “QAQQINI query options” on page 190

— New services

- ACTIVE_DB_CONNECTIONS table function: “ACTIVE_DB_CONNECTIONS table function” on page
477

6 IBM i: Performance and Query Optimization

- DATA_QUEUE_INFO view: “DATA_QUEUE_INFO view” on page 411

- SEND_DATA_QUEUE procedure: “SEND_DATA_QUEUE, SEND_DATA_QUEUE_BINARY, and
SEND_DATA_QUEUE_UTF8 procedures” on page 455

- RECEIVE_DATA_QUEUE table function: “RECEIVE_DATA_QUEUE table function” on page 453

- CLEAR_DATA_QUEUE procedure: “CLEAR_DATA_QUEUE procedure” on page 404

- BOUND_MODULE_INFO view: “BOUND_MODULE_INFO view” on page 394

- BOUND_SRVPGM_INFO view: “BOUND_SRVPGM_INFO view” on page 403

- PROGRAM_EXPORT_IMPORT_INFO view: “PROGRAM_EXPORT_IMPORT_INFO view” on page 437
- PROGRAM_INFO view: “PROGRAM_INFO view” on page 438

- IFS_JOB_INFO table function: “IFS_JOB_INFO table function” on page 516

- IFS_OBJECT_LOCK_INFO table function: “IFS_OBJECT_LOCK_INFO table function” on page 519

- IFS_OBJECT_REFERENCES_INFO table function: “IFS_OBJECT_REFERENCES_INFO table function”
on page 525

- IFS_OBJECT_STATISTICS table function: “IFS_OBJECT_STATISTICS table function” on page 528
- OBJECT_OWNERSHIP view: “OBJECT_OWNERSHIP view” on page 704
- SERVER_SBS_CONFIGURATION view: “SERVER_SBS_CONFIGURATION view” on page 506
- SWAP_DYNUSRPRF procedure: “SWAP_DYNUSRPRF procedure” on page 379
— Updated services

- OBJECT_PRIVILEGES view: “OBJECT_PRIVILEGES view” on page 709

- OBJECT_STATISTICS table function returns additional columns: “OBJECT_STATISTICS table
function” on page 643

- Support for server routing by IP address added to SET_SERVER_SBS_ROUTING:
“SET_SERVER_SBS_ROUTING procedure” on page 510

- SYSTEM_STATUS table function and SYSTEM_STATUS_INFO view return additional columns:
“SYSTEM_STATUS table function” on page 864 and “SYSTEM_STATUS_INFO view” on page 872

- JOBLOG_INFO table function has optional error handling parameter: “JOBLOG_INFO table
function” on page 655

« April 2019 update

— New services

- ASP_JOB_INFO view: “ASP_JOB_INFO view” on page 767

- DATA_AREA_INFO view and table function: “DATA_AREA_INFO view” on page 407,
“DATA_AREA_INFO table function” on page 406

- FIRMWARE_CURRENCY view: “FIRMWARE_CURRENCY view” on page 680

- MESSAGE_FILE_DATA view: “MESSAGE_FILE_DATA view” on page 657

- SPLIT table function: “SPLIT table function” on page 460

- SPOOLED_FILE_DATA table function: “SPOOLED_FILE_DATA table function” on page 754

- The HTTP functions in SYSTOOLS have been documented: “HTTP function overview” on page 890
— Updated services

- The maximum table size has been added as a tracked system limit and as a limit that sends alerts:
“System Health Services” on page 782, “System limit alerts” on page 785

- ASP_INFO returns the relational database name for SYSBASE: “ASP_INFO view” on page 760
- GET_JOB_INFO returns additional columns: “GET_JOB_INFO table function” on page 812
- OBJECT_PRIVILEGES view returns authorization list: “OBJECT_PRIVILEGES view” on page 709

- PARSE_STATEMENT table function supports DROP statements and returns information about
referential constraints: “PARSE_STATEMENT table function” on page 315

Database performance and query optimization 7

- WLM_SET_CLIENT_INFO procedure uses defaults for unspecified parameters:
“WLM_SET_CLIENT_INFO procedure” on page 320

« August 2018 update

— New services

- GENERATE_SQL_OBJECTS procedure: “GENERATE_SQL_OBJECTS procedure” on page 365

- JOB_DESCRIPTION_INFO view: “JOB_DESCRIPTION_INFO view” on page 814

- OUTPUT_QUEUE_ENTRIES_BASIC view: “OUTPUT_QUEUE_ENTRIES_BASIC view” on page 747
— Updated services

- ACTIVE_JOB_INFO table function optionally returns more detailed information:
“ACTIVE_JOB_INFO table function” on page 793

- NETSTAT_INFO view and NETSTAT_JOB_INFO view return port names from service table entries:
“NETSTAT_INFO view” on page 482 and “NETSTAT_JOB_INFO view” on page 498

- PARSE_STATEMENT table function supports some DDL references: “PARSE_STATEMENT table
function” on page 315

« October 2017 update

— New services

- ASP_INFO view: “ASP_INFO view” on page 760

- ASP_VARY_INFO view: “ASP_VARY_INFO view” on page 768

- JOB_QUEUE_INFO view: “JOB_QUEUE_INFO view” on page 836

- STACK_INFO table function: “STACK_INFO table function” on page 461
— Updated services

- DISPLAY_JOURNAL and HISTORY_LOG_INFO include syslog information: “DISPLAY_JOURNAL
table function” on page 598 and “HISTORY_LOG_INFO table function” on page 650

- OVERRIDE_QAQQINTI procedure has been fully documented: “OVERRIDE_QAQQINI procedure” on
page 314
- System limit notifications: “System limit alerts” on page 785

« March 2017 update

— New services

- AUTHORIZATION_LIST_INFO view: “AUTHORIZATION_LIST_INFO view” on page 691
- AUTHORIZATION_LIST_USER_INFO view: “AUTHORIZATION_LIST_USER_INFO view” on page 693

- OBJECT_PRIVILEGES view: “OBJECT_PRIVILEGES view” on page 709
MESSAGE_QUEUE_INFO view: “MESSAGE_QUEUE_INFO view” on page 663

- LICENSE_EXPIRATION_CHECK procedure: “LICENSE_EXPIRATION_CHECK procedure” on page
670

- SET_PASE_SHELL_INFO procedure: “SET_PASE_SHELL_INFO procedure” on page 459
— Updated services

- USER_INFO has new columns for supplemental group profile information and the PASE shell:
“USER_INFO view” on page 717

- LICENSE_INFO view has a new column indicating the install status: “LICENSE_INFO view” on page
670

- RESET_TABLE_INDEX_STATISTICS procedure has a new option to remove rows from the index
advice tracking table: “RESET_TABLE_INDEX_STATISTICS procedure” on page 336

« November 2016 update

— STATEMENT DETERMINISTIC option has been added for functions. “OAQQINI query options” on
page 190

8 IBM i: Performance and Query Optimization

— New services

HISTORY_LOG_INFO table function: “HISTORY_LOG_INFO table function” on page 650
JOB_INFO table function: “JOB_INFO table function” on page 821
PARSE_STATEMENT table function: “PARSE_STATEMENT table function” on page 315

— Updated services

DISPLAY_JOURNAL table function honors row and column access control: “DISPLAY_JOURNAL
table function” on page 598

GET_JOB_INFO table function has new columns for prestart job information: “GET_JOB_INFO table
function” on page 812

GROUP_PTF_CURRENCY view returns a new value to indicate PTFs will be current with the next IPL:
“GROUP_PTF_CURRENCY view” on page 682

GROUP_PTF_CURRENCY and GROUP_PTF_DETAILS views have been updated to access a new XML
feed: “GROUP_PTF_CURRENCY view” on page 682 and “GROUP_PTF_DETAILS view” on page 683

OBJECT_STATISTICS table function added an option to efficiently return a list of libraries:
“OBJECT_STATISTICS table function” on page 643

What’s new since the first 7.2 publication

The following revisions or additions have been made to the Performance and query optimization
documentation since the first 7.2 publication:

« October 2015 update

— New services

GROUP_PTF_DETAILS view: “GROUP_PTF_DETAILS view” on page 683
LICENSE_INFO view: “LICENSE_INFO view” on page 670

MEDIA_LIBRARY_INFO view: “MEDIA_LIBRARY_INFO view” on page 770
MEMORY_POOL table function: “MEMORY_POOL table function” on page 840
MEMORY_POOL_INFO view: “MEMORY_POOL_INFO view” on page 842
NETSTAT_INFO view: “NETSTAT_INFO view” on page 482
NETSTAT_INTERFACE_INFO view: “NETSTAT_INTERFACE_INFO view” on page 489
NETSTAT_JOB_INFO view: “NETSTAT_JOB_INFO view” on page 498
NETSTAT_ROUTE_INFO view: “NETSTAT_ROUTE_INFO view” on page 499
OBJECT_LOCK_INFO view: “OBJECT_LOCK_INFO view” on page 844
OUTPUT_QUEUE_ENTRIES table function: “OUTPUT_QUEUE_ENTRIES table function” on page 738
OUTPUT_QUEUE_ENTRIES view: “OUTPUT_QUEUE_ENTRIES view” on page 742
RECORD_LOCK_INFO view: “RECORD_LOCK_INFO view” on page 854
SYSTEM_STATUS table function: “SYSTEM_STATUS table function” on page 864
SYSTEM_STATUS_INFO view: “SYSTEM_STATUS_INFO view” on page 872

— Updated services

ACTIVE_JOB_INFO table function has been updated to return elapsed time: “ACTIVE_JOB_INFO
table function” on page 793

DATABASE_MONITOR_INFO view has been updated to describe new filter values:
“DATABASE_MONITOR_INFO view” on page 327

ENV_SYS_INFO view has been updated to return the total configured memory: “ENV_SYS_INFO
view” on page 480

GET_JOB_INFO table function has been updated to return the client IP address: “GET_JOB_INFO
table function” on page 812

Database performance and query optimization 9

- SET_SERVER_SBS_ROUTING procedure allows you to configuring the remote command server:
“SET_SERVER_SBS_ROUTING procedure” on page 510

« May 2015 update

— Additional information was added to QQI1 - Insert unique count in the database monitor 2000
record. For details, see: “Database monitor view 1000 - SQL Information” on page 910

— Additional options were added to the QAQQINI query option Memory_Pool_Preference. For details,
see: “QAQQINI query options” on page 190

— CLEAR_PLAN_CACHE procedure. For details, see: “CLEAR_PLAN_CACHE procedure ” on page 338
— New services

- ACTIVE_JOB_INFO table function: “ACTIVE_JOB_INFO table function” on page 793
- DATABASE_MONITOR_INFO view: “DATABASE_MONITOR_INFO view” on page 327
- DRDA_AUTHENTICATION_ENTRY_INFO view: “DRDA_AUTHENTICATION_ENTRY_INFO view” on

page 701
- JVM_INFO view: “JVM_INFO view” on page 547

- SCHEDULED_JOB_INFO view: “SCHEDULED_JOB_INFO view” on page 857

- SERVER_SBS_ROUTING view: “SERVER_SBS_ROUTING view” on page 507

- SET_JVM procedure: “SET_JVM procedure” on page 548

- SET_SERVER_SBS_ROUTING procedure: “SET_SERVER_SBS_ROUTING procedure” on page 510
— Updated services

- GET_JOB_INFO table function has been updated to return additional SQL information for a job:
“GET_JOB_INFO table function” on page 812

- OBJECT_STATISTICS table function has a new optional parameter to specify the name of the object
to return. It will also return the long SQL name for an object and has new columns to return the
text, the long schema name, and the SQL type of an object: “OBJECT_STATISTICS table function”
on page 643

- System Health Services has been updated to track index limits: “System Health Services” on page
782

« October 2014 update

— Updates to the QAQQINI query options topic
For details, see “QAQQINI query options” on page 190.

— Memory preference controls enhanced for SQL

For details, see “Memory preference controls” on page 65

— The database monitor topic has been updated: “Monitoring your queries using the Database
Monitor ” on page 140

— The SQL Plan Cache topic has been updated: “Optimizing performance using the Plan Cache” on page
169

— New services

- LIBRARY_LIST_INFO view: “LIBRARY_LIST_INFO view” on page 642
REPLY_LIST_INFO view: “REPLY_LIST_INFO view” on page 664

- JOURNAL_INFO view: “JOURNAL_INFO view” on page 612

- GROUP_PTF_CURRENCY view: “GROUP_PTF_CURRENCY view” on page 682

- JOBLOG_INFO table function: “JOBLOG_INFO table function” on page 655
— Tracking of additional file system limits

For details, see “System Health Services” on page 782

10 IBMi: Performance and Query Optimization

How to see what's new or changed
To help you see where technical changes have been made, this information uses:

« The ¥ image to mark where new or changed information begins.
« The €image to mark where new or changed information ends.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for Database performance and query optimization

View and print a PDF of this information.

To view or download the PDF version of this document, select Database performance and query
optimization.

Other information

You can also view or print any of the following PDF files:

« Preparing for and Tuning the SQL Query Engine on DB2° for i5/05%l

« SQL Performance Diagnosis on IBM DB2 Universal Database for iSeries%

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the preceding link).
2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDF files. You can download a free
copy from Adobe (http://get.adobe.com/reader/)-'-i}.

Query engine overview

IBM Db2 for i provides two query engines to process queries: Classic Query Engine (CQE) and SQL Query
Engine (SQE).

SQL-based interfaces, such as ODBC, JDBC, CLI, Query Manager, Net.Data®, RUNSQLSTM, and embedded
or interactive SQL, run through SQE. Also by default some non-SQL based interface such as OPNQRYF and
Query/400 will run through SQE. The CQE processes queries originating from non-SQL interfaces: QQQOQry
API. For ease of use, the routing decision for processing the query by either CQE or SQE is pervasive and
under the control of the system. The requesting user or application program cannot control or influence
this behavior except for non-SQL interfaces through use of a QAQQINI. However, a better understanding
of the engines and process that determines which path a query takes can give you a better understanding
of query performance.

Within SQE, several more components were created and other existing components were updated.
Additionally, new data access methods are possible with SQE that are not supported under CQE.

Related information
Embedded SQL programming

Database performance and query optimization 11

http://www.redbooks.ibm.com/abstracts/sg246598.html
http://www.redbooks.ibm.com/abstracts/sg246654.html
http://get.adobe.com/reader/

SQL programming
Query (QQQQRY) API

Open Query File (OPNQRYF) command

Run SQL Statements (RUNSQLSTM) command

SQE and CQE engines

It is important to understand the implementation differences of query management and processing in

COQE versus SQE.

The following figure shows an overview of the IBM Db2 for i architecture. It shows the delineation

between CQE and SQE, how query pro

cessing is directed by the query dispatcher, and where each SQE

component fits. The functional separation of each SQE component is clearly evident. This division of
responsibility enables IBM to more easily deliver functional enhancements to the individual components
of SQE, as and when required. Notice that most of the SQE Optimizer components are implemented below
the MI. This implementation translates into enhanced performance efficiency.

ODBC/JDBC/ADO/DRDAMXDA
~ MNetwork J
| Host Server || CLIJDBC |
Static Dynamic %xten d?d
Complied ynamic
embedded F'ra-p:ir“n-l:vary Prepare once and
statements then referance
SQL
Optimizer
Native | Query Dispatcher |
(Record li0) CQE Optimizer SQE Optimizer
Machine Interface (M)
DB2 (Data Storage and Management)
SLIC SQE Optimizer
SQE
Statistics
Manager

CQE Database Engine

SQE Data Access Primitives

As seen in the previous graphic, the query runs from any query interface to the optimizer and the query

dispatcher. The query dispatcher dete

12 IBMi: Performance and Query Optimizati

rmines whether the query is implemented with CQE or SQE.

on

Query dispatcher

The function of the dispatcher is to route the query request to either CQE or SQE, depending on the
attributes of the query. All queries are processed by the dispatcher. It cannot be bypassed.

Currently, the dispatcher routes queries to SQE unless it finds that the query references or contains any of
the following;:

« INSERT WITH VALUES statement or the target of an INSERT with subselect statement

 Tables with Read triggers

« Read-only queries with more than 1000 dataspaces, or updatable queries with more than 256
dataspaces.

« Db2 Multisystem tables
+ QQQQry API

For other non-SQL queries, for example Query/400 or OPNQRYF, the routing of the query can be
controlled by the QAQQINI SQE_NATIVE_ACCESS option. See "table 46"

Related reference

MQT supported function

Although an MQT can contain almost any query, the optimizer only supports a limited set of query
functions when matching MQTs to user specified queries. The user-specified query and the MQT query
must both be supported by the SQE optimizer.

Statistics manager

In CQE, the retrieval of statistics is a function of the Optimizer. When the Optimizer needs to know
information about a table, it looks at the table description to retrieve the row count and table size.

If an index is available, the Optimizer might extract information about the data in the table. In SQE,

the collection and management of statistics is handled by a separate component called the statistics
manager. The statistics manager leverages all the same statistical sources as CQE, but adds more sources
and capabilities.

The statistics manager does not actually run or optimize the query. Instead, it controls the access to the
metadata and other information that is required to optimize the query. It uses this information to answer
questions posed by the query optimizer. The statistics manager always provides answers to the optimizer.
In cases where it cannot provide an answer based on actual existing statistics information, it is designed
to provide a predefined answer.

The Statistics manager typically gathers and tracks the following information:

Cardinality of The number of unique or distinct occurrences of a specific value in a single column
values or multiple columns of a table.
Selectivity Also known as a histogram, this information is an indication of how many rows

are selected by any given selection predicate or combination of predicates. Using
sampling techniques, it describes the selectivity and distribution of values in a given
column of the table.

Frequent values The top nn most frequent values of a column together with a count of how
frequently each value occurs. This information is obtained by using statistical
sampling techniques. Built-in algorithms eliminate the possibility of data skewing.
For example, NULL values and default values that can influence the statistical values
are not taken into account.

Metadata Includes the total number of rows in the table, indexes that exist over the table, and
information which indexes are useful for implementing the particular query.

Estimate of IO An estimate of the amount of IO operations that are required to process the table or
operation the identified index.

Database performance and query optimization 13

The Statistics manager uses a hybrid approach to manage database statistics. Most of this information
can be obtained from existing indexes. In cases where the required statistics cannot be gathered from
existing indexes, statistical information is constructed on single columns of a table and stored internally.
By default, this information is collected automatically by the system, but you can manually control the
collection of statistics. Unlike indexes, however, statistics are not maintained immediately as data in the
tables change.

Related reference

Collecting statistics with the statistics manager

The collection of statistics is handled by a separate component called the statistics manager. Statistical
information can be used by the query optimizer to determine the best access plan for a query. Since
the query optimizer bases its choice of access plan on the statistical information found in the table, it is
important that this information is current.

Global Statistics Cache

In SQE, the Db2 Statistics Manager stores actual row counts into a Global Statistics Cache. In this manner,
the Statistics Manager refines its estimates over time as it learns where estimates have deviated from
actual row counts.

Both completed queries and currently executing queries might be inspected by the “Adaptive Query
Processing” on page 106 (AQP) task, which compares estimated row counts to actual row counts. If there
are any significant discrepancies, the AQP task notifies the Db2 Statistics Manager (SM). The SM stores
this actual row count (also called observed row count) into a Global Statistics Cache (GSC).

If the query which generated the observed statistic in the GSC is reoptimized, the actual row count
estimate is used in determining a new query plan. Further, if a different query asks for the same or a
similar row count, the SM could return the stored actual row count from the GSC. Faster query plans can
be generated by the query optimizer.

Typically, observed statistics are for complex predicates such as with a join. A simple example is a query
joining three files A, B, and C. There is a discrepancy between the estimate and actual row count of the
join of A and B. The SM stores an observed statistic into the GSC. Later, if a different join query of A, B, and
Z is submitted, the SM recalls the observed statistic of the A and B join. The SM considers that observed
statistic in its estimate of the A, B, and Z join.

The Global Statistics Cache is an internal Db2 object, and the contents of it are not directly observable.

Plan cache
The plan cache is a repository that contains the access plans for queries that were optimized by SQE.

Access plans generated by CQE are not stored in the plan cache; instead, they are stored in SQL packages,
the system-wide statement cache, and job cache. The purposes of the plan cache are to:

« Facilitate the reuse of a query access plan when the same query is re-executed
« Store runtime information for subsequent use in future query optimizations

- Provide performance information for analysis and tuning
Once an access plan is created, it is available for use by all users and all queries, regardless of where
the query originates. Furthermore, when an access plan is tuned, for example, when creating an index,

all queries can benefit from this updated access plan. This updated access plan eliminates the need to
re-optimize the query, resulting in greater efficiency.

The following graphic shows the concept of re-usability of the query access plans stored in the plan
cache:

14 IBM i: Performance and Query Optimization

Plan Cache

SQL Pgm-A
Plan X Statement 1

Statement 2

SQL PKG-1
Statement 3

Statement 4

Plan Y

SQL PKG-2
Statement 3

Statement &

Plan £

As shown in the previous graphic, statements from packages and programs are stored in unique plans in
the plan cache. If Statement 3 exists in both SQL package 1 and SQL package 2, the plan is stored once in
the plan cache. The plan cache is interrogated each time a query is executed. If an access plan exists that
satisfies the requirements of the query, it is used to implement the query. Otherwise a new access plan is
created and stored in the plan cache for future use.

The plan cache is automatically updated with new query access plans as they are created. When new
statistics or indexes become available, an existing plan is updated the next time the query is run. The plan
cache is also automatically updated by the database with runtime information as the queries are run.

Each plan cache entry contains the original query, the optimized query access plan, and cumulative
runtime information gathered during the runs of the query. In addition, several instances of query runtime
objects are stored with a plan cache entry. These runtime objects are the real executable objects and
temporary storage containers (hash tables, sorts, temporary indexes, and so on) used to run the query.

By default the SQE Plan Cache will auto adjust from an initial threshold size of 512 MB to an internally
managed maximum. Automatic management of the SQL Plan Cache Threshold Size by the system will
not take effect if the plan cache threshold size is explicitly set on the system. See the SQL plan cache
properties topic for more information: “SQL plan cache properties” on page 174

« When processing is initiated to remove plans in the cache due to size constraint, the efficiency rating of
the cache is checked. If the rating is too low, the database will automatically increase the plan cache
size.

« The plan cache auto-sizing maximum size will not exceed a small percentage of free storage on the
system.

- The plan cache auto-sizing will decrease the size if the temporary storage on the machine exceeds a
certain percentage.

« The auto-sized adjusted threshold value does not survive an IPL. The default plan cache size is used
after an IPL and auto sizing begins again.

« To reset an explicitly set plan cache size in order to allow auto-sizing to take effect, set the plan cache
size to zero.

Database performance and query optimization 15

Example:
CALL gsys2.change_plan_cache_size(0)

When the plan cache exceeds its designated size, a background task is automatically scheduled to
remove plans from the plan cache. Access plans are deleted based upon age, how frequently it is used,
and how much cumulative resources (CPU/IO) were consumed.

The total number of access plans stored in the plan cache depends largely upon the complexity of the SQL
statements that are being executed. The plan cache is cleared when a system Initial Program Load (IPL) is
performed.

Multiple access plans for a single SQL statement can be maintained in the plan cache. Although the SQL
statement is the primary key into the plan cache, different environmental settings can cause additional
access plans to be stored. Examples of these environmental settings include:

Different SMP Degree settings for the same query

Different library lists specified for the query tables

Different settings for the share of available memory for the job in the current pool
Different ALWCPYDTA settings
- Different selectivity based on changing host variable values used in selection (WHERE clause)

Currently, the plan cache can maintain a maximum of three different access plans for the same SQL
statement. The uniqueness of an SQL statement is determined by an internal representation of the query
which includes, but is not limited to, full schema qualification of all objects referenced in query and the
data types of columns. As new access plans are created for the same SQL statement, older access plans
are discarded to make room for the new access plans. There are, however, certain conditions that can
cause an existing access plan to be invalidated. Examples of these conditions include:

« Specifying REOPTIMIZE _ACCESS_PLAN(*YES) or (*FORCE) in the QAQQINI table or in Run SQL Scripts
- Deleting or recreating the table that the access plan refers to
« Deleting an index that is used by the access plan

Related reference

Effects of the ALWCPYDTA parameter on database performance
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

Changing the attributes of your queries
You can modify different types of query attributes for a job with the Change Query Attributes
(CHGQRYA) CL command. You can also use the System i Navigator Change Query Attributes interface.

Optimizing performance using the Plan Cache

The SQL Plan Cache contains a wealth of information about the SQE queries being run through the
database. Its contents are viewable through the System i Navigator GUI interface. Certain portions of the
plan cache can also be modified.

Data access methods

Data access methods are used to process queries and access data.
In general, the query engine has two kinds of raw material with which to satisfy a query request:

- The database objects that contain the data to be queried
« The executable instructions or operations to retrieve and transform the data into usable information

There are only two types of permanent database objects that can be used as source material for a query
— tables and indexes. Indexes include binary radix and encoded vector indexes.

In addition, the query engine might need to create temporary objects to hold interim results or
references during the execution of an access plan. The Db2 Symmetric Multiprocessing feature provides

16 IBMi: Performance and Query Optimization

the optimizer with additional methods for retrieving data that include parallel processing. Finally, the
optimizer uses certain methods to manipulate these objects.

Permanent objects and access methods

There are three basic types of access methods used to manipulate the permanent and temporary
database objects -- Create, Scan, and Probe.

The following table lists each object and the access methods that can be performed against that object.
The symbols shown in the table are the icons used by Visual Explain.

Table 1. Permanent object data access methods
Permanent objects Scan operations Probe operations
Table Table scan Table probe
Radix index Radix index scan Radix index probe
Encoded vector index Encoded vector index symbol Encoded vector index probe
table scan
Table

An SQL table or physical file is the base object for a query. It represents the source of the data used
to produce the result set for the query. It is created by the user and specified in the FROM clause (or
OPNQRYF FILE parameter).

The optimizer determines the most efficient way to extract the data from the table in order to satisfy the
qguery. These ways could include scanning or probing the table or using an index to extract the data.

Visual explain icon:

Table scan

A table scan is the easiest and simplest operation that can be performed against a table. It sequentially
processes all the rows in the table to determine if they satisfy the selection criteria specified in the query.
It does this processing in a way to maximize the I/O throughput for the table.

A table scan operation requests large I/Os to bring as many rows as possible into main memory for
processing. It also asynchronously pre-fetches the data to make sure that the table scan operation is
never waiting for rows to be paged into memory. Table scan however, has a disadvantage in it has to
process all the rows in order to satisfy the query. The scan operation itself is efficient if it does not need to
perform the I/O synchronously.

Table 2. Table scan attributes

Data access method Table scan

Description Reads all the rows from the table and applies the selection criteria to
each of the rows within the table. The rows in the table are processed
in no guaranteed order, but typically they are processed sequentially.

Advantages « Minimizes page I/O operations through asynchronous pre-fetching of

the rows since the pages are scanned sequentially
« Requests a larger I/O to fetch the data efficiently

Database performance and query optimization 17

Table 2. Table scan attributes (continued)

Data access method Table scan
Considerations « All rows in the table are examined regardless of the selectivity of the
query

« Rows marked as deleted are still paged into memory even though
none are selected. You can reorganize the table to remove deleted
rows.

Likely to be used « When expecting many rows returned from the table

« When the number of large I/0s needed to scan is fewer than the
number of small I/Os required to probe the table

Example SQL statement SELECT * FROM Employee

WHERE WorkDept BETWEEN 'AG1'AND 'EO1'
OPTIMIZE FOR ALL ROWS

Database Monitor and Plan QORID 3000 - Table Scan
Cache record indicating use

SMP parallel enabled Yes

Also referred to as Table Scan, Preload

Visual Explain icon

Related concepts

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join
are ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Table probe

A table probe operation is used to retrieve a specific row from a table based upon its row number. The
row number is provided to the table probe access method by some other operation that generates a row
number for the table.

This can include index operations as well as temporary row number lists or bitmaps. The processing for a
table probe is typically random. It requests a small I/O to retrieve only the row in question and does not
attempt to bring in any extraneous rows. This method leads to efficient processing for smaller result sets
because only rows needed to satisfy the query are processed, rather than scanning all rows.

However, since the sequence of the row numbers is not known in advance, little pre-fetching can be
performed to bring the data into main memory. This randomness can result in most of the I/Os associated
with table probe to be performed synchronously.

Table 3. Table probe attributes

Data access method Table probe

Description Reads a single row from the table based upon a specific row number. A
random I/O is performed against the table to extract the row.

18 IBM i: Performance and Query Optimization

Table 3. Table probe attributes (continued)

Data access method

Table probe

Advantages

« Requests smaller I/Os to prevent paging rows into memory that are
not needed

« Can be used with any access method that generates a row number
for the table probe to process

Considerations

Because of the synchronous random I/0 the probe can perform poorly
when many rows are selected

Likely to be used

« When row numbers (from indexes or temporary row number lists)
are used, but data from the underlying table is required for further
processing of the query

- When processing any remaining selection or projection of the values

Example SQL statement

CREATE INDEX X1 ON Employee (LastName)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'A@1' AND 'EO1'

AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Database Monitor and Plan
Cache record indicating use

QORID 3001 Index Used, where QVC14 (Index_Only_Access) set to 'N'
indicates that a table probe was used in conjunction with the index
access operation.

SMP parallel enabled

Yes

Also referred to as

Table Probe, Preload

Visual Explain icon

Radix index

An SQL index (or keyed sequence access path) is a permanent object that is created over a table. The
index is used by the optimizer to provide a sequenced view of the data for a scan or probe operation.

The rows in the tables are sequenced in the index based upon the key columns specified on the creation
of the index. When the optimizer matches a query to index key columns, it can use the index to help
satisfy query selection, ordering, grouping, or join requirements.

Typically, using an index also includes a table probe to provide access to columns needed to satisfy the
query that cannot be found as index keys. If all the columns necessary to satisfy the query can be found
as index keys, then the table probe is not required. The query uses index-only access. Avoiding the table
probe can be an important savings for a query. The I/0 associated with a table probe is typically the more
expensive synchronous random I/0.

Visual Explain icon:

Database performance and query optimization 19

Radix index scan

A radix index scan operation is used to retrieve the rows from a table in a keyed sequence. Like a table
scan, all the rows in the index are sequentially processed, but the resulting row numbers are sequenced
based upon the key columns.

The sequenced rows can be used by the optimizer to satisfy a portion of the query request (such as
ordering or grouping). They can also be used to provide faster throughput by performing selection against
the index keys rather than all the rows in the table. Since the index I/Os only contain keys, typically more
rows can be paged into memory in one I/O than rows in a table with many columns.

Table 4. Radix index scan attributes

Data access method Radix index scan
Description Sequentially scan and process all the keys associated with the index.
Any selection is applied to every key value of the index before a table
row
Advantages - Only those index entries that match any selection continue to be
processed

» Potential to extract all the data from the index key values, thus
eliminating the need for a Table Probe

« Returns the rows back in a sequence based upon the keys of the
index

Considerations Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/0 associated
with the Table Probe.

Likely to be used « When asking for or expecting only a few rows to be returned from
the index

- When sequencing the rows is required for the query (for example,
ordering or grouping)

« When the selection columns cannot be matched against the leading
key columns of the index

Example SQL statement CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'AG1' AND 'EO1'
ORDER BY LastName

OPTIMIZE FOR 30 ROWS

Database Monitor and Plan QQRID 3001 Index Used, where QQKP (Index_Probe_Used) set to 'N'
Cache record indicatinguse | yj|| indicate an index scan operation. Preload indicated by QVPARPL =
Y. Distinct Probe indicated by QVC11 ="Y".

SMP parallel enabled Yes

20 IBMi: Performance and Query Optimization

Table 4. Radix index scan attributes (continued)

Data access method Radix index scan

Also referred to as Index Scan

Index Scan, Preload

Index Scan, Distinct

Index Scan Distinct, Preload

Index Scan, Key Selection

Visual Explain icon
| @

Related reference

Effects of the ALWCPYDTA parameter on database performance

Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

Radix index probe

A radix index probe operation is used to retrieve the rows from a table in a keyed sequence. The main
difference between the radix index probe and the scan is that the rows returned are first identified by a
probe operation to subset them.

The optimizer attempts to match the columns used for some or all the selection against the leading keys
of the index. It then rewrites the selection into a series of ranges that can be used to probe directly into
the index key values. Only those keys from the series of ranges are paged into main memory.

The resulting row numbers generated by the probe can then be further processed by any remaining
selection against the index keys or a table probe operation. This method provides for quick access to only
the rows of the index that satisfy the selection.

The main function of a radix index probe is to provide quick selection against the index keys. In addition,
the row sequencing can be used to satisfy other portions of the query, such as ordering or grouping. Since
the index I/Os are only for rows that match the probe selection, no extraneous processing is performed on
rows that do not match. This savings in I/Os against rows that are not a part of the result set is one of the
primary advantages for this operation.

Table 5. Radix index probe attributes

Data access method Radix index probe

Description The index is quickly probed based upon the selection criteria that
were rewritten into a series of ranges. Only those keys that satisfy the
selection are used to generate a table row number.

Advantages « Only those index entries that match any selection continue to be
processed

» Provides quick access to the selected rows

- Potential to extract all the data from the index key values, thus
eliminating the need for a Table Probe

» Returns the rows back in a sequence based upon the keys of the
index

Database performance and query optimization 21

Table 5. Radix index probe attributes (continued)

Data access method

Radix index probe

Considerations Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/0 associated
with the Table Probe.

Likely to be used « When asking for or expecting only a few rows to be returned from the

index

« When sequencing the rows is required the query (for example,
ordering or grouping)

» When the selection columns match the leading key columns of the
index

Example SQL statement

CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'AG1' AND 'EO1'

AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Database Monitor and Plan
Cache record indicating use

QQRID 3001 Index Used

where QQKP (Index_Probe_Used) set to 'Y' will indicate an index probe
operation.

Preload indicated by QVPARPL ='Y'
Distinct Probe indicated by QVC11 ="Y'

SMP parallel enabled

Yes

Also referred to as

Index Probe

Index Probe, Preload

Index Probe, Distinct

Index Probe Distinct, Preload
Index Probe, Key Positioning

Index Scan, Key Row Positioning

Visual Explain icon

The following example illustrates
method:

a query where the optimizer might choose the radix index probe access

CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'A©1' AND 'EQ1'

AND LastName IN ('Smith',
OPTIMIZE FOR ALL ROWS

'Jones', 'Peterson')

22 IBMi: Performance and Query Optimization

In this example, index X1 is used to position to the first index entry that matches the selection built

over both columns LastName and WorkDept. The selection is rewritten into a series of ranges that match
all the leading key columns used from the index X1. The probe is then based upon the composite
concatenated values for all the leading keys. The pseudo-SQL for this rewritten SQL might look as follows:

SELECT = FROM X1

WHERE X1.LeadingKeys BETWEEN 'JonesA@1' AND 'JonesEOQ1'
OR X1.LeadingKeys BETWEEN 'PetersonA@1' AND 'PetersonE01'
OR X1.LeadingKeys BETWEEN 'SmithAG1' AND 'SmithEOQ1'

All the key entries that satisfy the probe operation are used to generate a row number for the table
associated with the index (for example, Employee). The row number is used by a Table Probe operation to
perform random I/0 on the table to produce the results for the query. This processing continues until all
the rows that satisfy the index probe operation have been processed. In this example, all the index entries
processed and rows retrieved met the index probe criteria.

Additional selection might be added that cannot use an index probe, such as selection against columns
which are not leading key columns of the index. Then the optimizer performs an index scan operation
within the range of probed values. This process still allows for selection to be performed before the Table
Probe operation.

Related concepts

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join
are ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Related reference

Effects of the ALWCPYDTA parameter on database performance

Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

Encoded vector index

An encoded vector index is a permanent object that provides access to a table. This access is done by
assigning codes to distinct key values and then representing those values in a vector.

The size of the vector matches the number of rows in the underlying table. Each vector entry represents
the table row number in the same position. The codes generated to represent the distinct key values can
be 1 byte, 2 bytes, or 4 bytes in length. The key length depends upon the number of distinct values that
need to be represented in the vector. Because of their compact size and relative simplicity, the EVI can be
used to process large amounts of data efficiently.

An encoded vector index is used to represent the values stored in a table. However, the index itself
cannot be used to directly gain access to the table. Instead, the encoded vector index can only be used to
generate either a temporary row number list or a temporary row number bitmap. These temporary objects
can then be used with a table probe to specify the rows in the table that the query needs to process.

The main difference in the table probe using an encoded vector index vs. a radix index is that the I/O
paging can be asynchronous. The I/O can now be scheduled more efficiently to take advantage of groups
of selected rows. Large portions of the table can be skipped over where no rows are selected.

Visual explain icon:

Database performance and query optimization 23

Related concepts

Encoded vector indexes
An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting
environments.

EVI maintenance

There are unique challenges to maintaining EVIs. The following table shows a progression of how EVIs are
maintained, the conditions under which EVIs are most effective, and where EVIs are least effective, based
on the EVI maintenance characteristics.

Encoded vector index RRN probe

A table probe operation is used to retrieve a specific row from a table based upon its row number. The
row number is provided to the table probe access method by some other operation that generates a row
number for the table.

The encoded vector index (EVI) RRN probe is an index only access method that is used to provide
selected columns by retrieving the value from the EVI instead of using a table probe to access the
table. Retrieving the value from the EVI should provide better I/O characteristics than the random I/0s
associated with a table probe operation.

This access method is used in conjunction with a radix index probe, radix index scan, or EVI probe
operation. The radix index probe, radix index scan, or EVI probe operation is used to select the rows and
then the RRN of the selected row is used to probe into EVIs to retrieve any selected values that were not
provided by the index used for selection. The EVI RRN probe can access multiple EVIs to provide selected
values.

Table 6. EVI RRN probe attributes

Data access method EVI RRN Probe

Description The encoded vector index (EVI) is quickly probed based upon the RRNs
provided by the underlying index access.

Advantages

Potential to extract all the data from the EVI index key values, thus
eliminating the need for a Table Probe

Provides better paging characteristics than a Table Probe.

Considerations

Only single key EVIs are considered for this implementation

All selected columns must have a single column EVI created.

The EVIs must fit in the query’s fair share of optimizer memory

Likely to be used When the table row size is wide, the number of select columns is

small compared to the number of columns in the table and the query
requires a table probe to retrieve columns

Example SQL statement CREATE ENCODED VECTOR INDEX EVI1 ON

Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON

Employee (Salary)WITH 10000 DISTINCT VALUES
CREATE ENCODED VECTOR INDEX EVI3 ON

Employee (LASTNAME)WITH 100000 DISTINCT VALUES
CREATE INDEX IX1 ON Employee (Job)

SELECT LASTNAME, WORKDEPT, SALARY
FROM EMPLOYEE
WHERE JOB = ‘ANALYST'

Database Monitor and Plan A QQRID 3001 Index Used record for each EVI with QQRCOD = ‘I8’
Cache record indicating use

SMP parallel enabled Yes

24 IBMi: Performance and Query Optimization

Table 6. EVI RRN probe attributes (continued)

Data access method

EVI RRN Probe

Also referred to as

Table Probe, Preload

Visual Explain icon

=]

Prior to encoded vector index only access (EOA), the recommendation had been to only create EVIs for
column with low cardinality (small number of distinct values). This recommendation has now changed.
EVI RRN Probe can be used for columns with high cardinality (large number of distinct values). However,
when creating the EVI, the WITH integer DISTINCT VALUES clause should be used to set the initial size of
the codes appropriately and to minimize maintenance time if the database manager needs to use a larger
code. See the CREATE INDEX statement in the SQL Reference for more details.

Encoded vector index probe
The encoded vector index (EVI) is quickly probed based upon the selection criteria that were rewritten
into a series of ranges. It produces either a temporary row number list or bitmap.

Table 7. Encoded vector index probe attributes

Data access method

Encoded vector index probe

Description The encoded vector index (EVI) is quickly probed based upon the
selection criteria that were rewritten into a series of ranges. It produces
either a temporary row number list or bitmap.

Advantages « Only those index entries that match any selection continue to be

processed
» Provides quick access to the selected rows

» Returns the row numbers in ascending sequence so that the Table
Probe can be more aggressive in pre-fetching the rows for its
operation

Considerations

EVIs are usually built over a single key. The more distinct the column

is and the higher the overflow percentage, the less advantageous the
encoded vector index becomes. EVIs always require a Table Probe to be
performed on the result of the EVI probe operation.

Likely to be used

« When the selection columns match the leading key columns of the
index

» When an encoded vector index exists and savings in reduced I/0
against the table justifies the extra cost. This cost includes probing
the EVI and fully populating the temporary row number list.

Database performance and query optimization 25

Table 7. Encoded vector index probe attributes (continued)

Data access method Encoded vector index probe

Example SQL statement CREATE ENCODED VECTOR INDEX EVI1 ON

Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT =

FROM Employee

WHERE WorkDept = 'EO1' AND Job = 'CLERK'
AND Salary = 5000

OPTIMIZE FOR 99999 ROWS

Database Monitor and Plan QORID 3001 Index Used with QQRCOD='I5',
Cache record indicating use QORID 3021 Bitmap Created and optionally
QORID 3022 Bitmap Merge.

SMP parallel enabled Yes

Also referred to as Encoded Vector Index Probe, Preload

Visual Explain icon

Using the example above, the optimizer chooses to create a temporary row number bitmap for each of
the encoded vector indexes used by this query. Each bitmap only identifies those rows that match the
selection on the key columns for that index.

These temporary row number bitmaps are then merged together to determine the intersection of the rows
selected from each index. This intersection is used to form a final temporary row number bitmap used to
help schedule the I/O paging against the table for the selected rows.

The optimizer might choose to perform an index probe with a binary radix tree index if an index existed
over all three columns. The implementation choice is probably decided by the number of rows to be
returned and the anticipated cost of the I/0 associated with each plan.

If few rows are returned, the optimizer probably chooses the binary radix tree index and performs the
random I/0 against the table. However, selecting more rows causes the optimizer to use the EVIs,
because of the savings from the more efficiently scheduled I/0 against the table.

Encoded vector index index-symbol table only access
The encoded vector index can also be used for index-symbol table only access.

The EVI can be used for more than generating a bitmap or row number list to provide an asynchronous I/0
map to the desired table rows. The EVI can also be used by two index-only access methods that can be
applied specific to the symbol table itself. These two index-only access methods are the EVI symbol table
scan and the EVI symbol table probe.

These two methods can be used with GROUP BY or DISTINCT queries that can be satisfied by the symbol
table. This symbol table-only access can be further employed in aggregate queries by adding INCLUDE
values to the encoded vector index.

The following information is a summary of the symbol table-only scan and probe access methods.

Use the following links to learn in-depth information.

26 IBMi: Performance and Query Optimization

Related concepts

Encoded vector indexes
An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting
environments.

How the EVI works
EVIs work in different ways for costing and implementation.

Related reference

Index grouping implementation

There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.

Encoded vector index symbol table scan
An encoded vector index symbol table scan operation is used to retrieve the entries from the symbol table
portion of the index.

All entries (symbols) in the symbol table are sequentially scanned if a scan is chosen. The symbol table
can be used by the optimizer to satisfy GROUP BY or DISTINCT portions of a query request.

Selection is applied to every entry in the symbol table. The selection must be applied to the symbol table
keys unless the EVI was created as a sparse index, with a WHERE clause. In that case, a portion of the
selection is applied as the symbol table is built and maintained. The query request must include matching
predicates to use the sparse EVI.

All entries are retrieved directly from the symbol table portion of the index without any access to the
vector portion of the index. There is also no access to the records in the associated table over which the
EVIis built.

Encoded vector index INCLUDE aggregates

To enhance the ability of the EVI symbol table to provide aggregate answers, the symbol table can be
created to contain additional INCLUDE values. These are ready-made numeric aggregate results, such
as SUM, COUNT, AVG, or VARIANCE values requested over non-key data. These aggregates are specified
using the INCLUDE keyword on the CREATE ENCODED VECTOR INDEX request.

These included aggregates are maintained in real time as rows are inserted, updated, or deleted from the
corresponding table. The symbol table maintains these additional aggregate values in addendum to the
EVI keys for each symbol table entry. Because these are numeric results and finite in size, the symbol
table is still a desirable compact size.

These included aggregates are over non-key columns in the table where the grouping is over the
corresponding EVI symbol table defined keys. The aggregate can be over a single column or a derivation.

Table 8. Encoded vector index symbol table scan attributes

Data access method Encoded vector index symbol table scan

Description Sequentially scan and process all the symbol table entries associated
with the index. When there is selection (WHERE clause), it is applied to
every entry in the symbol table. An exception is made in the case of a
sparse EVI, where the selection is applied as the index is created and
maintained. Selected entries are retrieved directly without any access
to the vector or the associated table.

Database performance and query optimization 27

Table 8. Encoded vector index symbol table scan attributes (continued)

Data access method

Encoded vector index symbol table scan

Advantages

» Pre-summarized results are readily available

= Only processes the unique values in the symbol table, avoiding
processing table records.

« Extract all the data from the index unique key values or INCLUDE
values, thus eliminating the need for a Table Probe or vector scan.

= With INCLUDE, provides ready-made numeric aggregates, eliminating
the need to access corresponding table rows to perform the
aggregation

Considerations

Dramatic performance improvement for grouping queries where the
resulting number of groups is relatively small compared to the number
of records in the underlying table. Can perform poorly when there

are many groups involved such that the symbol table is large. Poor
performance is even more likely if a large portion of the symbol table
has been put into the overflow area.

Dramatic performance improvement for grouping queries when the
aggregate is specified as an INCLUDE value of the symbol table.

Likely to be used

« When asking for GROUP BY, DISTINCT, COUNT, or COUNT DISTINCT
from a single table and the referenced columns are in the key
definition.

» When the number of unique values in the columns of the key
definition is small relative to the number of records in the underlying
table.

« When there is no selection (WHERE clause) within the query or the
selection does not reduce the result set much.

« When the symbol table key satisfies the GROUP BY, and requested
aggregates, like SUM or COUNT, are specified as INCLUDE values.

« when the query is run with commitment control *NONE or *CHG.

28 IBMi: Performance and Query Optimization

Table 8. Encoded vector index symbol table scan attributes (continued)

Data access method Encoded vector index symbol table scan

Example SQL statement CREATE ENCODED VECTOR INDEX EVI1 ON Sales (Region)

Example 1

SELECT Region, count(x)
FROM Sales

GROUP BY Region
OPTIMIZE FOR ALL ROWS

Example 2

SELECT DISTINCT Region
FROM Sales
OPTIMIZE FOR ALL ROWS

Example 3

SELECT COUNT(DISTINCT Region)
FROM Sales

Example 4 uses the INCLUDE option. The sums of revenue and cost of
goods per sales region is maintained in real time.

CREATE ENCODED VECTOR INDEX EVI2 ON Sales(Region)
INCLUDE (SUM(SALES))

SELECT Region, SUM(SALEs)

FROM Sales

GROUP BY Region

Database Monitor and Plan | ooRID 3001 Index Used

Cache record indicating use
where QQC15 = 'E' AND QQRCOD = 'T2'

Also referred to as Encoded Vector Index Symbol Table Scan, Preload

Visual Explain icon

Related concepts

Encoded vector indexes

An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting
environments.

How the EVI works
EVIs work in different ways for costing and implementation.

Related reference

Index grouping implementation

There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.

Related information
SQL INCLUDE statement

Database performance and query optimization 29

Encoded vector index symbol table probe
An encoded vector index symbol table probe operation is used to retrieve entries from the symbol table
portion of the index. Scanning the entire symbol table is not necessary.

The symbol table can be used by the optimizer to satisfy GROUP BY or DISTINCT portions of a query
request.

The optimizer attempts to match the columns used for some or all the selection against the leading keys
of the EVI index. It then rewrites the selection into a series of ranges that can be used to probe directly
into the symbol table. Only those symbol table pages from the series of ranges are paged into main
memory.

The resulting symbol table entries generated by the probe operation can then be further processed by
any remaining selection against EVI keys. This strategy provides for quick access to only the entries of the
symbol table that satisfy the selection.

Like an encoded vector symbol table scan, a symbol table probe can return ready-made aggregate results
if INCLUDE is specified when the EVI is created.

All entries are retrieved directly from the symbol table portion of the index without any access to the
vector portion of the index. In addition, it is unnecessary to access the records in the associated table
over which the EVI is built.

Table 9. Encoded vector index symbol table probe attributes

Data access method Encoded vector index symbol table probe
Description
Advantages Probe the symbol table entries associated with the index. When there is

selection (WHERE clause), it is applied to every entry in the symbol
table that meets the probe criteria. If there are sparse EVIs, the
selection is applied as the EVI is created and maintained. Selected
entries are retrieved directly without any access to the vector or the
associated table.

Considerations « Pre-summarized results are readily available

« Only processes the unique values in the symbol table, avoiding
processing table records.

» Extracts all the data from the index unique key values or include
values, or both, thus eliminating the need for a table probe or vector
scan

= With INCLUDE, provides ready-made numeric aggregates, eliminating
the need to access corresponding table rows to perform the
aggregation

30 IBMi: Performance and Query Optimization

Table 9. Encoded vector index symbol table probe attributes (continued)

Data access method

Encoded vector index symbol table probe

Likely to be used

« When asking for GROUP BY, DISTINCT, COUNT, or COUNT DISTINCT
from a single table and the referenced columns are in the key
definition.

« When the number of unique values in the columns of the key
definition is small relative to the number of records in the underlying
table.

« When there is selection (WHERE clause) that reduces the selection
from the Symbol Table and the WHERE clause involves leading,
probable keys.

« When the symbol table key satisfies the GROUP BY and the WHERE
clause reduces selection to the leading keys, and aggregates are
specified as INCLUDE values.

» When the query is run with commitment control *NONE or *CHG.

Example SQL statement

CREATE ENCODED VECTOR INDEX EVI1 ON Sales (Region)
Example 1

SELECT Region, COUNT(x)

FROM Sales

WHERE Region in ('Quebec', 'Manitoba')
GROUP BY Region

OPTIMIZE FOR ALL ROWS

Example 2

CREATE ENCODED VECTOR INDEX EVI2 ON Sales(Region)
INCLUDE (SUM(SALES))

SELECT Region, SUM(SALES)
FROM Sales

WHERE Region = 'PACIFIC’
GROUP BY Region

Database Monitor and Plan
Cache record indicating use

QQRID 3001 Index Used
where QQC15 = 'E' AND QQRCOD = 'I2' AND QQKP = 'Y'

Also referred to as

Encoded Vector Index Table Probe, Preload

Visual Explain icon

Related concepts
Encoded vector indexes

An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting

environments.
How the EVI works

Database performance and query optimization 31

EVIs work in different ways for costing and implementation.

Related reference

Index grouping implementation

There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.

Related information
SQL INCLUDE statement

Temporary objects and access methods

Temporary objects are created by the optimizer in order to process a query. In general, these temporary
objects are internal objects and cannot be accessed by a user.

Table 10. Temporary object data access methods
Temporary create objects Scan operations Probe operations
Temporary hash table Hash table scan Hash table probe
Temporary sorted list Sorted list scan Sorted list probe
Temporary distinct sorted list Sorted list scan N/A
Temporary list List scan N/A
Temporary values list Values list scan N/A
Temporary row number list Row number list scan Row number list probe
Temporary bitmap Bitmap scan Bitmap probe
Temporary index Temporary index scan Temporary index probe
Temporary buffer Buffer scan N/A
Queue N/A N/A
Array unnest temporary table Temporary table scan N/A
Temporary Indexed List Temporary Indexed List Scan and | N/A

Index Merge
Window Window scan N/A

Temporary hash table

The temporary hash table is a temporary object that allows the optimizer to collate the rows based upon
a column or set of columns. The hash table can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary hash table is an efficient data structure because the rows are organized for quick and easy
retrieval after population has occurred. The hash table remains resident within main memory to avoid any
I/Os associated with either the scan or probe against the temporary object. The optimizer determines

the optimal hash table size based on the number of unique column combinations used as keys for the
creation.

Additionally the hash table can be populated with all the necessary columns to satisfy any further
processing. This population avoids any random I/Os associated with a table probe operation.

However, the optimizer can selectively include columns in the hash table when the calculated size
exceeds the memory pool storage available for the query. In these cases, a table probe operation is
required to recollect the missing columns from the hash table before the selected rows can be processed.

The optimizer also can populate the hash table with distinct values. If the query contains grouping or
distinct processing, then all the rows with the same key value are not required in the hash table. The rows

32 IBMi: Performance and Query Optimization

are still collated, but the distinct processing is performed during the population of the hash table itself.
This method allows a simple scan on the result in order to complete the grouping or distinct operation.

A temporary hash table is an internal data structure and can only be created by the database manager

Visual explain icon:

Hash table scan
During a hash table scan operation, the entire temporary hash table is scanned and all the entries
contained within the hash table are processed.

The optimizer considers a hash table scan when the data values need to be collated together, but
sequencing of the data is not required. A hash table scan allows the optimizer to generate a plan that
takes advantage of any non-join selection while creating the temporary hash table.

An additional benefit is that the temporary hash table data structure will typically cause the table
data to remain resident within main memory after creation. Resident table data reduces paging on the
subsequent hash table scan operation.

Table 11. Hash table scan attributes

Data access method Hash table scan

Description Read all the entries in a temporary hash table. The hash table can
perform distinct processing to eliminate duplicates. Or the temporary
hash table can collate all the rows with the same value together.

Advantages « Reduces the random I/0 to the table associated with longer running
queries that might otherwise use an index to collate the data

« Selection can be performed before generating the hash table to
subset the number of rows in the temporary object

Considerations Used for distinct or group by processing. Can perform poorly when
the entire hash table does not stay resident in memory as it is being
processed.

Likely to be used « When the use of temporary results is allowed by the query

environmental parameter (ALWCPYDTA)

» When the data is required to be collated based upon a column or
columns for distinct or grouping

Example SQL statement SELECT COUNT(%), FirstNme FROM Employee

WHERE WorkDept BETWEEN 'A@1' AND 'EO1'
GROUP BY FirstNme

Dat Monitor and Plan
atabase Mo . o'a Fl a QQRID 3023 Temp Hash Table Created
Cache record indicating use where QVCAF (HashTable ReasonCode) = 'G'

SMP parallel enabled Yes

Database performance and query optimization 33

Table 11. Hash table scan attributes (continued)

Data access method Hash table scan

Also referred to as Hash Scan, Preload
Hash Table Scan Distinct
Hash Table Scan Distinct, Preload

Visual Explain icon

Hash table probe
A hash table probe operation is used to retrieve rows from a temporary hash table based upon a probe
lookup operation.

The optimizer initially identifies the keys of the temporary hash table from the join criteria specified in the
query. When the hash table is probed, the values used to probe into the hash table are extracted from the
join-from criteria specified in the selection.

These values are sent through the same hashing algorithm used to populate the temporary hash table.
They determine if any rows have a matching equal value. All the matching join rows are then returned to
be further processed by the query.

Table 12. Hash table probe attributes

Data access method Hash table probe

Description The temporary hash table is quickly probed based upon the join
criteria.

Advantages - Provides quick access to the selected rows that match probe criteria

« Reduces the random I/0 to the table associated with longer running
queries that use an index to collate the data

« Selection can be performed before generating the hash table to
subset the number of rows in the temporary object

Considerations Used to process equal join criteria. Can perform poorly when the entire
hash table does not stay resident in memory as it is being processed.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA)

« When the data is required to be collated based upon a column or
columns for join processing

« The join criteria was specified using an equals (=) operator

Example SQL statement SELECT * FROM Employee XXX, Department YYY

WHERE XXX.WorkDept = YYY.DeptNo
OPTIMIZE FOR ALL ROWS

Database Mon.lto!' an.d Plan QQRID 3023 Temp Hash Table Created
Cache record indicating use where QVC1F (HashTable ReasonCode) = 'J'

SMP parallel enabled Yes

34 IBMi: Performance and Query Optimization

Table 12. Hash table probe attributes (continued)

Data access method Hash table probe

Also referred to as Hash Table Probe, Preload
Hash Table Probe Distinct
Hash Table Probe Distinct, Preload

Visual Explain icon

The hash table probe access method is considered when determining the implementation for a secondary
table of a join. The hash table is created with the key columns that match the equal selection or join
criteria for the underlying table.

The hash table probe allows the optimizer to choose the most efficient implementation in selecting rows
from the underlying table, without regard for join criteria. This single pass through the underlying table
can now use a table scan or existing index to select the rows needed for the hash table population.

Since hash tables are constructed so that most of the hash table remains resident within main memory,
the I/O associated with a hash probe is minimal. Additionally, if the hash table was populated with all
necessary columns from the underlying table, no additional table probe is required to finish processing
this table. This method causes further I/O savings.

Related concepts

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join
are ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Temporary sorted list

The temporary sorted list is a temporary object that allows the optimizer to sequence rows based upon
a column or set of columns. The sorted list can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary sorted list is a data structure where the rows are organized for quick and easy retrieval after
population has occurred. During population, the rows are copied into the temporary object and then a
second pass is made through the temporary object to perform the sort.

In order to optimize the creation of this temporary object, minimal data movement is performed while the
sort is processed. It is not as efficient to probe a temporary sorted list as it is to probe a temporary hash
table.

Additionally, the sorted list can be populated with all the necessary columns to satisfy any further
processing. This population avoids any random I/Os associated with a table probe operation.

However, the optimizer can selectively include columns in the sorted list when the calculated size
exceeds the memory pool storage available for this query. In those cases, a table probe operation is
required to recollect the missing columns from the sorted list before the selected rows can be processed.

A temporary sorted list is an internal data structure and can only be created by the database manager.

Visual explain icon:

Database performance and query optimization 35

Sorted list scan
During a sorted list scan operation, the entire temporary sorted list is scanned and all the entries
contained within the sorted list are processed.

A sorted list scan is considered when the data values need to be sequenced. A sorted list scan allows
the optimizer to generate a plan that can take advantage of any non-join selection while creating the
temporary sorted list.

An additional benefit is that the data structure will usually cause the table data within the sorted list to
remain resident within main memory after creation. This resident data reduces paging on the subsequent
sorted list scan operation.

Table 13. Sorted list scan attributes

Data access method Sorted list scan

Description Read all the entries in a temporary sorted list. The sorted list can
perform distinct processing to eliminate duplicate values or take
advantage of the temporary sorted list to sequence all the rows.

Advantages « Reduces the random I/0 to the table associated with longer running
queries that would otherwise use an index to sequence the data.

 Selection can be performed prior to generating the sorted list to
subset the number of rows in the temporary object

Considerations Used to process ordering or distinct processing. Can perform poorly
when the entire sorted list does not stay resident in memory as it is
being populated and processed.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA)

« When the data is required to be ordered based upon a column or
columns for ordering or distinct processing

Example SQL statement CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'AG1' AND 'EO1'
ORDER BY FirstNme

OPTIMIZE FOR ALL ROWS

Database Monitor and Plan QORID 3003 Query Sort. There is no specific field that indicates
Cache record indicatinguse | \yhether or not the sorted list was used for a scan or a probe. Refer
to Visual Explain diagram for query implementation details.

SMP parallel enabled No

Also referred to as Sorted List Scan, Preload
Sorted List Scan Distinct

Sorted List Scan Distinct, Preload

36 IBMi: Performance and Query Optimization

Table 13. Sorted list scan attributes (continued)

Data access method Sorted list scan

Visual Explain icon

Sorted list probe
A sorted list probe operation is used to retrieve rows from a temporary sorted list based upon a probe
lookup operation.

The optimizer initially identifies the temporary sorted list keys from the join criteria specified in the query.
The values used to probe into the temporary sorted list are extracted from the join-from criteria specified
in the selection. Those values are used to position within the sorted list in order to determine if any rows

have a matching value. All the matching join rows are then returned to be further processed by the query.

Table 14. Sorted list probe attributes

Data access method Sorted list probe
Description The temporary sorted list is quickly probed based upon the join criteria.
Advantages « Provides quick access to the selected rows that match probe criteria

» Reduces the random I/O to the table associated with longer running
queries that otherwise use an index to collate the data

- Selection can be performed before generating the sorted list to
subset the number of rows in the temporary object

Considerations Used to process non-equal join criteria. Can perform poorly when
the entire sorted list does not stay resident in memory as it is being
populated and processed.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA)

» When the data is required to be collated based upon a column or
columns for join processing

« The join criteria was specified using a non-equals operator

Exampl L statement
ample SQL stateme SELECT * FROM Employee XXX, Department YYY

WHERE XXX.WorkDept > YYY.DeptNo
OPTIMIZE FOR ALL ROWS

Database Monitor and Plan | 9QRID 3003 Query Sort. There is no specific field that indicates
Cache record indicating use | \yhether or not the sorted list was used for a scan or a probe. Refer
to Visual Explain diagram for query implementation details.

SMP parallel enabled Yes

Also referred to as Sorted List Probe, Preload
Sorted List Probe Distinct
Sorted List Probe Distinct, Preload

Database performance and query optimization 37

Table 14. Sorted list probe attributes (continued)

Data access method Sorted list probe

Visual Explain icon

The sorted list probe access method is considered when determining the implementation for a secondary
table of a join. The sorted list is created with the key columns that match the non-equal join criteria for
the underlying table. The optimizer chooses the most efficient implementation to select the rows from the
underlying table without regard to any join criteria. This single pass through the underlying table can use a
Table Scan or an existing index to select the rows needed to populate the sorted list.

Since sorted lists are constructed so that most of the temporary object remains resident within main
memory, the sorted list I/O is minimal. If the sorted list was populated with all necessary table columns,
no additional Table Probe is required to finish processing the table, causing further I/O savings.

Related concepts

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join
are ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Temporary distinct sorted list

A temporary distinct sorted list combines the features of the temporary hash table and the temporary
sorted list.

Like the hash table, the temporary distinct sorted list allows the optimizer to collate the rows based on a
column or set of columns. Like the sorted list, the temporary distinct sorted list also allows the optimizer
to sequence the rows.

A temporary distinct sorted list contains a hash table data structure set up for efficient access to
aggregate rows during population. In addition, a binary tree data structure is maintained over the hash
table data structure so that the data can be accessed in sequence. The sorted aspect of the data structure
allows for the efficient computation of super-aggregate rows in SQL statements that contain GROUP BY
ROLLUP.

A temporary sorted aggregate hash table is an internal data structure and can only be created by the
database manager.

Visual explain icon:

Sorted list scan
During the sorted list scan, the entire temporary distinct sorted list is scanned and all the entries
contained within the temporary are processed.

The optimizer uses the sorted list scan when the data values need to be aggregated and sequenced.
The optimizer generates this plan that can take advantage of any non-join selection while creating the
temporary distinct sorted list. The data structure of the temporary distinct sorted list will typically cause

38 IBMi: Performance and Query Optimization

the table data to remain resident within main memory after creation. This memory-resident data reduces
paging on the subsequent sorted list scan.

Table 15. Sorted list scan attributes

Data access method Sorted list scan
Description Reads all the entries in a temporary distinct sorted list
Advantages « Allows efficient computation of ROLLUP super-aggregate rows.

« Reduces the random I/0 to the table associated with longer running
queries that might otherwise use an index to collate the data.

« Selection can be performed before generating the distinct sorted list
to subset the number of rows in the temporary object.

Considerations Used for GROUP BY ROLLUP processing, Can perform poorly when the
entire temporary object does not stay resident in memory as it is being
processed.

Likely to be used « When the use of temporary results is allowed in the query

environmental parameter (ALWCPYDTA)
« When a GROUP BY ROLLUP is in the SQL statement

Messages indicating use N/A
SMP parallel enabled Yes
Also referred to as N/A

Visual Explain icon

Temporary list

The temporary list is a temporary object that allows the optimizer to store intermediate results of a query.
The list is an unsorted data structure that is used to simplify the operation of the query. Since the list does
not have any keys, the rows within the list can only be retrieved by a sequential scan operation.

The temporary list can be used for various reasons, some of which include an overly complex view or
derived table, Symmetric Multiprocessing (SMP) or to prevent a portion of the query from being processed
multiple times.

A temporary list is an internal data structure and can only be created by the database manager.

Visual explain icon:

List scan
The list scan operation is used when a portion of the query is processed multiple times, but no key
columns can be identified. In these cases, that portion of the query is processed once and its results

Database performance and query optimization 39

are stored within the temporary list. The list can then be scanned for only those rows that satisfy any
selection or processing contained within the temporary object.

Table 16. List scan attributes

Data access method List scan

Description Sequentially scan and process all the rows in the temporary list.

Advantages « The temporary list and list scan can be used by the optimizer to
minimize repetition of an operation or to simplify the optimizer logic
flow.

« Selection can be performed before generating the list to subset the
number of rows in the temporary object.

Considerations Used to prevent portions of the query from being processed multiple
times when no key columns are required to satisfy the request.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

« When Db2 symmetric multiprocessing is used for the query.

Example SQL statement SELECT * FROM Employee XXX, Department YYY

WHERE XXX.LastName IN ('Smith', 'Jones', 'Peterson')
AND YYY.DeptNo BETWEEN 'AG1' AND 'EO1'
OPTIMIZE FOR ALL ROWS

Database Monitor and Plan QQRID 3004 Temp Table
Cache record indicating use

SMP parallel enabled Yes

Also referred to as List Scan, Preload

Visual Explain icon

Using the example above, the optimizer chose to create a temporary list to store the selected rows from
the DEPARTMENT table. Since there is no join criteria, a Cartesian product join is performed between
the two tables. To prevent the join from scanning all the rows of the DEPARTMENT table for each join
possibility, the selection against the DEPARTMENT table is performed once. The results are stored in the
temporary list. The temporary list is then scanned for the Cartesian product join.

Temporary values list

The temporary values list allows the optimizer to store rows of data specified in a VALUES clause of a
SELECT or CREATE VIEW statement.

The list is an unsorted data structure that is used to simplify the operation of the query. Since the list does
not have any keys, the rows within the list can only be retrieved by a sequential scan operation.

A temporary values list is an internal data structure and can only be created by the database manager.

Visual explain icon:

1.

40 IBM i: Performance and Query Optimization

Values list scan
During a values list scan operation, the entire temporary values list is scanned and all the rows of data are
processed.

Table 17. Values list scan attributes

Data access method Values list scan

Description Sequentially scan and process all the rows of data in the temporary
values list.

Advantages The temporary values list and values list scan can be used by the
optimizer to simplify the optimizer logic flow.

Likely to be used When a VALUES clause is specified in the from-clause of an SQL
fullselect

Example SQL statement SELECT EMPNO, 'empprojact'

FROM EMPPROJACT

WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
UNION

VALUES ('NEWAAA', 'new'), ('NEWBBB', ‘'new')

Database Monitor and Plan

s qs . RID 3000 where QVQTBL = 'xVALUES'
Cache record indicating use . e

SMP parallel enabled Yes

Visual Explain icon %
1
2

Temporary row number list

The temporary row number list, also referred to as an RRN List, is a temporary object that allows the
optimizer to sequence rows based upon their row address (their row number). The row number list can be
either scanned or probed by the optimizer to satisfy different operations of the query.

A temporary row number list is a data structure where the rows are organized for quick and efficient
retrieval. The row number list only contains the row number for the associated row. Since no table data

is present, a table probe operation is typically associated with it in order to retrieve the underlying table
data. Because the row numbers are sorted, the random I/O associated with the table probe operation is
performed more efficiently. The database manager performs pre-fetch or look-ahead logic to determine if
multiple rows are located on adjacent pages. If so, the table probe requests a larger I/O to bring the rows
into main memory more efficiently.

A temporary row number list is an internal data structure and can only be created by the database
manager.

Visual explain icon:

1

Row number list scan
The entire temporary row number list is scanned and all the row addresses contained within the row
number list are processed. The optimizer considers this plan when there is an applicable encoded vector

Database performance and query optimization 41

index or if the index probe or scan random I/0 can be reduced. The random I/0O can be reduced by first
preprocessing and sorting the row numbers associated with the Table Probe.

The use of a row number list scan allows the optimizer to generate a plan that can take advantage of
multiple indexes to match up to different portions of the query.

An additional benefit is that the data structure of the temporary row number list guarantees that the row
numbers are sorted. It closely mirrors the row number layout of the table data, ensuring that the table
paging never visits the same page of data twice. This results in increased I/O savings for the query.

A row number list scan is identical to a bitmap scan operation. The only difference is that the list scan is
over a list of row addresses while the bitmap scan is over a bitmap representing the addresses.

Table 18. Row number list scan

Data access method Row number list scan

Description Sequentially scan and process all the row numbers in the temporary
row number list. The sorted row numbers can be merged with other
temporary row number lists or can be used as input into a Table Probe
operation.

Advantages - The temporary row number list only contains address, no data, so the
temporary can be efficiently scanned within memory.

» The row numbers contained within the temporary object are sorted to
provide efficient I/O processing to access the underlying table.

» Selection is performed as the row number list is generated to subset
the number of rows in the temporary object.

Considerations Since the row number list contains only the addresses of the selected
rows in the table, a separate Table Probe fetches the table rows.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

» When the cost of sorting of the row number is justified by the more
efficient I/0 that can be performed during the Table Probe operation.

« When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT * FROM Employee

WHERE WorkDept = 'EO1' AND Job = 'CLERK'
AND Salary = 5000

OPTIMIZE FOR 99999 ROWS

Database Monitor and Plan | 5QRID 3001 and QQRID 3021 records for each index used.
Cache record indicating use o)
The QQC11 field in the 3021 record will be 'L
A QQRID 3000 record with QQC11 (Skip_Sequential_Table_Scan) ="'Y".
Optionally, QQRID 3022 records if bitmap merging occurred.

SMP parallel enabled Yes

Also referred to as Row Number List Scan, Preload; RRN Scan; RRN Scan, Preload

42 IBM i: Performance and Query Optimization

Table 18. Row number list scan (continued)

Data access method Row number list scan

Visual Explain icon

Using the example above, the optimizer created a temporary row number list for each of the indexes used
by this query. These indexes included a radix index and two encoded vector indexes. Each index row
number list was scanned and merged into a final composite row number list representing the intersection
of all the index row number lists. The final row number list is then used by the Table Probe to determine
which rows are selected and processed for the query results.

Row number list probe

A row number list probe is used to test row numbers generated by a separate operation against the
selected rows of a temporary row number list. The row numbers can be generated by any operation that
constructs a row number for a table. That row number is then used to probe into a temporary row number
list to determine if it matches the selection used to generate the list.

The use of a row number list probe operation allows the optimizer to generate a plan that can take
advantage of any sequencing provided by an index, but still use the row number list to perform additional
selection before any Table probe operations.

A row number list probe is identical to a bitmap probe operation. The only difference is that the list probe
is over a list of row addresses while the bitmap probe is over a bitmap representing the addresses.

Table 19. Row number list probe

Data access method Row number list probe

Description The temporary row number list is quickly probed based upon the row
number generated by a separate operation.

Advantages « The temporary row number list only contains a row address, no data,
so the temporary can be efficiently probed within memory.

« The row numbers represented within the row number list are sorted
to provide efficient lookup processing to test the underlying table.

- Selection is performed as the row number list is generated to subset
the number of selected rows in the temporary object.

Considerations Used when the query contains ordering and additional selection that
can be satisfied by additional indexes. Since the row number list
contains only the addresses of the selected rows in the table, a
separate Table Probe fetches the table rows.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

= When the cost of creating and probing the row number list is justified
by reducing the number of Table Probe operations that must be
performed.

« When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Database performance and query optimization 43

Table 19. Row number list probe (continued)

Data access method Row number list probe

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT * FROM Employee

WHERE WorkDept = 'EO1' AND Job = 'CLERK'
AND Salary = 5000

ORDER BY WorkDept

Database Monitor and Plan QORID 3001 and QQRID 3021 records for each index used.
Cache record indicating use o)

The QQC11 field in the 3021 record will be 'L'.
Optionally, QQRID 3022 records if bitmap merging occurred.

SMP parallel enabled Yes

Also referred to as Row Number List Probe, Preload; RRN Probe; RRN Probe, Preload

Visual Explain icon ﬂ
[
&

Using the example above, the optimizer created a temporary row number list for each of the encoded
vector indexes. Additionally, an index probe operation was performed against the radix index X1 to satisfy
the ordering requirement. Since the ORDER BY requires that the resulting rows be sequenced by the
WorkDept column, the row number list cannot be scanned for the selected rows.

However, the temporary row number list can be probed using a row address extracted from the index X1
used to satisfy the ordering. By probing the list with the row address extracted from the index probe, the
sequencing of the keys in the index X1 is preserved. The row can still be tested against the selected rows
within the row number list.

Temporary bitmap

The temporary bitmap is a temporary object that allows the optimizer to sequence rows based upon their
row address (their row number). The bitmap can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary bitmap is a data structure that uses a bitmap to represent all the row numbers for a table.
Since each row is represented by a separate bit, all the rows within a table can be represented in a fairly
condensed form. When a row is selected, the bit within the bitmap that corresponds to the selected row is
set on. After the temporary bitmap is populated, all the selected rows can be retrieved in a sorted manner
for quick and efficient retrieval. The temporary bitmap only represents the row number for the associated
selected rows.

No table data is present within the temporary bitmap. A table probe operation is typically associated with
the bitmap in order to retrieve the underlying table data. Because the bitmap is by definition sorted, the
random I/0O associated with the table probe operation can be performed more efficiently. The database
manager performs pre-fetch or look-ahead logic to determine if multiple rows are located on adjacent
pages. If so, the table probe requests a larger I/O to bring the rows into main memory more efficiently.

A temporary bitmap is an internal data structure and can only be created by the database manager.

Visual explain icon:

44 1BM i: Performance and Query Optimization

L

Bitmap scan

During a bitmap scan operation, the entire temporary bitmap is scanned and all the row addresses
contained within the bitmap are processed. The optimizer considers this plan when there is an applicable
encoded vector index or if the index probe or scan random I/0 can be reduced. The random I/O can be
reduced by first preprocessing and sorting the row numbers associated with the Table Probe.

The use of a bitmap scan allows the optimizer to generate a plan that can take advantage of multiple
indexes to match up to different portions of the query.

An additional benefit is that the data structure of the temporary bitmap guarantees that the row numbers
are sorted. It closely mirrors the row number layout of the table data, ensuring that the table paging never
visits the same page of data twice. This results in increased I/0 savings for the query.

A bitmap scan is identical to a row number list scan operation. The only difference is that the list scan is
over a list of row addresses while the bitmap scan is over a bitmap representing the addresses.

Table 20. Bitmap scan attributes

Data access method Bitmap scan attributes

Description Sequentially scan and process all the row numbers in the temporary
bitmap. The sorted row numbers can be merged with other temporary
bitmaps or can be used as input into a Table Probe operation.

Advantages - The temporary bitmap only contains a reference to a row address, no
data, so the temporary can be efficiently scanned within memory.

« The row numbers represented within the temporary object are sorted
to provide efficient I/O processing to access the underlying table.

« Selection is performed as the bitmap is generated to subset the
number of selected rows in the temporary object.

Considerations Since the bitmap contains only the addresses of the selected rows in
the table, a separate Table Probe fetches the table rows.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

« When the cost of sorting of the row numbers is justified by the more
efficient I/0 that can be performed during the Table Probe operation.

« When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT * FROM Employee

WHERE WorkDept = 'EO1' AND Job = 'CLERK'
AND Salary = 5000

OPTIMIZE FOR 99999 ROWS

Database performance and query optimization 45

Table 20. Bitmap scan attributes (continued)

Data access method Bitmap scan attributes

Database Monitor and Plan [9oRID 3001 and QQRID 3021 records for each index used.
Cache record indicating use
The QQC11 field in the 3021 record will be 'B'.
A QQRID 3000 record with QQC11 (Skip_Sequential_Table_Scan) ='Y".
Optionally, QQRID 3022 records if bitmap merging occurred.

SMP parallel enabled Yes

Also referred to as Bitmap Scan, Preload
Row Number Bitmap Scan
Row Number Bitmap Scan, Preload

Skip Sequential Scan

Visual Explain icon

Using the example above, the optimizer created a temporary bitmap for each of the indexes used by

this query. These indexes included a radix index and two encoded vector indexes. Each index temporary
bitmap was scanned and merged into a final composite bitmap representing the intersection of all the
index temporary bitmaps. The final bitmap is then used by the Table Probe operation to determine which
rows are selected and processed for the query results.

Bitmap probe

A bitmap probe operation is used to test row numbers generated by a separate operation against

the selected rows of a temporary bitmap. The row numbers can be generated by any operation that
constructs a row number for a table. That row number is then used to probe into a temporary bitmap to
determine if it matches the selection used to generate the bitmap.

The use of a bitmap probe operation allows the optimizer to generate a plan that can take advantage of
any sequencing provided by an index, but still use the bitmap to perform additional selection before any
Table Probe operations.

A bitmap probe is identical to a row number list probe operation. The only difference is that the list probe
is over a list of row addresses while the bitmap probe is over a bitmap representing the addresses.

Table 21. Bitmap probe attributes

Data access method Bitmap probe attributes

Description The temporary bitmap is quickly probed based upon the row number
generated by a separate operation.

Advantages « The temporary bitmap only contains a reference to a row address, no
data, so the temporary can be efficiently probed within memory.

« The row numbers represented within the bitmap are sorted to
provide efficient lookup processing to test the underlying table.

« Selection is performed as the bitmap is generated to subset the
number of selected rows in the temporary object.

46 1IBM i: Performance and Query Optimization

Table 21. Bitmap probe attributes (continued)

Data access method Bitmap probe attributes

Considerations Since the bitmap contains only the addresses of the selected rows in
the table, a separate Table Probe fetches the table rows.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

« When the cost of creating and probing the bitmap is justified
by reducing the number of Table Probe operations that must be
performed.

« When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT * FROM Employee

WHERE WorkDept = 'EO1' AND Job = 'CLERK'
AND Salary = 5000

ORDER BY WorkDept

Database Monitor and Plan | oQRID 3001 and QQRID 3021 records for each index used.
Cache record indicating use

The QQC11 field in the 3021 record will be 'BL".
Optionally, QQRID 3022 records if bitmap merging occurred.

SMP parallel enabled Yes

Also referred to as Bitmap Probe, Preload
Row Number Bitmap Probe

Row Number Bitmap Probe, Preload

Visual Explain icon 0
&

Using the example above, the optimizer created a temporary bitmap for each of the encoded vector
indexes. Additionally, an index probe operation was performed against the radix index X1 to satisfy
the ordering requirement. Since the ORDER BY requires that the resulting rows be sequenced by the
WorkDept column, the bitmap cannot be scanned for the selected rows.

However, the temporary bitmap can be probed using a row address extracted from the index X1 used

to satisfy the ordering. By probing the bitmap with the row address extracted from the index probe, the
sequencing of the keys in the index X1 is preserved. The row can still be tested against the selected rows
within the bitmap.

Database performance and query optimization 47

Temporary index

A temporary index is a temporary object that allows the optimizer to create and use a radix index for
a specific query. The temporary index has all the same attributes and benefits as a radix index created
through the CREATE INDEX SQL statement or Cxreate Logical File (CRTLF) CL command.

Additionally, the temporary index is optimized for use by the optimizer to satisfy a specific query request.
This optimization includes setting the logical page size and applying any selection to the index to speed
up its use after creation.

The temporary index can be used to satisfy various query requests:

« Ordering
 Grouping/Distinct
- Joins

- Record selection

Generally a temporary index is a more expensive temporary object to create than other temporary
objects. It can be populated by a table scan, or by one or more index scans or probes. The optimizer
considers all the methods available when determining which method to use to produce the rows for the
index creation. This process is like the costing and selection of the other temporary objects used by the
optimizer.

One significant advantage of the temporary index over other temporary objects is that it is the only
temporary object maintained if the underlying table changes. The temporary index is identical to a radix
index in that any inserts or updates against the table are reflected immediately through normal index
maintenance.

SQE usage of temporary indexes is different from CQE usage in that SQE allows reuse. References to
temporary indexes created and used by the SQE optimizer are kept in the system Plan Cache. A temporary
index is saved for reuse by other instances of the same query or other instances of the same query
running in a different job. It is also saved for potential reuse by a different query that can benefit from the
use of the same temporary index.

By default, an SQE temporary index persists until the Plan Cache entry for the last referencing query
plan is removed. With the SQE Plan Cache auto sizing capability, there is the potential for SQE temporary
indexes to persist longer. You can control this behavior by setting the CACHE_RESULTS QAQQINI value.
The default for this INI value allows the optimizer to keep temporary indexes around for reuse.

Changing the INI value to '*JOB' prevents the temporary index from being saved in the Plan Cache; the
index does not survive a hard close. The *JOB option causes the SQE optimizer use of temporary indexes
to behave more like the CQE optimizer. The temporary index has a shorter life, but is still shared as long
as there are active queries using it. This behavior can be desirable in cases where there is concern about
increased maintenance costs for temporary indexes that persist for reuse.

A SQE temporary index can also be used as a source of statistics.
A temporary index is an internal data structure and can only be created by the database manager.

Visual explain icon:

¢

Temporary index scan
A temporary index scan operation is identical to the index scan operation that is performed upon the
permanent radix index. It is still used to retrieve the rows from a table in a keyed sequence; however, the

48 IBM i: Performance and Query Optimization

temporary index object must first be created. All the rows in the index are sequentially processed, but the
resulting row numbers are sequenced based upon the key columns.

The sequenced rows can be used by the optimizer to satisfy a portion of the query request (such as

ordering or grouping).

Table 22. Temporary index scan attributes

Data access method

Temporary index scan

Description Sequentially scan and process all the keys associated with the
temporary index.
Advantages « Potential to extract all the data from the index key values, thus

eliminating the need for a Table Probe

» Returns the rows back in a sequence based upon the keys of the
index

Considerations

Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/0 associated
with the Table Probe.

Likely to be used

- When sequencing the rows is required for the query (for example,
ordering or grouping)

« When the selection columns cannot be matched against the leading
key columns of the index

= When the overhead cost associated with the creation of the
temporary index can be justified against other alternative methods
to implement this query

Example SQL statement

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'A@1' AND 'EO1'
ORDER BY LastName

OPTIMIZE FOR ALL ROWS

Database Monitor and Plan
Cache record indicating use

QQRID 3002 record and QQRID 3001
where QQKP(Index_Probe_Used) ='N".

SMP parallel enabled

Yes

Also referred to as

Index Scan

Index Scan, Preload

Index Scan, Distinct

Index Scan Distinct, Preload

Index Scan, Key Selection

Visual Explain icon

| &

Database performance and query optimization 49

Using the example above, the optimizer chose to create a temporary index to sequence the rows based
upon the LastName column. A temporary index scan might then be performed to satisfy the ORDER BY
clause in this query.

The optimizer determines where the selection against the WorkDept column best belongs. It can be
performed as the temporary index itself is being created or it can be performed as a part of the temporary
index scan. Adding the selection to the temporary index creation has the possibility of making the

open data path (ODP) for this query non-reusable. This ODP reuse is considered when determining how
selection is performed.

Temporary index probe

A temporary index probe operation is identical to the index probe operation that is performed on the
permanent radix index. Its main function is to provide quick access against the index keys of the
temporary index. However, it can still be used to retrieve the rows from a table in a keyed sequence.

The temporary index is used by the optimizer to satisfy the join portion of the query request.

Table 23. Temporary index probe attributes

Data access method Temporary index probe

Description The index is quickly probed based upon the selection criteria that
were rewritten into a series of ranges. Only those keys that satisfy the
selection is used to generate a table row number.

Advantages - Only those index entries that match any selection continue to be
processed. Provides quick access to the selected rows

» Potential to extract all the data from the index key values, thus
eliminating the need for a Table Probe

« Returns the rows back in a sequence based upon the keys of the
index

Considerations Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/0 associated
with the Table Probe.

Likely to be used « When the ability to probe the rows required for the query (for
example, joins) exists

« When the selection columns cannot be matched against the leading
key columns of the index

« When the overhead cost associated with the creation of the
temporary index can be justified against other alternative methods
to implement this query

Example SQL statement SELET * FROM Employee XXX, Department YYY

WHERE XXX.WorkDept = YYY.DeptNo
OPTIMIZE FOR ALL ROWS

Database Monitor and Plan [9QRID 3002 record and QQRID 3001

Cache record indicating use
where QQKP(Index_Probe_Used) ="'Y".

SMP parallel enabled Yes

50 IBM i: Performance and Query Optimization

Table 23. Temporary index probe attributes (continued)

Data access method Temporary index probe

Also referred to as Index Probe

Index Probe, Preload

Index Probe, Distinct

Index Probe Distinct, Preload

Index Probe, Key Selection

Visual Explain icon

Using the example above, the optimizer chose to create a temporary index over the DeptNo column to
help satisfy the join requirement against the DEPARTMENT table. A temporary index probe was then
performed against the temporary index to process the join criteria between the two tables. In this
particular case, there was no additional selection that might be applied against the DEPARTMENT table
while the temporary index was being created.

Temporary buffer

The temporary buffer is a temporary object that is used to help facilitate operations such as parallelism.
It is an unsorted data structure that is used to store intermediate rows of a query. The difference between
a temporary buffer and a temporary list is that the buffer does not need to be fully populated before its
results are processed.

The temporary buffer acts as a serialization point between parallel and non-parallel portions of a query.
The operations used to populate the buffer cannot be performed in parallel, whereas the operations that
fetch rows from the buffer can be performed in parallel.

The temporary buffer is required for SQE because the index scan and index probe operations are not SMP
parallel-enabled for this engine. Unlike CQE, which performs these index operations in parallel, SQE does
not subdivide the index operation work to take full advantage of parallel processing.

The buffer is used to allow a query to be processed under parallelism by serializing access to the index
operations. Any remaining work within the query is processed in parallel.

A temporary buffer is an internal data structure and can only be created by the database manager.

Visual explain icon:

L o

=) =
L

Buffer scan

The buffer scan is used when a query is processed using Db2 Symmetric Multiprocessing, yet a portion of
the query is unable to be parallel processed. The buffer scan acts as a gateway to control access to rows
between the parallel enabled portions of the query and the non-parallel portions.

Multiple threads can be used to fetch the selected rows from the buffer, allowing the query to perform any
remaining processing in parallel. However, the buffer is populated in a non-parallel manner.

Database performance and query optimization 51

A buffer scan operation is identical to the list scan operation that is performed upon the temporary list
object. The main difference is that a buffer does not need to be fully populated before the start of the scan
operation. A temporary list requires that the list is fully populated before fetching any rows.

Table 24. Buffer scan attributes

Data access method

Buffer scan

Description Sequentially scan and process all the rows in the temporary buffer.
Enables SMP parallelism to be performed over a non-parallel portion of
the query.

Advantages « The temporary buffer can be used to enable parallelism over a

portion of a query that is non-parallel

« The temporary buffer does not need to be fully populated in order to
start fetching rows

Considerations

Used to prevent portions of the query from being processed multiple
times when no key columns are required to satisfy the request.

Likely to be used

- When the query is attempting to take advantage of Db2 Symmetric
Multiprocessing

= When a portion of the query cannot be performed in parallel (for
example, index scan or index probe)

Example SQL statement

CHGQRYA DEGREE (xOPTIMIZE)
CREATE INDEX X1 ON
Employee (LastName, WorkDept)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'AG1' AND 'EO1'

AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Database Monitor and Plan
Cache record indicating use

QVPARU will be greater than 0 on the associated database monitor
record.

SMP parallel enabled

Yes

Also referred to as

Not applicable

Visual Explain icon

Using the example above, the optimizer chose to use the existing index X1 to perform an index probe
operation against the table. In order to speed up the remaining Table Probe operation for this query, Db2
Symmetric Multiprocessing is used to perform the random probe into the table. Since the index probe is
not SMP parallel-enabled for SQE, it is placed within a temporary buffer to control access to the selected

index entries.

Queue

The Queue is a temporary object that the optimizer uses to feed recursion by putting data values needed
for the recursion on it. This data typically includes those values used on the recursive join predicate, and
other recursive data accumulated or manipulated during the recursive process.

The Queue has two operations allowed:

52 IBMi: Performance and Query Optimization

« Enqueue: puts data on the queue
« Dequeue: takes data off the queue

A queue is an efficient data structure because it contains only the data needed to feed the recursion or
directly modified by the recursion process. Its size is managed by the optimizer.

Unlike other temporary objects created by the optimizer, the queue is not populated all at once by the
underlying query node tree. It is a real-time temporary holding area for values feeding the recursion.

In this regard, a queue is not considered temporary, as it does not prevent the query from running if
ALWCPYDTA(*NO) was specified. The data can flow from the query at the same time the recursive values
are inserted into the queue and used to retrieve additional join rows.

A queue is an internal data structure and can only be created by the database manager.

Visual explain icon:

Enqueue

During an enqueue operation, an entry is put on the queue. The entry contains key values used by the
recursive join predicates or data manipulated as a part of the recursion process. The optimizer always
supplies an enqueue operation to collect the required recursive data on the query node directly above the
Union All.

Table 25. Enqueue Attributes

Data Access Method Enqueue
Description Places an entry on the queue needed to cause further recursion
Advantages « Required as a source for the recursion. Only enqueues required

values for the recursion process. Each entry has short life span, until
it is dequeued.

« Each entry on the queue can seed multiple iterative fullselects that
are recursive from the same RCTE or view.

Likely to be used A required access method for recursive queries

Exampl L statement
ample SQL stateme WITH RPL (PART, SUBPART, QUANTITY) AS

(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = '0O1'

UNION ALL
SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT DISTINCT PART, SUBPART, QUANTITY
FROM RPL

Database Monitor and Plan There are no explicit records that indicate the use of an enqueue
Cache record indicating use

SMP parallel enabled Yes

Also referred to as Not applicable

Database performance and query optimization 53

Table 25. Enqueue Attributes (continued)

Data Access Method Enqueue

Visual Explain icon
===
i

Use the CYCLE option in the definition of the recursive query if the data reflecting the parent-child
relationship could be cyclic, causing an infinite recursion loop. CYCLE prevents already visited recursive
key values from being put on the queue again for a given set of related (ancestry chain) rows.

Use the SEARCH option in the definition of the recursive query to return the results of the recursion in
the specified parent-child hierarchical ordering. The search choices are Depth or Breadth first. Depth first
means that all the descendents of each immediate child are returned before the next child is returned.
Breadth first means that each child is returned before their children are returned.

SEARCH requires not only the specification of the relationship keys, the columns which make up the
parent-child relationship, and the search type of Depth or Breadth. It also requires an ORDER BY clause in
the main query on the provided sequence column in order to fully implement the specified ordering.

Dequeue
During a dequeue operation, an entry is taken off the queue. Those values specified by recursive
reference are fed back in to the recursive join process.

The optimizer always supplies a corresponding enqueue, dequeue pair of operations for each recursive
common table expression or recursive view in the specifying query. Recursion ends when there are no
more entries to pull off the queue.

Table 26. Dequeue Attributes

Data Access Method Dequeue

Description Removes an entry off the queue. Minimally, provides one side of

the recursive join predicate that feeds the recursive join and other
data values that are manipulated through the recursive process. The
dequeue operation is always on the left side of the inner join with
constraint, where the right side is the target child rows.

Advantages - Provides quick access to recursive values
« Allows for post selection of local predicate on recursive data values

Likely to be used « Arequired access method for recursive queries

» A single dequeued value can feed the recursion of multiple iterative
fullselects that reference the same RCTE or view

Example SQL statement WITH RPL (PART, SUBPART, QUANTITY) AS

(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = '0O1'

UNION ALL
SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT DISTINCT PART, SUBPART, QUANTITY
FROM RPL

54 IBM i: Performance and Query Optimization

Table 26. Dequeue Attributes (continued)

Data Access Method Dequeue

Database Monitor and Plan There are no explicit records that indicate the use of the dequeue
Cache record indicating use | operation.

SMP parallel enabled Yes

Also referred to as Not applicable

‘i
L
B

Visual Explain icon

Array unnest temporary table

The array unnest temporary table is a temporary object that holds the output of an UNNEST of an array
or a list of arrays. It can be viewed vertically, with each column of array values having the same format.
The temporary table contains one or more arrays specified by the user in an UNNEST clause of a SELECT
statement.

UNNEST creates a temporary table with the arrays specified as columns in the table. If more than one
array is specified, the first array provides the first column in the result table. The second array provides
the second column, and so on.

The arrays might be of different lengths. Shorter arrays are primed with nulls to match the length of the
longest array in the list.

If WITH ORDINALITY is specified, an extra counter column of type BIGINT is appended to the temporary
table. The ordinality column contains the index position of the elements in the arrays.

The array unnest temporary table is an internal data structure and can only be created by the database

manager.

—
[y W —

Visual explain icon:

Related reference
QAQQINI query options
There are different options available for parameters in the QAQQINI file.

Related information

Array support in SQL procedures
Debugging an SQL routine
table-reference

Database performance and query optimization 55

Array unnest temporary table scan
During an array unnest temporary table scan operation, the temporary table is processed one row at a
time.

Table 27. Array unnest temporary table scan operation

Data access method Array unnest temporary table scan

Description Sequentially scan and process all the rows of data in the unnest
temporary table.

Advantages The array unnest temporary table and temporary table scan can be
used to simplify the logic flow of the optimizer for processing arrays.

Likely to be used When an UNNEST clause is specified in the from-clause of an SQL
fullselect.

Example SQL statement CREATE PROCEDURE processCustomers()

BEGIN

DECLARE ids INTARRAY;

DECLARE names STRINGARRAY;

set ids = ARRAY[5,6,7];

set names = ARRAY['Ann', 'Bob', 'Sue'];

INSERT INTO customerTable(id, name, order)

(SELECT Customers.id, Customers.name, Customers.order
FROM UNNEST (ids, names) WITH ORDINALITY

AS Customers(id, name, order));

END

CALL processCustomers()

Database Monitor and Plan QOQRID 3000 where QVQTBL = "*UNNEST'
Cache record indicating use

SMP parallel enabled Yes

Also referred to as

Visual Explain icon

Lo e B
[Sy w—

Temporary Indexed List

The temporary indexed list is a temporary object that allows the optimizer to sequence rows based upon a
column or set of columns. The temporary indexed list can be scanned by the optimizer to satisfy ordering
or grouping requirements of the query.

A temporary indexed list is a data structure that contains a radix index object to provide ordering. This
object is generally used when a query contains ordering and non-equal predicates and only a partial
answer set is fetched. The object is initially populated with a distinct set of values by distinct scanning
or probing an existing index. As processing continues and more rows are needed, additional rows will be
inserted into the temporary indexed list for additional processing.

If the underlying index used to build the temporary indexed list contains all the necessary columns

to satisfy any further processing, then these columns are built into the temporary indexed list. This
population avoids any random I/Os associated with a table probe operation. If the underlying index does
not contain all the necessary columns, then a table probe operation is required to recollect the missing
columns from the temporary indexed list before the selected rows can be processed.

56 IBM i: Performance and Query Optimization

A temporary indexed list is an internal data structure and can only be created by the database manager.
The temporary indexed list is always used in conjunction with the temporary indexed list scan and index
merge data access methods.

Visual explain icon:

Temporary Indexed List scan and Index Merge

A temporary indexed list scan operation is similar to the index scan operation that is performed upon the
permanent radix index. It is still used to retrieve the rows from a table in a keyed sequence; however, the
temporary indexed list object must first be created. This operation is often performed in conjunction with
an index merge operation. However, for some distinct and grouping queries, the temporary indexed list
scan may be used without an associated index merge operation.

This access method is used when there is non-equal selection and is used in conjunction with an existing
permanent radix index. A distinct index scan or a distinct index probe operation is performed against the
index to get a unique set of rows. The rows are then inserted into the temporary indexed list to provide the
appropriate ordering.

In general, for a radix index to be eligible for temporary list scan and Index Merge Ordering, the index
should be created as follows:

« Any columns with equal predicates that are not in the ORDER BY list should be first keys in the index.

 Followed by any columns for non-equal predicates that are not in the ORDER BY list. The columns
should be arranged so the most selective predicate column is the first column following the equal
predicate columns.

 Followed by the ORDER BY columns in the same order as the ORDER BY clause of the query and with
the same ASC or DESC attribute.

« Optionally, at the end you may include other selection columns or other selected columns for Index
Only Access.

A temporary sorted list is an internal data structure and can only be created by the database manager.

Table 28. Temporary indexed list scan

Data access method Temporary indexed list scan

Description Sequentially scan and process all the keys
associated with the temporary indexed list.

Advantages - Provides an alternate implementation to order

data when the query contains non-equal where
selection.

» Returns the rows back in a sequence based upon
the keys of the index.

 Provides better paging characteristics than a
sorted list scan in low memory environments.

» Provides better performance characteristics than
a Sorted List Scan when only a partial answer set
is fetched.

Considerations Used to process ordering, grouping or distinct
processing for a single table query.

Database performance and query optimization 57

Table 28. Temporary indexed list scan (continued)

Data access method Temporary indexed list scan

Likely to be used « When the use of temporary results is
allowed by the query environmental parameter
(ALWCPYDTA).

« When the data is required to be ordered or
grouped based upon a column or columns and
the query contains non-equal where selection.

« The query is being optimized for FIRST I/0.
« « The number of distinct values is low.

Example SQL statement CREATE INDEX INDEX1 ON EMPLOYEE (SALARY,

WORKDEPT)

SELECT DISTINCT WORKDEPT FROM EMPLOYEE
WHERE SALARY > 30000
OPTIMIZE FOR 30 ROWS

Database Monitor and Plan Cache record QORID 3001 where QQRCOD = ‘17’
indicating use

SMP parallel enabled No

Also referred to as

Visual Explain icon

Using the example above, the optimizer chose to create a temporary indexed list of distinct WORKDEPT
values from index INDEX1. The selection SALARY > 3000 was applied to the index probe distinct.

Index Merge:

An index merge operation is used to provide ordering in conjunction with a temporary indexed list scan
and an index probe distinct or distinct index.

The sequenced rows can be used by the optimizer to satisfy a portion of the query request (such as
ordering or grouping).

Table 29. Index Merge

Data access method Index Merge
Description Sequentially scan and process all the keys
associated with the temporary indexed list.
Advantages « Potential to extract all the data from the index
key values, thus eliminating the need for a Table
Probe.

« Returns the rows back in a sequence based upon
the keys of the index.

58 IBM i: Performance and Query Optimization

Table 29. Index Merge (continued)

Data access method

Index Merge

Considerations

Used to process ordering, grouping or distinct
processing for a single table query.

Likely to be used

« When the use of temporary results is
allowed by the query environmental parameter
(ALWCPYDTA).

« When the data is required to be ordered or
grouped based upon a column or columns and
the query contains non-equal where selection.

« The query is being optimized for FIRST I/0.
« The number of distinct values is low.

Example SQL statement

CREATE INDEX IX1 ON
Sales(Sales_date, Region, Sales_person)

SELECT * FROM Sales
WHERE
Sales_date BETWEEN '1996-03-29'
AND '1996-04-29'
AND Region IN ('Quebec', 'Manitoba')
ORDER BY Sales_person;

Database Monitor and Plan Cache record
indicating use

QOQRID 3001 where QQRCOD = ‘17’

SMP parallel enabled

No

Also referred to as

Visual Explain icon

===

Window

The window is a temporary object that holds intermediate results needed to determine the result for
On-Line Analytical Processing (OLAP) functions. The number of rows in the window may change as the

data flows through it.

The window is an internal data structure and can only be created by the database manager.

Visual explain icon:

Database performance and query optimization 59

Window scan
During processing of an OLAP function the window may be processed multiple time in order to determine
the result of the OLAP function for each row

Table 30. Window scan attributes

Data access method Window scan

Description Sequentially scan and process all the rows needed to determine the
result of the OLAP function.

Advantages - Allows the database manager to process subsets of the data to
calculate the OLAP result without processing the entire result set
for each row.

Considerations Required for OLAP specifications that require intermediate results to
determine the value of the OLAP expression. The OLAP specifications
that require a window include any of the aggregate OLAPs, LAG, LEAD,
NTILE, and CUME_DIST.

Likely to be used Required for OLAP specifications that require intermediate results to
determine the value of the OLAP expression.

Example SQL statement SELECT workdept, empno, salary, decimal(avg(salary)

over(partition by workdept order by salary), 10,2)
FROM employee

Database Monitor and Plan QORID 3004 where QQRCOD = ‘H8".
Cache record indicating use

SMP parallel enabled No

Also referred to as

Visual Explain icon

Objects processed in parallel

The Db2 Symmetric multiprocessing feature provides the optimizer with additional methods for retrieving
data that include parallel processing. Symmetrical multiprocessing is a form of parallelism achieved on

a single system where multiple CPU and I/O processors sharing memory and disk work simultaneously
toward a single result.

This parallel processing means that the database manager can have more than one (or all) of the system
processors working on a single query simultaneously. The performance of a CPU-bound query can be
improved with this feature on multiple-processor systems by distributing the processor load across more
than one processor.

The preceding tables indicate what data access methods are enabled to take advantage of the
Db2 Symmetric Multiprocessing feature. An important thing to note, however, is that the parallel
implementation differs for both the SQL Query Engine and the Classic Query Engine.

Processing requirements
Parallelism requires that SMP parallel processing must be enabled by one of the following methods:

« System value QORYDEGREE

60 IBM i: Performance and Query Optimization

» Query option file
- DEGREE parameter on the Change Query Attributes (CHGQRYA) command
« SQL SET CURRENT DEGREE statement

Once parallelism has been enabled, a set of database system tasks or threads is created at system
startup for use by the database manager. The database manager uses the tasks to process and retrieve
data from different disk devices. Since these tasks can be run on multiple processors simultaneously,
the elapsed time of a query can be reduced. Even though the tasks do much of the parallel I/O and CPU
processing, the I/0 and CPU resource accounting is transferred to the application job. The summarized
I/O and CPU resources for this type of application continue to be accurately displayed by the Woxk with
Active Jobs (WRKACTJOB) command.

The job must be run in a shared storage pool with the *CALC paging option, as this method causes more
efficient use of active memory.

Related concepts

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join
are ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Related reference

Changing the attributes of your queries

You can modify different types of query attributes for a job with the Change Query Attributes
(CHGQRYA) CL command. You can also use the System i Navigator Change Query Attributes interface.

Related information

SET CURRENT DEGREE statement

Performance system values: Parallel processing for queries and indexes
Adjusting performance automatically

Work with Active Jobs (WRKACTJOB) command

Change Query Attributes (CHGQRYA) command

DB2 Symmetric Multiprocessing

Spreading data automatically

Db2 for i automatically spreads the data across the disk devices available in the auxiliary storage pool
(ASP) where the data is allocated. This process ensures that the data is spread without user intervention.

The spreading allows the database manager to easily process the blocks of rows on different disk

devices in parallel. Even though Db2 for i spreads data across disk devices within an ASP, sometimes

the allocation of the data extents (contiguous sets of data) might not be spread evenly. This unevenness
occurs when there is uneven allocation of space on the devices, or when a new device is added to the ASP.
The allocation of the table data space could be spread again by saving, deleting, and then restoring the
table.

Maintaining an even distribution of data across all the disk devices can lead to better throughput on query
processing. The number of disk devices used and how the data is spread across them is considered by the
optimizer while costing the different plan permutations.

Processing queries: Overview

This overview of the query optimizer provides guidelines for designing queries that perform and use
system resources more efficiently.

This overview covers queries that are optimized by the query optimizer and includes interfaces such as
SQL, OPNQRYF, APIs (QQQQRY), ODBC, and Query/400 queries. Whether you apply the guidelines, the
query results are still correct.

Database performance and query optimization 61

Note: The information in this overview is complex. You might find it helpful to experiment with an IBM i
product as you read this information to gain a better understanding of the concepts.

When you understand how Db2 for i processes queries, it is easier to understand the performance
impacts of the guidelines discussed in this overview. There are two major components of Db2 for i query
processing:

« How the system accesses data.

These methods are the algorithms that are used to retrieve data from the disk. The methods include
index usage and row selection techniques. In addition, parallel access methods are available with the
Db2 Symmetric Multiprocessing operating system feature.

« Query optimizer

The query optimizer identifies the valid techniques which can be used to implement the query and
selects the most efficient technique.

How the query optimizer makes your queries more efficient

Data manipulation statements such as SELECT specify only what data the user wants, not how to retrieve
that data. This path to the data is chosen by the optimizer and stored in the access plan. Understand the
techniques employed by the query optimizer for performing this task.

The optimizer is an important part of Db2 for i because the optimizer:

- Makes the key decisions which affect database performance.
« Identifies the techniques which can be used to implement the query.
« Selects the most efficient technique.

General query optimization tips
Here are some tips to help your queries run as fast as possible.

- Create indexes whose leftmost key columns match your selection predicates to help supply the
optimizer with selectivity values (key range estimates).

« For join queries, create indexes that match your join columns to help the optimizer determine the
average number of matching rows.

- Minimize extraneous mapping by specifying only columns of interest on the query. For example, specify

only the columns you need to query on the SQL SELECT statement instead of specifying SELECT *. Also,
specify FOR FETCH ONLY if the columns do not need to be updated.

« If your queries often use table scan, use the Reoxganize Physical File Member (RGZPFM)
command to remove deleted rows from tables, or the Change Physical File (CHGPF) REUSEDLT
(*YES) command to reuse deleted rows.

Consider using the following options:

 Specify ALWCPYDTA(*OPTIMIZE) to allow the query optimizer to create temporary copies of data so
better performance can be obtained. The IBM i Access ODBC driver and Query Management driver
always use this mode. If ALWCPYDTA(*YES) is specified, the query optimizer attempts to implement the
query without copies of the data, but might create copies if required. If ALWCPYDTA(*NO) is specified,
copies of the data are not allowed. If the query optimizer cannot find a plan that does not use a
temporary, then the query cannot be run.

« For SOL, use CLOSQLCSR(*ENDJOB) or CLOSQLCSR(*ENDACTGRP) to allow open data paths to remain
open for future invocations.

« Specify DLYPRP(*YES) to delay SQL statement validation until an OPEN, EXECUTE, or DESCRIBE
statement is run. This option improves performance by eliminating redundant validation.

« Use ALWBLK(*ALLREAD) to allow row blocking for read-only cursors.

Related information
Reorganize Physical File Member (RGZPFM) command

62 IBM i: Performance and Query Optimization

Change Physical File (CHGPF) command

Access plan validation

An access plan is a control structure that describes the actions necessary to satisfy each query request.
It contains information about the data and how to extract it. For any query, whenever optimization occurs,
the query optimizer develops an optimized plan of how to access the requested data.

To improve performance, an access plan is saved once it is built (see following exceptions), to be available
for potentially future runs of the query. However, the optimizer has dynamic replan capability. This means
that even if a previously built (and saved) plan is found, the optimizer could rebuild it if a more optimal
plan is possible. This process allows for maximum flexibility while still taking advantage of saved plans.

« For dynamic SQL, an access plan is created at prepare or open time. However, optimization uses the
host variable values to determine an optimal plan. Therefore, a plan built at prepare time could be
rebuilt the first time the query is opened (when the host variable values are present).

« Foran IBMi program that contains static embedded SQL, an access plan is initially created at compile
time. Again, since optimization uses the host variable values to determine an optimal plan, the compile-
time plan could be rebuilt the first time the query is opened.

« For Open Query File (OPNQRYF), an access plan is created but is not saved. A new access plan is
created each time the OPNQRYF command is processed.

« For Query/400, an access plan is saved as part of the query definition object.

In all the preceding cases where a plan is saved, including static SQL, dynamic replan can still apply as
the queries are run over time.

The access plan is validated when the query is opened. Validation includes the following;:

Verifying that the same tables are referenced in the query as in the access plan. For example, the tables
were not deleted and recreated or that the tables resolved by using *LIBL have not changed.

Verifying that the indexes used to implement the query, still exist.

Verifying that the table size or predicate selectivity has not changed significantly.
Verifying that QAQQINI options have not changed.

Single table optimization

At run time, the optimizer chooses an optimal access method for a query by calculating an implementation
cost based on the current state of the database. The optimizer uses two costs in its decision: an I/O cost
and a CPU cost. The goal of the optimizer is to minimize both I/O and CPU cost.

Improved query optimization I/O cost estimates

The time it takes to perform an disk I/O operation can vary according to the connecting infrastructure, the
external or internal nature of the media and media type, spinning disk or Solid State Disk. Consequently,
the total I/O cost associated with a particular query access method may vary from system to system.

In order to more accurately estimate these costs, the optimizer considers the performance of each disk
unit individually. It does this by measuring the time it takes for read operations to complete across a
sample of pages across the disk. This analysis is done at each IPL for disks in the system and user ASPs
and at vary-on time for independent ASPs. With this information and with the additional knowledge about
how database objects are spread across various disk units, the optimizer can make a reasonable estimate
about the time it takes to perform I/O against a given database object. This means that no matter where
your data resides, and even as it moves around, the optimizer can choose the most efficient plan to
execute your queries.

Optimizing Access to each table

The optimizer uses a general set of guidelines to choose the best method for accessing data in each table.
The optimizer:

Database performance and query optimization 63

« Determines the default filter factor for each predicate in the selection clause.

« Determines the true filter factor of the predicates by key range estimate when the selection predicates
match the index left-most keys, or by available column statistics.

- Determines the cost of table scan processing if an index is not required.

- Determines the cost of creating an index over a table if an index is required. This index is created by
performing either a table scan or creating an index-from-index.

« Determines the cost of using a sort routine or hashing method if appropriate.
- Determines the cost of using existing indexes using Index Probe or Index Scan

— Orders the indexes. For SQE, the indexes are ordered in general such that the indexes that access the
smallest number of entries are examined first. For CQE, the indexes are ordered from mostly recently
created to oldest.

— For each index available, the optimizer does the following:

- Determines if the index meets the selection criteria.

- Determines the cost of using the index by estimating the number of I/Os and CPU needed to Index
Probe or Index Scan, and possible Table Probes.

- Compares the cost of using this index with the previous cost (current best).
- Picks the cheaper one.
- Continues to search for best index until the optimizer decides to look at no more indexes.

SQE orders the indexes so that the best indexes are examined first. Once an index is found that is
more expensive than the previously chosen best index, the search is ended.

For CQE, the time limit controls how much time the optimizer spends choosing an implementation.
The time limit is based on how much time was spent so far and the current best implementation
cost found. The idea is to prevent the optimizer from spending more time optimizing the query
than it takes to actually execute the query. Dynamic SQL queries are subject to the optimizer

time restrictions. Static SQL query optimization time is not limited. For OPNQRYF, if you specify
OPTALLAP(*YES), the optimization time is not limited.

For small tables, the query optimizer spends little time in query optimization. For large tables,

the query optimizer considers more indexes. For CQE, the optimizer generally considers five or six
indexes for each table of a join before running out of optimization time. Because of this processing, it
is normal for the optimizer to spend longer lengths of time analyzing queries against the tables.

« Determines the cost of using a temporary bitmap

— Order the indexes that can be used for bit mapping. In general the indexes that select the smallest
number of entries are examined first.

— Determine the cost of using this index for bit mapping and the cost of merging this bitmap with any
previously generated bitmaps.

— If the cost of this bitmap plan is cheaper than the previous bitmap plan, continue searching for
bitmap plans.

- After examining the possible methods of access the data for the table, the optimizer chooses the best
plan from all the plans examined.

Solid State Drives

Solid State Drives (SSDs) offer a number of advantages over traditional hard disk drives (HDDs)

Solid State Drives

Solid State Drives (SSDs) offer a number of advantages over traditional hard disk drives (HDDs). With no
seek time or rotational delays, SSDs can deliver substantially better I/O performance than HDDs. Capable
of driving tens of thousands of I/O operations per second as opposed to hundreds for HDDs, SSDs break
through performance bottlenecks of I/O-bound applications. Applications that require dozens and dozens

64 IBM i: Performance and Query Optimization

of “extra” HDDs for performance can meet their I/O performance requirements with far fewer SSDs,
resulting in energy, space, and cost savings.

As IBMi has it’s own storage manager and Db2 for i built in, the integration of SSDs on IBM i is a fairly
simple task. The functions provided for management of SSDs and adjusting their impact on Applications
and Database are very simple and easy to use.

There are three basic methodologies to place data on SSD.

« ASP Balancer — Enhanced for SSDs

« Library and SSD Integration

« Db2 and SSD Integration

To allow you to specify what data should be allocated on SSD, Db2 has provided the capability to specify
a “media preference” as an attribute of a database table, partition, or index. It should be noted that this
attribute specifies that storage allocations on SSD are preferred, but if no SSD disks are available or if the
SSD disks do not have enough space left to allocate the entire object, at least some part of the object will

be allocated on traditional disks. See the UNIT parameter on CRTPF and CRTLF or the UNIT clause on the
CREATE TABLE, CREATE INDEX and ALTER TABLE SOL statements.

You should consider SSDs if your I/O demands have outpaced the performance capabilities of traditional
HDDs, latencies associated with spinning platters and moving arms limit the speed of HDD data access.
SSDs’ near instantaneous data access removes this I/O bottleneck, creating a paradigm shift in I/O
performance. Applications throttled by poor I/O performance can benefit greatly from SSDs.

Memory preference controls

Memory preference controls can be used as a technique to maximize performance and utilization of
resources.

Memory preference controls

Memory preference controls can be used against performance critical database tables, indexes, physical
files, and logical files as a technique to maximize performance and utilization of resources. Several
approaches are available for controlling the memory preference:

1. Set Object Access (SETOBJACC) command

One benefit of SETOBJACC is that you can carve out a separate memory pool that is not used by from
any running applications or MEMORY_POOL_PREFERENCE and those objects will then not get paged
out because neither applications nor SQE will be using that pool. If the target objects are primarily
accessed using Native database I/0,SETOBJACC is the preferred approach.SETOBJACC uses a single
thread to bring the object into memory.

2. Change Physical File (CHGPF) and Change Logical File (CHGLF) commands - Keep in
memory (KEEPINMEM) parameter

When an object is changed to have Keep in memory set to *YES, the database will bring the object into
memory and attempt to keep it in memory when it is accessed using SQL via SQE. Native database I/0
(for example RPG CHAIN, READ, etc.) does not do this. KEEPINMEM has the ability to use parallel I/O to
bring the object into memory.

« CHGPF KEEPINMEM(*YES|*NO)
« CHGLF KEEPINMEM(*YES|*NO)
3. The SQL memory-preference can be used as an alternative to the KEEPINMEM command parameter.

The behavior of SQL configured in memory objects matches the behavior described in theKEEPINMEM
section.

KEEP IN MEMORY <NO/YES> is available on the following SQL statements:

« ALTER TABLE
- CREATE INDEX

Database performance and query optimization 65

« CREATE TABLE
« DECLARE GLOBAL TEMPORARY TABLE

Note: The QSYS2/SYSPARTITIONSTAT and SYSPARTITIONINDEXSTAT catalogs can be queried to
determine the memory-preference for specific objects. When a memory-preference is specified for an
object, the MEMORY_POOL_PREFERENCE QAQQINI option can be used to influence where we attempt to
page objects. There is no guarantee that objects will remain in memory.

Join optimization

A join operation is a complex function that requires special attention in order to achieve good
performance. This section describes how Db2 for i implements join queries and how optimization choices
are made by the query optimizer. It also describes design tips and techniques which help avoid or solve
performance problems.

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join
are ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

The nested loop is implemented either using an index on secondary tables, a hash table, or a table scan
(arrival sequence) on the secondary tables. In general, the join is implemented using either an index or a
hash table.

Index nested loop join implementation
During the join, Db2 for i:

1. Accesses the first primary table row selected by the predicates local to the primary table.
2. Builds a key value from the join columns in the primary table.
3. Chooses the access to the first secondary table:

- If using an index, Radix Index Probe is used to locate the first row satisfying the join condition for
the secondary table. The probe uses an index with keys matching the join condition or local row
selection columns of the secondary table.

« Applies bitmap selection, if applicable.

All rows that satisfy the join condition from each secondary dial are located using an index. Rows
are retrieved from secondary tables in random sequence. This random disk I/O time often accounts
for a large percentage of the processing time of the query. Since a given secondary dial is searched
once for each row selected from the primary and the preceding secondary dials that satisfy the join
condition for each of the preceding secondary dials, many searches could be against the later dials.
Any inefficiencies in the processing of the later dials can significantly inflate the query processing
time. This reason is why attention to performance considerations for join queries can reduce the run
time of a join query from hours to minutes.

If an efficient index cannot be found, a temporary index could be created. Some join queries build
temporary indexes over secondary dials even when an index exists for all the join keys. Because
efficiency is important for secondary dials of longer running queries, the optimizer could build a
temporary index containing only entries with local row selection for that dial. This preprocessing of
row selection allows the database manager to process row selection in one pass instead of each time
rows are matched for a dial.

- If using a Hash Table Probe, a hash temporary result table is created containing all rows from local
selection against the table on the first probe. The structure of the hash table is such that rows with
the same join value are loaded into the same hash table partition (clustered). The location of the
rows for any given join value can be found by applying a hashing function to the join value.

A nested loop join using a Hash Table Probe has several advantages over a nested loop join using an
Index Probe:

66 IBM i: Performance and Query Optimization

— The structure of a hash temporary result table is simpler than the structure of an index. Less CPU
processing is required to build and probe a hash table.

— The rows in the hash result table contain all the data required by the query. There is no need to
access the dataspace of the table with random I/O when probing the hash table.

— Like join values are clustered, so all matching rows for a given join value can typically be accessed
with a single I/0 request.

— The hash temporary result table can be built using SMP parallelism.

— Unlike indexes, entries in hash tables are not updated to reflect changes of column values in
the underlying table. The existence of a hash table does not affect the processing cost of other
updating jobs in the system.

- If using a Sorted List Probe, a sorted list result is created containing all the rows from local selection
against the table on the first probe. The structure of the sorted list table is such that rows with the
same join value are sorted together in the list. The location of the rows for any given join value can be
found by probing using the join value.

- If using a Table Scan, locate the first row that satisfies the join condition or local row selection
columns of the secondary table. The join could be implemented with a table scan when the
secondary table is a user-defined table function.

4. Determines if the row is selected by applying any remaining selection local to the first secondary dial.

If the secondary dial row is not selected then the next row that satisfies the join condition is located.
Steps 1 through 4 are repeated until a row that satisfies both the join condition and any remaining
selection is selected from all secondary tables

5. Returns the result join row.

6. Processes the last secondary table again to find the next row that satisfies the join condition in that
dial.

During this processing, when no more rows satisfying the join condition can be selected, the
processing backs up to the logical previous dial. It attempts to read the next row that satisfies its
join condition.

7. Ends processing when all selected rows from the primary table are processed.
Note the following characteristics of a nested loop join:

« If ordering or grouping is specified, and all the columns are over a single table eligible to be the primary,
then the optimizer costs the join with that table as the primary table, performing the grouping and
ordering with an index.

- If ordering and grouping is specified on two or more tables or if temporary objects are allowed, Db2 for i
breaks the processing of the query into two parts:

1. Perform the join selection, omitting the ordering or grouping processing, and write the result rows to
atemporary work table. This method allows the optimizer to consider any table of the join query as a
candidate for the primary table.

2. Perform the ordering or grouping on the data in the temporary work table.

Queries that cannot use hash join
Hash join cannot be used for queries that:

« Hash join cannot be used for queries involving physical files or tables that have read triggers.

« Require that the cursor position is restored as the result of the SQL ROLLBACK HOLD statement or the
ROLLBACK CL command. For SQL applications using commitment control level other than *NONE, this
method requires that *ALLREAD be specified as the value for the ALWBLK precompiler parameter.

« Hash join cannot be used for a table in a join query where the join condition something other than an
equals operator.

« CQE does not support hash join if the query contains any of the following:

Database performance and query optimization 67

Subqueries unless all subqueries in the query can be transformed to inner joins.
UNION or UNION ALL
Perform left outer or exception join.

Use a DDS created join logical file.

Related concepts

Objects processed in parallel

The Db2 Symmetric multiprocessing feature provides the optimizer with additional methods for retrieving
data that include parallel processing. Symmetrical multiprocessing is a form of parallelism achieved on

a single system where multiple CPU and I/O processors sharing memory and disk work simultaneously
toward a single result.

Related reference

Table scan

A table scan is the easiest and simplest operation that can be performed against a table. It sequentially
processes all the rows in the table to determine if they satisfy the selection criteria specified in the query.
It does this processing in a way to maximize the I/O throughput for the table.

Sorted list probe
A sorted list probe operation is used to retrieve rows from a temporary sorted list based upon a probe
lookup operation.

Hash table probe
A hash table probe operation is used to retrieve rows from a temporary hash table based upon a probe
lookup operation.

Radix index probe

A radix index probe operation is used to retrieve the rows from a table in a keyed sequence. The main
difference between the radix index probe and the scan is that the rows returned are first identified by a
probe operation to subset them.

Join optimization algorithm

The query optimizer must determine the join columns, join operators, local row selection, dial
implementation, and dial ordering for a join query.

The join columns and join operators depend on the following situations:

« Join column specifications of the query
- Join order
« Interaction of join columns with other row selection

Join specifications not implemented for the dial are deferred until a later dial or, if an inner join, processed
as row selection.

For a given dial, the only join specifications which are usable as join columns are those being joined to

a previous dial. For example, the second dial can only use join specifications which reference columns in
the primary dial. Likewise, the third dial can only use join specifications which reference columns in the
primary and the second dials, and so on. Join specifications which reference later dials are deferred until
the referenced dial is processed.

Note: For OPNQRYF, only one type of join operator is allowed for either a left outer or an exception join.
That is, the join operator for all join conditions must be the same.

When looking for an existing index to access a secondary dial, the query optimizer looks at the left-most
key columns of the index. For a given dial and index, the join specifications which use the left-most key
columns can be used. For example:

DECLARE BROWSE2 CURSOR FOR
SELECT » FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND EMPLOYEE.HIREDATE = EMP_ACT.EMSTDATE
OPTIMIZE FOR 99999 ROWS

68 IBM i: Performance and Query Optimization

For the index over EMP_ACT with key columns EMPNO, PROJINO, and EMSTDATE, the join operation is
performed only on column EMPNO. After the join is performed, index scan-key selection is done using
column EMSTDATE.

The query optimizer also uses local row selection when choosing the best use of the index for the
secondary dial. If the previous example had been expressed with a local predicate as:

DECLARE BROWSE2 CURSOR FOR
SELECT x FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND EMPLOYEE.HIREDATE = EMP_ACT.EMSTDATE
AND EMP_ACT.PROJNO = '123456'
OPTIMIZE FOR 99999 ROWS

The index with key columns EMPNO, PROJINO, and EMSTDATE are fully utilized by combining join and
selection into one operation against all three key columns.

When creating a temporary index, the left-most key columns are the usable join columns in that dial
position. All local row selection for that dial is processed when selecting entries for inclusion into the
temporary index. A temporary index is like the index created for a select/omit keyed logical file. The
temporary index for the previous example has key columns of EMPNO and EMSTDATE.

Since the optimizer tries a combination of join and local row selection, you can achieve almost all the
advantages of a temporary index by using an existing index. In the preceding example, using either
implementation, an existing index could be used or a temporary index could be created. A temporary
index is built with the local row selection on PROINO applied during the index creation. The temporary
index has key columns of EMPNO and EMSTDATE to match the join selection.

If, instead, an existing index was used with key columns of EMPNO, PROJNO, EMSTDATE (or PROJINO,
EMP_ACT, EMSTDATE), the local row selection can be applied at the same time as the join selection.
This method contrasts to applying the local selection before the join selection, as happens when the
temporary index is created. Or applying the local selection after the join selection, as happens when only
the first key column of the index matches the join column.

The existing index implementation is more likely to provide faster performance because join and selection
processing are combined without the overhead of building a temporary index. However, the existing index
could have slightly slower I/O processing than the temporary index because the local selection is run
many times rather than once. In general, create indexes with key columns for the combination of join and
equal selection columns as the left-most keys.

Join order optimization

The SQE optimizer allows join reordering for a join logical file. However, the join order is fixed if
CQE runs a query that references a join logical file. The join order is also fixed if the OPNQRYF
JORDER(*FILE) parameter is specified. In addition, the join order is fixed if the query options file
(QAQQINI) FORCE_JOIN_ORDER parameter is *YES

Otherwise, the following join ordering algorithm is used to determine the order of the tables:

1. Determine an access method for each individual table as candidates for the primary dial.
2. Estimate the number of rows returned for each table based on local row selection.

If the join query with ordering or grouping is processed in one step, the table with the ordering or
grouping columns is the primary table.

3. Determine an access method, cost, and expected number of rows returned for each join combination
of candidate tables as primary and first secondary tables.

The join order combinations estimated for a four table inner join would be:
1-2 2-1 1-3 3-1 1-4 4-1 2-3 3-2 2-4 4-2 3-4 4-3

4. Choose the combination with the lowest join cost and number of selected rows or both.

5. Determine the cost, access method, and expected number of rows for each remaining table joined to
the previous secondary table.

Database performance and query optimization 69

6. Select an access method for each table that has the lowest cost for that table.
7. Choose the secondary table with the lowest join cost and number of selected rows or both.
8. Repeat steps 4 through 7 until the lowest cost join order is determined.

Note: After dial 32, the optimizer uses a different method to determine file join order, which might not be
the lowest cost.

When a query contains a left or right outer join or a right exception join, the join order is not fixed.
However, all from-columns of the ON clause must occur from dials previous to the left or right outer or
exception join. For example:

FROM A INNER JOIN B ON A.C1=B.C1
LEFT OUTER JOIN C ON B. C2=C.C2

The allowable join order combinations for this query would be:
1-2-3,2-1-3,0r 2-3-1

Right outer or right exception joins are implemented as left outer and left exception, with files flipped. For
example:

FROM A RIGHT OUTER JOIN B ON A.C1=B.C1

is implemented as B LEFT OUTER JOIN A ON B.C1=A.C1. The only allowed join order is 2—-1.

Related information
Open Query File (OPNQRYF) command
Change Query Attributes (CHGQRYA) command

Full outer join

Full outer join is supported by the SQE optimizer. Just as right outer and right exception join are rewritten
to the supported join types of inner, left outer or left exception, a full outer join is also rewritten.

A full outer join of A FULL OUTER JOIN B is equivalent to a (A LEFT OUTER JOIN B) UNION ALL (B LEFT
EXCEPTION JOIN A). The following example illustrates the rewrite.

SELECT EMPNO, LASTNAME, DEPTNAME

FROM CORPDATA.EMPLOYEE XXX

FULL OUTER JOIN CORPDATA.DEPARTMENT YYY
ON XXX.WORKDEPT = YYY.DEPTNO

This query is rewritten as the following:

SELECT EMPNO, LASTNAME, DEPTNAME

FROM CORPDATA.EMPLOYEE XXX

LEFT OUTER JOIN CORPDATA.DEPARTMENT YYY
ON XXX.WORKDEPT = YYY.DEPTNO
UNION ALL
SELECT EMPNO, LASTNAME, DEPTNAME

FROM CORPDATA.DEPARTMENT YYY

LEFT EXCEPTION JOIN CORPDATA.EMPLOYEE XXX
ON XXX.WORKDEPT = YYY.DEPTNO

A query with multiple FULL OUTER JOIN requests, suchas A FULL OUTER JOIN B FULL OUTER JOIN
C can quickly become complicated in this rewritten state. This complication is illustrated in the following
example.

If not running in live data mode, the optimizer could facilitate performance both during optimization and
runtime by encapsulating intermediate results in a temporary data object. This object can be optimized
once and plugged into both the scanned and probed side of the rewrite. These shared temporary objects
eliminate the need to make multiple passes through the specific tables to satisfy the request.

In this example, the result of the (A FULL OUTER JOIN B) is a candidate for encapsulation during its FULL
OUTER join with C.

70 IBM i: Performance and Query Optimization

A FULL OUTER JOIN B FULL OUTER JOIN C
This query is rewritten as the following:

((A LEFT OUTER JOIN B) UNION ALL (B LEFT EXCEPTION JOIN A)) LEFT OUTER JOIN C)
UNION ALL
(C LEFT EXCEPTION JOIN ((A LEFT OUTER JOIN B) UNION ALL (B LEFT EXCEPTION JOIN A))

FULL OUTER implies that both sides of the join request can generate NULL values in the resulting answer
set. Local selection in the WHERE clause of the query could result in the appropriate downgrade of the
FULL OUTER to a LEFT OUTER or INNER JOIN.

If you want FULL OUTER JOIN behavior and local selection applied, specify the local selection in the ON
clause of the FULL OUTER JOIN, or use common table expressions. For example:

WITH TEMPEMP AS (SELECT * FROM CORPDATA.EMPLOYEE XXX WHERE SALARY > 10000)
SELECT EMPNO, LASTNAME, DEPTNAME

FROM TEMPEMP XXX

FULL OUTER JOIN CORPDATA.DEPARTMENT YYY

ON XXX.WORKDEPT = YYY.DEPTNO

Join cost estimation and index selection

As the query optimizer compares the various possible access choices, it must assign a numeric cost value
to each candidate. The optimizer uses that value to determine the implementation which consumes the
least amount of processing time. This costing value is a combination of CPU and I/0 time

In steps 3 and 5 in “Join order optimization” on page 69, the optimizer estimates cost and chooses an
access method for a given dial combination. The choices made are like the choices for row selection,
except that a plan using a probe must be chosen.

The costing value is based on the following assumptions:

« Table pages and index pages must be retrieved from auxiliary storage. For example, the query
optimizer is not aware that an entire table might be loaded into active memory as the result of a
Set Object Access (SETOBJACC) CL command. Use of this command could significantly improve
the performance of a query. However, the optimizer does not change the query implementation to take
advantage of the memory resident state of the table.

- The query is the only process running on the system. No allowance is given for system CPU utilization
or I/O waits which occur because of other processes using the same resources. CPU-related costs are
scaled to the relative processing speed of the system running the query.

« The values in a column are uniformly distributed across the table. For example, if 10% of the table rows
have the same value, then on average, every 10th row in the table contains that value.

« The column values are independent from any other column values in a row, unless there is an index
available whose key definition is (A, B). Multi-key field indexes allow the optimizer to detect when the
values between columns are correlated.

For example, a column named A has a value of 1 in 50% of the rows in a table. A column named B has a
value of 2 in 50% of the rows. It is expected that a query which selects rows where A = 1,andB = 2
selects 25% of the rows in the table.

The main factors in the join cost calculation for secondary dials are:

« the number of rows selected in all previous dials
« the number of rows which match, on average, each of the rows selected from previous dials.

Both of these factors can be derived by estimating the number of matching rows for a given dial.

When the join operator is something other than equal, the expected number of matching rows is based on
the following default filter factors:

» 33% for less-than, greater-than, less-than-equal-to, or greater-than-equal-to
* 90% for not equal

Database performance and query optimization 71

« 25% for BETWEEN range (OPNQRYF %RANGE)

* 10% for each IN list value (OPNQRYF %VALUES)

For example, when the join operator is less-than, the expected number of matching rows is 0.33 *
(number of rows in the dial). If no join specifications are active for the current dial, the Cartesian product

is assumed to be the operator. For Cartesian products, the number of matching rows is every row in the
dial, unless local row selection can be applied to the index.

When the join operator is equal, the expected number of rows is the average number of duplicate rows for
a given value.

Related information
Set Object Access (SETOBJACC) command

Transitive closure predicates

For join queries, the query optimizer could do some special processing to generate additional selection.
When the set of predicates that belong to a query logically infer extra predicates, the query optimizer
generates additional predicates. The purpose is to provide more information during join optimization.

See the following examples:

SELECT x FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO EMP_ACT . EMPNO
AND EMPLOYEE.EMPNO ‘000010

The optimizer modifies the query to:

SELECT x FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO EMP_ACT . EMPNO
AND EMPLOYEE.EMPNO '000010"
AND EMP_ACT.EMPNO '000010'

The following rules determine which predicates are added to other join dials:

The dials affected must have join operators of equal.

The predicate is isolatable, which means that a false condition from this predicate omits the row.
« One operand of the predicate is an equal join column and the other is a constant or host variable.
« The predicate operator is not LIKE (OPNQRYF %WLDCRD, or *CT).

The predicate is not connected to other predicates by OR.

The query optimizer generates a new predicate, whether a predicate exists in the WHERE clause
(OPNQRYF QRYSLT parameter).

Some predicates are redundant. Redundant predicates occur when a previous evaluation of other
predicates in the query already determines the result that predicate provides. Redundant predicates

can be specified by you or generated by the query optimizer during predicate manipulation. Redundant
predicates with operators of =, >, >=, <, <=, or BETWEEN (OPNQRYF *EQ, *GT, *GE, *LT, *LE, or %RANGE)
are merged into a single predicate to reflect the most selective range.

Look ahead predicate generation (LPG)

A special type of transitive closure called look ahead predicate generation (LPG) might be costed for joins.
In this case, the optimizer tries to minimize the random I/O of a join by pre-applying the query results to
a large fact table. LPG is typically used with a class of queries referred to as star join queries. However, it
can possibly be used with any join query.

Look at the following query:

SELECT * FROM EMPLOYEE,EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND EMPLOYEE.EMPNO ='000010'

72 IBMi: Performance and Query Optimization

The optimizer could decide to internally modify the query to be:

WITH HT AS (SELECT *
FROM EMPLOYEE
WHERE EMPLOYEE.EMPNO='000010")

SELECT *
FROM HT, EMP_ACT
WHERE HT.EMPNO = EMP_ACT.EMPNO
AND EMP_ACT.EMPNO IN (SELECT DISTINCT EMPNO
FROM HT)

The optimizer places the results of the "subquery" into a temporary hash table. The hash table of the
subquery can be applied in one of two methods against the EMP_ACT (fact) table:

« The distinct values of the hash tables are retrieved. For each distinct value, an index over EMP_ACT is
probed to determine which records are returned for that value. Those record identifiers are normally
then stored and sorted (sometimes the sorting is omitted, depending on the total number of record
ids expected). Once the ids are determined, the subset of EMP_ACT records can be accessed more
efficiently than in a traditional nested loop join processing.

« EMP_ACT can be scanned. For each record, the hash table is probed to see if the record joins at all to
EMPLOYEE. This method allows for efficient access to EMP_ACT with a more efficient record rejection
method than in a traditional nested loop join process.

Note: LPG processing is part of the normal processing in the SQL Query Engine. CQE only considers the
first method, requires that the index in question by an EVI and also requires use of the STAR_JOIN and
FORCE_JOIN_ORDER QAQQINI options.

Tips for improving performance when selecting data from more than two
tables

The following suggestion is only applicable to CQE and is directed specifically to select-statements that
access several tables. For joins that involve more than two tables, you might want to provide redundant
information about the join columns. The CQE optimizer does not generate transitive closure predicates
between two columns. If you give the optimizer extra information to work with when requesting a join,
it can determine the best way to do the join. The additional information might seem redundant, but is
helpful to the optimizer.

If the select-statement you are considering accesses two or more tables, all the recommendations
suggested in “Creating an index strategy” on page 252 apply. For example, instead of coding:

EXEC SQL

DECLARE EMPACTDATA CURSOR FOR

SELECT LASTNAME, DEPTNAME, PROJNO, ACTNO

FROM CORPDATA.DEPARTMENT, CORPDATA.EMPLOYEE,
CORPDATA.EMP_ACT
WHERE DEPARTMENT.MGRNO = EMPLOYEE.EMPNO
AND EMPLOYEE.EMPNO = EMP_ACT.EMPNO

END-EXEC.

Provide the optimizer with a little more data and code:

EXEC SQL
DECLARE EMPACTDATA CURSOR FOR
SELECT LASTNAME, DEPTNAME, PROJNO, ACTNO
FROM CORPDATA.DEPARTMENT, CORPDATA.EMPLOYEE,
CORPDATA.EMP_ACT
WHERE DEPARTMENT.MGRNO = EMPLOYEE.EMPNO
AND EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND DEPARTMENT.MGRNO = EMP_ACT.EMPNO
END-EXEC.

Multiple join types for a query

Multiple join types (inner, left outer, right outer, left exception, and right exception) can be specified in the
query using the JOIN syntax. However, the Db2 for i can only support one join type of inner, left outer, or

Database performance and query optimization 73

left exception join for the entire query. The optimizer determines the overall join type for the query and
reorders the files to achieve the correct semantics.

Note: This section does not apply to SQE or OPNQRYF.

The optimizer evaluates the join criteria, along with any row selection, to determine the join type for each
dial and the entire query. Then the optimizer generates additional selection using the relative row number
of the tables to simulate the different types of joins that occur within the query.

Null values are returned for any unmatched rows in either a left outer or an exception join. Any isolatable
selection specified for that dial, including any additional join criteria specified in the WHERE clause,
causes all the unmatched rows to be eliminated. (The exception is when the selection is for an IS NULL
predicate.) This elimination causes the dial join type to change to an inner join (or an exception join) if the
IS NULL predicate was specified.

In the following example, a left outer join is specified between the tables EMPLOYEE and DEPARTMENT.
In the WHERE clause, there are two selection predicates that also apply to the DEPARTMENT table.

SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO
FROM CORPDATA.EMPLOYEE XXX LEFT OUTER JOIN CORPDATA.DEPARTMENT YYY
ON XXX.WORKDEPT = YYY.DEPTNO
LEFT OUTER JOIN CORPDATA.PROJECT ZzZ
ON XXX.EMPNO = ZZZ.RESPEMP
WHERE XXX.EMPNO = YYY.MGRNO AND
YYY.DEPTNO IN ('AGO', 'DO1', 'D11', 'D21', 'E11')

The first selection predicate, XXX.EMPNO = YYY.MGRNO, is an additional join condition that is evaluated
as an "inner join" condition. The second is an isolatable selection predicate that eliminates any
unmatched rows. Either of these predicates can cause the join type for the DEPARTMENT table to change
from a left outer join to an inner join.

Even though the join between the EMPLOYEE and DEPARTMENT tables was changed to an inner join, the
entire query remains a left outer join to satisfy the join condition for the PROJECT table.

Note: Care must be taken when specifying multiple join types since they are supported by appending
selection to the query for any unmatched rows. The number of rows satisfying the join criteria can
become large before selection that either selects or omits the unmatched rows based on that individual
dial join type is applied.

Sources of join query performance problems

The optimization algorithms described earlier benefit most join queries, but the performance of a few
queries might be degraded.

This occurs when:

- Anindex is not available which provides average number of duplicate values statistics for the potential
join columns.

« The optimizer uses default filter factors to estimate the number of rows when applying local selection to
the table when indexes or column statistics do not exist over the selection columns.

Creating indexes over the selection columns allows the optimizer to make a more accurate filtering
estimate by using key range estimates.

« The particular values selected for the join columns yield a greater number of matching rows than the
average number of duplicate values for all values of the join columns in the table. For example, the data
is not uniformly distributed.

74 1BM i: Performance and Query Optimization

Join performance tips

If you have a join query performing poorly, or you are creating an application which uses join queries,

these tips could be useful.

Table 31. Checklist for Creating an Application that Uses Join Queries

What to Do

How It Helps

Check the database design.
Make sure that there are
indexes available over all the
join columns and row selection
columns or both. The optimizer
provides index advice in several
places to aid in this process:

« the index advisor under
System i Navigator - Database

« the advised information under
Visual Explain

« the advised information in the
3020 record in the database
monitor

The query optimizer can select an efficient access method because it can
determine the average number of duplicate values. Many queries could use
the existing index and avoid the cost of creating a temporary index or hash
table.

Check the query to see whether
some complex predicates could
be added to other dials to

allow the optimizer to get better
selectivity for each dial.

The query optimizer does not add predicates for predicates connected by OR
or non-isolatable predicates, or predicate operator LIKE. Modify the query by
adding additional predicates to help.

Specify
ALWCPYDTA(*OPTIMIZE) or
ALWCPYDTA(*YES)

The query is creating a temporary index or hash table, and the processing
time could be better if the existing index or hash table was used. Specify
ALWCPYDTA(*YES).

The query is not creating a temporary index or hash table, and the
processing time could be better if a temporary index was created. Specify
ALWCPYDTA(*OPTIMIZE).

Alternatively, specify OPTIMIZE FOR n ROWS to inform the optimizer that the
application reads every resulting row. Set n to a large number. You can also
set n to a small number before ending the query.

For OPNQRYF, specify
OPTIMIZE(*FIRSTIO) or
OPTIMIZE(*ALLIO)

Specify the OPTIMIZE(*FIRSTIO) or OPTIMIZE(*ALLIO) option to accurately
reflect your application. Use *FIRSTIO, if you want the optimizer to optimize
the query to retrieve the first block of rows most efficiently. This biases the
optimizer toward using existing objects. If you want to optimize the retrieval
time for the entire answer set, use *ALLIO. This option could cause the
optimizer to create temporary indexes or hash tables to minimize I/0.

Database performance and query optimization 75

Table 31. Checklist for Creating an Application that Uses Join Queries (continued)

What to Do

How It Helps

Star join queries

A join in which one table is joined with all secondary tables consecutively

is sometimes called a star join. If all secondary join predicates contain a
column reference to a particular table, place that table in join position one.
In Example A, all tables are joined to table EMPLOYEE. The query optimizer
can freely determine the join order. For SQE, the optimizer uses Look Ahead
Predicate generation to determine the optimal join order. For CQE, the query
could be changed to force EMPLOYEE into join position one by using the
query options file (QAQQINI) FORCE_JOIN_ORDER parameter of *YES. In
these examples, the join type is a join with no default values returned

(an inner join.). The reason for forcing the table into the first position is

to avoid random I/O processing. If EMPLOYEE is not in join position one,
every row in EMPLOYEE can be examined repeatedly during the join process.
If EMPLOYEE is fairly large, considerable random I/O processing occurs
resulting in poor performance. By forcing EMPLOYEE to the first position,
random I/O processing is minimized.

Example A: Star join query

DECLARE C1 CURSOR FOR
SELECT = FROM DEPARTMENT, EMP_ACT, EMPLOYEE,
PROJECT
WHERE DEPARTMENT.DEPTNO=EMPLOYEE .WORKDEPT
AND EMP_ACT.EMPNO=EMPLOYEE.EMPNO
AND EMPLOYEE.WORKDEPT=PROJECT.DEPTNO

Example B: Star join query with order forced using FORCE_JOIN_ORDER

DECLARE C1 CURSOR FOR

SELECT = FROM EMPLOYEE, DEPARTMENT, EMP_ACT,
PROJECT

WHERE DEPARTMENT.DEPTNO=EMPLOYEE .WORKDEPT
AND EMP_ACT.EMPNO=EMPLOYEE.EMPNO

AND EMPLOYEE.WORKDEPT=PROJECT.DEPTNO

Specify
ALWCPYDTA(*OPTIMIZE) to
allow the query optimizer to use
a sort routine.

Ordering is specified and all key columns are from a single dial. The optimizer
can consider all possible join orders with ALWCPYDTA(*OPTIMIZE).

Specify join predicates to
prevent all the rows from one
table from being joined to every
row in the other table.

Improves performance by reducing the join fan-out. It is best if every
secondary table has at least one join predicate that references one of its
columns as a 'join-to' column.

Distinct optimization

Distinct is used to compare a value with another value.

There are two methods to write a query that returns distinct values in SQL. One method uses the

DISTINCT keyword:

SELECT DISTINCT COL1, COL2

FROM TABLE1

The second method uses GROUP BY:

SELECT COL1, COL2
FROM TABLE1
GROUP BY COL1, COL2

76 IBM i: Performance and Query Optimization

All queries that contain a DISTINCT, and are run using SQE, rewritten into queries using GROUP BY. This
rewrite enables queries using DISTINCT to take advantage of the many grouping techniques available to
the optimizer.

Distinct to Grouping implementation
The following example query has a DISTINCT:

SELECT DISTINCT COL1, COL2
FROM T1
WHERE COL2 > 5 AND COL3 = 2

The optimizer rewrites it into this query:

SELECT COL1, COL2
FROM T1
WHERE COL2 > 5 AND COL3 = 2
GROUP BY COL1, COL2

Distinct removal

A query containing a DISTINCT over whole-file aggregation (no grouping or selection) allows the
DISTINCT to be removed. For example, look at this query with DISTINCT:

SELECT DISTINCT COUNT(C1), SUM(C1)
FROM TABLE1

The optimizer rewrites this query as the following:

SELECT COUNT(C1), SUM(C1)
FROM TABLE1

If the DISTINCT and the GROUP BY fields are identical, the DISTINCT can be removed. If the DISTINCT
fields are a subset of the GROUP BY fields (and there are no aggregates), the DISTINCTs can be removed.

Grouping optimization

Db2 for i has certain techniques to use when the optimizer encounters grouping. The query optimizer
chooses its methods for optimizing your query.

Hash grouping implementation

This technique uses the base hash access method to perform grouping or summarization of the selected
table rows. For each selected row, the specified grouping value is run through the hash function.

The computed hash value and grouping value are used to quickly find the entry in the hash table
corresponding to the grouping value.

If the current grouping value already has a row in the hash table, the hash table entry is retrieved

and summarized (updated) with the current table row values based on the requested grouping column
operations (such as SUM or COUNT). If a hash table entry is not found for the current grouping value, a
new entry is inserted into the hash table and initialized with the current grouping value.

The time required to receive the first group result for this implementation is most likely longer than
other grouping implementations because the hash table must be built and populated first. Once the
hash table is populated, the database manager uses the table to start returning the grouping results.
Before returning any results, the database manager must apply any specified grouping selection criteria
or ordering to the summary entries in the hash table.

Where the hash grouping method is most effective

The hash grouping method is most effective when the consolidation ratio is high. The consolidation ratio
is the ratio of the selected table rows to the computed grouping results. If every database table row has

Database performance and query optimization 77

its own unique grouping value, then the hash table becomes too large. The size in turn slows down the
hashing access method.

The optimizer estimates the consolidation ratio by first determining the number of unique values in the
specified grouping columns (that is, the expected number of groups in the database table). The optimizer
then examines the total number of rows in the table and the specified selection criteria and uses the
result of this examination to estimate the consolidation ratio.

Indexes over the grouping columns can help make the ratio estimate of the optimizer more accurate.
Indexes improve the accuracy because they contain statistics that include the average number of
duplicate values for the key columns.

The optimizer also uses the expected number of groups estimate to compute the number of partitions in
the hash table. As mentioned earlier, the hashing access method is more effective when the hash table is
well-balanced. The number of hash table partitions directly affects how entries are distributed across the
hash table and the uniformity of this distribution.

The hash function performs better when the grouping values consist of columns that have non-numeric
data types, except for the integer (binary) data type. In addition, specifying grouping value columns that
are not associated with the variable length and null column attributes allows the hash function to perform
more effectively.

Index grouping implementation

There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.

Ordered grouping

This implementation uses the Radix Index Scan or the Radix Index Probe access methods to perform the
grouping. An index is required that contains all the grouping columns as contiguous leftmost key columns.
The database manager accesses the individual groups through the index and performs the requested
summary functions.

Since the index, by definition, already has all the key values grouped, the first group result can be
returned in less time than the hashing method. This index performance is faster because the hashing
method requires a temporary result. This implementation can be beneficial if an application does not
need to retrieve all the group results, or if an index exists that matches the grouping columns.

When the grouping is implemented with an index and a permanent index does not exist that satisfies
grouping columns, a temporary index is created. The grouping columns specified within the query are
used as the key columns for this index.

Pre-summarized processing

This SQE-only implementation uses an Encoded Vector Index to extract the summary information already
in the symbol table of the index. The EVI symbol table contains the unique key values and a count of the
number of table records that have that unique value. The grouping for the columns of the index key is
already performed. If the query references a single table and performs simple aggregation, the EVI might
be used for quick access to the grouping results. For example, consider the following query:

SELECT COUNT (%), coll
FROM t1
GROUP BY coll

If an EVI exists over t1 with a key of coll, the optimizer can rewrite the query to access the precomputed
grouping answer in the EVI symbol table.

This rewrite can result in dramatic improvements when the number of table records is large and the
number of resulting groups is small, relative to the size of the table.

This method is also possible with selection (WHERE clause), as long as the reference columns are in the
key definition of the EVI.

78 IBM i: Performance and Query Optimization

For example, consider the following query:

SELECT COUNT (%), coll
FROM t1

WHERE coll > 100
GROUP BY coll

This query can be rewritten by the optimizer to use the EVI. This pre-summarized processing works for
DISTINCT processing, GROUP BY and for column function COUNT. All columns of the table referenced in
the query must also be in the key definition of the EVI.

So, for example, the following query can be made to use the EVI:

SELECT DISTINCT coll
FROM t1

However, this query cannot:

SELECT DISTINCT coll
FROM t1
WHERE col2 > 1

This query cannot use the EVI because it references col2 of the table, which is not in the key definition of
the EVI. If multiple columns are defined in the EVI key, for example, coll and col2, it is important to use
the left-most columns of the key. For example, if an EVI existed with a key definition of (coll, col2), but
the query referenced only col2, it is unlikely the EVI is used.

EVI INCLUDE aggregates

A more powerful example of pre-summarized processing can be facilitated by the use of the INCLUDE
keyword on the index create. By default, COUNT(*) is implied on the creation of an EVI. Additional
numeric aggregates specified over non-key data can further facilitate pre-determined or ready-made
aggregate results during query optimization.

For example, suppose the following query is a frequently requested result set, queried in whole or as part
of a subquery comparison.

SELECT AVG(col2)
FROM t1
GROUP BY colil

Create the following EVI to predetermine the value of AVG(col2).
CREATE ENCODED VECTOR INDEX eviT1 ON t1(coll) INCLUDE (AVG(col2))

eviT1 delivers distinct values for coll and COUNT(*) specific to the group by of coll. eviT1 can be used
to generate an asynchronous bitmap or RRN list for accessing the table rows for specific coll values. In
addition, eviT1 computes an additional aggregate, AVG(col2), over the same group by column (coll) by
specifying the INCLUDE aggregate.

INCLUDE aggregates are limited to those aggregates that result in numeric values: SUM, COUNT, AVG,
STDDEV, and so on. These values can be readily maintained as records are inserted, deleted, or updated
in the base table.

MIN or MAX are two aggregates that are not supported as INCLUDE aggregates. Deleting the current row
contributing to the MIN or MAX value would result in the need to recalculate, potentially accessing many
rows, and reducing performance.

INCLUDE values can also contain aggregates over derivations. For example, if you have a couple
of columns that contribute to an aggregate, that derivation can be specified, for example, as
SUM(coll+col2+col3).

It is recommended that EVIs with INCLUDE aggregates only contain references to columns or column-
specific derivations, for example, SUM(salary+bonus).

Database performance and query optimization 79

In many environments, queries that contain derivations using constants convert those constants to
parameter markers. This conversion allows a much higher degree of ODP reuse. However, it can be more
difficult to match the parameter value to a literal in the index definition.

The optimizer does attempt to match constants in the EVI with parameter markers or host variable values
in the query. However, in some complex cases this support is limited and could result in the EVI not
matching the query.

Pre-summarized processing can also take advantage of EVIs with INCLUDE in a JOIN situation.

For example, see the following aggregate query over the join of two tables.

EVI INCLUDE aggregate example

SELECT deptname, sum(salary)
FROM DEPARTMENT, EMPLOYEE
WHERE deptno=workdept

GROUP BY deptname

By providing an EVI with INCLUDE index, as follows, and with optimizer support to push down aggregates
to the table level when possible, the resulting implementation takes advantage of the ready-made
aggregates already supplied by EVI employeeSumByDept. The implementation never needs to touch or
aggregate rows in the Employee table.

CREATE ENCODED VECTOR INDEX employeeSumByDept ON employee(workdept)
INCLUDE (sum(salary))

Aggregate pushdown results in a rewrite with EVI INCLUDE implementation, conceptually like the
following query.

SELECT deptname, sum(sum(salary))
FROM department,

(SELECT workdept, sum(salary) FROM employee group by workdept) employee_2
WHERE deptno=workdept

Instead of department joining to all the rows in the employee table, it now has the opportunity to join to
the predetermined aggregates, the sum of salary by department number, in the EVI symbol table. This
results in significant reduction in processing and IO.

Related concepts

How the EVI works
EVIs work in different ways for costing and implementation.

Related reference

Encoded vector index symbol table scan

An encoded vector index symbol table scan operation is used to retrieve the entries from the symbol table
portion of the index.

Related information
SQL INCLUDE statement

Optimizing grouping by eliminating grouping columns

All the grouping columns are evaluated to determine if they can be removed from the list of grouping
columns. Only those grouping columns that have isolatable selection predicates with an equal operator
specified can be considered. This guarantees that the column can only match a single value and does not
help determine a unique group.

This processing allows the optimizer to consider more indexes to implement the query. It also reduces the
number of columns that are added as key columns to a temporary index or hash table.

The following example illustrates a query where the optimizer might eliminate a grouping column.

DECLARE DEPTEMP CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT

80 IBM i: Performance and Query Optimization

FROM CORPDATA.EMPLOYEE
WHERE EMPNO = '000190'
GROUP BY EMPNO, LASTNAME, WORKDEPT

OPNQRYF example:

OPNQRYF FILE(EMPLOYEE) FORMAT (FORMAT1)
QRYSLT('EMPNO %*EQ ''000190''")
GRPFLD(EMPNO LASTNAME WORKDEPT)

In this example, the optimizer can remove EMPNO from the list of grouping columns because of the
EMPNO = '000190' selection predicate. An index that only has LASTNAME and WORKDEPT specified as
key columns could implement the query. If a temporary index or hash is required then EMPNO is not used.

Note: Even though EMPNO can be removed from the list of grouping columns, the optimizer might use a
permanent index that exists with all three grouping columns.

Optimizing grouping by adding additional grouping columns

The same logic that is applied to removing grouping columns can also be used to add additional grouping
columns to the query. Additional grouping columns are added only when you are trying to determine if an
index can be used to implement the grouping.

The following example illustrates a query where the optimizer might add an additional grouping column.

CREATE INDEX X1 ON EMPLOYEE
(LASTNAME, EMPNO, WORKDEPT)

DECLARE DEPTEMP CURSOR FOR
SELECT LASTNAME, WORKDEPT
FROM CORPDATA.EMPLOYEE

WHERE EMPNO = '000190'
GROUP BY LASTNAME, WORKDEPT

For this query request, the optimizer can add EMPNO as an additional grouping column when considering
X1 for the query.

Optimizing grouping by using index skip key processing

Index Skip Key processing can be used when grouping with the keyed sequence implementation
algorithm which uses an existing index. It is a specialized version of ordered grouping that processes
few records in each group rather than all records in each group.

The index skip key processing algorithm:

1. Uses the index to position to a group and

2. finds the first row matching the selection criteria for the group, and if specified the first non-null MIN
or MAX value in the group

3. Returns the group to the user

4. "Skip" to the next group and repeat processing

This algorithm improves performance by potentially not processing all index key values for a group.
Index skip key processing can be used:

- For single table queries using the keyed sequence grouping implementation when:

— There are no column functions in the query, or

— There is only a single MIN or MAX column function and the MIN or MAX operand is the next index key
column after the grouping columns. There can be no other grouping functions in the query. For the
MIN function, the key column must be an ascending key; for the MAX function, the key column must
be a descending key. If the query is whole table grouping, the operand of the MIN or MAX must be the
first key column.

Database performance and query optimization 81

Example 1, using SQL:

CREATE INDEX IX1 ON EMPLOYEE (SALARY DESC)

DECLARE C1 CURSOR FOR
SELECT MAX(SALARY) FROM EMPLOYEE;

The query optimizer chooses to use the index IX1. The SLIC runtime code scans the index until

it finds the first non-null value for SALARY. Assuming that SALARY is not null, the runtime code
positions to the first index key and return that key value as the MAX of salary. No more index keys are
processed.

Example 2, using SQL:

CREATE INDEX IX2 ON EMPLOYEE (WORKDEPT, JOB, SALARY)

DECLARE C1 CURSOR FOR
SELECT WORKDEPT, MIN(SALARY)
FROM EMPLOYEE
WHERE JOB='CLERK'
GROUP BY WORKDEPT

The query optimizer chooses to use Index IX2. The database manager positions to the first group for
DEPT where JOB equals 'CLERK' and returns the SALARY. The code then skips to the next DEPT group
where JOB equals 'CLERK".

« For join queries:

All grouping columns must be from a single table.

For each dial, there can be at most one MIN or MAX column function operand that references the dial.
No other column functions can exist in the query.

If the MIN or MAX function operand is from the same dial as the grouping columns, then it uses the
same rules as single table queries.

If the MIN or MAX function operand is from a different dial, then the join column for that dial must
join to one of the grouping columns. The index for that dial must contain the join columns followed by
the MIN or MAX operand.

Example 1, using SQL:

CREATE INDEX IX1 ON DEPARTMENT (DEPTNAME)
CREATE INDEX IX2 ON EMPLOYEE (WORKDEPT, SALARY)

DECLARE C1 CURSOR FOR
SELECT DEPARTMENT.DEPTNO, MIN(SALARY)
FROM DEPARTMENT, EMPLOYEE
WHERE DEPARTMENT.DEPTNO=EMPLOYEE.WORKDEPT
GROUP BY DEPARTMENT.DEPTNO;

Optimizing grouping by removing read triggers

For queries involving physical files or tables with read triggers, group by triggers always involve a
temporary file before the group by processing. Therefore, these queries slow down.

Note: Read triggers are added when the Add Physical File Triggexr (ADDPFTRG) command has
been used on the table with TRGTIME (*AFTER) and TRGEVENT (*READ).

The query runs faster if the read trigger is removed (RMVPFTRG TRGTIME (*AFTER) TRGEVENT (*READ)).

Related information
Add Physical File Trigger (ADDPFTRG) command

82 IBMi: Performance and Query Optimization

Grouping set optimization

The optimizer uses all the previously mentioned grouping optimizations for individual grouping sets
specified in the query.

If multiple temporary result sets are needed to implement all the grouping sets, they can all be populated
using one pass through the data. This one-pass population occurs even if different types of temporary
result sets are used to implement various grouping sets.

A temporary result type called sorted distinct list is used specifically for ROLLUP implementations.

This temporary result set is used to compute the aggregate rows: the grouping set that includes all
expressions listed in the ROLLUP clause. Hash grouping is used internally to quickly find the current
grouping value. The entries in the temporary result sets are also sorted. This sorting allows the aggregate
results to be used to compute the super-aggregate rows in the rollup result set without creating additional
temporary result sets.

ROLLUPs can also be implemented using a radix index over the columns in the rollup without creating a
temporary result set.

The optimizer can compute all the grouping sets in a given ROLLUP using at most one temporary result
set. Therefore, it is advantageous for the optimizer to look for the rollup pattern in grouping set queries.

The optimizer tries to find the ROLLUP pattern in a list of individual grouping sets. For example, the
following GROUP BY clause:

GROUP BY GROUPING SETS ((A, B, C), (B, D), (A, B), (A), O))
is rewritten to:
GROUP BY GROUPING SETS ((ROLLUP(A, B, C)), (B, D))

This rewrite allows the query to be implemented using at most two temporary results sets rather than 4.

Queries containing a CUBE clause is broken down into a union of ROLLUPs and grouping sets. For
example:

CUBE(A, B, C)
is equivalent to:
(ROLLUP(A, B, C)), (ROLLUP'(B, C)), (ROLLUP'(C, A))

The ROLLUP' notation is an internal representation of a ROLLUP operation that does not include a grand
total row in its result set. So, ROLLUP'(B, C) is equivalent to GROUP BY GROUPING SETS ((B,C), (B)). This
CUBE rewrite implements at most three temporary result sets, rather than the 8 that might be needed had
the query not been rewritten.

Ordering optimization

This section describes how Db2 for i implements ordering techniques, and how optimization choices are
made by the query optimizer. The query optimizer can use either index ordering or a sort to implement
ordering.

Sort Ordering implementation

The sort algorithm reads the rows into a sort space and sorts the rows based on the specified ordering
keys. The rows are then returned to the user from the ordered sort space.

Index Ordering implementation

Database performance and query optimization 83

The index ordering implementation requires an index that contains all the ordering columns as contiguous
leftmost key columns. The database manager accesses the individual rows through the index in index
order, which results in the rows being returned in order to the requester.

This implementation can be beneficial if an application does not need to retrieve all the ordered results,
or if an index exists that matches the ordering columns. When the ordering is implemented with an index,
and a permanent index does not exist that satisfies ordering columns, a temporary index is created. The
ordering columns specified within the query are used as the key columns for this index.

Index Merge Ordering Implementation

Index Merge Ordering takes some of the features of both index and sorted ordering by using an index to
apply the selection and then using an indexed list to sort the rows. This optimization is primarily aimed at
gueries that have an optimization goal of *FIRSTIO and the WHERE clause selection contains non-equal
predicates.

Optimizing ordering by eliminating ordering columns

All the ordering columns are evaluated to determine if they can be removed from the list of ordering
columns. Only those ordering columns that have isolatable selection predicates with an equal operator
specified can be considered. This guarantees that the column can match only a single value, and does not
help determine in the order.

In general, for an index to be eligible for Index Merge Ordering, the index should be created as follows:

« Any columns with equal predicates that are not in the ORDER BY list should be first keys in the index.

« Followed by any columns for non-equal predicates that are not in the ORDER BY list. The columns
should be arranged so the most selective predicate column is the first column following the equal
predicate columns.

« Followed by the ORDER BY columns in the same order as the ORDER BY clause of the query and with
the same ASC or DESC attribute.

« Optionally, at the end you may include other selection columns or other selected columns for Index
Only Access.

For example:

SELECT * FROM SALES

WHERE SALES_DATE BETWEEN '1996-03-29' AND '1996-04-29'
AND REGION IN ('Quebec', 'Manitoba')

ORDER BY SALES_PERSON

The Index to create would be with keys:

SALES_DATE, REGION, SALES_PERSON

In order to allow a more general indexing scheme, it is possible to use an index for index merge ordering
even if there are leading keys not used in the query. The above index could also be used for the following

query:

SELECT SALES_DATE, REGION, SALES_PERSON, SALES
FROM SALES

WHERE REGION IN ('Quebec', 'Manitoba')

ORDER BY SALES_PERSON

If SALES was added as a trailing key, then Index Only Access would be used for both queries.

CREATE INDEX SALES_IMOX ON SALES (SALES_DATE, REGION, SALES_PERSON, SALES)

The optimizer can now consider more indexes as it implements the query. The number of columns that
are added as key columns to a temporary index is also reduced. The following SQL example illustrates a
query where the optimizer might eliminate an ordering column.

84 IBMi: Performance and Query Optimization

DECLARE DEPTEMP CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT
FROM CORPDATA.EMPLOYEE
WHERE EMPNO = '000190'
ORDER BY EMPNO, LASTNAME, WORKDEPT

Optimizing ordering by adding additional ordering columns

The same logic that is applied to removing ordering columns can also be used to add additional grouping
columns to the query. This logic is done only when you are trying to determine if an index can be used to
implement the ordering.

The following example illustrates a query where the optimizer might add an additional ordering column.
CREATE INDEX X1 ON EMPLOYEE (LASTNAME, EMPNO, WORKDEPT)
DECLARE DEPTEMP CURSOR FOR
SELECT LASTNAME, WORKDEPT
FROM CORPDATA.EMPLOYEE

WHERE EMPNO = '000190'
ORDER BY LASTNAME, WORKDEPT

For this query request, the optimizer can add EMPNO as an additional ordering column when considering
X1 for the query.

Index Ordering Implementation Using Reverse Ordered Indexes

Itis also possible to use reverse ordered indexes to provide ordering. In that case, the index keys for all
ORDER BY columns must be reversed. The database manager will process the index in reverse order by
starting at the end and reading through the index backwards.

The following index and query illustrates an example where the optimizer could use a reversed ordered
index.

CREATE INDEX CORPDATA.INDEX1 ON CORPDATA.EMPLOYEE (SALARY ASC, LASTNAME DESC)

SELECT EMPNO, LASTNAME, WORKDEPT, SALARY
FROM CORPDATA.EMPLOYEE
ORDER BY SALARY DESC, LASTNAME ASC

View implementation

Views, derived tables (nested table expressions or NTEs), and common table expressions (CTEs) are
implemented by the query optimizer using one of two methods.

These methods are:

« The optimizer combines the query select statement with the select statement of the view.

« The optimizer places the results of the view in a temporary table and then replaces the view reference in
the query with the temporary table.

View composite implementation

The view composite implementation takes the query select statement and combines it with the select
statement of the view to generate a new query. The new, combined select statement query is then run
directly against the underlying base tables.

This single, composite statement is the preferred implementation for queries containing views, since it
requires only a single pass of the data.

See the following examples:

Database performance and query optimization 85

CREATE VIEW D21EMPL AS
SELECT x FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT='D21'

Using SQL:

SELECT LASTNAME, FIRSTNME, SALARY
FROM D21EMPL
WHERE JOB='CLERK'

The query optimizer generates a new query that looks like the following example:

SELECT LASTNAME, FIRSTNME, SALARY
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT='D21' AND JOB='CLERK'

The query contains the columns selected by the user query, the base tables referenced in the query, and
the selection from both the view and the user query.

Note: The new composite query that the query optimizer generates is not visible to users. Only the
original query against the view is seen by users and database performance tools.

View materialization implementation

The view materialization implementation runs the query of the view and places the results in a temporary
result. The view reference in the user query is then replaced with the temporary, and the query is run
against the temporary result.

View materialization is done whenever it is not possible to create a view composite. For SQE, view
materialization is optional. The following types of queries require view materialization:

« The outermost view select contains grouping, the query contains grouping, and refers to a column
derived from a column function in the view HAVING or select-list.

- The query is a join and the outermost select of the view contains grouping or DISTINCT.

« The outermost select of the view contains DISTINCT, and the query has UNION, grouping, or DISTINCT
and one of the following:

— Only the query has a shared weight NLSS table
— Only the view has a shared weight NLSS table
— Both the query and the view have a shared weight NLSS table, but the tables are different.
« The query contains a column function and the outermost select of the view contains a DISTINCT

« The view does not contain an access plan. Occurs when a view references a view, and a view composite
cannot be created because of one of the previous listed reasons. Does not apply to nested table
expressions and common table expressions.

« The Common table expression (CTE) is referenced more than once in the query FROM clause. Also, the
CTE SELECT clause references a MODIFIES or EXTERNAL ACTION UDF.

When a temporary result table is created, access methods that are allowed with ALWCPYDTA(*OPTIMIZE)
could be used to implement the query. These methods include hash grouping, hash join, and bitmaps.

See the following examples:

CREATE VIEW AVGSALVW AS
SELECT WORKDEPT, AVG(SALARY) AS AVGSAL
FROM CORPDATA.EMPLOYEE
GROUP BY WORKDEPT

SQL example:

SELECT D.DEPTNAME, A.AVGSAL
FROM CORPDATA.DEPARTMENT D, AVGSALVW A
WHERE D.DEPTNO=A.WORKDEPT

86 IBM i: Performance and Query Optimization

In this case, a view composite cannot be created since a join query references a grouping view.

The results of AVGSALVW are placed in a temporary result table (*QUERY0001). The view reference
AVGSALVW is replaced with the temporary result table. The new query is then run. The generated query
looks like the following:

SELECT D.DEPTNAME, A.AVGSAL
FROM CORPDATA.DEPARTMENT D, *QUERYQGG01 A
WHERE D.DEPTNO=A.WORKDEPT

Note: The new query that the query optimizer generates is not visible to users. Only the original query
against the view is seen by users and database performance tools.

Whenever possible, isolatable selection from the query, except subquery predicates, is added to the view
materialization process. This results in smaller temporary result tables and allows existing indexes to be
used when materializing the view. This process is not done if there is more than one reference to the same
view or common table expression in the query. The following is an example where isolatable selection is
added to the view materialization:

SELECT D.DEPTNAME,A.AVGSAL
FROM CORPDATA.DEPARTMENT D, AVGSALVW A
WHERE D.DEPTNO=A.WORKDEPT AND
A.WORKDEPT LIKE 'D%' AND AVGSAL>10000

The isolatable selection from the query is added to the view resulting in a new query to generate the
temporary result table:

SELECT WORKDEPT, AVG(SALARY) AS AVGSAL
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT LIKE 'D%'
GROUP BY WORKDEPT
HAVING AVG(SALARY)>10000

Materialized query table optimization

Materialized query tables (MQTs) (also referred to as automatic summary tables or materialized views)
can provide performance enhancements for queries.

This performance enhancement is done by precomputing and storing results of a query in the materialized
query table. The database engine can use these results instead of recomputing them for a user specified
query. The query optimizer looks for any applicable MQTs. The optimizer can implement the query using a
given MQT, provided it is a faster implementation choice.

Materialized Query Tables are created using the SQL CREATE TABLE statement. Alternatively, the ALTER
TABLE statement could be used to convert an existing table into a materialized query table. The REFRESH
TABLE statement is used to recompute the results stored in the MQT. For user-maintained MQTs, the
MQTs could also be maintained by the user using INSERT, UPDATE, and DELETE statements.

Related information
Create Table statement

MQT supported function

Although an MQT can contain almost any query, the optimizer only supports a limited set of query
functions when matching MQTs to user specified queries. The user-specified query and the MQT query
must both be supported by the SQE optimizer.

The supported function in the MQT query by the MQT matching algorithm includes:

- Single table and join queries

« WHERE clause

« GROUP BY and optional HAVING clauses
- ORDER BY

Database performance and query optimization 87

FETCH FIRST n ROWS

« Views, common table expressions, and nested table expressions
« UNIONs

Partitioned tables

There is limited support in the MQT matching algorithm for the following:

« Scalar subselects

« User Defined Functions (UDFs) and user-defined table functions
« Recursive Common Table Expressions (RCTE)

« The following scalar functions:

— ATAN2

— DAYNAME

— DBPARTITIONNAME
— DECRYPT_BIT

— DECRYPT_BINARY
— DECRYPT_CHAR

— DECRYPT_DB

— DIFFERENCE

— DLVALUE

— DLURLPATH

— DLURLPATHONLY

— DLURLSEVER

— DLURLSCHEME

— DLURLCOMPLETE

— ENCRYPT_AES

- ENCRYPT_RC2

— ENCRYPT_TDES

— GENERATE_UNIQUE
— GETHINT

— IDENTITY_VAL_LOCAL
— INSERT

- MONTHNAME

— MONTHS_BETWEEN
— NEXT_DAY

- RAND

— RAISE_ERROR

— REPEAT

~ REPLACE

— ROUND_TIMESTAMP
~ SOUNDEX

— TIMESTAMP_FORMAT
— TIMESTAMPDIFF

— TRUNC_TIMESTAMP
— VARCHAR_FORMAT

88 IBM i: Performance and Query Optimization

- WEEK_ISO

It is recommended that the MQT only contain references to columns and column functions. In many
environments, queries that contain constants have the constants converted to parameter markers. This
conversion allows a much higher degree of ODP reuse. The MQT matching algorithm attempts to match
constants in the MQT with parameter markers or host variable values in the query. However, in some
complex cases this support is limited and could result in the MQT not matching the query.

Related concepts

Query dispatcher
The function of the dispatcher is to route the query request to either CQE or SQE, depending on the
attributes of the query. All queries are processed by the dispatcher. It cannot be bypassed.

Related reference

Details on the MQT matching algorithm
What follows is a generalized discussion of how the MQT matching algorithm works.

Using MQTs during query optimization
Before using MQTs, you need to consider your environment attributes.
To even consider using MQTs during optimization the following environmental attributes must be true:

» The query must specify ALWCPYDTA(*OPTMIZE) or INSENSITIVE cursor.

« The query must not be a SENSITIVE cursor.

« The table to be replaced with an MQT must not be update or delete capable for this query.
« The MQT currently has the ENABLE QUERY OPTIMIZATION attribute active

« The MATERIALIZED_QUERY_TABLE_USAGE QAQQINI option must be set to *ALL or *USER to enable use
of MQTs. The default setting of MATERIALIZED_QUERY_TABLE_USAGE does not allow usage of MQTs.

« The timestamp of the last REFRESH TABLE for an MQT is within the duration specified by
the MATERIALIZED_QUERY_TABLE_REFRESH_AGE QAQQINI option. Or *ANY is specified, which
allows MQTs to be considered regardless of the last REFRESH TABLE. The default setting of
MATERIALIZED_QUERY_TABLE_REFRESH_AGE does not allow usage of MQTs.

« The query must be run through SQE.

 The following QAQQINI options must match: IGNORE_LIKE_REDUNDANT_SHIFTS, NORMALIZE_DATA,
and VARIABLE_LENGTH_OPTIMIZATION. These options are stored at CREATE materialized query table
time and must match the options specified at query run time.

- The commit level of the MQT must be greater than or equal to the query commit level. The commit level
of the MQT is either specified in the MQT query using the WITH clause. Or it is defaulted to the commit
level that the MQT was run under when it was created.

« The field procedure encoded comparison (QAQQINI FIELDPROC_ENCODED_COMPARISON option) level
of the MQT must be greater than or equal to the query specified field procedure encoded comparison
level.

MQT examples

The following are examples of using MQTs.

Example 1

The first example is a query that returns information about employees whose job is DESIGNER. The
original query:

SELECT D.deptname, D.location, E.firstnme, E.lastname, E.salary+E.comm+E.bonus as total_sal
FROM Department D, Employee E

WHERE D.deptno=E.workdept

AND E.job = 'DESIGNER'

Create a table, MQT1, that uses this query:

Database performance and query optimization 89

CREATE TABLE MQT1
AS (SELECT D.deptname, D.location, E.firstnme, E.lastname, E.salary, E.comm, E.bonus,
E.job
FROM Department D, Employee E
WHERE D.deptno=E.workdept)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

Resulting new query after replacing the specified tables with the MQT.

SELECT M.deptname, M.location, M.firstnme, M.lastname, M.salary+M.comm+M.bonus as total_sal
FROM MQT1 M
WHERE M.job = 'DESIGNER'

In this query, the MQT matches part of the user query. The MQT is placed in the FROM

clause and replaces tables DEPARTMENT and EMPLOYEE. Any remaining selection not done by
the MQT query (M.job='DESIGNER") is done to remove the extra rows. The result expression,
M.salary+M.comm+M.bonus, is calculated. JOB must be in the select-list of the MQT so that the
additional selection can be performed.

Visual Explain diagram of the query when using the MQT:

% Visual Explain EoE

File Wiew Actions Options Help

CEIEEEYELE S i

- Adttribiute

Time Information

Timestamp for Creation of Manit...
Statement Start Timestamp
Statement End Timestamp
Optirnization Time, in Milliseconds
Tatal Time, in Microzeconds

= = Statemernt Open Time, in Microse.
10 ':' = 10 H Statemert Fetch Time, in Micros ..
Final Select ll———— LOgiC - Table Scan Statement Claze Time, in Micras.
CO R PDATAMQT 1 Information about SQL statement..

Statement Mumber
Statement Function
Statement Operation
Statement Type
Statement MName
Statement Outcorne
SaL Return Code

T SOLSTATE -
H L YR B

SELECT D.deptname, D.location, Efirstnme, E.lastname, E.salary+E.comm+E bhonus as total_sal FROM Department D, Employee E
HERE D.deptho=E. warkdept AMD E.job = 'DESIGHER'

' Statementtext| Optimizer messages

Example 2

Get the total salary for all departments that are located in '‘NY". The original query:

SELECT D.deptname, sum(E.salary)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.deptno=E.workdept AND D.location = 'NY'
GROUP BY D.deptname

Create a table, MQT2, that uses this query:

CREATE TABLE MQT2
AS (SELECT D.deptname, D.location, sum(E.salary) as sum_sal

90 IBM i: Performance and Query Optimization

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.deptno=E.workdept

GROUP BY D.Deptname, D.location)

DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION

MAINTAINED BY USER

Resulting new query after replacing the specified tables with the MQT:

SELECT M.deptname, sum(M.sum_sal)
FROM MQT2 M

WHERE M.location = 'NY'

GROUP BY M.deptname

Since the MQT could potentially produce more groups than the original query, the final resulting query
must group again and SUM the results to return the correct answer. Also, the selection M.location='NY"

must be part of the new query.

Visual Explain diagram of the query when using the MQT:

o Visual Explain

==k

File Wiew Actions Options Help

ERIEEEYE L

Final Select

Hash Scan

Termporary Distinct Hash Takle

Tahle Scan
CORPDATAMITZ
<

o

Aftribute

SGLSTATE

Curzar Mame

Parckans MName -
L | 3

Time Information

Timestamp for Creation of Monit...
Staternent Start Tirmestarmp
Statemert End Timestamp
Optimization Time, in Milliseconds
Total Time, in Microseconds
Staterment Open Time, in Microse..
Statemert Fetch Time, in Micros...
Staterment Close Time, in Micros...

Information about SQL statement..
Statetnert Mumber

Statement Function

Staternent Cperation

Statemernt Type

Statermert MName

Statement Outcome

SEL Return Code

B D.deptname

SELECT D.deptname, sumiE.salarny FROM DEFPARTMENT D, EMPLOYEE E WHERE D.deptno=Eworkdept AND D.location = WY GROUP =

-

Staternent text | Optimizer messagesl

Details on the MQT matching algorithm

What follows is a generalized discussion of how the MQT matching algorithm works.

The tables specified in the query and the MQT are examined. If the MQT and the query specify the same
tables, then the MQT can potentially be used and matching continues. If the MQT references tables not
referenced in the query, then the unreferenced table is examined to determine if it is a parent table in
referential integrity constraint. If the foreign key is non-nullable and the two tables are joined using a
primary key or foreign key equal predicate, then the MQT can still be potentially used.

Example 3
The MQT contains fewer tables than the query:

SELECT D.deptname, p.projname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E, EMPPROJACT EP,

PROJECT P

Database performance and query optimization 91

WHERE D.deptno=E.workdept AND E.Empno=ep.empno
AND ep.projno=p.projno
GROUP BY D.DEPTNAME, p.projname

Create an MQT based on the preceding query:

CREATE TABLE MQT3
AS (SELECT D.deptname, sum(E.salary) as sum_sal, e.workdept, e.empno
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept
GROUP BY D.Deptname, e.workdept, e.empno)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

The rewritten query:

SELECT M.deptname, p.projname, SUM(M.sum_sal)
FROM MQT3 M, EMPPROJACT EP, PROJECT P

WHERE M.Empno=ep.empno AND ep.projno=p.projno
GROUP BY M.deptname, p.projname

All predicates specified in the MQT, must also be specified in the query. The query could contain
additional predicates. Predicates specified in the MQT must match exactly the predicates in the query.
Any additional predicates specified in the query, but not in the MQT must be able to be derived from
columns projected from the MQT. See previous example 1.

Example 4

Set the total salary for all departments that are located in 'NY".

SELECT D.deptname, sum(E.salary)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.deptno=E.workdept AND D.location = *?
GROUP BY D.Deptname

Create an MQT based on the preceding query:

CREATE TABLE MQT4
AS (SELECT D.deptname, D.location, sum(E.salary) as sum_sal

FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept AND D.location = 'NY'
GROUP BY D.deptnamet, D.location)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED

ENABLE QUERY OPTIMIZATION

MAINTAINED BY USER

In this example, the constant 'NY' was replaced by a parameter marker and the MQT also had the

local selection of location="NY" applied to it when the MQT was populated. The MQT matching algorithm
matches the parameter marker and to the constant ‘NY' in the predicate D.Location=?. It verifies that the
values of the parameter marker are the same as the constant in the MQT; therefore the MQT can be used.

The MQT matching algorithm also attempts to match where the predicates between the MQT and the
guery are not the same. For example, if the MQT has a predicate SALARY > 50000, and the query has the
predicate SALARY > 70000, the MQT contains the rows necessary to run the query. The MQT is used in the
query, but the predicate SALARY > 70000 is left as selection in the query, so SALARY must be a column of
the MQT.

Example 5

SELECT D.deptname, sum(E.salary)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.deptno=E.workdept AND D.location = 'NY'
GROUP BY D.deptname

92 IBM i: Performance and Query Optimization

Create an MQT based on the preceding query:

CREATE TABLE MQT5

AS (SELECT D.deptname, E.salary
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

In this example, since D.Location is not a column of the MQT, the user query local selection predicate
Location='NY' cannot be determined, so the MQT cannot be used.

Example 6

SELECT D.deptname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept

GROUP BY D.deptname

Create an MQT based on the preceding query:

CREATE TABLE MQT6(workdept, sumSalary)
AS (SELECT workdept, sum(salary)
FROM EMPLOYEE
GROUP BY workdept)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

In this example, the SUM(salary) aggregation is pushed down through the join to the EMPLOYEE table,
allowing for a match and substitution of MQT6. A regrouping to (sum(sum(salary))) is defined at the top of
the query to compensate for the grouping pushdown.

Instead of department joining to all the rows in the employee table, it now has the opportunity to join to
the predetermined aggregates in MQT6. This type of MQT substitution can result in significant reduction of
processing and IO.

If the MQT contains grouping, then the query must be a grouping query. The simplest case is where the
MQT and the query specify the same list of grouping columns and column functions.

In some cases, if the MQT specifies group by columns that are a superset of query group by columns,

the query can be rewritten to do regrouping. This regrouping reaggregates the groups of the MQT into the
groups required by the query. When regrouping is required, the column functions need to be recomputed.
The following table shows the supported regroup expressions.

The regrouping expression/aggregation rules are:

Table 32. Expression/aggregation rules for MQTs

Query MQT Final query

COUNT(®) COUNT(*) as cnt SUM(cnt)

COUNT(*) COUNT(C2) as cnt2 (wherec2is |[SUM(cnt2)
non-nullable)

COUNT(c1) COUNT(c1) as cnt SUM(cnt)

COUNT(C1) (where C1 is non- COUNT(C2) as cnt2 (where C2is |SUM(cnt2)

nullable) non-nullable)

COUNT(distinct C1) Cl as group_cl (whereClis a COUNT(group_C1)
grouping column)

COUNT(distinct C1) where C1 is not a grouping MOT not usable
column

Database performance and query optimization 93

Table 32. Expression/aggregation rules for MQTs (continued)

Query MQT Final query

COUNT(C2) where C2 is from a COUNT(*) as cnt cnt*COUNT(C2)

table not in the MQT

COUNT(distinct C2) where C2is | Not applicable COUNT((distinct C2)

from a table not in the MQT

SUM(C1) SUM(C1) as sm SUM(sm)

SUM(C1) C1 as group_cl, COUNT(*) as cnt | SUM(group_cl * cnt)
(where C1 is a grouping column)

SUM(C2) where C2 is from a table | COUNT(*) as cnt cnt*SUM(C2)

not in the MQT

SUM(distinct C1) Clas group_cl (whereClisa SUM(group_C1)
grouping column)

SUM(distinct C1) where C1 is not a grouping MQT not usable
column

SUM(distinct C2) where C2 is Not applicable SUM(distinct C2)

from a table not in the MQT

MAX(C1) MAX(C1) as mx MAX(mx)

MAX(C1) C1 as group_C1 (where Clis a MAX(group_c1)
grouping column)

MAX(C2) where C2 is from a table | Not applicable MAX(C2)

not in the MQT

MIN(C1) MIN(C1) as mn MIN(mn)

MIN(C1) Clas group_C1 (whereClisa MIN(group_cl)
grouping column)

MIN(C2) where C2 is from a table | Not applicable MIN(C2)

not in the MQT

GROUPING(C1) GROUPING(C1) as grp grp

GROUPING(C2) where C2 is from | Not applicable GROUPING(C2)

atable not in the MQT

MQT matching does not support ARRAY_AGG, XMLAGG, and XMLGROUP grouping functions. AVG,
STDDEV, STDDEV_SAMP, VARIANCE_SAMPand VAR_POP are calculated using combinations of COUNT
and SUM. If AVG, STDDEV, or VAR_POP are included in the MQT and regroup requires recalculation of
these functions, the MQT cannot be used. It is recommended that the MQT only use COUNT, SUM, MIN,
and MAX. If the query contains AVG, STDDEV, or VAR_POP, it can be recalculated using COUNT and SUM.

If FETCH FIRST N ROWS is specified in the MQT, then FETCH FIRST N ROWS must also be specified in
the query. Also, the number of rows specified for the MQT must be greater than or equal to the number of
rows specified in the query. It is not recommended that an MQT contain the FETCH FIRST N ROWS clause.

The ORDER BY clause on the MQT can be used to order the data in the MQT if a REFRESH TABLE is run. It
is ignored during MQT matching and if the query contains an ORDER BY clause, it is part of the rewritten
query.

Related reference

MQT supported function

94 1BM i: Performance and Query Optimization

Although an MQT can contain almost any query, the optimizer only supports a limited set of query
functions when matching MQTs to user specified queries. The user-specified query and the MQT query
must both be supported by the SQE optimizer.

Determining unnecessary MQTs

You can easily determine which MQTs are being used for query optimization. However, you can now easily
find all MQTs and retrieve statistics on MQT usage as a result of System i Navigator and IBM i functionality.

To assist you in tuning your performance, this function produces statistics on MQT usage in a query.

To access through the System i Navigator, navigate to: Database > Schemas > Tables. Right-click your
table and select Show Materialized Query Tables. You can also view MQT usage information by right-
click on Tables or Views folder and select Show Materialized Query Tables. This action displays usage
information for MQTs created over all the tables or view in that schema.

Note: You can also view the statistics through an application programming interface (API).
In addition to all existing attributes of an MQT, two fields can help you determine unnecessary MQTs.

These fields are:

Last Query Use States the timestamp when the MQT was last used by the optimizer to replace user
specified tables in a query.

Query Use Count Lists the number of instances the MQT was used by the optimizer to replace user
specified tables in a query.

The fields start and stop counting based on your situation, or the actions you are currently performing on
your system. A save and restore procedure does not reset the statistics counter if the MQT is restored
over an existing MQT. If an MQT is restored that does not exist on the system, the statistics are reset.
Related information

Retrieve member description (QUSRMBRD) command

Summary of MQT query recommendations
Follow these recommendations when using MQT queries.

« Do not include local selection or constants in the MQT because that limits the number of user-specified
queries where the optimizer can use the MQT.

« For grouping MQTs, only use the SUM, COUNT, MIN, and MAX grouping functions. The query optimizer
can recalculate AVG, STDDEV, and VAR_POP in user specified queries.

« Specifying FETCH FIRST N ROWS in the MQT limits the number of user-specified queries where the
query optimizer can use the MQT. Not recommended.

- If the MQT is created with DATA INITIALLY DEFERRED, consider specifying DISABLE QUERY
OPTIMIZATION to prevent the optimizer from using the MQT until it has been populated. When the
MQT is populated and ready for use, the ALTER TABLE statement with ENABLE QUERY OPTIMIZATION
enables the MQT.

In addition, consider using a sparse index or EVI INCLUDE additional aggregates rather than an MQT if you
are concerned with stale data.

MQT tables need to be optimized just like non-MQT tables. It is recommended that indexes are created
over the MQT columns used for selection, join, and grouping, as appropriate. Column statistics are
collected for MQT tables.

The database monitor shows the list of MQTs considered during optimization. This information is in the
3030 record. If MQTs have been enabled through the QAQQINI file, and an MQT exists over at least one of
the tables in the query, there is a 3030 record for the query. Each MQT has a reason code indicating that it
was used or if it was not used, why it was not used.

Related concepts
How the EVI works

Database performance and query optimization 95

EVIs work in different ways for costing and implementation.

Related reference

Sparse index optimization

An SQL sparse index is like a select/omit access path. Both the sparse index and the select/omit logical
file contain only keys that meet the selection specified. For a sparse index, the selection is specified
with a WHERE clause. For a select/omit logical file, the selection is specified in the DDS using the COMP
operation.

Recursive query optimization

Certain applications and data are recursive by nature. Examples of such applications are a bill-of-material,
reservation, trip planner, or networking planning system. Data in one results row has a natural relationship
(call it a parent, child relationship) with data in another row or rows. The kinds of recursion implemented
in these systems can be performed by using SQL Stored Procedures and temporary results tables.
However, the use of a recursive query to facilitate the access of this hierarchical data can lead to a

more elegant and better performing application.

Recursive queries can be implemented by defining either a Recursive Common Table Expression (RCTE)
or a Recursive View.

Recursive query example

A recursive query is one that is defined by a Union All with an initialization fullselect that seeds the
recursion. The iterative fullselect contains a direct reference to itself in the FROM clause.

There are additional restrictions as to what can be specified in the definition of a recursive query. Those
restrictions can be found in SQL Programming topic.

Functions like grouping, aggregation, or distinct require a materialization of all the qualifying records
before performing the function. These functions cannot be allowed within the iterative fullselect itself.
The functions must be placed in the main query, allowing the recursion to complete.

The following is an example of a recursive query over a table called flights, that contains information
about departure and arrival cities. The query returns all the flight destinations available by recursion from
the two specified cities (New York and Chicago). It also returns the number of connections and total cost
to arrive at that final destination.

This example uses the recursion process to also accumulate information like the running cost and number
of connections. Four values are put in the queue entry. These values are:

« The originating departure city (either Chicago or New York) because it remains fixed from the start of the
recursion

« The arrival city which is used for subsequent joins
« The incrementing connection count
« The accumulating total cost to reach each destination

Typically the data needed for the queue entry is less than the full record (sometimes much less) although
that is not the case for this example.

CREATE TABLE flights
(
departure CHAR (10) NOT NULL WITH DEFAULT,
arrival CHAR (10) NOT NULL WITH DEFAULT,
carrier CHAR (15) NOT NULL WITH DEFAULT,
flight_num CHAR (5) NOT NULL WITH DEFAULT,
ticket INT NOT NULL WITH DEFAULT)

WITH destinations (departure, arrival, connects, cost) AS

(

SELECT f.departure,f.arrival, 0, ticket

FROM flights f

WHERE f.departure = 'Chicago' OR
f.departure = 'New York'

UNION ALL

SELECT

96 IBM i: Performance and Query Optimization

r.departure, b.arrival, r.connects + 1,
r.cost + b.ticket

FROM destinations r, flights b

WHERE r.arrival = b.departure

)
SELECT DISTINCT departure, arrival, connects, cost
FROM destinations

The following is the initialization fullselect of the preceding query. It seeds the rows that start the
recursion process. It provides the initial destinations (arrival cities) that are a direct flight from Chicago or
New York.

SELECT f.departure,f.arrival, 0, ticket

FROM flights f

WHERE f.departure='Chicago' OR
f.departure="'New York'

The following is the iterative fullselect of the preceding query. It contains a single reference in the FROM
clause to the destination recursive common table expression. It also sources further recursive joins to
the same flights table. The arrival values of the parent row (initially direct flights from New York or
Chicago) are joined with the departure value of the subsequent child rows. It is important to identify the
correct parent/child relationship on the recursive join predicate or infinite recursion can occur. Other local
predicates can also be used to limit the recursion. For example, for a limit of at most 3 connecting flights,
a local predicate using the accumulating connection count, r.connects<=3, can be specified.

SELECT
r.departure, b.arrival, r.connects + 1 ,
r.cost + b.ticket

FROM destinations r, flights b

WHERE r.arrival=b.departure

The main query is the query that references the recursive common table expression or view. It is in the
main query where requests like grouping, ordering, and distinct are specified.

SELECT DISTINCT departure, arrival, connects, cost
FROM destinations

Implementation considerations

To implement a source for the recursion, a new temporary data object is provided called a queue. As rows
meet the requirements of either the initialization fullselect or the iterative fullselect, they are pulled up
through the union all. Values necessary to feed the continuing recursion process are captured and placed
in an entry on the queue: an enqueue operation.

At query runtime, the queue data source then takes the place of the recursive reference in the common
table expression or view. The iterative fullselect processing ends when the queue is exhausted of entries
or a fetch N rows limitation has been met. The recursive queue feeds the recursion process and holds
transient data. The join between dequeuing of these queue entries and the rest of the fullselect tables is
always a constrained join, with the queue on the left.

Database performance and query optimization 97

File wiew Actions Oplions Help

Be Bayn -nu-ll"f W |

ll Aftrinute

Time Information

Timestamp for Creation of Moni
Staterment Slar Timestamp
Staternant End Timastamp
Cptimization Time, in Milllsecor
Total Time, in Microseconds
Staternent Opan Timea, in Micna:
Stalernant Feteh Tima, in Micnp:
Staternent Close Time, in Micm—

Lt Information about SOL statems

d Staternent Humber
Staternent Function
Stafernent Operation
|.|n|uh afl Staternent T]'I]-E‘

Staterment Mame
/ \ Statement Outcome
S0L Retum Code

& SQLSTATE

Tlt-ll Soan Merfed Laop Jain Cursar Mame
Package Name
FPackage Library
Statarment Ted

= =i Host Varable Values
Daquans Table Probe Riws Fatched

Additional information about S
CLOSGLCSR Value
ALWCFYDTA Value

Indus Proba = | |Paaudn One '
L | 3 g I -

destinations (deparbure, arrival, connects, cost) AS{ SELECT fdeparture farival, 0, licket
ROM fights TWHERE Tdepariure=Thicago’'or Tdeparfure=Tew York' UNIOMNALL SELECT
r.depariure, boamieal, roonnecis=1 ., roostsbdicket FROM destinalions r, Nighis b WHERE j

rarriral=h dornarkea . 2 E5T dighinsd donarmira arreal rannacts cnol EBGM dogtinalinne

Staternent texd | Optimizer messages |

Multiple initialization and iterative fullselects

The use of multiple initialization and iterative fullselects specified in the recursive query definition allows
for a multitude of data sources and separate selection requirements to feed the recursion process.

For example, the following query allows for final destinations accessible from Chicago by both flight and
train travel.

WITH destinations (departure, arrival, connects, cost) AS

SELECT f.departure, f.arrival, 0 , ticket
FROM flights f
WHERE f.departure='Chicago’
UNION ALL
SELECT t.departure, t.arrival, 0 , ticket
FROM trains t
WHERE t.departure='Chicago’

98 IBM i: Performance and Query Optimization

UNION ALL
SELECT
r.departure,b.arrival, r.connects
r.cost + b.ticket
FROM destinations r, flights b
WHERE r.arrival=b.departure
UNION ALL
SELECT

+ 1,

r.departure,b.arrival, r.connects+1 ,

r.cost+b.ticket
FROM destinations r, trains b
WHERE r.arrival=b.departure)

SELECT departure, arrival, connects,cost
FROM destinations;

All rows coming out of the RCTE/View are part
there are multiple fullselects referencing the c

of the recursion process and need to be fed back in. When
ommon table expression, the query is rewritten by the

optimizer to process all non-recursive initialization fullselects first. Then, using a single queue feed, those
same rows and all other row results are sent equally to the remaining iterative fullselects. No matter how
you order the initialization and iterative fullselects in the definition of the RCTE/view, the initialization
fullselects run first. The iterative fullselects share equal access to the contents of the queue.

o4 Visual Explain =Joed
File ‘“iew Actions Options Help
HS@ B0 «fe[& T o
= Atribute [v.
Time Information (Il
Timestamp for Creation of Maonit... 20
Statement Start Timestamp 20
Statement End Timestamp 20
Optimization Time, in Milliseconds 29
Total Time, in Microseconds 148
Enqueus Statement Open Time, in Micros... 15
Statement Fetch Time, in Micros... MNo—
= Statement Close Time, in Micros... No
Information about SQL stateme...
Union al Statement Number 40
/ 1 & Staternent Function Se
Statement Operation Op
ﬁ Staterment Type Dy
== Statement Mame ST
Table Scan Table Scan Mested Loop Join Staterment Qutcome Su
1 SQL Return Code 0
= SQLSTATE 00
Cursor Mame CF
= Package Name
Dequeus Union all Package Library
4 3 — || Statement Text Wyl
HostVariable Values 0,1
E @ Rows Fetched Mo
== ===
TabIRProkE Tabie Prabe Additional information about SQ...

2 t * [|CLOSQOLCSER Value =
<] e »
WITH destinations {departure, arrival, connects, cost)AS { SELECT f.departure, farrival, 0, ticket FROM flights f «
WHERE f.departure="Chicago’ UMNION ALL SELECT t.departure, t.arrival, 0, ticket FROM trains tWHERE
tdeparture="Chicago’ UNIONALL SELECT r.deparure,b.arrival, r.connects+1 r.cost+h ticket from
destinations r, flights b WHERE r.arrival=b.departure UNIONALL select r.deparure h.arrival, r.connects+1 |

r.cus‘t+b.tic‘kftnl=hﬁ:?ﬂllu| dfstipations t, trains b WHERE r.arrival=b.departure) SELECT departure, arrival, ﬂ
Staterment text Optimizermessages]

Database performance and query optimization 99

Predicate pushing

When processing most queries with non-recursive common table expressions or views, local predicates
specified on the main query are pushed down so fewer records need to be materialized. Pushing local
predicates from the main query into the defined recursive part of the query (through the Union ALL),
however, could considerably alter the process of recursion itself. So as a rule, the Union All specified in a
recursive query is currently a predicate fence. Predicates are not pushed down or up, through this fence.

The following is an example of how pushing a predicate in to the recursion limits the recursive results and
alter the intent of the query.

The intent of the query is to find all destinations accessible from 'Chicago’, not including the final
destination of 'Dallas'. Pushing the "arrival<>'Dallas" predicate into the recursive query alters the output
of the intended results. It prevents the output of final destinations where 'Dallas’ was an intermediate
stop.

WITH destinations (departure, arrival, connects, cost) AS

SELECT f.departure,f.arrival, 0, ticket

FROM flights f

WHERE f.departure='Chicago’

UNION ALL

SELECT
r.departure, b.arrival, r.connects + 1 ,
r.cost + b.ticket

FROM destinations r, flights b

WHERE r.arrival=b.departure

SELECT departure, arrival, connects, cost
FROM destinations
WHERE arrival != 'Dallas'

Conversely, the following is an example where a local predicate applied to all the recursive results is a
good predicate to put in the body of the recursive definition because it could greatly decrease the number
of rows materialized from the RCTE/View. The better query request here is to specify the r.connects <=3
local predicate with in the RCTE definition, in the iterative fullselect.

WITH destinations (departure, arrival, connects, cost) AS
(
SELECT f.departure,f.arrival, 0, ticket
FROM flights f
WHERE f.departure='Chicago' OR
f.departure="New York'
UNION ALL
SELECT
r.departure, b.arrival, r.connects + 1 ,
r.cost + b.ticket
FROM destinations r, flights b
WHERE r.arrival=b.departure
)

SELECT departure, arrival, connects, cost
FROM destinations
WHERE r.connects<=3

Placement of local predicates is key in recursive queries. They can incorrectly alter the recursive results
if pushed into a recursive definition. Or they can cause unnecessary rows to be materialized and then
rejected, when a local predicate could legitimately help limit the recursion.

Specifying SEARCH consideration

Certain applications dealing with hierarchical, recursive data could have a requirement in how data is
processed: by depth or by breadth.

Using a queuing (First In First Out) mechanism to track the recursive join key values implies the results
are retrieved in breadth first order. Breadth first means retrieving all the direct children of a parent

row before retrieving any of the grandchildren of that same row. This retrieval is an implementation
distinction, however, and not a guarantee.

100 IBM i: Performance and Query Optimization

Applications might want to guarantee how the data is retrieved. Some applications might want to retrieve
the hierarchical data in depth first order. Depth first means that all the descendents of each immediate
child row are retrieved before the descendents of the next child are retrieved.

The SQL architecture allows for the guaranteed specification of how the application retrieves the resulting
data by the use of the SEARCH DEPTH FIRST or BREADTH FIRST keyword. When this option is specified,
name the recursive join value, identify a set sequence column, and provide the sequence column in an
outer ORDER BY clause. The results are output in depth or breadth first order. Note this ordering is
ultimately a relationship sort and not a value-based sort.

Here is the preceding example output in depth first order.

WITH destinations (departure, arrival, connects, cost) AS

SELECT f.departure, f.arrival, 0 , ticket
FROM flights f
WHERE f.departure='Chicago' OR f.departure='New York'
UNION ALL
SELECT
r.departure,b.arrival, r.connects+1l ,
r.cost+b.ticket
FROM destinations r, flights b
WHERE r.arrival=b.departure)

SEARCH DEPTH FIRST BY arrival SET depth_sequence

SELECT *
FROM destinations
ORDER BY depth_sequence

If the ORDER BY clause is not specified in the main query, the sequencing option is ignored. To facilitate
the correct sort there is additional information put on the queue entry during recursion. With BREADTH
FIRST, it is the recursion level number and the immediate ancestor join value, so sibling rows can

be sorted together. A depth first search is a little more data intensive. With DEPTH FIRST, the query
engine needs to represent the entire ancestry of join values leading up to the current row and put that
information in a queue entry. Also, because these sort values are not coming from an external data
source, the sort implementation is always a temporary sorted list (no indexes possible).

Do not use the SEARCH option if you do not need your data materialized in a depth or breadth first
manner. There is additional CPU and memory overhead to manage the sequencing information.

Specifying CYCLE considerations

Recognizing that data in the tables used in a recursive query might be cyclic in nature is important to
preventing infinite loops.

The SQL architecture allows for the optional checking for cyclic data and discontinuing the repeating
cycles at that point. This additional checking is done by the use of the CYCLE option. The correct join
recursion value must be specified on the CYCLE request and a cyclic indicator must be specified. The
cyclic indicator could be optionally output in the main query and can be used to help determine and
correct errant cyclic data.

WITH destinations (departure, arrival, connects, cost , itinerary) AS

SELECT f.departure, f.arrival, 1 , ticket, CAST(f.departure||f.arrival AS VARCHAR(2000))
FROM flights f
WHERE f.departure='New York'
UNION ALL
SELECT r.departure,b.arrival, r.connects+1 ,
r.cost+b.ticket, cast(r.itinerary||b.arrival AS varchar(2000))
FROM destinations r, flights b
WHERE r.arrival = b.departure)
CYCLE arrival SET cyclic TO 'l1' DEFAULT 'O' USING Cycle_Path

SELECT departure, arrival, itinerary, cyclic
FROM destinations

When a cycle is determined to be repeating, the output of that cyclic sequence of rows is stopped. To
check for a 'repeated' value however, the query engine needs to represent the entire ancestry of the join

Database performance and query optimization 101

values leading up to the current row in order to look for the repeating join value. This ancestral history is
information that is appended to with each recursive cycle and put in a field on the queue entry.

To implement this history field, the query engine uses a compressed representation of the recursion
values on the ancestry chain. The query engine can then do a fixed length, quicker scan through the
accumulating ancestry to determine if the value has been seen before. This compressed representation is
determined by the use of a distinct node in the query tree.

Do not use the CYCLE option unless you know your data is cyclic, or you want to use it specifically to help
find the cycles for correction or verification purposes. There is additional CPU and memory overhead to
manage and check for repeating cycles before a given row is materialized.

%6 Visual Explain -Jo&d

File View Actions Options Help
CEIEEENEIETT S IO
3 Attribute
Time Information —
Timestamp for Creation of Monit..
Statement Start Timestamp
Staterment End Timestamp
Litscal Optimization Time, in Milliseconds
‘ Total Time, in Microseconds
o) Staterment Open Time, in Micros...
Statement Fetch Time, in Micros...
Temporany Lt Statement Close Time, in Micros...
Tz Information about SOL stateme...
% Staternent Mumber
e Statement Function
q Statement Operation
jz Staterment Type
- Statement Mame
& Staterment Outcome
Dthct S0L Return Code
Tz SQLSTATE
. Cursor Mame
a Package N_ame
Usbor 3l Package Library
. Statement Text
o HostVariable Values
E Rows Fetched
= b
Tek.Frote NestdLoop.lol) Additional information about SQ...
Tz o \ CLOSALCSR Value
m— ALWCPYDTA Value
ﬁ = @ Pseudao Open
Indkex: P robe Dequens Tabk Probe T 1IPseudo Close =
£l AR | y
ITH destinations {departure, arrival, connects, cost, itinerand AS (SELECT f.deparure, farrival, 1, ticket, ;]
castif. departure||f.artival as varchar(2000NFROM flights f WHERE f.departure="New York' URION ALL LI
S reeT v s srhies o mevinis] v o ammm s mds A D T S N B T I R N N R R Tt b T T T LR Y
Statement text | Optimizer messages |

SMP and recursive queries

Recursive queries can benefit as much from symmetric multiprocessing (SMP) as do other queries on the
system.

Recursive queries and parallelism, however, present some unique requirements. The initialization
fullselect of a recursive query is the fullselect that seeds the initial values of the recursion. It is likely
to produce only a small fraction of the ultimate results that cycle through the recursion process. The

102 IBM i: Performance and Query Optimization

query optimizer does not want each of the threads running in parallel to have a unique queue object that
feeds only itself. This results in some threads having way too much work to do and others threads quickly
depleting their work.

The best way to handle this work is to have all the threads share the same queue. This method allows a
thread to enqueue a new recursive key value just as a waiting thread is there to dequeue that request. A
shared queue allows all threads to actively contribute to the overall depletion of the queue entries until no
thread is able to contribute more results.

Having multiple threads share the same queue, however, requires some management by the Query
runtime so that threads do not prematurely end. Some buffering of the initial seed values might be
necessary. This buffering is illustrated in the following query, where there are two fullselects that seed the
recursion. A buffer is provided so that no thread hits a dequeue state and terminates before the query has
seeded enough recursive values to get things going.

The following Visual Explain diagram shows the plan for the following query run with CHGQRYA

DEGREE (*NBRTASKS 4). It shows how the results of the multiple initialization fullselects are buffered
up. The multiple threads, illustrated by the multiple arrow lines, are acting on the enqueue and dequeue
request nodes. As with all SMP queries, the multiple threads, in this case 4, put their results into a
Temporary List object which becomes the output for the main query.

cl:chgqrya degree(xnbrtasks 4);
WITH destinations (departure, arrival, connects, cost)AS

SELECT f.departure, f.arrival, 0 , ticket
FROM flights f WHERE f.departure='Chicago'’
UNION ALL
SELECT t.departure, t.arrival, 0 , ticket
FROM trains t WHERE t.departure='Chicago’
UNION ALL
SELECT
r.departure,b.arrival, r.connects+1l ,
r.cost+b.ticket
FROM destinations r, flights b
WHERE r.arrival=b.departure
UNION ALL
SELECT
r.departure,b.arrival, r.connects+1l ,
r.cost+b.ticket
FROM destinations r, trains b
WHERE r.arrival=b.departure)
SELECT departure, arrival, connects,cost
FROM destinations;

Database performance and query optimization 103

03 Visual Explain

File View Actions Options Help

CETERNEN-ICTT) 8 JEOF

Union a

BufferScan Nesled Loop Jain
m'(\
4- ,
- '
- ==
Buffer Dequeue
List Scan
Tempaorany List Index Probe Index Probe

Union all
2 1
== ==
Table Probe Table Probe
2 1
Buffar Scan Buffer Scan

- =
4-<- <-<-
- -

Kl

o

Attribute [van
Time Information —
Timestamp for Creation of Monit... 200£
Staterment Start Timestamp 200%
Staterment End Timestamp 200¢
Optimization Time, in Milliseconds 111
Total Time, in Microseconds 2497
Statement Open Time, in Micros... 2497
Staternent Fetch Time, in Micros... MNot#
Statement Close Time, in Micros... MNot#
Information about SOQL stateme...
Statement Mumbher 17
Staterment Function Sele
Statement Operation Qpet
Staternent Type Dwns
Statement Mame STh
Statement Qutcome Suce
SGL Return Code 1]
SQLSTATE nooc
Cursor Mame CRS
Package Name
Fackage Library
Statement Text WITH_
Host Variahle Values 0,
Rows Fetched Mot £
Additional information about SQ...
CLOSQLCSR Yalue
ALWCPYDTA Value Any 1
Pseudo Open Mo
Pseudo Close Mo
Hard Close Reason Code Mot £
ODP Implementation Reus
Dynamic Replan Reason Code Acce
Timestamp When PlanWas Cre... 0001
Data Conversion Reason Code Motz
Blocking Enahled ALY
Delay Prep Yes
Staterment is Explainable Yes
Maming Convention SaL
Type of Dynamic Processing Loca
SGL Path "QSY
Information common to most m...
Systern Name Y04£
Joh Mame QZD,
Job User Qs
Job Mumber

Kl [

188¢~
3

ITH destlnatluns (departure arrwal cnnnects cnst}AS(BELECdeeparture farrwal IJ ticket FROM

Statementte;ﬂ Optlmlzermessages|

104 IBM i: Performance and Query Optimization

System-period temporal tables

Querying a system-period temporal table can return results for a specified point or period in time. These
results can include both current values and previous historic values. The following sample queries request
policy information from a system-period temporal table (policy_info), which also implicitly get information
from the associated history table (hist_policy_info). See the “Querying system-period temporal data”
topic in the Database Administration book for the layout of these tables and more information on how to
specify time criteria for a system-period temporal table in a query.

Query with FOR SYSTEM_TIME AS OF specified.

SELECT policy_id, coverage
FROM policy_info
FOR SYSTEM_TIME AS OF '2011-02-28-09.10.12.649592000000'

For this query, the begin column of the period is inclusive, while the end column is exclusive. The history
table row(s) with the begin column value less than or equal to '2011-02-28-09.10.12.649592000000'
and the end column value greater than '2011-02-28-09.10.12.649592000000" will be included in the
result.

As a result Db2 rewrites the query as follows:

SELECT policy_id, coverage FROM
(SELECT policy_id, coverage
FROM policy_info
WHERE sys_start <= '2011-02-28-09.10.12.649592000000'
UNION ALL
SELECT policy_id, coverage
FROM hist_policy_info
WHERE sys_start <= '2011-02-28-09.10.12.649592000000'
AND sys_end > '2011-02-28-09.10.12.649592000000")

Query with FOR SYSTEM_TIME FROM...TO specified.

SELECT policy_id, coverage, sys_start, sys_end
FROM policy_info
FOR SYSTEM_TIME FROM '0001-01-01-00.00.00.000000'
TO '9999-12-30-00.00.00.000000000000"
WHERE policy_id = 'C567'

For this query, the begin column and end column of the period are exclusive. The history table row(s)
with the begin column value less than '9999-12-30-00.00.00.000000000000" and the end column value
greater than '0001-01-01-00.00.00.000000" will be included in the result.

As aresult, Db2 rewrites the query as follows:

SELECT policy_id, coverage, sys_start, sys_end FROM
(SELECT policy_id, coverage, sys_start, sys_end
FROM policy_info
WHERE sys_start < '9999-12-30-00.00.00.000000000000'
AND TIMESTAMP('0001-01-01-00.00.00.000000') <
TIMESTAMP('9999-12-30-00.00.00.000000000000")
UNION ALL
SELECT policy_id, coverage, sys_start, sys_end
FROM hist_policy_info
WHERE sys_start < '9999-12-30-00.00.00.000000000000'
AND sys_end > '0001-01-01-00.00.00.000000")
AND TIMESTAMP('0001-01-01-00.00.00.000000') <
TIMESTAMP ('9999-12-30-00.00.00.000000000000")
WHERE policy_id = 'C567'

Query with FOR SYSTEM_TIME BETWEEN...AND specified.

SELECT policy_id, coverage
FROM policy_info

Database performance and query optimization 105

FOR SYSTEM_TIME BETWEEN '2011-02-28-09.10.12.649592000000'
AND '9999-12-30-00.00.00.000000000000"

For this query, the begin column of the period is inclusive, while the end column is exclusive. The history
table row(s) with the begin column value less than or equal to '9999-12-30-00.00.00.000000000000'
and the end column value greater than '2011-02-28-09.10.12.649592000000" will be included in the
result.

As a result, Db2 rewrites the query as follows:

SELECT policy_id, coverage, sys_start, sys_end FROM

(SELECT policy_id, coverage, sys_start, sys_end

FROM policy_info

WHERE sys_start <= '9999-12-30-00.00.00.000000000000'

AND TIMESTAMP('2011-02-28-09.10.12.649592000000') <=
TIMESTAMP('9999-12-30-00.00.00.000000000000")

UNION ALL

SELECT policy_id, coverage, sys_start, sys_end

FROM hist_policy_info

WHERE sys_start <= '9999-12-30-00.00.00.000000000000'

AND sys_end > '2011-02-28-09.10.12.649592000000")

AND TIMESTAMP('2011-02-28-09.10.12.649592000000"') <=
TIMESTAMP ('9999-12-30-00.00.00.000000000000")

Query with time criteria specified via CURRENT TEMPORAL SYSTEM_TIME special
register.

The advantage of using this method is that you can change the time criteria later and not have to modify
the SQL. For example, assume that you want to retrieve data from policy_info for a given policy_id of C567
that is from one year ago. If the SYSTIME option is set to YES, you can set the CURRENT TEMPORAL
SYSTEM_TIME special register and issue the SELECT statement as follows:

SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 1 YEAR;

SELECT policy_id, coverage FROM policy_info
WHERE policy_id = 'C567';

Db2 interprets the SELECT statement as follows:

SELECT policy_id, coverage FROM policy_info
FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME
WHERE policy_id = 'C567';

For this query, the begin column of the period is inclusive, while the end column is exclusive. The history
table row(s) with the begin column value less than or equal to CURRENT TEMPORAL SYSTEM_TIME and
the end column value greater than CURRENT TEMPORAL SYSTEM_TIME will be included in the result.

As a result, Db2 rewrites the query as follows:

SELECT policy_id, coverage FROM
(SELECT policy_id, coverage
FROM policy_info
WHERE sys_start <= CURRENT TEMPORAL SYSTEM_TIME
UNION ALL
SELECT policy_id, coverage
FROM hist_policy_info
WHERE sys_start <= CURRENT TEMPORAL SYSTEM_TIME
AND sys_end > CURRENT TEMPORAL SYSTEM_TIME)
WHERE policy_id = 'C567';

Adaptive Query Processing

Adaptive Query Processing analyzes actual query run time statistics and uses that information for
subsequent optimizations.

With rapidly increasing amounts of data, the price of miscalculating complex plans can result in dramatic
performance problems. These problems might be measured in minutes or hours instead of seconds
or minutes. Traditionally, optimizer architecture has attempted to overcome potential plan problems in

106 IBM i: Performance and Query Optimization

several ways. The most common technique is to increase the amount of time spent optimizing a query,
searching for safe alternatives. While additional time reduces the likelihood of a failed plan, it does not
fundamentally avoid the problem.

The Db2 optimizer relies on statistical estimates to optimize a query. These estimates can be inaccurate
for a number of reasons. The reasons include a lack of statistical metadata for the query tables, complex
join conditions, skewed or rapidly changing data within the tables, and others.

The SQE query engine uses a technique called Adaptive Query Processing (AQP). AQP analyzes actual
query run time statistics and uses that information to correct previous estimates. These updated
estimates can provide better information for subsequent optimizations.

Related reference

Adaptive Query Processing in Visual Explain
You can use Visual Explain to request a new plan.

How AQP works

There are three main parts to AQP support.

« Global Statistics Cache (GSC): The “Global Statistics Cache” on page 14 is a system-side repository
of statistical information gathered from actual query runs. When the SQE query engine observes a
discrepancy between record count estimates and actual observed values, an entry might be made in
the GSC. This entry provides the optimizer with more accurate statistical information for subsequent
optimizations.

« AQP Request Support: This support runs after a query completes. The processing is done in a system
task so it does not affect the performance of user applications. Estimated record counts are compared
to the actual values. If significant discrepancies are noted, the AQP Request Support stores the
observed statistic in the GSC. The AQP Request Support might also make specific recommendations
for improving the query plan the next time the query runs.

« AQP Handler: The AQP Handler runs in a thread parallel to a running query and observes its progress.
The AQP handler wakes up after a query runs for at least 2 seconds without returning any rows. Its job
is to analyze the actual statistics from the partial query run, diagnose, and possibly recover from join
order problems. These join order problems are due to inaccurate statistical estimates.

The query can be reoptimized using partial observed statistics or specific join order recommendations
or both. If this optimization results in a new plan, the old plan is terminated and the query restarted with
the new plan, provided the query has not returned any results.

AQP looks for an unexpected starvation join condition when it analyzes join performance. Starvation join is
a condition where a table late in the join order eliminates many records from the result set. In general, the
query would perform better if the table that eliminates the large number of rows is first in the join order.
When AQP identifies a table that causes an unexpected starvation join condition, the table is noted as the
‘forced primary table'. The forced primary table is saved for a subsequent optimization of the query.

That subsequent optimization with the forced primary recommendation can be used in two ways:

« The forced primary table is placed first in the join order, overriding the join order implied by the
statistical estimates. The rest of the join order is defined using existing techniques.

- The forced primary table can be used for LPG preselection against a large fact table in the join.

Related reference

Adaptive Query Processing in Visual Explain
You can use Visual Explain to request a new plan.

AQP example

Here is an example query with an explanation of how AQP could work.

SELECT * from t1, t2, t3, t4
WHERE t1.c1=t2.cl AND tl1.c2=t3.c2
AND t1.c3 = CURRENT DATE - t4.c3

Database performance and query optimization 107

AND t1.c5 < 50 AND t2.c6 > 40
AND t3.c7 < 100 AND t4.c8 - t4.c9 < 5

The WHERE clause of the preceding query contains a predicate, t1.c3 = CURRENT DATE - t4.c3,
that is difficult to estimate. The estimation difficulty is due to the derivation applied to column t4.c3
and the derivation involving columns t4.c8 and t4. c9. For the purposes of this example, the predicate
t1.c3 = CURRENT DATE - t4.c3 actually eliminates all or nearly all records in the join.

Due to characteristics of the columns involved in that predicate, the statistical estimate has many rows
returned from the join. The optimizer selects join order t1, t3, t2, t4 based on the following record
count estimates.

« Join t1 to t3 produces 33,000,000 rows.
« Joint1, t3resultto t2 produces 1,300,000 rows.
« Jointl, t3, t2resultto t4 (final result set) produces 5 million rows.

The join order is reasonable assuming that the final result set actually produces 5 million rows, but the
estimate is incorrect. The query performs poorly since tables t1, t3, t2 arejoined first, producing
1,300,000 rows. These rows are all rejected by table t4 and the t1.c3 = CURRENT DATE - t4.c3
predicate (join starvation).

AQP identifies t4 as the forced primary table. The optimizer would choose t1 as the second table in the
join order since there are no join conditions between t4 and t2 or t3. Since the join condition between
tables t4 and t1 selects few rows, this plan is likely many orders of magnitude faster than the original
plan.

Related reference

Adaptive Query Processing in Visual Explain
You can use Visual Explain to request a new plan.

AQP join order

Adaptive Query Processing analyzes actual query run time join statistics and uses that information for
subsequent join optimizations.

The SQE engine implements AQP join order recommendations in the following ways:
Subsequent to run

When each query completes, a fast check is done on key points of the query execution to compare
actual selected records with the estimates. If there is a significant discrepancy, then a stand-alone task is
notified to do a deeper analysis of the query execution.

The query plan and the execution statistics are passed to the task. A separate task is used for the
in-depth analysis so the user job is not impacted while the deep analysis is done. Each step of the join is
analyzed, looking for characteristics of starvation join. Starvation join shows a significant reduction in the
number of rows produced compared to the previous step. The definition of what is considered significant
depends on a number of factors.

If the criteria for starvation join are met, the actual number of records selected at key points of the query
are compared to estimates. If there is a significant discrepancy between the actual and estimated record
counts, the table at that join position is identified as a 'forced primary table'. This table is saved with

the query plan in the system plan cache. When the query runs in the future, the optimizer retrieves the
original plan from the system plan cache. The optimizer sees the forced primary table recommendation,
and optimizes the query using this recommendation.

The forced primary recommendation is used in two ways by the optimizer:

« The forced primary table is placed first in the join order by the join order optimization strategy.

« The forced primary table is used by the strategy for LPG optimization. The preceding example is a star
join since table T1 is joined to the other tables in the query. t1.c3 is the column used to join T1 to T4. If
an index exists over this join column, then it might be advantageous to do preselection against table T1

108 IBM i: Performance and Query Optimization

using the records selected from table T4. The forced primary table recommendation is used as a hint for
the optimizer to consider this technique.

Concurrent to run

The preceding logic to identify starvation join can also run in a thread in parallel to the executing query.
The AQP handler thread is created for longer running queries. The thread monitors the query execution
and can run the same logic described earlier against partial data from the query execution.

If the partial results show starvation join and significant differences with the record count estimates,
the query is reoptimized in the thread. When the new plan is ready, the execution of the original plan
is stopped and the new plan started. This scheme for correcting join problems 'on the fly' can only be
carried out before any records are selected for the final result set.

Note: AQP can help correct query performance problems, but it is not a substitute for a good database
design coupled with a good indexing strategy.
Related reference

Adaptive Query Processing in Visual Explain
You can use Visual Explain to request a new plan.

Database Monitor additions for AQP

Additional information is logged in the database monitor when the AQP handler code replaces an
executing plan.

A new set of 30xx records is written to the database monitor reflecting the replaced plan. The user needs
to be able to distinguish between records produced for the first plan iteration and records produced for
subsequent optimization. To distinguish these records, an unused short integer column of the database
monitor record is used as a ‘plan iteration counter'.

Column QQSMINTEF is used for this purpose. For the original optimization of the query, the 30xx records
have this field set to 1. Subsequent reoptimization done by AQP processing will increment the value by 1.

The following is an example of how DB monitor output might look like when a is replaced ‘on the fly'. The
example query is the following two-file join with an ORDER BY clause over one of the tables:

SELECT a.orderkey,b.orderkey

FROM rvdstar/item_fact3 a, rvdstar/item_fact b
WHERE a.quarter - 8 = b.quarter

ORDER BY b.orderkey

Assume that an order by pushdown plan is chosen, then replaced using AQP while the query is running.
The following is an example of what the DB monitor records might look like. The columns shown for the
purposes of explaining the changes are QQRID, QQUCNT, QQSMINTF, and QQRCOD. The other fields in

the monitor are not affected by AQP processing.

Table 33. Database monitor records for example query

QQRID QQUCNT QQSMINTF QQRCOD
3010 14 - -

3006 14 1 AO
3001 14 1 12

3000 14 1 T1

3023 14 1 -

3007 14 1 -

3020 14 1 11

3014 14 1 -

Database performance and query optimization 109

Table 33. Database monitor records for example query (continued)

QQRID QQUCNT QQSMINTF QQRCOD
5005 14 1 -
5002 14 1 -
5004 14 1 -
5007 14 1 -
3006 14 2 B6
3000 14 2 T1
3000 14 2 T3
3023 14 2 -
3003 14 2 F7
3007 14 2 -
3020 14 2 11
3014 14 2 -
5005 14 2 -
5002 14 2 -
5004 14 2 -
1000 14 2 -
5007 14 2 -
3019 14 - -
1000 14 - -

Notes on the preceding table:

- There is a full set of optimizer-generated records that reflect the first choice of the optimizer: an order
by pushdown plan. These records have the QQSMINTF column value set to 1. There is a 3001 record
indicating an index was used to provide the ordering. There are 3000 and 3023 records indicating a
Table Scan of the second table and a temporary hash table built to aid join performance. The remaining
records, including the 3014 and the 500x records, have QQSMINTF set to 1 to reflect their association
with the original order by pushdown plan.

« There is a second full set of optimizer-generated records that reflect the second choice of the optimizer:
a sorted temporary plan to implement the ORDER BY. These records have the QQSMINTF column value
set to 2. This time there are two 3000 records indicating table scan was used to access both tables.
There is a 3023 record indicating a temporary hash table was built and a 3003 record indicating the
results were sorted. The remaining records, including the 3014 and the 500x records, have QQSMINTF
set to 2 to reflect their association with the replacement plan.

« Both sets of optimizer records have the same unique count (QQUCNT value).

» There is a 3006 (Access Plan Rebuilt) record generated for each replacement plan (QQSMINTF > 0).
The QQRCOD (reason code) value is set to a new value, ‘B6'. The ‘B6' value indicates the access plan
was rebuilt due to AQP processing. In the example, there is a 3006 record with QQSMINTF = 1 and
a QQRCOD value of ‘A0". The 1 indicates that the original optimization built the plan for the first time.
There might not be a 3006 record associated with the original optimization if the optimizer was able to
reuse a plan from the plan cache.

« The 1000, 3010 and 3019 records are produced by XPF at open or close time. These records are not
generated by the optimizer so there are no changes due to AQP. There are one set of the records, as in

110 IBM i: Performance and Query Optimization

previous releases, regardless of whether AQP replaced the plan. The QQSMINTF value is NULL for these
records.

- The replacement plan is the plan that runs to completion and returns the results. To retrieve the
DB monitor records from the plan that actually returns the records, it is necessary to query the DB
monitor file using a subquery. Retrieve the records where the QQSMINTF value is equal to the maximum
QQSMINTF value for a given QQUCNT.

Related concepts

Database monitor formats
This section contains the formats used to create the database monitor SQL tables and views.

Related reference

Monitoring your queries using the Database Monitor

Start Database Monitoxr (STRDBMON) command gathers information about a query in real time and
stores this information in an output table. This information can help you determine whether your system
and your queries are performing well, or whether they need fine-tuning. Database monitors can generate
significant CPU and disk storage overhead when in use.

Adaptive Query Processing in Visual Explain

You can use Visual Explain to request a new plan.

QAQQINI query options

There are different options available for parameters in the QAQQINI file.

Row and column access control (RCAC)

Db2 for i introduces row and column access control (RCAC) as an additional layer of data security. RCAC
controls access to a table at the row level, column level, or both. RCAC can be used to complement the
existing table privileges model.

Indexing Strategy and RCAC
This section focuses on the consequence of RCAC to your SQL query performance when indexing is used.

Row and column access control (RCAC) places access control at the table level around the data itself. SQL
rules, which are known as row permissions or column masks, created on rows and columns are the basis
of the implementation of this capability.

You can use row and column access control to ensure that your users have access to only the data that
is required for their work. For example, tellers in a bank can access customer rows in the CUSTOMER
table only from their own branch. All tellers are members of the group user profile TELLER. Customer
service representative or telemarketers are members of other groups and allowed to see all rows. A row
permission is created by a user who is authorized to the QIBM_DB_SECADM function usage ID.

These SQL rules add additional predicates to any queries or data access requests over tables with
defined and activated RCAC permissions. In this example, SQL rules are added to queries over the
CUSTOMER table to enforce the following access rules. Depending on the nature of the rules, additional
indexes might be advised or existing indexes might need to be enhanced or altered to accommodate

the additional predicates enforcing the access. For example, when the TELLER_ROW_ACCESS permission
is enabled, additional index advise might include the BRANCH_INFO table and key EMP_ID. In this
particular example, index only access can be facilitated by creating an index over BRANCH_INFO that
includes EMP_ID and HOME_BRANCH as key fields. The first to facilitate the probe, the second to prevent
unnecessary access to the BRANCH_INFO table.

CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER

-- Teller information:

-- Group TELLER is allowed to access customer data only

-- in their branch.

FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER, 'TELLER') =1

AND

BRANCH = (SELECT HOME_BRANCH FROM BRANCH_INFO WHERE EMP_ID = SESSION_USER)

Database performance and query optimization 111

ENFORCED FOR ALL ACCESS
ENABLE;

ALTER TABLE CUSTOMER ACTIVATE ROW ACCESS CONTROL;

In the example below, not only are you verifying certain user groups for access to particular patient
records but also masking certain data based on whether the patient has participated in a clinical trial.
Extra security is that physicians can see only patient records for whom they are the primary care provider.

CREATE PERMISSION PCP ON patient

-- Primary Care Physician Access

-- Group PCP is allowed to access patient data only

-- AND the Primary Care Physician must be assigned to patient

-- Group RESEARCH are allowed to access patient data for those patients
-- that opted in to a clinical trial

FOR ROWS WHERE

(VERIFY_GROUP_FOR_USER(SESSION_USER, 'PCP') = 1

AND

PCPID = (SELECT PCPID FROM PHYSICIAN WHERE PCPUSER = SESSION_USER))
OR

(VERIFY_GROUP_FOR_USER(SESSION_USER, 'RESEARCH') = 1

AND

(SELECT 1 FROM PATIENTCHOICE C

WHERE PATIENT.patientid = C.patientid
AND C.CHOICE = 'clinical trial'

AND C.VALUE = 'opt-in')=1

)
ENFORCED FOR ALL ACCESS
ENABLE;

CREATE MASK PHARMACY_MASK ON PATIENT FOR
-- Medical information:
-- Group PCP is allowed to access the full information in column PHARMACY.
-- For the purposes of drug research, Role DRUG_RESEARCH can
-- conditionally see a patient's medical information
-- provided that the patient has opted-in.
-- In all other cases, null values are rendered as column
-- values.
COLUMN PHARMACY RETURN
CASE WHEN
VERIFY_GROUP_FOR_USER(SESSION_USER, 'PCP') = 1 OR
(VERIFY_GROUP_FOR_USER(SESSION_USER, 'DRUG_RSRCH')=1
AND
(SELECT 1 FROM PATIENTCHOICE C
WHERE PATIENT.patientid = C.patientid
AND C.CHOICE = 'drug-research'
AND C.VALUE = 'opt-in')=1

)
THEN PHARMACY
ELSE NULL

END
ENABLE;

ALTER TABLE PATIENT ACTIVATE ROW ACCESS CONTROL ACTIVATE COLUMN ACCESS CONTROL;

The query in the next example, before the introduction of RCAC policies would have accessed only the
PATIENT table. Now it accesses the PATIENT table and the supporting tables that are associated with the
row and column permissions.

The next graphic is the Visual Explain for the next example query. As you can see, the PATIENT table is
accessed along with any other tables mentioned in the ROW and COLUMN access control.

SELECT * FROM PATIENT WHERE PATIENTID = ?

112 IBM i: Performance and Query Optimization

1250

=E=
Mested Loop Join

7N
o2

Mested Loop Join Hazh Frobe

Table Scan Fetzh H Rowmes Temporary Hash Table

FATIENT
T=1 1
Union all Table Scan

FATIENTCHOICE

J

WO
And And

Y AN
-

Lagic Lagic Lagic
Table Szan
PATIENTCHOICE

Table Scan
FHYSICIAN

By clicking the index advised icon that is shown in the next graphic:

File Wiew Actions Options Help

He Baa D «mE T sﬁﬂ%ﬂ
| E2

You get the resulting index advice depicted in the next graphic that shows that it is not only over the
PATIENT table that is explicitly specified in the query, but also over the supporting RCAC tables.

Database performance and query optimization 113

Not considering additional advice per the introduction of RCAC SQL rules can affect query

performance.
| statistics Advisor|
Itis recommended that the following indexes he created: &
Create I Table Mame | Schema Index Type Columns

v PATIEMT N Binary Radix PATIEMTID

W PHYSICIAMN S... Binary Radix PCPUSER

v PATIEMTCHOICE B Binary Radix PATIEMTID
CHOICE
WALLE

1] | Lr‘

ok | Hep |7

Materialized query tables and RCAC
This section focuses on the consequence of RCAC to your SQL query performance when MQTs are used.

Materialized Query Tables (MQTs) are heavily relied upon by data warehousing applications for better
query performance. RCAC and MQTs coexist in harmony. This means:

1. MQTs must continue to provide their added performance benefit to data warehousing applications.

2. MQTs cannot become a means for gaining access to data protected through RCAC rules that are
specified in the dependent base tables, either through direct access to the MQT or by MQT matching
and substitution.

If a materialized query table that depends on the table (directly or indirectly through a view) for which
access control is being activated and that materialized query table does not already have its own access
control activated, row level access control is implicitly activated for the materialized query table. This
restricts direct access to the contents of the materialized query table. A query that explicitly references
the MQT table before such a row permission is defined returns Row Not Found as if there was no data in
the table.

In this example MQT:

CREATE TABLE MQT1

AS (SELECT patientid, patientname,pcpid,pharmacy
FROM patient

WHERE diagnosis is not null)

DATA INITIALLY IMMEDIATE REFRESH DEFERRED

ENABLE QUERY OPTIMIZATION

MAINTAINED BY USER;

To provide access to this materialized query table, an appropriate row permission can be created, or

an ALTER TABLE DEACTIVATE ROW ACCESS CONTROL on the materialized query table can be issued to
remove the row level protection if that is appropriate. If the query optimizer substitutes one or more
tables in a query with this materialized query table via MQT substitution, the row and column access
controls on the replaced (base) tables remain in effect, and the access controls, if any, on the materialized
query table do not apply.

SELECT * FROM MQT1

results in no rows because it does not have its own RCAC policy and therefore it cannot expose rows per
the PATIENT table.

114 IBM i: Performance and Query Optimization

The following query however can be satisfied by the MQT1

SELECT patientid, patientname, pharmacy FROM patient WHERE patientid>4 and diagnosis is not
null;

Row and column level access control does not affect the REFRESH TABLE statement. The table is
refreshed as if row and column level access controls do not exist.

REFRESH TABLE mqtl;

The graphic below shows the Visual Explain that reflects the MQT match and substitution. Note that had
the MQT1 not surfaced a required value of PCPID for the existing RCAC SQL Rules, it would not be able to
satisfy the query request as an MQT match, even though that field is not in the required select list. In this
example Visual Explain, you can see the MQT1 substituted but also inherited the RCAC rules of the base
table PATIENT.

Database performance and query optimization 115

12501

El=
Mested Loop Join

1:5:1/4 »W
-+

Mested Loop Join Hash Probe

g

Table Scan Fetch N Rowes Temparany Hash Table

hITH
T:1 |1

Union all Table Scan
FATIEMTCHOICE
VARN

And And

IV B TN

e e 0 e
-]

Table Scan
FATIENTCHOICE

Logic Logic Logic

Table Scan
FHSICIAN

Index advice of the originating query, which is depicted in the graphic below, includes advice over the
main query table, over the MQT and over the RCAC required tables.

116 IBM i: Performance and Query Optimization

Index Advisor | Staistics Advisor
Itis recommended that the fallowing indexes be created: =1
Create Tahle Hame Schema Index Type Calumns
v FATIEMNT 5. Binary Radix FATIEMTID
v MiT 5. Binary Radix FATIEMTID
v PHYSICIAR 5 Binary R adix FCPLSER
v PATIEMTCHOICE =] Binary Radix CHOICE o
WALLIE
FATIENTID
\ LIJ
oK Help |7

As many MQTs, such as the one below, provide ready made aggregation values so aggregating queries in
a data warehousing environment perform quickly, these MQTs are now likely not to match query requests
with aggregated selection via MQT substitution.

The aggregation is based on the REFRESH TABLE with no RCAC applied and yet the matching is based on
the underlying base table and all its RCAC requirements.

CREATE TABLE MQT_AGG
AS (SELECT pcpid, count(x) patientcnt
FROM patient group by pcpid

)

DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION

MAINTAINED BY USER;

The following query, although it appears to be a match for the above MQT_AGG, will not substitute the
MQT per RCAC rules.

SELECT pcpid, count(x) FROM PATIENT WHERE pcpid in (1, ...) GROUP BY pcpid

All existing MQTs should be analyzed before deploying RCAC policy on base tables to make sure that
performance does not unexpectedly start to suffer because MQTs are no longer available to facilitate
the request.

Because most aggregating queries are not dealing with 'details' and so possibly less sensitive to the
requirements of RCAC, aggregating MQT over base tables with RCAC might be best deployed by direct
substitution in the query and restriction through table privileges and disabling the default RCAC rule,
restricting all rows, as follows.

ALTER TABLE MQT_AGG DEACTIVATE ROW ACCESS CONTROL;

This deactivates the default RCAC applied due to base tables with RCAC and allows direct access to the
MQT in a warehousing environment.

Database performance and query optimization 117

Optimizing query performance using query optimization tools

Query optimization is an iterative process. You can gather performance information about your queries
and control the processing of your queries.

Db2 for IBM i — Health Center

Use the Db2 for IBM i Health Center to capture information about your database. You can view the total
number of objects, the size limits of selected objects, the design limits of selected objects, environmental
limits, and activity level.

Navigator view of Health Center

The System i Navigator provides a robust graphical interface to capture, view, and interact with the Health
Center.

To start the health center, follow these steps:

1. In the System i Navigator window, expand the system that you want to use.

2. Expand Databases.

3. Right-click the database that you want to work with and select Health Center.

You can change your preferences by clicking Change and entering filter information. Click Refresh to
update the information.

To save your health center history, do the following:

1. In the System i Navigator window, expand the system you want to use.

2. Expand Databases.

3. Right-click the database that you want to work with and select Health Center.
4

. On the health center dialog, select the area that you want to save. For example, if you want to save the
current overview, click Save on the Overview tab. Size limits and Design limits are not saved.

5. Specify a schema and table to save the information. You can view the contents of the selected table
by clicking View Contents. If you select to save information to a table that does not exist, the system
creates the table for you.

Health Center SQL procedures
The Health Center is implemented upon several Db2 for i SQL procedures.

IBM i users can call the Health Center SQL procedures directly.

QSYS2.Health_Database_Overview ()
The QSYS2.Health_Database_Overview() procedure returns counts of all the different types of Db2 for i
objects within the target schema or schemas. The counts are broken down by object type and subtype.

Procedure definition:

CREATE PROCEDURE QSYS2.HEALTH_DATABASE_OVERVIEW (
IN ARCHIVE_OPTION INTEGER,
IN OBJECT_SCHEMA VARCHAR(258),
IN NUMBER_OF_ITEMS_ARCHIVE INTEGER,
IN OVERVIEW_SCHEMA VARCHAR(258),
IN OVERVIEW_TABLE VARCHAR(258))
DYNAMIC RESULT SETS 1
LANGUAGE C
SPECIFIC QSYS2.HEALTH_DATABASE_OVERVIEW
NOT DETERMINISTIC
MODIFIES SQL DATA
CALLED ON NULL INPUT
EXTERNAL NAME 'QSYS/QSQHEALTH(OVERVIEW)'
PARAMETER STYLE SQL;

118 IBM i: Performance and Query Optimization

Service Program Name: QSYS/QSQHEALTH
Default Public Authority: *USE

Threadsafe: Yes

IBMirelease
This procedure was added to IBM i in V5R4MO.

Parameters

Archive_Option (Input) The type of operation to perform for the Db2 for i Health Center
overview detail.

The supported values are:

« 1 = Query only, no archive action is taken
» 2 = Archive only

« 3 = Create archive and archive

» 4 = Query the archive

Note: Option 1 produces a new result set. Options 2 and 3 simply use the
results from the last Query option. Option 3 fails if the archive exists.

Object_Schema (Input) The target schema or schemas for this operation. A single schema
name can be entered. The ‘%' character can be used to direct the
procedure to process all schemas with names that start with the same
characters which appear before the ‘%'. When this parameter contains
only the ‘%' character, the procedure processes all schemas within the
database.

Number_Of_Items_Archive (Input) The number of rows to archive.

The archive can be used to recognize trends over time. To have meaningful
historical comparisons, choose the row count size carefully. This argument
is ignored if the Archive_Option is 1.

Overview_Table (Input) The table that contains the database overview archive.

This argument is ignored if the Archive_Option is 1.

Authorities

To query an existing archive, *USE object authority is required for the Overview_Schema and
Overview_Table. To create an archive, *CHANGE object authority is required for the Overview_Schema.
To add to an existing archive, *CHANGE object authority is required for the Overview_Table and *USE
object authority is required for the Overview_Schema.

Result Set
When Archive_Option is 1 or 4, a single result set is returned.
The format of the result is as follows.

QSYS2.Health_Database_Overview () result set format:

"TIMESTAMP" TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
SCHEMAS BIGINT NOT NULL ,

GRPO1 CHAR(1) DEFAULT NULL ,

TABLES BIGINT NOT NULL ,

PARTITIONED_TABLES FOR COLUMN TABLESRT BIGINT NOT NULL ,
DISTRIBUTED_TABLES FOR COLUMN TABLES_DST BIGINT NOT NULL ,
MATERIALIZED_QUERY_TABLES FOR COLUMN TABLES_MAT BIGINT NOT NULL ,

Database performance and query optimization 119

PHYSICAL_FILES FOR COLUMN TABLESHY BIGINT NOT NULL ,
SOURCE_FILES FOR COLUMN TABLES_SRC BIGINT NOT NULL ,

GRPO2 CHAR(1) DEFAULT NULL ,

VIEWS BIGINT NOT NULL ,

LOGICAL_FILES FOR COLUMN VIEWS_LGL BIGINT NOT NULL ,

GRPO3 CHAR(1) DEFAULT NULL ,

BINARY_RADIX_INDEXES FOR COLUMN INDEXES_BI BIGINT NOT NULL ,
EVI_INDEXES FOR COLUMN INDEXES_EV BIGINT NOT NULL ,

GRPO4 CHAR(1) DEFAULT NULL ,

PRIMARY_KEY_CONSTRAINTS FOR COLUMN CSTSRI BIGINT NOT NULL ,
UNIQUE_CONSTRAINTS FOR COLUMN CSTS_UNQ BIGINT NOT NULL ,
CHECK_CONSTRAINTS FOR COLUMN CSTS_CHK BIGINT NOT NULL ,
REFERENTIAL_CONSTRAINTS FOR COLUMN CSTS_RI BIGINT NOT NULL
GRPO5 CHAR(1) DEFAULT NULL ,

EXTERNAL_TRIGGERS FOR COLUMN TRGS_EXT BIGINT NOT NULL ,
SQL_TRIGGERS FOR COLUMN TRGS_SQL BIGINT NOT NULL ,
INSTEAD_OF_TRIGGERS FOR COLUMN TRGS_INSTD BIGINT NOT NULL ,
GRPO6 CHAR(1) DEFAULT NULL ,

ALIASES BIGINT NOT NULL ,

DDM_FILES BIGINT NOT NULL ,

GRPO7 CHAR(1) DEFAULT NULL ,

EXTERNALROCEDURES FOR COLUMN PROCS_EXT BIGINT NOT NULL ,
SQLROCEDURES FOR COLUMN PROCS_SQL BIGINT NOT NULL ,

GRPO8 CHAR(1) DEFAULT NULL ,

EXTERNAL_SCALAR_FUNCTIONS FOR COLUMN FUNCS_EXTS BIGINT NOT NULL ,
EXTERNAL_TABLE_FUNCTIONS FOR COLUMN FUNCS_EXTT BIGINT NOT NULL ,

SOURCE_SCALAR_FUNCTIONS FOR COLUMN FUNCS_SRCS BIGINT NOT NULL

SOURCE_AGGREGATE_FUNCTIONS FOR COLUMN FUNCS_SRCA BIGINT NOT NULL ,

SQL_SCALAR_FUNCTIONS FOR COLUMN FUNCS_SQLS BIGINT NOT NULL ,
SQL_TABLE_FUNCTIONS FOR COLUMN FUNCS_SQLT BIGINT NOT NULL ,
GRPO9 CHAR(1) DEFAULT NULL ,

SEQUENCES BIGINT NOT NULL ,

SQLACKAGES FOR COLUMN SQLPKGS BIGINT NOT NULL ,
USER_DEFINED_DISTINCT_TYPES FOR COLUMN UDTS BIGINT NOT NULL ,
JOURNALS BIGINT NOT NULL ,

JOURNAL_RECEIVERS FOR COLUMN JRNRCV BIGINT NOT NULL ,
"SCHEMA" VARCHAR(258) ALLOCATE(10) NOT NULL

LABEL ON COLUMN <result set>

("TIMESTAMP" IS 'Timestamp' ,
SCHEMAS IS 'Schemas' ,
GRPO1 IS 'Tables' ,

TABLES IS 'Non-partitioned tables' ,
PARTITIONED_TABLES IS 'Partitioned tables'
DISTRIBUTED_TABLES IS 'Distributed tables'
MATERIALIZED_QUERY_TABLES IS 'Materialized query
PHYSICAL_FILES IS 'Physical files' ,
SOURCE_FILES IS 'Souzrce files' ,

GRPO2 IS 'Views' ,
VIEWS IS 'Views' ,

LOGICAL_FILES IS 'Logical files' ,

GRPO3 IS 'Indexes' ,

BINARY_RADIX_INDEXES IS 'Binary radix

EVI_INDEXES IS 'Encoded vector indexes'

GRPO4 IS 'Constraints' ,
PRIMARY_KEY_CONSTRAINTS IS 'PRIMARY KEY
UNIQUE_CONSTRAINTS IS 'UNIQUE
CHECK_CONSTRAINTS IS 'CHECK
REFERENTIAL_CONSTRAINTS IS 'Referential
GRPO5 IS 'Triggers' ,

EXTERNAL_TRIGGERS IS 'External triggers' ,
SQL_TRIGGERS IS 'SQL triggers' ,
INSTEAD_OF_TRIGGERS IS 'INSTEAD OF triggers' ,
GRPO6 IS 'Aliases' ,

ALIASES IS 'Aliases' ,

DDM_FILES IS 'DDM files' ,

GRPO7 IS 'Procedures' ,

EXTERNALROCEDURES IS 'External procedures' ,
SQLROCEDURES IS 'SQL procedures' ,

GRPO8 IS 'Functions' ,

EXTERNAL_SCALAR_FUNCTIONS IS 'External scalar
EXTERNAL_TABLE_FUNCTIONS IS 'External table
SOURCE_SCALAR_FUNCTIONS IS 'Source scalar

constraints' ,
constraints' ,

SOURCE_AGGREGATE_FUNCTIONS IS 'Source aggregate

SQL_SCALAR_FUNCTIONS IS 'SQL scalar
SQL_TABLE_FUNCTIONS IS 'SQL table
GRPO9 IS 'Miscellaneous' ,

SEQUENCES IS 'Sequences' ,

SQLACKAGES IS 'SQL packages' ,

USER_DEFINED_DISTINCT_TYPES IS 'User-defined distinct

JOURNALS IS 'Journals' ,

120 IBM i: Performance and Query Optimization

r

r

constraints'

constraints'

tables' ,

indexes' ,

’

functions'

functions'
functions'

’

’

functions'

functions' ,
functions' ,

types'

’

’

r

JOURNAL_RECEIVERS IS 'Journal receivers' ,
"SCHEMA" IS 'Schema mask') ;

Error Messages

Table 34. Error messages

Message ID Error Message Text

SQLO462 W This warning appears in the job log if the procedure encounters objects for
which the user does not have *USE object authority. The warning is provided as
an indication that the procedure was unable to process all available objects.

Usage Notes

None

Related Information

None

Examples

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 1058.

Example 1

Retrieve the overview for the entire database.

CALL QSYS2.Health_Database_Overview(1, '%', NULL, NULL, NULL);

Example results in System i Navigator:

Database performance and query optimization 121

=1E

% Health Center - Serverl.mycompany.com(Serverl) :

Overview | Enviranmental Limits | Activity| Size Limits | Design Limits |

 Settings far analysis -

Schema: All names Zhange...];

Metric - 10022109 ¥:33:39 Al

Metric - 10022709 T:33:39 Ahd Value
&) chemas 7ig
=-[0 Tahles
-0 Mon-partitioned tables 46541
- Partitioned tahles 32
~EH Distributed tables a4
~[E2 Materialized gquen tables T
-~ Physical files 11,235
-~ Source files 1,646
=988 Views
-8 Views 5,129
-8 Logical files 1,824

+- M Indexes

E

_E@ Constraints
EEI--- Trigogers
-5 Aliases
L
E
£

]@ FProcedures
]E Functions
-EEl Wiscellaneous

]

Refresh] Wiew History. .. Save...

Close] Help |?

Example 2
Archive all rows in the overview to an SQL table named MYLIB/ARCHIVE1.

CALL QSYS2.Health_Database_Overview(3, '%', 2147483647, 'MYLIB', 'ARCHIVE1')

Example 3
Retrieve the overview from MYLIB/ARCHIVE1.

CALL QSYS2.Health_Database_Overview(4, '%', NULL, 'MYLIB', 'ARCHIVE1')

Example results in System i Navigator:

122 IBM i: Performance and Query Optimization

B Health Center Overview History - Serverl.mycompany.com(Serverl)

History table: wMYLIE ARCHMNET
hetric
Metric Walue
----- # Collections 10722009 7:58:39 A e
_{@ Schemas rra
=-E0 Tahles
- Mon-paritioned tables 4542
- Partitioned tahles 32
- Distributed tables 49
~[52 Materialized fquerytables i
- Physical files 11,234
- Source files 1,646
=- Wiews
8 Views 5,129
-8 Logical files 1,824
- Indexes LJ
Refresh | Select Collections to View...| Delete Collections... Cloze | Help l‘?|

QSYS2.Health_Activity ()
The QSYS2.Health _Activity () procedure returns summary counts of database and SQL operations over a
set of objects within one or more schemas.

Procedure definition:

CREATE PROCEDURE QSYS2.HEALTH_ACTIVITY(
IN ARCHIVE_OPTION INTEGER,
IN REFRESH_CURRENT_VALUES INTEGER,
IN OBJECT_SCHEMA VARCHAR(258),
IN OBJECT_NAME VARCHAR(258),
IN NUMBER_OBJECTS_ACTIVITY_TO_ARCHIVE INTEGER,
IN NUMBER_OF_ACTIVITY_ARCHIVE INTEGER,
IN ACTIVITY_SCHEMA VARCHAR(258),
IN ACTIVITY_TABLE VARCHAR(258))
DYNAMIC RESULT SETS 1
LANGUAGE C
SPECIFIC QSYS2.HEALTH_ACTIVITY
NOT DETERMINISTIC
MODIFIES SQL DATA
CALLED ON NULL INPUT
EXTERNAL NAME 'QSYS/QSQHEALTH(ACTIVITY)'
PARAMETER STYLE SQL;

Service Program Name: QSYS/QSQHEALTH
Default Public Authority: *USE

Threadsafe: Yes

IBMirelease
This procedure was added to IBM i 6.1.

Parameters

Archive_Option (Input) The type of operation to perform for the Db2 for i Health
Center overview detail.

Database performance and query optimization 123

The supported values are:

« 1 = Query only, no archive action is taken
2 = Archive only

3 =Create archive and archive

» 4 = Query the archive

Note: Option 1 produces a new result set. Options 2 and 3
simply use the results from the last Query option. Option 3 fails
if the archive exists.

Refresh_Current_Values (Input) This option directs how the archive operation is done.
This option is only valid with archive options 2 and 3.

The supported values are:

- 0 = No. Indicates that we capture the activity on the entire set
of specified schemas and objects.

« 1 =Yes. Indicates that we only refresh the activity of the
objects previously captured (based on the short names).

« 2 = None. Use the results from the prior call. A call must have
been performed in this job before using this option

Object_Schema (Input) The target schema or schemas for this operation. A
single schema name can be entered. The ‘%' character can be
used to direct the procedure to process all schemas with names
that start with the same characters which appear before the
‘%'. When this parameter contains only the ‘%' character, the
procedure processes all schemas within the database.

This name also affects the items refreshed if
Refresh_Current_Values = 1.

Object_Name (Input) The target object name for this operation. Only the ‘%'
character is treated as a wildcard since an underscore is a valid
character in a name. The name must be delimited, if necessary,
and case sensitive.

This name also affects the items refreshed if
Refresh_Current_Values = 1.

Number_Objects_Activity_to_Archive (Input) The number of objects to save for each activity.
Number_Of_Activity_Archive (Input) The number of rows to save per object activity.

The archive can be used to recognize trends over time. To have
meaningful historical comparisons, choose the row count size
carefully. This argument is ignored if the Archive_Option is 1 or
4.

Activity_Schema (Input) The table that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

Activity_Table The table that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

124 1BM i: Performance and Query Optimization

Authorities

To query an existing archive, *USE object authority is required for the Activity_Schema and Activity_Table.
To create an archive, *CHANGE object authority is required for the Activity_Schema. To add to an existing
archive, *CHANGE object authority is required for the Activity_Table and *USE object authority is required
for the Activity_Schema.

When Archive_Option is 1 or 3, *USE object authority is required for the Object_Schema and for any
objects which are indicated by Object_Name. When an object is encountered and the caller does not have
*USE object authority, an SQL0462 warning is placed in the job log. The object is skipped and not included
in the procedure result set.

Result Set

When Archive_Option is 1 or 4, a single result set is returned.

The format of the result is as follows. All these items were added for IBM i 6.1.
QSYS2.Health_Activity() result set format:

“TIMESTAMP" TIMESTAMP NOT NULL,

ACTIVITY VARCHAR(2000) ALLOCATE(20) DEFAULT NULL,

CURRENT_VALUE FOR COLUMN "VALUE" BIGINT DEFAULT NULL,

OBJECT_SCHEMA FOR COLUMN BSCHEMA VARCHAR(128)ALLOCATE(10) DEFAULT NULL,
OBJECT_NAME FOR COLUMN BNAME VARCHAR(128) ALLOCATE(20) DEFAULT NULL,
OBJECT_TYPE FOR COLUMN BTYPE VARCHAR(24) ALLOCATE(10) DEFAULT NULL,
SYSTEM_OBJECT_SCHEMA FOR COLUMN SYS_DNAME VARCHAR(10) ALLOCATE(10)DEFAULT NULL,
SYSTEM_OBJECT_NAME FOR COLUMN SYS_ONAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
PARTITION_NAME FOR COLUMN MBRNAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
ACTIVITY_ID FOR COLUMN ACTIVOOOO1 INTEGER DEFAULT NULL

LABEL ON COLUMN <result set>
("TIMESTAMP" IS 'Timestamp',
ACTIVITY IS 'Activity',

CURRENT_VALUE IS 'Current Value',

OBJECT_SCHEMA IS 'Object Schema',

OBJECT_NAME IS 'Object Name',

OBJECT_TYPE IS 'Object Type',

SYSTEM_OBJECT_SCHEMA IS 'System Object Schema',
SYSTEM_OBJECT_NAME IS 'System Object Name',
PARTITION_NAME IS 'Partition Name',

ACTIVITY_ID IS 'Activity ID');

Limit Detail

The supported Database Health Center Activity can be seen on any machine by executing this query. The
supported value column contains zeros because this category of Health Center information is not tied to a
limit.

SELECT * FROM QSYS2.SQL_SIZING WHERE SIZING_ID BETWEEN 18000 AND 18199;

Note: The bold rows were added in IBM i 7.1.

Table 35. Summary counts of database and SQL operations within a schema.

SIZING_ID |SIZING_NAME SUPPORTED_VALUE
18100 INSERT OPERATIONS 0

18101 UPDATE OPERATIONS 0

18102 DELETE OPERATIONS 0

18103 LOGICAL READS 0

18104 PHYSICAL READS 0

18105 CLEAR OPERATIONS 0

Database performance and query optimization 125

Table 35. Summary counts of database and SQL operations within a schema. (continued)
SIZING_ID |SIZING_NAME SUPPORTED_VALUE
18106 INDEX BUILDS/REBUILDS 0

18107 DATA SPACE REORGANIZE OPERATIONS 0

18108 DATA SPACE COPY OPERATIONS 0

18109 FULL OPENS 0

18110 FULL CLOSES 0

18111 DAYS USED 0

18112 INDEX QUERY USE 0

18113 INDEX QUERY STATISTICS USE 0

18114 INDEX LOGICAL READS 0

18115 INDEX RANDOM READS o

18116 SQL STATEMENT COMPRESSION COUNT 0

18117 SQL STATEMENT CONTENTION COUNT 0

18118 RANDOM READS 1]

18119 SEQUENTIAL READS 0

Error Messages

Table 36. Error messages

Message ID Error Message Text

SQLO462 W This warning appears in the job log if the procedure encounters objects for
which the user does not have *USE object authority. The warning is provided as
an indication that the procedure was unable to process all available objects.

Usage Notes

None

Related Information

None

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 1058.

Retrieve the activity information for all objects within the QSYS2 schema, using a maximum of 10 objects
per each activity.

CALL QSYS2.Health_Activity(1, ©, 'QSYS2', '%', 10, NULL, NULL, NULL);

Example results in System i Navigator:

126 IBM i: Performance and Query Optimization

K4 Health Center - Server1(Serverl) MWi=1E3

Overview | Environmental Lirits ﬂtﬁﬁihf] Size Limits | Design Limits
i Settings for analysis -

' Lge the following filters
Schema: LSYS2

Qhject; All names
change...

Chjects per activity, 10
" Use the following history file

[j=dmy e #1 ee
=Ly

Activity - TOR2E09 10:78:178 Al

Activity - 10726009 10:18:18 Ak J Walug J Status
F-7) Insert aperations
F-C) Update operations
#-7) Delete operations
#-) Logical reads
F-7) Physical reads
[3

[

[

[4

H-C7) Clear operations
H-0 Full opens
H-7) Full closes

QSYE2,SYETHTINDI (SYSTEOODO1) 21,155 [Mormal

QSYS2 SYSTHTINDI (SYSTEODDOT) 14756 [Mormal
B QSY52 QASQRESL (SYSRO0D0001) 10,108 [Mormal
B Q5Y52.5YSTATCOL (SYSTEDDOO1) 5,572 [Mormal
-~ % QY52 0ASQSPDP (QASQDRDF) 9,318 [Mormal
-~ % Q5Y52.QASQDRDP (QASQDRDF) 9,318 [Mormal
B QSY52.0ASEQOR) (SYSSEQORB 9,724 [Mormal
-~ EE QSY52.SYSTHTINDI (SYSTEDDDOT) 7786 [Mormal
-~ % QY52 QASEQOB) (QASEQOB) 814 [Mormal
-~ & QY52 5YSTHTCOL (SYSTXTCOLD 438 [Mormal

I+

H-27) Index query statistics use
H-) Index lagical reads

I+

BEefresh Wieny Histamn. . Save..
hange Status Ihreshuld...l

Cloze] Help I?

Database performance and query optimization 127

QSYS2.Health_Design_Limits ()

The QSYS2.Health_Design_Limits () procedure returns detailed counts of design limits over a set of
objects within one or more schemas. Design limits correspond to architectural constructs, such as
‘Maximum number of columns in a table or view'.

Procedure definition:

CREATE PROCEDURE QSYS2.HEALTH_DESIGN_LIMITS(

ARCHIVE_OPTION INTEGER,

IN REFRESH_CURRENT_VALUES INTEGER,
IN OBJECT_SCHEMA VARCHAR(258),

IN OBJECT_NAME VARCHAR(258),

IN NUMBER_OBJECTS_LIMIT_TO_ARCHIVE INTEGER,
IN NUMBER_OF_LIMITS_ARCHIVE INTEGER,

IN LIMIT_SCHEMA VARCHAR(258),
IN LIMIT_TABLE VARCHAR(258),
DYNAMIC RESULT SETS 1
LANGUAGE C

SPECIFIC QSYS2.HEALTH_DESIGN_LIMITS

NOT DETERMINISTIC
MODIFIES SQL DATA
CALLED ON NULL INPUT

EXTERNAL NAME 'QSYS/QSQHEALTH(DESIGN) '

PARAMETER STYLE SQL;

Service Program Name: QSYS/QSQHEALTH

Default Public Authority: *USE

Threadsafe: Yes

IBMirelease

This procedure was added to IBM i V5R4MO.

Parameters

Archive_Option

Refresh_Current_Values

(Input) The type of operation to perform for the Db2 for i Health
Center activity detail.

The supported values are:

« 1 = Query only, no archive action is taken
« 2 = Archive only

= 3 =Create archive and archive

« 4 = Query the archive

Note: Option 1 produces a new result set. Options 2 and 3 simply
use the results from the last Query option. Option 3 fails if the
archive exists.

(Input) This option directs how the archive operation is done. This
option is only valid with archive options 2 and 3.

The supported values are:

« 0 = No. Indicates that we capture the activity on the entire set of
specified schemas and objects.

« 1 =Yes. Indicates that we only refresh the activity of the objects
previously captured (based on the short names).

« 2 = None. Use the results from the prior call. A call must have
been performed in this job before using this option

128 IBM i: Performance and Query Optimization

Object_Schema (Input) The target schema or schemas for this operation. A single
schema name can be entered. The ‘%' character can be used
to direct the procedure to process all schemas with names that
start with the same characters which appear before the ‘%'. When
this parameter contains only the ‘%' character, the procedure
processes all schemas within the database.

This name also affects the items refreshed if
Refresh_Current_Values = 1.

Object_Name (Input) The target object name for this operation. Only the ‘%'
character is treated as a wildcard since an underscore is a valid
character in a name. The name must be delimited, if necessary,
and case sensitive.

This name also affects the items refreshed if
Refresh_Current_Values = 1.

Number_Objects_Limit_to_Archive (Input) The number of objects to save for each design limit.
Number_Of_Limits_Archive (Input) The number of rows to save per object design limit.

The archive can be used to recognize trends over time. To have
meaningful historical comparisons, choose the row count size
carefully. This argument is ignored if the Archive_Option is 1 or
4.

Limit_Schema (Input) The schema that contains the database limit archive.

This argument is ignored if the Archive_Option is 1.

Limit_Table The table that contains the database limit archive.

This argument is ignored if the Archive_Option is 1.

Authorities

To query an existing archive, *USE object authority is required for the Limit_Schema and Limit_Table.
To create an archive, *CHANGE object authority is required for the Limit_Schema. To add to an archive,
*CHANGE object authority is required for the Limit_Table.

When Archive_Option is 1 or 3, *USE object authority is required for the Object_Schema and for any
objects which are indicated by Object_Name. When an object is encountered and the caller does not have
*USE object authority, an SQL0462 warning is placed in the job log. The object is skipped and not included
in the procedure result set.

Result Set

When Archive_Option is 1 or 4, a single result set is returned.

The format of the result is as follows. All these items were added for IBM i V5R4MO.
QSYS2.Health_Design_Limits() result set format:

“TIMESTAMP" TIMESTAMP NOT NULL,

LIMIT VARCHAR(2000) ALLOCATE(20) DEFAULT NULL,

CURRENT_VALUE FOR COLUMN "VALUE" BIGINT DEFAULT NULL,

PERCENT DECIMAL(5, 2) DEFAULT NULL,

OBJECT_SCHEMA FOR COLUMN BSCHEMA VARCHAR(128) ALLOCATE(10) DEFAULT NULL,
OBJECT_NAME FOR COLUMN BNAME VARCHAR(128) ALLOCATE(20) DEFAULT NULL,

OBJECT_TYPE FOR COLUMN BTYPE VARCHAR(24) ALLOCATE(10) DEFAULT NULL,
SYSTEM_OBJECT_SCHEMA FOR COLUMN SYS_DNAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
SYSTEM_OBJECT_NAME FOR COLUMN SYS_ONAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
PARTITION_NAME FOR COLUMN MBRNAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL

Database performance and query optimization 129

MAXIMUM_VALUE FOR COLUMN "MAXVALUE" BIGINT DEFAULT NULL
LIMIT_ID INTEGER DEFAULT NULL

LABEL ON COLUMN <result set>
("TIMESTAMP" IS 'Timestamp',
LIMIT IS 'Limit',

CURRENT_VALUE IS 'Current Value',

PERCENT IS 'Percent',

OBJECT_SCHEMA IS 'Object Schema',

OBJECT_NAME IS 'Object Name ',

OBJECT_TYPE IS 'Object Type',

SYSTEM_OBJECT_SCHEMA IS 'System Object Schema',
SYSTEM_OBJECT_NAME IS 'System Object Name ',
PARTITION_NAME IS 'Partition Name',

MAXIMUM_VALUE IS 'Maximum Value',

LIMIT_ID IS 'Limit ID');

Limit Detail

The supported Database Health Center Design limits can be seen on any machine by executing this query:

SELECT * FROM QSYS2.SQL_SIZING WHERE SIZING_ID BETWEEN 16000 AND 16999;

Table 37. Design limits over objects within a schema.

SIZING_ID |SIZING_NAME SUPPORTED_VALUE
16100 MAXIMUM NUMBER OF MEMBERS 327670

16101 MAXIMUM NUMBER OF RECORD FORMATS 32

16800 MAXIMUM JOURNAL RECEIVER SIZE 1.09951E+12 (~1 TB)
163801 TOTAL SQL STATEMENTS 0

16802 TOTAL ACTIVE SQL STATEMENTS 0

16803 MAXIMUM SQL PACKAGE SIZE 520093696 (~500 MB)
16804 MAXIMUM LARGE SQL PACKAGE SIZE 1056964608 (~1 GB)
16805 MAXIMUM SQL PROGRAM ASSOCIATED SPACE SIZE 16777216

Error Messages

Table 38. Error messages

Message ID Error Message Text

SQLO462 W This warning appears in the job log if the procedure encounters objects for
which the user does not have *USE object authority. The warning is provided as
an indication that the procedure was unable to process all available objects.

Usage Notes

None

Related Information

None

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 1058.

130 IBM i: Performance and Query Optimization

Retrieve the design limit information for all object names which start with the letter R, within the SYSIBM
schema, using a maximum of 20 objects per each design limit.

CALL QSYS2.Health_Design_Limits(1, @, 'SYSIBM', 'R%', 20, NULL, NULL, NULL);

Example results in System i Navigator:

K Health Center - Serverl.mycompany.com(Serverl)

Overview | Environmental Limits | Activity | Size Limits Design Limits |
- Settings far analysis

* Lse the following filters
Schema: SYSIBM

Chject: F%
Change...

Ohjects per design limit: 20
T Use the following histary file

Design Limit- 1072209 10:37:44 A

Dresign Limit- 10522009 10:37:44 AM Yalue FPercent of Limit Status
mum number of columns in & table ory

@ SYSIBM ROUTIMNES_S g2 1.02] Marmal
@ SYSIBM ROUTIMES g2 1.02 [Marmal
@ SYSIBM.REFERENTIAL_COMSTRAIMTS g 0.11 [Marmal
@ SYSIBM.REF_COMNSTRAINTS g 0.11 [Marmal

-2 Maximum length of a row (32 KB)
@ SYSIBMROUTINES_S 9.68 KB 30.24] Mormal
@ SYSIBM ROUTIMES 9.68 KB 30.24] Marmal
@ SYSIBM.REFERENTIAL_COMNSTRAIMTS 814 hvtes 2.48 [Marmal
@ SYSIBM.REF_COMSTRAINTS 814 wtes 248 [Marmal

- Maximurm row length with LOBs (3.5 GE)

) Maximum number oftables referenced in a view ar logical (256

F-{C3) Maximum numhber of members (32,767)

1] LJ

Eefrezh ‘ Wiew Histary... Save... Zhange Status Threshold... |

Close ‘ Help 1‘?\

QSYS2.Health_Size_Limits ()

The QSYS2.Health_Size_Limits () procedure returns detailed size information for database objects within
one or more schemas. Size limits help you understand trends towards reaching a database limit such as
‘Maximum size of the data in a table partition".

Procedure definition:

CREATE PROCEDURE QSYS2.HEALTH_SIZE_LIMITS(
IN ARCHIVE_OPTION INTEGER,
IN REFRESH_CURRENT_VALUES INTEGER,
IN OBJECT_SCHEMA VARCHAR(258),
IN OBJECT_NAME VARCHAR(258),
IN NUMBER_OBJECTS_LIMIT_TO_ARCHIVE INTEGER,
IN NUMBER_OF_LIMITS_ARCHIVE INTEGER,
IN LIMIT_SCHEMA VARCHAR(258),
IN LIMIT_TABLE VARCHAR(258))
DYNAMIC RESULT SETS 1
LANGUAGE C
SPECIFIC QSYS2.HEALTH_SIZE_LIMITS

Database performance and query optimization 131

NOT DETERMINISTIC
MODIFIES SQL DATA
CALLED ON NULL INPUT

EXTERNAL NAME 'QSYS/QSQHEALTH(SIZE)'

PARAMETER STYLE SQL;

Service Program Name: QSYS/QSQHEALTH

Default Public Authority: *USE

Threadsafe: Yes

IBMirelease

This procedure was added to IBM i V5R4MO.

Parameters

Archive_Option

Refresh_Current_Values

Object_Schema

Object_Name

(Input) The type of operation to perform for the Db2 for i Health
Center activity detail.

The supported values are:

« 1 = Query only, no archive action is taken
2 = Archive only

« 3 =Create archive and archive

» 4 = Query the archive

Note: Option 1 produces a new result set. Options 2 and 3 simply
use the results from the last Query option. Option 3 fails if the
archive exists.

(Input) This option directs how the archive operation is done. This
option is only valid with archive options 2 and 3.

The supported values are:

« 0 = No. Indicates that we capture the activity on the entire set of
specified schemas and objects.

« 1 =Yes. Indicates that we only refresh the activity of the objects
previously captured (based on the short names).

« 2 = None. Use the results from the prior call. A call must have
been performed in this job before using this option

(Input) The target schema or schemas for this operation. A single
schema name can be entered. The ‘%' character can be used

to direct the procedure to process all schemas with names that
start with the same characters which appear before the ‘%'. When
this parameter contains only the ‘%' character, the procedure
processes all schemas within the database.

This name also affects the items refreshed if
Refresh_Current_Values = 1.

(Input) The target object name for this operation. Only the ‘%'
character is treated as a wildcard since an underscore is a valid
character in a name. The name must be delimited, if necessary,
and case sensitive.

This name also affects the items refreshed if
Refresh_Current_Values = 1.

132 IBM i: Performance and Query Optimization

Number_Objects_Limit_to_Archive (Input) The number of objects to save for each size limit.

Number_Of_Limits_Archive

(Input) The number of rows to save per object size limit.

The archive can be used to recognize trends over time. To have
meaningful historical comparisons, choose the row count size
carefully. This argument is ignored if the Archive_Option is 1 or

4,

Limit_Schema

(Input) The schema that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

Limit_Table

The table that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

Authorities

To query an existing archive, *USE object authority is required for the Limit_Schema and Limit_Table.
To create an archive, *CHANGE object authority is required for the Limit_Schema. To add to an archive,
*CHANGE object authority is required for the Limit_Table.

When Archive_Option is 1 or 3, *USE object authority is required for the Object_Schema and for any
objects which are indicated by Object_Name. When an object is encountered and the caller does not have
*USE object authority, an SQL0462 warning is placed in the job log. The object is skipped and not included

in the procedure result set.

Result Set

When Archive_Option is 1 or 4, a single result set is returned.

The format of the result is as follows.
QSYS2.Health_Size Limits() result set format:

“TIMESTAMP" TIMESTAMP NOT NULL,
LIMIT VARCHAR(2000) ALLOCATE(20) DEFAULT NULL,

CURRENT_VALUE FOR COLUMN "VALUE" BIGINT DEFAULT NULL,

PERCENT DECIMAL(5, 2) DEFAULT NULL, OBJECT_SCHEMA FOR COLUMN BSCHEMA VARCHAR(128) ALLOCATE(10) DEFAULT

NULL,

OBJECT_NAME FOR COLUMN BNAME VARCHAR(128) ALLOCATE(20) DEFAULT NULL,

OBJECT_TYPE FOR COLUMN BTYPE VARCHAR(24) ALLOCATE(10) DEFAULT NULL,
SYSTEM_OBJECT_SCHEMA FOR COLUMN SYS_DNAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
SYSTEM_OBJECT_NAME FOR COLUMN SYS_ONAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,

MAXIMUM_VALUE FOR COLUMN "MAXVALUE" BIGINT DEFAULT NULL,

LIMIT_ID INTEGER DEFAULT NULL,
PARTITION_NAME FOR COLUMN MBRNAME
"SCHEMA" VARCHAR(258) ALLOCATE(10) DEFAULT NULL,
OBJECT VARCHAR(258) ALLOCATE(10) DEFAULT NULL,
"REFRESH" INTEGER DEFAULT NULL

LABEL ON COLUMN <result set>
("TIMESTAMP" IS 'Timestamp',
LIMIT IS 'Limit',

CURRENT_VALUE IS 'Current Value',
PERCENT IS 'Perxcent',

OBJECT_SCHEMA IS 'Object Schema',
OBJECT_NAME IS 'Object Name',
OBJECT_TYPE IS 'Object Type',
SYSTEM_OBJECT_SCHEMA IS 'System Object
SYSTEM_OBJECT_NAME IS 'System Object
MAXIMUM_VALUE IS 'Maximum Value',
LIMIT_ID IS 'Limit D',
PARTITION_NAME IS 'Partition Name',
"SCHEMA" IS 'Schema Mask',

OBJECT IS 'Object Mask',

"REFRESH" IS 'Refresh');

VARCHAR(10) ALLOCATE(10) DEFAULT NULL,

Schema',
Name',

Database performance and query optimization 133

Limit Detail

The supported Database Health Center Size limits can be seen on any machine by executing this query:

SELECT * FROM QSYS2.SQL_SIZING WHERE SIZING_ID BETWEEN 15000 AND 15999;

Table 39. Size limit information for database objects within a schema.

SIZING_ID |SIZING_NAME SUPPORTED_VALUE

15000 MAXIMUM NUMBER OF ALL ROWS 4.29E+09

15001 MAXIMUM NUMBER OF VALID ROWS 4.29E+09

15002 MAXIMUM NUMBER OF DELETED ROWS 4.29E+09

15003 MAXIMUM TABLE PARTITION SIZE 1.7E+12

15004 MAXIMUM NUMBER OF OVERFLOW ROWS 4.29E+09

15101 MAXIMUM ROW LENGTH 32766

15102 MAXIMUM ROW LENGTH WITH LOBS 3.76E+09

15103 MAXIMUM NUMBER OF PARTITIONS 256

15150 MAXIMUM NUMBER OF REFERENCED TABLES 256

15300 MAXIMUM NUMBER OF TRIGGERS 300

15301 MAXIMUM NUMBER OF CONSTRAINTS 300

15302 MAXIMUM LENGTH OF CHECK CONSTRAINT 2097151

15400 MAXIMUM *MAX4GB INDEX SIZE 4.29E+09

15401 MAXIMUM *MAX1TB INDEX SIZE 1.7E+12

15402 MAXIMUM NUMBER OF INDEX ENTRIES 0

15500 MAXIMUM KEY COLUMNS 120

15501 MAXIMUM KEY LENGTH 32767

15502 MAXIMUM NUMBER OF PARTITIONING KEYS 120

15700 MAXIMUM NUMBER OF FUNCTION PARAMETERS 2000

15701 MAXIMUM NUMBER OF PROCEDURE PARAMETERS 2000

Error Messages

Table 40. Error messages

Message ID Error Message Text

SQLO462 W This warning appears in the job log if the procedure encounters objects for
which the user does not have *USE object authority. The warning is provided as
an indication that the procedure was unable to process all available objects.

Usage Notes

None

Related Information

None

134 IBM i: Performance and Query Optimization

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 1058.

Retrieve the size limit information for all object names which start with the letter S, within the SYSIBM
schema, using a maximum of five objects per each design limit.

CALL QSYS2.Health_Size_Limits(1, ©, 'SYSIBM', 'S%', 5, NULL, NULL, NULL);

Example results in System i Navigator:

il Health Center - Serveri(Serverl)

Overview | Ervironmental Limits | Activity Size Limits | Dasign Limits
- Settings far analysis
* Use the following filters
Schema: S SIBM
Chject: 5%
Change. ..
Ohjects per size limit. 9

O Use the following history file

Size Limit- 1002209 12:59:12 PM

Size Limit- 10722109 12:59:12 PM Yalue Fercent of Limit Status
= haximum number of all v in-a partition 4

-~ S¥SIBM.SYSCHARSETS (SYSCHOO001) 86 0.an O Mormal
-~ SYSIBM.SOLTYPEINFO (SOLTYD0001) 24 0.00 O Marmal
- 5¥SIBM SYSPRIVILEGES (SYSPROOD01) 7 0.an [Mormal
-~ S¥SIBM.SYSTABLETYFES (5YSTAQ0O01) 5 0.an O Mormal
-~ SYSIBM.SYSDUMMYT (SYSDIUMAMYT) 1 0.00 O Marmal

) Maximum number of valid rows in a partition (4,294 967 288
H-7) Maximum size of the data in a table padition {1.55 TE)

H-{) Total 0L statements
E
E

+-177) Tatal active SAL statements
+-{7) Maximum SAL program associated space size (16 ME)

1] 3

Refresh ‘ Wiew History. Save. . | ChangeStatusIhreshnld...—

o

« : 7

QSYS2.Health_Environmental_Limits ()

The QSYS2.Health_Environmental_Limits() procedure returns detail on the top 10 jobs on the system,
for different SQL or application limits. The jobs do not have to be in existence. The top 10 information is
maintained within Db2 for i and gets reset when the machine is IPLed, the IASP is varied ON, or when the
QSYS2.Reset_Environmental_Limits() procedure is called.

Procedure definition:

CREATE PROCEDURE QSYS2.HEALTH_ENVIRONMENTAL _LIMITS(
IN ARCHIVE_OPTION INTEGER,
IN NUMBER_OF_LIMITS_ARCHIVE INTEGER,
IN LIMIT_SCHEMA VARCHAR(258),
IN LIMIT_TABLE VARCHAR(258))
DYNAMIC RESULT SETS 1
LANGUAGE C
SPECIFIC QSYS2.HEALTH_ENVIRONMENTAL_LIMITS

Database performance and query optimization 135

NOT DETERMINISTIC

MODIFIES SQL DATA

CALLED ON NULL INPUT

EXTERNAL NAME 'QSYS/QSQHEALTH(ENVIRON)'
PARAMETER STYLE SQL;

Service Program Name: QSYS/QSQHEALTH
Default Public Authority: *USE

Threadsafe: Yes

IBMirelease
This procedure was added to IBM i 6.1.

Parameters

Archive_Option (Input) The type of operation to perform for the Db2 for i Health Center
activity detail.

The supported values are:

« 1 = Query only, no archive action is taken
« 2 = Archive only

= 3 =Create archive and archive

* 4 = Query the archive

Note: Option 1 produces a new result set. Options 2 and 3 simply use the
results from the last Query option. Option 3 fails if the archive exists.

Number_Of_Limits_Archive (Input) The number of rows to save per object health limit.

The archive can be used to recognize trends over time. To have meaningful
historical comparisons, choose the row count size carefully. This argument
is ignored if the Archive_Optionis 1 or 4.

Limit_Schema (Input) The schema that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

Limit_Table The table that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

Authorities

To query an existing archive, *USE object authority is required for the Limit_Schema and Limit_Table.
To create an archive, *CHANGE object authority is required for the Limit_Schema. To add to an archive,
*CHANGE object authority is required for the Limit_Table.

When Archive_Option is 1 or 3, *USE object authority is required for the Object_Schema and for any
objects which are indicated by Object_Name. When an object is encountered and the caller does not have
*USE object authority, an SQL0462 warning is placed in the job log. The object is skipped and not included
in the procedure result set.

Result Set
When Archive_Option is 1 or 4, a single result set is returned.

The format of the result is as follows. All these items were added for IBMi 6.1.

136 IBM i: Performance and Query Optimization

QSYS2.Health_Environmental_Limits() result set format:

"TIMESTAMP" TIMESTAMP NOT NULL,

LIMIT VARCHAR(2000) ALLOCATE(20) DEFAULT NULL,

HIGHWATER_MARK_VALUE FOR COLUMN HIMARK BIGINT DEFAULT NULL,
WHEN_VALUE_WAS_RECORDED FOR COLUMN TIMEHIT TIMESTAMP NOT NULL,

PERCENT DECIMAL(5, 2) DEFAULT NULL,

JOB_NAME VARCHAR(28) ALLOCATE(20) DEFAULT NULL,

"CURRENT_USER" FOR COLUMN CUSER VARCHAR(128) ALLOCATE(10) DEFAULT NULL,
JOB_TYPE VARCHAR(26) ALLOCATE(20) DEFAULT NULL,

MAXIMUM_VALUE FOR COLUMN MAXVAL BIGINT DEFAULT NULL,

JOB_STATUS VARCHAR(13) DEFAULT NULL,

CLIENT_WRKSTNNAME FOR COLUMN "WRKSTNNAME" VARCHAR(255) DEFAULT NULL,
CLIENT_APPLNAME FOR COLUMN "APPLNAME" VARCHAR(255) DEFAULT NULL,
CLIENT_ACCTNG FOR COLUMN "ACCTNG" VARCHAR(255) DEFAULT NULL,
CLIENTROGRAMID FOR COLUMN "PROGRAMID" VARCHAR(255) DEFAULT NULL,
CLIENT_USERID FOR COLUMN "USERID" VARCHAR(255) DEFAULT NULL,
WHEN_LIMITS_ESTABLISHED FOR COLUMN TIMESET TIMESTAMP NOT NULL,
INTERFACE_NAME FOR COLUMN INTNAME VARCHAR(127) ALLOCATE(10) DEFAULT NULL,
INTERFACE_TYPE FOR COLUMN INTTYPE VARCHAR(63) ALLOCATE(10) DEFAULT NULL,
INTERFACE_LEVEL FOR COLUMN INTLEVEL VARCHAR(63) ALLOCATE(10) DEFAULT NULL,
LIMIT_ID INTEGER DEFAULT NULL

LABEL ON COLUMN <result set>
("TIMESTAMP" IS 'Timestamp',
LIMIT IS 'Limit',

HIGHWATER_MARK_VALUE IS 'lLargest Value',

WHEN_VALUE_WAS_RECORDED IS 'Timestamp When Recorded',
PERCENT IS 'Percent',

JOB_NAME IS 'Job Name',

"CURRENT_USER" IS 'Current User',

JOB_TYPE IS 'Job Type',

MAXIMUM_VALUE IS 'Maximum Value',

JOB_STATUS IS 'Job Status',

CLIENT_WRKSTNNAME IS 'Client Workstation Name',
CLIENT_APPLNAME IS 'Client Application Name',
CLIENT_ACCTNG IS 'Client Accounting Code',
CLIENTROGRAMID IS 'Client Program Identifier',
CLIENT_USERID IS 'Client User Identifier',
WHEN_LIMITS_ESTABLISHED IS 'Timestamp Limits Established',
INTERFACE_NAME IS 'Interface Name' ,

INTERFACE_TYPE IS 'Interface Type',

INTERFACE_LEVEL IS 'Interface Level',

LIMIT_ID IS 'Limit ID');

Limit Detail

The supported Database Health Center Environmental limits can be seen on any machine by executing
this query:

SELECT * FROM QSYS2.SQL_SIZING WHERE SIZING_ID BETWEEN 18200 AND 18299;

Note: The bold row was added in IBM i 7.1.

Table 41. SOL environmental limits.
SIZING_ID |SIZING_NAME SUPPORTED_VALUE
18200 MAXIMUM NUMBER OF LOB or XML LOCATORS PER JOB 16000000
18201 MAXIMUM NUMBER OF LOB or XML LOCATORS PER 209000
SERVER JOB
18202 MAXIMUM NUMBER OF ACTIVATION GROUPS 0
18203 MAXIMUM NUMBER OF DESCRIPTORS 0
18204 MAXIMUM NUMBER OF CLI HANDLES 160000
18205 MAXIMUM NUMBER OF SQL OPEN CURSORS 21754
18206 MAXIMUM NUMBER OF SQL PSEUDO OPEN CURSORS 0

Database performance and query optimization 137

Table 41. SOL environmental limits. (continued)

SIZING_ID

SIZING_NAME

SUPPORTED_VALUE

18207

MAXIMUM LENGTH OF SQL STATEMENT2097152

2097152

Error Messages

None

Usage Notes

None

Related Information

None

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 1058.

Retrieve the SQL environmental limits for the current database.

CALL QSYS2.Health_Environmental_Limits(1, O, NULL, NULL);

Example res

® Health Ce

Environmental

ults in System i Navigator:

nter - Serverl(Serverl)

Limit- 10022009 1:09:41 P

Overyiew Ermviranmental Limits] Activity| Size Limits | Design Limits

Limits established: 8/22/09 7:21:21 AM

E=ES

Environrmental Lirmit- 10522059 1:09:41 P

Jm number of Efjo
B0 Mazimurn nurber of active descriptors per job

Walue

Fercent of Limit

Status . When Valug

- @ 714505/5COTTIADFTJOBD (SCOTT) 15,050 Mo maximum [Mormal 10M14/0912:21:3
-8 71444 3MITCHIQDFTJOBD (MITCH]) 14,425 Mo maximum [MNormal 10M14/09 9:3717
- @ 714450MITCH/QDFTJOED (MITCH) 7,825 MO maxmum O Mormal 10/M14/09 9:52:47
- @ FOB00B/QUSERIQZDASOINIT (MITCH) 5,000 Mo maximum O Mormal 100709 32917 F
- @ 714508/3COTTADFTJOBD (SCOTT) 4,950 Mo maximum] Mormal 1014709 12:250.
- @ F14511/3COTTIQDFTIOBD (SCOTT) 4,725 Mo maximum] Mormal 1014709 12:30:41
- @ 70934B/5COTTIAPADEVOOOC (SCOTT) 3,700 Mo maximum] Mormal 10/8/09 8:32:42 A
- &% T145918/3COTTIQDFTIOBD (SCOTT) 2,500 Mo maximum] Mormal 1014709 12:38:3
- & T14910/3COTTIQDFTIOBD (SCOTT) 2,150 Mo maximum] Mormal 1014709 12:26:0°
- @ BYEERIASREV/GSIPALMON (QSRY) 675 Mo maximum [Maormal 10/21/09 4:10:39

EZI--{."';'.] Maximum number of open SAL cursors perjob (21,7547

=) Maximum number of pseuda closed SGL cursars per job

B Maximum length of SQOL staterment per job (2 MEY

|

Refresh

| Clear... Wieww History... I Sawe...

L

Change Status Ihreshuld...l

Close Help J?lLL

138 IBM i: Performance and Query Optimization

0SYS2.Reset_Environmental_Limits ()

The QSYS2.Reset_Environmental_Limits () procedure clears out the environment limit cache for the
database. If IASPs are being used, this procedure clears the environment limit cache for the IASP within
which it is called.

Procedure definition:

CREATE PROCEDURE QSYS2.RESET_ENVIRONMENTAL_LIMITS(
LANGUAGE C
SPECIFIC QSYS2.RESET_ENVIRONMENTAL_LIMITS
NOT DETERMINISTIC
MODIFIES SQL DATA
CALLED ON NULL INPUT
EXTERNAL NAME 'QSYS/QSQSSUDF (RESETENV) '
PARAMETER STYLE SQL;

Service Program Name: QSYS/QSQHEALTH
Default Public Authority: *USE

Threadsafe: Yes

IBMirelease
This procedure was added to IBM i 6.1.

Parameters

None.

Authorities

This procedure requires the user to have *JOBCTL user special authority or be authorized to the
QIBM_DB_SQLADM Function through Application Administration in System i Navigator. The Change
Function Usage (CHGFCNUSG) command can also be used to allow or deny use of the function.

For example:

CHGFCNUSG FCNID(QIBM_DB_SQLADM) USER(xxxxx) USAGE(*ALLOWED)

Result Set

None.

Error Messages

Table 42. Error messages

Message ID Error Message Text

SQLO552 Not authorized to PROCEDURE.

Usage Notes

None

Related Information

None

Database performance and query optimization 139

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 1058.

Reset the SQL environmental limits for the current database.

CALL QSYS2.RESET_ENVIRONMENTAL_LIMITS;

Monitoring your queries using the Database Monitor

Start Database Monitoxr (STRDBMON) command gathers information about a query in real time and
stores this information in an output table. This information can help you determine whether your system
and your queries are performing well, or whether they need fine-tuning. Database monitors can generate
significant CPU and disk storage overhead when in use.

You can gather performance information for a specific query, for every query on the system, or for a group
of queries on the system. When a job is monitored by multiple monitors, each monitor is logging rows to
a different output table. You can identify rows in the output database table by its unique identification
number.

When you start a monitor using the Staxt Database Monitor (STRDBMON) command, the monitor is
automatically registered with System i Navigator and appears in the System i Navigator monitor list.

Note: Database monitors also contain the SQL statement text and variable values. If the variable values or
SQL statements contain sensitive data you should create database monitors in a library that is not publicly
authorized to prevent exposure to the sensitive data.

What kinds of statistics you can gather

The database monitor provides the same information that is provided with the query optimizer debug
messages (Staxrt Debug (STRDBG)) and the Pxrint SQL information (PRTSQLINF) command.
The following is a sampling of the additional information that is gathered by the database monitors:

- System and job name

« SQL statement and subselect number
« Start and end timestamp

« Estimated processing time

« Total rows in table queried

« Number of rows selected

« Estimated number of rows selected
« Estimated number of joined rows

« Key columns for advised index

- Total optimization time

« Join type and method

« ODP implementation

How you can use performance statistics

You can use these performance statistics to generate various reports. For instance, you can include
reports that show queries that:

« Use an abundance of the system resources.

- Take a long time to execute.

« Did not run because of the query governor time limit.
« Create a temporary index during execution

140 IBM i: Performance and Query Optimization

 Use the query sort during execution

« Might perform faster with the creation of a keyed logical file containing keys suggested by the query
optimizer.

Note: A query that is canceled by an end request generally does not generate a full set of performance
statistics. However, it does contain all the information about how a query was optimized, except for
runtime or multi-step query information.

Related information

Start Debug (STRDBG) command

Print SQL Information (PRTSQLINF) command
Start Database Monitor (STRDBMON) command

Start Database Monitor (STRDBMON) command

The Start Database Monitoxr (STRDBMON) command starts the collection of database performance
statistics for a specified job, for all jobs on the system or for a selected set of jobs. The statistics are
placed in a user-specified database table and member. If the table or member do not exist, one is created
based on the QAQQDBMN table in library QSYS, with the public authority for the file the same as the
create authority specified for the library in which the file is created. If the table and member do exist, the
record format of the specified table is verified to ensure it is the same.

For each monitor started using the STRDBMON command, the system generates a monitor ID that can

be used to uniquely identify each individual monitor. The monitor ID can be used on the ENDDBMON
command to uniquely identify which monitor is to be ended. The monitor ID is returned in the
informational message CPI436A which is generated for each occurrence of the STRDBMON command.
The monitor ID can also be found in either the column QQC101 of the QQQ3018 database monitor record
or in the QSYS2.DATABASE_MONITOR_INFO catalog.

Informally there are two types of monitors. A private monitor is a monitor over one, specific job (or the
current job). Only one (1) monitor can be started on a specific job at a time. For example, STRDBMON
JOB(*) followed by another STRDBMON JOB(*) within the same job is not allowed. A public monitor

is a monitor which collects data across multiple jobs. There can be a maximum of 10 public monitors
active at any one time. For example, STRDBMON JOB(*ALL) followed by another STRDBMON JOB(*ALL) is
allowed providing the maximum number of public monitors does not exceed 10. You could have 10 public
monitors and 1 private monitor active at the same time for any specific job.

If multiple monitors specify the same output file, only one copy of the database statistic records is
written to the file for each job. For example, STRDBMON OUTFILE(LIB/TABLE1) JOB(*) and STRDBMON
OUTFILE(LIB/TABLE1) JOB(*ALL) target the same output file. For the current job, there are not two copies
of the database statistic records—one copy for the private monitor and one copy for the public monitor.
There is only one copy of the database statistic records.

If the monitor is started on all jobs (a public monitor), any jobs waiting on queues or started during the
monitoring period are included in the monitor data. If the monitor is started on a specific job (a private
monitor) that job must be active in the system when the command is issued. Each job in the system can
be monitored concurrently by one private monitor and a maximum of 10 public monitors.

The STRDBMON command allows you to collect statistic records for a specific set or subset of the queries
running on any job. This filtering can be performed over the job name, user profile, query table names,
query estimated run time, TCP/IP address, or any combination of these filters. Specifying a STRDBMON
filter helps minimize the number of statistic records captured for any monitor.

Example 1: Starting Public Monitoring

STRDBMON OUTFILE(QGPL/FILE1) OUTMBR(MEMBER1 xADD)
JOB(*ALL) FRCRCD(10))

This command starts database monitoring for all jobs on the system. The performance statistics are

added to the member named MEMBER1 in the file named FILE1 in the QGPL library. 10 records are held
before being written to the file.

Database performance and query optimization 141

Example 2: Starting Private Monitoring

STRDBMON OUTFILE(xLIBL/FILE3) OUTMBR(MEMBER2)
JOB(134543/QPGMR/DSPO1) FRCRCD(20)

This command starts database monitoring for job number 134543. The job name is DSP01 and was
started by the user named QPGMR. The performance statistics are added to the member named
MEMBER?2 in the file named FILE3. 20 records are held before being written to the file.

Example 3: Starting Private Monitoring to a File in a Library in an Independent ASP

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(134543/QPGMR/DSP01)

This command starts database monitoring for job number 134543. The job name is DSP01 and

was started by the user named QPGMR. The performance statistics are added to the member name
DBMONFILE (since OUTMBR was not specified) in the file named DBMONFILE in the library named LIB41.
This library could exist in more than one independent auxiliary storage pool (ASP); the library in the name
space of the originator's job is always used.

Example 4: Starting Public Monitoring For All Jobs That Begin With 'QZDA

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL/*ALL/QZDAx)

This command starts database monitoring for all jobs that whose job name begins with 'QZDA". The
performance statistics (monitor records) are added to member DBMONFILE (since OUTMBR was not
specified) in file DBMONFILE in library LIB41. This library could exist in more than one independent
auxiliary storage pool (ASP); the library in the name space of the originator's job is always used.

Example 5: Starting Public Monitoring and Filtering SQL Statements That Run Over 10 Seconds

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL) RUNTHLD(10)

This command starts database monitoring for all jobs. Monitor records are created only for those SQL
statements whose estimated run time meets or exceeds 10 seconds.

Example 6: Starting Public Monitoring and Filtering SQL Statements That Have an Estimated
Temporary Storage Over 200 MB

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL) STGTHLD(200)

This command starts database monitoring for all jobs. Monitor records are created only for those SQL
statements whose estimated temporary storage meets or exceeds 200 MB.

Example 7: Starting Private Monitoring and Filtering Over a Specific File

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(x)
FTRFILE(LIB41/TABLE1)

This command starts database monitoring for the current job. Monitor records are created only for those
SQL statements that use file LIB41/TABLEL.

Example 8: Starting Private Monitoring for the Current User

STRDBMON ~ OUTFILE(LIB41/DBMONFILE) JOB(x) FTRUSER(*xCURRENT)

This command starts database monitoring for the current job. Monitor records are created only for those
SQL statements that are executed by the current user.

142 IBM i: Performance and Query Optimization

Example 9: Starting Public Monitoring For Jobs Beginning With 'QZDA' and Filtering Over Run Time
and File

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL/*ALL/QZDAx)
RUNTHLD (10) FTRUSER(DEVLPR1) FTRFILE(LIB41/TTTx*)

This command starts database monitoring for all jobs whose job name begins with 'QZDA'". Monitor
records are created only for those SQL statements that meet all the following conditions:

« The estimated run time, as calculated by the query optimizer, meets, or exceeds 10 seconds

« Was executed by user 'DEVLPR1".

« Use any file whose name begins with 'TTT' and resides in library LIB41.

Example 10: Starting Public Monitoring and Filtering SQL Statements That Have Internet Address
'9.10.111.77".

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL)
FTRINTNETA('9.10.111.77")

This command starts database monitoring for all jobs. Monitor records are created only for TCP/IP
database server jobs that are using the client IP version 4 address of '9.10.111.77".

Example 11: Starting Public Monitoring and Filtering SQL Statements That Have a Port Number of
8471

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(%ALL) FTRLCLPORT(8471)

This command starts database monitoring for all jobs. Monitor records are created only for TCP/IP
database server jobs that are using the local port number 8471.

Example 12: Starting Public Monitoring Based on Feedback from the Query Governor

CHGSYSVAL QQRYTIMLMT (200)
STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL) FTRQRYGOVR(*COND)

This commands starts database monitoring for all jobs whose estimated run time is expected to exceed
200 seconds, based on the response to the query governor. In this example, data is collected only if the
query is canceled or a return code of 2 is returned by a query governor exit program. The query can be
canceled by a user response to the inquiry message CPA4259, issued because the query exceeded the
query governor limits. It can also be canceled by the program logic inside the registered query governor
exit program.

Example 13: Collecting database monitor for Interactive SQL use

STRDBMON OUTFILE(QGPL/STRSQLMON1) OUTMBR(*FIRST *REPLACE)
JOB (*ALL/*ALL/*ALL) TYPE(*DETAIL)
FTRCLTPGM (STRSQL)

This command uses the database monitor pre-filter by Client Special Register Program ID to collect
monitor records for all the SQL statements executed by Interactive SQL (STRSQL command) usage.

Example 14: Starting Public Monitoring and Filtering SQL Statements Run From IBM i Access Client
Solutions Run SQL Scripts

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL)
FTRCLTAPP('IBM i Access Client Solutions - RUN SQL Scripts')

This command starts database monitoring for all jobs. Monitor records are created only for those

statements where the client special register CLIENT APPLNAME is IBM i Access Client Solutions - RUN
SQL Scripts.

Database performance and query optimization 143

Example 15: Starting Public Monitoring and Filtering SQL Statements Run From IBM System i Access
for Windows Run SQL Scripts

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL)
FTRCLTPGM(' cwbunnav.exe')

This command starts database monitoring for all jobs. Monitor records are created only for those
statements where the client special register CLIENT_PROGRAMID is cwbunnav.exe.

Example 16: Starting Public Monitoring and Filtering for the client user dbmusril

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL)
FTRCLTUSR (dbmusrl)

This command starts database monitoring for all jobs. Monitor records are created only for those
statements where the client special register CLIENT_USERID is dbmusr1.

Example 17: Starting Public Monitoring and Filtering SQL Statements Using FTRUSER

STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL)
FTRUSER((STC* *NE) (S%) (TS%) (TSA* *NE))

This command starts database monitoring for all jobs. Monitor records are created only for those
statements where the user profile is logically equivalent to: User profile NOT LIKE 'STC%' AND user
profile NOT LIKE 'TSA%' AND (user profile LIKE 'S%' OR user profile LIKE 'TS%'")

Related information
Start Database Monitor (STRDBMON) command

End Database Monitoxr (ENDDBMON) command

The End Database Monitor (ENDDBMON) command ends the collection of database performance
statistics for a specified job, all jobs on the system, or a selected set of jobs (for example, a generic job
name).

To end a monitor, you can specify the job or the monitor ID or both. If only the JOB parameter is specified,
the monitor that was started using the same exact JOB parameter is ended - if there is only one monitor
which matches the specified JOB. If more than one monitor is active which matches the specified JOB,
then the user uniquely identifies which monitor is to be ended by use of the MONID parameter.

When only the MONID parameter is specified, the specified MONID is compared to the monitor ID of the
monitor for the current job and to the monitor ID of all active public monitors (monitors that are open
across multiple jobs). The monitor matching the specified MONID is ended.

The monitor ID is returned in the informational message CPI436A. This message is generated for each
occurrence of the STRDBMON command. Look in the job log for message CPI436A to find the system
generated monitor ID, if needed. The monitor ID can also be found in column QQC101 of the QQQ3018
database monitor record.

Restrictions

« If a specific job name and number or JOB(*) was specified on the Start Database Monitor
(STRDBMON) command, the monitor can only be ended by specifying the same job name and number or
JOB(*) on the ENDDBMON command.

« If JOB(*ALL) was specified on the Staxrt Database Monitor (STRDBMON) command, the monitor
can only be ended by specifying ENDDBMON JOB(*ALL). The monitor cannot be ended by specifying
ENDDBMON JOB(*).

When monitoring is ended for all jobs, all the jobs on the system are triggered to close the database
monitor output table. However, the ENDDBMON command can complete before all the monitored jobs
have written their final statistic records to the log. Use the Woxrk with Object Locks (WRKOBJLCK)

144 1BM i: Performance and Query Optimization

command to determine that all the monitored jobs no longer hold locks on the database monitor output
table before assuming that the monitoring is complete.

Example 1: End Monitoring for a Specific Job

ENDDBMON JOB (*)

This command ends database monitoring for the current job.

Example 2: End Monitoring for All Jobs

ENDDBMON JOB(*ALL)

This command ends the monitor open across all jobs on the system. If more than one monitor with
JOB(*ALL) is active, then the MONID parameter must also be specified to uniquely identify which specific
public monitor to end.

Example 3: End Monitoring for an Individual Public Monitor with MONID Parameter

ENDDBMON JOB(*ALL) MONID(061601001)

This command ends the monitor that was started with JOB(*ALL) and that has a monitor ID of
061601001. Because there were multiple monitors started with JOB(*ALL), the monitor ID must be
specified to uniquely identify which monitor that was started with JOB(*ALL) is to be ended.

Example 4: End Monitoring for an Individual Public Monitor with MONID Parameter

ENDDBMON MONID(061601001)

This command performs the same function as the previous example. It ends the monitor that was started
with JOB(*ALL) or JOB(*) and that has a monitor ID of 061601001.

Example 5: End Monitoring for All JOB(*ALL) Monitors

ENDDBMON JOB (*ALL/*ALL/*ALL) MONID(*ALL)

This command ends all monitors that are active across multiple jobs. It does not end any monitors open
for a specific job or the current job.

Example 6: End Monitoring for a Generic Job

ENDDBMON JOB(QZDAx)

This command ends the monitor that was started with JOB(QZDAY*). If more than one monitor with
JOB(QZDA¥) is active, then the MONID parameter must also be specified to uniquely identify which
individual monitor to end.

Example 7: End Monitoring for an Individual Monitor with a Generic Job

ENDDBMON JOB(QZDA*) MONID(061601001)

This command ends the monitor that was started with JOB(QZDA*) and has a monitor ID of 061601001.
Because there were multiple monitors started with JOB(QZDA*), the monitor ID must be specified to
uniquely identify which JOB(QZDA*) monitor is to be ended.

Example 8: End Monitoring for a Group of Generic Jobs

ENDDBMON JOB(QZDA%) MONID(*ALL)

Database performance and query optimization 145

This command ends all monitors that were started with JOB(QZDA%).

Related information
End Database Monitor (ENDDBMON) command

Database monitor performance rows

The rows in the database table are uniquely identified by their row identification number. The information
within the file-based monitor (Start Database Monitoxr (STRDBMON)) is written out based upon a
set of logical formats which are defined in the database monitor formats. These views correlate closely to
the debug messages and the Pxrint SQL Information (PRSQLINF) messages.

The database monitor formats section also identifies which physical columns are used for each view and
what information it contains. You can use the views to identify the information that can be extracted from
the monitor. These rows are defined in several different views which are not shipped with the system
and must be created by the user, if wanted. The views can be created with the SQL DDL. The column
descriptions are explained in the tables following each figure.

Related concepts

Database monitor formats
This section contains the formats used to create the database monitor SQL tables and views.

Database monitor examples

The System i Navigator interface provides a powerful tool for gathering and analyzing performance
monitor data using database monitor. However, you might want to do your own analysis of the database
monitor files.

Suppose you have an application program with SQL statements and you want to analyze and
performance tune these queries. The first step in analyzing the performance is collection of data. The
following examples show how you might collect and analyze data using Start Database Monitox
(STRDBMON) and End Database Monitor (ENDDBMON) commands. Performance data is collected
in LIB/PERFDATA for an application running in your current job. The following sequence collects
performance data and prepares to analyze it.

1. STRDBMON FILE(LIB/PERFDATA) TYPE(*DETAIL). If this table does not exist, the command creates one
from the skeleton table in QSYS/QAQQDBMN.

2. Run your application
3. ENDDBMON

4. Create views over LIB/PERFDATA using the SQL DDL. Creating the views is not mandatory. All the
information resides in the base table that was specified on the STRDBMON command. The views simply
provide an easier way to view the data.

You are now ready to analyze the data. The following examples give you a few ideas on how to use
this data. You must closely study the physical and logical view formats to understand all the data being
collected. Then you can create queries that give the best information for your applications.

Related information
Start Database Monitor (STRDBMON) command
End Database Monitor (ENDDBMON) command

Application with table scans example

Determine which queries in your SQL application are implemented with table scans. The complete
information can be obtained by joining two views: QQQ1000, which contains information about the SQL
statements, and QQQ3000, which contains data about queries performing table scans.

The following SQL query can be used:

SELECT (B.End_Timestamp - B.Start_Timestamp) AS TOT_TIME, A.System_Table_Schema,
A.System_Table_Name,
A.Index_Advised, A.Table_Total_Rows, C.Number_Rows_Returned, A.Estimated_Rows_Selected,
B.Statement_Text_Long

146 IBM i: Performance and Query Optimization

FROM LIB.QQQ3000 A, LIB.QQQ16660 B, LIB.QQQ3019 C
WHERE A.Join_Column = B.Join_Column
AND A.Join_Column = C.Join_Column

Sample output of this query is shown in the following table. Key to this example are the join criteria:

WHERE A.Join_Column
AND A.Join_Column

B.Join_Column
C.Join_Column

Much data about many queries is contained in multiple rows in table LIB/PERFDATA. It is not uncommon
for data about a single query to be contained in 10 or more rows within the table. The combination of
defining the logical views and then joining the views together allows you to piece together all the data for
a query or set of queries. Column QQJFLD uniquely identifies all queries within a job; column QQUCNT is
unique at the query level. The combination of the two, when referenced in the context of the logical views,
connects the query implementation to the query statement information.

Table 43. Output for SQL Queries that Performed Table Scans

Lib Table Total Index Rows TOT_

Name Name Rows Advised Returned TIME Statement Text

LIB1 TBL1 20000 A 10 6.2 SELECT * FROM LIB1/TBL1
WHERE FLD1 = 'A'

LiB1 TBL2 100 N 100 0.9 SELECT * FROM LIB1/TBL2

LIB1 TBL1 20000 Y 32 7.1

SELECT * FROM LIB1/TBL1
WHERE FLD1 = 'B' AND
FLD2 > 9000

If the query does not use SQL, the SQL information row (QQQ1000) is not created. Without the SQL
information row, it is more difficult to determine which rows in LIB/PERFDATA pertain to which query.
When using SQL, row QQQ1000 contains the actual SQL statement text that matches the monitor rows to
the corresponding query. Only through SQL is the statement text captured. For queries executed using the
OPNQRYF command, the OPNID parameter is captured and can be used to tie the rows to the query. The
OPNID is contained in column Open_Id of row QQQ3014.

Queries with table scans example
Like the preceding example that showed which SQL applications were implemented with table scans, the
following example shows all queries that are implemented with table scans.

SELECT (D.End_Timestamp - D.Start_Timestamp) AS TOT_TIME, A.System_Table_Schema,
A.System_Table_Name,

A.Table_Total_Rows, A.Index_Advised,

B.Open_Id, B.Open_Time,

C.Clock_Time_to_Return_All_Rows, C.Number_Rows_Returned,

D.Result_Rows, D.Statement_Text_Long

FROM LIB.QQQ3000 A INNER JOIN LIB.QQQ3014 B

ON (A.Join_Column = B.Join_Column

LEFT OUTER JOIN LIB.0QQQ3019 C

ON (A.Join_Column = C.Join_Column)

LEFT OUTER JOIN LIB.QQQ1000 D

ON (A.Join_Column = D.Join_Column)

In this example, the output for all queries that performed table scans are shown in the following table.

Note: The columns selected from table QQQ1000 do return NULL default values if the query was not
executed using SQL. For this example assume that the default value for character data is blanks and the
default value for numeric data is an asterisk (*).

Database performance and query optimization 147

Table 44. Output for All Queries that Performed Table Scans

ODP

Lib Table Total Index Query Open Clock Recs Rows TOT_
Name Name Rows Advised OPNID Time Time Rtned Rtned TIME Statement Text
LIB1 TBL1 20000 Y 1.1 4.7 10 10 6.2

SELECT *

FROM LIB1/TBL1

WHERE FLD1 = 'A'
LIB1 TBL2 100 N 0.1 0.7 100 100 0.9

SELECT =

FROM LIB1/TBL2
LIB1 TBL1 20000 Y 2.6 4.4 32 32 7.1

SELECT =

FROM LIB1/TBL1

WHERE FLD1 = 'A'

AND FLD2 > 9000
LIB1 TBL4 4000 N QRY04 1.2 4.2 724 * * *

If the SQL statement text is not needed, joining to table QQQ1000 is not necessary. You can determine
the total time and rows selected from data in the QQQ3014 and QQQ3019 rows.

Table scan detail example

Your next step could include further analysis of the table scan data. The previous examples contained a
column titled Index Advised. A 'Y' (yes) in this column is a hint from the query optimizer that the query
could perform better with an index to access the data. For the queries where an index is advised, the rows
selected by the query are low in comparison to the total number of table rows. This selectivity is another
indication that a table scan might not be optimal. Finally, a long execution time might highlight queries
that could be improved by performance tuning.

The next logical step is to look into the index advised optimizer hint. The following query can be used:

SELECT A.System_Table_Schema, A.System_Table_Name,
A.Index_Advised, A.Index_Advised_Columns,
A.Index_Advised_Columns_Count, B.Open_Id,
C.Statement_Text_Long

FROM LIB.QQQ3000 A INNER JOIN LIB.QQQ3014 B
ON (A.Join_Column = B.Join_Column)
LEFT OUTER JOIN LIB.QQQ1000 C
ON (A.Join_Column = C.Join_Column)

WHERE A.Index_Advised = 'Y'

There are two slight modifications from the first example. First, the selected columns have been changed.
Most important is the selection of Index_Advised_Columns containing a list of possible key columns to
use when creating the suggested index. Second, the query selection limits the output to those table scan
gueries where the optimizer advises that an index is created (A.Index_Advised ="'Y"). The following table
shows what the results might look like.

Table 45. Output with Recommended Key Columns

Advised Advised

Lib Table Index Key Primary Query
Name Name Advised columns Key OPNID Statement Text
LIB1 TBL1 Y FLD1 1 SELECT % FROM LIB1/TBL1
WHERE FLD1 = 'A'
LIB1 TBL1 Y FLD1, 1 SELECT % FROM LIB1/TBL1
FLD2 WHERE FLD1 = 'B' AND

FLD2 > 9000

148 IBM i: Performance and Query Optimization

Table 45. Output with Recommended Key Columns (continued)

Advised Advised

Lib Table Index Key Primary Query
Name Name Advised columns Key OPNID Statement Text
LIB1 TBL4 Y FLD1, 1 QRY04

FLD4

Determine whether it makes sense to create a permanent index as advised by the optimizer. In this
example, creating one index over LIB1/TBL1 satisfies all three queries since each use a primary or
left-most key column of FLD1. By creating one index over LIB1/TBL1 with key columns FLD1, FLD2, there
is potential to improve the performance of the second query even more. Consider how often these queries
are run and the overhead of maintaining an additional index over the table when deciding whether to
create the suggested index.

If you create a permanent index over FLD1, FLD2 the next sequence of steps is as follows:

1. Start the performance monitor again
2. Rerun the application

3. End the performance monitor

4. Re-evaluate the data.

Itis likely that the three index-advised queries are no longer performing table scans.

Additional database monitor examples

The following are additional ideas or examples on how to extract information from the performance
monitor statistics. All the examples assume that data has been collected in LIB/PERFDATA and the
documented views have been created.

1. How many queries are performing dynamic replans?

SELECT COUNT ()
FROM LIB.00Q1000
WHERE Dynamic_Replan_Reason_Code <> 'NA'

2. What is the statement text and the reason for the dynamic replans?

SELECT Dynamic_Replan_Reason_Code, Statement_Text_Long
FROM LIB.QQQ1000
WHERE Dynamic_Replan_Reason_Code <> 'NA'

Note: You need to refer to the description of column Dynamic_Replan_Reason_Code for definitions of
the dynamic replan reason codes.

3. How many indexes have been created over LIB1/TBL1?

SELECT COUNT (%)
FROM LIB.QQQ3002
WHERE System_Table_Schema = 'LIB1'
AND System_Table_Name = 'TBL1'

4. What key columns are used for all indexes created over LIB1/TBL1 and what is the associated SQL
statement text?

SELECT A.System_Table_Schema, A.System_Table_Name,
A.Index_Advised_Columns, B.Statement_Text_Long
FROM LIB.QQQ3002 A, LIB.QQQ1000 B
WHERE A.Join_Column = B.Join_Column
AND A.System_Table_Schema = 'LIB1'
AND A.System_Table_Name = 'TBL1'

Note: This query shows key columns only from queries executed using SQL.

5. What key columns are used for all indexes created over LIB1/TBL1 and what was the associated SQL
statement text or query open ID?

Database performance and query optimization 149

SELECT A.System_Table_Schema, A.System_Table_Name, A.Index_Advised_Columns,

B.Open_Id, C.Statement_Text_Long

FROM LIB.QQQ3002 A INNER JOIN LIB.QQQ3014 B
ON (A.Join_Column B.Join_Column)

LEFT OUTER JOIN LIB.QQQ1000 C
ON (A.Join_Column = C.Join_Column)

WHERE A.System_Table_Schema LIKE '%'
AND A.System_Table_Name 9%

Note: This query shows key columns from all queries on the system.

6. What types of SQL statements are being performed? Which are performed most frequently?

7.

8.

10.

11.

12.

150 IBMi:

SELECT CASE Statement_Function
WHEN 'O' THEN 'Other'
WHEN 'S' THEN 'Select'
WHEN 'L' THEN 'DDL'

WHEN 'T' THEN 'Insert’
WHEN 'U' THEN 'Update'’
ELSE 'Unknown'
END, COUNT(*)
FROM LIB.QQQ1000
GROUP BY Statement_Function
ORDER BY 2 DESC

Which SQL queries are the most time consuming? Which user is running these queries?

SELECT (End_Timestamp - Start_Timestamp), Job_User,
Current_User_Profile, Statement_Text_Long
FROM LIB.QQQ1000
ORDER BY 1 DESC

Which queries are the most time consuming?

SELECT (A.Open_Time + B.Clock_Time_to_Return_All_Rows),
A.Open_Id, C.Statement_Text_Long
FROM LIB.QQQ3014 A LEFT OUTER JOIN LIB.QQQ3019 B
ON (A.Join_Column B.Join_Column)
LEFT OUTER JOIN LIB.QQQ1000 C
ON (A.Join_Column C.Join_Column)
ORDER BY 1 DESC

Note: This example assumes that detail data was collected (STRDBMON TYPE(*DETAIL)).

. Show the data for all SQL queries with the data for each SQL query logically grouped.

SELECT A.x
FROM LIB.PERFDATA A, LIB.QQQ1000 B
WHERE A.QQJFLD B.Join_Column

Note: This might be used within a report that will format the interesting data into a more readable
format. For example, all reason code columns can be expanded by the report to print the definition of
the reason code. Physical column QQRCOD = 'T1' means that a table scan was performed because no
indexes exist over the queried table.

How many queries are implemented with temporary tables because a key length greater than 2000
bytes, or more than 120 key columns was specified for ordering?

SELECT COUNT (%)
FROM LIB.QQQ3004
WHERE Reason_Code

IF6I
Which SQL queries were implemented with nonreusable ODPs?

SELECT B.Statement_Text_Long
FROM LIB.QQQ3010 A, LIB.QQQ1000 B
WHERE A.Join_Column = B.Join_Column
AND A.ODP_Implementation = 'N';

What is the estimated time for all queries stopped by the query governor?

Performance and Query Optimization

SELECT Estimated_Processing_Time, Open_Id
FROM LIB.QQ03014
WHERE Stopped_By_Query_Governor = 'Y'

Note: This example assumes that detail data was collected (STRDBMON TYPE(*DETAIL)).
13. Which queries estimated time exceeds actual time?

SELECT A.Estimated_Processing_Time,

(A.Open_Time + B.Clock_Time_to_Return_All_Rows),
A.Open_Id, C.Statement_Text_Long

FROM LIB.QQQ3014 A LEFT OUTER JOIN LIB.QQQ3019 B
ON (A.Join_Column = B.Join_Column)

LEFT OUTER JOIN LIB.QQQ1000 C
ON (A.Join_Column = C.Join_Column)

WHERE A.Estimated_Processing_Time/1000 >
(A.Open_Time + B.Clock_Time_to_Return_All_Rows)

Note: This example assumes that detail data was collected (STRDBMON TYPE(*DETAIL)).
14. Should you apply a PTF for queries containing UNIONs? Yes, if any queries are performing UNIONSs.
Do any of the queries perform this function?

SELECT COUNT (%)
FROM QQQ3014
WHERE Has_Union = 'Y'

Note: If the result is greater than 0, apply the PTF.

15. You are a system administrator and an upgrade to the next release is planned. You want to compare
data from the two releases.

« Collect data from your application on the current release and save this data in LIB/CUR_DATA

« Move to the next release

« Collect data from your application on the new release and save this data in a different table: LIB/
NEW_DATA

» Write a program to compare the results. You need to compare the statement text between the rows
in the two tables to correlate the data.

Using System i Navigator with detailed monitors

You can work with detailed monitors from the System i Navigator interface. The detailed SQL performance
monitor is the System i Navigator version of the STRDBMON database monitor, found on the native
interface.

You can start this monitor by right-clicking SQL Performance Monitors under the Database portion of the
System i Navigator tree and selecting New > Monitor. This monitor saves detailed data in real time to a
hard disk. It does not need to be paused or ended in order to analyze the results. You can also choose to
run a Visual Explain based on the data gathered by the monitor. Since this monitor saves data in real time,
it might have a performance impact on your system.

Starting a detailed monitor
You can start a detailed monitor from the System i Navigator interface.

You can start this monitor by right-clicking SQL Performance Monitors under the Database portion of the
System i Navigator tree and selecting New > SQL Performance Monitor.

When you create a detailed monitor, you can filter the information that you want to capture.

Initial number Select to specify the number of records initially allocated for the monitor. The 'Initial

of records: number of records' option is used to pre-allocate storage to the database monitor
out file. When collecting large amounts of monitor records, this option improves the
collection performance by avoiding automatic storage extensions that occur as a file
grows in size.

Database performance and query optimization 151

Minimum
estimated

query runtime:

Minimum
estimated
temporary
storage:

Job name:

Job user:

Current user:

Client
location:

Local port:

Query
Governor
limits:

Client
registers:

Statements
that access
these objects:

Activity to
monitor:

Select to include queries that exceed a specified amount of time. Select a number and
then a unit of time.

Select to include queries that exceed a certain amount of temporary storage. Specify a
size in MB.

Select to filter by a specific job name. Specify a job name in the field. You can specify
the entire ID or use a wildcard. For example, 'QZDAS*' finds all jobs where the name
starts with 'QZDAS.

Select to filter by a job user. Specify a user ID in the field. You can specify the entire ID
or use a wildcard. For example, 'QUSER*' finds all user IDs where the name starts with
'QUSER!

Select to filter by the current user of the job. Specify a user ID in the field. You can
specify the entire ID or use a wildcard. For example, 'QSYS*' finds all users where the
name starts with 'QSYS.'

Select to filter by Internet access. The input needs to be in IPv4 or IPv6 form.

1. IP version 4 address in dotted decimal form. Specify an Internet Protocol version
4 address in the form nnn.nnn.nnn.nnn where each nnn is a number in the range 0
through 255.

2. IP version 6 address in colon hexadecimal form. Specify an internet protocol version
6 address in the form xxxx:XXxXX:XXXX:XXXX:XXXX XXXX XXXX:XXXX, Where each xxxX is
a hex number in the range 0 through FFFF. IP version 6 includes the IPv4-mapped
IPv6 address form (for example, ::FFFF:1.2.3.4). For IP version 6, the compressed
form of the address is allowed.

3. IP host domain name. Specify an internet host domain name of up to 254 characters
in length.

Select to filter by port number. You can select a port from the list or else enter your own
port number.

Ports in the list include:

« 446 - DRDA/DDM

« 447 - DRDA/DDM

« 448 - Secure DRDA/DDM (SSL)

« 4402 - QXDAEDRSQL server

« 8471 - Database server

« 9471 - Secure database server (SSL)

Select to search for queries that have exceeded or are expected to exceed the query
governor limits set for the system. Choose from the following options:

« Always collect information when exceeded

« Conditional collection of information when exceeded

Select to filter by the client register information.

Select to filter by only queries that use certain tables. Click Browse to select tables to
include. To remove a table from the list, select the table and click Remove. A maximum
of 10 table names can be specified.

Select to collect monitor output for user-generated queries or for both user-generated
and system-generated queries.

152 IBM i: Performance and Query Optimization

You can choose which jobs you want to monitor or choose to monitor all jobs. You can have multiple
instances of monitors running on your system at one time. You can create up to 10 detailed monitors to
monitor all jobs. When collecting information for all jobs, the monitor will collect on previously started
jobs or new jobs that are started after the monitor is created. You can edit this list by selecting and
removing jobs from the Selected jobs list.

Analyzing detailed monitor data

SQL performance monitors provides several predefined reports that you can use to analyze your monitor
data.

To view these reports, right-click a monitor and select Analyze. The monitor does not need to be ended in
order to view this information.

B anabysis Cvprview for mont 2Ed

. e
Fil Ackns Helg
i

| Susremacy Cusa |

[rrr | Sussminy R st Sl Avala bl

= TS 225 P o TT1OS 22448 FF
o LERrEEh
& S0L islernents &i
w UbpErg I
L i
Treewds I Sty nds
& Awbiage Tibia Rowd 14
& Eepragd Rosn Relurad g
& Eediadu Rofisrd 2Ea1
& Esyrage Fapliol Doprae Ulsed !
& Mupis=iiss P Eradal Digdis
® BQE I
L L T
W Eyniem Braming T
¥ 5, Himeng 1t
® Full Cpaeng
¥ Fisads Jpeni
& Aetiage BOTE Ukid
Eemrsge lmapnen Lipss L
® Full sdeess Cobated L
| || # Eparye lndpees Crpded T
|| % s mseccsed | 8
w Indew Droales Afwvied 1
& Adhvitiid ERMSHICE v
& Teemparary Tables G
» SoH ¢
& Accwss Plans Rebuf |
& 5 aguinds
& Cafl Halermends E
® Eogr [+
* P LI WO el S
Wit (el = prosisled Io Tig Gpln Ll

il
Close Hep |7}

! lI'ImJI':«'A.'.-IE.-:I!I ="

v

AN

Suermary

AL AL AR AL SR
AR AR VAR LR AR

On the Analysis Overview dialog, you can view overview information or else choose one of the following
categories:

« How much work was requested?

What options were provided to the optimizer?

What implementations did the optimizer use?

What types of SQL statements were requested?

Miscellaneous information

I/O information

From the Actions menu, you can choose one of the following summary predefined reports:

User Contains a row of summary information for each user. Each row summarizes all SQL
summary activity for that user.

Database performance and query optimization 153

Job Contains a row of information for each job. Each row summarizes all SQL activity for

summary that job. This information can be used to tell which jobs on the system are the heaviest
users of SQL. These jobs are perhaps candidates for performance tuning. You could then
start a separate detailed performance monitor on an individual job to get more detailed
information without having to monitor the entire system.

Operation Contains a row of summary information for each type of SQL operation. Each row
summary summarizes all SQL activity for that type of SQL operation. This information provides
the user with a high-level indication of the type of SQL statements used. For example, are
the applications mostly read-only, or is there a large amount of update, delete, or insert
activity. This information can then be used to try specific performance tuning techniques.
For example, if many INSERTSs are occurring, you might use an OVRDBF command to
increase the blocking factor or the QDBENCWT API.

Program Contains a row of information for each program that performed SQL operations. Each row

summary summarizes all SQL activity for that program. This information can be used to identify
which programs use the most or most expensive SQL statements. Those programs are
then potential candidates for performance tuning. A program name is only available if
the SQL statements are embedded inside a compiled program. SQL statements that are
issued through ODBC, JDBC, or OLE DB have a blank program name unless they result
from a procedure, function, or trigger.

In addition, when a green check is displayed under Summary column, you can select that row and click
Summary to view information about that row type. Click Help for more information about the summary
report. To view information organized by statements, click Statements.

Comparing monitor data
You can use System i Navigator to compare data sets in two or more monitors.

System i Navigator provides you with two types of comparison. The first is a simple compare that provides
a high-level comparison of the monitors or snapshots. The second is a detailed comparison. The simple
compare provides you with enough data about the monitors or snapshots to help you determine if a
detailed comparison is helpful.

To launch a simple compare, go to System i Navigator > system name > SQL performance monitors.
Right-click one or more monitors and select Compare.

To launch a detailed comparison, select the Detailed Comparison tab.

On the Detailed Comparison dialog, you can specify information about the data sets that you want to
compare.

Name The name of the monitors that you want to compare.

Schema mask Select any names that you want the comparison to ignore. For example, consider
the following scenario: You have an application running in a test schema and it is
optimized. Now you move it to the production schema and you want to compare
how it executes there. The statements in the comparison are identical except that
the statements in the test schema use "TEST" and the statements in the production
schema use "PROD". You can use the schema mask to ignore "TEST" in the first
monitor and "PROD" in the second monitor. Then the statements in the two monitors
appear identical.

Statements that The minimum runtime for statements to be compared.
ran longer than

Minimum The minimum difference in key attributes of the two statements being compared
percent that determines if the statements are considered equal or not. For example, if you
difference select 25% as the minimum percent different, only matching statements whose key

attributes differ by 25% or more are returned.

154 IBM i: Performance and Query Optimization

When you click Compare, both monitors are scanned for matching statements. Any matches found are
displayed side-by-side for comparison of key attributes of each implementation.

On the Comparison output dialog, you view statements that are included in the monitor by clicking Show
Statements. You can also run Visual Explain by selecting a statement and clicking Visual Explain.

Any matches found are displayed side-by-side for comparison of key attributes of each implementation.

Viewing statements in a monitor
You can view SQL statements that are included in a detailed monitor.
Right-click any detailed monitor in the SQL performance monitor window and select Show statements.

The filtering options provide a way to focus in on a particular area of interest:

Minimum runtime for the Select to include statements that exceed a certain amount of time.
longest execution of the Select a number and then a unit of time.

statement:

Statements that ran on or Select to include statements run at a specified date and time. Select a
after this date and time: date and time.

Statements that reference Select to include statements that use or reference certain objects. Click
the following objects: Browse to select objects to include.

Statements that contain the Select to include only those statements that contain a specific type of

following text: SQL statement. For example, specify SELECT if you only want to include
statements that are using SELECT. The search is case insensitive for
ease of use. For example, the string 'SELECT' finds the same entries as
the search string 'select".

Multiple filter options can be specified. In a multi-filter case, the candidate entries for each filter are
computed independently. Only those entries that are present in all the candidate lists are shown. For
example, if you specified options Minimum runtime for the longest execution of the statement and
Statements that ran on or after this date and time, you will be shown statements with the minimum
runtime that ran on or after the specified date and time.

Related reference

Index advisor

The query optimizer analyzes the row selection in the query and determines, based on default values, if
creation of a permanent index improves performance. If the optimizer determines that a permanent index
might be beneficial, it returns the key columns necessary to create the suggested index.

Importing a monitor

You can import monitor data that has been collected using some other interface by using System i
Navigator.

Monitors that are created using the Staxrt Database Monitoxr (STRDBMON) command are
automatically registered with System i Navigator. They are also included in the list of monitors displayed
by System i Navigator.

To import monitor data, right-click SQL Performance monitors and select Import. Once you have
imported a monitor, you can analyze the data.

Index advisor

The query optimizer analyzes the row selection in the query and determines, based on default values, if
creation of a permanent index improves performance. If the optimizer determines that a permanent index
might be beneficial, it returns the key columns necessary to create the suggested index.

The optimizer is able to perform radix index probe over any combination of the primary key columns, plus
one additional secondary key column. Therefore it is important that the first secondary key column is

Database performance and query optimization 155

the most selective secondary key column. The optimizer uses radix index scan with any of the remaining
secondary key columns. While radix index scan is not as fast as radix index probe, it can still reduce the
number of keys selected. It is recommended that secondary key columns that are fairly selective are
included.

Determine the true selectivity of any secondary key columns and whether you include those key columns
in the index. When building the index, make the primary key columns the left-most key columns, followed
by any of the secondary key columns chosen, prioritized by selectivity.

After creating the suggested index and executing the query again, it is possible that the query optimizer
will choose not to use the suggested index. It does not include join, ordering, and grouping criteria. The
SQE optimizer includes selection, join, ordering, and grouping criteria when suggesting indexes. Local
selection advice can now factor in both AND and OR predicates with the qualifications mentioned below.

You can access index advisor information in many different ways. These ways include:

« The index advisor interface in System i Navigator

« SQL performance monitor Show statements

« Visual Explain interface

« Querying the Database monitor view 3020 - Index advised.

Related reference

Overview of information available from Visual Explain
You can use Visual Explain to view many types of information.

Database monitor view 3020 - Index advised (SQE)
Displays the SQL logical view format for database monitor QQQ3020.

Viewing statements in @ monitor
You can view SQL statements that are included in a detailed monitor.

Index advice and OR predicates
Index advice generation to handle OR predicates

Index Advisor has been extended to include queries that OR together local selection (WHERE clause)
columns over a single table. OR advice requires two or more indexes to be created as a dependent set.

If any of the OR'd indexes are missing, the optimizer won’t be able to cost and choose these dependent
indexes for implementation of the OR based query.

This relationship between OR based indexes in the SYSIXADV index advice table is with a new
DEPENDENT_ADVICE_COUNT column.

Some restrictions with this support:
« OR'd predicate advice appears only if no other advice is generated
« Maximum of 5 predicates OR'd together

« Advised for files with OR'd local selection that get costed in the primary join dial when optimizing a join
query

When Index Advisor shows highly dependent advice, use of the exact match capability from Show
Statements to find the query in the plan cache is helpful. Once found, use Visual Explain to discover
the dependent index advice specific to that query.

Index Or Advice example

« Should advise indexes over all OR'd predicate columns
« All 3 advised indexes will have DEPENDENT_ADVICE_COUNT>O0
 Execution with indexes should produce bitmap implementation and register no new advice

SELECT orderkey, partkey, suppkey,
linenumber, shipmode orderpriority

156 IBM i: Performance and Query Optimization

FROM item_fact

WHERE OrderKey <= 10 OR
SuppKey <= 10 OR
PartKey <= 10

OPTIMIZE FOR ALL ROWS

The graphic below shows the Index advice for the OR'd predicate columns:

% Index and Statistics Advisor -

ltis recommended that the following indexes be created:

Create | Tahble Mame | Schema Index Type Columns
v ITEM_FACT AR Binary Radix SUPPKEY
W ITEM_FACT AR Binary Radix PARTKEY
o ITEM_FACT PAA Binary Radix ORDEREEY

Create ..

The graphic below depicts the Visual Explain showing the implementation of merge bitmap
representation using the OR'd advice indexes:

Database performance and query optimization 157

Final Select

JFEE

©

===
Table Probe
ITEM_FACT

J%zm

Bitmap Merge

2N
2 2

Bitmap Merge FRMN Scan
3 J%am
EREH Scan EREM Scan Index Probe

QAsYS_SUPPKEY_O0001

i I
ol ol

Index Probe Index Probe
QEYS_PARTKEY Q0004 ORDERKEY

Index advice for Encoded Vector Index RRN Probe Plans
Index Advisor may advise EVI indexes for use with the EVI RRN Probe plan.

EVI RRN Probe Plan advice requires one or more indexes to be created as a dependent set. If any of the
EVI indexes are missing, the optimizer won’t be able to cost and choose these dependent indexes for
implementation of the EVI RRN Probe.

In the SYSIXADV advice table, all the dependent EVI based indexes will have a value greater than 0 in the
DEPENDENT_ADVICE_COUNT column. In addition, the REASON_ADVISED column will have reason code
‘18",

The advice is on a per table basis for the query.
Indexes are only advised when the following is true:

- At least one of the columns in the select list of the query needs to have an existing single column EVI.
« The number of columns that do not match to an existing EVI must be less than 20.

158 IBM i: Performance and Query Optimization

« All columns must be eligible to be an index key.

When Index Advisor shows highly dependent advice, use of the exact match capability from Show
Statements to find the query in the plan cache is helpful. Once found, use Visual Explain to discover
the dependent index advice specific to that query.

EVI RRN Probe Plan Advice example

In the following example, assume the following indexes already exist.
« Aradix index with a key of SUPPKEY

« An EVI Index with a key of PARTKEY

SELECT PARTKEY, QUANTITY, EXTENDEDPRICE
FROM ITEM_FACT
WHERE SUPPKEY = 50;

The index advisor will advise EVI indexes over all over missing columns: QUANTITY and EXTENDEDPRICE.
The 2 advised indexes will have index type set to “EVI’ and DEPENDENT_ADVICE_COUNT>O0.

The following graphic shows the EVI advice generated for the query:

*#§ Index and Statistics Advisor - Z1235p4(Z1235p4) 2
Index Advisor | tatistics Advisor |
Itizs recommended that the following indexes be created: fll
Create | Table Mame | Schema Index Type Caolumns
v ITEM_FACT YLDE3IOGRI Evl QUANTITY
¥ ITEM_FACT YLDEIOGRI Evl EXTEMNDEDFRICE
« | =
-
4] | b
ok | Hew |7

The following Visual Explain diagram shows the query implementation after the advised EVI indexes have
been created:

Database performance and query optimization 159

Final Select

[

i

b

[—

E'l RREH Probe
WLDBIOEFL.TESTZEWI

v

Evl Random [0

|
o

Index Probe
WLDBIOGERLQ WLRBI0G _ITEM_FACT_SUPFPKEY_O0001

i

Displaying index advisor information

You can display index advisor information from the optimizer using System i Navigator.

System i Navigator displays information found in the QSYS2/SYSIXADV system table.

To display index advisor information, follow these steps:

1. In the System i Navigator window, expand the system that you want to use.

2. Expand Databases.

3. Right-click the database that you want to work with and select Index Advisor > Index Advisor.

You can also find index advisor information for a specific schema or a specific table by right-clicking on a
schema or table object.

Once you have displayed the information, you have several options. You can create an index from the list,
remove the index advised from the list, or clear the list entirely. You can also right-click on an index and
select Show SQL, launching a Run SQL Scripts session with the index creation statement. Finally, you can
right-click on an advised index and select Show Statements. With additional information automatically
provided in the advised index filter for the Plan Cache search, the resulting SQL statements shown will be
a better match to the original queries that generated that specific index advice.

160 IBM i: Performance and Query Optimization

Depending on if you are viewing the index advice at the database level or the schema level your list could
be large. Once you have the list displayed, follow these steps to subset your list:

1. Go to the View menu option, and select Customize this view > Include
2. Enter the information you would like to filter the list by.
3. Press the OK button to get the refreshed list of index advice.

Database manager indexes advised system table
This topic describes the indexes advised system table.

Table 46. SYSIXADV system table

Column name System Data type Description
column name
TABLE_NAME TBNAME VARCHAR(258) [Table over which an index is advised
TABLE_SCHEMA DBNAME VARCHAR(128) |SQL schema containing the table
SYSTEM_TABLE_NAME SYS_TNAME |CHAR(10) System table name on which the index
is advised
PARTITION_NAME TBMEMBER CHAR(10) Partition detail for the index
KEY_COLUMNS_ADVISED KEYSADV VARCHAR(1600 | Column names for the advised index
0)
LEADING_COLUMN_KEYS LEADKEYS VARCHAR(1600 | Leading, Order Independent keys.
0) the keys at the beginning of the

KEY_COLUMNS_ADVISED field which
could be reordered and still satisfy the
index being advised.

INDEX_TYPE INDEX_TYPE |CHAR(14) Radix (default) or EVI

LAST_ADVISED LASTADV TIMESTAMP Last time this row was updated

TIMES_ADVISED TIMESADV BIGTINT Number of times this index has been
advised

ESTIMATED_CREATION_TIM |ESTTIME INT Estimated number of seconds for

E index creation

REASON_ADVISED REASON CHAR(2) Coded reason why index was advised

LOGICAL_PAGE_SIZE PAGESIZE INT Recommended page size for index

MOST_EXPENSIVE_QUERY QUERYCOST |INT Execution time in seconds of the query

AVERAGE_QUERY_ESTIMATE | QUERYEST INT Average execution time in seconds of
the query

TABLE_SIZE TABLE_SIZE |BIGINT Number of rows in table when the
index was advised

NLSS_TABLE_NAME NLSSNAME CHAR(10) NLSS table to use for the index

NLSS_TABLE_SCHEMA NLSSDBNAM [CHAR(10) Schema name of the NLSS table

E
MTI_USED MTIUSED BIGINT The number of times that this specific

Maintained Temporary Index (MTI)
has been used by the optimizer. The
optimizer stops using a matching MTI
once a permanent index is created.

Database performance and query optimization 161

Table 46. SYSIXADV system table (continued)

Column name

System
column name

Data type

Description

MTI_CREATED

MTICREATED

INTEGER

The number of times that this specific
Maintained Temporary Index (MTI) has
been created by the optimizer. MTIs do
not persist across system IPLs.

LAST_MTI_USED

LASTMTIUSE

TIMESTAMP

The timestamp representing the

last time this specific Maintained
Temporary Index (MTI) was used

by the optimizer to improve the
performance of a query. The MTI

Last Used field can be blank. The
blank field indicates that an MTI
which exactly matches this advice has
never been used by the queries which
generated this index advice.

AVERAGE_QUERY_ESTIMATE
_MICRO

QRYMICRO

BIGINT

Average execution time in
microseconds of the query which
drove the index advice

EVI_DISTINCT_VALUES

EVIVALS

INTEGER

Recommended value to use when
creating the advised EVI index. This
value is n within the WITH n DISTINCT
VALUES clause on the CREATE INDEX
SQL statement.

INCLUDE_COLUMNS

INCLCOL

CLOB(10000)

EVI INCLUDE expressions for index
creation.

FIRST_ADVISED

FIRSTADV

TIMESTAMP

When this row was inserted.

SYSTEM_TABLE_SCHEMA

SYS_DNAME

CHAR(10)

System name of the table schema.

MTI_USED_FOR_STATS

MTISTATS

BIGINT

Number of times Maintained
Temporary Index was used as a source
for optimizer statistics.

LAST_MTI_USED_FOR_STATS

LASTMTISTA

TIMESTAMP

The timestamp representing the

last time this specific Maintained
Temporary Index was used as a
source of statistics by the optimizer to
improve the performance of a query.

DEPENDENT_ADVICE_COUN
T

DEPCNT

BIGINT

The number of times this index advice
was dependent upon other advice.

162 IBM i: Performance and Query Optimization

Index advisor column descriptions

Displays the columns that are used in the Index advisor window.

Table 47. Columns used in Index advisor window

Column name

Description

Table for Which Index was Advised

The optimizer is advising creation of a permanent index over
this table. This value is the long name for the table. The
advice was generated because the table was queried and

no existing permanent index could be used to improve the
performance of the query.

Schema

Schema or library containing the table.

System Schema

System name of the schema.

System Name

System table name on which the index is advised

Partition Partition detail for the index. Possible values:
» <blank>, which means For all partitions
» For Each Partition
- specific name of the partition
Keys Advised Column names for the advised index. The order of the

column names is important. The names are listed in the
same order as in the CREATE INDEX SQL statement. An
exception is when the leading, order independent key

information indicates that the ordering can be changed.

Leading Keys Order Independent

Leading, Order Independent keys. the keys at the beginning
of the KEY_COLUMNS_ADVISED field which could be
reordered and still satisfy the index being advised.

Index Type Advised

Radix (default) or EVI

Last Advised for Query Use

The timestamp representing the last time this index was
advised for a query.

Times Advised for Query Use

The cumulative number of times this index has been advised.
This count ceases to increase once a matching permanent
index is created. The row of advice remains in this table until
the user removes it

Estimated Index Creation Time

Estimated time in seconds to create this index.

Reason advised

Reason why index was advised. Possible values are:
Row selection
Ordering/Grouping

Row selection and Ordering/Grouping

Logical Page Size Advised (KB)

Recommended page size to be used on the PAGESIZE
keyword of the CREATE INDEX SQL statement when creating
this index.

Most Expensive Query Estimate

Execution time in seconds of the longest running query
which generated this index advice.

Average of Query Estimates

Average execution time in seconds of all queries that
generated this index advice.

Database performance and query optimization 163

Table 47. Columns used in Index advisor window (continued)

Column name

Description

Rows in Table when Advised

Number of rows in table for the last time this index was
advised.

NLSS Table Advised

The sort sequence table in use by the query which generated
the index advice. For more detail on sort sequences:

NLSS Schema Advised

The schema of the sort sequence table.

MTI Used

The number of times that this specific Maintained Temporary
Index (MTI) has been used by the optimizer.

MTI Created

The number of times that this specific Maintained Temporary
Index (MTI) has been created by the optimizer. MTIs do not
persist across system IPLs.

MTI Last Used

The timestamp representing the last time this specific
Maintained Temporary Index (MTI) was used by the
optimizer to improve the performance of a query. The MTI
Last Used field can be blank. A blank field indicates that an
MTI which exactly matches this advice has never been used
by the queries which generated this index advice.

EVI Distinct Values

Recommended value to use when creating the advised EVI
index. This value is n within the WITH n DISTINCT VALUES
clause on the CREATE INDEX SQL statement.

First Advised

The date/time when a row is first added to the Index Advisor
table for this advice.

MTI Used for Stats

The number of times that this specific Maintained Temporary
Index (MTI) has been used by the optimizer.

MTI Last Used for Stats

The timestamp representing the last time this specific
Maintained Temporary Index (MTI) was used as a source of
statistics by the optimizer to improve the performance of a
query. The MTI Last Used field can be blank.

Dependent Advice Count

Dependent implies that this advised index is dependent on
the creation of other dependent advised indexes and all of
the other dependent indexes must be created in order for the
index implementation to be costed and utilized.

« Zero - this advised index stands on its own.

 Greater than Zero — Compare this column against the
TIMES_ADVISED column to understand how often this
advised index has been advised in conjunction with other
indexes.

Querying database monitor view 3020 - Index advised
The index advisor information can be found in the Database Monitor view 3020 - Index advised (SQE).

The advisor information is stored in columns QQIDXA, QQIDXK, and QQIDXD. When the QQIDXA column
contains a value of 'Y' the optimizer is advising you to create an index using the key columns shown in
column QQIDXD. The intention of creating this index is to improve the performance of the query.

In the list of key columns contained in column QQIDXD, the optimizer has listed what it considers the
suggested primary and secondary key columns. Primary key columns are columns that can significantly

164 1BM i: Performance and Query Optimization

reduce the number of keys selected based on the corresponding query selection. Secondary key columns
are columns that might or might not significantly reduce the number of keys selected.

Column QQIDXK contains the number of suggested primary key columns that are listed in column
QQIDXD. These primary key columns are the left-most suggested key columns. The remaining key
columns are considered secondary key columns and are listed in order of expected selectivity based

on the query. For example, assuming QQIDXK contains the value of four and QQIDXD specifies seven key
columns, then the first four key columns are the primary key columns. The remaining three key columns
are the suggested secondary key columns.

Condensing index advice

Many times, the index advisor advises several different indexes for the same table. You can condense
these advised indexes into the best matches for your queries.

1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.

3. Right-click the database that you want to work with and select Index Advisor > Condense Advised
Indexes.

Depending on if you are viewing the condensed index advice at the database level or the schema level
your list could be large. Once you have the list displayed, follow these steps to subset your list:

1. Go to the View menu option, and select Customize this view > Include ...
2. Enter the information you would like to filter the list by.
3. Select OK to get the refreshed list of condensed index advice.

"% Condensed Index Advice - Serverxyz =JCE3
Fe Edt Vew Help

2 E 2 minutes old
Database: Serverxyz__ Condensed Index Advice for SAWPLE __Fiter: Indude setings appled

Table forWhich
Index was Advised

System

LastAdvised for MostExpensive
Schema Query Use

Query Estimate

Average of Query|
Estimates

Times Advised| Esimated Logical Page
Size Ad

for Query Use | Index Creation | Size Advise:

Rows in Table [NLSS Table | MTI[MTI
when Advised |Advised |Used | Creat.

g

‘ Schema System Name | Parition ‘ Keys Advised Advised Index Type -
S MQT1 SAMPLE SAMPLE MQT1 Jos Binary Radix 9/1/09 3:57:14 PM 10 00:00:01
% EMPLOYEE SAMPLE ~ SAMPLE EMPLOYEE JOB, WORKDEPT Binary Radix 9/1/09 4:06:54 PM 8§ 00:00:01
%, DEPARTMENT ~ SAMPLE SAMPLE DEPARTMENT LOCATION, DEPTNAME ~ Binary Radix 9/1/09 3:53:05 PM 8 00:00:01
uDEPARTMENT = SAMPLE SAMPLE DEPARTMENT LOCATION, DEPTNO Binary Radix 9/1/09 3:53:05 PM § 00:00:01
'\ DEPARTMENT ~ SAMPLE SAMPLE DEPARTMENT DEPTNAME, LOCATION ~ Binary Radix 9/1/09 3:53:12 PM 6 00:00:01
% MQT2 SAMPLE SAMPLE MQT2 LOCATION, DEPTNAME Binary Radix 9/1/09 3:53:15 PM 4 00:00:01
A MQT2 SAMPLE SAMPLE MQT2 DEPTNAME, SUM_SAL Encoded vector (not unique) ~ 9/1/09 3:53:15 PM 4 00:00:01

MTILastUsed
42 <HEX 4 3 9/1/09 2:58:10 PM

RXLRRER
5
F
2

< >
1-70f 7 objects

Viewing your queries with Visual Explain

You can use the Visual Explain tool with System i Navigator to create a query graph that graphically
displays the implementation of an SQL statement. You can use this tool to see information about both
static and dynamic SQL statements. Visual Explain supports the following types of SQL statements:
SELECT, INSERT, UPDATE, and DELETE.

Queries are displayed using a graph with a series of icons that represent different operations that occur
during implementation. This graph is displayed in the main window. In the lower portion of the pane, the
SQL statement that the graph is based on is displayed. If Visual Explain is started from Run SQL Scripts,
you can view the debug messages issued by the optimizer by clicking the Optimizer messages tab. The
query attributes are displayed in the right pane.

Visual Explain can be used to graphically display the implementations of queries stored in the detailed
SQL performance monitor. However, it does not work with tables resulting from the memory-resident
monitor.

Starting Visual Explain

There are two ways to invoke the Visual Explain tool. The first, and most common, is through System i
Navigator. The second is through the Visual Explain (QQQVEXPL) API.

You can start Visual Explain from any of the following windows in System i Navigator:

« Enter an SQL statement in the Run SQL Scripts window. Select the statement and choose Explain or
Run and Explain from the Visual Explain menu.

Database performance and query optimization 165

« Expand the list of available SQL Performance Monitors. Right-click a detailed SQL Performance Monitor
and choose the Show Statements option. Select filtering information and select the statement in
the List of Statements window. Right-click and select Visual Explain. You can also start an SQL
Performance Monitor from Run SQL Scripts. Select Start SQL Performance monitor from the Monitor
menu.

- Start the SQL Details for Jobs function by right-clicking Databases and select SQL Details for Jobs.
Click Apply. Select a job from the list and right-click and select Show Details. When the SQL is
displayed in the lower pane, you can start Visual Explain by right-clicking on Statement and selecting
Visual Explain.

- Right-click SQL Plan Cache and select Show Statements. Select filtering information and select the
statement in the List of Statements window. Right-click and select Visual Explain.

- Expand the list of available SQL Plan Cache Snapshots. Right-click a snapshot and select Show
Statements. Select filtering information and select the statement in the List of Statements window.
Right-click and select Visual Explain.

« Expand the list of SQL Plan Cache Event Monitors. Right-click an event monitor and select Show
Statements. Select filtering information and select the statement in the List of Statements window.
Right-click and select Visual Explain.

You have three options when running Visual Explain from Run SQL Scripts.

Visual This option allows you to explain the query without actually running it. The data
Explain only displayed represents the estimate of the query optimizer.

Note: Some queries might receive an error code 93 stating that they are too complex
for displaying in Visual Explain. You can circumvent this error by selecting the "Run and
Explain" option.

Run and If you select Run and Explain, the query is run by the system before the diagram is
Explain displayed. This option might take a significant amount of time, but the information
displayed is more complete and accurate.

Explain while For long running queries, you can choose to start Visual Explain while the query is
running running. By refreshing the Visual Explain diagram, you can view the progress of the

query.

In addition, a database monitor table that was not created as a result of using System i Navigator can

be explained through System i Navigator. First you must import the database monitor table into System i
Navigator. To import, right-click the SQL Performance Monitors and choose the Import option. Specify a
name for the performance monitor (name it is known by within System i Navigator) and the qualified name
of the database monitor table. Be sure to select Detailed as the type of monitor. Detailed represents the
file-based (STRDBMON) monitor while Summary represents the memory-resident monitor (which is not
supported by Visual Explain). Once the monitor has been imported, follow the steps to start Visual Explain
from within System i Navigator.

You can save your Visual Explain information as an SQL Performance monitor. This monitor can be useful
if you started the query from Run SQL Scripts and want to save the information for later comparison.
Select Save as Performance monitor from the File menu.

Related information
Visual Explain (QQQVEXPL) API

Overview of information available from Visual Explain
You can use Visual Explain to view many types of information.
The information includes:

« Information about each operation (icon) in the query graph
« Highlight expensive icons
« The statistics and index advisor

166 IBM i: Performance and Query Optimization

« The predicate implementation of the query
« Basic and detailed information in the graph

Information about each operation (icon) in the query graph

As stated before, the icons in the graph represent operations that occur during the implementation of
the query. The order of operations is shown by the arrows connecting the icons. If parallelism was used
to process an operation, the arrows are doubled. Occasionally, the optimizer "shares" hash tables with
different operations in a query, causing the lines of the query to cross.

You can view information about an operation by selecting the icon. Information is displayed in the
Attributes table in the right pane. To view information about the environment, click an icon and then
select Display query environment from the Action menu. Finally, you can view more information about
the icon by right-clicking the icon and selecting Help.

Highlight expensive icons

You can highlight problem areas (expensive icons) in your query using Visual Explain. Visual Explain offers
you two types of expensive icons to highlight: by processing time or number of rows. You can highlight
icons by selecting Highlight expensive icons from the View menu.

The statistics and index advisor

During the query implementation, the optimizer can determine if statistics need to be created or
refreshed, or if an index might make the query run faster. You can view these recommendations using
the Statistics and Index Advisor from Visual Explain. Start the advisor by selecting Advisor from the
Action menu. Additionally, you can begin collecting statistics or create an index directly from the advisor.

The predicate implementation of the query

Visual explain allows you to view the implementation of query predicates. Predicate implementation is
represented by a blue plus sign next to an icon. You can expand this view by right-clicking the icon and
selecting Expand. or open it into another window. Click an icon to view attributes about the operation. To
collapse the view, right-click anywhere in the window and select Collapse. This function is only available
on V5R3 or later systems.

The optimizer can also use the Look Ahead Predicate Generation to minimize the random the I/O costs of
a join. To highlight predicates that used this method, select Highlight LPG from the View menu.

Basic and full information in the graph

Visual Explain also presents information in two different views: basic and full. The basic view only shows
those icons that are necessary to understand the implementation of the SQL statement. It excludes some
preliminary, or intermediate operations that are not essential for understanding the main flow of query
implementation. The full view might show more icons that further depict the flow of the execution tree.
You can change the graph detail by select Graph Detail from the Options menu and selecting either Basic
or Full. The default view is Basic. In order to see all the detail for a Full view, change the Graph Detail to
Full, close out Visual Explain, and run the query again. The setting for Graph Detail persists.

For more information about Visual Explain and the different options that are available, see the Visual
Explain online help.

Refresh the Visual Explain diagram

For long running queries, you can refresh the visual explain graph with runtime statistical information
before the query is complete. Refresh also updates the appropriate information in the attributes section of
the icon shown on the right of the screen. In order to use the Refresh option, you need to select Explain
while Running from the Run SQL Scripts window.

Database performance and query optimization 167

To refresh the diagram, select Refresh from the View menu. Or click the Refresh button in the toolbar.

Related reference
Index advisor

The query optimizer analyzes the row selection in the query and determines, based on default values, if

creation of a permanent index improves performance. If the optimizer determines that a permanent index

might be beneficial, it returns the key columns necessary to create the suggested index.

Adaptive Query Processing in Visual Explain

You can use Visual Explain to request a new plan.

There might be times when you are asked to performance tune a query while the query is still running. For
instance, a query might be taking a long time to finish. After viewing the plan in Visual Explain, you decide
to create the recommended index to improve the speed of the query. So you create the index and then
want to signal the database optimizer to consider a new plan based on the new index.

Here are the steps to request the database engine to consider a new plan while running in Visual Explain:

1. Open Run SQL Scripts.

2. Typeinaquery.

3. Go to the Visual Explain menu and select Explain While Running.
4. The Visual Explain window is displayed.

5. Next, go to the Actions menu and select Request New Plan.

ot Viisual Explain - Server1{Server1)

File “iew Actions Options Help

FEESCIEE T R it e

A1

l |Requestthat the datahase engine consider a new plan for this Statemenhl

Attribute

Tahle Probe

=
E.

- ., o
F=3

-+ E.:'__:I

4~ MNested Loop Join Table Probe
2335

Index Probe

=Al

B
=3
Nested Loop Joine-!__ E

p—r N

Fetch N Rows

Index Probe

B2 235
—

-—

|

=1 co--]
[=2]
Logic

i)
et

Complicated

l |

Time Information

Staternent Start Tirmestamp
Staternent End Timestamp
Total Estimated Run Time {ms)

Actual Runtime Information
Qptimization Time {ms)

Run Time {ms)

Staterment Open Time (ms)
Staterment Fetch Time (ms)
Staterment Close Time {ms)
Raows Fetched

Total Times Query Was Run
Total Time For All Runs {ms)
Synchronous Database Reads
Asynchronous Database Reads
Fage Faulis

Statement Mumber

Statement Function
Ll

[ET]

Timestamnp for Creation of Monit...

{{Information about SQL stateme...

200¢
200¢
2008
186.

a8
105
Mot
104
Mot

select * from gsysZ . syscolumns where dbname = 'Q3Y52!

Statement text |
=

A message box appears.

Select Yes to restart the query.

168 IBM i: Performance and Query Optimization

o 1

Request New Plan @

b] This action may cause the staterment to restart from the beginning. YWhile the database
‘\f) will handle this restant silently, any progress made far the statement will be lost.

Would yvou like to continue?

ives il Mo

The database optimizer considers any changes to the query environment, and determines whether it is
appropriate to generate a new plan. It might be possible that the database optimizer decides it is better to
continue using the existing plan.

Note: This capability could also be available when selecting Visual Explain of a statement in the SQL
Details for a Job window, or the SQL Plan Cache Show Statements window.

Related reference

Adaptive Query Processing
Adaptive Query Processing analyzes actual query run time statistics and uses that information for
subsequent optimizations.

Optimizing performance using the Plan Cache

The SQL Plan Cache contains a wealth of information about the SQE queries being run through the
database. Its contents are viewable through the System i Navigator GUI interface. Certain portions of the
plan cache can also be modified.

In addition, procedures are provided to allow users to programmatically work with the plan cache. These
procedures can be invoked using the SQL CALL statement.

The Plan Cache interface provides a window into the database query operations on the system. The
interface to the Plan Cache resides under the System i Navigator > system name > Database.

Within the SQL Plan Cache folder are two folders, SQL Plan Cache Snapshots and SQL Plan Cache Event
Monitors.

Clicking the SQL Plan Cache Snapshots folder shows a list of any snapshots gathered so far. A snapshot is
a database monitor file generated from the plan cache at the time a '‘New Snapshot' is requested. It can
be treated much the same as the SQL Performance Monitors list. The same analysis capability exists for
snapshots as exists for traditional SQL performance monitors.

Clicking the SQL Plan Cache Event Monitors shows a list of any events that have been defined. Plan

Cache event monitors, when defined, generate database monitor information from plans as they are being
removed from the cache. The list includes currently active events as well as ones that have completed.
Like a snapshot, the event monitor is a database monitor file. Consequently, the same analysis capability
available to SQL performance monitors and snapshots can be used on the event file.

The plan cache is an actively changing cache. Therefore, it is important to realize that it contains timely
information. If information over long periods of time is of interest, an event monitor could be defined to
ensure that information is captured on any plans that are removed from the cache over time. Alternatively,
you could consider implementing a method of performing periodic snapshots of the plan cache to capture
trends and heavy usage periods. See the discussion on IBM supplied, callable SQL procedures later in this
section on plan cache.

Related concepts
Plan cache

Database performance and query optimization 169

The plan cache is a repository that contains the access plans for queries that were optimized by SQE.

SQL Plan Cache - Show Statements

By right-clicking the SQL Plan Cache icon, a series of options are shown which allow different views of
current plan cache of the database. The SQL Plan Cache > Show Statements option opens a screen with
filtering capability. This screen provides a direct view of the current plan cache on the system.

O3

™ saL Plan Cache Statements - Serverxyz (Serverxyz)

Fiflers to apphy : Btatermants:
I Miniersurm funlirme for the longes execution of e stalement | |-=21 Teme Run | Most Expansiv Tim (sec) |1
Bi2TH09 10:1 255 FMW 13723864 &
| = [seconds =) RY27/09 T09-42 PM s 7 B
I Staternenis Bl ran on or afer this date and Bme: B2303 40310 FM 4.1
[j | - ﬂ BI2609 6:05:33 PM FAT.3384
Br2T09 100 255 P araen
I™ Top 'n' mast frequentty run stalemeants, BRTE0Q 31707 PM FA5.407 3
3 || 872703 20342 PM 985024
= Top ' slatements with the largesd tobal aceunnulabad nundeme; Bf25409 50547 PM 1196275
m Br25009 50% 47 PM 581911
B27I0S 32337 PFM 106 4968
I Staternents e following weer has evar mn: BiTM0S 50547 PM 47 T30
I B2E08 10:01:19% AM 620935
100453 AM
T — pie s, s
I Staterments for which an index has been addsed BI2EH9 53833 AM 629747
BI2EM09 40755 FM 44 GEdd
™ Statermenls forwhich staliskes have been advised R 1 R A AT
I Inchude stataments intiabad by the operating sysbam Bi2TIE 32930 FM 17.4664
™ Gtatements Mat refarence the following objects: :ﬁ:ﬂ: :3?;?;: 2: :Eﬁ;
| | || aas0m 10140 4 41502
j B2TH9 359733 Ak 3025
1 i Bf26409 T2 AT PM 40244
1 Br27H09 110025 PM 98281
| Bi27H09 224°32 FM TA8I7
:j B2 42210 AM 27380
] Br26409 4:13°25 PM 4 TEIG
™ Statements Satl contain the following et B 2SS 10143 AN 06606
BRE0A 124753 AM 10081
W2ENA TIE19PM 74941
BI2THIG 30123 AM 105749 =
ST TN TG AR nl:l'\-u_r‘
4 I | b
{Btaus; Complets Columns... | Refrash |
Rasat Al Filters Apoly
Al | o] chse | Hew |7

Press the Apply or Refresh button to display the current Plan Cache statements. The information shown
includes the SQL query text, last time the query ran, most expensive single instance run, total processing
time consumed, total number of times run, and information about the user and job that first created the
plan entry.

The information also includes several per run averages, including average runtime, average result set size
and average temporary storage usage. There is an adjusted average processing time which is the average
discounting any anomalous runs.

170 IBM i: Performance and Query Optimization

The display also shows how many times, if any, that the database engine resued the results of a prior run,
avoiding rerunning the entire statement. There is also a Save Results button (not shown) that allows you
to save the statement list, for example, to a .csv file or spreadsheet.

Finally, the numeric identifier and plan score are also displayed. For more detail on the columns
displayed, see “SQL Plan Cache column descriptions” on page 173

Statement Options

By highlighting one or more plans and right clicking, a menu with several possible actions appears.

Visual Explain Shows a visual depiction of the access plan and provides more detailed performance
analysis. Note only one statement can be highlighted when performing this action.

Show Shows details of up to 10 of the longest running instances of that statement. Within the
Longest Longest Runs list, you can right click a statement and select Visual Explain, Work With SQL
Runs Statement, Work With SQL Statement and Variables, Save to New... snapshot or Remove.

Snapshots are useful for capturing the information for that specific run in Visual Explain.
Removing old or superfluous runs makes room to capture future runs. Only one statement
can be highlighted when performing these actions. Any runs removed only affect which runs
are shown in the list. The total time, total number of runs, and other information for the
statement are still calculated including the runs removed from the list.

Show Active Jobs Displays a list of jobs on the system that are currently using that statement or
statements.

Show User History Shows a list of all user IDs that have run that statement along with the last time
they ran it.

Work with SQL Displays a scripting window containing the SQL statement. The scripting window

Statement is useful for working with and tuning the statement directly, or for just viewing
the statement in its own window. Only one statement can be highlighted when
performing this action.

Work with SQL Statements Displays a scripting window containing the SQL Statement and any

and Variables parameter markers entered with their specific values for that run of the
SQL statement.
Save to New... Allows you to create a snapshot of the selected statements.

Plan Right-click to show options for modifying the plan:

Change Plan Score allows you to set the score to a specific value. The plan score is used to
determine when a plan might be removed from the cache. A lower score plan is removed before a
higher score plan. By setting the plan score high, the plan remains in the cache for a longer time.
Setting the plan score to a low value causes the plan to be pruned sooner than might otherwise
have occurred.

Delete allows you to remove the plan immediately from the cache. Note under normal
circumstances there might not be a need to modify the attributes of a plan. Normal database
processing ages and prunes plans appropriately. These modifying options are provided mostly as
tools for minute analysis and for general interest.

The User and Job Name for each statement on the Statements screen is the user and job that created
the initial plan with full optimization. This user is not necessarily the same as the last user to run that
statement. The Longest Runs screen, however, does show the particular user and job for that individual
run.

Database performance and query optimization 171

Filtering Options

The screen provides filtering options which allow the user to more quickly isolate specific criteria of
interest. No filters are required to be specified (the default), though adding filtering shortens the time

it takes to show the results. The list of statements that is returned is ordered so that the statement
consuming the most total processing time is shown at the top. You can reorder the results by clicking the
column heading for which you want the list ordered. Repeated clicking toggles the order from ascending

to descending.

The filtering options provide a way to focus in on a particular area of interest:

Minimum runtime for the
longest execution of the
statement:

Statements that ran on or
after this date and time:

Top 'n' most frequently run
statements:

Top 'n' statements with the
largest total accumulated
runtime:

Statements the following
user has ever run:

Statements that are
currently active

Statements for which an
index has been advised

Statements for which
statistics have been
advised

Include statements
initiated by the operating
system

Statements that reference
the following objects:

Statements that contain
the following text:

Show statements with at least one long individual statement instance
runtime.

Show statements that have been run recently.
Show statements run most often.

Show the top resource consumers. Shows the first 'n' top statements by
default when no filtering is given. Specifying a value for 'n' improves the
performance of getting the first screen of statements, though the total
statements displayed is limited to 'n".

Show statements a particular user has run. The user and job hame shown
reflect the originator of the cached statement. This user is not necessarily
the same as the user specified on the filter (there could be multiple users
running the statement).

Show statements that are still running or are in pseudo-close mode. The
user and job name shown reflect the originator of the cached statement.
This user is not necessarily the same as the user specified on the filter
(there could be multiple users running the statement).

Note: An alternative for viewing the active statement for a job is to right-
click the Database icon and select SQL Details for Jobs...

Show only those statements where the optimizer advised an index to
improve performance.

Show only those statements where a statistic not yet collected might have
been useful to the optimizer. The optimizer automatically collects these
statistics in the background. This option is normally not that interesting
unless, for whatever reason, you want to control the statistics collection
yourself.

Show the 'hidden' statements initiated by the database to process a
request. By default the list only includes user-initiated statements.

Show statements that reference the tables or indexes specified.

Show statements that include the text specified. This option is useful
for finding particular types of statements. For example, statements with
a FETCH FIRST clause can be found by specifying ‘fetch'. The search is
not case sensitive for ease of use. For example, the string 'FETCH' finds
the same statements as the search string 'fetch'. This option provides a
wildcard search capability on the SQL text itself.

Multiple filter options can be specified. The candidate statements for each filter are computed
independently. Only those statements that are present in all the candidate lists are shown. For example,

172 IBM i: Performance and Query Optimization

you could specify options Top 'n' most frequently run statements and Statements the following user
has ever run. The display shows those most frequently run statements in the cache that have been run
by the specified user. It does not show the most frequently run statements by the user (unless those
statements are also the most frequently run statements in the entire cache).

SQL Plan Cache column descriptions

Displays the columns that are used in the SQL Plan Cache Statements window.

Table 48. Columns used in SQL Plan Cache Statements window

Column name

Description

Last Time Run

Displays the last time that this statement was run.

Most Expensive Time (sec)

The time taken for the longest run of this statement.

Total Processing Time (sec)

The sum total time that all runs of this statement took to
process in seconds.

Total Times Run

The total number of times that this statement ran.

Average Processing Time (sec)

The average time per run that this statement took to process
in seconds.

Statement

The statement text.

Plan Creation User Name

The name of the user id that created the plan.

Job Name The name of the job that created the plan.

Job User The name of the user id that owned the job that created the
plan.

Job Number The job number of the job that created the plan.

Adjusted Average Processing Time (sec)

The average time per run that this statement took to process
in seconds where anomalous runs are removed from the
average calculation. This time provides a realistic average
for a statement by ignoring a single (or few) run that was
atypical to the normal condition of the statement.

Average Result Set Rows

The average number of result set rows that are returned
when this statement is run.

Average Temp Storage Used (MB)

The average amount of temporary storage used when this
statement is run.

Plan Score

The rating of this plan relative to other plans in the cache.

A plan with a higher rating relative to other plans remains in
the cache for a longer time. A plan with a lower rating relative
to other plans is removed from the cache sooner than the
other plans.

Plan Identifier

A unique numeric identifier of the plan.

Total Cached Results Used

The number of times a result set from a prior run of the
statement was reused on a subsequent run of the statement.

Optimization Time (sec)

The amount of time that it took to optimize this statement.

System Name

The system name.

Relational Database name

Relational database name

Database performance and query optimization 173

SQL plan cache properties

The Plan Cache tab of the SQL Performance Center in IBM i Access Client Solutions (ACS) shows high-
level information about the SQL plan cache and overall query activity. This information includes cache
size, number of plans, number of full opens and pseudo-opens that have occurred.

This information can be used to view overall database activity. If tracked over time, it provides trends to
help you better understand the database utilization peaks and valleys throughout the day and week.

Several Plan Cache Properties can be changed by right-clicking a property and selecting Edit Value.
The following terms are used in regards to plan cache properties:

« Active Queries — queries that are currently open or in pseudo close mode.

« Full Open — describes a query run that requires a cursor to be built before the query executes and return
rows. A query that reuses a cursor is called a Pseudo Open.

« Unique Queries — unique SQL query statements. For the plan cache, this is uniqueness once tables are
resolved to their schemas.

« Hit Ratio — the percentage of time that the query optimizer, when searching the plan cache for a plan,
finds an existing plan for the query.

- Target Hit Ratio — the hit ratio percentage that the database tries to achieve by adjusting the plan
cache’s size. A larger size means plans stay in the cache longer and are therefore more likely to be found
and used for future runs of the query.

« Job Scoped — queries that reference tables or indexes that reside in the job’s QTEMP library. This
includes, for example, global temporary tables. By definition these job scoped plans and runtime
objects cannot be reused across jobs.

« Temporary Runtime Objects — the actual runtime executable objects used to process a query. These
include the execution tree (ROQ), hash tables, sorted lists, lists, and buffers. A certain number of these
objects are cached with the query plan in the cache so they can be reused.

« Longest Runs - information kept about the longest running instances of a query.
- Activity Thresholds — highest or largest values that are tracked by the database.
- ...Since Start — the amount of activity since the cache was created (IPL).

Plan Cache Properties are divided into three main types:

« Summary and Usage — Information about plan usage, query usage and current conditions for the plan
cache and queries.

« Configuration — properties that can be adjusted by the user.
« Activity Threshold - tracked ‘high water mark’ of several key indicators.

To view the Plan Cache properties, select the SQL Performance Center from the main ACS window or from
the Tools menu of any ACS window.

174 1BM i: Performance and Query Optimization

€ IBM i Access Client Solutions

IBM i Access Client Solutions

File Edit Actions Tools Help

Welcome
SQL Performance Center provides a set of tools to help you optimize the SQL
S | N in your database applications.
@ Analyze - Provides a summarized view of collected performance data
= General that serves as a launch point into deeper analysis using drill-down
Data Transfer navigation.
5250 Emulator @ Compare - View a summary comparision of two or more performance

data collections, then choose two for a deeper statement comparison.

TEE R ARy © Show Statements - Work with SQL statements in the SQL Plan

Na\rigator. fori Cache or in a performance data collection.
55H Terminal @ Visual Explain - Generate a graphical representation of the
Printer Qutput statement execution plan to see exactly how your SQL statements
work,
= Database @ SQL Plan Cache - Manage the settings of the system SQL Plan Cache.
Schemas

Run SQL Scripts

s ” This task requires a system configuration. To add or change a system
SOL Performanc

configuration, select System Configurations from the Management tasks.

[z Console
5250 Console
Virtual Control Panel
Hardware Management Interface 1

= Management
System Configurations
5250 Session Manager
HMC Probe Utility

The first tab in the SQL Performance Center window that appears will display all of the Plan Cache
properties. Changes to configurable properties may be made by clicking the Change Configuration...
button.

Database performance and query optimization 175

¥ sOL Performance Center -

File Edit View Actions Tools Help
Database: cu w

Eg! Plan Cache B Performance Monitors 2] Plan Cache Snapshots Plan Cache Event Monitors

Show Statements... &2' Change Configuration... % SQL Details for Jobs...
Properties
Description Value Walue Unit
I .
Current Mumber of Plans in Cache 111372
Total Mumber of Plans Built Since Start 1404089
Total Mumber of SMP Plans Built Since Start 56242
Total Number of Unique Queries Since Start 241083
Current Plan Cache Size 23361 MB
Current Plan Cache Size Threshald *ALTO MB
Maximum Plan Cache Size For AutoSizing *DEFALLT (24578) MB
Current Plan Cache Hit Ratio 54 B
Target Plan Cache AutoSize Hit Ratio *DEFALLT (90) B
Total Mumber of Plan Cache Autosizing Adjustments 47
Last Plan Cache AutoSizing Adjustment 2021-08-30-20,15,53.4993 18
Last Autosizing Limited Due to Temporary Storage 0000-00-00-00.00,00,000000
Current Mumber of Job Scoped (QTEMP) Plans 8035
Total Number of Job Scoped (QTEMP) Plans Built Since Start 107758
Total Mumber of Unique Queries With Job Scoped (JTEMP) Referen... 22668
Total Times Plans Used from Cache 1659506
Total Plans Removed 353754
Total Plans Pruned 634311
Mumber of Times Plan Cache Pruned 14
Time Plan Cache was Last Pruned 2021-09-01-06.37.26. 780238
Current Mumber of Temporary Runtime Objects Stored in Cache 100291
Current Total Size of Temporary Runtime Objects stored in Cache 50035 MB
Maximum Mumber of Temporary Runtime Objects Stored Per Plan *DEFALLT (5)
Total Number of Temporary Indexes Created 35353
Current Mumber of Temporary Indexes 2949
Current Total Size of Temporary Indexes 10104 MB
Mumber of Plans Rebuilt due to AQP 793
Mumber of Query Mapping Errors Since Start 12498 hd
Done: 53 rows retrieved. o
Table 49. Plan Cache Properties
Plan Cache Property Description
Time Of Summary Timestamp of when the properties were collected.
Plan Cache Creation Time Timestamp of when the plan cache was created
(IPL)
Active Query Summary
Number of Currently Active Queries Number of queries that are currently open orin
pseudo close mode.
Number of Queries Run Since Start Shows the total number of SQL queries run since
IPL
Note: This value includes job scoped queries.
Number of Query Full Opens Since Start Number of queries run since IPL that required a
cursor to be built before the query executed and
returned rows.

176 IBM i: Performance and Query Optimization

Table 49. Plan Cache Properties (continued)

Plan Cache Property

Description

Plan Usage Summary

Current Number of Plans in Cache

Current total number of plans in the plan cache

Total Number of Plans Built Since Start

Number of plans built since IPL. This includes the
plans that have been pruned from the plan cache.

Total Number of SMP Plans Built Since Start

The number of plans built since IPL that run with
SMP parallel processing.

Total Number of Unique Queries Since Start

This value reflects the total number of unique
statements (SQL queries) run since IPL Note: This
value includes unique job scoped queries

Current Plan Cache Size

Current size in MB of the plan cache. This does
not include the size of cached temporary runtime
objects.

Current Plan Cache Size Threshold

The current maximum allowed size of the plan
cache.

This property is configurable.

« *AUTO indicates that the database manager will
manage the maximum size of the plan cache.

= A user specified value between 50 and 51200.
Size is specified in MB.

Maximum Plan Cache Size For AutoSizing

If AutoSizing is active, the maximum plan cache
size.

This property is configurable if the Current Plan
Cache Size Threshold is *AUTO.

« *DEFAULT(nn) - The database manager
determines, at IPL, the maximum size that the
plan cache can grow to under autosizing. Only
applicable if Size Threshold is set to *AUTO.
The database determined size is shown in
parentheses.

« nn — A user specified size between 50 and
51200. Size is specified in MB. While supported,
it should rarely be changed from *DEFAULT.

« *DISABLED - Indicates that plan cache auto
sizing has been disabled.

Current Plan Cache Hit Ratio

The percentage of time the query optimizer found a
matching plan in the plan cache.

This value indicates the efficiency of the plan
cache. The higher the percentage the better.

Database performance and query optimization 177

Table 49. Plan Cache Properties (continued)

Plan Cache Property

Description

Target Plan Cache AutoSize Hit Ratio

The target hit ratio percentage that the database
manager tries to meet by adjusting the plan cache
size.

This property is configurable if the Current Plan
Cache Size Threshold is *AUTO.

« DEFAULT(nn) — The database manager sets the
target hit ratio. The database determined ratio is
shown in parentheses.

= nn - percentage from 1 to 99. While supported, it
should rarely be changed from *DEFAULT.

« *DISABLED - Indicates that plan cache auto
sizing has been disabled.

Current Number of Job Scoped (QTEMP) Plans

Current number of plans in the plan cache that

for queries that reference tables or indexes that
reside in the job’s QTEMP library. This includes,

for example, global temporary tables. By definition
these job scoped plans and runtime objects cannot
be reused across jobs.

Total Number of Job Scoped (QTEMP) Plans Built
Since Start

Total number of plans built for queries that
reference tables or indexes that reside in the job’s
QTEMP library.

Total Number of Unique Queries With Job Scoped
(QTEMP) References Since Start

This value reflects the total number of unique
statements (SQL queries) referencing temporary
files that have been run since IPL.

Total Times Plans Used from Cache

Total number of plans that were reused from
the plan cache. (i.e. Plans that did not require a
reoptimization).

Total Plans Pruned

Total number of plans removed from the plan
cache.

Current Number of Temporary Runtime Objects
Stored in Cache

Current Number of Temporary Runtime Objects
Stored in Cache

Current Total Size of Temporary Runtime Objects
stored in Cache

Current Total Size of Temporary Runtime Objects
stored in Cache

178 IBM i: Performance and Query Optimization

Table 49. Plan Cache Properties (continued)

Plan Cache Property

Description

Maximum Number of Temporary Runtime Objects
Stored Per Plan

Maximum number of Temporary Runtime Objects
stored per plan.

This property is configurable.

« *DEFAULT(nn) - database determines the
maximum number of runtime objects (ROQs) to
keep per plan. The database determined number
is shown in parentheses.

- nn — A user specified value between 1 and
50 that is the maximum number of runtime
objects to keep per plan. A runtime ‘object’ is
all the runtime constructs (except the cursor)
used to execute the query. It includes the
ROQ, hash tables, sorts, etc... The database will
automatically clear big hash tables and sorts of
data contents (leaving only their shell) before
storing them with the plan. However, smaller
hashes and sorts will retain their contents.
Setting this value smaller will lessen the
temporary storage usage on the machine. Setting
this value higher can improve performance by
having more runtime objects ready to go during
full opens rather than having to build them.

Total Number of Temporary Indexes Created

Total number of SQE created temporary indexes
(MTIs) since IPL.

Current Number of Temporary Indexes

Current number of SQE created temporary indexes
(MTIs) on the system.

Current Total Size of Temporary Indexes

The total size of all SQE created temporary indexes
(MTIs) currently on the system.

Number of Plans Rebuilt due to AQP

Number of plans rebuilt to AQP.

Number of Query Mapping Errors Since Start

The number of SQE query mapping errors that have
occurred since the last IPL. While a number of
mapping errors greater than 0 does not indicate

a problem, a significant number of mapping errors
can negatively affect performance and may require
further investigation.

Database performance and query optimization 179

Table 49. Plan Cache Properties (continued)

Plan Cache Property

Description

Maximum Number of Longest Runs Allowed Per
Plan

The Maximum Number of Longest Runs Allowed
Per Plan determines how many longest runs are
maintained per plan.

This property is configurable.

« *DEFAULT(nn) - The database manager
determines the maximum number of longest
run entries to keep per plan. The database
determined number is shown in parentheses.

- nn — A user specified value between 1 and 50
indicating the maximum number of longest runs
information to keep per plan

Note: These can be seen by bringing up a show
statements of the live cache, right clicking, and
selecting Longest Runs

Plan Cache Activity Thresholds

The Activity Thresholds group of properties track
the upper thresholds of activity for both plans and
query activity. The values represent the maximum
values achieved since the Threshold Start Time.
Each threshold shows both the maximum value
and the timestamp of when that maximum was
reached.

Activity Thresholds Start Time

The time from which the tracking started. This
value can be reset (to zero) to reset all the
thresholds and restart tracking.

Note: All thresholds are reset at one time,
thresholds cannot be reset individually. Start Time
restarts each IPL.

Highest Number of Active Queries at One Time

The highest number of open plus pseudo closed
cursors (queries) at a given point in time

Highest Number of Plans in Cache

The largest number of plans in the plan cache at a
given point in time

Highest Number of Temporary Runtime Objects
Stored in Cache

The highest number of inactive runtime executable
objects stored (cached) away (for future reuse) in
the plan cache at a given point in time

Largest Total Size of Temporary Runtime Objects
Stored in Cache

The largest amount of temporary storage, in MB,
consumed by the inactive runtime executable
objects stored (cached) away in the plan cache at a
given point in time

Query Supervisor

The Query Supervisor group of properties provide
historical information about the interaction of the
Query Supervisor with queries running on the
system.

180 IBM i: Performance and Query Optimization

Table 49. Plan Cache Properties (continued)

Plan Cache Property

Description

Number of thresholds reached

The number of Query Supervisor thresholds that

have been reached since IPL.

Most recent job to reach a threshold

The name and timestamp of the most recent job to
reach a Query Supervisor threshold.

Number of queries terminated

The number of queries that have been terminated
since IPL at the request of a Query Supervisor exit
program.

Most recent job to have a query terminated

The name and timestamp of the most recent job to
have a query terminated at the request of a Query
Supervisor exit program.

Most recent exit point program failure

The name and timestamp of the most recent job to
encounter an error when using a Query Supervisor
exit program.

Creating SQL plan cache snapshots

The New > Snapshot option allows for the creation of a snapshot from the plan cache.

Unlike the snapshot option under Show Statements, it allows you to create a snapshot without having to

first view the queries.

Database performance and query optimization 181

&) New SQL Plan Cache Snapshot - Serv... | [[(]P.4

Name: |
Schema: | =]

" Include all plan cache entries

= |nclude plan cache entries that meet the following criteria
Filters to apply:

[Winimum runtime for the longest execution of the staterment;

[—| |Seconds =]

[Staternents that ran on or after this date and fime:

[Top 'n' most frequently run statements:

| =]

[Top 'n' statements with the largest total accumulated runtinme:

| =

[Statements the following user has ever run;

[Statements that are currently active

[Statements forwhich an index has been advised
[~ Statements for which statistics have been advised

[Include staternents initiated by the operating system

|Ec hemal

[Statements that contain the following text:
| ==

0K cancel | Help |7

The same filtering options are provided here as on the Show Statements screen.

The stored procedure, gqsys2.dump_plan_cache, provides the simplest, programmatic way to create a
database monitor file output (snapshot) from the plan cache. The dump_plan_cache procedure takes two
parameters, library name and file name, for identifying the resulting database monitor file. If the file does

182 IBM i: Performance and Query Optimization

not exist, it is created. For example, to dump the plan cache to a database performance monitor file in

library QGPL:

CALL gsys2.dump_plan_cache('QGPL"', 'SNAPSHOT1');

SQL plan cache event monitor

The SQL plan cache event monitor records changes in your plan cache.

You can access the SQL plan cache event monitor through the System i Navigator interface or by calling
the procedures directly.

The SQL plan cache event monitor captures monitor records of plans as they are removed from the plan
cache. The event monitor is useful for ensuring that all performance information potentially available in
the cache is captured even if plans are removed from the cache. Combining the event monitor output with
a plan cache snapshot provides a composite view of the cache from when the event monitor was started
until the snapshot is taken.

The event monitor allows the same filtering options as described for Show statements and
NewSnapshot. The exceptions are that the Top 'n' most frequently run statements and the Top 'n’
statements with largest total accumulated runtime are not shown. Once a statement is removed from

the cache, it is no longer compared to other plans. Therefore, these two 'Top n' filters do not make sense

for pruned plans.

Accessing the SQL plan cache with SQL stored procedures

The System i Navigator provides a visual interface into the plan cache. However, the plan cache is also
accessible through stored procedures which can be called using the SQL CALL statement.

See “Plan Cache Services” on page 338 for the descriptions of these procedures.

Verifying the performance of SQL applications

You can verify the performance of an SQL application by using commands.

The commands that can help you verify performance:

Display Job
(DSPJOB)

Print SQL
Information
(PRTSQLINF)

Start Database
Monitox
(STRDBMON)

Change Query
Attribute
(CHGQRYA)

You can use the Display Job (DSPJOB) command with the OPTION(*OPNF)
parameter to show the indexes and tables used by an application running in a job.

You can also use DSPJOB with the OPTION(*JOBLCK) parameter to analyze object
and row lock contention. It displays the objects and rows that are locked and the
name of the job holding the lock.

Specify the OPTION(*CMTCTL) parameter on the DSPJOB command to show the
isolation level, the number of rows locked during a transaction, and the pending
DDL functions. The isolation level displayed is the default isolation level. The actual
isolation level, used for any SQL program, is specified on the COMMIT parameter of
the CRTSQLxxx command.

The Pxrint SQL Information (PRTSQLINF) command lets you print
information about the embedded SQL statements in a program, SQL package, or
service program. The information includes the SQL statements, access plans used,
and the command parameters used to precompile the source member.

You can use the Start Database Monitoxr (STRDBMON) command to capture
to a file information about every SQL statement that runs.

You can use the Change Query Attribute (CHGQRYA) command to change
the query attributes for the query optimizer. Among the attributes that can be
changed by this command are the predictive query governor, parallelism, and the
query options.

Database performance and query optimization 183

Start Debug You can use the Start Debug (STRDBG) command to put ajob into debug

(STRDBG) mode, and optionally add as many as 20 programs, 20 class files, and 20 service
programs to debug mode. It also specifies certain attributes of the debugging
session. For example, it can specify whether database files in production libraries
can be updated while in debug mode.

Related information

Display Job (DSPJOB) command

Print SQL Information (PRTSQLINF) command
Start Database Monitor (STRDBMON) command
Change Query Attributes (CHGQRYA) command
Start Debug (STRDBG) command

Examining query optimizer debug messages in the job log

Query optimizer debug messages issue informational messages to the job log about the implementation
of a query. These messages explain what happened during the query optimization process.

For example, you can learn:

« Why an index was or was not used

« Why a temporary result was required

« Whether joins and blocking are used

- What type of index was advised by the optimizer

Status of the job queries
« Indexes used
« Status of the cursor

The optimizer automatically logs messages for all queries it optimizes, including SQL, call level interface,
ODBC, OPNQRYF, and SQL Query Manager.

Viewing debug messages using STRDBG command:

STRDBG command puts a job into debug mode. It also specifies certain attributes of the debugging
session. For example, it can specify whether database files in production schemas can be updated while
in debug mode. For example, use the following command:

STRDBG PGM(Schema/program) UPDPROD(*YES)

STRDBG places in the job log information about all SQL statements that run.

Viewing debug messages using QAQQINI table:

You can also set the QRYOPTLIB parameter on the Change Quexry Attributes (CHGQRYA) command
to a user schema where the QAQQINI table exists. Set the parameter on the QAQQINI table to
MESSAGES_DEBUG, and set the value to *YES. This option places query optimization information in

the job log. Changes made to the QAQQINI table are effective immediately and affect all users and
gueries that use this table. Once you change the MESSAGES_DEBUG parameter, all queries that use this
QAQQINI table write debug messages to their respective job logs. Pressing F10 from the command Entry
panel displays the message text. To see the second-level text, press F1 (Help). The second-level text
sometimes offers hints for improving query performance.

Viewing debug messages in Run SQL Scripts:

To view debug messages in Run SQL Scripts, from the Options menu, select Include Debug Messages in
Job Log. Then from the View menu, select Job Log. To view detailed messages, double-click a message.

184 IBM i: Performance and Query Optimization

Viewing debug messages in Visual Explain:

In Visual Explain, debug messages are always available. You do not need to turn them on or off. Debug
messages appear in the lower portion of the window. You can view detailed messages by double-clicking

a message.

Print SQL Information

The Pxrint SQL Information (PRTSQLINF) command returns information about the embedded SQL
statements in a program, SQL package (used to store the access plan for a remote query), or service
program. This information is then stored in a spooled file.

PRTSQLINF provides information about:

« The SQL statements being executed

« The type of access plan used during execution. How the query is implemented, indexes used, join order,
whether a sort is used, whether a database scan is used, and whether an index is created.

« Alist of the command parameters used to precompile the source member for the object.

« The CREATE PROCEDURE and CREATE FUNCTION statement text used to create external procedures or
User Defined Functions.

This output is like the information that you can get from debug messages. However, while query debug
messages work at runtime, PRTSQLINF works retroactively. You can also see this information in the
second-level text of the query governor inquiry message CPA4259.

You can issue PRTSQLINF in a couple of ways. First, you can run the PRTSQLINF command against a
saved access plan. You must execute or at least prepare the query (using the SQL PREPARE statement)
before you use the command. It is best to execute the query because the index created as a result of
PREPARE is relatively sparse. It could well change after the first run. PRTSQLINF's requirement of a saved
access plan means that the command cannot be used with OPNQRYF.

You can also run PRTSQLINF against functions, stored procedures, triggers, SQL packages, and programs
from System i Navigator. This function is called Explain SQL. To view PRTSQLINF information, right-click
an object and select Explain SQL.

Related information
Print SQL Information (PRTSQLINF) command

Query optimization tools: Comparison

Use this table to find the information each tool can provide, when it analyzes your queries, and the tasks it
can do to improve your queries.

Table 50. Optimization tool comparison

PRTSQLINF

STRDBG or CHGQRYA

File-based monitor
(STRDBMON)

Memory-Based
Monitor

Visual Explain

Available without
running query (after
access plan has
been created)

Only available when
the query is run

Only available when
the query is run

Only available when
the query is run

Only available when
the query is
explained

Displayed for all
queries in SQL
program, whether
executed or not

Displayed only for
those queries which
are executed

Displayed only for
those queries which
are executed

Displayed only for
those queries which
are executed

Displayed only for
those queries that
are explained

Information about
host variable
implementation

Limited information
about the
implementation of
host variables

All information
about host variables,
implementation, and
values

All information
about host variables,
implementation, and
values

All information
about host variables,
implementation, and
values

Database performance and query optimization 185

Table 50. Optimization tool comparison (continued)

PRTSQLINF

STRDBG or CHGQRYA

File-based monitor
(STRDBMON)

Memory-Based
Monitor

Visual Explain

Available only to
SQL users with
programs, packages,
or service programs

Available to all query
users (OPNQRYF,
SQL, QUERY/400)

Available to all query
users (OPNQRYF,
SQL, QUERY/400)

Available only to
SQL interfaces

Available through
System i Navigator
Database and API
interface

Messages are
printed to spool file

Messages are
displayed in job log

Performance rows
are written to
database table

Performance
information is
collected in memory

Information is
displayed visually
through System i

and then written to | Navigator
database table
Easier to tie Difficult to tie Uniquely identifies | Repeated query Easy to view
messages to query messages to query | every query, requests are implementation
with subqueries or | with subqueries or | subquery, and summarized of the query
unions unions materialized view and associated
information

Changing the attributes of your queries

You can modify different types of query attributes for a job with the Change Quexry Attributes
(CHGQRYA) CL command. You can also use the System i Navigator Change Query Attributes interface.
Related concepts

Plan cache

The plan cache is a repository that contains the access plans for queries that were optimized by SQE.

Objects processed in parallel

The Db2 Symmetric multiprocessing feature provides the optimizer with additional methods for retrieving
data that include parallel processing. Symmetrical multiprocessing is a form of parallelism achieved on
a single system where multiple CPU and I/O processors sharing memory and disk work simultaneously
toward a single result.

Related information
Change Query Attributes (CHGQRYA) command

Controlling queries dynamically with the query options file QAQQINI

The query options file QAQQINI support provides the ability to dynamically modify or override the
environment in which queries are executed. This modification is done through the Change Query

Attributes (CHGQRYA) command and the QAQQINI file. The query options file QAQQINI is used to set

some attributes used by the database manager.

For each query that is run the query option values are retrieved from the QAQQINI file in the schema

specified on the QRYOPTLIB parameter of the CHGQRYA CL command and used to optimize or implement

the query.

Environmental attributes that you can modify through the QAQQINI file include:

« ACTIVE_JOBS

. ALLOW_ADAPTIVE_QUERY_PROCESSING
« ALLOW_ARRAY_VALUE_CHANGES
« ALLOW_DDL_CHANGES_WHILE_OPEN
« ALLOW_EVI_ONLY_ACCESS

« ALLOW_TEMPORARY_INDEXES
- APPLY_REMOTE

186 IBM i: Performance and Query Optimization

ASYNC_JOB_USAGE
CACHE_RESULTS

COLLATE_ERRORS
COMMITMENT_CONTROL_LOCK_LIMIT
CONCURRENT_ACCESS_BEHAVIOR
DETERMINISTIC_UDF_SCOPE
FIELDPROC_ENCODED_COMPARISON
FORCE_JOIN_ORDER
IGNORE_LIKE_REDUNDANT_SHIFTS
KEY_RANGE_ESTIMATE_TIMEOUT
LIMIT_PREDICATE_ OPTIMIZATION
LOB_LOCATOR_THRESHOLD
MATERIALIZED_QUERY_TABLE_REFRESH_AGE
MATERIALIZED_QUERY_TABLE _USAGE
MEMORY_POOL_PREFERENCE
MESSAGES_DEBUG

NORMALIZE_DATA
OPEN_CURSOR_CLOSE_COUNT
OPEN_CURSOR_THRESHOLD
OPTIMIZATION_GOAL
OPTIMIZE_STATISTIC_LIMITATION
PARALLEL_DEGREE
PARAMETER_MARKER_CONVERSION
PSEUDO_OPEN_CHECK_HOST_VARS
QUERY_TIME_LIMIT
REOPTIMIZE_ACCESS_PLAN
SQE_NATIVE_ACCESS
SQE_NATIVE_ACCESS_POSITION_BEHAVIOR
SQLSTANDARDS_MIXED_CONSTANT
SQL_CONCURRENT_ACCESS_RESOLUTION
SQL_DECFLOAT WARNINGS
SQL_FAST_DELETE_ROW_COUNT
SQL_GVAR_BUILD_RULE
SQL_MODIFIES_SQL_DATA
SQL_PSEUDO_CLOSE
SQL_STMT_COMPRESS_MAX
SQL_STMT_REUSE
SQL_SUPPRESS_MASKED_DATA_DETECTION
SQL_SUPPRESS_WARNINGS
SQL_TRANSLATE_ASCII_TO_JOB
SQL_XML_DATA_CCSID

STAR_JOIN

STORAGE_LIMIT

Database performance and query optimization 187

SYSTEM_SQL_STATEMENT CACHE
SYSTIME_PERIOD_ADJ
TEXT_SEARCH_DEFAULT_TIMEZONE
. UDF_TIME_OUT

« VARIABLE_LENGTH_OPTIMIZATION

Specifying the QAQQINI file with CHGQRYA
Use the Change Query Attributes (CHGQRYA) command with the QRYOPTLIB (query options
library) parameter to specify which schema currently contains or contains the query options file QAQQINI.

The query options file is retrieved from the schema specified on the QRYOPTLIB parameter for each
query. It remains in effect for the duration of the job or user session, or until the QRYOPTLIB parameter is
changed by the Change Quexy Attributes (CHGQRYA) command.

If the Change Quexry Attributes (CHGQRYA) command is notissued, oris issued without the
QRYOPTLIB parameter specified, QUSRSYS is searched for the QAQQINI file. If a query options file is

not found, no attributes are modified. Since the system ships without an INI file in QUSRSYS, you might
receive a message indicating that there is no INI file. This message is not an error but an indication that a
QAQQINI file that contains all default values is being used. The initial value of the QRYOPTLIB parameter
for a job is QUSRSYS.

Related information
Change Query Attributes (CHGQRYA) command

Creating the QAQQINI query options file
Each system is shipped with a QAQQINI template file in schema QSYS. The QAQQINI file in QSYS is to be
used as a template when creating all user specified QAQQINI files.

To create your own QAQQINI file, use the Cxreate Duplicate Object (CRTDUPOBJ) command.
Create a copy of the QAQQINI file in the schema specified on the Change Query Attributes
(CHGQRYA) QRYOPTLIB parameter. The file name must remain QAQQINI. For example:

CRTDUPOBJ OBJ(QAQQINI)
FROMLIB(QSYS)
OBJTYPE (+FILE)
TOLIB(MYLIB)
DATA (*YES)
TRG (*YES)

System-supplied triggers are attached to the QAQQINI file in QSYS therefore it is imperative that the only
means of copying the QAQQINI file is through the CRTDUPOBJ CL command. If another means is used,
such as CPYF, then the triggers could be corrupted. An error is signaled that the options file cannot be
retrieved or that the options file cannot be updated.

Because of the trigger programs attached to the QAQQINI file, the following CPI321A informational
message is displayed six times in the job log when the CRTDUPOBJ CL is used to create the file. These
messages are not an error; they are only informational messages.

CPI321A Information Message: Trigger QSYS_TRIG_&1___QAQQINI___00O0O0O&N in library &1 was
added to file QAQQINI in library &1. The ampersand variables (&1, &N) are replacement variables that
contain either the library name or a numeric value.

Note: It is highly recommended that the file QAQQINI, in QSYS, not be modified. This file is the original
template that is duplicated into QUSRSYS or a user specified library for use.

Related information
Change Query Attributes (CHGQRYA) command
Create Duplicate Object (CRTDUPOBJ) command

188 IBM i: Performance and Query Optimization

QAQQINI file override support

If you find working with the QAQQINI query options file cumbersome, consider using the
QSYS2.0VERRIDE_QAQQINI procedure. Instead of creating, managing, and using a QAQQINI *FILE
object directly, this procedure can be called to work with a temporary version of the INI file. It uses
user-specified options and values. The support relies upon the QTEMP library, so any changes affect only
the job which calls the procedure.

See OVERRIDE_QAQQINI procedure for more information.

QAQQINI query options file format
The QAQQINI file is shipped in the schema QSYS. It has a predefined format and has been pre-populated
with the default values for the rows.

Query Options File:

A UNIQUE
A R QAQQINI TEXT('Query options + file')
A QQPARM 256A VARLEN(10) +

TEXT('Query+
option parameter') +
COLHDG('Parameter')
A QQVAL 256A VARLEN(10) +
TEXT('Query option +
parameter value') +
COLHDG('Parameter Value')
A QQTEXT 1000G VARLEN(100) +
TEXT('Query +
option text') +
ALWNULL +
COLHDG('Query Option' +
'Text') +
CCSID(13488) +
DFT (xNULL)
A K QQPARM

Setting the options within the query options file
The QAQQINI file query options can be modified with the INSERT, UPDATE, or DELETE SQL statements.

For the following examples, a QAQQINI file has already been created in library MyLib. To update an
existing row in MyLib/QAQQINI use the UPDATE SQL statement. This example sets MESSAGES_DEBUG =
*YES so that the query optimizer prints out the optimizer debug messages:

UPDATE MyLib/QAQQINI SET QQVAL='+YES'
WHERE QOPARM='MESSAGES_DEBUG'

To delete an existing row in MyLib/QAQQINI use the DELETE SQL statement. This example removes the
QUERY_TIME_LIMIT row from the QAQQINI file:

DELETE FROM MyLib/QAQQINI
WHERE QQPARM="QUERY_TIME_LIMIT'

To insert a new row into MyLib/QAQQINI use the INSERT SQL statement. This example adds the
QUERY_TIME_LIMIT row with a value of *“NOMAX to the QAQQINI file:

INSERT INTO MyLib/QAQQINI
VALUES (' QUERY_TIME_LIMIT', '*NOMAX', 'New time limit set by DBAdmin')

QAQOQINI query options file authority requirements

QAQOQINTI is shipped with a *PUBLIC *USE authority. This authority allows users to view the query options
file, but not change it. Changing the values of the QAQQINI file affects all queries run on the system. Allow
only the system or database administrator to have *CHANGE authority to the QAQQINI query options file.

The query options file, which resides in the library specified on the Change Query Attributes
(CHGQRYA) CL command QRYOPTLIB parameter, is always used by the query optimizer. It is used even

Database performance and query optimization 189

if the user has no authority to the query options library and file. This authority provides the system
administrator with an additional security mechanism.

When the QAQQINI file resides in the library QUSRSYS the query options affects all the query users
on the system. To prevent anyone from inserting, deleting, or updating the query options, the system
administrator must remove update authority from *PUBLIC to the file. This update authority prevents
users from changing the data in the file.

A copy of the QAQQINI file can also reside in a user library. If that library is specified on the QRYOPTLIB
parameter of the Change Query Attributes (CHGQRYA) command, the query options affect all the
queries run for that user job. To prevent the query options from being retrieved from a particular library

the system administrator can revoke authority to the Change Query Attributes (CHGQRYA) CL

command.

QAQQINI file system-supplied triggers
The query options file QAQQINI file uses a system-supplied trigger program in order to process any
changes made to the file. A trigger cannot be removed from or added to the file QAQQINI.

If an error occurs on the update of the QAQQINI file (an INSERT, DELETE, or UPDATE operation), the
following SQL0443 diagnostic message is issued:

Trigger program or external routine detected an error.

QAQOQINI query options

There are different options available for parameters in the QAQQINI file.

The following table summarizes the query options that can be specified on the QAQQINI command:

Table 51. Query Options Specified on QAQQINI Command

Parameter

Value

Description

ACTIVE_JOBS

This option specifies what should be used for active jobs during
optimization. The number of active jobs is used in determining the
optimizer fair share of memory.

*DEFAULT

Average active jobs will be computed based on system
information. This is the recommended setting.

Integer value (1 ::

8192)

The number of active jobs that will be used by the query
optimizer to determine fair share. Specify a value between 1
and 8192. Specifying a value other than default means that you
may not get all of the performance benefits from the optimizer
determining a plan using the memory fair share based on actual
system usage. Usage of this setting is intended primarily for
debug or modeling query plans based on an optimizer fair share.

ALLOW_ADAPTIVE_QUERY_PROCESSING

Specifies whether Adaptive Query Processing (AQP) processing is
done for a query.

Adaptive query processing uses runtime statistics to look for poor
performing queries and potentially replace the poor plan with an
improved plan.

*DEFAULT

The default value is set to *YES.

*YES

Allows Adaptive query processing to occur for this query.
The existing QAQQINI options that affect AQP are the following:

« Ifthe REOPTIMIZE_ACCESS_PLAN QAQQINI option is set
to *ONLY_REQUIRED, AQP does not reoptimize the original
plan. *ONLY_REQUIRED indicates the user does not want the
query reoptimized unless there is a functional reason to do
s0. *ONLY_REQUIRED takes precedence over AQP.

= Join order requirements specified by the user in the
FORCE_JOIN_ORDER QAQQINI option take precedence over
AQP. If the user specifies the primary table in the join order,
any AQP primary recommendations will be placed after the
primary table if they are different.

*NO

Adaptive query processing cannot be used for this query.

190 IBM i: Performance and Query Optimization

Table 51. Query Options Specified on QAQQINI Command (continued)

Parameter

Value

Description

ALLOW_ARRAY_VALUE_CHANGES

Specifies whether changes to the values of array elements are
visible to the query while the query is running.

*DEFAULT

The default value is set to *NO.

*NO

Do not allow changes to values in arrays referenced in the query
to be visible after the query is opened.

All values which could be referenced in a query are copied
during query open processing. Any changes to values in arrays
after the query is opened are not visible.

Produces queries with predictable and reproducible results,
but might have a performance penalty when working with
large arrays or large array elements. The penalty is less if all
the references to arrays are simple non-column values, for
example, :ARRAY[1] or :ARRAY[:hv2].

Use of column values from a table to index the ARRAY, or using
the UNNEST() function results in copies of the entire array being
made. These copies have the largest performance penalty.

*YES

Allow changes to values in arrays to be visible to the query while
the query is running. The arrays are not copied during the open
processing of the query. If the array values are changed during
the processing of queries, the results of the query might be
unpredictable.

Performance might be improved for queries which reference
large arrays in complex array index lookup operations, such
as :Array[column-name], or when using UNNEST. Large
arrays include arrays that have thousands of elements, or
elements with a large size. Array index lookups using simple
index values, such as : ARRAY[1] or : ARRAY[:hv2], see
minimal performance improvements.

Performance of some queries might be negatively impacted.
For example, later queries that could reuse the results if they
were cached to avoid recalculation where the cached result is
applicable.

Procedures that can run with *YES and still expect predictable
results have the following characteristics:

1. Contain no cursor declarations.
2. Receive arrays as input parameters:

= and do not contain SET statements which reference
arrays on the left side of the SET, and

» and have no SQL statements with INTO clauses
referencing arrays.

3. Do not contain SET statements which reference arrays on
the left side of the set:

» and have no SQL statements with INTO clauses
referencing arrays while a cursor is open for a query
which references an array.

Database performance and query optimization 191

Table 51. Query Options Specified on QAQQINI Command (continued)

Parameter

Value

Description

ALLOW_DDL_CHANGES_WHILE_OPEN

*DEFAULT

The default is set to *NO.

Specifies whether certain DDL operations against a database file
are allowed while another user has the database file (or table)
open or a logical file (or view) over a physical file open in another
job.

*YES

The following DDL operations are supported:
» Trigger operations

- SOQL CREATE TRIGGER, ALTER TRIGGER, and DROP
TRIGGER

Any open cursors in concurrent jobs that have open
cursors over the target table will continue to operate as
if the operation was not performed until the cursor is
closed.

- SQL COMMENT ON TRIGGER and LABEL ON TRIGGER
statements

There is no effect on concurrent jobs.
— CL ADDPFTRG, RMVPFTRG, and CHGPFTRG commands

Any open cursors in concurrent jobs that have open
cursors over the target table will continue to operate as
if the operation was not performed until the cursor is
closed.

This option is ignored for INSTEAD OF triggers and READ
triggers.

= Grant and revoke operations
— SQL GRANT and REVOKE for database files

Any fully open cursors in concurrent jobs that have open
cursors over the target database file will continue to
operate as if the operation was not performed until the
cursor is closed. If this is not a grant of UPDATE, DELETE,
or INSERT, pseudo-closed cursors in other jobs will not be
closed. Otherwise, all pseudo-closed cursors will be fully
closed.

— GRTOBJAUT and RVKOBJAUT CL commands for database
files

Any fully open cursors in concurrent jobs that have open
cursors over the target database file will continue to
operate as if the operation was not performed until the
cursor is closed. If this is not a grant of *UPD, *DLT, *ADD,
or *EXCLUDE, pseudo-closed cursors in other jobs will not
be closed. Otherwise, all pseudo-closed cursors will be
fully closed.

*NO

SQL DDL operations can fail to complete, with an SQL0913 error,
if an exclusive lock cannot be acquired for the target object.

ALLOW_EVI_ONLY_ACCESS

*DEFAULT

The default is set to *YES.

Specifies whether encoded vector index RRN probe can be
considered by the optimizer.

*YES

Specifies whether encoded vector index RRN probe can be
considered by the optimizer to replace table accesses. An EVI
must exist for every column being accessed in the table.

*NO

Encoded vector index RRN probes cannot replace table access.

ALLOW_TEMPORARY_ INDEXES

*DEFAULT

The default value is set to *YES.

Specifies whether temporary indexes can be considered by the
optimizer. If temporary indexes are not allowed, then any other

*YES

Allow temporary indexes to be considered.

viable plan is chosen regardless of cost to implement this query.

*ONLY_ REQUIRED

Do not allow any temporary indexes to be considered for this
access plan. Choose any other implementation regardless of
cost to avoid the creation of a temporary index. Only if no viable
plan can be found, is a temporary index allowed.

APPLY_REMOTE

*DEFAULT

The default value is set to *YES.

Specifies for database queries involving distributed files, whether
the CHGQRYA query attributes are applied to the jobs on the
remote systems associated with this job.

*NO

The CHGQRYA attributes for the job are not applied to the remote
jobs. The remote jobs use the attributes associated to them on
their systems.

*YES

The query attributes for the job are applied to the remote jobs
used in processing database queries involving distributed tables.
For attributes where *SYSVAL is specified, the system value

on the remote system is used for the remote job. This option
requires that, if CHGQRYA was used for this job, the remote jobs
must have authority to use the CHGQRYA command.

192 IBM i: Performance and Query Optimization

Table 51. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description
ASYNC_JOB_USAGE *DEFAULT The default value is set to *LOCAL.
Specifies the circumstances in which asynchronous (temp writer) Asynchronous jobs might be used for database queries that
jobs can be used to help process database queries in the job. The involve only tables local to the system where the database
option determines which types of database queries can be used queries are being run.
in asynchronous jobs (running in parallel) to help complete the L .
query. LOCAL In addition, this option allows the communications required for
o) queries involving distributed tables to be asynchronous. Each
An asynchronous job is a separate job that handles query requests system involved in the query of the distributed tables can run its
from jobs running the database queries on the system. The portion of the query at the same time (in parallel).
asynchronous job processes each request and puts the results into
a temporary file. This intermediate temporary file is then used by *DIST Asynchronous jobs might be used for database queries that
the main job to complete the database query. involve distributed tables.
The advantage of an asynchronous job is that it processes its N - -
request at the same time (in parallel) that the main job processes ANY Asynchronous jobs might be used for any database query.
another query step. The disadvantage of using an asynchronous No asynchronous jobs are allowed to be used for database
job is that it might encounter a situation that it cannot handle in query processing. In addition, all processing for queries
the same way as the main job. For example, the asynchronous job involving distributed tables occurs synchronously. Therefore, no
might receive an inquiry message from which it cancels, whereas intersystem parallel processing occurs.
the main job can choose to ignore the message and continue.
There are two different types of database queries that can run
asynchronous jobs: “NONE
1. Distributed queries. These are database queries that involve
distributed files. Distributed files are provided through the
system feature Db2 Multi-System for IBM i.
2. Local queries. there are database queries that involve only
files local to the system where the database queries are being
run.
CACHE_RESULTS *DEFAULT The default value is the same as *SYSTEM.
Specifies a way for the user to control the cache results The database manager might cache a query result set. A
processing. For queries involving temporary results, for example, subsequent run of the query by the same job can reuse the
sorts or hashes, the database manager often saves the results cached result set. Or, if the ODP for the query has been deleted,
across query pseudo-close or pseudo-open. The results are saved any job can reuse the cached result set.
as long as they are not large, with the hope that they can be . .
reused for the next run of the query. Beginning in V5R3, the *SYSTEM In many cases, this option works well. However, you need to
database manager saves these temporary results even when a consider if the query is doing work outside of the database
job is finished with them. The database manager assumes that Tanageiwhlch could affect temporary results. In that case,
another job can later reuse the results. 'J(‘)B or *NONE may be a more appropriate setting. F_or example,
if field procedures that mask data are used or swapping of user
The database manager automatically controls the caching of these profiles in a UDF can occur, this option should specify *NONE.
results, removing cache results as storage usage becomes large.
However, the amount of temporary storage used by the database The database manager might cache a query result set from one
can be noticeably more than in previous releases. run to the next for a job. Caching can occur as long as the
*JOB query uses a reusable ODP. When the reusable ODP is deleted,
the cached result set is destroyed. This value mimics V5R2
processing.
*NONE The database does not cache any query results.
COLLATE_ERRORS *DEFAULT The default value is *NO.
Specifies how data errors are handled on the GROUP BY and NO A value of *NO causes the query to be ended with an error when
ORDER BY expression during hash or sort processing within a grouping or ordering expressions results in an error.
queries.
*YES A value of *YES indicates that the grouping or sort continues.
COMMITMENT_CONTROL_LOCK_LIMIT *DEFAULT is equivalent to 500,000,000.
Specifies the maximum number of records that can be locked to a If multiple journals are involved in the transaction, the '
commit transaction initiated after setting the new value. COMMITMENT_CONTROL_LOCK_LIMIT applies to each journal,
o not to the transaction as a whole.
The value specified for COMMITMENT_CONTROL_LOCK_LIMIT *DEFAULT

does not affect transactions running in jobs that have already
started commitment control. For the value to be effective, it must
be changed before starting commitment control.

For example, files F1 to F5 are journaled to journal

J1, and files F6 to F10 are journaled to J2. The
COMMITMENT_CONTROL_LOCK_LIMIT is set to 100,000.
100,000 record locks can be acquired for files F1 to F5. 100,000
more locks can be acquired for files F6 to F10.

Integer Value

The maximum number of records that can be locked to a commit
transaction initiated after setting the new value.

The valid integer value is 1-500,000,000.

Database performance and query optimization 193

Table 51. Query Options Specified on QAQQINI Command (continued)

Parameter

Value

Description

CONCURRENT_ACCESS_BEHAVIOR

Controls how queries with an isolation level of Cursor Stability (CS)
or Read Stability (RS) interact with uncommitted table changes.

*DEFAULT

The default value is *OPTIMIZE

*OPTIMIZE

Uncommitted changes that delete or update records so that they
are no longer selected by the query will not be considered as
candidates for query synchronization.

*STRICTSCAN

All records referenced by a table scan query access plan will
synchronize with any changes that are not yet committed.
Serialization behavior depends on the concurrent access
resolution used by the query, for example, SKIP LOCKED
DATA, USE CURRENTLY COMMITTED, or WAIT FOR OUTCOME
(default). Since the table scan attempts to serialize with any
pending transactions for deleted and non-selected records,
query performance will be reduced, as compared to *OPTIMIZE.
Queries may contain many access plan types, but this option is
only supported for table scan access. All other plan types will
use *OPTIMIZE behavior.

DETERMINISTIC_UDF_SCOPE

Specifies the scope or lifetime of the deterministic setting for
User Defined Functions (UDFs) and User Defined Table Functions
(UDTFs).

It is recommended that you specify STATEMENT DETERMINISTIC
on any CREATE FUNCTION statement that should be considered
deterministic for a single instance of a query open rather than
using the *OPEN option. DETERMINISTIC_UDF_SCOPE applies

to all deterministic UDFs and UDTFs in every query while this
QAQQINI option is in effect.

*DEFAULT

The default value is *ALWAYS.

*ALWAYS

The UDF is always considered deterministic. Query temporary
objects might be shared across query opens and the UDF might
not run for a particular query open.

*OPEN

The UDF is considered deterministic only for a single instance
of a query open. Query temporary objects are not shared across
query open. The UDF is run at least once in the query for a given
set of input parameters.

FIELDPROC_ENCODED_COMPARISON

Specifies the amount of optimization that the optimizer might use
when queried columns have attached field procedures

*DEFAULT

The default value is *ALLOW_EQUAL.

*NONE

No optimization to remove field procedure decode option

4 or transformations to optimize field procedure invocations
is allowed. For example, the optimizer cannot transform
fieldProc(4, column) = ‘literal'tocolumn =
fieldProc (@, ‘literal').This optionis used when the
field procedure is not deterministic.

*ALLOW_
EQUAL

Optimization allowed for equal and not equal predicates, GROUP
BY, and DISTINCT processing. For example, the optimizer might
choose to change the predicate fieldProc (4, column) =
‘literal' tocolumn = fieldProc(®, ‘literal')in
order to facilitate index matching. This option is useful when

the field procedure is deterministic but no ordering can be
determined based on the result of the field encoding.

*ALLOW._
RANGE

Transformation allowed for MIN, MAX grouping functions,
ORDER BY, and all predicates except LIKE in addition to

the transformations supported by *ALLOW_EQUAL. This option
is useful when the field procedure is deterministic and the
encoded value implies ordering

*ALL

Transformation allowed for all predicates including LIKE, in
addition to the transformations supported by *ALLOW_RANGE.

FORCE_JOIN_ORDER

Specifies to the query optimizer that the join of files is to occur in
the order specified in the query.

*DEFAULT

The default is set to *NO.

*NO

Allow the optimizer to reorder join tables.

*SQL

Only force the join order for those queries that use the SQL JOIN
syntax. This option mimics the behavior for the optimizer before
V4R4AMO.

*PRIMARY
nnn

Only force the join position for the file listed by the numeric
value nnn into the primary position (or dial) for the join. nnn is
optional and defaults to 1. The optimizer then determines the
join order for all the remaining files based upon cost.

*YES

Do not allow the query optimizer to specify the order of join
tables as part of its optimization process. The join occurs in the
order in which the tables were specified in the query.

194 1BM i: Performance and Query Optimization

Table 51. Query Options Specified on QAQQINI Command (continued)

Parameter

Value

Description

IGNORE_LIKE_ REDUNDANT_SHIFTS

Specifies whether redundant shift characters are ignored for
DBCS-Open operands when processing the SQL LIKE predicate or
OPNQRYF command %WLDCRD built-in function.

*DEFAULT

The default value is set to *OPTIMIZE.

*ALWAYS

When processing the SQL LIKE predicate or OPNQRYF command
%WLDCRD built-in function, redundant shift characters are
ignored for DBCS-Open operands. The optimizer cannot use an
index to perform key row positioning for SQL LIKE or OPNQRYF
%WLDCRD predicates involving DBCS-Open, DBCS-Either, or
DBCS-Only operands.

*OPTIMIZE

When processing the SQL LIKE predicate or the OPNQRYF
command %WLDCRD built-in function, redundant shift
characters might be ignored for DBCS-Open operands. These
characters are ignored depending on whether an index is used to
perform key row positioning for these predicates. This option
enables the query optimizer to consider key row positioning

for SQL LIKE or OPNQRYF %WLDCRD predicates involving DBCS-
Open, DBCS-Either, or DBCS-Only operands.

KEY_RANGE_ESTIMATE_TIMEOUT

Specifies the amount of time the query optimizer may use for any
individual key range estimate operation. Key range estimates are
used with indexes to approximate the number of rows for a given
predicate. This option may help to reduce the time spent waiting
for some queries to complete optimization.

*DEFAULT

The default value is *OPTIMIZE.

*OPTIMIZE

The amount of time used for key range estimate operations is
determined by the query optimizer.

*NONE

No time limit is specified for key range estimate operations, and
every estimate will run to completion regardless of the time
required. This is the behavior of the query optimizer in releases
before IBMi 7.3.

Integer Value

The number of seconds a key range estimate operation may
execute before returning an estimate to the query optimizer.

At the end of this time interval, the optimizer will continue
optimizing the query, and the estimate operation will continue in
a background process. A smaller value may reduce optimization
time but may also cause less accurate estimates to be used by
the optimizer.

Valid values are 1-86400.

LIMIT_PREDICATE_OPTIMIZATION

Do not eliminate the predicates that are not simple isolatable

*
. _ .) DEFAULT predicates (OIF) when doing index optimization. Same as *NO.

Specifies that the query optimizer can only use simple isolatable

predicates (OIF) when performing its index optimization. *NO Do not eliminate the predicates that are not simple isolatable

An OIF is a predicate that can eliminate a record without further predicates (OIF) when doing index optimization.

evaluation. Any predicate that cannot be classified as an OIF is - . . .

ignored by the optimizer and needs to be evaluated as a non-key Elrl(;]:jlir;ig:zgIﬂ’f\ilﬁgaejgil:]atii:jeez(? Stlim’ijzl(aatliz(r)mlatable

selection predicate. P g P '

A=10 and (A => 10 AND B=9) are OIFs. *YES

A=10 OR B=9 are not OIFs.

Note: *YES impairs or limits index optimization.

LOB_LOCATOR_THRESHOLD *DEFAULT The default value is set to 0. This option indicates that the

Specifies either *DEFAULT or an Integer Value -- the threshold to
free eligible LOB locators that exist within the job.

database does not free locators.

Integer Value

If the value is 0, then the database does not free locators. For
values 1 through 250,000, on a FETCH request, the database
compares the SQL current LOB locator count for the job against
the threshold value. If the locator count is greater than or equal
to the threshold, the database frees host server created locators
that have been retrieved. This option applies to all host server
jobs (QZDASOINIT) and has no impact to other jobs.

MATERIALIZED_QUERY_ TABLE_REFRESH_AGE

Specifies the ability to examine which materialized query tables
are eligible to be used based on the last time a REFRESH TABLE
statement was run.

*DEFAULT The default value is set to 0.
0 No materialized query tables can be used.
XANY Any tables indicated by the MATERIALIZED_
QUERY_TABLE_USAGE INI parameter can be used.
Timestam Only tables indicated by MATERIALIZED_ QUERY_TABLE_USAGE
duratiog_ INI option which have a REFRESH TABLE performed within the

specified timestamp duration can be used.

Database performance and query optimization 195

Table 51. Query Options Specified on QAQQINI Command (continued)

Parameter Value

Description

MATERIALIZED_QUERY_ TABLE_USAGE *DEFAULT

The default value is set to *NONE.

Specifies the usage of materialized query tables in query

Materialized query tables cannot be used in query optimization

optimization and runtime. *NONE and implementation.
*ALL User-maintained materialized query tables may be used.
*USER User-maintained materialized query tables can be used.
MEMORY_POOL_PREFERENCE *DEFAULT The default value is set to *JOB.
Specifies the preferred memory pool that database operations +10B Paging is done in the pool of the job. This option is normal paging
uses. This option does not guarantee use of the specified pool, behavior.
but directs database to perform its paging into this pool when
supported by the database operation. Attempt to page storage into the base pool when paging is
*BASE needed and a database operation that supports targeted paging
occurs.
an Attempt to page storage into pool nn when paging is needed and

a database operation that supports targeted paging occurs.

*NAME PoolName

Attempt to page storage into a named storage pool when paging
is needed and a database operation that supports targeted
paging occurs.

*PRIVATE
Library/Subsystem/
PoolNumber

Attempt to page storage into a private storage pool in specified
library and subsystem when paging is needed and a database
operation that supports targeted paging occurs.

MESSAGES_DEBUG *DEFAULT

The default is set to *NO.

Specifies whether Query Optimizer debug messages are displayed | *NO
to the job log. These messages are regularly issued when the job is

No debug messages are to be displayed.

in debug mode. *YES Issue all debug messages that are generated for STRDBG.
NORMALIZE_DATA *DEFAULT The default is set to *NO.
Specifies whether normalization is performed on Unicode *NO Unicode constants, host variables, parameter markers, and
constants, host variables, parameter markers, and expressions expressions that combine strings is not normalized.
that combine strings.

« Unicode constants, host variables, parameter markers, and

YES f ; IO .
expressions that combine strings is normalized

OPEN_CURSOR_CLOSE_ COUNT *DEFAULT *DEFAULT is equivalent to 0. See Integer Value for details.

Specifies either *DEFAULT or an Integer Value: the number of
cursors to full close when the threshold is encountered.

Integer Value

This value determines the number of cursors to be closed.
The valid values for this parameter are 1 - 65536. The value
for this parameter is less than or equal to the number in the
OPEN_CURSOR_THREHOLD parameter.

If the number of open cursors reaches the value specified by the
OPEN_CURSOR_THRESHOLD, pseudo-closed cursors are hard
(fully) closed. The least recently used cursors are closed first.

This value is ignored if OPEN_CURSOR_THRESHOLD is
*DEFAULT. If OPEN_CURSOR_THRESHOLD is specified and the
value is *DEFAULT, the number of cursors closed is equal

to OPEN_CURSOR_THRESHOLD multiplied by 10 percent. The
result is rounded up to the next integer value.

OPEN_CURSOR_CLOSE_COUNT is used with
OPEN_CURSOR_THRESHOLD to manage the number of open
cursors within a job. Open cursors include pseudo-closed
cursors.

OPEN_CURSOR_ THRESHOLD *DEFAULT

*DEFAULT is equivalent to 0. See Integer Value for details.

Specifies either *DEFAULT or an Integer Value -- the threshold to
start full close of pseudo-closed cursors.

Integer Value

This value determines the threshold to start full close of
pseudo-closed cursors. When the number of open cursors
reaches this threshold value, pseudo-closed cursors are hard
(fully) closed with the least recently used cursors being closed
first. The number of cursors to be closed is determined by
OPEN_CURSOR_CLOSE_COUNT.

The valid user-entered values for this parameter are 1 - 65536.
A default value of 0 indicates that there is no threshold. Hard
closes are not forced based on the number of open cursors
within a job.

OPEN_CURSOR_THRESHOLD is used with
OPEN_CURSOR_CLOSE_COUNT to manage the number of open

cursors within a job. Open cursors include pseudo-closed
cursors.

196 IBM i: Performance and Query Optimization

Table 51. Query Options Specified on QAQQINI Command (continued)

Parameter Value

Description

OPTIMIZATION_GOAL *DEFAULT

Specifies the goal that the query optimizer uses when making

Optimization goal is determined by the interface (ODBC, SQL
precompiler options, OPTIMIZE FOR nnn ROWS clause).

costing decisions.

*FIRSTIO

All queries are optimized with the goal of returning the first page
of output as fast as possible. This option works well when the
output is controlled by a user likely to cancel the query after
viewing the first page of data. Queries coded with OPTIMIZE
FOR nnn ROWS honor the goal specified by the clause.

*ALLIO

All queries are optimized with the goal of running the entire
query to completion in the shortest amount of elapsed time. This
option is better when the output of a query is written to a file

or report, or the interface is queuing the output data. Queries
coded with OPTIMIZE FOR nnn ROWS honor the goal specified
by the clause.

OPTIMIZE_STATISTIC_ LIMITATION *DEFAULT

Specifies limitations on the statistics gathering phase of the query

The amount of time spent in gathering index statistics is
determined by the query optimizer.

optimizer. NO
One of the most time consuming aspects of query optimization is

No index statistics are gathered by the query optimizer. Default
statistics are used for optimization. (Use this option sparingly.)

in gathering statistics from indexes associated with the queried
tables. Generally, the larger the size of the tables involved in the *PERCENTAGE

Specifies the maximum percentage of the index that is searched
while gathering statistics. Valid values for are 1 - 99.

query, the longer the gathering phase of statistics takes. integer value

This option provides the ability to limit the amount of resources

spend during this phase of optimization. The more resources *MAX_

spent on statistics gathering, the more accurate (optimal) the NUMBER_OF_

optimization plan is. RECORDS_
ALLOWED

integer value

Specifies the largest table size, in number of rows, for which
gathering statistics is allowed. For tables with more rows than
the specified value, the optimizer does not gather statistics and
uses default values.

Database performance and query optimization 197

Table 51. Query Options Specified on QAQQINI Command (continued)

Parameter Value

Description

PARALLEL_DEGREE *DEFAULT

The default value is *SYSVAL.

Specifies the parallel processing option that can be used when *SYSVAL

Set to the current system value QQRYDEGREE.

running database queries and database file keyed access path
builds, rebuilds, and maintenance in the job. The specified parallel
processing option determines the types of parallel processing
allowed. There are two types of parallel processing: *10

1. Input/Output (I/0) parallel processing. With I/O parallel
processing, the database manager uses multiple tasks for

Any number of tasks can be used. SMP parallel processing is not
allowed.

The SQE optimizer considers I/0 parallelism with or without this
setting.

each query to do the I/0 processing. The central processor
unit (CPU) processing is still done serially.

2. Symmetric Multiprocessing (SMP). SMP assigns both CPU and
I/0 processing to tasks that run the query in parallel. Actual
CPU parallelism requires a system with multiple processors.
SMP can only be used if the system feature, Db2 Symmetric
Multiprocessing, is installed. Use of SMP parallelism can
affect the order in which records are returned.

*OPTIMIZE

Any number of tasks for:
« I/0O or SMP parallel processing of the query

- database file keyed access path build, rebuild, or
maintenance.

SMP parallel processing is used only if the system feature, Db2
Symmetric Multiprocessing for IBM i, is installed.

Use of parallel processing and the number of tasks used is
determined by:

» the number of processors available in the system

« the job share of the amount of active memory available in the
pool in which the job is run

« whether the expected elapsed time for the query or database
file keyed access path build or rebuild is limited by CPU
processing or I/0O resources.

The query optimizer chooses an implementation that minimizes
elapsed time based on the job share of the memory in the pool.

*OPTIMIZE
nnn

Like *OPTIMIZE, with the value nnn indicating a percentage
from 1 to 200, used to influence the number of tasks. If not
specified, 100 is used.

The query optimizer determines the parallel degree for the
query using the same processing as is done for *OPTIMIZE.
Once determined, the optimizer adjusts the actual parallel

degree used for the query by the percentage given.

Allows the user to override the parallel degree used
without having to specify a particular parallel